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Abstract 

Advanced metering infrastructure (AMI) is envisioned to be able to revolutionize the power grid and 

turn it into the “smart grid”. AMI, through the use of “smart meters” and high-speed networks, promises 

to strengthen both the stability and sustainability of the grid. The vision of AMI is to enhance and 

improve the grid by providing fine-grained control over pricing and usage to both the utility and the 

customers. The promise is so convincing that there have been rapid, large-scale deployments all over 

the world in a very short time. In this frenzy of excitement, security of AMI, an issue of utmost 

importance, may have been overlooked. In this work, we present our in-depth study of the 

vulnerabilities in AMI to cyber-attacks. We also propose a scalable, content-aware methodology to stop 

propagating malware which exploits the vulnerabilities of AMI to disrupt the operation of service. 

Towards this end we design and implement a host-based policy engine that examines both ingress and 

egress traffic to the AMI application layer. Policy engine rules may refer to the structure and behavior of 

the AMI protocol, and may also perform multi-stage analysis of data payloads and look for evidence that 

malicious content is carried, rather than data. Our experimental results show that the policy engine is 

promising in controlling the malicious traffic and introducing negligible performance overhead. 
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1. Introduction 

 “Smart meters” in the advanced metering infrastructure (AMI) report real-time usage statistics over 

data networks to the utility. These meters receive pricing information from the utility for a given time of 

use. The AMI provides the utility with better control and more efficient response times to detect 

problems. The smart meter provides the user with the ability to make informed decisions about usage. 

The idea is fast gaining popularity all around the globe. Building a smart grid was mandated with the 

Energy Independence and Security Act of 2007, resulting in a substantial investment worth 4.5 billion 

USD towards that purpose [1]. The Obama administration has called for 40 million smart meters to be 

installed in the United States over the next three years [2]. The drive is not limited to the United States 

alone, Europe follows closely with a law mandating smart metering by the year 2022 [3], and over the 

next few years, an additional 100 million smart meters will be added to the existing base of 40 million 

units worldwide. 

The AMI is composed of a combination of several communication networks and devices. A high-level 

overview of AMI is provided in Figure 1. One of the major components is a management component 

called AMI headend that resides and operates in the utility’s central office. Communication between 

field devices and the headend are carried out over a WAN. At the edges of the WAN, there lie data 

collectors or concentrators that provide access and aggregation of metering data. Finally, there is a 

mesh network of smart metering devices forming an LAN (local area network) or NAN (neighborhood 

area network). 

Given the magnitude and scale of AMI and the sizeable variety of manufacturers entering the business, 

standardization is essential to ensure interoperability and seamless integration with existing 

infrastructure. To this end, the American National Standards Institute (ANSI) has been focusing on 

defining standards for AMI. The most recent is ANSI C12.22 [4] which is an application-layer specification 

to allow transport of meter data over any networked connection including IP and cellular technologies. 

An alternative protocol suite IEC 62056 used by many Asian and European countries is a set of standards 

for electricity metering data exchange proposed by the International Electrotechnical Commission. They 

are the International Standard versions of the DLMS/COSEM [5] specification. 
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Figure 1 Architecture of the advanced metering infrastructure. 

The complexity and magnitude of AMI is indicative of the presence of vulnerabilities. Vulnerabilities are 

weaknesses in the system that may expose crucial assets of the network to unauthorized access and 

unintended use. New levels of automation, combined with extended access to the grid, can provide 

unforeseen attack avenues to malicious users, and this poses a serious threat to the AMI because of the 

potential devastation that may result. Imagine a scenario where one or more hackers take control of 

some elements of the AMI and disrupt the power supply to residential areas or even worse, to sensitive 

facilities like hospitals or those containing nuclear assets. 

The above-mentioned concerns have motivated researchers to solve many cyber-security issues, such as 

privacy, physical attacks, and data integrity problems. In this work, we focus on a particular threat from 

malicious software, called malware. The malware is able to destroy service availability and data 

integrity. Malware propagates through a network by hiding in the incoming/outgoing traffic in a system, 

sometimes as attachments to email, sometimes through direct attack on open services that have 

vulnerabilities. The main defense method against malware is to inspect whether the incoming or 

outgoing traffic includes malicious code, and to do that inspection at a low level in the protocol stack is 

required. The Bro system [6] for example can do deep packet inspection of traffic just as soon as it 
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enters a host, but is architecturally separated from application-level information that could be used as 

part of the inspection. This work proposes a host-based policy engine that has access to the network 

application states and so can do a more thorough analysis. In addition, the engine has the capability to 

do statistical analysis of data payloads to detect when the payload has characteristics of executable 

binaries. 

The contributions of this thesis include: 

 Conducted vulnerability assessment on the C12.22 protocol for the AMI system 

 Created a DDoS (distributed denial of service) attack scenario based on C12.22 vulnerability and 

evaluated it with a simulation/emulation testbed 

  Extended existing file type identification work to AMI traffic identification 

 Designed a policy engine to inspect the AMI traffic 

 Implemented a prototype of the policy engine based on an open source implementation of 

DLMS/COSEM provided by GuruX  
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2. Background and Related Work 

2.1 ANSI C12.xx Standard 

In this section, we provide a brief overview of ANSI C12.22 [4], a communication specification for 

transport of metering data. 

Until recently, communication with electronic meters and other devices was done via manufacturer-

dependent proprietary protocols. However, as the use of these devices became more and more 

widespread, ensuring interoperability became a necessity for seamless integration of devices and 

technologies. Interoperability requires standardization, and in the context of standardization for 

advanced metering, several standards including C12.18, C12.19, and C12.21 were proposed. The first 

step towards the standardization was the formulation of ANSI C12.19 (Utility Industry End Device Data 

Tables), which standardized data formats by abstracting data as a set of tables. This was followed by 

ANSI C12.18 (Protocol Specification for ANSI Type 2 Optical Port), that put forth a point-to-point 

protocol to transport table data over an optical connection through the use of an application language 

called Protocol Specification for Electric Metering (PSEM). PSEM allowed applications to read and write 

data tables. Following ANSI C12.18 and ANSI C12.19, ANSI C12.21 (Protocol Specification for Telephone 

Modem Communication) was developed, which allows devices to transport table data over telephone 

modems by using PSEM. 

The newest among this chain of standards is the ANSI C12.22 (Protocol Specification for Interfacing to 

Data Communication Networks) [4] standard, which extends the usefulness and capabilities of C12.18, 

C12.19 and C12.21 to allow the transport of metering data (in protocol compliant format) over any 

reliable networking and communication technology. 

The ANSI C12.22 standard specification provides a set of application-layer messaging services that are 

applicable for enterprises and end-devices of an AMI. The messages may be carried over a variety of 

existing underlying transport technologies including TCP-IP and UDP and also over a wide variety of 

physical media including PLC (power line communication), RF (radio frequency), etc. 

2.2 DLMS/COSEM Standard  

Similar to C12.22, DLMS/COSEM [5] is an application-layer protocol for communications and data 

exchange between the meters, the DCUs (data concentration unit), and the headend. The DLMS (Device 
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Language Message Specification) is a message specification, and the COSEM (Companion Specification 

for Energy Metering) is an interface model for communicating with the meters. The COSEM models the 

interface of the meters and the metering data with an Object Identification System (OBIS) defined in IEC 

62056-61. The OBIS provides a unique identifier for each of the COSEM objects. 

In the DLMS/COSEM protocol, each interface class has a global identifier, called its Class ID, and the 

object is instantiated in a uniquely recognizable OBIS code, called a logical name. The object has a set of 

attributes for the data and a set of methods for operations to be performed on the attributes. Each 

smart meter that is installed is modeled after a set of logical devices that act as a server application 

process (AP), and the logical device has a subset of the COSEM objects. 

The DCUs are modeled as a set of application processes acting as a client application process (AP). The 

data exchange between a server AP and a client AP is performed through an application level 

connection, called Application Association (AA), which is always initiated by the client. The logical name 

(LN) is used to access the COSEM object attributes and methods. Basically, the data exchange is 

performed between a client and a server through a service request and a service response. The policy 

engine we propose focuses on the client-server model because the DLMS/COSEM protocol is 

fundamentally a connection-oriented communication. 

2.3 AMI Security 

Smart meters have been shown to have vulnerabilities that may be exploited to infect them with 

malware and then “weaponize” them to spread malware [7] to other network elements in the AMI. 

Another major security concern for AMI is the so-called “off-switch”. This functionality enables remote 

control over the smart meters so that the utility might enforce load-shedding or be able to cut off power 

to defaulters. For an attacker, however, the off-switch opens possibilities of hijacking the grid, 

interrupting supply, and causing widespread chaos. Several attack scenarios based on the off-switch 

have been proposed in [3]. The work also highlights threats associated with another capability of the 

smart meters, i.e., remote software and firmware upgrades. Remote upgrade capability is absolutely 

necessary for future proofing because manual upgrades to millions of meters every time a new 

vulnerability is discovered or fixed may be prohibitively costly. On the downside, if a hacker can assume 

control over remote upgrades, then the hacker can infect the meters with bugs, or make them 

unresponsive. Concerns about remote disconnect capability have also been expressed in [8], which 

presents an attack tree to achieve a targeted disconnect of electrical service. To ensure that the smart 
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grid is well protected against security breaches, a sustained and concerted effort towards extensive and 

in-depth security and vulnerability analysis is needed. This is a huge endeavor because the smart grid is 

characterized by complex interactions of a large variety of devices and underlying technologies. At the 

same time, the smart grid security is also crucial to the success of the smart grid since it can streamline 

measures that must be taken in order to ensure stronger protection, detection, response, and recovery 

against a threat base that is still evolving. 

Not only the smart meters are shown to be vulnerable, but also the infrastructure has been exposed to 

many security problems involving privacy, integrity, and authentication of metering data [9], [10], [11]. 

The smart grid is vulnerable to physical attack, data attack, and attack to network availability, and 

privacy [11], [12], [13]. False data can be injected to affect state estimation [14], [15]. The risk of anyone 

with sufficient technical skill to monitor meters for energy consumption patterns in entire 

neighborhoods introduces security and privacy concerns into automatic meter reading [10]. Researchers 

have proposed jamming-based defenses against spoofing attacks and privacy [10]. Weining Yang [12] 

has proposed a stepping approach for battery privacy algorithms to hide appliance loads from smart 

meters. The stepping approach was found to handle load peaks better while disclosing little information 

as defined by mutual-information metrics to evaluate the privacy of different algorithms. 
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3. AMI Vulnerability Assessment 

3.1 Threat of DDoS 

In this chapter, we present an in-depth study of the vulnerabilities in AMI to cyber-attacks. We point out 

vulnerabilities in ANSI C12.22, the protocol specification for interfacing smart meters with data 

networks. We also show how these vulnerabilities can be used to launch denial of service (DoS) attacks 

on the AMI and then propose potential solutions. 

A distributed denial of service attack happens when a number of malicious network elements collude 

with each other to direct a large amount of traffic towards a common target victim. The intention is to 

exhaust the victim’s resources while it tries to accept and process the large volume of traffic. At this 

point, the victim is unavailable to function properly and refuses to accept even legitimate traffic. In 

particular, a bandwidth depletion DoS attack targets the victim system’s network bandwidth. The attack 

can be achieved by flooding the victim with huge amounts of traffic thus not leaving enough for 

legitimate users. Another way to launch a bandwidth depletion attack is via traffic amplification where 

attackers send messages to a broadcast IP address that solicit replies directed towards the victim. 

For the Internet community, DDoS attacks are neither new nor uncommon. As smart grids and AMIs 

interface with IP networks in hopes of reaping benefits of higher speeds and sophisticated technologies, 

a growing concern is that AMI may simultaneously be inheriting the same vulnerabilities as seen in the 

IP networks. In the next section, we identify DoS scenarios that exploit vulnerabilities in ANSI C12.22 

services. 

3.2 C12.22 Vulnerabilities 

3.2.1 Trace Service Vulnerability 

ANSI C12.22 provides a “trace service” to find out the route that a C12.22 message traverses. The trace 

service is essentially a list of relays that forwarded the message on the way towards its destination. The 

trace can be obtained by making the message make one round-trip to the destination and back while 

collecting information about the route. Now we explain how this is done in the C12.22 trace service. 

Suppose a C12.22 node with a unique ID called ApTitle x wants to trace the route to another C12.22 

node with ApTitle y. The sender initiates a trace service with the Calling ApTitle (sender ID) set to x and 

the Called ApTitle (destination ID) set to y. 
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Figure 2 Graphical representation of the C12.22 trace service. For an attack, the attacker sending the trace request will set 
the Calling ApTitle to that of the victim node and the responses will all be routed to that ApTitle. 

When a C12.22 relay receives the trace service request, it extracts the Called ApTitle and searches for it 

in its routing table. If a match is found, the relay forwards this message to the next-hop according to the 

routing entry. Before forwarding, the relay also adds its own ApTitle in the message to form a list of 

relays that forward this message. Every subsequent relay also appends its own ApTitle to this list before 

forwarding the request further. The process is shown in Figure 2 where relays R1 and R2 append their 

own ApTitles to the trace service request before forwarding it. When the trace request reaches a C12.22 

relay that has the target node (whose ApTitle matches with the Called ApTitle) as a neighbor, this relay is 

required to send a trace service response. In Figure 2, R3 is such a relay since it has node y as its 

neighbor. For sending the response, relay R3 creates a trace response message, copies the list of relays 

from the request and appends its own ApTitle to the response, sets the Called Aptitle to the ApTitle of 

the originator of trace request, i.e., x, and the Calling ApTitle to its own, and sends out the response. 

Note that the size of the trace service messages increases as they traverse the network since all the 

relays add their own ApTitles to the message. For a long route, especially in a dense mesh network, the 

messages can grow fairly large because of multiple hops. The large-size messages can become 

problematic since applications may react unpredictably to messages of unexpected sizes. 

To see how this service can be vulnerable to DDoS attacks, we present an attack scenario using Figure 2. 

Suppose the C12.22 node that sends out trace request x is the attacker and wants to attack another 

C12.22 node whose ApTitle is z. When the sender sends the trace request, instead of writing its own 

ApTitle in the Calling ApTitle field, it sets this to z, thus spoofing z’s identity. When a relay like R3 sends 

trace response, it copies the Calling ApTitle from the trace request and sets it as the destination of the 

response. In the attack scenario, R3 is tricked into sending the response to z instead of x. When 
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colluding nodes request spoofed requests from the victim, all the relays route their responses to the 

victim node z, and the victim’s network resources are exhausted resulting in DDoS. 

3.2.2 Resolve Service Vulnerability 

ANSI C12.22 also provides a “resolve service” to facilitate node discovery and retrieve the native 

network address of a C12.22 relay or node. The native address is used to communicate directly with 

other C12.22 nodes on the same native network or LAN. The service is defined by two messages: A 

“resolve request” and a “resolve response”. The resolve request contains the ApTitle of the C12.22 node 

for which the native address is requested, while the resolve response contains the required address. The 

C12.22 node that wants to retrieve the address of another node sends out a resolve request and 

includes ApTitle of the requested node as “Called ApTitle” and its own as the “Calling ApTitle”.  

According to ANSI C12.22, every relay capable of forwarding information to this Called ApTitle should 

return a resolve response to the node identified by the Calling ApTitle. The use of this service is 

illustrated in Figure 3. Suppose the node with ApTitle x wants to discover the node with ApTitle y. x 

sends out a resolve request with Calling ApTitle (sender id) set to x and Called ApTitle (destination id) set 

to y. When the request reaches a relay like r which knows y, r sends a resolve response to x containing 

the native address of y. The address can be used by x for future communication with y. The resolve 

service can be used to find addresses of C12.22 master relays and also to retrieve the IP address of 

C12.22 IP relays that provide a route out of the C12.22 network segment. 

 

Figure 3 An illustration of the C12.22 resolve service. 
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We now explain how this service can be misused to launch a DDoS attack. Suppose a colluding group of 

compromised C12.22 nodes broadcast resolve requests for a certain C12.22 relay. Then, according to 

the standard’s requirement, every C12.22 relay capable of forwarding to that node will return a 

response. If the malicious nodes collude and make it look like the requests are coming from the victim, 

then all the responses will be returned to the victim. This attack is further exacerbated from the victim’s 

perspective because a single broadcasted resolve request may solicit responses from several relays 

hence amplifying the attack traffic. Therefore this attack is particularly tempting for attackers since they 

do not have to inject all the attack traffic themselves, the broadcast functionality does it for them. 

Figure 4 shows a graphical illustration of an attack based on the resolve service. Attacking nodes spoof 

the identity of the victim and broadcast resolve requests to ask for the network address of some 

random node. Every relay capable of forwarding to that node will send a resolve response to the victim. 

If the attackers send resolve requests for a popular node, e.g., a master relay that all relays are aware of, 

the attackers can maximize the number of responses and make the attack very effective. 

 

Figure 4 An amplification DDoS attack using the C12.22 resolve service. 

3.2.3 Urgent Traffic Vulnerability  

C12.22 provides for a way to give preferential treatment to critical messages such that these messages 

can get to the central office as soon as possible. The idea behind this provision is that certain messages, 

e.g., alert messages sent by smart meters when they detect power outages, are more important than 

others. If these messages are delayed in the network, the utility might not be able to take any recovery 
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or back-up measures in time. To provide priority for such messages, ANSI C12.22 provides a 1-bit 

indicator named URGENT. The protocol then requires that messages with the URGENT bit set to 1 must 

be forwarded by all relays and acted upon by the final destination urgently (with high priority). This 

feature can be easily attacked by potential attackers who always mark their messages as urgent and 

steal the resources required by legitimate traffic. If these messages are designed to come together at a 

particular node on the route to the central office, this node could start dropping legitimate traffic not 

marked as URGENT. 

The attacks mentioned above utilize two basic techniques: source spoofing and sending messages via 

several relays. We claim that both of these actions are possible and in fact the work in [8] uses a meter-

spoof program to demonstrate energy fraud. Similarly, sending messages through several relays can also 

be done without violating the ANSI C12.22 specification since the C12.22 specification allows a node to 

register with several different relays [4].  

3.3 Proposed Solutions 

The vulnerabilities identified above can be masked with careful design, planning, and implementation. In 

the case of the trace service, for example, the priority of trace messages may be kept low so that other 

network traffic does not suffer from delays and packet drops due to trace requests. Another approach 

to dealing with these attacks is to devise efficient measures of detecting and preempting the attack 

before it can cause significant damage. We try to characterize features of the attack traffic so the 

malicious traffic may be distinguished from legitimate traffic. Both the trace service attack and the 

resolve service attack contain at least one invariant: the victim’s identity. All the traffic in both attacks 

must contain the identity of the victim. This may be used by the network to distinguish attack traffic 

from legitimate traffic. The network operators can then put limits on the number of trace or resolve 

requests that may be acceptable from a particular sending ApTitle. If the number of requests goes 

beyond this threshold over a certain period of time, then all subsequent requests may be dropped. The 

same threshold based provisioning argument can be made for an attack that exploits the URGENT bit 

functionality. The relays may be configured to give priority to URGENT traffic, but at the same time, they 

should not delay or drop other traffic beyond a certain threshold.  

The rate limiting solutions mentioned above may not be effective when the attacker distributes its 

traffic over several relays that keep the individual rates below the threshold. To avoid such , we envision 

a much stronger solution, at the heart of which lies the fact that smart meters and hence C12.22 nodes 
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and relays communicate over the wireless channel. Wireless is a shared medium and when nodes in the 

AMI mesh send messages, other nodes in the neighborhood can overhear them. A watchdog is a 

wireless node that receives messages overheard on the channel with the intention of monitoring its 

neighbors and traffic in the network. For example, a watchdog can gather information about the 

outgoing traffic rate of all its 1-hop neighbors. One of the popular arguments against wireless watchdogs 

is that promiscuous overhearing (and hence receiving) consumes significant energy. However, that 

concern is valid only for isolated, battery operated devices and not for smart meters that have direct 

sources of power. We will now discuss how watchdogs may be helpful in defending against the above-

mentioned attacks.  

 

Figure 5 Wireless watchdogs against the URGENT-bit attack. 

Consider Figure 5. Here, the attacker intelligently distributes its attack traffic and routes it via several 

relays so that at each individual relay, the rate of traffic always remains below the threshold. However, 

all this traffic may come together at the intended victim and may overwhelm it. Even if the victim is able 

to process and drop it, the attack traffic will have already consumed resources in the mesh by that time 

and may have caused delays to legitimate traffic. To see how watchdogs may help detect the attack, 

suppose the relay nodes were acting as watchdogs and maintaining a record of outgoing traffic from 

their neighbors. The attacker must be a neighbor to each of the relays to send its messages to them. 

Then, all three relays should be able to overhear all the messages from the attacker and can make a 

note of the total traffic originated by the attacker. By applying a threshold to this cumulative traffic, the 
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watchdogs can independently conclude that this node is originating attack traffic. Therefore, they can 

either provide a degraded quality of service to this node’s traffic or even drop its messages. These 

watchdog-based solutions can be particularly effective and efficient since they do not even require any 

collaboration between the watchdogs. Each of them can make its own observations, and they should all 

still reach the same conclusion about attack detection. This solution can be very efficient in containing 

the attack to small neighborhoods. 

Since the attacks we identify benefit greatly from ApTitle spoofing, as a final note, we now suggest how 

watchdogs can also be helpful for detection of spoofing. Since C12.22 nodes in the mesh network 

maintain a list of neighboring ApTitles, they can detect when they receive or overhear messages from a 

previously unknown ApTitle. There could be two reasons a message can originate from a new ApTitle:  

1) A new node joined the mesh network and the new ApTitle belongs to this node. 

2) A compromised node is originating messages by spoofing another node’s ApTitle. 

In either case, the nearby nodes (watchdogs) in the neighborhood will update their routing tables to 

indicate that this node is reachable in one hop. This information is also propagated through routing 

updates to the rest of the network, and so all traffic intended for this ApTitle will be routed to the node 

that most recently used the new ApTitle. In the first case above, there is no attack, so when intended 

traffic is routed to the new node, the network functions just as it should. However, for the second case, 

the attack traffic will be routed to the attacker instead of the victim, and thus the attacker will be 

overwhelmed by its own traffic rather than causing damage elsewhere. 

The solutions we propose, while not perfect, are intended to be the starting point towards a larger 

effort to securing the grid. Protocol vulnerabilities can become hard to mask efficiently once large-scale 

development and deployment have been put in place. Therefore, we find it of utmost importance to 

investigate these issues in greater detail before their solutions become harder than they ought to be. 
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4. N-Gram Analysis for Malware 

4.1 Traffic Type Classifier 

A successful DDoS attack usually requires a large size botnet. Botnets sometimes compromise 

computers whose security defenses have been breached and control conceded to a third party. Each 

such compromised device, known as a "bot" is created when a computer is penetrated by software from 

a malware (malicious software) distribution. In this and following chapters, we will discuss solutions to 

prevent malware compromising AMI components. 

Malware is typically propagated through a network by hiding itself into the incoming or outgoing traffic 

in a system. The main defense method against malware is to inspect whether the incoming or outgoing 

traffic includes malicious code. To accomplish this, we need a traffic classifier which can distinguish 

malicious code from legitimate data. In this section, we make use of FilePrint [16], which is an existing 

solution for file type classification. The basic idea of FilePrint is that each file type has a distinctive 

distribution even though a file type identifier is missed or obfuscated.   

A standard compiler-generated executable has a standard file format with magic numbers to identify the 

file type. For example, PE executable has 4D 52 and ELF executable has 7F 45 4C 46 in the first part of 

the files. However, the pure signature of file types can be purposely missing and obfuscated. Therefore, 

file classifier investigates whether the traffic has executables or not by using the 1-gram distribution of 

executables as presented in [16]. In this work, we use a similar method to identify AMI network traffic 

instead of files. 

4.2 Evaluation 

To make 1-gram distribution for malware, we collected 300 malware samples in the wild. Among the 

300 samples, 200 malware samples were used to build a model of 1-gram distribution as a training set. 

The remaining 100 malware samples were compared with the test model. The collected malware was in 

an executable format. 

Figure 6 demonstrates that the 1-gram distribution of metering data is different from that of malware. 

We derived the 1-gram distribution of byte values in the first 1000 bytes of each file as in FilePrint. It is 

shown that the distributions were quite noticeably different from each other. Specifically, 30% of 

malware distribution is gathered in the first byte (00h); however, only 7% is located in the first byte for 
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metering data. In addition, the metering data has non-zero distributions in only 40 different bytes, but 

the distribution of malware is spread through 256 different bytes from 00000000 to 11111111(00h to 

FFh). The experiment validated that the 1-gram distribution of malware, unlike that of metering data, 

serves as a good identifier to check a policy. 

 

 (a) One Malware Sample 

 

(b) One Meter Data Sample 

Figure 6 The 1-gram distribution for malware and metering data. Y-axis is a frequency of bytes in the file in the range of 0 to 
1. The file is truncated in 1000 bytes. X-axis is a byte value from 0 to 256. 

With the real metering data and the collected malware samples, we evaluated a false positive for 

correct metering data to be accidentally recognized as malware. Table 1 shows the result of false 

positive rate. Table 2 shows the false negative rate. K is the number of unique models built to represent 

a malware executable class. Unique training models were generated by K-means clustering and 

Manhattan distance as described [16].  

The truncation indicates the fixed portion for the first part of a file when computing a byte distribution. 

Dissimilarity is estimated by Mahalanobis distance in [16] to compare a test file with the training 

models. The dissimilarity values ranged from 0 to 3. We set a threshold of 1 to decide whether metering 

data was matched with the training models of the malware samples. As a result, the designed policy rule 

with n-gram analysis showed less than 2% false positives. However, the tables indicated that the size of 

metering data was generally less than 1 KB. Therefore, the policy rule with n-gram analysis identifies 

malware in metering data with around 1% false positive rate. However, the n-gram analysis shows high 
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false negative rates, which means a large number of malware files cannot be detected by the traffic 

classifier.  

Table 1 False positives of n-gram analysis 

Size 50 bytes 100 bytes 200 bytes 500 bytes 1 KB 2 KB 

K=1 0.00% 0.00% 0.00% 0.00% 0.00% 1.00% 

K=2 0.00% 0.00% 0.00% 0.00% 1.00% 1.00% 

K=5 0.00% 0.00% 0.00% 0.00% 1.00% 1.00% 

k=10 0.00% 0.00% 0.00% 0.00% 1.00% 1.00% 

k=20 0.00% 0.00% 0.00% 1.00% 1.00% 2.00% 

 

Table 2 False negatives of n-gram analysis 

Size 50 bytes 100 bytes 200 bytes 500 bytes 1 KB 2 KB 

K=1 13.50% 9.00% 24.00% 13.50% 10.00% 19.50% 

K=2 10.50% 5.00% 12.50% 9.50% 5.50% 6.00% 

K=5 9.50% 4.00% 11.50% 9.50% 5.00% 3.50% 

k=10 9.50% 4.00% 7.50% 8.50% 5.00% 3.50% 

k=20 8.00% 4.00% 3.50% 3.50% 3.00% 1.00% 

 

The experimental results show that n-gram analysis works effectively for detecting some malwares but 

not all of them due to the high false negative rates. There are also some drawbacks of using n-gram 

analysis for detecting malware, which make it impractical to implement in AMI system. One important 

assumption of n-gram analysis is that the malware is carried in its native form. Unfortunately, the 

attacker can easily encrypt or compress the malware in order to alter the byte distribution. Note that 

the authors of FilePrint [16] claim that the head of the file is the most important part for file type 

identification. However, packets might arrive out of order in the network, and the attack might permute 

the bytes purposely to hide that information. Another big challenge we face is building models for 

malicious and legitimate traffic. The model trained on one data set might not work for all other traffic of 

the same type. These limitations motivate us to propose a more effective method to detect malware 

propagation in AMI networks. 
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5. Policy Engine Design 

5.1 System Architecture 

The proposed policy engine is layered between applications and the protocol stack of DLMS/COSEM as 

shown in Figure 7. The policy engine scrutinizes incoming and outgoing traffic on the devices before the 

applications running on the devices accept the control commands and data, and before the data 

penetrates the protocol stack or the supporting layers. As shown in Figure 8, the policy engine consists 

of three systems to detect non-metering data and to prevent the traffic from carrying malware. The 

following sections will describe the proposed system in detail. 

 Data collection system: This system profiles invariant features during data exchange in the 

system related to the standard protocol. 

 Policy rule monitoring system: This system defines a variety of policy rules according to the 

standard protocol and statistical features. By monitoring communications, it examines incoming 

and outgoing traffic semantically and statistically. 

 Logging system: When the policy engine detects malicious code in the traffic, this system makes 

a record for further analysis. 

 

Figure 7 The placement of the policy engine in the AMI system. 

 



18 
 

 

Figure 8 Architecture of the proposed policy engine. 

5.2 Data Collection 

The policy engine first collects invariant information from the systems, including system configuration 

data, a list of OBIS codes and COSEM interface classes, and control command types. The list of OBIS 

codes and COSEM interface classes is obtained from the DLMS user association. Based on these 

standard documents, the proposed policy engine first profiles a subset of interface classes implemented 

on a particular system during installation or at run-time. The control command types provide invariant 

information for successful communications: GET/SET/ACTION/EventNotification services for LN (logical 

name) referencing and READ/WRITE/InformationReport for SN (short name) referencing. Finally, the 

system configuration data, such as a device name, a device ID, an IP address, a time zone, measurement 

unit, or the like, are set at the time of installation. 

When AMI systems are installed, the configuration information for the smart meter and its internal 

structure should be securely set up to ensure subsequent successful communications. Such information 

may also include ready-to-use tariff schedules and installation meter-specific parameters. The object list 

available in the server and the access rights to the objects’ attributes and methods can be retrieved by 

reading the second attribute value of the application association during communication or during 

installation. 

5.3 Policy Rule Monitoring System 

The policy rule monitoring system investigates incoming and outgoing traffic in real time by using 

various policy rules based on analysis as shown in Table 3. The system has two components: standard 
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protocol analysis and statistical analysis. The standard protocol analysis examines the traffic according 

to the DLMS/COSEM application protocol. Different kinds of policy rules are defined to check whether 

the traffic conforms to the specifications of the standard application protocol. In addition to this, the 

statistical analysis inspects whether the traffic contains the obvious features of malware; most malware 

uses packing and encryption; malware is executable. By using entropy, pattern, and signature analysis, 

the policy engine monitors these three traits of metering data that are statistically different from 

malware with byte streams. The detailed methods for each component will be described in the following 

sections. 

Table 3 Policy rule monitoring system 

Components Analysis for Policy Rules 

Standard protocol analysis Syntactic policy rules 
Semantic policy rules 

Access policy rules 
Communications policy rules 

Statistical analysis Entropy analysis 
Pattern analysis 

Signature analysis 

5.4 Logging System 

The policy engine allows traffic to pass if it satisfies all of the policy rules. Otherwise, when rules failures 

suggest anomalies, the engine records the message for further investigation. The policy engine logs the 

number of violated or specific rules, and it dumps the whole traffic to files. The logs and files can be 

forwarded to another intrusion detection system. The saved logging information can be forwarded into 

an external intrusion detection system that might be integrated with the proposed system. 
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6. Standard Protocol Analysis 

6.1 Overview 

The standard protocol analysis is organized according to four different sets of policy rules: syntactic 

policy rules, semantic policy rules, access policy rules, and communication policy rules. Each policy rule 

related to the DLMS/COSEM protocol plays a special role in identifying abnormal data in an AMI system.  

Depending on control command types, the traffic will be investigated by using a subset of policy rules 

that are dynamically selected from the pool of policy rules. The policy rules are extendable when 

different communication environments or new data objects are built by individual manufacturers, but 

the same rules apply in all cases. 

6.2 Policy Rules 

6.2.1 Syntactic Policy Rules 

Syntactic policy rules describe the proper syntax of the DLMS/COSEM protocol based on specific packet 

formats and unique identifiers. Syntactic policy rules verify static and invariant information during 

communications between a server and a client. The policy rules basically examine the invariant data, 

such as Class ID, OBIS codes, system configuration data, and the index of attributes and methods for the 

installed data objects based on the information from the DLMS UA. In addition, these rules investigate 

the packet format of the DLMS/COSEM protocol. 

6.2.2 Semantic Policy Rules 

Semantic policy rules define the proper range of data objects and the proper operation of the 

DLMS/COSEM protocol. The policy rules verify the semantics of the traffic during communication, such 

as the range of data types for each object, attribute values, and mapping of requests and responses for 

services. Each data object has static and dynamic information that can be accessed by the index of 

attributes. The static information is invariant and can be verified by the syntactic policy rules. However, 

the dynamic information is periodically updated, so the information needs to be checked using the 

semantic policy rules. To check the dynamic information, the policy engine should set up a threshold 

criterion. For example, when a client requests a clock object to indicate the current time, the current 

system time should be checked with a predefined offset as a threshold. The policy rules should set a 

threshold heuristically or systematically during device installation time. 
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6.2.3 Access Policy Rules 

Access policy rules control a set of constraints for smart meters and define the correct reference rules 

for each data object. They describe valid access control rules for an object, its attributes, and methods. 

The access policy rules examine access privileges and access rights for the defined data objects, 

attributes, and methods. For example, to modify the values of attributes, the policy engine checks 

whether the request action service for LN referencing has valid access rights with written permission. In 

addition, the static information about the attributes is preserved at runtime because it is invariant 

information. For example, the first attribute of each object is a logical name that cannot be changed. 

6.2.4 Communication Policy Rules 

The communications policy rules describe the proper sequence and operation of communication 

between a server and a client. These policy rules verify communication information that is necessary for 

data exchange, such as IP addresses, port numbers, and application addresses. For example, the number 

of connections should not exceed any limitations on communication availability. The sequence of 

communications should follow a correct state machine as defined in the COSEM protocol, IEC 62056-53. 

The DLMS application protocol is a connection-oriented protocol that allows client and server to use any 

service once they are associated. To exchange application data, a client AP and a server AP establish a 

connection (association), transfer data, and then the connection terminates at the end of the data 

exchange. These communication rules should verify the associated connection with the correct port 

numbers, the sequence of communications, and the special addresses for special application processes. 

For example, the request service from the client should be accompanied by the corresponding response 

service from the server. The application address of the public client is reserved with 0x10 to discover the 

structure of an unknown meter. The management logical device has a special application address 0x01. 
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7. Entropy Analysis 

7.1 Entropy of Network Traffic 

Like the tool Bintropy [17], the policy engine computes the entropy of a stream of n bytes as:  

𝐻(𝑥) = −∑ 𝑝(𝑖)𝑙𝑜𝑔2𝑝(𝑖)
𝑛

𝑖=1
 

where p(i) is the relative frequency of the value of the ith byte in the series of n bytes. The entropy value 

ranges from 0 to 8, with larger values indicating more internal disorder. Good encryption masks internal 

order of the plain text, and so encrypted text tends to have high entropy. Evidence reported in [17] 

suggests that encrypted files have entropy close to 7, whereas unencrypted files have entropy that is 

much lower. Our entropy test rule raises an alarm if a payload’s entropy exceeds 6.67. 

When compared with the Bintropy, the metering data have very low entropy, because the metering 

data do not make use of packing tools and encryption on devices. However, attackers might use packing 

or encryption techniques to defeat against signature-based malware detection systems. Therefore, using 

entropy information about packing and encryption is one obvious way to detect traffic with malware. 

7.2 Evaluation 

Figure 9 illustrates the measured entropies of encrypted and unencrypted ARM files of size 2 KB or less, 

and measured entropies of unencrypted metering data packets with sizes in the same range. There is a 

clear distinction between encrypted and unencrypted data; indeed, on a set of nearly 100 ARM files of 

sizes up to 300 KB the entropies of encrypted binaries (using AES-256) are all very close to the maximum 

value, 8. The distinction is not so clear between unencrypted binaries and unencrypted metering data. 

With an entropy threshold of 6.677, on this data set we achieve perfect resolution—no false negatives 

and no false positives. 
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Figure 9 Entropy encrypted ARM codes, unencrypted ARM codes, and unencrypted metering data. 

 

Figure 10 Encrypted message detection error rates. 

Figure 10 shows the error probabilities of entropy analysis detection. We vary the size of the packets 

received by the policy engine, then test the fraction of native packets that have been recognized as 

encrypted packets (false positive), and the fraction of encrypted packets that have been recognized as 

native packets (false negative). From the figure we can see that both error rates are low, which means 

the entropy analysis has high accuracy in identifying encrypted packets. 
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The entropy tests we showed in Figure 9 and Figure 10 are the entropy of byte stream of the whole file. 

We have also done entropy analysis on each 4-bit or 8-bit segment within an ARM instruction. Figure 11 

shows the average entropy of each 4-bit segment of ARM instruction (8 segments for one instruction). 

Since the four bits give 16 distinct values, the entropy value ranges from 0 to 4. Figure 12 shows the 

average entropy of each 8-bit segment (one byte) in the ARM instruction. The entropy value ranges from 

0 to 8. 

We notice that the seventh segment in Figure 11 and the fourth segment in Figure 12 of the ARM 

instruction give much lower entropy values. Since entropy is a measure of the uncertainty of 

information, the low value suggests some patterns in that field. This observation motivates us to find 

patterns in ARM code, which will be discussed in the next chapter. 

 

Figure 11 Four-bit segment entropy test. 
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Figure 12 Eight-bit (one byte) segment entropy test. 
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8. Pattern Analysis 

8.1 Patterns in ARM Code 

Binary executables exhibit considerable structure, with certain patterns appearing frequently. For 

example, commands that move data from one register to another or instructions that clear registers are 

frequent. While the specific patterns will depend on the CPU type, there is, we believe, a solid principle 

at play. 

For the purposes of demonstration, we studied a large number of programs compiled to run on the ARM 

processor. Those ARM programs are chosen as many AMI components are built around them. We 

observed visually, and confirmed empirically, that almost half of the instructions have a particular 4-bit 

field with value e in hexadecimal. These are the leading four bits of the instruction, and e is a code that 

indicates the instruction is unconditional, i.e., its execution is not dependent on the value in any status 

register. It seems highly unlikely that metering data should exhibit this same characteristic, so the 

condition field frequency test has promise. 

The ARM processor has what is for us the attractive feature that all instructions are four bytes long. Still, 

given a block of data that might be an executable, we cannot assume that the first byte is necessarily the 

first byte of an instruction. However, assuming that the block is some contiguous sequence of bytes 

from an ARM executable, we know that for some offset the sequence of 32-bit ensembles that start at 

the offset form a sequence of instructions, and we can pull the condition code from each. Thus, for 

every offset, we compute the relative fraction of supposed condition codes that have value e, and if one 

of those relative fractions is very high, we raise an alert. 

8.2 Evaluation 

One problem the e-code test must face is finding the alignment of potential instructions in the 

sequence. For simplicity we supposed that the instruction would be aligned within the payload with a 

resolution of 4-bits, meaning that there are eight possible offsets where an instruction might begin. 

Expanding the analysis to the full set of 32 possible offsets is straightforward. Figure 13 shows the 

results of computing for each slide the fraction of e codes, over a data set of 50 program segments, of 

full size, for both ARM binaries and metering data. The graph plots standard deviations for the 

measurements. We see that one slice stands out as having very high e-code counts. The significant 
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variance observed there is due to the presence of data blocks in the ARM codes that do not contain 

instructions, and hence should not be expected to contain e codes. 

 

Figure 13 Percentage of 4-bit codes equal to e, by slice. 

Next we tested the accuracy of the e-code test on a set of 85 ARM executables. Our experiment chooses 

block sizes of S: 100, 200, 400, 800, 1600, 3200, 6400, and 12800 bytes. For each block size S, a file is 

partitioned into contiguous blocks of S bytes, but discards those blocks that do not contain any 

executable code. The logic here is that while a message carrying a piece of an ARM data segment may 

easily slip past the e-code test, the propagation is not a threat until executable code is included. 

A block is judged to carry executable code if some slice exhibits 20% or more of the e character. With 

our blocks selected to contain ARM code, for each block size S we compute the fraction of blocks of size 

S where the e-code fails. For similar block sizes of metering data to which the e-code test is applied, we 

compute the fraction of blocks where the e-code test indicates this is an executable. The results are 

plotted in Figure 14. We observe remarkably good error rates, including false positive and false negative 

rates. Clearly the e-code test has excellent discrimination. 

The e-code test that appears to be very effective for detecting ARM binaries has limitations. Colluding 

compromised applications could easily defeat it by permuting the bytes. The x86 code is more 

challenging because of its variable instruction lengths. However in preliminary related work, we have 

found that a set of tests that look for commonly occurring patterns in x86 binaries can likewise detect 
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the presence of x86 code. Here the fingerprint is when a large enough number of pattern searches all 

“see” evidence of the x86 code.  

 

Figure 14 Accuracy of the e-code test. 
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9. Signature-Based Analysis 

9.1 Overview of Signature-Based Analysis 

The bit patterns of a specified field of an ARM instruction are effective in identifying native ARM code. 

However, bit-pattern recognition on ARM instruction faces two challenges. The first challenge is to find 

the start position of ARM instruction. To find the position, we must consider different ways in which the 

byte stream is aligned with respect to the beginning of the data packets. The second challenge is to deal 

with the case in which the attacker permutes the bytes of a packet in order to avoid detection. 

The above concerns motivate us to explore the statistical characteristics of the ARM instruction bytes 

instead of finding the pattern in the particular field. If we are able to find some bit patterns in bytes of 

ARM code, the patterns might be useful in distinguishing ARM data from meter data. In this section, we 

introduce a method to find byte-level patterns as signatures that can be employed to identify ARM 

code. We also describe the detection algorithms used by our policy engine. The detection errors are 

evaluated based on real meter data and ARM executable files.  

The goal of using signatures is to differentiate executable from meter data. There are two obvious ways 

to obtain the signatures. One is to look for patterns that occur significantly in ARM codes but are hardly 

seen in meter data. The other is to explore meter data patterns that have the low frequencies in ARM 

data. Since we try to catch the executable that was carried in the traffic, we focus on high frequency 

ARM patterns. In this work, we represent a signature by a string like xx10xxx1 where the x character 

matches any bit.  

9.2 Experimental Setup 

We collected real metering data from the TCIPG [18] testbed. The metering data set is based on the 

C12.22 protocol, which is formatted in the form that the policy engine will see. We also obtained more 

than 100 ARM executables and libraries from an embedded board to represent the executable content 

carried in the network traffic. The data set is divided into two parts. One is a training data set, which is 

used to find signatures and define policies. The other set is used for evaluation purposes. The 

experiments are conducted with a stand-alone program module, which is later integrated into the policy 

engine. We also evaluated the performance overhead of the policy engine running on a single-core 

machine with 2 GB memory. 
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9.3 Signature Selection and Policy Design 

Table 4 shows 10 selected signatures with high frequency of occurrence in ARM code and low frequency 

in meter data. We divide each ARM executable file and meter data file into 50-byte blocks and calculate 

their average frequencies and standard deviations.   

Table 4 Selected signatures and thresholds 

Signature ARM-avg ARM-SD Meter-avg Meter-SD Threshold 

xx10xxx1 0.190981 0.0506477 0.0163375 0.0180393 0.06 

x1x0xxx1 0.192723 0.0513551 0.01431 0.0173437 0.06 

x110xxxx 0.23595 0.0469141 0.058092 0.0157645 0.1 

1xx0xxx1 0.203583 0.0570596 0.0237255 0.0140147 0.06 

1x1x0xxx 0.258449 0.0678876 0.0815785 0.0239478 0.12 

1x10xxxx 0.292047 0.0707724 0.065665 0.0198652 0.1 

11xxxxx1 0.21666 0.062046 0.043394 0.0449878 0.08 

11xx0xxx 0.210888 0.0509753 0.038962 0.0134522 0.08 

11x0xxxx 0.240994 0.0491752 0.021727 0.0139706 0.06 

111xxxxx 0.225502 0.0455125 0.002035 0.00706107 0.02 

 

The goal is to use the significant difference of average signature-match frequencies to distinguish ARM 

packets and meter data packets. To this end, we need a policy to identify the ARM data effectively. The 

policy we used in this work is a simple threshold which classifies a packet as legitimate meter data with 

signature-match frequency lower than it and classifies a packet as malicious ARM data with frequency 

higher than it. The thresholds should be chosen carefully to reduce the error rates.  As shown in Table 5, 

a large fraction of meter data packets of various sizes exhibit ARM data patterns in at least one of their 

bytes. Table 6 shows that there are ARM executable packets with no pattern in any of the bytes. The 

tables tell us that errors are expected for signature matching. These observations motivate us to find a 

good policy and design an effective signature-matching algorithm to minimize the error rates.  

There are two errors involved in our policy engine. One is the false negative which classifies an ARM 

executable packet as meter data. The other is the false positive, which recognizes a meter data packet 

as ARM executable. If we define a high differentiating threshold, the false positive rate will be reduced 

while the false negative rate rises. A low threshold limits the false negatives but causes more false 

positives. Since control of false positives and false negatives is considered to be equally important, we 

choose the threshold that balances two error rates. Figure 15 illustrates the distributions of frequencies 
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of a signature in ARM executables and meter data. The optimal differentiating threshold is chosen such 

that area_A (false negative probability) and area_B (false positive probability) are equal. We have 

measured the frequencies of signatures and obtained the optimal threshold for each signature as shown 

in Table 4. 

Table 5 Fraction of meter packets with at least one byte matching the signature 

Signature 50 bytes 100 bytes 200 bytes 400 bytes 800 bytes 

xx10xxx1 0.57792 0.859416 0.996495 1 1 

x1x0xxx1 0.577056 0.846833 0.995911 1 1 

x110xxxx 0.987037 0.993202 0.99854 1 1 

1xx0xxx1 0.918119 0.991322 0.996203 1 1 

1x1x0xxx 0.979116 0.987706 0.993867 1 1 

1x10xxxx 0.983221 0.988863 0.995035 1 1 

11xxxxx1 0.987397 0.993636 0.997956 1 1 

11xx0xxx 0.981276 0.988574 0.995327 0.999398 1 

11x0xxxx 0.861875 0.985826 0.998248 1 1 

111xxxxx 0.091963 0.168933 0.260514 0.343769 0.411613 

 

Table 6 Fraction of ARM packets with no pattern-match at all 

Signature 50 bytes 100 bytes 200 bytes 400 bytes 800 bytes 

xx10xxx1 0.007914 0.003544 0.001417 0.000566 0.000226 

x1x0xxx1 0.007786 0.003941 0.001417 0.000453 0.000226 

x110xxxx 0.002581 0.001077 0.00051 0.000339 0 

1xx0xxx1 0.009417 0.004735 0.001983 0.000679 0.000226 

1x1x0xxx 0.004638 0.002297 0.001077 0.000453 0.000226 

1x10xxxx 0.002581 0.001389 0.00068 0.000339 0 

11xxxxx1 0.006325 0.003601 0.00153 0.000113 0 

11xx0xxx 0.00478 0.002608 0.001247 0.000339 0.000226 

11x0xxxx 0.003134 0.001531 0.000737 0.000339 0 

111xxxxx 0.004524 0.0019 0.000907 0.000339 0 
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Figure 15 Optimal threshold to balance errors. 

9.4 Error Analysis for Single Signature 

Table 7 False negative rate of signatures 

Signatures Threshold 50 bytes 100 bytes 200 bytes 400 bytes 800 bytes 

11x0xxxx 0.06 0.00735035 0.00464943 0.00224048 0.00149229 0 

111xxxxx 0.02 0.00795249 0.00398522 0.00182557 0.00033162 0 

1x10xxxx 0.1 0.0158427 0.00788742 0.00307028 0.00182391 0.00066203 

x1x0xxx1 0.06 0.0151783 0.0084686 0.0047299 0.00198972 0 

1xx0xxx1 0.06 0.0167563 0.00900826 0.0051448 0.00232134 0.00066203 

xx10xxx1 0.06 0.0153028 0.0091328 0.00506182 0.00265296 0.00033102 

x110xxxx 0.1 0.0195179 0.0091328 0.00448096 0.00232134 0.00033102 

11xx0xxx 0.08 0.021262 0.0103367 0.00580865 0.00198972 0.00066203 

1x1x0xxx 0.12 0.0239821 0.0145295 0.00970874 0.0049743 0.00264813 

11xxxxx1 0.08 0.0227778 0.0123708 0.00697038 0.00265296 0.00099305 

 

Table 8 False positive rate of signatures 

Signatures Threshold 50 bytes 100 bytes 200 bytes 400 bytes 800 bytes 

11x0xxxx 0.06 0.041377 0.0112882 0.00403226 0 0 

111xxxxx 0.02 0.0165508 0.0179283 0.0134409 0.00833333 0.00591716 

1x10xxxx 0.1 0.0165508 0.00066401 0 0 0 

x1x0xxx1 0.06 0.040053 0.0152722 0.0188172 0.0138889 0.00591716 

1xx0xxx1 0.06 0.0675273 0.0205843 0.00268817 0 0 

xx10xxx1 0.06 0.0589209 0.0278884 0.00268817 0 0 

x110xxxx 0.1 0.00297915 0.00066401 0.00134409 0 0 

11xx0xxx 0.08 0.00066203 0 0 0 0 

1x1x0xxx 0.12 0.0665343 0.00664011 0 0 0 

11xxxxx1 0.08 0.0301225 0.0146082 0.0120968 0.0222222 0.0473373 
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Table 7 reports the false negative rate for each signature that we have chosen. As we can see from the 

table, the error probabilities are affected by the packet size. A large packet adds more confidence for 

the signature to detect the executable. Similar to Table 7, Table 8 shows the probabilities of false 

positives. As shown in the tables, using any single signature limits the false positive rate under 0.07 and 

false negative rate under 0.03. However, the error probabilities are still too high to be used in practice.  

9.5 Pattern Recognition Using Multiple Signatures 

To reduce the error rates, we use multiple signatures instead of single signature for identifying 

executable patterns. We use a simple multi-signature voting scheme to identify the executable packets. 

If at least K out of N signatures recognize the packet (K votes) as executable packet, the packet will be 

flagged as malicious and dropped immediately. 

9.5.1 Independent Signatures Modeling and Analysis 

If the signatures we use are independent of each other, we will be able to compute the error 

probabilities with the following analytical model. Let us define the error probability of misclassifying a 

packet (size n) for N independent signatures as: r1(n), r2(n) … rN(n). Suppose we use N signatures to 

identify the type of a packet. If at least K out of N signatures misclassify the packet, we fail to identify 

the packet. Let α denote the set of N signatures, then the error probability of misclassifying a packet 

using multiple signatures is p: 

𝑝 = ∑ ∏𝑟𝑣𝑖(𝑛) ∏ (1 − 𝑟𝑤𝑗
(𝑛))

𝑤=𝛼−𝑣𝑣𝑣⊆𝛼,#𝑣≥𝐾

 

Figure 16 and Figure 17 report false negative probabilities and false positive probabilities, respectively. 

We choose 10 signatures and 100 bytes as the packet size. The above model predicts the error 

probabilities of N-signature-K-vote schemes. The figures show that multiple signatures are useful in 

controlling false negatives but will generate more false positives. However, the signatures listed in Table 

9 are not independent. Thus, we cannot get the significant drop in false negative rate shown in Figure 

17. 
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Figure 16 False positives of multiple independent signatures. 

 

Figure 17 False negatives of multiple independent signatures. 

9.5.2 Correlated Signatures Modeling and Analysis 
Since the signatures we choose are not independent of each other, we study the joint distribution of 

using multiple signatures. Table 9 presents the joint distribution of using 10 signatures for 100-byte 

packets. The joint distributions for ARM data and meter data are given in Table 9. For example, 

Prob{012} is the probability that the packet is recognized by signature-0, signature-1 and signature-2 but 

not recognized by any other signature. The zero probability cases are not shown in the table.  
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Table 9 Joint distributions of using ten signatures 

ARM data 

Prob{0}=4.15127e-005 

Prob{1}=0.00045664 

Prob{2}=0.000124538 

Prob{3}=4.15127e-005 

Prob{4}=8.30254e-005 

Prob{5}=8.30254e-005 

Prob{6}=0.000207564 

Prob{7}=0.000207564 

Prob{8}=0.000207564 

Prob{9}=0.000581178 

Prob{01}=0.000249076 

Prob{03}=4.15127e-005 

Prob{09}=4.15127e-005 

Prob{12}=4.15127e-005 

Prob{13}=0.000124538 

Prob{17}=4.15127e-005 

Prob{18}=4.15127e-005 

Prob{19}=0.000124538 

Prob{28}=4.15127e-005 

Prob{36}=4.15127e-005 

Prob{49}=8.30254e-005 

Prob{59}=0.000166051 

Prob{78}=4.15127e-005 

Prob{79}=8.30254e-005 

Prob{012}=4.15127e-005 

Prob{013}=0.000166051 

Prob{014}=4.15127e-005 

Prob{015}=4.15127e-005 

Prob{017}=0.000166051 

Prob{018}=4.15127e-005 

Prob{019}=0.000290589 

Prob{027}=4.15127e-005 

Prob{078}=8.30254e-005 

Prob{128}=4.15127e-005 

Prob{139}=8.30254e-005 

Prob{159}=4.15127e-005 

Prob{179}=4.15127e-005 

Prob{278}=8.30254e-005 

Prob{356}=4.15127e-005 

Prob{0126}=0.000871767 

Prob{0127}=4.15127e-005 

Prob{0129}=4.15127e-005 

Prob{0135}=4.15127e-005 

Prob{0139}=4.15127e-005 

Prob{0147}=4.15127e-005 

Prob{0149}=0.000124538 

Prob{0157}=4.15127e-005 

Prob{0159}=8.30254e-005 

Prob{0179}=8.30254e-005 

Prob{0347}=4.15127e-005 

Prob{01236}=0.000207564 

Prob{01246}=0.000290589 

Prob{01248}=4.15127e-005 

Prob{01256}=0.000415127 

Prob{01259}=4.15127e-005 

Prob{01269}=8.30254e-005 

Prob{01345}=0.000166051 

Prob{01349}=4.15127e-005 

Prob{01379}=4.15127e-005 

Prob{01478}=4.15127e-005 

Prob{01789}=4.15127e-005 

Prob{03479}=8.30254e-005 

Prob{012345}=4.15127e-005 

Prob{012346}=0.000124538 

Prob{012349}=4.15127e-005 

Prob{012356}=0.000124538 

Prob{012379}=8.30254e-005 

Prob{012456}=8.30254e-005 

Prob{012478}=4.15127e-005 

Prob{012479}=4.15127e-005 

Prob{012579}=4.15127e-005 

Prob{012678}=8.30254e-005 

Prob{012679}=8.30254e-005 

Prob{012789}=8.30254e-005 

Prob{013457}=0.000166051 

Prob{013459}=0.000249076 

Prob{013479}=0.000124538 

Prob{013679}=4.15127e-005 

Prob{0123456}=0.000415127 

Prob{0123458}=8.30254e-005 

Prob{0123459}=0.000166051 

Prob{0123569}=4.15127e-005 

Prob{0123579}=4.15127e-005 

Prob{0123789}=8.30254e-005 

Prob{0124567}=8.30254e-005 

Prob{0124568}=4.15127e-005 

Prob{0124569}=4.15127e-005 

Prob{0124678}=4.15127e-005 

Prob{0125679}=4.15127e-005 

Prob{0134567}=4.15127e-005 

Prob{0134569}=8.30254e-005 

Prob{0134579}=0.000290589 

Prob{0135679}=8.30254e-005 

Prob{01234567}=0.000332102 

Prob{01234568}=0.000124538 

Prob{01234569}=0.000747229 

Prob{01234578}=0.000124538 

Prob{01234579}=4.15127e-005 

Prob{01234589}=4.15127e-005 

Prob{01234678}=0.000332102 

Prob{01234679}=8.30254e-005 

Prob{01234789}=4.15127e-005 

Prob{01235678}=0.000249076 

Prob{01236789}=4.15127e-005 

Prob{01245679}=8.30254e-005 

Prob{01345679}=0.000124538 

Prob{01345789}=0.000124538 

Prob{012345678}=0.00319648 

Prob{012345679}=0.00236623 

Prob{012345689}=0.000249076 

Prob{012345789}=0.00045664 

Prob{012346789}=4.15127e-005 

Prob{012356789}=8.30254e-005 

Prob{013456789}=0.000124538 

Prob{0123456789}=0.979078 

Prob{none}=0.00149446 
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Table 9 (cont.) 

Meter data 

Prob{0}=0.00132802 

Prob{1}=0.0139442 

Prob{3}=0.00796813 

Prob{4}=0.00332005 

Prob{5}=0.00398406 

Prob{9}=0.0139442 

Prob{01}=0.00132802 

Prob{34}=0.00265604 

Prob{35}=0.00132802 

Prob{36}=0.000664011 

Prob{45}=0.00132802 

Prob{015}=0.000664011 

Prob{019}=0.000664011 

Prob{145}=0.000664011 

Prob{0125}=0.000664011 

Prob{none}=0.945551 

Now we can compute the error probabilities with the joint distributions using a simple analytical model. 

Let α denote a subset of signatures and Pr{α} denote the joint probability of a packet being identified as 

malicious by all signatures in α but not recognized by others. Then the probability that an executable 

packet is incorrectly classified as meter data is: 

𝑃𝑓𝑎𝑙𝑠𝑒_𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 = ∑ Pr⁡{𝛼}

#𝛼<𝐾

 

Similarly, the probability that a meter data is misclassified as executable is: 

𝑃𝑓𝑎𝑙𝑠𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 = ∑ Pr⁡{𝛼}

#𝛼≥𝐾

 

 

Figure 18 False positives of using multiple signatures. 
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Based on multi-signature joint distributions, we calculate the error probabilities for false positives and 

false negatives. Figure 18 shows the false positive probability for each K out of N schemes. The results 

show that the 1-vote scheme has high error probability in most of the cases. If we allow the policy 

engine to drop the packet based on one vote, there will be at least 1.9% of the legitimate traffic loss. 

Apparently the 1-vote scheme is not what we want. More votes are needed to reduce the false 

positives. 

 

Figure 19 False negatives of using multiple signatures. 

From Figure 19 we can see that the more signatures we use the lower error rate we achieve. However, 

involving too many signatures might slow down the policy engine. Another observation is that if more 

votes are needed to drop the packets, the error probability becomes higher. These two figures also help 

us to choose the best strategy for our policy engine. For example, if we want to use 10 signatures, then 

the 3-vote scheme seems better than others. The 3-vote scheme gives us 0.002656 false positives and 

0.004691 false negatives, which provides a good balance of two errors. Note that this scheme also 

surpasses most of single-signature approaches shown in Table 9 and gives the best error balance. 
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Figure 20 Experimental result of false positives. 

 

Figure 21 Experimental result of false negatives. 

To verify the error probability results, we experiment with the different sets of data. Instead of using 

joint distributions, the experiments evaluate the multiple signatures errors directly. The errors in Figure 

20 and Figure 21 match the results from previous experiments.  
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9.5.3 Packet Size Sensitivity 

 

Figure 22 Packet size sensitivity. 

In this section, we test how performance changes with various packet sizes. The experiment is 

conducted with 10 signatures and, three votes are required to drop the packet. Figure 22 shows that 

large packet size is helpful in reducing both false negatives and false positives because the error rates 

for a single signature drop when packet size increases.  

 

Figure 23 False positives of different schemes with various packet sizes. 
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Figure 24 False negatives of different schemes with various packet sizes. 

In this section, we present more multi-signature schemes to show their sensitivity to packet size. Due to 

space limitation, we show 1-vote and 2-vote schemes only. From Figure 23 and Figure 24 we have 

similar observations on packet size sensitivity.  

9.6 Malware File Detection Using Signatures 

In previous sections, we have designed and evaluated algorithms to reduce the errors in ARM packet 

detection. However, the malware file is carried by more than one packet. Even if we cannot successfully 

identify all of its packets, removal of any packet will inhibit the malware transfer. Then the probability 

that at least one packet is detected increases with transfer size. In this section, we will analyze the error 

probability on malware file transfer based on its packet identification error probability. 

The malware file identifying process is a Bernoulli trial on sequence of packets with success probability 

p. Assume that we have a file of size N and it is transmitted in packets of size n. Then the number of 

packets which are identified correctly by our mechanism is binomial distributed:  

𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁 𝑛⁄ , 𝑝) 

Since we have computed the probability of successfully identifying a malware packet (1-p’) using k 

signatures where p’ is the error probability, the probability of detecting and dropping at least c packets 

of malware (size N, pkt_size n) is  
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Pr{𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑁 𝑛⁄ , 1 − 𝑝′) ≥ 𝑐}⁡= ∑ (⌈𝑁 𝑛⌉⁄
𝑖
)(1 − 𝑝′)𝑖(𝑝′)⌈𝑁 𝑛⁄ ⌉−𝑖⌈𝑁 𝑛⌉⁄

𝑖=𝑐  

 

Figure 25 Error probability of identifying an ARM file. 

Based on the analytical model, we compute the error probabilities for 10 signatures and the 3-vote 

scheme. Figure 25 shows the probability of misclassifying an ARM executable file with various packet 

sizes. In this scenario we consider an ARM file identified correctly if and only if at least five of its packets 

are detected and dropped. Our method works better with the large amounts of packets and the large 

packet size. 
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10. Implementation and Performance 

10.1 Implementation 

We implemented a prototype of the proposed policy engine based on an open source implementation 

of DLMS/COSEM provided by GuruX [19]. The policy engine is implemented between a DLMS/COSEM 

library and applications using the GuruX library. The policy engine defines the same API used by the 

applications, and each function in the API is used as a wrapper function to intercept all the traffic. The 

API functions will call the function matched in the DLMS/COSEM library after performing necessary 

policy checks. 

To provide transparency to DLMS/COSEM application developers, we use the Ant tool [20] to build our 

Java application using source-code-to-source-code translation, which automatically changes 

DLMS/COSEM library calls to methods in the policy engine. The source-to-source translation can be 

achieved by Ant’s built-in filter function so that the developers do not need to remember the symbols in 

the policy engine library. We simply added the following XML code to the pre-compile section in Ant’s 

build file to translate the source code before compilation.  

<copy todir="build/target-src" filtering="true" overwrite=”true”> 
    <fileset dir="src" /> 
<filterset begintoken=”c” endtoken=”(”> 
    <filtersfile file=”myfilters”/> 
</filterset> 
</copy> 

The PE.filters file defines token-value pairs that map GuruX library symbols to the policy engine Symbols. 

Figure 26 shows the overview of DLMS/COSEM system with our policy engine. 
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Figure 26 Source code translation using Ant filters. 

Table 10 shows the mappings that are currently used in our policy engine prototype. It is used as a 

properties file for the Ant filter to load tokens from.  

Table 10 Mapping GuruX calls to policy engine calls 

GuruX calls Policy engine calls 

client.getDataFromPacket 

client.receiverReady 

client.getGXDLMSClientObject 

client.getDataFromPacket 

client.getGXDLMSClientObject 

client.SNRMRequest 

client.AARQRequest 

client.parseAAREResponse 

client.parseUAResponse 

client.getGXDLMSClientObject 

client.read 

client.getValue 

client.getGXDLMSClientObject 

client.setObisCodes 

client.getObjects 

client.parseObjects 

pedlms.getDataFromPacket 

pedlms.receiverReady 

pedlms.getGXDLMSClientObject 

pedlms.getDataFromPacket 

pedlms.getGXDLMSClientObject 

pedlms.SNRMRequest 

pedlms.AARQRequest 

pedlms.parseAAREResponse 

pedlms.parseUAResponse 

pedlms.getGXDLMSClientObject 

pedlms.read 

pedlms.getValue 

pedlms.getGXDLMSClientObject 

pedlms.setObisCodes 

pedlms.getObjects 

pedlms.parseObjects 
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10.2 Performance Evaluation 

We evaluated the overhead for our policy engine to check a set of policy rules and analyze the traffic. 

We measured the aggregated time that elapsed in performing the policy check on the client side. The 

experiment included examination of both request and response packets to and from the server in a 

given session. The session we evaluated included connecting application association, reading 

implemented object lists of a server, and reading CLOCK/DATA/REGISTER/PROFILE GENERIC objects. We 

used a machine with eight processors and 16 GB of memory. We repeated the experiment 100 times 

and got the average processing time.   

We have measured the application delay, which is defined as the time period between its object request 

and response. Without the policy engine, the application delay is 17,308,095 ns on average. After we 

integrate our policy engine, the application delay increased to 19,464,303 ns on average, which is an 

12.458% increase compared to the non-PE scenario. We have also evaluated the pure processing time 

consumed by the GuruX library and policy engine library, respectively. Since the processing time does 

not include communication delay, the processing time of the policy engine is much higher than the 

GuruX due to extensive traffic analysis. Our experiments show that the average processing time of using 

the policy engine is 2,441,325 ns which is about 10 times of that the GuruX’s 242,874 ns processing time. 

As previously mentioned, we set up both client and server on the same physical machine to minimize 

communication delay. In the real AMI system, the communication time is much longer than the 

processing time. Therefore, the fraction of policy engine processing time is smaller than what we saw in 

the experiments. 

In addition to the previous performance experiments, we measured the performance overhead in an 

environment with network delay. In this test, the DLMS/COSEM client and server are installed on two 

physical machines within the Illinois.edu domain. Our experiments show that, due to network latency, 

the application delay caused by the policy engine drops to 9.693% and the processing time becomes 

8.97 times of the original GuruX processing time. 

The policy engine checks the fixed set of rules and does a relatively predictable amount of analysis work. 

And it is obvious that the process of checking one chunk of data is independent of others.  Thus, we 

expect the performance overhead is proportional to the size of data being processed. We increased the 

data size up to 10 times of the default size by appending more items to the DLMS/COSEM data object. 

We observed that the application overhead is slightly increased but still around 10%. We believe that 
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the overhead caused by the policy engine is not very sensitive to data size within the range of 

DLMS/COSEM’s normal usage. 
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11. Conclusion 

This work proposed a new policy engine that would not allow any unwanted traffic, especially malware, 

either in or out. The policy engine prototype was designed according to the standard DLMS/COSEM 

protocol and the statistical features of malware. Fortunately, the policy engine can be easily extended to 

similar protocols and systems such as wireless network AMI system using C12.22. The standard protocol 

analysis monitors abnormal behavior in the systems. Based on the obvious traits (i.e., packing and 

execution) of malware, the statistical analysis aims to detect malicious code in metering data. Our policy 

engine can detect or block any malicious information or code with negligible performance penalty. Our 

research shows that metering data and malware demonstrate different statistical characteristics in 

entropy and byte patterns. With a version of open-source DLMS/COSEM from GuruX, we manage to 

incorporate our policy engine to test its effectiveness and efficiency. We also suggest a method of 

source-to-source translation to help the application developer to work with the policy engine easily. The 

experiments show that even with a less powerful desktop machine, our policy engine only involves 

minor overhead, which is about 12.458% more time used with respect to the GuruX application without 

the policy engine. 
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