

INVASIVE ALIEN SPECIES OF INDIA

Compiled by

S.Sandilyan

Centre for Biodiversity Policy and Law (CEBPOL)

National Biodiversity Authority,

Ministry of Environment Forests and Climate Change

Government of India

5th Floor, TICEL BIOPARK, CSIR Road,

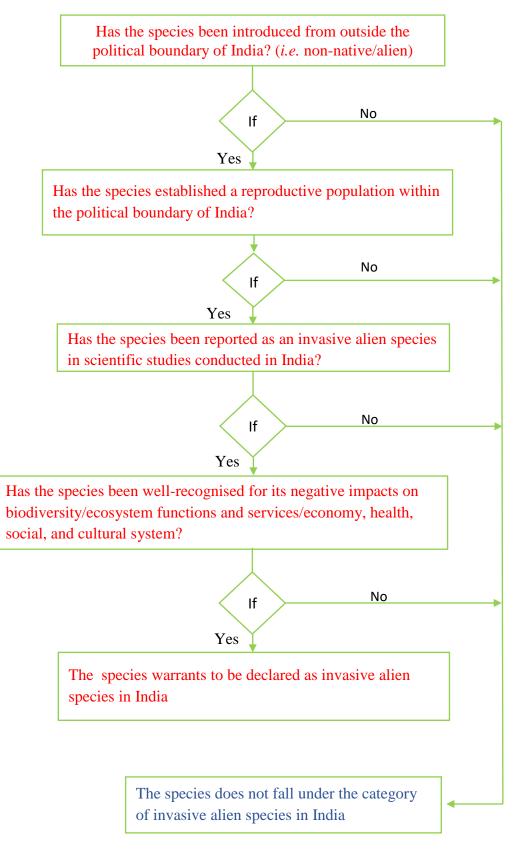
Taramani, Chennai – 600 113.

Contributors

NBA acknowledged the following researchers for their scientific contribution.

Dr. C.D. Dob	D. IV V C
Dr. C.R. Babu , Director of the Centre for Environmental	Dr. K.V. Sankaran,
	Former Director,
Management of Degraded Ecosystems	Kerala Forest Research Institute
(CEMDE), Department of Environmental	
Studies, University of Delhi	D D V d'
Dr. AC. Anil,	Dr. Rm. Kathiresan,
Chief Scientist,	Professor, Department of Agronomy,
National Institute of Oceanography,Goa	Annamalai University
Dr. Anzar A. Khuroo,	Dr. Biju Kumar,
Department of Botany,	HOD, Department of Aquatic Biology &
University of Kashmir, Srinagar	Fisheries, University of Kerala
Dr. Rajesh Singh,	Dr. TV. Sajeev,
Professor, Institute of Agriculture sciences,	Scientist- E1, Department of Forest
Banaras Hindu University, Varanasi	Entomology, KFRI, Peechi, Thrissur, Kerala
Dr. T.T. Ajith Kumar,	Dr. A.N. Shylesha,
Senior Scientist & Scientist in Charge,	Principal Scientist,
NBFGR - ICAR - National Bureau of Fish	National Bureau of Agricultural Insect
Genetic Resources, Lucknow	Resources (NBAIR), Banglore
Dr. Suresh Kumar,	Dr. C. Sudhakar Reddy,
Central Arid Zone Research Institute (ICAR),	Forestry and Ecology Division,
Jodhpur	National Remote Sensing Agency,
	Balanagar, Hyderabad
Dr. S. Sundaramoorthy,	Dr. Karthikeyan Vasudevan,
Assistant Director (Plant Pathology),	CSIR – Centre for Cellular and Molecular
National Plant Protection Organization,	Biology (CCMB), Hyderabad
Regional Plant Quarantine Station, Chennai.	
Sulagna Chattopadhyay,	Dr. B. Ramakrishnan,
Editor at IRIS Publication Pvt Ltd,	Department of Zoology & Wildlife Biology,
Geography and You (G'nY), New Delhi.	Government Arts College, Udhagamandalam
Mita Banerjee IFS,	Dr.Anwardeen IFS,
Chief Conservator of Forests	Conservator of Forests, Coimbatore Circle
(Research),Chennai	
Dr. A. K .Singh,	Dr. T. Selvamuthu Kumaran,
Former Director	Asst. Prof. of Entomology,
ICAR-Directorate of Coldwater Fisheries	Faculty of Agriculture, Annamalai University,
Research (DCFR), Anusandhan Bhawan,	Annamalainagar, Tamilnadu
Industrial Area, Bhimtal	
Dr. Prince prakash jeba kumar.J,	Dr. H, Abdual Jaffar Ali,
Scientist 'D',	Assistant Professor,
Coastal Environmental Engineering division,	Department of Biotechonology,
National Institute of Ocean technology,	Islamiah College (Autonomous), New Town,
NIOT Campus, Chennai	Vaniyambadi-
Dr. C. Raghunathan	Mr. Swapan Mehrra
Senior Scientist, Zoological Survey of India.	CEO- IORA- Ecological Solutions, Delhi.
Dr. Subhendu Kumar Otta.	Dr A Rajasekaran
Principal Scientist, CIBA, Chennai	Scientist -E, National Project Coordinator-
*	Invasive Alien Species, IFGTB, Coimbatore
Dr. Gopi Ramasamy	
Dr. Gopi Ramasamy Director, CABI India, New Delhi	Dr. Goldin Quadros
Director, CABI India, New Delhi	Dr. Goldin Quadros Senior Scientist, SACON, Coimbatore
Director, CABI India, New Delhi Dr. Sampath Kumar	Dr. Goldin Quadros Senior Scientist, SACON, Coimbatore Dr. S. Sandilyan,
Director, CABI India, New Delhi	Dr. Goldin Quadros Senior Scientist, SACON, Coimbatore

Criteria adopted for designating an alien species as invasive


CEBPOL, NBA collected the readily available ecosystem-wise literature of invasive alien species and thoroughly analyzed. During the consolidation, we found that there were lots of confusions, wrong citations, biased definitions and information in most of the published lists of invasive alien species. For instance, some of the lists declare the naturalized species as invasive, and conversely some lists declare the invasive species as naturalized alien species. Besides, the accepted name and the synonym of a species were simultaneously reported in the same list and mentioned as different species. In a worst-case scenario, the native species has also been reported as invasive alien species. CEBPOL, NBA realized the need for avoiding this kind of ambiguity and at the same time felt the necessity for criteria to be adopted for declaring a species as invasive alien species.

The compiled list was primarily screened to confirm the alien status and invasiveness of the species based on a simple methodology developed by CEBPOL (details of the methodology are provided in Figure 1). After the initial filtration/confirmation, the confirmed list was placed in the NBA's invasive species expert committee for scrutiny.

The committee deliberated on the lists compiled by CEBPOL, NBA and suggested to include the invasive attributes on a graded scale for confirmation of the invasiveness of the species in India. After reviewing the available literature, the committee has suggested to adopt the important invasive attributes *viz.*, invasiveness, impacts, range of extension and others to designate the alien species as invasive in India (Table 1). Besides, the committee also took into account the personal experiences of the researchers and their view in declaring a species as invasive if there is non-availability/inadequate literature.

Based on the aforesaid criteria, the committee finalized a list of 170 invasive alien species in different ecosystems. The committee also felt the list might further be expanded. For example, when some species are designated as invasive based upon the specific criteria, there may be many more invasive species which may satisfy the above criteria, but due to lack of adequate information of the concerned species it is not included in the present lists. Keeping this aspect in view, the committee requested the NBA to host the lists on its website for public access and comments. Once adequate information is available on the new invasive species in Indian provinces, it may be included in the lists in the near future after due consultation with the expert committee.

Figure I. Flow chart devised to identify whether a given species can be considered as invasive or not

Table 1. Invasive attributes used to confirm the invasive status of the species reported in Indian ecosystems.

	idian ecosystems.
S. No	Invasive attributes
Invasive	ness
1.	IE – Invasive Elsewhere
·	
2.	RMS – Rapid Multiplication and Spread in different ecosystems
2.	Trapia ividicipiodifon dila spicad in different ecosystems
3.	MMR – Multiple Modes of Reproduction
J.	White With the With t
4.	MMD Multiple Modes of Dispersion
4.	MMD – Multiple Modes of Dispersion
T	
Impacts	
1.	B1 – Affecting ecosystem functions and services
2.	B2 – Biodiversity loss
3.	B3 – Economic loss and health hazard
Invasion	areas (Continues spread)
	RE – Range Extension
	<u>l</u>

Terrestrial Invasive Alien Plant Species

S.	Name of taxa	English Name		Inva	asivenes	S	Ir	npac	ets	RE	References
No	Name of taxa		IE	RMS	MMR	MMD	B 1	B2	В3	KŁ	
1.	Abutilon crispum (L,) Brizicky	Bladder Mallow	✓	✓		✓	✓	✓		√	Inderjit et al., 2018; Based on field observation by experts
2.	Acacia auriculiformis L. New name Racosperma auriculiformis (L) Benth.	Northern black wattle	1	✓	√	✓	✓	✓		√	Based on field observation by experts
3.	Acacia dealbata Link	Silver wattle	✓	✓		✓	✓	✓		✓	Sekar 2012; Based on field observation by experts
4.	Acacia mearsnii De Willd.	Back wattle	✓	✓		✓	✓	✓	✓	✓	Sankaran et al., 2013; Naithani et al., 2017; Sekar 2012; Reddyet al., 2008.
5.	Ageratina adenophora (Spreng.)King & H. Rob.	Crofton weed or sticky snakeroot	1	✓	✓	✓	✓	✓	✓	√	Muniappan and Viraktamath1993; Based on field observation by experts
6.	Ageratina riparia (Regel)R. M.King & H. Rob.	Creeping croftonweed	✓	✓	✓	✓	✓	✓	✓	✓	Based on field observation by experts
7.	Alternanthera bettzickiana (Regel) G. Nichols	Red Calico plant	✓	✓	~	~	✓	✓	✓	\	Sankaran et al., 2013; Based on field observation by experts
8.	Alternanthera brasiliana (L.) Kuntze	Brazilian joy weed	✓	✓	✓	✓	✓	✓		✓	Sankaran et al., 2013; Based on field observation by experts
9.	Alternanthera ficoidea P. Beauv.	Joseph's coat	~	✓	✓	✓	✓	✓		✓	Based on field observation by experts
10.	Alternanthera paronychioides St. Hil.	Smooth joy weed	✓	✓	✓	✓	✓	✓		√	Sekar 2012; Based on field observation by experts

S.	Name of taxa	English Name	Invasiveness					npac	ets	RE	References
No	Name of taxa		IE	RMS	MMR	MMD	B1	B2	В3	KŁ	
11.	Alternanthera pungens Kunth.	Khaki weed	✓	~	✓	✓	✓	√	✓	√	Naithani et al., 2017; Sekar 2012;
12.	Alternanthera tenella Colla	Calico plant	✓	✓	✓	✓	✓	✓		√	Naithani et al., 2017; Sekar 2012;
13.	Antigonon leptopus Hook. & Arn.	Coral vine	✓	✓	✓		✓	✓		✓	Sekar 2012; Based on field observation by experts
14.	Argemone mexicana L.	Mexican poppy	✓	✓			✓	✓		✓	Sankaran et al., 2013; Naithani et al 2017;
15.	Bidens pilosa L.	Black Jack	~	✓	√	√	✓	✓	✓	✓	Muniappan and Viraktamath1993; Sekar,2012;
16.	Cabomba caroliniana A. Gray	Carolina fanwort,	✓	✓	✓		✓	✓		✓	Based on field observation by experts
17.	Cannabis sativa L.	Hemp/ Marijuna	✓	✓		√	✓	✓		✓	Based on field observation by experts
18.	Centrosema molle Benth.	Butterfly-pea	✓	√			✓	✓		√	Sankaran et al., 2013; Based on field observation by experts
19.	Cestrum aurantiacum Lindl	Orange cestrum	✓	✓	✓	✓	✓	✓	✓	√	Sankaran et al., 2013; Based on field observation by experts
20.	Chromolaena odorata (L.) King & Robin.	Siam weed	✓	✓	~	~	✓	✓	<	✓	Mahajan and Azeez2001. Sankaran et al., 2013; Naithani et al., 2017
21.	Cirsium arvense (L.) Scop.	Canada thistle	✓	✓	✓	✓	✓	✓		✓	Based on field observation by experts
22.	Coronopus didymus Sm.	Lesser swinecress	✓	✓	✓	✓	✓	✓		✓	Based on field observation by experts

S.	N C4	English Name		Inva	asivenes	S	Impacts				References
No	Name of taxa		IE	RMS	MMR	MMD	B1		В3	RE	
23.	Cryptostegia grandiflora R. Br.	Rubber vine	✓	✓		✓	✓	✓		✓	Naithani et al 2017; Sekar 2012; Reddyet al.,, 2008;
24.	Cuscuta chinensis Lam.	Dodder	✓	✓		✓	✓	✓		✓	Naithani et al., 2017; Sekar 2012;
25.	Cytisus scoparius (L.) Link	Scotch broom	✓	✓		✓	✓	✓		✓	Naithani et al., 2017
26.	Dactylandra welwitschii Hook. f.	Badi Aankh Phootani bel	✓	✓		✓	✓	✓		✓	Based on field observation by experts
27.	Dinebra retroflexa (Vahl) Panz.	Viper grass	✓	✓	✓	✓	✓	1		✓	Naithani et al., 2017; Sekar, 2012;
28.	Diplachne fusca (L.) P.Beauv.	Brown flowered swamp grass	✓	~	✓	✓	✓	✓		✓	Based on field observation by experts
29.	Dysphania ambrosioides Mosyakin & Clemants	Mexican tea	✓	✓		✓	✓	✓		✓	Sekar, 2012; Based on field observation by experts
30.	Erigeron bonariensis L.,	Horseweed / Butterweed	✓	✓	✓	~	~	~		✓	Inderjit et al., 2018; Based on field observation by experts
31.	Erigeron canadensis L.	Canadian horseweed	✓	✓		✓	✓	✓		✓	Based on field observation by experts
32.	Evolvulus nummularius (L.) L.	Round leaf Bindweed	✓	✓		✓	✓	1		✓	Naithani et al 2017; Sekar 2012;
33.	Hyptis suaveolens Poit.	Pig nut	✓	✓	✓	✓	✓	1		✓	Sankaran et al., 2013; Sekar 2012;
34.	Ipomoea eriocarpa R. Br.	Purple morning glory	✓	√		✓				✓	Naithani et al., 2017; Sekar 2012;
35.	Ipomoea fistulosa Mart. ex Choisy	Bush Morning Glory/ Shrub Ipomoea	✓	✓	√		✓	✓		✓	Based on field observation by experts

S.	Name of taxa	English Name Invasiveness						npac	ets	RE	References
No	Name of taxa		IE	RMS	MMR	MMD	B1	B2	В3	KE	
36.	Lantana camara L.	Lantana	1	√	/	~	✓	✓	√	√	Chandrasekaran andSwamy 2001; Love et al 2009; Sundaramand Hiremath 2012. Sankaran et al., 2013;
37.	Leucaena leucocephala (Lam.) de Wit	False/Horse tamarind	~	✓		✓	✓	✓		✓	Sankaran et al 2013; Naithani et al 2017;
38.	Maesopsis eminii Engl.	Umbrella-tree	✓	✓			✓	✓		✓	Sankaran et al., 2013
39.	Mikania micrantha Kunth	Mile-a-minute	✓	✓		✓	✓	✓		√	Gogoi 2001; Sankaran andSrinivasan2001;Lahkar et al.,2011.
40.	Mimosa diplotricha C. Wight ex Sauvalle var.	Giant sensitive plant	✓	✓	✓	✓	✓	✓		✓	Based on field observation by experts
41.	Mimosa pigra L.	Cat claw mimosa	1	✓	~	✓	✓	✓		✓	Naithani et al., 2017; Based on field observation by experts
42.	Muntingia calabura L.	Jamaican cherry	✓	✓	✓	✓	✓	✓	✓	✓	Based on field observation by experts
43.	Opuntia dillenii Haw.	Prickly pear	1	✓	✓	√	✓			√	Muniappan and Viraktamath1993; Sekar 2012;
44.	Opuntia elatior Miller	Prickly pear	✓	✓	✓	✓	✓			✓	Sekar, 2012; Based on field observation by experts
45.	Parthenium hysterophorus L.	Congress weed	1	√	✓	✓	✓	✓	✓	✓	Aneja, 1991; Gunaseelan,1998; Singh and Kaur, 1997; Sankaran et al 2013;
46.	Pennisetum purpureum Schumach.	Elephant grass	✓	✓		✓	✓	✓		✓	Naithani et al 2017; Sekar 2012;

S.	Name of taxa	English Name					In	npac	ets	RE	References
No	Name of taxa		IE	RMS	MMR	MMD	B1	B2	B3	KE	
47.	Prosopis juliflora (Sw.) DC.	Mesquite	✓	✓	✓	✓	✓	✓		✓	Dayal, 2007; Anoop, 2010; Kauret al.,2012.
48.	Pueraria montana var. lobata (Willd.) Sanjappa & Pradeep	Kudzu	✓	✓		✓				✓	Based on field observation by experts
49.	Senna spectabilis (DC.) Irwin & Barneby	Calceolaria shower	✓	✓			✓	✓		✓	Sankaran et al., 2013; Based on field observation by experts
50.	Solanum elaeagnifolium Cavanilles	Silverleaf nightshade	✓	✓			✓	✓		✓	Based on field observation by experts
51.	Solanum mauritianumScop.	Bugweed	✓	✓			✓	✓		✓	Based on field observation by experts
52.	Sphagneticola trilobata (L.) Pruski	Singapore daisy	✓	✓			✓			✓	Sankaran et al., 2013; Based on field observation by experts
53.	Typha angustifolia L.	Lesser bulrush	✓	✓	✓	✓	✓	✓		✓	Sekar 2012; Naithani et al., 2017; Inderjit et al., 2018;
54.	Ulex europeus L.	Common gorse	✓	✓		✓	✓	✓	✓	✓	Naithani et al., 2017; Based on field observation by experts

Invasive Alien Terrestrial Plant species reported in India

Note: IE - Invasive Elsewhere; RMS – Rapid Multiplication and Spread in different ecosystems; MMR – Multiple Modes of Reproduction

MMD – Multiple Modes of Dispersion; Impacts (B1- affecting ecosystem functions and services; B2-Biodiversity loss; B3- Economic loss and health hazard (human and wildlife) RE - Range Extension (Continues spread of the alien species)

Aquatic Invasive Alien Plant Species

S.	Name of the Creates	English Name	Inv	asivene	ess		Im	pacts	5	RE	Reference
No	Name of the Species		IE	RMS	MMR	MMD	B1	B2	В3	KE	
1.	Alternanthera philoxeroides (Mart.) Griseb.	Alligator weed	٧	٧	٧	٧	٧	٧		٧	Masoodi, and Khan, 2012; Masoodi, et al., .2013; Chatterjee, and Dewanji, 2012.
2.	Eichhorniacrassipes (Mart.) Solms	Water hyacinth	٧	V	٧	٧	٧	٧	٧	٧	Kathiresan, 2000; Narayanan et al 2007; Patel, 2012
3.	Ipomoea carnea Jacq.	Pink morning glory	٧	٧	٧	٧	٧	٧	٧	٧	Chaudhuri et al 1994; Laxmappa. 2013; Laxmappa et al., 2014
4.	Lemnaperpusilla Torr.	Minute duckweed	٧	٧	٧	٧	٧	٧		٧	Gopal, 1990. Khuroo,et al 2007
5.	Lythrum salicaria L.	Purple loosestrife	٧	٧	٧	٧	٧	٧		٧	Based on field observation by experts
6.	Marsilea quadrifolia	Common Water Clover	٧	٧	٧	٧	٧	٧		٧	Khuroo,et al 2007; Lolu,A.J. et al.2016
7.	Myriophyllum aquaticum(Vell.) Verdc.	Parrot's feather	٧	٧	٧	٧	٧	٧	٧	٧	Arshid, et al.2011; Shah, et al., 2014.
8.	Salvinia auriculata Aubl (syn. S. molesta)	Butterfly fern	٧	٧	٧	٧	٧	٧	٧	٧	Nair, and Pai, 1973; Thomas1979; Jayanth, 1987.

Note: IE - Invasive Elsewhere; RMS – Rapid Multiplication and Spread in different ecosystems; MMR – Multiple Mode of Reproduction MMD – Multiple Mode of Dispersion; Impacts (B1- affecting ecosystem functions and services; B2-Biodiversity loss; B3- Economic loss and health hazard (human and wildlife)RE - Range Extension (Continues spread of the species)

Inland Invasive Alien Species of Fishes

S.	N	English Name	Invasiveness I			Im	pacts		DE	Defenence	
No	Name of the Species	English Name	IE	RMS	MMR	MMD	B1	B2	В3	RE	Reference
1.	Clarias gariepinus	African catfish	V	√	√	V	V	V	1	V	Krishnakumar et al. 2009, 2011, Laxmappa et al. 2015, Singh et.al. 2012; 2014; 2014a; 2015.
2.	Cyprinus carpio	Common carp	√	√	$\sqrt{}$	$\sqrt{}$	1	1	√	√	Singh et al. 2010; 2011; 2013, 2014; 2014a.
3.	Gambusia affinis	Western Mosquito fish/ Topminnow	√		$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	√	$\sqrt{}$	Singh et al. 2011; 2013, 2014.
4.	Gambusiaholbrooki	Eastern Mosquito fish	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	Singh et al. 2011; 2013, 2014.
5.	Mylopharyngodonpiceus	Black carp		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	Singh et al. 2013a.
6.	Oreochromis mossambicus	Mozambique tilapia	V	1	√	V	V	V	1	V	Biju Kumar 2000: Laxmappa et al. 2015;, Singh et al. 2011; 2013, 2014;2014a
7.	Oreochromis niloticus	Nile tilapia	√	V	1	√	√	√	√	V	Laxmappa et al. 2015; Singh et al. 2013, 2014; 2014a
8.	Poecillia reticulata	Guppy	√	V	√	V	V	V	√	√	Biju Kumar, 2000; Singh an Lakra 2011; Singh et al. 2013b
9.	Pterygoplichthysdisjunctivus	Vermiculated sailfin catfish	V	V	\checkmark	\checkmark	1	1	$\sqrt{}$	V	Singh et al 2013 Biju Kumar et al. 2015
10.	Pterygoplichthys multiradiatus	Sucker mouth armored cat fish	√	V	√	√	1	1	1	$\sqrt{}$	Krishnakumar et al. 2009; Singh et al 2013a.
11.	Pterygoplichthys pardalis	Amazon sailfin catfish	√	V	√	√	1	V	1	V	Singh et al 2013a; Biju Kumar et al. 2015.
12.	Pterygoplichthys anisitsi	Paraná Sailfin Catfish	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	\checkmark	$\sqrt{}$	$\sqrt{}$	\checkmark	\checkmark	Singh et al 2013a.
13.	Pygocentrus nattereri	Red Piranha	√	1	√	√	$\sqrt{}$	V	√	√	Singh et al 2013a.
14.	Aristichthys nobilis	Bighead	V	V	√	√	V	V	1	V	Singh and Lakra, 2011. Based on field observation by experts

Note: Categories and Criteria adopted for listing Invasive alien Fishes in Inland Water IE - Invasive Elsewhere; RMS – Rapid Multiplication and Spread in different ecosystems; MMR – Multiple Mode of Reproduction MMD – Multiple Mode of Dispersion; Impacts (B1- affecting ecosystem functions and services; B2-Biodiversity loss; B3- Economic loss and health hazard (human and wildlife) RE - Range Extension (Continues spread of the species).

Marine Invasive Alien Species

S.	Name of the Species	English Name	Inva	asiveness			Impa	acts		RE	Reference
No			IE	RMS	MMR	MMD	B 1	B2	В3		
Algae			<u> </u>	1		· ·	- I		1	·	1
1.	Kappaphycus alvarezii	Elkhorn sea moss	V					\ \		V	Chandrasekaran et al. 2008;
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1				-\		-V	Kamalakannan et al. 2014
2.	Monostorma	Seaweed.	V							V	Untawale, et al 1980; Based on field
	oxyspermum		\ \ \							V	observation by experts
Scypl	10Z0a			•	•	•		•	•		
1.	Phyllorhiza punctata	Phyllorhiza puncta	\ \				-1	-1		V	Saravanan, et al, 2016. Based on field
	(Lendenfield 1884)	Lendenfield, 1884	7	1	√			1		V	observation by experts
2.	Pelagia noctiluca	Pelagia noctiluca	V	1	V	1	V	1		V	Kramp, 1961; Based on field
	(Forsskal, 1775)	Forsskal, 1775	"	V	V	V	\ \ \	V		V	observation by experts
Anth	ozoa			•	•	•		•	•		
1.	Carijoa riisei	Snowflake									Raghunathan, et al., 2013; Based on
		coral / Branched pipe			$\sqrt{}$	\checkmark					field observation by experts
		coral									
2.	Tubastrea coccinea	Orange soft coral	V	1	V	√		V		V	Pillai, and Patel, 1988 Based on field
	(Lesson, 1829)		\ \ \	\ \ \	V	V		\ \ \		V	observation by experts
Cten	phora										
1.	Beroe ovata		V		V	1		1			Chopra, 1960.; Based on field
	(Bruguiere, 1789)		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \ \	V	\ \ \		\ \ \		V	observation by experts
2.	Beroe cucumis		V		V	1		1		V	Robin et al., 2009; Based on field
	(Fabricius, 1780)		'	, v	V	V		•		•	observation by experts
3.	Vallicula multiformis		V		V			1		V	Prasade, et al 2016; Based on field
	(Rankin, 1956)		'	, v	V	V		•		•	observation by experts
Bival											
1.	Mytiloposis sallei	Caribbean false mussel	V	1	V	√	V	\ \	V	V	Ganapati et al 1971; Based on field
	(Recluz, 1849)			٧	<u> </u>	Y	<u> </u>	'	, v	<u> </u>	observation by experts
2.	Perna perna										Kesavan, et al 2009; Based on field
	(Linnaeus, 1758)				$\sqrt{}$						observation by experts

Hydi	rozoa										
1.	Ectoplura crocea (Agassiz, 1862)	Pink-mouth hydroid	√	V	$\sqrt{}$	√	V	1	1	V	Mammen, 1963; Based on field observation by experts
Poly	cheates		l.	•	•	•		·	ı	u	
1.	Ficopomatus enigmaticus (Fauvel, 1923)	Australian tube worm	√	V				1	√	V	Chandramohan, and Aruna, 1994; Based on field observation by experts
2.	Lumrineris japonica (Marenzeller, 1879)		√	V				1	V	V	Gaonkar, et al 2010; Based on field observation by experts
Amp	hipods										
1.	Jassa marmorata Holemes, 1905		√	V		√	V	√		V	Anil, et al 2003; Based on field observation by experts
Deca	pods		•	•	1	•	•	•	•	•	
1.	Penaeus vannamei Boone, 1931		1	1				√		V	Dev Roy, 2007; Based on field observation by experts
Bryo	zoa	-			I .		<u> </u>		1	1	
1.	Membranipora membranacea (Linnaeus, 1767)	Coffin box		√		1	V	√	√	1	Shrinivaasu, et al., 2015; Based on field observation by experts
Ascio	lian				•					•	
1.	Microcosmuscurvus (Tokioka, 1954)	Scaly tunicate	√	V				1		V	Meenakshi,1997;Abdul Jaffar Ali et al,2009; Tamilselvi, et al., 2011.
2.	Didemnum candidum Savigny, 1816		V	V				1		1	Meenakshi, 2003; Abdul Jaffar Ali and Sivakumar, 2007; Abdul Jaffar Ali et al 2009 and 2014

Categories and Criteria adopted for listing Invasive alien Marine species

IE - Invasive Elsewhere; **RMS** – Rapid Multiplication and Spread in different ecosystems; **MMR** – Multiple Mode of Reproduction

MMD – Multiple Mode of Dispersion; Impacts (B1- affecting ecosystem functions and services; B2-Biodiversity loss; B3- Economic loss and health hazard (human and wildlife) RE - Range Extension (Continues spread of the species)

Invasive Alien Species / Strains of Microbes in Fresh water and brackish water ecosystems

	invasive Alien Speci	English	ish Invasiveness					acts		R	References	
S. No	Name of the Species	Name	I E	RMS	MMR	MMD	B1	B2	В3	E		
Fungu	S	•		•	•	•	•	•			•	
1.	Aphanomyces invedans		٧	٧					√		Mohan and Shankar 1995; Based on field observation by experts	
2.	Enterocytozoon hepatopenaei		٧	٧							Rajendran, et al, 2016; Based on field observation by experts	
Bacter	ia											
1.	Eswardsiella tarda		٧	٧					√		Sahoo et al 2000; Based on field observation by experts	
2.	Flavobacterium Sp		٧	٧					√		Verma and Rathore 2015; Based on field observation by experts	
Virus												
3.	White spot syndrome Virus (WSSV)		٧	٧					√		Karunasagar et al 1997 ; Based on field observation by experts	
4.	Infectious Hypodermal Haematopoetic Necrosis Virus (IHHNV)		٧	٧					1		Sheela et al 1998; Based on field observation by experts	
5.	Yellow head virus (YHV		٧	٧					√		Mohan et al 1998; Based on field observation by experts	
6.	Infectious myonecrosis virus (IMNV)		٧	٧					1		Sahul Hameed, et al.,2017; Based on field observation by experts	
7.	MonodonBaculovirus (MBV)		٧	٧					√		Vijayan et al 1995; Based on field observation by experts	
8.	Hepatopancreatic parvovirus (HPV)		٧	٧					√		Manivannan, et al 2002; Based on field observation by experts	
9.	Laem Singh Virus		٧	٧					√		Prakasha et al 2007; Based on field observation by experts	
10.	Carp edema virus		٧	٧					1		Raja Swaminathan, et al 2016; Based on field observation by experts	
11.	Cyprinid herpes virus 2		٧	٧					1		Sahoo, et al 2016; Based on field observation by experts	

12.	Ranavirus	٧	٧			V	George et al. 2014; Based on field observation by experts
13.	Tilapia Lake virus	>	٧			V	Behera,et al. 2018; Based on field observation by experts

The details of Categories and Criteria adopted for listing Invasive alien Microorganisms reported in Indian aquatic system

IE - Invasive Elsewhere; **RMS** – Rapid Multiplication and Spread in different ecosystems; **MMR** – Multiple Mode of Reproduction**MMD** – Multiple Mode of Dispersion; **Impacts** (**B1**- affecting ecosystem functions and services; **B2**-Biodiversity loss; **B3**- Economic loss and health hazard (human and wildlife)**RE** - Range Extension (Continues spread of the species).

Invasive Alien Spcies of Microboes /strains (other than plants) in Agriculture Ecosystems.

	•	Common Name		asivenes			1	pacts			Reference
S. No	Species Name					MMD	B 1	B 2	B 3	R E	
Fung	gus			I	l	.1	ı	1	1	1	
1.	Hemileia vastatrix	Coffee rust	V	V							Kushalappa and Eskes 1989; Based on field observation by experts
2.	Phytophthora infestans	Late blight of potato									Butler 1918; Based on field observation by experts
3.	Urocystis tritici	Flag smut of wheat	1								Sydow and Butler, 1906; Based on field observation by experts
4.	Puccinia carthami	Rust of chrysanthemum	V								Sydow and Butler, 1906; Based on field observation by experts
5.	Venturia inequalis	Apple Scab	V	V					V		Rajak et al., 1974; Based on field observation by experts
6.	Plasmopara viticola	Downey mildew of grapes	V	V					V		CMI, 1988; Based on field observation by experts
7.	Sclerospora phillipinensis	Downey mildew of maize	1	1					$\sqrt{}$		Payak, and Renfro 1967; Based on field observation by experts
8.	Pyricularia grisea	Blast of paddy	V	1					$\sqrt{}$		Padmanabhan, 1965; Based on field observation by experts
9.	Fusarium moniliforme	Foot rot of Rice	V	1					$\sqrt{}$		Padmanabhan, 1959; Based on field observation by experts
10.	Phyllachora sorghi	Leaf spot of sorghum	V	V							Ramakrishnan, and Sundaram 1953; Based on field observation by experts
11.	Oidium heavea	Powdery mildew of rubber	√	V					√		Mitra M, Mehta PR. 1938; Ramakrishnan and Radhakrishna Pillay 1963.
12.	Phytophthora nicotianae var. nicotianae	Tobacco black shank	V	V					V		Govindarao and Koteswararao 1956
13.	Sphaeropsis spp.	Canker of apple	V	V							Mundkur.; Kheshwala. 1943; Based on field observation by experts

			1			,	Ganguly and Paul. 1953; Based
14.	Synchytrium endobioticum	Potato wart		1		$\sqrt{}$	on field observation by experts
15.	Fusariumoxysporum f.sp cubense (TR4)	Fusarium wilt of Banana	1	1		√	Uma, et al, 2017; Based on field observation by experts
16.	Plasmopara halstedii	Downey mildew of sunflower	1	1		√	Mayee and Patil, 1986; Based on field observation by experts
Bact	eria						
1.	Xanthomonas campestris p.v. campestris	Black rot of crucifers	1	√		$\sqrt{}$	Patel et al 1949; Based on field observation by experts
2.	Agrobacterium tumefaciens	Crown gall of apple/pear	1	1		√	Sharma, et al 2002; Based on field observation by experts
3.	Agrobacterium rhizogenes	Hairy root of apple/pear	1	1		√	Singh 1943; Based on field observation by experts
4.	Erwinia amylovora	Fire blight of pear		1		$ \sqrt{ }$	Papdiwal.; Deshpande. 1978; Based on field observation by experts
5.	Xanthomonas oryzae p.v. oryzae	Bacterial leaf blight of paddy		√		$ \sqrt{ }$	Srivastava and Rao, 1964; Based on field observation by experts
Viru	S			•	<u>'</u>		
1.	Banana Bunchy Top Virus (Babu virus)	Banana bunchy top	1	√		√	Verghese, 1945; Based on field observation by experts
2.	Sunflower necrosis illar virus	Sunflower necrosis	1	1		√	Prasada Rao et al 2000; Based on field observation by experts
3.	Peanut stripe virus	Bud necrosis	1	1		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Singh, et al 1993; Based on field observation by experts
Nem	atode						
1.	Globoderarostochiensis	Potato golden nematode	٧	٧			Jones, 1961; Based on field observation by experts

The details of Categories and Criteria adopted for listing Invasive alien Microorganisms reported in Indian Agricultural System

IE - Invasive Elsewhere; **RMS** – Rapid Multiplication and Spread in different ecosystems; **MMR** – Multiple Mode of Reproduction. **MMD** – Multiple Mode of Dispersion; **Impacts** (**B1**- affecting ecosystem functions and services; **B2**-Biodiversity loss; **B3**- Economic loss/health hazard (human and wildlife) **RE** - Range Extension (Continues spread of the species)

Invasive Alien Insect species in Agricultural ecosystems

S.		English Name		asivene				pacts			Reference
No	Name of the Species		IE	RMS	MMR	MMD	B1	B2		RE	
1.	Aceria guerreroronisKeifer	Coconut eriophyid mite	٧	٧		1			V	V	Navia et al. 2005; Desai et al. 2009Sarkar, 2011;
2.	Aleurodicus dispersus Russell	Spiralling white fly	1	1		√			√	V	Srinivasa et al 1999; Mani, 2010.
3.	Aleurodicus rugioperculatus Martin	Rugose spiraling whitefly		1		√	$\sqrt{}$		\checkmark	$\sqrt{}$	Sundararaj and Selvaraj, 2017.
4.	Bemisia argentifolii Bellows andPerring Bemisia tabaci Biotype B / M EAM	Silver leaf whitefly	٧	٧					V	√	De Barro et al. 2005; Reddy et al 2006.; Sujay Yet al . 2010.
5.	Eriosoma lanigerum (Hausmann)	Woolly apple aphid	٧	٧	√	√			$\sqrt{}$	V	Thakur and Dogra. 2009.
6.	Heteropsylla cubanaCrawford	Subabul psyllid	1	1		√			V		Singh et al. 1989; Veeresh, 1990.
7.	Hypothenemus hampei Ferrari	Coffee berry borer beetle	٧	٧					$\sqrt{}$		Kumar et al. 1990; Vijayalakshmi et al. 2013
8.	Icerya purchasi Maskell	Cottony cushion scale	٧	٧	$\sqrt{}$	$\sqrt{}$			$\sqrt{}$		Rao , 1951.
9.	Leptocybe invasa(Fisher and Lasalle)	Eucalyptus gall wasp/ Blue gum chalcid	٧	٧					V	V	Jacob et al. 2007; Senthilkumar et al 2013
10.	Liriomyza trifolii (Burgess)	American serpentine leaf miner	1	1		1			√	√	Virakthamath et al 1993; Hore, Garima et al 2017.
11.	Orthezia insignisBrowne	Lantana bug	٧	٧						√	NBAIR, 2017; Nanjappa et al. 2005.
12.	Paracoccus marginatus Williams & Granara de Willink	Papaya mealybug	V	1	$\sqrt{}$	√	√	V	√	V	Mani et al 2012; Krishnan et al 2016
13.	Phenacoccus madeirensis	Madeira mealybug		1	1	V			$\sqrt{}$		Shylesha and Joshi 2012
14.	Phenacoccus solenopsis Tinsley	Cotton mealybug	√	1	$\sqrt{}$				√	V	Vennila et al. 2010; Maruthadurai, and Singh, 2015

15.	Plutella xylostellaLinnaeus	Diamond back moth	1	√				V	V	Fletcher, 1914; Sujay et al 2010.
16.	Pseudococcus jackbeardsleyi Gimpel and Miller	Banana mealybug	V					√	V	Mani et al. 2013
17.	Quadraspidiotus perniciosus (Constock)	San Jose scale	٧	٧	V				√	Fotedar, R. 1941; Rawat, and Pawar,., 1991; Rawat, Sangal, et al., 1993.
18.	Quadrastichus erythrinae Kim	Erythrina gall wasp	1	V				V	$\sqrt{}$	Faizal, et al 2006.
19.	Tuta absoluta (Meyrick)	Tomato Pinworm	V	√		\checkmark		V		Sridhar et al. 2014; Sharma and Omkar Gavkare.2017
20.	Pineus pini (Macquart)	Pine woolly aphid	٧	٧					$\sqrt{}$	FAO, 2005; Sujay et al 2010.
21.	Phthorimaea operculella (Zeller)	Potato tuber moth	٧	٧				√	$\sqrt{}$	Lefroy, 1907; Chandel, et al 2005.

Categories and Criteria adopted for listing Invasive alien Insects reported in Indian Agricultural System

IE - Invasive Elsewhere; RMS – Rapid Multiplication and Spread in different ecosystems; MMR – Multiple Mode of Reproduction

MMD – Multiple Mode of Dispersion; Impacts (B1- affecting ecosystem services and functions; B2-Biodiversity loss; B3- Economic loss and health hazard (human and wildlife)RE - Range Extension (Continues spread of the species)

Invasive Alien Species of Major Islands

S.	C N	Common Name	Inva	siveness			Imp	acts		DE	Reference
No	Species Name		IE	RMS	MMR	MMD	B1	B2	В3	RE	
Insects	S										
1.	Citripestis eutraphera	Mango borer	٧	٧					٧	٧	Soumyaet al. 2016.
2.	Anoplolepis gracilipes	yellow crazy ant	٧	٧						٧	Bharti et al 2016; Sardarand Ghorai 2017.
Cnida	ria										
1.	Carijoa riisei	Snowflake coral	٧	٧				٧	٧	٧	Raghunathan, et al 2013; Venkataraman et al 2016
Mollus	sca				•						
1.	Achatina fulica	Giant African Snail	٧	٧						٧	Mohanty et al 2018.
Fishes		•	•	•	•	•		•			
1.	Oreochromis mossambiscus	Mozambique tilapia	٧	٧					٧	٧	Rajan et al 2018.
2.	Heteropneustes fossilis	Asian stinging catfish	٧	٧					٧		Rajan et al 2018.
Amph	ibian			•		•		•			
1.	Hoplobatrachus tigerinus	Indian bullfrog	٧	٧				٧	٧	٧	Harikrishnan and Vasudevan. 2013; Mohanty et al 2018a
Reptil	e						I	ı			1
1.	Calotes versicolor	Garden lizard	٧	٧					٧		Harikrishnan and Vasudevan. 2013
Birds											
1	Acridotheoes tristis	Common Myna	٧	٧						٧	Rajan, and Pramod, 2013; Mohanty et al 2018.
2.	Passer domesticus	House sparrow	٧	٧						٧	Rajan, and Pramod, 2013; Mohanty et al 2018.
Mamn	nals										
1	Axis axis	Chital/Spotted deer	٧	٧				٧	٧	٧	Ali and Pelkey 2013; Mohanty et al 2016.
2.	Axis porcinus	Indian Hog deer	٧	٧					٧		Ali, R. 2004.
3.	Muntiacus muntjak	Indian muntjac	٧	٧					٧		Ali, R. 2004.
4.	Elephas maximus	Asian elephant	٧	٧					٧		Ali, R. 2004

Categories and Criteria adopted for listing Island invasive species

Note: IE - Invasive Elsewhere; RMS – Rapid Multiplication and Spread in different ecosystems; MMR – Multiple Mode of Reproduction

MMD – Multiple Mode of Dispersion; **Impacts** (**B1**- affecting ecosystem services and functions; **B2**-Biodiversity loss; **B3**- Economic loss and health hazard (human and wildlife) **RE** - Range Extension (Continues spread of the species).

Details of the Invasive Alien species reported in India

S.NO	Details of the Species and Ecosystem	Total
Terrest	rial Ecosystem	
1.	Terrestrial plants	54
	Total	54
Aquatio	e Ecosystem	
1.	Microorganism reported in freshwater and	15
	brackish water	
2.	Aquatic plants (inland)	8
3.	Fishes	14
4.	Marine invasive species	19
	Total	56
Agricul	ture Ecosystem	
1.	Fungus	16
2.	Bacteria	5
3.	Virus	3
4.	Nematode	1
5.	Invasive Insects	22
	Total	47
Major l	Island Ecosystem	•
1.	Insects	2
2.	Cnidaria	1
3.	Mollusca	1
4.	Fishes	2
5.	Amphibian	1
6.	Reptile	1
7.	Birds	2
8.	Mammals	4
	Total	14
	Terrestrial plants	54
	Aquatic Ecosystem	56
	Agriculture Ecosystem	47
	Island Ecosystem	14
	Overall Indian IAS species	173