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Outline

• Optimality of base-stock policies in inventory control

• Optimality of linear policies in linear quadratic control

1 The template for structural DP arguments

In this section of the course, many arguments follow the same template:

• We first recognize that the terminal cost function J∗N has a nice property (e.g. convexity, or monoton-
icty).

• We then argue that this property implies that the policy µ∗N−1 has some nice structure (e.g. a threshold
policy is opimal).

• To extend this by induction, we show that if a cost function J satisfies the property, then the next cost
function

J+(x) = min
u∈U(x)

E [g(x, u, w) + J(f(x, u, w))]

that is generated by a step of the DP algorithm will also satisfy this property.

In the sequel we apply such arguments in the studying inventory control and linear systems with quadratic
cost (“LQ” control problems). In these problems, the convexity of the cost-to-go functions play a key role.

2 Operations that preserve convexity

We note some operations that preserve convexity which will be useful in showing the convexity of cost-
to-go functions. For a detailed treatment, please refer to the book on Convex Optimization [Boyd and
Vandenberghe].

• Non-negative weighted sums:

– If f1, . . . , fm : D → R are convex and w!, . . . , wm ≥ 0, then w1f1 + · · ·+ wmfm is convex.

– For some f : X × Y → R, the expectation g : X → R defined as

g(x) =

∫
f(x, y)w(y) dy

is convex if w(y) ≥ 0 and the mapping x 7→ f(x, y) is convex for all y ∈ Y.

• Composition with an affine map: g(x) = f(Ax+ b) is convex if f is convex.

• Point wise supremum: g(x) = supy∈Y f(x, y) is convex if x 7→ f(x, y) is convex for all y ∈ Y.
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3 Inventory Control Problems

Problem formulation Inventory control problems are classical finite-horizon optimization problems that
can be solved using dynamic programming approaches. Assume that the firm begins with some inventory x0
and, in each priod k, decides upon ordering replenishment uk ≥ 0 after observing a stochastic demand the
inventory position xk ≥ 0 in the current time period k ∈ {0, 1, 2, . . . , N − 1}. The evolution of the inventory
follows the recursive relation

xk+1 = xk + uk − wk, ∀ k = {0, 1, . . . , N − 1}

and unfulfilled orders are allowed to be backlogged (xk < 0) until replenishment products fulfill them. The
firm’s objective is to minimize the overall expected cost:

E{wk}

[
N−1∑
k=0

gk(xk, uk, wk) + gN (xN )

]
,

where expectation is taken with respect to the random demands {wk} which is assumed to be i.i.d. Per-stage
cost functions take the form

gk(xk, uk, wk) = cuk + r(xk + uk − wk), ∀ k = {0, 1, . . . , N − 1}
gN (xN ) = 0,

where we define:
r(x) = pmax{0,−x}+ hmax{0, x},

which denotes the cost due to backlogging or holding every period. Throughout, we assume that p > c so as
to exclude the trivial setting in which it is optimal to never order inventory and let all demand go unfulfilled.
Another property that will be useful to our analysis is that of coercivity of a function, defined as:

Definition 1. A function r : R→ R is coercive if r(x)→∞ as |x| → ∞.

It is easy to see that the function, r(·), is both convex (sum of convex functions) and coercive (the costs
are infinite for infinite inventory or infinite backlogging). We now present the main result for this inventory
control problem which shows that base-stock policies are optimal. Such a result is quite interesting. For a
continuous state space (like in this problem), we can characterize the optimal policy just using a bunch of
scalars which can be easily stored on a computer.

Proposition 2. (Base-stock policies are optimal) There exists an optimal policy π∗ = (µ∗0, . . . , µ
∗
N−1) such

that,

µ∗k(xk) = (Sk − xk)+ =

{
Sk − xk, xk ≤ Sk

0, otherwise,

for some scalars S0, S1, . . . , SN−1.

Proof. To prove this claim, we parameterize the problem using target inventory positions, yk := xk + uk for
each k. Our goal is to show that yk = max{Sk, xk} is optimal which implies the base-stock policy stated
above is optimal. For y ≥ x, define

Q∗k(x, y) = E
[
c(y − x) + r(y − wk) + J∗k+1(y − wk)

]
= E

[
cy + r(y − wk) + J∗k+1(y − wk)

]︸ ︷︷ ︸
Gk(y)

−cx.

Then, the DP algorithm yields for each k that

J∗k (x) = min
y≥x

[Gk(y)− cx]. (1)
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The constraint that y ≥ x is due to the fact that we cannot order negative inventory. We define

S∗k ∈ arg min
y∈R

Gk(y)

to be the ideal inventory position in period k. Be warned, however, that the existence of such a scalar
remains in question, so we proceed to prove that Gk(·) is convex and coercive, which implies that an
unconstrained minimizer, S∗k , exists.

• Claim: Gk is convex.

First note GN−1(·) is convex as J∗N (·) = 0 as well as r(·) are both convex. More precisely, GN−1(y) is
a sum of a linear term cy, the expectation EwN−1

[r(y−wN−1)] which is convex (expectation preserves
convexity and r(y − wN−1) is convex in y for all wN−1) and J∗N (y − wN−1) which is 0. Further note
that for any convex function F (·), the function g(x) = miny≥x F (y) is also convex. (draw a picture)
Hence,

J∗N−1(x) = min
y≥x

GN−1(y)− cx

is also convex. We use backward induction to complete the argument for all k periods.

• Claim: Gk is coercive.

Since the expected future cost function J∗k+1(·) is bounded below by zero1, we have that

Gk(y) ≥ E[cy + r(y − wk)]

= E[c(y+ − y−) + p(y − wk)− + h(y − wk)+]

≥ E[−cy− + py− + h(y − wk)+] (y+ ≥ 0 and wk ≥ 0)

= (p− c)y− + hE[(y − wk)+]

As p > c and h > 0, the lower bound is clearly coercive. The first term, (p− c)y− →∞ as y → −∞.
The second term, E[(y − wk)+]→∞ as y →∞. Hence, Gk(y)→∞ as y → ±∞.

Therefore, we have showed the existence of an unconstrained minimizer S∗k of Gk, so the DP algorithm
guarantees the optimality of the base-stock policy as:

arg min
y≥x

Gk(y) =

{
S∗k , if S∗k ≥ x
xk, otherwise

where recall that S∗k := arg miny∈R Gk(y)

3.1 On the extension to fixed costs

A large operations literature treats more realistic generalizations of the inventory control problem, such as
the incorporation of fixed order costs. In this case, the per-stage cost would be

gk(x, u, w) =

{
r(x+ u− w), u = 0

K + cu+ r(x+ u− w), u > 0
.

In this problem, base-stock policies constructed above are no longer optimal. This makes intuitive sense:
if the inventory level xk is already close to the base-stock level S∗k then replenishment would not offer enough
benefit to justify the fixed cost.

1Per-period costs are non-negative which imply cumulative costs have to be non-negative as well.
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It turns out that the optimal policy takes the form of a multiperiod (s, S) policy. This policy takes the
form

µ∗k(xk) =

{
0, if s∗k ≥ x
Sk − xk, if xk < sk

where Sk = arg miny Gk(y) and sk = min{y|Gk(y) = K +Gk(Sk)} for each k.
Showing the optimality of such policies is more difficult than showing the optimality of base-stock policies,

because the function Gk(·) is generally no longer convex. Pioneering work by Scarf observed that these
functions satisfy a relaxed notion of convexity he called K–convexity. Volume 1, section 3.2 of Bertsekas’
textbook contains an inductive argument showing that Gk is K−convex. That is, Gk satisfies the following
property:

K +Gk(z + y) ≥ Gk(y) + z

(
Gk(y)−Gk(y − b)

b

)
, for all z ≥ 0, b > 0, y.

Remark: I find it helpful to to think of this as a relaxation of the fundamental property that a convex
function lies above all its tangents. When first grappling with this formula, it may be helpful to suppose Gk

is differentiable at y and take b → 0 so that Gk(y)−Gk(y−b)
b → G′k(y). Then, you can roughly think of this

condition as saying that Gk never lies below its tangent by more than the fixed amount K > 0. A more
precise understanding requires working through the analysis, as this condition is really engineered to make
the proof work.

4 LQ Control

See also Bertsekas, Dynamic Programming and Optimal Control Vol. 1 Section 3.1

Problem Statement Here, we consider the special case of linear system when the cost is quadratic. We
have,

xk+1 = Axk +Buk + wk k = {0, 1, . . . , N − 1}
g(xk, uk) = x>k Qxk + u>Ru k = {0, 1, . . . , N − 1}

Here, we assume that xk ∈ Rn, uk ∈ Rm and the cost matrices Q,R are symmetric and positive definite (i.e.,
Q ∈ Sn++, R ∈ Sm++. We also assume the noise {wk} to be i.i.d with zero mean (i.e., E(wk) = 0) and finite
second moment. Note, we only need to assume the noise to be independent, however assuming the noise
to be i.i.d simplifies notation. Similarly, the matrices A,B,R,Q can all be period-dependent but we will
assume these to be fixed for simplicity.

Proposition 3. The optimal policy π∗ =
(
µ∗0, . . . , µ

∗
N−1

)
takes the form µ∗k(x) = Lkx, where the driving

matrix Lk ∈ Rm×n doesn’t depend on the distribution of wk’s.

Since Lk does not depend on noise distribution, the optimal controller is the same as that in a problem
with deterministic dynamics (i.e. wk = 0). This surprising property is called certainty equivalence and it
makes it possible for Lk’s to be computed by “recursive linear algebra”.

Proof. Let us set up some notation. We define the optimal cost-to-go functions as:

J∗N (x) = x>KNx+ cN

J∗N−1(x) = min
u

[g(x, u) + Ew [J∗N (f(x, u, w))]]
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where KN = Q, cN = 0 and f(x, u, w) = Ax+Bu+ w. To simplify notation, let us define:

h(x, u) = g(x, u) + Ew [J∗N (f(x, u, w))] .

Our aim is to prove that the given policy is optimal by the principle of mathematical induction. We
prove this in 3 steps.
Step 1: h(x, u) is convex quadratic in (x, u).
Why? This is because

• g is convex quadratic

• J∗N (x) is convex quadratic

• (x, u, w) 7→ f(x, u, w) is an affine function, and the composition of a convex quadratic function with
an affine function is convex quadratic as well.

To see this more explicitly, note that the function x → J∗N (x) is a convex function. (x, u, w) 7→ f(x, u, w)
is an affine function. Thus, ∀w (x, u)→ J∗N (f(x, u, w)) is a convex function, and taking expectation of this
w.r.t w preserves convexity. Since, g(x, u) is also convex, h(x, u) is just a sum of two convex functions, and
hence is convex in turn.

To see that it is also quadratic, we write its full expansion. We have,

h(x, u) = u>Ru+ x>Qx+ E
[
(Ax+Bu+ w)

>
KN (Ax+Bu+ w)

]
+ cN

= u>(R+B>KNB)u+ x>(Q+A>KNA)x+ 2x>A>KNBu+ E
[
w>Qw

]
+ cN

which, clearly, is quadratic in (x, u).
Step 2: The minimizer x −→ arg minu∈Rm h(x, u) is a linear function.
To see this, we apply the first order conditions for minimality. At the point of minimality, the first derivative
∇uh(x, u) should vanish. We have,

∇uh(x, u) = 2
(
R+B>KNB

)
u+ 2B>KNAx

∇uh(x, u) = 0⇒ u = −(R+B>KNB)−1B>KNAx

∴ µ∗N−1(x) = L∗N−1x where L∗N−1 = −(R+B>KNB)−1B>KNA

Note here, that indeed, L∗N−1 doesn’t depend on the distribution of wk’s.
Step 3: Induction step
To complete the proof, note that J∗N−1(x) = minu h(x, u) = h(x, L∗N−1x) is a composition of a convex
quadratic h with a linear function x 7→ (x, L∗N−1x), and thus J∗N−1(x) is also convex quadratic. More
explicitly, we can write

J∗N−1(x) = min
u
h(x, u) = h(x, L∗N−1x) = x>KN−1x+ cN−1

Where KN−1 = L∗N−1
>(R+B>KNB)L∗N−1 +Q+A>KNA+ 2A>KNBL

∗
N−1

= A>KNB(R+B>KNB)−1B>KNA− 2A>KNB(R+B>KNB)−1B>KNA+Q+A>KNA

= A>(KN −KNB(B>KNB +R)−1B>KN )A+Q

cN−1 = cN + E
(
w>Qw

)
The above recurrence relation is called the Riccati equation. We note here, that KN−1 is symmetric whenever
KN , Q and R are symmetric. KN−1 is positive semi-definite, since whave just concluded that J∗N−1 is convex.
(This can also be verified directly) These are all the ingredients required to take the induction further and
prove that µ∗N−2(x) is also linear in x with the same arguments as above. Thus, with the principle of
mathematical induction, we have managed to prove that the optimal policy π∗ = (µ∗0, . . . , µ

∗
N−1) takes the

form µ∗k(x) = Lkx as required.
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