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This article is concerned with the (r, q) inventory model, where de- 
mand accumulates continuously, but the demand rate at each instant is 
determined by an underlying stochastic process. The primary result is the 
demonstration of a certain insensitivity property, which characterizes 
the limiting behavior of the model. This property drastically simplifies the 
computation of performance measures for the system. 

1. Introduction. This article is concerned with an inventory model which 
in most ways is quite simple and standard: There is a single product and a 
single location. Time is modeled as continuous, and the data are stationary. 
Orders are placed with an outside supplier, and they arrive Ofter a leadtime, 
which may be constant or stochastic. All stockouts are backordered. 

Also, we restrict attention to a simple, familiar class of control policies, the 
reorder-point/order-quantity or (r, q) policies: When the inventory position 
(stock on hand plus stock on order minus backorders) reaches the order point 
r, an order is placed for the fixed amount q, the batch size. 

What is novel here is the demand process: We assume demand is driven by 
an underlying, exogenous, continuous-time stochastic process, the state of the 
world, or world for short, denoted 

x = {x(t): t ? 0), 

with state space X. This process may model the economy or conditions in a 
particular industry, for instance, as well as purely random noise. In addition, 
we specify a function A: X --> the demand rate. The process x and the 
function A work together to determine demand as follows: At time t, if 
x(t) = x, then demand occurs at the rate A(X). That is, if we denote 

D(t) = cumulative demand in the interval (0, t], 

then 

(1.1) D(t) = fA[x(s)] ds. 

Later, we shall impose specific assumptions on x and A, but for now we 
mention only the most basic of these: We model the world x as a time-homoge- 
neous Markov process. Moreover, x is ergodic or regular in the same sense as 

Received April 1990; revised October 1990. 
'Partially supported by NSF Grant DDM-89-20660. 
AMS 1980 subject classifications. 60J25; 90B05. 
Key words and phrases. Markov processes, inventory theory, clearing processes, uniform 

distribution, insensitivity. 

419 

This content downloaded from 128.59.222.12 on Wed, 30 Jul 2014 10:49:06 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


420 S. BROWNE AND P. ZIPKIN 

the best-behaved Markov chains; in particular, it has a unique stationary 
probability density 7r. The demand-rate function A is sufficiently smooth that 
the integral in (1.1) is well defined, and also sufficiently variable that D(t) is 
"truly" stochastic. In addition, we shall need a key irreducibility assumption, 
described below. 

We shall refer often to two special cases of this model: In the first, X is 
discrete, so x is a continuous-time Markov chain. The second case is where x is 
a (multivariate) diffusion process. 

There are several reasons for studying demand processes of this form. First, 
there is now a substantial body of knowledge concerning the use of Markov 
processes in continuous time, especially diffusion processes, to model various 
economic phenomena. See, for example, Sethi and Thompson (1981) and 
Malliaris and Brock (1982). Specifically, many familiar, widely used demand 
forecasting models can be cast in this form. So, our model extends traditional 
inventory analysis to encompass a very rich and flexible class of demand 
processes. 

The second reason is pedagogical: There is a gap in inventory theory 
between the deterministic EOQ model and the various models with stochastic 
demand. The Poisson process is by far the most widely studied demand model, 
but here D(t) and all the associated inventory processes are integer-valued. 
Thus, the calculation of performance measures involves discrete instead of 
continuous mathematics. See Hadley and Whitin (1963), for example. When 
demand follows a compound-renewal process with a continuous batch-size 
distribution, as in Sahin (1979), for example, the state space does become 
continuous, but the sample paths of D(t) itself are still piecewise constant 
with jumps, quite unlike the smoothly evolving world of the EOQ model. In 
the continuous realm the only model that has received careful attention is one 
where D(t) itself is Brownian motion with positive drift. See Bather (1966) 
and Puterman (1975), for example. The problem here, of course, is that 
demand increments can be negative. Negative demands do occur in practice, 
but only rarely, and they substantially complicate the analysis. 

Third, our model enjoys certain computational advantages over these more 
familiar stochastic models, as explained below. 

There is one disadvantage to our model: Typically, an (r, q) policy is not 
optimal in this setting. We are assuming, in effect, that x(t) is not observed, 
nor is information about it inferred from observing D(t). Still (r, q) policies 
are simple and widely used, so it is worthwhile to study their performance. 

The primary result of this article is the demonstration of a certain insensi- 
tivity property, which characterizes the limiting behavior of the model. This 
property drastically simplifies the computation of performance measures for 
the system. 

Specifically, let P = {ED(t): t ? O} denote the inventory position. We will 
assume r < PD(O) < r + q. It will be convenient to work with a simple transfor- 
mation of P: 

c(t) = (r + q) -DP(t). 
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CONTINUOUS STOCHASTIC INVENTORY MODELS 421 

So, c(t) measures the distance between PD(t) and its maximum value, and we 
can write 

(1.2) c(t) = [c(O) + D(t)] mod(q). 

The process c = {c(t): t ? O} has state space C, the real numbers mod(q) or 
the circle with circumference q. Also, let v denote the uniform density on C. 

Now, define the joint process w = (c, x) with state space W = C x X. Clearly, 
w is a Markov process. We show that w is well behaved in the same sense x is. 
Specifically, w has the unique stationary probability density p = v7T, which 
also describes the limiting behavior of w as t -> oo. That is, let w(oo) = 

[c(oo), x(oo)] denote a random variable having density p. Then, c(oo) is uniformly 
distributed on C, and c(oo) and x(oo) are independent. The limiting behavior of 
w is thus insensitive to the specification of x and A, except of course for the 
marginal density 7r of x(oo). 

The meaning of this property can be elucidated in the following way: As w 
evolves, c(t) rotates around the circle C at rate A[x(t)]; the movement of c is 
determined by x. Nevertheless, after a sufficiently long time, the position of 
c(t) contains negligible information about x(t). In other words, the future of 
the demand process becomes independent of c(t), and hence of the inventory 
position. 

Similar properties have been demonstrated for several models in which 
demand is a point process. See Galliher, Morse and Simond (1959) or Hadley 
and Whitin (1963) for the Poisson case, and Finch (1961), Sivazlian (1974), 
Sahin (1979, 1983, 1990) and Zipkin (1986a) for more general point processes. 
Comparable results can be obtained when demand includes both jumps (as in a 
point process) and continuous accumulation (as in our model), provided both 
depend on the history of the process only through x. We shall not pursue such 
extensions here. 

Incidentally, economists have become interested in this kind of result 
recently; such properties are helpful in describing the behavior of aggregate 
inventories at the economy-wide level. See Caplin (1985) and Mosser (1986), 
for example. 

Given this characterization of w, one can derive relatively simple formulas 
for the most important inventory performance measures. For example, sup- 
pose the order leadtime is a fixed constant, L, and let L(t) denote the inventory 
level (inventory minus backorders) at time t. Using standard arguments and 
the definition of PD(t), one can show that 

L(t + L) = DP(t) - [D(t + L) - D(t)], t 2 O. 

Now, if it makes any sense at all to take limits here, we should be able to write 

L(oo) = PD(oo) - D(L), 

where D(L) represents the demand during a leadtime under equilibrium 
conditions, in some sense. The question is, what precisely does D(L) mean, 
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422 S. BROWNE AND P. ZIPKIN 

and what is its relationship to P'(oo)? Our results imply that L(oo) can indeed be 
characterized by this equation, where D(L) is precisely the demand in the 
interval (0, L] when x is initialized with x(O) 7r, DR(oo) is uniformly dis- 
tributed on the interval (r, r + q], and furthermore D(L) and P'(oo) are inde- 
pendent. (Here and below, " - " means "is distributed as.") 

Now, let B(O?) denote the expected average outstanding backorders in 
equilibrium, and F the complementary cumulative distribution of D(L). 
Given the equation above, and the fact that B(??) = E[L(oo)]-, it is not hard to 
show that 

(1.3) B(??) = [,8(r) - 83(r + q)]/q, 

where 

3(y) = f(x -y)F(x) dx. 
y 

The same formula applies when the leadtime is stochastic. Here, the leadtime 
demand refers to a mixture of the D(L) over L; specifically, the leadtime 
demand is the demand over a random interval of time, whose distribution is 
that of the leadtimes, with x(O) 7r. [This extension requires some additional 
assumptions about how the leadtimes are generated. See Zipkin (1986a).] 

Formula (1.3) with /3 and F defined as above has been used as an approxi- 
mation for some time; see Hadley and Whitin (1963), for instance. To our 
knowledge, our model is the first for which this formula is exact. 

As shown by Zipkin (1986b), B(oo) in (1.3) is a convex function of the policy 
parameters (r, q) for any complementary distribution F. Indeed, if the lead- 
time demand has a positive density on M', B(oo) is strictly convex for r > 0. 
The average inventory has the same properties, as does the frequency of 
orders. Thus, all the components of the standard average cost function are 
convex in (r, q). To compute an optimal policy within the (r, q) class, there- 
fore, one need only submit this cost function to any standard nonlinear-pro- 
gram solver. 

The situation for discrete demand is markedly different. Amazingly, until 
quite recently there was no reliable, straightforward method for computing an 
optimal (r, q) policy, even in the simple case of Poisson demand. The first such 
algorithm, to our knowledge, was presented in Zipkin's (1987) class notes; this 
procedure is based on an approach developed by Sahin (1982). Federgruen and 
Zheng (1988) have since substantially refined and clarified the algorithm. 

Still, this is a special-purpose algorithm. Using our continuous model, all 
the joys and sorrows of implementation and testing can be dispensed with. 
This is the computational advantage of our model mentioned above. 

The process c above is sometimes called a clearing process, and similar 
processes have been studied by Stidham (1974, 1977), Serfozo and Stidham 
(1978), Whitt (1981) and Schmidt (1986). In these papers the focus is on 
long-run frequency distributions (i.e., time averages) instead of limiting distri- 
butions. Several of them show, under various conditions, that c is asymptoti- 
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cally uniform on C in this sense. (Generally, a slightly different definition of c 
from (1.2) is used, and then in many cases c is not uniform on C.) 

Results like these concerning the behavior of c itself, without broader 
results concerning w or something similar, are insufficient to characterize the 
inventory system except in special circumstances. Basically, we need other 
reasons to treat the leadtime demand as independent of the inventory position. 
We do not need to worry about the leadtime demand, of course, when the 
leadtime is identically 0, but this condition severely restricts the scope of the 
model. Otherwise, we need to assume the demand process has stationary, 
independent increments. If we also wish D(t) to be nondecreasing (and 
nonexplosive), then demand can only be a compound-Poisson process, while if 
we require continuous D(t) we are left with Brownian motion; these too are 
quite special cases. 

Apart from this qualification, the frequency approach and our distributional 
approach each have their own advantages. The frequency models include the 
EOQ model as a special case, whereas ours cannot; the resulting periodicity 
rules out a limiting distribution. Also, several of the papers cited above assume 
quite general ergodic demand processes without requiring the Markov prop- 
erty. On the other hand, distributional results are generally stronger than 
frequency results. That is, a distributional result often implies the correspond- 
ing frequency result, but not conversely. (However, see the discussion at the 
end of Section 4.) 

Also, the frequency approach typically presumes that the demand process 
has stationary increments [which in our terms means x(O) 7r], and that c(O) 
is a fixed constant, and in particular independent of x(O). This approach may 
seem natural, but it also masks a critical distinction among models concerning 
the significance of initial conditions. As we shall see, there are some models 
which behave well when initialized in this way, but otherwise they behave 
badly, and in particular c is not asymptotically uniform in any sense. 

This distinction is expressed below by a key irreducibility condition, As- 
sumption 3.5. This condition means, essentially, that x must be exogeneous to 
the inventory-control system in a specific sense. Only with this assumption can 
we ensure that initial conditions do not affect limiting behavior. 

The rest of the article is organized as follows: Section 2 treats the special 
case where x is a discrete-state, continuous-time Markov chain. This case 
requires much simpler assumptions and proofs than the general case. 

The next two sections deal with the general case. The assumptions for our 
model are presented and discussed in Section 3. Section 4 proves the insensi- 
tivity property. 

To use formula (1.3), we still need to compute the functions F and ,(. 
Section 5 shows how to do this for certain special cases of the model. 

2. Insensitivity for continuous-time Markov chains. We first con- 
sider the special case where x is a countable-state, continuous-time Markov 
chain. This model has interesting and important applications, and its analysis 
requires only elementary methods. 
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Here are the assumptions we need in this case: 

ASSUMPTION 2.1. The chain x is regular, that is, irreducible and positive- 
recurrent. 

Therefore [see, e.g., Ross (1970)] x has a unique stationary probability 
density 7r. Also, 7r is the limiting density for x. 

ASSUMPTION 2.2. Define A] 7T] = E x C( x 7T(x)A(x). Then 0 < A4 7w] < oo. 

This assumption merely prohibits explosive demand. 

ASSUMPTION 2.3. There exist two positive-recurrent states x1 and x2, such 
that A(x1) * A(x2). 

Thus, demand is "truly" stochastic. 
We now proceed to the results. We prove two lemmas, followed by the main 

result of this section, Theorem 2.6. 

LEMMA 2.4. Suppose Assumptions 2.1 and 2.2 (but not necessarily 2.3) 
hold. Then the probability density p is stationary for w. 

PROOF. Suppose w(0) = [c(0), x(0)] p, and choose any t > 0. We may 
write 

[c(t)jx(t)] = {c(0) + [D(t)jx(t)]} mod(q). 

Notice that [D(t)1x(t)] is independent of c(0), and by Assumption 2.2 it has a 
proper distribution. So, in the expression above, we have a uniformly dis- 
tributed random variable c(0), plus another, independent random variable, all 
mod(q). Any such combination also has a uniform distribution on C. [See, e.g., 
Feller (1971), page 64.] Thus, [c(t)lx(t)] v, and since x(t) -r, we have 
w(t) -p. o 

Our next assertion speaks about the irreducibility of w, among other 
properties. We have not said what this means for processes like w, whose state 
spaces are not discrete. (A precise definition will come in the next section.) For 
now we shall use this concept loosely, to mean that the entire state space W is 
accessible (in an intuitive sense) from every starting point. Actually, the proof 
demonstrates that w is irreducible in the precise sense. 

LEMMA 2.5. Given Assumptions 2.1-2.3, the process w is regenerative and 
irreducible, and the regeneration cycle time has a nonlattice distribution. 

PROOF. We can choose as a regeneration state any w = (c, x) having 
7T(x) > 0 and A(x) > 0. If we start with w(0) = w, then x will stay at x for 
small t (with probability 1), so c will immediately move away from c, hence w 
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will move away from w. Now, x may stay at x until t = t[x] q/A(x), when c 
"comes around" again to c, in which case the cycle time is certainly finite. Let 
p(x) > 0 denote the probability of this event. Otherwise, x will return again to 
x at some finite time, and on each such return there is a positive probability 
that x will stay at x long enough for c to come around to c. These probabili- 
ties, moreover, are all bounded below by p(x). Thus, w will return to w in 
finite time (with probability 1), and indeed the mean cycle time is finite. That 
is, w is regenerative. 

A similar argument shows that w can reach any state w' = (c', x') with 
7(X') > 0 and A(x') > 0 from any starting state w in finite time. (Indeed, every 
such state will be reached in finite time with probability 1.) In case A(x') = 0 
[but still 7(X') > 0], we have to be a bit more careful: Let W' be a subset of W 
with elements w' = (c', x'), where x' is fixed and the c' comprise some interval 
in C. Then any such subset W' can (and will) be reached in finite time from 
any starting state. Thus, w is irreducible. 

Now, let w be any regeneration state as above, and define 

Ti = time until x first leaves x, 

T2 = time from T1 until x first returns to x, 

t2 = T1 + T2, 

T3 = time from t2 until x again leaves x, 

T = cycle time. 

Condition on the event E = {T1 < t[x] and T3 ? t[x]}. This joint event has 
probability [1 - p(x)]p(x) > 0. In this case, t2 < T < t2 + T3. Note that even 
conditional on E, T1 and T2 are independent, and both have densities, so t2 
also has a density. 

Consider (T t2, E). Conditional on t2 (and E), the only remaining source of 
uncertainty in T is the demand during t2. This demand itself has a density, 
because of Assumption 2.3 and the remaining uncertainty in (T11t2, E). Thus, 
(TJt2, E) has a density. Now, when we decondition over t2 (still conditioning 
on E), recalling that t2 itself has a density, we find that (T IE) has a density. 

Finally, deconditioning on E, we conclude that T has a density on some 
interval. Specifically, T has a nonlattice distribution. o 

Lemmas 2.4 and 2.5, along with the basic theorems on regenerative pro- 
cesses [see, e.g., Kingman (1972)], immediately imply the insensitivity prop- 
erty: 

THEOREM 2.6. 

(a) p is the unique stationary density for w; 
(b) p is the limiting density for w; 
(c) the long-run frequency distribution of w has density p (with probability 1). 
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3. Assumptions and examples. We now turn to the general case where 
x is a-Markov process. In this section we set forth the assumptions we require 
of the model. For purposes of accessibility and motivation, we also review 
certain key elements of Markov-process theory, discuss our assumptions at 
some length and illustrate them with examples. 

We first need to deal with some technical preliminaries: Our first assump- 
tion ensures that x is well behaved in a rather mild sense and that the integral 
(1.1) is well defined; it is likely to be satisfied by all models of practical interest. 

ASSUMPTION 3.1. The world x is a time-homogeneous, continuous-time, 
Markov process, specifically x is a Feller-Dynkin process in the sense of 
Williams (1979), pages 114-127. Also, the demand-rate function A is measur- 
able. 

Let 9 denote the sigma-field upon which each x(t) is defined, the collection 
of subsets of X to which probabilities can be legitimately assigned. Assump- 
tion 3.1 implies, among other things, that 9 is separable in the sense of Orey 
(1971), page 5. Let e be the standard (Borel) sigma-field on C, and let 'Y be 
the sigma-field on W generated by e x 'K. It is straightforward to verify, then, 
that Y' too is separable in this sense. (This fact will be needed below.) In 
addition, with one more assumption below (Assumption 3.4), ensuring that 
D(t) is finite, one can show that w is also a Feller-Dynkin process. 

A measure 0 on (X, ) is a nonnegative, countably additive set function 
defined on , and a probability measure is a measure 0 with +(X) = 1. In 
this context we may not be able to speak of probability densities, so 7w will 
denote a probability measure on (X, ). Likewise, v is the uniform probability 
measure on (C, e), and, p = v7T is a probability measure on (W, Yr). 

The transition probability function for x is given by 

Pt(x, Y) = Pr{x(t) E Ylx(O) = x), x E X, Y E , t > 0. 

Similarly, for w we shall denote 

Qt(w, Z) = Pr{w(t) E Zlw(O) = w), wEW,)ZE X, t>2. 

Note that Assumption 3.1 implies that, for fixed (x, Y), Pt is a continuous 
function of t; see Williams (1979), page 115. Likewise, Qt is continuous in t. 
We shall use this fact below. 

We shall need to consider the discrete-time process obtained by observing x 
at equally spaced points in time. Specifically, using n as the discrete time 
index, for any A > 0, define x5(n) = x(nLA), and the process xA = {x5(n): 
n ? 0}. Define wA similarly. 

We now introduce concepts of irreducibility and recurrence for discrete-time 
processes of this sort; see Orey (1971), for example. Define the accessibility 
function 

RA(x, Y) = Pr{xA(n) E Y for some n > 0jxA(0) = x}, xEX, Y E . 

For any measure 0 on (X, ), we say the chain xA is +-irreducible if, for all 
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x E X and all Y E g with +(Y) > 0, we have RA(x, Y) > 0. If, in addition, all 
such R (x, Y) = 1, we say x A is +-recurrent. We can extend these definitions 
to continuous-time processes in the following way: We shall say that x is 
+-irreducible if x' is +-irreducible for all A\ > 0. Likewise, x is +-recurrent if 
xA is +-recurrent for all A\ > 0. 

ASSUMPTION 3.2. For some measure 0 on (X, ) the process x is +-recur- 
rent. Also, x has a stationary probability measure 7r. 

Now, there is also a concept of periodicity in this context [again, see Orey 
(1971)], which we shall not state. We point out, however, that since x" is 
+-irreducible for all A\, every xA is also aperiodic. 

We can now invoke the basic limit theorem for Markov chains [Orey (1971), 
pages 30-34] to conclude: (a) 7r is the unique stationary probability measure 
for x5; (b) 7r is the limiting probability measure for xA (in the total-variation 
norm); and (c) xA is 7r-recurrent. As for the continuous process x, results (a) 
and (c) carry over immediately. Furthermore, (b) above and the continuity of 
Pt imply that (b) holds for x also; see Kingman (1963), for example. We record 
this conclusion as Lemma 3.3. 

LEMMA 3.3. 

(a) 7T is the unique stationary probability measure for x; 
(b) 7T is the limiting probability measure for x (in the total-variation norm); 
(c) x is -r-recurrent. 

Before proceeding further, we pause to mention some examples. Suppose x 
is a multivariate diffusion process. Specifically, x(t) is a vector of k dimen- 
sions, and x satisfies a stochastic differential equation of the form 

(3.1) dx = ,u(x) dt + o'(x) dw. 

The parameters here are the k-vector ,u(x) and the k x k matrix o(x). Also, 
w indicates a k-dimensional Wiener process. The equation is linear when 
,tux) = Mx and o(x) = a' for constant k x k matrices M and a. (This condi- 
tion is sometimes referred to as linearity in the narrow sense; we shall use the 
term linear for short.) The equation is nonsingular when o(x) is nonsingular 
for all x. 

The linear, nonsingular case is the most basic one, and it has been studied 
extensively. Here, irreducibility is immediate, because [x(t)jx(0)] has a multi- 
variate normal distribution with a full-rank covariance matrix. The conditions 
required for the existence of a stationary measure 7r are quite simple: All the 
eigenvalues of M must have negative real parts. In this case 7w corresponds to 
a normal distribution with mean vector 0; computation of the covariance 
matrix requires the solution of a matrix equation, in general. Given 7r, 
recurrence is also straightforward, so Assumption 3.2 is satisfied, and Lemma 
3.3 applies. In the scalar case (k = 1) this condition reduces to M < 0; here, x 
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is the classic Ornstein-Uhlenbeck process. See Arnold (1974), pages 133 and 
134, for example. 

For nonlinear equations (3.1) the scalar case is well understood. In this case 
irreducibility must be assumed, but the property is usually easy to recognize; 
the state space X cannot be divided into mutually inaccessible regions. Also, 
the conditions needed for a stationary measure 7r are fairly simple to verify; 
see, for example, Karlin and Taylor (1981). 

We now continue with our assumptions. Our next assumption is the analog 
of Assumption 2.2. 

ASSUMPTION 3.4. Define A[7] = fx7(dx)A(x). Then 0 < A[7T] < oo. 

Evidently, this is a growth condition on the function A. For example, 
suppose x satisfies a linear, nonsingular version of (3.1). Then Assumption 3.4 
requires that the mean of A with respect to a certain normal distribution be 
finite; this condition is usually quite easy to check. 

Now, recall the accessibility function RA above, and let SA be the analog 
for wA. That is, 

SA(w, Z) = Pr{wA(n) E Z for some n > 0Iw'(0) = w}, w E W, Z E X'. 

As above, w is +-irreducible when all S'(w, Z) > 0 whenever +(Z) > 0. 

ASSUMPTION 3.5. The joint process w is p-irreducible. 

This simple-sounding condition plays a critical role in our analysis: First, it 
rules out the case of a constant demand-rate function A, for in this case c(t) is 
a deterministic, periodic function with period q/A, so the discrete-time process 
wA with A = q/A is not p-irreducible. Thus, the assumption requires that 
demand be "truly" stochastic, and so plays a role analogous to that of 
Assumption 2.3. 

However, Assumption 3.5 also prohibits certain anomalies which can never 
arise in the discrete-state case. For example, suppose x is a bivariate diffusion 
process (x1, x2), where x2 happens to have the state space C and dynamics 
dx2 = A(x) dt. Thus, regardless of the behavior of x1, x2 is essentially a copy of 
c. If c(O) = x2(0), then c(t) = x2(t) for all t; more generally, the difference 
between c(O) and x2(0) will be preserved forever. Thus, w cannot possibly be 
p-irreducible. 

This example is pathological, of course, but the principle it illustrates 
applies to certain more realistic models: Researchers in marketing have devel- 
oped models describing the introduction of new products, in which current 
demand depends on cumulative demand to date, among other factors. The idea 
is to model the possible saturation of the market for the product. See Mahajan 
and Wind (1986), for example. In our terms D(t) would be one of the 
components of x(t), so w cannot be p-irreducible. 

Certain variants of these new-product models, however, do satisfy our 
assumptions. For example, x may include a component that is influenced by 
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the current demand rate, like x2 above, as long as there are other influences as 
well, such as decay or stochastic factors. Such constructs could be used to 
model markets with limited capacity to absorb short-term surges in demand, 
provided the market adjusts so that current demand is " forgotten" in the long 
run. 

In sum, Assumption 3.5 requires that the world x be exogenous to the 
inventory-control system in a rather precise sense. A similar assumption is 
employed by Zipkin (1986a) in the context of point-process demand for similar 
reasons. For the examples above where this assumption is violated, indeed, one 
can show that our main results in the next section fail. 

On a positive note, Assumption 3.5 is satisfied for most plausible models of 
interest. For example, suppose x satisfies a linear, nonsingular version of (3.1). 
(Note, nonsingularity rules out most of the badly behaved models above.) Also, 
suppose there are two compact subsets X1, X2 E g with 7(X1) > 0 and 
7(X2) > 0, such that A(xl) < A(x2) for all xl E X, x E X Then o 
show that Assumption 3.5 holds. The argument is similar to the proof of 
Lemma 2.5 above. 

4. Insensitivity: The general case. In this section we prove the insen- 
sitivity property for a general state space X. 

LEMMA 4.1. The process w is p-recurrent. 

PROOF. We need to show that, for every fixed A' > 0, and for all w0 c W 
and Z' c Y" with p(Z') > 0, S`(wo, Z') = 1. To do this, we invoke a funda- 
mental result about +-irreducible Markov chains: Because Y" is separable, wAl 

is p-irreducible, and p(Z') > 0, there exist a subset Z" c Z' with p(Z") > 0, a 
constant y > 0 and a positive integer m, such that, setting A = m A', 

(4.1) Q`(w, Z) ? yp(Z) for all w c Z" and Z c t. 

This result is due to Orey (1971); the version stated here can be found in 
Nummelin (1984), page 19. 

Now, since p(Z") > 0, we can find a subset Z1 c Z" of the form Z1 = B1 x A, 
where B1 c e, A E , v(B) > O and wr(A) > 0. Indeed, we can choose B1 to 
be an interval of C of length q/K for some positive integer K, an interval 
closed at one end and open at the other end. Now, partition C into the K 
equal intervals (Bk: k = 1,..., K), each of them semi-open like B1, and set 
Zk = Bk X A. By construction, (4.1) holds with Z1 replacing Z", and by 
symmetry the same is true of each of the Zk- In particular, for all j, k = 

1, . .. , K, 

(4.2) QA (w, Zj ) 2 yp(Zj) for all w E Zk. 

Consider the chain wA, and write w0 = (c0, x0). Because x" is 7-recurrent, 
xA will reach A infinitely often starting from any x0 c X (with probability 1); 
see the corollary in Orey (1971), page 22. Each time xA reaches A, wA reaches 
one of the Zk, So some Zk is reached infinitely often (with probability 1). Now, 
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(4.2) and Proposition 5.1 in Orey (1971) imply that all the Zk are reached 
infinitely often (with probability 1). In particular, Z1, hence Z", hence Z', are 
reached infinitely often by wA, hence also by wA. Thus, S'(wo, Z') = 1 . 

THEOREM 4.2. 

(a) p is the unique stationary probability measure for w; 
(b) p is the limiting probability measure for w (in the total-variation norm). 

PROOF. Notice first that, with only minor modifications, the proof of 
Lemma 2.4 can be extended to the current model. Thus, p is a stationary 
probability measure for w. This fact and Lemma 4.1 are all we need to invoke 
the limit theorem from Orey (1971), pages 30-34, used for Lemma 3.3 above. 
This result describes the limiting behavior of the w', but it can be extended to 
the continuous-time process w, as described just before Lemma 3.3. ri 

Notice that Theorem 4.2 does not include the analog of Theorem 2.6(c) 
concerning limiting frequencies. This would require showing that w, initialized 
with w(0) p, is an ergodic process. We expect this is true for most cases of 
interest, but we are unaware of results that would allow us to prove it in 
general. 

Specifically, it would suffice to show that w is regenerative in the extended 
sense developed by Athreya, McDonald and Ney (1978). Their results apply to 
continuous-time Markov chains with general state spaces. We expect this 
approach can be extended to more general processes, including w, but such a 
theory has yet to be fully developed. 

5. Computation of functions describing leadtime demand. In this 
section we describe how to compute the functions F and , describing the 
leadtime demand for an important special case of the model. Specifically, we 
assume x is a continuous-time Markov chain, as in Section 2, with a finite 
state space X. Let the matrix Q denote the infinitesimal generator of x. Here, 
the stationary density 7 can be viewed as a row vector with 7Q = 0. In 
addition, we suppose all A(x) > 0. 

Also, we assume the leadtime L has a phase-type distribution. This means 
that there is another finite-state, continuous-time Markov chain j with a single 
absorbing state, where j is independent of x, such that L is the time until j 
reaches its absorbing state. The data describing j and L comprise the pair 
(a, A), where a is a row vector and A a square matrix. The vector a is 
substochastic and gives the initial probabilities of j for the nonabsorbing, 
transient states. The matrix A is the generator of j, restricted to the transient 
states; see Neuts (1981). 

We shall use I to denote an identity matrix and e a column vector of l's. 
The dimensions will be clear from the context. We assume that ae = 1. This 
means L > 0 with probability 1. 
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Operationally, the assumption above on L means the following: Let G(t) be 
the complementary cumulative distribution of L. We can compute G in the 
following manner: Let g(t) be a row vector which satisfies the system of 
ordinary linear differential equations 

g(O) = a, 

(5.1) _a=A. 

(The subscript t here denotes differentiation.) Thus, g(t) is the probability 
density of j(t), restricted to the transient states, so 

(5.2) G(t) = g(t)e = a[exp(At)]e. 

Our main result is that the leadtime demand also has a phase-type distribu- 
tion, so F can be computed by solving differential equations of the form (5.1), 
followed by a sum like (5.2). Furthermore, ,B can also be computed by solving a 
similar system of equations with different initial conditions. We remark that 
this result can also be obtained (with a fair amount of effort) using the 
transform methods developed by Puri (1972). 

We now need some additional notation: Let u denote the leadtime demand 
process; before L, u behaves just like D, but after L, u stays constant at 
u(t) = u(L) = D(L). Also, let A denote the diagonal matrix with diagonal 
entries A(x). We assume familiarity with the Kronecker matrix operations 
0 and E3 . In this notation the generator of the joint process (x, j), restricted to 
the transient states of j, can be written Q e A = Q 0 I + I 0 A. 

Define the probability density function 

Pxjyk(u, t) = Pr(x(t) = y, j(t) = k, u(t) E [u, u + du] 

Ix(0) = x, j(0) =j, u(0) = 01. 

Also, define the matrix P(u, t) = [pxjyk(u, t)]. Here, x and y range over all of 
X, but j and k range only over the transient states of j. Then P satisfies the 
matrix partial differential equation 

P(0,0 ) = I 0 I, 

(5.3) P(u,0) = 0 0 0, u > 0, 

Pt = P( Q E3 A) - PU(A C) I), t > 0. 

We shall also need the matrix M(u, t) of the same dimensions as P, defined 
dynamically by 

M(u,0) = 0 0 0, 
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In addition define the matrices 

M(u) = limM(u,t), N(u) M(v)dv. 
to u>0 

We argue next that 

(5.5) F(u) = (wr 0 a) N(u)(e 0 e). 

To see this, consider the matrix M(u, t)(I 0 e). From (5.4) we have 

Mt(I 0 e) =P(I 0 - Ae). 

From the definition of A we have -Ae > O, so the right-hand side here is 
nonnegative, hence so is M(u, t)(I 0 e). Indeed, the k th element of the vector 
-Ae is the rate at which j jumps to its absorbing state, given j(t) = k. Thus, 
M(u, t)(I 0 e) is the accumulated joint probability density of [x(L), u(L)] and 
the event L < t, given the starting conditions. Taking the limit as t - oc, 
M(u)(I 0 e) is just the density of [x(L), u(L)], given the starting conditions. 
Premultiplying this matrix by (7 0 a) simply weights the starting states by 
their actual probabilities, and postmultiplying by (e 0 I) sums over the final 
values of x(L), so (7 0 O)M(u)(e 0 e) gives the density of u(L), which is 
precisely the leadtime demand. Finally, integrating this last quantity over v 
yields (5.5). 

In view of (5.5), our remaining task is to compute N(u). Define the matrix 

H = (Q E3 A)(A1 I). 

We claim that N(u) solves the ordinary matrix differential equation 

(5.6) N(O) = (Q eA) A1(I 0 A), 

Nu = NH. 

Thus, we may write 

(5.7) N(u) = (Q e A) -1(I o A) exp(Hu). 

To verify (5.6), first notice that 

00 

M(u) = Mt(u,t) dt = -P(u)(I OA), u >_O, 

where P(u) = fJP(u, t) dt. Also, for u > 0, 

00 ? = Pt(u , t) dt = P(u) (Q i3 A) - Pu(u) (A 0 I). 

Since (I 0 A) commutes with both (Q e A) and (A 0 I), we can write this as 

-Pu(u)(I o A)(A 0 I) = -P(u)(I o A)(Q e A) 

or 

Mu(u) = M(u)H. 
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Integrating both sides of this equation yields the second part of (5.6). To 
evaluate N(O), define 

K(t) =P(u,t)du. 

By the definition of P, K(t) = exp[(Q e A)t], so 

N(O) = M(u) du =- K(t) dt(I A) = (Q E A) (A). 
0 0 

Thus, (5.6) holds. 
When we combine (5.5) and (5.7), we obtain a further simplification: We can 

write 

N(O) = [(I 0 I) - (Q - A-')]= E (Q o - A-), 
n=O 

so, since wrQ = 0, (- 0 a)N(O) = (r 0 a). Finally, we obtain 

F(u) = ('Tr 0 a) exp(Hu)(e 0 e). 

Thus, F has precisely the same form as (5.2); that is, the leadtime demand 
does have a phase-type distribution, as claimed. Specifically, we can compute F 
by solving the differential equations 

f(O) = w 0 aY, 
(5.8) ffH 

ft = H, 

and setting F(t) = f(t)(e 0 e). 
Also, from the definition of ,B we immediately obtain 

,8(u) = (wr 0 a)H-2exp(Hu)(e 0 e). 

Thus, , can also be computed through an equation of the form of (5.8), using 
the alternative initial condition f(O) = (r 0 a)H-2. 

These methods thus allow us to evaluate any (r, q) policy relatively easily. 
We remark that, while this result applies only to the special model consid- 

ered here, similar methods lead to analogous results for other models. For 
example, suppose x is a diffusion process and L is the time until absorption of 
some other diffusion. Then F and ,B can be computed by solving a linear 
partial differential equation; the form of this equation is analogous to those 
derived above. 
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