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Abstract—We present a gradient-based optimization strategy
to design broadband grating couplers.Using this method, we are
able to reach, and often surpass,a user-specified target bandwidth
during optimization. The designs produced for 220 nm silicon-
on-insulator are capable of achieving 3 dB bandwidths exceeding
100 nm while maintaining central coupling efficiencies ranging
from —3.0 to —5.4 dB, depending on partial-etch fraction. We fab-
ricate a subset of these structures and experimentally demonstrate
gratings with 3 dB bandwidths exceeding 120 nm. This inverse
design approach provides a flexible design paradigm, allowing
for the creation of broadband grating couplers without requiring
constraints on grating geometry.

Index Terms—Grating couplers, inverse design, optimization,
broadband, fiber-packaging.

1. INTRODUCTION

EVERAGING well-established CMOS technology, sil-
L icon photonics promises a low-cost and scalable
solution to integrate photonic and electronic systems [1]. The
reduced barrier to introduce photonic elements to a variety of
technology areas is projected to revolutionize telecommunica-
tions, high-performance computing, and sensing. However, an
outstanding challenge for this field is to effectively package
single-mode fibers to these photonic circuits. The large index
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contrast between silicon and silicon dioxide, which allows for
dense integration of these circuits, also comes with a modal area
mismatch of almost a factor of 600 between the waveguides and
the interfacing fibers [2].

Two common solutions to this fiber packaging problem in
silicon photonics are edge couplers and grating couplers. Edge
coupling involves tapering waveguides that terminate at open
facets. This process results in an expanded waveguide mode
that better overlaps with the large fiber mode. Edge couplers
can reach large coupling efficiency and bandwidth, with recent
demonstration showcasing coupling efficiencies greater than
—0.5 dB (90%) over more than 100 nm of bandwidth [3]. How-
ever, edge coupling restricts the location of input and output
ports to the edge of the chip and requires additional fabrication
post-processing and careful optical alignment [2]. On the other
hand, grating couplers provide a chip-surface solution and can
be placed anywhere on wafer, enabling automated characteriza-
tion. Grating couplers are also advantageous in that they require
lower fabrication costs and are easier to align. Nonetheless, grat-
ing couplers tend to have lower coupling efficiencies and smaller
bandwidths than edge couplers [4]. Having the ability to pro-
duce both broadband and high efficiency grating couplers would
provide an on-chip coupling solution for wideband applications
such as on-chip supercontinuum generation [5]—[8], the ultra-
fast pulses necessary for dielectric laser accelerators [9]-[11],
and spectroscopy-on-chip applications [12]—[14]. Furthermore,
broadband grating couplers provide robustness against spectral
shift caused by temperature or fabrication variation.

Much work has gone into improving grating coupler effi-
ciencies, including apodization schemes [15]-[17] and back-
reflecting layers [18]-[20]. While these methods improve the
peak efficiency of the devices, they do not typically improve
the bandwidth. Improvements to the broadband properties of
grating couplers have been made through rigorous grating
diffraction analysis [21], [22] and extension of optimization
methods to include bandwidth in the figure-of-merit. [23], [24].
However, these methods tend to add additional constraints on
the fabrication and grating parameters, such as requiring mul-
tiple device layers or large angle of incidence. In addition, due
to their derivative-free nature, these methods limit the num-
ber of optimizable degrees-of-freedom to only a handful of
parameters.
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Owing to its ability to scale independently of the number of
degrees-of-freedom, adjoint-based optimization has emerged as
an alternative photonic element design method [25]-[29]. Re-
cently, we introduced a fully-automated method for optimization
of grating couplers utilizing this adjoint approach [30]. Here we
demonstrate this technique to design and experimentally demon-
strate broadband grating couplers.

In this article, we present and apply the design approach
to grating couplers on 220 nm silicon-on-insulator for a va-
riety of target bandwidths. We fabricate and experimentally
characterize a subset of the gratings. The experimental results
demonstrate the desired large broadband behavior and follow
similar trends to simulated performance. Verification of this
inverse design approach to photonics design underscores the
flexibility of this method toward fiber packaging and wideband
applications.

II. DESIGN

The grating couplers were designed using the gradient-based
inverse design approach introduced in [30]. Gradient-based
methodologies tend to require fewer simulations than genetic
or particle swarm optimization as they do not rely on parameter
sweeps or random perturbations to find their minima. Further-
more, gradient-based methods in electromagnetic design prob-
lems can take advantage of efficient computation of the sensitiv-
ity through the adjoint method [31]. This allows these methods
to optimize over a far larger number of degrees of freedom
than gradient-free optimization schemes. The large parameter
space afforded by this approach enables the ability to design
gratings with combined functionalities, such as wavelength de-
multiplexing or mode-sorting, without the need for any specific
initial condition or analytic theory.

In our approach, the optimization is divided into two stages
wherein the same optimization problem is solved but with dif-
ferent constraints on the permittivity distribution in a specified
design region (i.e. the grating region). During the continuous
stage, the permittivity distribution is allowed to vary continu-
ously between air and silicon. The resulting structure is then
converted into a binary grating by solving a combinatorial op-
timization problem. This binary grating is further optimized in
the discrete stage in which the permittivity is restricted to either
that of air or silicon. A minimum feature size is also enforced
at this time to ensure fabricability.

During optimization, the grating couplers are simulated in two
dimensions (2D) using the finite-difference frequency-domain
(FDFD) method [32] with 20 nm discretization, and the efficien-
cies of the final structures are verified using a finer discretiza-
tion with the finite-difference time-domain (FDTD) method in
Lumerical FDTD [33], [34].

To optimize for broadband gratings, the coupling efficiencies
of a given structure are evaluated at equally spaced wavelengths.
The efficiencies are then averaged together to form an objec-
tive function that is minimized during the optimization process.
Therefore, a target bandwidth can be achieved by the range of
wavelengths simulated. Formally, the optimization problem is
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Fig. 1. (Top) Schematic showing material stack (220 nm silicon-on-insulator)
with a 12 zm design region and air cladding. Device shown is a fully-etched
grating coupler with target bandwidth of 120 nm. (Bottom) Electric fields in
structure, simulated at 1550 nm with a Gaussian beam source angled at 5°.

given by:
, Jigimize, (1= £i(5)
. 1 9 , (1)
subjectto  V x —V x E; —w;e(p)E; = —iw; J;,
Ho
i=1,2,...,m

where m is the number of frequencies at which the structure
is evaluated, F; is the electric field at w;, J; is a total-field
scattered-field (TFSF) Gaussian beam source, p is a vector that
parametrizes the structure, €(p) is the permittivity, and f; is
equal to the coupling efficiency from the Gaussian beam into
the fundamental waveguide mode. Multi-goal problems, such
as optimizing for low back reflections, wavelength demultiplex-
ing, or polarization insensitivity, can be achieved by adding
additional terms to the objective function [30].

A series of grating couplers were designed for target 3 dB
bandwidths ranging from 40 nm to 120 nm centered at 1550 nm,
with 40%, 60%, and 80% partially-etched gratings as well as
fully-etched gratings. To achieve a target bandwidth B (in nm),
the grating was simulated at 10 nm spaced intervals between
1550 nm +B/2. The gratings were designed for 220 nm sil-
icon device layer with a 2 pum buried oxide layer and no
back-reflector. The grating length was 12 pm, and the mini-
mum feature size was set to 100 nm to simplify fabrication. To
model an SMF-28 fiber, the incident mode is assumed to be a
Gaussian beam, with a 10.4 ym mode field diameter, incident
on the grating at a 5° angle. Fig. 1 shows a schematic of an
optimized grating.

Each optimization took roughly 300 iterations, where each
iteration requires approximately two function evaluations. The
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Fig. 2. Simulated device coupling efficiency spectra of optimized gratings
with 40%, 60%, 80% and 100% (full) etch for target bandwidths of 40 nm
(blue), 100 nm (red), and 120 nm (purple). Back reflections into the waveguide
shown in dashed lines.

continuous stage was run until convergence or up to 100 itera-
tions, whichever came first, and the discrete stage was run until
convergence or up to 300 iterations, whichever came first. The
discretization step takes under a minute and is therefore neg-
ligible with respect to the optimization time of the continuous
and discrete stages. We empirically find that the last 50 itera-
tions of each phase increases efficiency for every wavelength by
less than 1%, and therefore the optimization could be stopped
much earlier (i.e. use a less stringent convergence condition) to
achieve a 50% reduction in iterations.

Fig. 2 shows some of the simulated spectra of the grating
for each of the etch depths and target bandwidths; spectra for
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Target vs Optimized Bandwidth
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Fig. 3. The target bandwidth vs. 3 dB bandwidth of the optimized gratings

for each of the different etch profiles. The 3 dB bandwidths are defined relative
to the efficiency at 1550 nm. Each line corresponds to a different etch depth as
indicated by the legend.

target 60 nm and 80 nm bandwidths were left out for visual
clarity. As expected, partially-etched gratings significantly out-
perform fully-etched gratings as a result of vertical symmetry
breaking [2], but differences in efficiencies between different
partial-etch depths are minor. At each etch profile, larger target
bandwidths lead to gratings that perform over a wider range of
wavelengths, particularly for coupling efficiencies below half
(3 dB) of the peak efficiency. The spectra for larger bandwidth
gratings (>60 nm), particularly for fully-etched gratings, ex-
hibit multiple peaks. This suggests that, for large bandwidths,
the optimization process favors gratings with multiple reso-
nances that overlap to span a larger range. Additionally, the
resonant nature of these gratings may provide an explanation
for the larger back reflections in the fully-etched devices, espe-
cially for large-bandwidth gratings. Considering these couplers
as cavity-waveguide systems, we can understand the back reflec-
tions as reflections originating from the behavior of frequencies
away from the resonant critical coupling frequencies. As the
etch-depth increases, the resonances that build-up the coupling
spectrum become more sharply pronounced - indicating higher
quality factors of the devices, and consequently increased back
reflections. This effect could be mitigated by adding additional
constraints to the figure of merit in optimization, where the dis-
crepancy between the transmission values within the bandwidth
are minimized or by explicitly penalizing back reflections.

The relationship between the target bandwidth and bandwidth
of the optimized gratings is shown in Fig. 3. Because the spectra
are not unimodal, the 3 dB bandwidth is defined to be the range
of wavelengths that have coupling efficiencies exceeding 50%
(3 dB) of the coupling efficiency at 1550 nm. This choice reflects
the fact that the center wavelength was intended to be 1550 nm.
Fig. 3 shows that the optimization usually achieves or exceeds
the target 3 dB bandwidth, regardless of etch depth. For smaller
target bandwidths, the optimization actually surpasses the spec-
ification by over 20 nm primarily because it is relatively easy to
achieve without substantial sacrifice in the overall efficiency.

The trade-off between bandwidth and efficiency is depicted in
Fig. 4. Since we define 3 dB bandwidth relative to the efficiency
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Fig.4. Bandwidth vs. coupling efficiency (CE) at 1550 nm, the nominal center
wavelength of the grating coupler. Each line corresponds to a different etch depth
as indicated by the legend.

at 1550 nm, the bandwidth is plotted against the efficiency at
1550 nm. The efficiency-bandwidth trade-off curve is relatively
linear (in dB) across all etch depths, suggesting that it is practi-
cally feasible to increase the bandwidth even more if coupling
efficiency can be further sacrificed. Again, it is observed that
partially-etched gratings perform significantly better than fully-
etched gratings.

III. EXPERIMENT

We fabricated and characterized the fully-etched gratings of
target bandwidths 40 nm, 100 nm, and 120 nm. While higher
efficiencies can be realized with the partially etched structures,
we elected to demonstrate the high-bandwidth capabilities of
our design algorithm with fully-etched gratings because of ease
of fabrication. To enable characterization, each device consisted
of two grating couplers, where one was used as an input coupler
and the other as an output coupler. These 12 ym wide grating
couplers were tapered to 500 nm waveguides over 215 ym. The
tapered gratings were connected with a region of single-mode
waveguide ranging in length from 10 pm to 2.3 mm in order
to characterize waveguide losses. An SEM micrograph of the
target 120 nm bandwidth grating is shown in Fig. 5.

The devices were fabricated on 220 nm silicon-on-insulator
(SOI) with a 2 ym buried oxide layer. ZEP-520A was spun at
5000 RPM for 50 s, followed by 2 min of curing on a 180 °C hot-
plate. A JEOL JBX-6300FS electron-beam lithography system
and a transformer-coupled plasma etcher were used to transfer
the pattern to the device layer of the SOI sample. The plasma
etch used a C, Fg breakthrough step and a HBr/O,/He main sil-
icon etch. The resist was stripped in an overnight solvent bath,
followed by a HF dip. The devices were left air-cladded.

Characterization of the devices was done in a fiber-in/fiber-out
measurement setup as depicted in Fig. 6. A tunable continuous-
wave (CW) source with a fixed polarization was used for align-
ment (Agilent 81989A), and a supercontinuum (SC) source
(Fianium SC400-4) was used for the coupling efficiency mea-
surement. Input and output fibers were stripped and cleaved
from SMF-28 patch fibers and positioned at 5° incidence angle
on both the input and output couplers.
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Fig.5. (Top) SEM micrograph of an inverse designed grating coupler with tar-
get bandwidth of 120 nm. (Bottom) SEM micrograph of complete input/output
coupler device with 12 ym wide waveguides tapering down to a single-mode
waveguide of 500 nm, over 215 pm. This device has a single-mode waveguide
length of 10 pm.
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Fig. 6. Schematic of measurement setup. Three configurations of the setup
are used, where S; = 0,.S; = 1 indicates the state of a switch. The first config-
uration, S1 .S535, was used to align to the grating with the continuous-wave
(CW) tunable laser source at 1550 nm. The positions of the fibers were opti-
mized on a 3-axis closed-loop piezo stage (PZ), using an automated line-search
scheme to maximize the power on a photodetector (PD), followed by adjustment
of the polarization controller (PC). Next, a reference spectra of the supercontin-
uum (SC) source was taken by bypassing the sample with a single-mode path
fiber (REF) in configuration S1 S S3.5;. The spectra are recorded on an optical
spectrum analyzer (OSA). Lastly, measurement of the coupling efficiency was
obtained by using the setup S7 S2 535, where light collected from the output
grating was sent to the OSA for measurement. The polarization of the SC source
is set through a linear polarizer (LP). The axes of both the CW and SC source
are co-aligned to allow for identical setting of the PC.

In order to ensure robust and repeatable alignment of the
fibers, we implemented an automated scheme to determine the
optimal fiber position. First the setup was set to S} 95,555, con-
figuration (S, =0,S; =1), using the CW laser as the source.
After hand-tuning the fiber placement, power measurements
were fed back to a 3-axis closed-loop piezo controller and a line-
search algorithm was used to maximize power reading through
the input/output system. After the optimization, the fiber po-
larization controller was adjusted to maximize the signal. This
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Fig. 7. Measured grating coupler spectra for fully-etched optimized gratings
with target bandwidths 40 nm (solid blue), 100 nm (solid red), and 120 nm (solid
purple). Simulated results also plotted in dashed lines, in the respective colors.
Note the distinct horizontal axes for measured (bottom axis) and simulated (top
axis) spectra.

also sets the optimal polarization for the SC, as the axes of
both the CW laser and SC polarization-maintaining fibers are
co-aligned.

Next, in order to take a reference spectrum of the SC source,
the setup is set to S51.585555,. Finally, the configuration is set to
51585555, and the fiber-to-fiber measurement is obtained. Mea-
sured coupling efficiencies are obtained by subtracting the refer-
ence spectrum from the measured spectrum (in dB). Assuming
input and output coupling efficiencies are equal, we divided
the difference spectra by two. Waveguide losses were obtained
through characterization of devices with varying single-mode
waveguide lengths; measured waveguide losses were found to
be 3.4 dB/mm. The measured coupling efficiency spectra from
the devices with the shortest length of single-mode waveguide
(10 pm) are shown in Fig. 7.

IV. DISCUSSION

Fig. 7 shows that the measured spectra follow a similar trend
to the simulated results: Gratings optimized for larger target
bandwidths exhibit larger measured bandwidths. In addition,
the devices follow a linear trend between the bandwidth and
efficiency, suggesting that greater bandwidth regimes could be
experimentally reached. Comparing the measured spectra to the
simulated, we find that the measured coupling efficiencies, at
the respective distribution centers, match well to the simulated
values, with less than a 0.5 dB discrepancy. In addition, the
3 dB bandwidth, with respect to this center frequency coupling
efficiency, is close to the simulated values, with a difference of
7-19 nm 3 dB bandwidth in the fabricated devices.

Two features to note between the simulated and experimen-
tal spectra are the observation of spectral shift (roughly 40 nm
blue-shift) and the lack of multiple peaks in the measured spec-
tra. From SEM micrographs, we observed a consistent overetch
in our devices. We investigated the effect of this overetching by
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Fig. 8.  Effect of overetch: simulated device spectra of fully-etched, target
120 nm bandwidth grating with trench size enlarged O nm, 4 nm, 8 nm, and
12 nm.

simulating the target 120 nm bandwidth grating with enlarge-
ment of the trench widths by 0, 4, 8, and 12 nm. The results of
this study are shown in Fig. 8. As the trench widths are enlarged,
the spectrum blue-shifts and loses the multiple peaks, consistent
with the experimentally observed spectral behavior. Similarly,
the back reflections into the waveguide shift spectrally; however,
the peak reflection magnitude remains the same. SEM imaging
of the measured devices also revealed that sub-field stitching er-
rors were present during the electron beam write. This resulted
in a slight periodic 2 pum modulation of features, potentially
contributing to additional discrepancies, as well as providing
explanation for the relatively large waveguide losses reported
here.

Lastly, we compared our method against another state-of-the-
art method in broadband grating coupler design. While there
exists a large literature on grating design, differences in mate-
rial stack, operating conditions, or fabrication constraints make
it difficult to make a fair comparison between one work and
another. Here, we compare against the optimization method
introduced in [23] due to the similar emphasis on broadband
couplers in single-layer SOI; however, a more general compar-
ison of our method to the literature can be found in [30]. We
apply our inverse design approach to the layer stack used in [23]
(air-cladded, 220 nm SOI, 3 pm buried oxide (BOX) layer), op-
erating conditions (1550 nm source), and feature size (40 nm, vs
the 36.725 nm used by Wang et al. [23]). Using a combination of
effective medium theory and particle swarm optimization, Wang
et al. reported a peak simulated coupling efficiency of —3.6 dB
and 1 dB bandwidth of 84 nm for a source incident at 25°.
Applying our approach to this geometry, we are able to achieve
higher simulated efficiencies with a peak efficiency of —2.29 dB
and 1 dB bandwidths of 64 nm. Both methods produced grat-
ings with back reflections of roughly —15 dB. Much higher
coupling efficiencies were achieved in our approach at the cost
of bandwidth; however, given the bandwidth-efficiency trade-
off reported earlier, additional tuning of optimization weights
suggests the ability to gain additional bandwidth at the cost of
peak coupling efficiency. Additionally, we extended our method
beyond the range of operating parameters in [23] by showing
the ability to produce large bandwidth grating couplers at varied
incident source angles (Fig. 9).
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Fig. 9. Simulated peak coupling efficiency vs 3 dB bandwidth for gratings
designed using our inverse design approach, with varying incident source angle.
The material stack (air-cladded, 220 nm SOI, 3 pm BOX layer), operating
conditions (1550 nm source), and feature size (40 nm) are chosen to directly
compare against the large bandwidth design method of [23].

V. CONCLUSION

In this paper, we demonstrated our fully-automated optimiza-
tion method for the design of broadband grating couplers. These
couplers designed for 220 nm SOI achieved 3 dB bandwidths
exceeding 100 nm while maintaining central coupling efficien-
cies ranging from —3 dB to —5.4 dB, depending on partial-etch
fraction. Fabricated devices demonstrate greater than 120 nm
3 dB bandwidths and agree with simulated coupling efficien-
cies, at the respective spectral centers, within 0.5 dB. This work
provides support for the use of adjoint methods in the design of
grating couplers, specifically for wideband applications.
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