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PV Systems Reliability Program

Overview

PV system investment is driven by initial price,
system performance over time, and system
reliability/availability to adequately assess risk.

Poorly understood Reliability decreases
confidence in PV technology and increases LCOE

Need to understand WHOLE SYSTEM reliability,
not only PV modules

Methodology

Develop and apply reliability tools for use
throughout the PV supply chain, not only PV
module

* Failure Modes and Effects Analyses

* Accelerated Testing and Diagnostics

* Real-time testing of systems

* In-depth reliability and availability models
Focus is on system reliability, inverter reliability,
O&M strategies

Program Objectives

Reduce LCOE by providing information needed to:

« Improve BOS lifetime, reliability, safety,
availability and performance

Help investors to quantify bankability, quantify risks
and reduce the costs of project financing

Challenges

Constantly evolving technologies, manufacturing
processes, and materials

Increasingly complex systems functions
Short time-to-market demands

Risk to owners and underwriters, and associated
cost implications




Overview & Need for Electro Thermal Modeling (i) &

Laboratories

= Decreasing size & growing complexity of power transistors (i.e. MOSFETS
and IGBTs) & IC systems, power dissipation is a critical concern.

= Thermal influence upon an electrical system caused by each transistor’s
self-heating and tightly coupled thermal interaction with neighboring
devices cannot be neglected.

= PVinverters continue to have reliability challenges for achieving LCOE.
Coupled electro-thermal issues contribute to these issues, especially for
advanced inverter functionality.

= Rigorous, non-ideal, and transient electro-thermal models are required for
robust development.
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Thermal Heat Transfer )

= Heat Transfer & Thermal Management

Modes for Electronic Design: Conduction, Convection & Radiation
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= |nverter Thermal Considerations

= Thermally Sensitive Electronics

(Incropera and Dewitt, 2002)

Process h [W/m’K]
= Passive vs. Active Cooling Natural Convection
"= Temperature Sensing & Controls Gases 2-25
_ , Liquids 50-1000
= Derates & Aging/Failure Modes Forced Convection
= Power Electronics Considerations Gases 25-250
_ _ Liquids 100-20,000
= Conduction HT to case & heat sink Convection with Phase Change
= Radiation HT only ~1-2% Boiling or Condensation 2,500-100,000
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IGBT/Diode)  load terminals MOUSIG _
PCB control terminals

ceramics solder
epoxy filler soft gel (silicone gel)
baseplate (Cu, AISIC)

Construction of an IGBT module




Thermal Design Considerations @&,

= Critical Thermal Management Components

u |GBT’S/MOSFET’S (Flicker et. al, 2012)
= Latch-Up
= Bond Lift-Off

= Capacitors
= Direct Active Cooling Issues
= Dust, Salt Build-Up and Fouling

(Saddik, 2013)

= Conjugate Heat Transfer Issues
= Derate Operation
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Accelerated Testing )
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= Thermal cycling

= Determines the ability of parts to resist extremely low and high temperatures,
as well as their ability to withstand cyclical extremes. Stress resulting from
cyclical thermomechanical loading accelerates fatigue failures.

= Humidity Freeze

= This test serves as a mechanical strength test to ensure the reliability of a
device/system from failure due to stress and water ingress

= High Temperature Operating Bias (HTOB)

= |t consists of subjecting the parts to a specified bias or electrical stressing, for a
specified amount of time, and at a specified high temperature.

System Element Failure Mechanism Accelerated Test

Mechanical Deformation, Thermal cycling
Moisture Ingress, (TC)/Humidity Freeze
Corrosion, Dielectric (HF)/Damp Heat Test/UV
Breakdown Precondition

TCE Mismatch,
PCB/Solder system Electromigration.
Corrosion

Enclosure/Interconnect

Thermal Cycling/humidity
Freeze/ Damp Heat Test

Dielectric/Insulation Humidity Freeze /Thermal

Passive components Breakdown Cycling/ UV Degradation

Thermal Cycling/Damp
Heat Test/Extreme

Active Components Mechanical Wear-Out, etc.  Temperature
Exposure/Integrated
Power Cycling

Hot Carrier Injection (HCI), Thermal
Integrated Circuit Devices Time-DependentDielectric Cycling/Humidity
Breakdown (TDDB), etc. Freeze/Damp Heat Test




Accelerated Testing (AT) ) i,

= Accelerated Lifetime Testing (ALT) Thermal Profile for Inverter

= Accelerated Stress Testing (AST) . IerterElcticlComponents

= Highly Accelerated Life Testing (HALT) 80 /V?rmm

= Highly Accelerated Stress Screening (HASS) " weatsnk > [ Napotr

= All of the above allow us to correlate gso / o
to degradation sighatures and 3‘3‘0 B

o
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= Tests include: Time (hrs)

= Thermal Shock (TS), Thermal Cycling (TC), Highly Accelerated
Thermal Shock (HATS), Damp Heat (DH) ,Humidity Freeze (HF)



Laboratory testing provides vital information
for PV system reliability

System performance model must include
wear out (end of life) information
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Accelerated Aging for Inverters ) B,

" No specific industry Qual standard exists
® |EC61215 is the “de-facto” spec

® HALT testing is spotty; independently applied by inverter manufacturers
® Data in most cases proprietary

® Separate needs identified for residential and commercial scale inverters

® Failure modes identified but not in a uniform program applicable across the
industry

® System predictive models will require inputs for inverters
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Electro-Thermal Modelling Platforms ) i
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= SPICE

= General electronic circuit simulator, used for design & to check behavior.

= PLECS

= |dealized power electronics simulator, used in conjunction with look-up tables.

= COMSOL/ANSYS

= FEA-level circuit simulation based on fundamental principles.

= Matlab/Simulink

= SimPowerSystems

= Graphical block-diagram paradigm to create models of dynamic systems.

= SimElectronics Electro-thermal
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Inverter Modelling Platforms )

Laboratories

puises 4+ Block Parameters: Model 2014-10-30 B/H Bridge/... It

PLECS e | Tz
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Matlab/Simulink SimPower Systems ) S

Laboratories

= Simulink
= Block-Diagram Platform for analyzing continuous, multi-rate, discrete systems
= SimPower Systems PV Examples

= Electrical — System simulation described by a combination of basic functions, connected
using lines representing common variables.

= Thermal — Modelling based on resistor and capacitor thermal circuits

i Block Parameters: QD1 [~}
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SimElectronics Model
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Model a PV array.

PV array consists of Npar strings of modules connected in parallel, each string consisting of Nser
modules connected in series.

Input 1 = Sun irradiance (W/m~2)
Input 2 = Cell temperature (deg.C))

Module specifications provided by manufacturer (Voc, Isc, Vmp, Imp) s well as temperature
coefficients are listed under 'Module’ Tab.

The four PV model parameters for one madule (photo-generated current Iph, diode saturation
current Isat, parallel resistance Rp and series resistance Rs) are listed under the 'Model’ Tab. These
parameters are adusted to fit Vo, Isc, Vmp, Imp at specied cell temperatures listed under 'Module'
Tab and assuming a given “diode quality factor” (Qd) for the semiconductor.

Select a 'Module type' and then press Apply to see module parameters.
Note: Module characteristics are extracted from NREL System Advisor Model.
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Fielded Studies Validation ) e
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Heat Exchanger Cooling Plate )
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= Current Work Evaluating Heat Transfer Capability
of Binary Mixture Working Fluids to Improve Heat
Exchanger Performance

= |sopropanal/Water — Leveraging Marangoni Effects
= Propylene-Glycol (PPG)/Water

= Ethanol/Water

= Pure Components

= Alternative Adhesives Durability/ Performance
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Q B85 = =
£ 3x10° 3 b
e (o
g0l Liquid phase azeotropic point
o 20
Bubble point line, T, i
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o

y M 0 N 1 . 1 " L N
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8




Conclusions )

= Reliability issues still remain with inverters, especially with larger
inverter systems.

= Enhanced power electronics have new thermal management
challenges.

= Newer topologies & electronics densities are creating new reliability
challenges.

= Various methods for accelerated testing:
= ALT
= HALT
= HASS
= Etc.

= Various electro-thermal modelling platforms exist with limitations.

= SimElectronics interfaced with CFD analysis has much potential!
19
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Solar Gain & Thermal Gain

Sandia
National
Laboratories

= Thermal gain from solar radiation in an object, space

or structure, which increases with the strength of the
sun, and with the ability of any intervening material to

transmit or resist radiation.

Radiative Energy
Balance:

absorption

material

internal
reflection

solar
transmission

primary transmittance

secondary transmittance

= FEA/CFD Impact Analysis of Internal Comps.
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Overview & Need for Electro-Thermal Modeling (i) &

Laboratories

= Research Goal: Develop robust, reliable non-ideal electro-thermal
model for an inverter and PV system.

= Purpose: Provide an overview of heat transfer challenges and
design/operational solutions using fast, comprehensive, transient
modelling tools.

= PV Inverter Reliability: PV inverters continue to be an area of reliability
challenges for achieving levelized LCOE. Electro-thermal issues still
contribute to these issues, especially for advanced inverter functionality.
Rigorous, non-ideal, and transient electro-thermal models are required
for robust development.

= Sandia Reliability Program: Sandia’s historical and unique capabilities
with power electronics, computing resources and PV fundamental
science, as well as distinctive experimental platform laboratories and
field-sites, provide distinction for electro-thermal modelling.

23
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Necessity of an Inverter Thermal-Performance Model ) R

Laboratories

= Just like the electronics industry, inverters are reaching
performance limitations.

= Need for a scalable model to determine heat transfer modes
occurring at respective residential and utility-scale operations.

= Higher power conversion designs are creating an industry push to
leverage liquid-cooled heat exchangers, from traditional fan-
cooling

" |ndustry need for a standardized inverter thermal performance
model for determining appropriate thermal management design
options that will balance costs

= Knowledge gaps exists concerning inverter failure rates vs. cooling
rates and impacts on IGBT switching and overall inverter

performance
24
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What is ALT & why?

What?
= Component life tests
= High stresses

= Single or combined

= Activate “appropriate” failure
modes

"= Measureable
= Failure analysis
Why?
= Time

= Full system is expensive and
complicated

T
Issues with ALT:

Sandia
National
Laboratories

Unknown failure mechanisms

Unknown / variable use
environment

Changing mechanisms as
function
of environmental stress

Difficult to control and
characterize defects

Long duration experiments

Evolving / improving
technology




Accelerated Testing )

= HALT — Highly Accelerated Life Testing
= Stress tests not meant to simulate the field env., but find weaknesses in design
= Stresses are stepped up to well beyond the expected field environment until
“fundamental limit of the technology” is reached
= General Procedures for HALT Testing:

= 1. Attach thermocouples, & monitor line input Vac, output Vdc, and other signals.
= 2. Perform temperature cycling
= 3. Perform functional test

= 4, Determine root cause of any failures, implement corrective action (if required), and
repeat test (if required).

E. 1 1
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