Warm Up Lesson Presentation

<u>Lesson Quiz</u>

Holt McDougal Algebra 2

# Warm Up Identify all the real roots of each equation. **1.** $x^3 - 7x^2 + 8x + 16 = 0$ -1, 4 **2.** $2x^3 - 14x - 12 = 0$ -1, -2, 3 **3**. $x^4 + x^3 - 25x^2 - 27x = 0$ $\mathbf{0}$ **4**. $x^4 - 26x^2 + 25 = 0$ 1, -1, 5, -5

Holt McDougal Algebra 2

# **Objectives**

Use properties of end behavior to analyze, describe, and graph polynomial functions.

Identify and use maxima and minima of polynomial functions to solve problems.

# Vocabulary

end behavior turning point local maximum local minimum

Holt McDougal Algebra 2

Polynomial functions are classified by their degree. The graphs of polynomial functions are classified by the degree of the polynomial. Each graph, based on the degree, has a distinctive shape and characteristics.



End behavior is a description of the values of the function as x approaches infinity  $(x \rightarrow +\infty)$ or negative infinity  $(x \rightarrow -\infty)$ . The degree and leading coefficient of a polynomial function determine its end behavior. It is helpful when you are graphing a polynomial function to know about the end behavior of the function.

| Polynomial End Behavior         |                                                                                       |                                                                                     |
|---------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| <i>P</i> ( <i>x</i> ) has       | Odd Degree                                                                            | Even Degree                                                                         |
| Leading<br>coefficient<br>a > 0 | $\begin{array}{l} \operatorname{As} x \to +\infty, \\ P(x) \to +\infty \end{array}$   | $\begin{array}{l} \operatorname{As} x \to -\infty, \\ P(x) \to +\infty \end{array}$ |
|                                 | $\xrightarrow{\uparrow}$                                                              |                                                                                     |
|                                 | $ \begin{array}{l} \operatorname{As} x \to -\infty, \\ P(x) \to -\infty \end{array} $ | As $x \to +\infty$ ,<br>$P(x) \to +\infty$                                          |
| Leading<br>coefficient<br>a < 0 | $As \ x \to -\infty,$ $P(x) \to +\infty$ $As \ x \to +\infty,$                        | $As \ x \to -\infty,$ $P(x) \to -\infty$ $As \ x \to +\infty,$                      |
|                                 | $P(x) \rightarrow -\infty$                                                            | $P(x) \rightarrow -\infty$                                                          |

#### Holt McDougal Algebra 2

#### **Example 1: Determining End Behavior of Polynomial Functions**

Identify the leading coefficient, degree, and end behavior.

**A.**  $Q(x) = -x^4 + 6x^3 - x + 9$ 

The leading coefficient is -1, which is negative.

The degree is 4, which is even. As  $x \to -\infty$ ,  $P(x) \to -\infty$ , and as  $x \to +\infty$ ,  $P(x) \to -\infty$ . **B.**  $P(x) = 2x^5 + 6x^4 - x + 4$ 

The leading coefficient is 2, which is positive.

The degree is 5, which is odd.

As  $x \to -\infty$ ,  $P(x) \to -\infty$ , and as  $x \to +\infty$ ,  $P(x) \to +\infty$ .

Holt McDougal Algebra 2

#### **Check It Out! Example 1**

# Identify the leading coefficient, degree, and end behavior.

**a.**  $P(x) = 2x^5 + 3x^2 - 4x - 1$ 

The leading coefficient is 2, which is positive.

The degree is 5, which is odd.

As  $x \to -\infty$ ,  $P(x) \to -\infty$ , and as  $x \to +\infty$ ,  $P(x) \to +\infty$ .

**b.** 
$$S(x) = -3x^2 + x + 1$$

The leading coefficient is -3, which is negative.

The degree is 2, which is even.

As  $x \to -\infty$ ,  $P(x) \to -\infty$ , and as  $x \to +\infty$ ,  $P(x) \to -\infty$ .

#### Example 2A: Using Graphs to Analyze Polynomial Functions

Identify whether the function graphed has an odd or even degree and a positive or negative leading coefficient.



As  $x \to -\infty$ ,  $P(x) \to +\infty$ , and as  $x \to +\infty$ ,  $P(x) \to -\infty$ .

P(x) is of odd degree with a negative leading coefficient.

#### Example 2B: Using Graphs to Analyze Polynomial Functions

#### Identify whether the function graphed has an odd or even degree and a positive or negative leading coefficient.



As  $x \to -\infty$ ,  $P(x) \to +\infty$ , and as  $x \to +\infty$ ,  $P(x) \to +\infty$ .

P(x) is of even degree with a positive leading coefficient.



#### **Check It Out! Example 2a**

#### Identify whether the function graphed has an odd or even degree and a positive or negative leading coefficient.



As  $x \to -\infty$ ,  $P(x) \to +\infty$ , and as  $x \to +\infty$ ,  $P(x) \to -\infty$ .

P(x) is of odd degree with a negative leading coefficient.



#### **Check It Out! Example 2b**

#### Identify whether the function graphed has an odd or even degree and a positive or negative leading coefficient.



As  $x \to -\infty$ ,  $P(x) \to +\infty$ , and as  $x \to +\infty$ ,  $P(x) \to +\infty$ .

P(x) is of even degree with a positive leading coefficient.

Now that you have studied factoring, solving polynomial equations, and end behavior, you can graph a polynomial function.

#### Steps for Graphing a Polynomial Function

- 1. Find the real zeros and y-intercept of the function.
- 2. Plot the x- and y-intercepts.
- 3. Make a table for several *x*-values that lie between the real zeros.
- 4. Plot the points from your table.
- 5. Determine the end behavior of the graph.
- 6. Sketch the graph.

#### **Example 3: Graphing Polynomial Functions**

## Graph the function. $f(x) = x^3 + 4x^2 + x - 6$ .

**Step 1** Identify the possible rational roots by using the Rational Root Theorem.

 $\pm 1, \pm 2, \pm 3, \pm 6$  p = -6, and q = 1.

**Step 2** Test all possible rational zeros until a zero is identified.

Holt McDougal Algebra 2

#### **Example 3 Continued**

**Step 3** Write the equation in factored form.

Factor: f(x) = (x - 1)(x + 2)(x + 3)

The zeros are 1, -2, and -3.

**Step 4** Plot other points as guidelines.

f(0) = -6, so the *y*-intercept is -6. Plot points between the zeros. Choose  $x = -\frac{5}{2}$ , and x = -1for simple calculations.

$$f(\frac{5}{2}) = 0.875$$
, and  $f(-1) = -4$ .

#### **Example 3 Continued**

#### **Step 5** Identify end behavior.

The degree is odd and the leading coefficient is positive so as  $x \rightarrow -\infty$ ,  $P(x) \rightarrow -\infty$ , and as  $x \rightarrow +\infty$ ,  $P(x) \rightarrow +\infty$ .

**Step 6** Sketch the graph of  $f(x) = x^3 + 4x^2 + x - 6$  by using all of the information about f(x).



## **Check It Out! Example 3a**

## Graph the function. $f(x) = x^3 - 2x^2 - 5x + 6$ .

**Step 1** Identify the possible rational roots by using the Rational Root Theorem.

 $\pm 1, \pm 2, \pm 3, \pm 6$  p = 6, and q = 1.

**Step 2** Test all possible rational zeros until a zero is identified.

Holt McDougal Algebra 2

#### **Check It Out! Example 3a Continued**

Step 3 Write the equation in factored form.

Factor: f(x) = (x - 1)(x + 2)(x - 3)

The zeros are 1, -2, and 3.

#### **Step 4** Plot other points as guidelines.

f(0) = 6, so the *y*-intercept is 6. Plot points between the zeros. Choose x = -1, and x = 2for simple calculations.

$$f(-1) = 8$$
, and  $f(2) = -4$ .

#### **Check It Out! Example 3a Continued**

#### **Step 5** Identify end behavior.

The degree is odd and the leading coefficient is positive so as  $x \rightarrow -\infty$ ,  $P(x) \rightarrow -\infty$ , and as  $x \rightarrow +\infty$ ,  $P(x) \rightarrow +\infty$ .

**Step 6** Sketch the graph of  $f(x) = x^3 - 2x^2 - 5x + 6$  by using all of the information about f(x).



## **Check It Out! Example 3b**

## Graph the function. $f(x) = -2x^2 - x + 6$ .

**Step 1** Identify the possible rational roots by using the Rational Root Theorem.

 $\pm 1, \pm 2, \pm 3, \pm 6$  p = 6, and q = -2.

**Step 2** Test all possible rational zeros until a zero is identified.

Test x = -2.

Holt McDougal Algebra 2

#### **Check It Out! Example 3b Continued**

Step 3 The equation is in factored form.

Factor: f(x) = (x + 2)(-2x + 3). The zeros are -2, and  $\frac{3}{2}$ .

**Step 4** Plot other points as guidelines.

f(0) = 6, so the *y*-intercept is 6. Plot points between the zeros. Choose x = -1, and x = 1for simple calculations.

f(-1) = 5, and f(1) = 3.

#### **Check It Out! Example 3b Continued**

#### **Step 5** Identify end behavior.

The degree is even and the leading coefficient is negative so as  $x \rightarrow -\infty$ ,  $P(x) \rightarrow -\infty$ , and as  $x \rightarrow +\infty$ ,  $P(x) \rightarrow -\infty$ .

**Step 6** Sketch the graph of  $f(x) = -2x^2 - x + 6$  by using all of the information about f(x).



A **<u>turning point</u>** is where a graph changes from increasing to decreasing or from decreasing to increasing. A turning point corresponds to a *local maximum* or *minimum*.

#### **Local Maxima and Minima**

For a function f(x), f(a) is a **local maximum** if there is an interval around a such that f(x) < f(a) for every x-value in the interval except a.

For a function f(x), f(a) is a **local minimum** if there is an interval around a such that f(x) > f(a) for every x-value in the interval except a.

A polynomial function of degree *n* has at most n - 1 turning points and at most *n x*-intercepts. If the function has *n* distinct roots, then it has exactly n - 1 turning points and exactly *n x*-intercepts. You can use a graphing calculator to graph and estimate maximum and minimum values.



#### Holt McDougal Algebra 2

Copyright © by Holt Mc Dougal. All Rights Reserved.

#### **Example 4 Continued**

#### Graph $f(x) = 2x^3 - 18x + 1$ on a calculator, and estimate the local maxima and minima.





#### **Check It Out! Example 4a**

Graph  $g(x) = x^3 - 2x - 3$  on a calculator, and estimate the local maxima and minima.

Step 1 Graph.

The graph appears to have one \_5 local maxima and one local minima.

Step 2 Find the maximum. Press 2nd TRACE to access the CALC menu. Choose 4:maximum.The local maximum is approximately -1.9113.



#### Holt McDougal Algebra 2

#### **Check It Out! Example 4a Continued**

Graph  $g(x) = x^3 - 2x - 3$  on a calculator, and estimate the local maxima and minima.





#### **Check It Out! Example 4b**

Graph  $h(x) = x^4 + 4x^2 - 6$  on a calculator, and estimate the local maxima and minima.

Step 1 Graph.

The graph appears to have one local maxima and one local minima.

**Step 2** There appears to be no maximum.

**Step 3** Find the minimum. Press 2nd TRACE to access the **CALC** menu. Choose **3:minimum**.The local minimum is -6.





Holt McDougal Algebra 2

#### **Example 5: Art Application**

An artist plans to construct an open box from a 15 in. by 20 in. sheet of metal by cutting squares from the corners and folding up the sides. Find the maximum volume of the box and the corresponding dimensions.

Find a formula to represent the volume.

V(x) = x(15 - 2x)(20 - 2x)

Graph V(x). Note that values of x greater than 7.5 or less than 0 do not make sense for this problem.

The graph has a local maximum of about 379.04 when  $x \approx 2.83$ . So

V= Iwh



the largest open box will have dimensions of 2.83 in. by 9.34 in. by 14.34 in. and a volume of 379.04 in<sup>3</sup>.

Holt McDougal Algebra 2

#### **Check It Out! Example 5**

A welder plans to construct an open box from a 16 ft. by 20 ft. sheet of metal by cutting squares from the corners and folding up the sides. Find the maximum volume of the box and the corresponding dimensions.

Find a formula to represent the volume.

V(x) = x(16 - 2x)(20 - 2x)

Graph V(x). Note that values of x greater than 8 or less than 0 do not make sense for this problem.

The graph has a local maximum of about 420.11 when  $x \approx 2.94$ . So

V= Iwh



the largest open box will have dimensions of 2.94 ft by 10.12 ft by 14.12 ft and a volume of 420.11 ft<sup>3</sup>.

Holt McDougal Algebra 2

#### **Lesson Quiz: Part I**

**1.** Identify whether the function graphed has an odd or even degree and a positive or negative leading coefficient.



odd; positive

#### **Lesson Quiz: Part II**

**2.** Graph the function  $f(x) = x^3 - 3x^2 - x + 3$ .



**3.** Estimate the local maxima and minima of  $f(x) = x^3 - 15x - 2$ . 20.3607; -24.3607

Holt McDougal Algebra 2