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Abstract 

The aim of the study was to determine mathematics teacher candidates’ knowledge about problem solving 
strategies through problem posing. This qualitative research was conducted with 95 mathematics teacher 
candidates studying at education faculty of a public university during the first term of the 2015-2016 academic 
year in Turkey. Problem Posing Test (PPT) was used as a data collection tool which developed by researcher. It 
consists of 5 open ended questions. It was prepared according to the free problem posing situations. Teacher 
candidates were asked to pose problems that can be solved using problem solving strategies and problems were 
examined and categorized based on content analysis. Problems that were in accordance with the strategy were 
mostly related to daily life and solvable. Clinical interviews were conducted with 10 teacher candidates. 
Although some teacher candidates have knowledge about problem solving strategies, they did not pose a 
problem and in some cases they made mistakes in solving the problems they posed. Many teacher candidates 
stated that they posed similar problems they saw in textbooks, rather than act creatively.      

Keywords: problem posing, problem solving strategies, mathematics teachers candidates 

 

1. Introduction 

Both problem solving and problem posing play an important role for mathematics education (Kwan & Leung, 
2013) and have been investigated by many recent studies (Silver, 1994; NCTM, 2000; Abu-Elwan, 2002; Crespo, 
2003; Stoyanova, 2003; Brown & Walter, 2005; Barlow & Cates, 2006; Korkmaz & Gür, 2006; Toluk-Uçar, 
2009; Işık, 2011; Chapman, 2012; Tichá & Hošpesová, 2013; Silver, 2013; Kılıç, 2013; Işık & Kar, 2015; Kılıç, 
2015). Considering that one of the most important aims of mathematics education is to improve these skills (Abu 
Elwan, 2002; Crespo, 2003; NCTM, 2000; Ministry of National Education of Turkey [MoNE], 2006, 2013; Kılıç, 
2013), more importance should be given to problem solving and problem posing activities in schools. 

Posamantier and Krulik (1998, p.1) defines problems “is a situation that confronts a person, that requires 
resolution, and for which the path to the solution is not immediately known”. Problem is not an exercise or 
question that can be solved by applying previously learned method, it is a situation that can be solved by using 
knowledge and many abilities together (MoNE, 2006). Polya (1962) defines problem solving as trying to find a 
suitable action to reach a desired point but being unable to reach expected end. Solving problems is not only an 
aim of mathematics learning but also an important means of doing mathematics (NCTM, 2000, p. 52). Polya 
(1957) stated that problem solving consists of four stages: understanding the problem, planning for solution, 
implementation of the plan and testing the results. During the planning for solution step, person chooses an 
appropriate strategy; whereas during the implementation step, the chosen strategy is implemented on the relevant 
problem.  

Teachers can be good problem solvers only by learning problem solving strategies, methods and how they are 
used (Posamantier & Krulik, 1998). Van de Walle (2004) defines the problem solving strategy as developing a 
method to solve a problem at hand. Posamantier and Krulik (1998) classifies problem solving strategies as 
working backwards, finding a pattern, adopting a different point of view, solving a simpler analogous problem, 
considering extreme cases, making a drawing (visual representation), intelligent guessing and testing, accounting 
for all possibilities, organizing data and logical reasoning. Working backwards is a strategy that problem solver 
works back when there is a unique endpoint and variety of paths to get to the starting point. In finding a pattern 
strategy problem solver seeks a pattern and uses this pattern to find solution. Adopting a different point of view 
is looking at the problem from different perspective. Solving a simpler analogous problem strategy is to change 
the given problem into one that may be easier to solve. Considering extreme cases strategy is used where some 
variables are constant, while others are vary to extremes. In making a drawing strategy (visual representation) it 
is used diagrams or drawings to see relationships between situations and solve problems according to the 
drawings. In intelligent guessing and testing strategy guess is put and is tested to show it is indeed correct. 
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Accounting for all possibilities is a strategy that problem solver considers all options and chooses the most 
suitable one. Organizing data is reorganizing given data from the problem situation in a way different from the 
way it was presented. Logical reasoning is a thinking process such as if you say A, then it is expected that the 
response will B (Posamantier & Krulik, 1998). In order to learn the problem solving strategies and choose 
relevant strategy, students should be aware of what and why they are doing (Gök & Silay, 2009). It is believed 
that problem solving ability can be improved by learning problem solving strategies (MoNE, 2006; Abu Elwan, 
2002) and using appropriate problem-solving steps and strategies will facilitate teachers' work in problem-
solving instruction (Ersoy & Güner, 2014). 

Gonzalez (1998) described as the fifth step of Polya's problem-solving step is problem posing that to create a 
new problem using a given situation and numbers (Silver, 1994; Stoyanova & Ellerton, 1996; English 1997; 
Ticha & Hospesova, 2009). Problem posing situation can be classified as free, semi-structured or structured. Free 
problem posing is a practice in which student is asked to pose a problem for a given situation without any 
limitation. Whereas structured problem posing is a practice in which students are given well-structured problems 
or situations and asked to pose an appropriate problem. Semi-structured problem posing is a practice in which 
student are given open ended situations or incomplete problems and asked to pose a problem (Stoyanova & 
Ellerton, 1996). 

NCTM (2000, p.258) stated that students should learn to “formulate interesting problems based on a wide 
variety of situations, both within and outside mathematics”. In Turkey Middle School Mathematics Education 
Program also emphasizes using different strategies and posing new problems rather than learning and using 
algorithms and rules for problem solving (MoNE, 2006; 2013). In addition it is necessary for students to pose 
problems using some cases and numbers rather than just solving given problems and reaching to the right 
answers (Ersoy, 2004; Baykul, 2009) and also mathematics teachers candidates should be given chance to pose 
problems for school mathematics settings (Ellerton, 2013). Nevertheless it is widely observed that schools can’t 
provide the necessary environment to develop the problem posing skills of students (Crespo & Sinclair, 2008). In 
this regard since problem posing instruction could be done with knowledgeable teachers, it is essential to educate 
teacher candidates about problem posing that requires creative and logical thinking of individuals (Korkmaz & 
Gür, 2006) and developing pre-service teachers’ mathematical knowledge structures during their education 
programme is very important for their professional development (Kılıç, 2015).   

Problem posing has many benefits both for students and teacher candidates. Problem posing exercises are 
effective tools for improving problem solving ability (Crespo & Sinclair, 2008; Cankoy & Darbaz, 2010). 
Besides problem posing helps students to contextualize mathematics in practical life (Stoyanova, 2003), 
improves mathematical reasoning (Silver, 1994), creativity (Kilpatrick, 1987; Silver, 1997; Yuan & Sriraman, 
2010; Sheffield & Cruikshank, 2005; Van Harpen & Sriraman, 2013), logical reasoning (Cankoy & Darbaz, 
2010), contributes to the conceptual learning (Akay, 2006; Lavy & Shriki, 2007; Işık, 2011; Korkmaz & Gür, 
2006; Toluk-Uçar, 2009) and improves critical thinking (Nixon-Ponder, 1995). It can also be used to test and 
improves the pedagogical content knowledge of teacher candidates (Toluk-Uçar, 2009; Kılıç, 2013). In addition, 
problem posing is a powerful tool to assess the mathematical knowledge and ability both of the student and the 
teacher (Kar & Işık, 2014). Ellerton (2013) stated that pre-service teachers bring considerable mathematical and 
pedagogical insight into their involvement with problem posing in mathematics content classes. For that reasons 
problem posing can be used as a tool for investigating teacher candidates’ knowledge about problem solving 
strategies. On the other hand problem posing is an important tool to connect everyday life with mathematics 
(Crespo & Sinclair, 2008; Yuan & Sriraman, 2010). In fact, real-life connections is extensively referred to within 
educational communities as a way of supporting students’ learning and is highly recommended in mathematics 
education (Lee, 2012). Hence it is important for teacher candidates to pose problems in accordance with the daily 
life (Verschaffel, De Corte & Lasure, 1994). Lee (2012) stated that more work is needed to gain further insight 
into teacher candidates’ perceptions of real-life connections. 

Crespo (2003) emphasized that many researches focused on teacher candidates problem solving, but they passed 
over the problem posing issue. Whereas problem posing activities improve the problem solving skills of students 
positively (Brown & Walter, 2005; Silver, 1994; English, 1997) and there is a positive relation between problem 
posing and solving skills of students (Silver & Cai, 1993). According to the relevant literature researches on 
problem solving strategies generally investigated the strategies used by teachers and students to solve problems 
(Verschaffel, De Corte & Lasure, 1994; Silver & Cai, 1996; Yazgan & Bintaş, 2005; Elia, Heuvel-Panhuizen & 
Kolovou, 2009; Olkun, Şahin, Akkurt, Dikkartın, Gülbağcı, 2009; Çelebioğlu & Yazgan, 2009; Gür & Hangül, 
2015; Aksoy, Bayazit & Kırnap-Dönmez, 2015). There are some researches on problem posing that investigated 
the problems posed by students and teacher candidates about fractions (Crespo, 2003; Işık, 2011; Kılıç, 2013; 
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Kılıç, 2015; Rizvi, 2004; Toluk-Uçar, 2009; Ünlü & Ertekin, 2012), algebraic equations (Akkan, Çakıroğlu & 
Güven, 2009; Işık & Kar, 2012; Aydoğdu- İskenderoğlu & Güneş, 2016), probability (Yıldız & Baltacı, 2015; 
Silber & Cai, 2017), absolute value (Güveli, 2015), ratio-proportion (Şengül & Katrancı, 2015), sets (Şengül & 
Katrancı, 2012) and geometry (Van Harpen & Sriraman; 2013; Lavy & Bershadsky, 2003) subjects. That 
researches revealed that students and teacher candidates had some difficulties regarding problem posing. This 
fact necessitated studies on further studies on problem posing. In short, in light of this researches, it was seen 
that studies related to problem posing generally examine the mathematics teacher candidates’ problems about 
different mathematics subjects. However, when the literature is examined, there has been no study which directly 
investigated how mathematics teacher candidates pose problems about problem solving strategies. The problems 
posed about problem solving strategies will provide information both about competences of the teacher 
candidates for problem solving strategies and problem posing skills. 

In addition little is known about the nature of the underlying thinking processes that form problem posing and 
plans through which students’ mathematical problem posing can be examined and evaluated (Christou, 
Mousolides, Pittalis, Pitta-Pantazi & Shiraman, 2005). In order to understand problem in a deeper way, problem 
posing related to problem solving is essential (Korkmaz & Gür, 2006). Problem posing processes about problem 
solving strategies will provide information about mathematics teacher candidates’ knowledge about problem 
solving and problem posing. Unlike other researches, this research investigates mathematics teacher candidates’ 
knowledge about problem solving strategies in context of problem posing. Considering knowledge about 
problem solving strategies of mathematics teacher candidates is important for both mathematical learning and 
teaching, in this study it was aimed to investigate mathematics teacher candidates who are the ones first 
introduces children to the world, mathematics knowledge about problem solving strategies through problem 
posing. Besides by analyzing reasoning process during the problem posing, it could be obtained important 
evidence on the thinking processes of the teacher candidates. Results of the study will help teacher educators to 
develop their knowledge about problem solving strategies and problem posing. 

 

2. Methodology 

Qualitative case study was used to determine mathematics teacher candidates’ knowledge about problem solving 
strategies through problem posing. “Case studies can establish cause and effect, indeed one of their strengths is 
that they observe effects in real contexts, recognizing that context is a powerful determinant of both causes and 
effects.” (Cohen, Manion, & Morrison, 2011, p.253).    

  

2.1 Participants 

The participants of the study consisted of mathematics teacher candidates who were in their second, third or 
fourth grade during the first term of the 2015-2016 academic year. Participants were studying at a public 
university faculty of education in Turkey. In the first stage the study was conducted with 95 mathematics teacher 
candidates. There were 76 female and 19 male students enrolled the study. Their ages ranged between 19 and 22 
years old. Some of teacher candidates had enrolled in the Mathematics Teaching I method course in third year 
and some had enrolled elective Problem Solving Strategy course in their second year. Within the scope of 
Mathematics Teaching I and Problem Solving Strategy, problem, problem solving, Polya’s problem solving 
stages, routine and non-routine problems, problem solving strategies and their applications were covered. 

In the second stage 10 teacher candidates were selected from participants using purposeful sampling (Patton 
1990) and performed clinical interviews with this sample. The sample contained both candidates who posed 
problems with the appropriate strategy and candidates who failed to do that. All of this teacher candidates had 
taken elective Problem solving strategies course. Teacher candidates were coded as Ö1, Ö2, Ö3, Ö4, Ö5, Ö6, Ö7, 
Ö8, Ö9, Ö10 and researcher was coded as R. Four of the teacher candidates were found to be at a low level, three 
of them were at a medium level and the remaining three were at a high level of success. Ö1 (male, 2nd grade, low 
level), Ö2 (female, 2nd grade, medium level), Ö3 (female, 3rd grade, high level), Ö4 (male, 3rd grade, medium 
level), Ö5 (female, 4th grade, low level), Ö6 (female, 4th grade, medium level), Ö7 (male, 2nd grade, high level), 
Ö8 (female, 3rd grade, high level), Ö9 (male, 4th grade, low level) and Ö10 (male, 3rd grade, low level).  

 

2.2 Data Collection Tools 

Problem Posing Test (PPT) was used as a data collection tool which developed by researcher. It consists of 5 
open ended questions. PPT was prepared in accordance with the free problem posing activities. Free problem-
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posing situations encourage students to reflect on their specific previous experience (Stoyanova & Ellerton, 
1996). The result of the literature review the most common strategies such as working backwards, finding 
pattern, intelligent guessing and testing, accounting for all possibilities and making drawing (visual 
representation) were selected for this research (Altun & Arslan, 2006). Open ended questions were given below: 

 1. Pose a problem that can be solved using Working Backward Strategy. 

 2. Pose a problem that can be solved using Finding Pattern Strategy. 

 3. Pose a problem that can be solved using Intelligent Guessing and Testing Strategy.  

 4. Pose a problem that can be solved using Accounting for All Possibilities Strategy.  

 5. Pose a problem that can be solved using Making a Drawing (Visual Representation) Strategy.  

It was consulted to three specialists to verify the data collection tool. Pilot study was performed with 10 teacher 
candidates and results of the pilot study proved that test was understandable and accurate. For PPT, clinical 
interviews were performed with 10 teacher candidates to determine their reasoning during problem solving and 
problem posing. Clinical interview is widely used to determine the thoughts of students in mathematics 
education (Merrifield & Pearn, 1999). It is a powerful tool to determine the mathematical reasoning underlying 
the questions and characterize the thoughts, strategies, knowledge and skills of students during mathematics 
education (Hunting, 1997; Karataş & Güven, 2003). 

 

2.3 Data Collection and Analysis 

Teacher candidates were asked to pose problems that can be solved using problem solving strategies in the 
Problem Posing Test. Data collected in this study consists of problems posed by teacher candidates and video 
recordings of interviews. 

Candidates were given enough time to pose their problems and necessary measures were applied to prevent 
interaction. Problems were assessed individually by two academicians specialized on mathematics. Problems 
were examined and categorized based on content analysis. Then classifications were compared. When there was 
a discrepancy between categories, they discussed and reached to a consensus. Classification were “appropriate 
for strategy”, “inappropriate for strategy” or “Non-problem”. Afterwards problems were categorized based on 
whether they were associated with daily life or not. In the next phase, problems were categorized as solvable or 
unsolvable. The formula of Miles and Huberman (1994) was used to calculate inter-rater reliability and it was 
calculated as 92% for the classification. Examples of analyzing problems were given in Table 1: 

 

 Table 1. Examples of Analyzing Problems  

Code            Problems 

1. Appropriate for Working 
Backward Strategy,  
Related to Daily Life and 
Solvable 

1. A family is putting the apples they collected from the orchard into a 
basket. Father ate the half of the apples in the basket. Then the mother 
ate one third of the remaining apples. Then big brother ate the one fifth 
the remaining apples. Then the little brother ate one eight of the 
remaining apples. If seven apples are left in the basket; what was the 
total number of apples in the basket at the beginning? 

2. Appropriate for Making 
Drawing Strategy,  Related 
to Daily Life and 
Unsolvable 

2. We want to plant trees with regular spaces between trees. If we plant 
one tree to every corner. How many trees can be planted to 190 
orchards? 

3. Appropriate for Working 
Backward Strategy,  Not 
Related to Daily Life and 
Solvable 

3. We add 5 to a number, then divide the result with two and multiply it 
with six, if we get 66 as the result what was the beginning number? 

4. Not Appropriate for 
Accounting for All 
Possibilities Strategy,  
Related to Daily Life and 
Solvable 

4. Ali, Mustafa, Mert, Ayşe, Fatma and Gül are all married couples. Ali 
is the big brother of Fatma; Mustafa is the ex-fiancée of Ayşe and 
brother of Fatma. Who is married to who?  
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5. Not Appropriate for 
Working Backward 
Strategy, Related to Daily 
Life and Unsolvable 

5. A child ate 2/3 of his/her cake, his/her mother ate ¼ and his 
sister/bother ate 1/2. If cake has 24 slices, how many slices mother 
ate? 

6. Not Appropriate for 
Intelligent Guessing and 
Testing Strategy,  Not 
Related to Daily Life and 
Solvable 

6. Estimate the sum of three times 25 and two times 12. 

 

Code1: Since the problem can be solved by working back, it was associated with real life, and it was used 
appropriate numbers and has a realistic answer, the problem was categorized as appropriate for working 
backwards strategy, related to daily life and solvable. 

Code 2: The problem can be solved by using drawings and so this problem was appropriate to the making a 
drawing (visual representation) strategy and related to daily life. It was not solvable as it did not specify the gap 
we could use to plant trees so the problem was categorized as appropriate for making drawing strategy, related to 
daily life and unsolvable. 

Code 3: This problem can be solved by working back and it has a solution but it was created by using 
mathematical number and it was not associated with real life so it was categorized as appropriate for working 
backwards strategy were not related to daily life and solvable.  

Code 4: Problems that were not appropriate for accounting for all possibilities strategy were not related to daily 
life and solvable 

Code 5: This problem could not be solved by working back so it was categorized as inappropriate for working 
backwards strategy. It associated with daily life but the sum of fractions is bigger than one so it was related to 
real life and unsolvable. 

Code 6: This problem can be solved by estimation strategies, it was created by using number and problems have 
a solution so it was categorized as inappropriate for intelligent guessing and testing strategy, it was not related to 
daily life and solvable. 

Categories determined after analysis was converted to percentage tables and frequencies. Moreover clinical 
interviews were recorded and analyzed by watching replays. Teacher candidates were informed about the 
interview and their informed consent was obtained. Interviews lasted about 25-30 minutes and were recorded, 
then they have been analyzed during replay. Content analysis method was used for data analysis (Miles & 
Huberman, 1994). Besides direct citations were given from clinical interviews in order to improve the internal 
reliability and validity of results. 

 

3. Results 

Teacher candidates were asked to pose a problem that can be solved by using problem solving strategy. Problems 
were classified as “appropriate for strategy”, “inappropriate for strategy” or “Non-problem”. Afterwards 
problems were categorized based on whether they were associated with daily life or not. In the next phase, 
problems were categorized as solvable or unsolvable. Frequencies (f) and percent (%) of problems were given in 
tables. 

 

3.1 Problems about Working Backwards Strategy  

Frequencies (f) and percent (%) of problems about working backwards strategy were summarized in Table 2: 
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 Table 2: Problem Types of Teacher Candidates 

   f % 

Appropriate for Working 
Backwards Strategy 

Real life Situation 
Solvable 37 38.9 
Unsolvable 3 3.2 

Not Real life Situation 
Solvable 25 26.3 
Unsolvable - - 

Inappropriate for Working 
Backwards Strategy 

Real life Situation 
Solvable 16 16.8 
Unsolvable 3 3.2 

Not Real life Situation 
Solvable 1 1.1 
Unsolvable - - 

Non-Problem   10 10.5 
 

When Table 2 was analyzed, it was seen that 68.4% of the candidates posed problems in accordance with the 
strategy. Of those appropriate problems, 42.1% was related to daily life and 38.9% was solvable. Whereas 26.3% 
was not related to daily life and unsolvable. 

21.1% of the candidates failed to pose a problem in accordance with the strategy. Of those 20% was related to 
daily life, 16.8% was solvable and 1.1% was not related to daily life. 10.5% of the sample failed to pose a 
problem and things they wrote was not a problem.  

According to the findings problems were mostly appropriate for working backwards strategy, related to daily life 
and solvable. Ö2 was one of the candidates that pose a problem in accordance with the working backwards 
strategy. Clinical interview results of that candidate below: 

 

Ahmet’s mother gave him money to spend for 

Ayşe’s birthday celebration. Ahmet bought a 

birthday cake using 1/3 of the money. He spent 

the 1/4 of the remaining money to buy 

ornaments. Lastly he spent half of the 

remaining money to buy a present. He gave the 

remaining money back to his mother. If Ahmet 

gave 30 TL back to his mother, how much 

money was given to him at the beginning? 

 

Figure 1. Ö2’s Problem about Working Backwards Strategy 

   

R: How did you pose this problem? 

Ö2: First I imagined him to have 120 TL. If he was to spend three fourth of this money, there would be 80 
TL left in his hand. If was to spend one fourth of this money, there would be 60 TL left in his hand. If was to 
spend half of this money, there would be 30 TL left in his hand. I posed the question based on this reasoning. 

Analysis showed that candidate actually knew the working backwards strategy, she was able to pose an 
appropriate problem for strategy. In addition she applies the strategy to a real life situation and posed an solvable 
problem by using appropriate numbers. 

It was seen that many problems posed as an exercise, but not related to daily life. Ö7 was one of the candidates 
that posed a problem in accordance with the strategy. Clinical interview results of that Ö7 candidate below:  

  

 

We add 5 to a number, then divide the 
result with two and multiply it with six, if 
we get 66 as the result what was the 
beginning number? 

 

Figure 2. Ö7’s Problem about Working Backwards Strategy 
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R: How did you pose this problem? 

Ö7: Even a student who don’t know the algebraic equations can easily solve this problem using working 
backwards strategy. He just have to work his way from the end condition toward the beginning condition.  

R: Why did you pose this problem? 

Ö7: I posed a short problem. When I was a student, we used to solve such problems. A long problem can 
intimidate children and they may quit. 

Teacher candidate believed this problem can easily be read and understood by students as it was short. He also 
emphasized that he solved similar problems as a student. 

The most common mistake done by candidates were using wrong numbers and providing insufficient 
information (such as forgetting the “remaining….” expression). The interview results of candidate Ö1, who 
failed to pose an appropriate question, was follows: 

 

 

In a petrol station, first truck buys the 1/4 
of the gasoline, second truck buys the 1/5, 
third truck buys 1/6, fourth truck buys 
1/10, and fifth truck buys 1/3. There left 60 
liters of gasoline in the station. How much 
gasoline there were at the beginning?” 

 

Figure 3. Ö1’s Problem about Working Backwards Strategy 

 

R: How did you pose this problem? 

Ö1: I wanted the student to find the initial gasoline starting from the remaining gasoline. 

R: How do you solve this problem? 

Ö1: I solved it by removing 1/3, 1/10, 1/6, 1/5, 1/4 from 60 liters. (Making calculations on his head) What is 
the number of which one of third is 60? 90… What is the number of which nine of tenth is 90? 100… What is the 
number of which five of sixth is 100? 120… What is the number of which four fifth is 120? 150… What is the 
number of which three of fourth is 150? 200… The answer is 200. (He is still not aware of his error). 

R: How would you solve it otherwise? 

Ö1: I would use fractions. If I equate the denominators and sum the fractions, I get sixty three divided by 
sixty…(He is thinking for a while). I think I made an error. Because sixty three divided by sixty is bigger than one. 
Trucks can’t buy more gasoline than the existing. Where did I made mistake? (Candidate controls his 
calculations again). It is impossible that make mistake in the working backwards strategy. I made a mistake 
while summing the fractions (He is confident and can not find his mistake). 

When problem was examined, it was seen that if it was phrased as “second truck buys 1/5 of the remaining 
gasoline” it could be solvable using working backwards strategy. But teacher candidate believed that the problem 
he posed was compatible with the working backwards strategy, so he tried to solve it using that strategy and 
failed to detect his mistake. This shows that teacher candidate knows the strategy, but he can’t analyze the 
problem and tries to pose using his previous experiences. Although it was insisted on, the teacher candidate 
failed to realize his mistake. 

Ö5 was one of the candidates that did not pose a problem in accordance with the strategy. Clinical interview 
results of that candidate were given below: 

 

 

Ahmet is a 6 years old boy and he is cary a 
glass full of milk. He spilled 1/6 of the 
glass on the way from kitchen to his room. 
In his room, he drank 1/3 of the remaining 
milk. How much milk is left in the glass? 

Figure 4. Ö5’s Problem about Working Backwards Strategy 
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R: How did you pose this problem? 

Ö5: I constructed the problem by using examples we see in the classroom. A full glass is six out of six. (She 
wrote and at that moment teacher candidate realized her mistake). The problem is not compatible with the 
working backwards strategy. 

R: Why? 

Ö5: Because in this strategy, the last situation and changes from the beginning were given, then student 
was asked to work his/her way back to the original situation. But in this problem, original situation was given. If 
I have given the remaining milk (200 ml) and ask the original situation, it would be appropriate. 

This problem was not solvable using the working backwards strategy as enough detail was not provided by the 
teacher candidate. But teacher candidate realized her mistake during the interview. She knew working backwards 
strategy but she failed to pose problem according to the working backwards strategy. 

 

3.2 Problems about Finding Pattern Strategy   

Frequencies (f) and percent (%) of problems about finding pattern strategy were summarized in Table 3: 

 

  Table 3: Problem Types of Teacher Candidates 

   f % 

Appropriate for Finding 
Pattern Strategy 

Real life Situation 
Solvable 13 13.7 

Unsolvable 7 7.4 

Not Real life Situation 
Solvable 58 61.1 

Unsolvable - - 

Inappropriate for Finding 
Pattern Strategy 

Real life Situation 
Solvable 2 2.1 

Unsolvable 1 1.1 

Not Real life Situation 
Solvable 3 3.2 

Unsolvable - - 

Non Problem   11 11.6 

 

When Table 3 was analyzed it was seen that 82.2% of the candidates posed problems in accordance with the 
strategy. Of those appropriate problems, 21.1% was related to daily life and 13.7% was solvable, 7.4% was 
unsolvable. Whereas 61.1% was not related to daily life and of those 61.1% was unsolvable. 

6.4% of the candidates failed to pose a problem in accordance with the strategy. Of those 3.2% was related to 
daily life, 2.1% was solvable and 1.1 unsolvable. Whereas 3.2% was not related to daily life and solvable. 11.6% 
of the sample failed to pose a problem and things they wrote was not a problem. 

Ö1 was one of the candidates that pose a problem in accordance with the strategy. The clinical interview results 
of that candidate were given below: 

 

 

A marble factory is producing square 
marbles with 1 cm edges in the first day. It is 
producing marbles with 2 cm, 4 cm, and 8 
cm respectively in the second, third and 
fourth days. What will be the edge size and 
area of the marbles produced in the tenth 
day? 

            

 Figure 5. Ö1’s Problem about Finding Pattern Strategy 
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R: How did you pose this problem? 

Ö1: First I imagined a pattern developing as the powers of two; such as second power of two, third power 
of two; fourth power of two, fifth power of two, sixth power of two (He wrote the answer on paper)… Then I 
asked the 10th day. If it is 8 cm in the fourth day. It is 8.2=16, in the fifth day … it will be 512 cm in the tenth day. 
When you find the edge size, you can calculate the area. 

 

 

1.day=1 

2.day=2 

3.day=4 

4.day=8 

5.day=16 

6.day=32 

7.day=64 

8.day=128 

9.day=256 

10.day=512 

 

Figure 6. Ö1’s Problem Solving about Finding Pattern Strategy 

 

The teacher candidate stated that he first imagined a pattern and posed the problem on this pattern. He knew the 
finding pattern strategy and he could pose problem about this strategy. 

Ö8 was one of the candidates that posed a problem in accordance with the strategy, was not related to daily life 
and solvable. After clinical interviews it was investigated that he had a knowledge about finding pattern strategy 
and he could pose problem. Clinical interview results of that candidate below: 

 

 

 

 

 

Figure 7. Ö8’s Problem about Finding Pattern Strategy 

 

R: How did you pose this problem? 

Ö8: First I imagined a pattern. My first number was one, second number was 1+3.1=4; third number was 
4+3.2=10, fourth number was 10+3.3=19, and fifth number was 19+3.4=31. 

Ö4 was one of the candidates that posed a problem in accordance with the strategy, related to daily life and was 
not solvable. Clinical interview results of that candidate below: 

 

 

Ayşe is reading a novel. She reads 10 pages 
more than the previous day. How many days 
does it take to finish a novel with 520 pages? 

             Figure 8. Ö4’s Problem about Finding Pattern Strategy 

 

   R: How did you pose this problem? 

Ö4: I thought increasing by ten creates a pattern. 10, 20, 30 and so on. Because it is increasing with a rate, 
sequentially at any rate… 

R: Could you solve this problem? 

Ö4: If the number of pages read in the first day is x, second day can be calculated as x+10, third day x+20, 
fourth day x+30, ,…. (Candidate thought and started to write). I can’t solve this problem. I should have given the 
number of pages she read in the first day. I didn’t. 

Here, it was seen that the candidate did not know the finding pattern strategy and has inadequate in problem 

 

In the 1   4   10   19   31   46  ?  pattern, 
what number should replace the symbol? 
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posing. 

According to the findings problems posed by teacher candidates about finding pattern strategy was generally not 
related with the daily life. Besides, although they know the strategy and how to use it, they posed problems 
lacked data to be solvable. 

 

3.3 Problems about Intelligent Guessing and Testing Strategy  

Frequencies (f) and percent (%) of problems that can be solved by using intelligent guessing and testing strategy 
were summarized in Table 4: 

 

   Table 4: Problem Types of Teacher Candidates 

   f % 

Appropriate for 
Intelligent Guessing and 

Testing Strategy 

Real life Situation 
Solvable 38 40 

Unsolvable 2 2.1 

Not Real life Situation 
Solvable 14 14.7 

Unsolvable - - 

Inappropriate for 
Intelligent Guessing and 

Testing Strategy 

Real life Situation 
Solvable 14 14.7 

Unsolvable 4 4.2 

Not Real life Situation 
Solvable 11 11.6 

Unsolvable - - 

Non-Problem   12 12.6 

 

When table was analyzed, it was seen that 56.8% of the candidates posed problems in accordance with the 
strategy. Of those appropriate problems, 42.1% was related to daily life. Of those problem 40% was solvable, 
2.1% unsolvable. Whereas 14.7% was not related to daily life and solvable. 

30.5% of the candidates failed to pose a problem in accordance with the strategy. Of those 18.9% was related to 
daily life, 14.7% was solvable and 4.2% was unsolvable. 11.6% was not related to daily life and solvable. 12.6% 
of the sample failed to pose a problem and things they wrote was not a problem. 

Problems that were in accordance with the strategy were mostly related to daily life and solvable. Ö3 was one of 
the candidates that pose a problem in accordance with the intelligent guessing and testing strategy. Clinical 
interview results of that candidate were given below: 

       

 

 

 

Figure 9. Ö3’s Problem about Intelligent Guessing and Testing Strategy 

 

R: How did you pose this problem? 

Ö3: We can determine random numbers, because we know the number of feet and animals. For example, 
we can choose 11 chicken and 9 rabbits. 11 chicken has 22 feet and 9 rabbit has 36 feet. It is 58 in total. Our 
estimate is wrong. I have to increase the number of rabbits to reach to 60. 10 rabbits and 10 chicken. 10 chicken 
has 20 feet and 10 rabbit has 40 feet. This makes 60 feet. I constructed the problem on this reasoning. 

Teacher candidate had a knowledge about intelligent guessing and testing strategy but the problem posed by Ö3 
is unsolvable as it does not specify there only chickens and rabbits in this hen. Ö1 posed a similar problem with 
Ö3 problem. He stated that “there are only chickens and sheeps. 

Problem and clinical interviews were given below: 

There is 60 feet in a hen. If there is 20 
chicken and rabbit in total, how many 
chicken there is in the hen? 



Journal of Education and Practice                                                                                                                                                      www.iiste.org 

ISSN 2222-1735 (Paper)   ISSN 2222-288X (Online) 

Vol.8, No.8, 2017 

 

228 

       

Figure 10. Ö1’s Problem about Intelligent Guessing and Testing Strategy 

 

R: How did you pose this problem? 

Ö1: Both chickens and sheep have only one head, but chicken have two whereas sheep have four feet. Thus 
one can estimate the number of sheep and chicken. 

Ö10 was one of the candidates that pose a problem in accordance with the strategy, related to daily life but this 
problem is not solvable using the intelligent guessing and testing strategy as enough detail is not provided by the 
teacher candidate. Clinical interview results of that candidate below: 

               

 

 

 

 

Figure 11. Ö10’s Problem about Intelligent Guessing and Testing Strategy 

R: How did you pose this problem? 

Ö10: I tried to pose a problem similar to problems we see in the textbooks. A daily problem, we all go to 
market and buy stuff. 

R: Could you solve this problem? 

Ö10: If I call the price of pasta x, and price of salt x+2… He is buying 9 packages. 1 package of pasta and 
8 packages of salt. 1.x + 8.(x+2)=21, x=5/9  Is that wrong? (He thinks for a while). It is not solvable, because it 
changes as the x changes. I should have given the price of pasta. 

Teacher candidate did not pose appropriate problem for intelligent guessing and testing strategy. He realized his 
mistake during the interview but he could not pose new problem about the strategy during the interview. 

  

3.4 Problems about Accounting for All Possibilities Strategy  

Frequencies (f) and percent (%) of problems that can be solved by using accounting for all possibilities strategy 
were summarized in Table 5: 

 

 Table 5: Problem Types of Teacher Candidates 

   f % 

Appropriate for Accounting 

for All Possibilities 

Strategy 

Real life Situation 
Solvable 46 48.4 

Unsolvable - - 

Not Real life Situation 
Solvable 21 22.1 

Unsolvable - - 

Inappropriate for 

Accounting for All 

Possibilities Strategy 

Real life Situation 
Solvable 9 9.5 

Unsolvable - - 

Not Real life Situation 
Solvable 1 1.1 

Unsolvable - - 

Non-Problem   18 18.9 

 

There are only chickens and sheeps in a fold. 
If there are 42 head and 118 feet in this fold, 
how many chicken and sheep there is in this 
fold? 

Harun bought salt and pasta from a 
market. He bought 9 packages in total. 
Pasta costs 2 liras more than salt. If Harun 
paid 21 TL, how many packages he bought 
from each product? 
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When table was analyzed, it was seen that 70.5% of the candidates posed problems in accordance with the 
strategy. Of those appropriate problems, 48.4% was related to daily life and solvable. Whereas 22.1% was not 
related to daily life and solvable. 

10.6% of the candidates failed to pose a problem in accordance with the strategy. Of those 9.5% was related to 
daily life and solvable and 1.1% was not related to daily life. 18.9% of the sample failed to pose a problem and 
things they wrote was not a problem. 

Problems that were in accordance with the strategy were mostly related to daily life and solvable. Ö6 was one of 
the candidates that pose a problem in accordance with the strategy. Clinical interview results of that candidate 
were given below:  

 

A travel agency have these options: (a) travel by 
airplane or (b) travel by ship; (c) 
accommodation at a luxury hotel or (d) 
accommodation at a regular hotel; (e) guided 
walk or (f) unguided walk. How many 
alternatives can a customer choose? 

 

Figure 12. Ö6’s Problem about Accounting for All Possibilities Strategy 

 

R: How did you use the accounting for all possibilities strategy in this problem? 

Ö6: First we chose our transportation, accommodation and guidance. By listing we can see all options. 
(She writes all options). Airplane, luxury hotel, guided (a, c, e); airplane, luxury hotel, unguided (a, c, f)... 

Problem solving of teacher candidate was given below:   

          

 

 

Figure 13. Ö6’s Problem Solving about Accounting for All Possibilities Strategy 

 

Ö8 was one of the candidates that pose a problem in accordance with the strategy but did not related to daily life 
and clinical interview results of that candidate below:  

 

 

By using the letter in the word “YENİ”, 
how many word can we create 
irrespective of meaningfulness? 

        

Figure 14. Ö8’s Problem about Accounting for All Possibilities Strategy 

 

R: How did you pose this problem? 

Ö8: In order to determine how many words we can create, first we need to reorder them systematically. I 
based my problem on this reasoning. 

R: Could you solve this problem? 

Ö8: First I wrote the Y letter, then by keeping the second letter same I switched the third and                          
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fourth letters. This created 6 alternatives. Then I repeated this process using every letter. 

Problem solving of teacher candidates was given below: 

 

      

   

 

Figure 15. Ö8’s Problem Solving about Accounting for All Possibilities Strategy 

 

3.5 Problems about Making a Drawing (Visual Representation) Strategy 

Frequencies (f) and percent (%) of problems that can be solved by using making drawing (visual representation) 
strategy were summarized in Table 6: 

 

   Table 6: Problem Types of Teacher Candidates 

   f % 

Appropriate for Making 
a Drawing Strategy 

Real life Situation Solvable 70 73.7 

Unsolvable 3 3.2 

Not Real life Situation Solvable 8 8.4 

Unsolvable - - 

Inappropriate for 
Making a Drawing 

Strategy 

Real life Situation Solvable - - 
Unsolvable - - 

Not Real life Situation Solvable 4 4.2 
Unsolvable - - 

Non-Problem   10 10.5 
 

When table was analyzed, it was seen that 85.3% of the candidates posed problems in accordance with the 
strategy. Of those appropriate problems, 76.9% was related to daily life. Of those problem 73.7% was solvable, 
3.2% non-solvable solvable. Whereas 8.4% was not related to daily life and solvable. 

4.2% of the candidates failed to pose a problem in accordance with the strategy. Of those 4.2% was not related to 
daily life and solvable. 10.5% of the sample failed to pose a problem and things they wrote was not a problem. 

Problems that were in accordance with the strategy were mostly related to daily life and solvable. Ö7 was one of 
the candidates that pose a problem in accordance with the strategy, related to daily life and solvable. Clinical 
interview results of that candidate below:  

 

 

An ant is climbing to a pipe. Every day it 
climbs up 55 meters, but slips 1, 5 meters 
back. How many days does it take to the 
top of a 30 meters long pipe? 

 

Figure 16. Ö7’s Problem about Making a Drawing Strategy 

 

R: How did you pose this problem? 

Ö7: Child will subtract 1.5 from 5.5 and find 4. Then he will try to divide 30 by 4, but it is not an aliquot. 
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Child will be forced to draw the situation. 

R: Could you solve this problem now? 

Ö7: If ant climb 4 meters a day, it reaches to the 28th meter at seventh day. So it climbs the last two meters 
in the eight day. 

Visual Representation of teacher candidates was given below: 

 

 

 

Figure 17. Ö7’s Problem Solving about Making a Drawing Strategy 

 

Ö9 was one of the candidates that pose a problem in accordance with the strategy but did not related to daily life 
and non solvable. Clinical interview results of that candidate were given below:  

 

 

 

We want to extract an isosceles right 
angled triangle with the edge length 6 
cm out of a rectangle with edges 4 and 
6 cm long. What is the area of 
remaining figure? 

 

Figure 18. Ö9’s Problem about Making a Drawing Strategy 

 

R: How did you pose this problem? 

Ö9: If we draw a triangle inside a rectangle, we can solve this problem. 

R: Could you solve it now? 

Ö9: He draw a rectangle and he tried to draw isosceles right angled triangle with the edge. (He thinks for a 
while). It is impossible. I wrote wrong problems I think. 

Teacher candidates knew the strategy but he could not pose a solvable problem. Through clinical interviews he 
could not solve this problem because when he draw a rectangle and tried to draw triangles, he saw the problem 
was non-solvable. 

 

 4. Discussion 

The aim of the study was to determine mathematics teacher candidates’ knowledge about problem solving 
strategies through problem posing. Teacher candidates were asked to pose problems that can be solved using 
problem solving strategies in the Problem Posing Test.  

Results show that teacher candidates are skilled in problem posing in accordance with problem solving 
strategies. However previous studies concluded that teachers and teacher candidates had some difficulties with 
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problem posing (Crespo, 2003; Rizvi, 2004; Akkan, Çakıroğlu & Güven, 2009; Toluk-Uçar, 2009; Işık, 2011; 
Ünlü & Ertekin, 2012; Işık & Kar, 2012; Kılıç, 2013). This can be explained with the addition of problem posing 
and problem solving strategies to the new Middle School Mathematics Education Program. Besides it was 
believed that Problem Solving Strategies and Mathematics Teaching lessons taken by teacher candidates also 
contributed to this result. Ellerton (2013) emphasized the importance of preparing learning environments in 
which teacher candidates can pose their own problems instead of teacher education, which focuses on finding 
and solving difficult problems from the internet and books. In order to teach individuals how to pose creative and 
rational problems, teachers that have the required knowledge and skills were needed (Korkmaz & Gür, 2006). 
Teachers should pose different problems which are not solvable by using simple operations (Altun & Arslan, 
2006). In addition learning to pose mathematical tasks is important learning to teach mathematics (Crespo, 
2003). Thus it is essential to educate teacher candidates on the problem posing. A teacher equipped with 
necessary skills to pose problems in accordance with the problem solving strategies can easily be successful at 
teaching mathematics (Altun & Arslan, 2006). Besides, even though few in number, there were teacher 
candidates who can not pose appropriate problems or any problem at all. This result was compatible with the 
findings of Chen, Van Dooren, Chen & Verschaffel (2011) and Kılıç (2015). 

The types of problems that mathematics teacher candidates posed were analyzed. It is important for 
mathematical problems to be related to daily life (Işık & Kar, 2012). Research revealed that problems posed by 
teacher candidates were related with real life. Kılıç (2015) also found pre-service teachers were able to pose non-
standard problems, which can be solved by using arithmetical operations and taking into account real life 
situations. Teachers should learn how to apply problem solving strategies not only to mathematical situations but 
also to daily life situations (Posamantier & Krulik, 1998). Otherwise, students will be disappointed that they will 
not see the benefits of mathematics and their relations of it to daily life (Steen & Forman, 1995). The association 
of problems with everyday life will also provide meaningful learning of students in mathematics (Verschaffel, 
De Corte & Lasure, 1994). Therefore, it is very important for teacher candidates to pose problems that related 
mathematics to everyday life.  

When posing a problem, its solution should always be kept under mind (Cai & Hwang, 2002). When the 
problems were examined in terms of solvability, problems posed by mathematics teacher candidates were 
generally solvable. Korkmaz & Gür (2006) also stated that problems posed by teachers in their research are 
generally solvable and appropriately expressed. There were also teacher candidates who posed unsolvable 
problems. Teacher candidates did not check whether there was a solution or not. This result was compatible with 
the findings of Crespo (2003) and Kılıç (2013). Main reasons behind this problem were using wrong numbers 
and inadequate data. 

During clinical interviews, it was analyzed how teacher candidates posed problems and whether they can solve 
their own problems. Many teacher candidates stated that they posed problems similar to the problems they saw 
in textbooks and lessons, rather than act creatively. This is compatible with the findings of other studies (Barlow 
& Cates, 2006; Korkmaz & Gür, 2006; Crespo & Sinclair, 2008; Işık, Işık & Kar, 2011; Silver & Cai, 1996; 
Stickles 2006).  

The most common mistake done by teacher candidates were using wrong numbers and providing insufficient 
information (forgetting the “remaining….” expression) such as “In a petrol station, first truck buys the ¼ of the 
gasoline, second truck buys the 1/5, third truck buys 1/6, fourth truck buys 1/10, and fifth truck buys 1/3. There 
left 60 liters of gasoline in the station. How much gasoline there were at the beginning?” in working backwards 
problems. Sometimes teacher candidate knows the strategy, but they can not analyze the problem and they try to 
pose using their previous experiences. Knowing problem solving strategies is not sufficient to pose appropriate 
problems. In addition many problems posed as an exercise, but not related to daily life such as “We add 5 to a 
number, then divide the result with two and multiply it with six, if we get 66 as the result what was the beginning 
number?”  

Teacher candidates were more successful at posing problems in accordance with pattern finding strategy. 
Problems posed with this strategy were not related to daily life, but solvable. There were many problems like 
“Find the next number in… pattern?” This shows that teacher candidates were not successful at relating patterns 
in daily life. Therefore, examples which the patterns are related to daily life should be given in the lessons. 

It was seen that problems about intelligent guessing and testing strategy both not related to daily life and 
unsolvable. Findings of the research revealed that teacher candidates often confuse between computational 
estimation and intelligent guessing and testing strategy. There were also many unsolvable problems because of 
inadequate information. Besides there were many problems posed according to according all possibilities 
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strategy, but not related to daily life, such as “How many numbers can we write using numbers 1, 2, 3, and 4?” 
and unsolvable such as “Harun bought salt and pasta from a market. He bought 9 packages in total. Pasta costs 
2 TL more than salt. If Harun paid 21 TL, how many packages he bought from each product?” 

Teacher candidates was most successful at posing problems according to making drawing strategy. Most of the 
problems on this category was related to daily life and solvable. Larkin and Simon (1987) stated using diagrams 
instead of symbols enhance the intelligibility of problems. Besides visualized problems that these candidates see 
since their childhood can be a contributing factor for this success. 

Considering the importance of problem posing and problem solving strategies it is important to educate teacher 
candidates during their training to become a teacher (Kılıç, 2015). Understanding teacher candidates' problem 
posing performance in the context of problem solving strategies have an important contribution to the 
improvement of future teacher education programs. Because teacher first introduces children to the world of 
mathematics so courses should be given to teacher candidates which improves problem posing skills of them. In 
light of this research, further studies may focus on the problems posing success of teacher candidates using 
different strategies. Similar researches should be done to determine in-service teachers’ knowledge about 
problem solving strategies through problem posing. Students should be encouraged to pose more creative 
problems beginning from the elementary school to university. Besides teachers can assess the problems posed by 
secondary school students and provide support. 
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