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Abstract:

Implementing Shor's Algorithm with quantum circuits involves many complex operations such 

as addition and modular exponentiation.  The variety and complexity of the quantum gates involved are 

tremendous.  The quantum incrementer is the simplest nontrivial quantum circuit which exhibits basic 

arithmetic operations such as addition, carry propagation, and the reset of carry, or auxiliary, bits. 

These operations are ubiquitous in quantum computing; thus, an investigation of this simplest case, the 

quantum incrementer, offers fundamental insight which can be used to build more complicated circuits. 

An analysis of various 4-bit incrementer circuits is presented, and is generalized to the n-bit 

case.  Three incrementer circuit topologies are derived and compared based on their total number of 

gates, the number of carry or auxiliary bits utilized, and the complexity of the types of gates used.  A 

general method is derived to decompose complicated circuits into simpler circuits which are easier to 

manage and physically implement.  Due to the cancellation of intermediate unitary gates, it is shown 

that adding auxiliary bits slightly increases the complexity of a given circuit by the order of 3n, which 

pales in comparison to the complexity of the original circuit of the order n2.     



I.  Introduction:

The fundamental logic unit in classical computation theory is the bit, which has two distinct 

states represented by 0 or 1.  The counterpart of the bit for a quantum computer is the qubit, which can 

be in a quantum state of |0>, |1>, or a complex linear superposition of these two orthonormal 

computational basis states:  α|0> + β|1>, where |α|2+|β|2 = 1.  Qubits can be prepared in superposition 

states allowing for massive parallel quantum information processing.  Quantum computing reduces the 

complexity classes of various known algorithms from computer science.  Harnessing the power of 

superposition introduces a significant speedup advantage over even the best classical supercomputers, 

thus prompting a threat to world-wide security cryptosystems.

Quantum Information Theory indicates that information is physical, thus motivating various 

experimental and theoretical physicists and engineers to develop a coherent two-state quantum system 

which would model the qubit.  Perhaps the greatest limiting factor to realizing a quantum computer 

today is the issue of decoherence.  Decoherence is any interaction between a two-state quantum system 

and its ambient environment which would diminish the coherence, or purity, of these states and 

ultimately destroy the qubit's superposition property.  Once the superposition of a qubit is jeopardized, 

we result with nothing more than a classical bit.  

Qubits are prepared in some input register and then passed through a quantum circuit.  A 

quantum circuit consists of various quantum logic gates which are essentially unitary transformations 

operating on these qubits [1].  Afterwards, the qubits can be read at the output register.  Two basic 

quantum gates are the controlled-NOT, or C-NOT, and the controlled-controlled-NOT, or C2-NOT, 

otherwise known as the Toffoli gate.  A wire denotes the path a qubit travels throughout the circuit. 

Note that this is not a physical wire, but actually represents the time evolution of a specific qubit 

throughout the system.

Digital logic relies on classical gates which are irreversible and non-unitary such as the AND, 

OR, and several variations of these.  This presents a problem when considering quantum computing 



because we cannot simply map classical circuits to construct a quantum processor.  AND, OR, and 

similar irreversible gates do not exist in quantum computing because quantum mechanics is by nature 

unitary.  Probability is conserved in quantum computing whereas it is not in classical computing.  

Figure 1 shows a 2-bit AND gate and its truth table.  The AND operation has a true outcome 

only when both of the input bits are true; every other permutation of input bits results in a false 

outcome.  Figure 2 shows a 2-bit OR gate and its truth table.  The OR operation exhibits three possible 

true outcomes and only one false outcome.  If both of the input bits are false, then the outcome is false; 

otherwise, the outcome is true.  

Since there exists multiple input permutations resulting in the same outcome, we cannot 

distinguish which input permutation caused the specific outcome.  This lack of one-to-one 

correspondence mapping between domain (input) and range (output), that is, one input for one output, 

illustrates the non-unitary and irreversible nature of classical computing.  This can be easily remedied 

in quantum computing by adapting auxiliary “work” bits which present extra inputs or outputs to 

classical gates, thus making them unitary by having the same number of input bits as output bits.    

Figure 1.  The AND gate and its corresponding truth table.



Figure 2.  The OR gate and its corresponding truth table.

The following reversible gates are widely used in quantum computation.  Note that they are 

reversible and unitary because they have equal number of inputs as outputs.  C-NOT is a conditional 

operation.  It performs a NOT operation on the target qubit, x2, if and only if the controlled qubit, x1, is 

in state 1; otherwise, it acts as the identity operator on the target qubit [2].  

C-NOT: |x1>|x2> → |x1>|x1 XOR x2> 

The symbol for the C-NOT gate is shown in Figure 3:

Figure 3.  C-NOT gate; invert target qubit only if control qubit is active.

C-C-NOT is an extension of the C-NOT gate.  It performs a NOT operation on the target qubit, 

x3, if and only if the both control qubits, x1 and x2, are in state 1; otherwise, it acts as the identity 

operator on the target qubit [3].

C-C-NOT: |x1>|x2>|x3> → |x1>|x2>|x3 XOR (x1 AND x2)>

The symbol for the Toffoli or C-C-NOT gate is shown in Figure 4:

Figure 4.  Toffoli gate; invert target qubit only if both control qubits are activate.



Figure 5 shows how a circuit can be reduced by deleting certain auxiliary bit lines [4].

Figure 5.  Two equivalent circuits.  The C0 carry bit is deleted since it mimics the A0 bit.
C0 and A1 must be in state 1 in order to operate on C1.  A0 is implied to be in state 1 since C0

must be in state 1 for C1 to be determined.  We refer to this as a “mimicking effect.”  

In order to operate on the C1 carry bit, C0 and A1 must be in state 1.  If C0 is in state 1, this 

implies that A0 must also be in state 1.  Thus the intermediate C0 carry bit mimics the behavior of its 

preceding A0 bit and can be deleted without altering the overall operation of the circuit.  The circuit on 

the left, consisting of a C-NOT and Toffoli gate is reduced to the circuit on the right, consisting of only 

a Toffoli gate.    

The notation used in this paper to distinguish the various circuits follows the format:

(N-bit number:M-carry bits:Reset Carry bits En/Disabled)

where the particular circuits analyzed are the (4:0), (4:3:RE), (4:3:RD), and the (4:1:RE) circuits.  The 

(4:0) circuit is a 4-bit incrementer with no carry bits.  The (4:3:RE) circuit is a 4-bit incrementer with 

three carry bits which are reset upon reaching the next state.  The (4:3:RD) circuit is a 4-bit incrementer 

with three carry bits which are not reset upon reaching the next state.  Finally, the (4:1:RE) circuit is a 

4-bit incrementer with one carry bit which is reset upon reaching the next state. 

 
II.  Discussion:

“4-Bit Incrementer, No Carry Bits (4:0)” Circuit:

The first circuit is a simple 4-bit incrementer without any carry bits.  It is depicted in Figure 6. 

We represent the current state of the 4-bit number by:  A3A2A1A0 and its corresponding next state by: 

A3
+A2

+A1
+A0

+.  The current state is the 4-bit number located at the input register before incrementation 

occurs and the next state is the resulting number located at the output register after incrementation is 



performed.  

Figure 6.  Circuit layout for the 4-bit incrementer without any carry bits (4:0).  Note that the 
dashed vertical lines show how many stages are implemented.  Each stage consists of various 

operations which set the current most-significant bit to its next state value.

Time evolution progresses from left to right across a quantum circuit.  The current state of the 

4-bit number resides in the input register.  During the first stage, we encounter a C3-NOT gate.  This 

gate performs a NOT operation on the A3 input bit if and only if input bits A2, A1, and A0 are all in state 

1; otherwise, it passes the input bit, A3, towards the output register.  This resulting value of A3, located 

at the output register, is the next state value, A3
+.  

During the second stage, we encounter a Toffoli gate.  This gate performs a NOT operation on 

the A2 input bit if and only if bits A1 and A0 are both currently in state 1; otherwise, it passes the input 

bit, A2, towards the output register, resulting in the next state value, A2
+.  The third stage consists of a 

C-NOT gate.  This gate performs a NOT operation on the A1 input bit if and only if the A0 bit is 

currently in state 1; otherwise, it allows the input bit, A1, to head towards the output register,  resulting 

in the next state value, A1
+.  The fourth and final stage concerns a NOT gate.  This gate simply inverts 

the A0 input bit unconditionally, thus setting the next state value, A0
+ at the output register.

The next state logic equations for the four stages of this “4-bit, no carry” circuit are:

A3
+ = A3 + A2*A1*A0

A2
+ = A2 + A1*A0

A1
+ = A1 + A0

A0
+ = /A0



Consider the following example utilizing the above logic equations for this circuit:

Let  A3A2A1A0 = 0111 be the current state residing in the input register.  The various gate operations are 

performed on this current state value as follows:

A3
+ = A3 + A2*A1*A0 = 0 + 1*1*1 = 0 + 1 = 1

A2
+ = A2 + A1*A0 = 1 + 1*1 = 1 + 1 = 0

A1
+ = A1 + A0 = 1 + 1 = 0

A0
+ = /A0 = /1 = 0

The result A3
+A2

+A1
+A0

+ = 1000 is the next state which resides in the output register.  Note that the 

value at the input register was incremented by 1 and sent to the output register.

“4-Bit Incrementer, 3 Carry Bits, Reset Enabled (4:3:RE)” Circuit:

The second circuit is a simple 4-bit incrementer utilizing three carry bits.  It is depicted in 

Figure 7.  This circuit implements auxiliary or dummy bits which temporarily store carry values from 

previous lower-bit addition stages.  These carries propagate throughout the various addition stages and 

eventually set the current-stage most-significant bit to its next state value at the output register.  

The current state of the 4-bit number, A3A2A1A0, is set at the input register.  Notice that the 

carry bits, C2C1C0, are always initialized to zero, and in this particular circuit they will be reset to zero 

at the output register as the next state: C2
+C1

+C0
+.  Thus, the input register stores the current state: 

A3C2A2C1A1C0A0, while the output register stores the next state:   A3
+C2

+A2
+C1

+A1
+C0

+A0
+.

During the first stage, we encounter a C-NOT gate.  This gate will invert the initial value of C0 

if and only if A0 is set to 1; otherwise, it passes through the initial value of C0.  The next gate is a 

Toffoli gate, which inverts the initial value of C1 if and only if the current states of C0 and A1 are both 

1; otherwise, it passes through the initial value of C1.  Another Toffoli gate follows which inverts the 

initial value of C2 if and only if the current states of C1 and A2 are both 1; otherwise, it passes through 

the initial value of C2.  The next gate is a C-NOT gate, which inverts the initial value of A3 if and only 



if the current state of C2 is set to 1; otherwise, it passes through the initial value of A3 to the output 

register and sets it as the next state value, A3
+.   

Figure 7.  Circuit layout for the 4-bit incrementer with three carry bits and reset enabled (4:3:RE).  
Note that the dashed vertical lines show how many stages are implemented.  Each stage 

consists of various operations which set the current most-significant bit to its next state value.  

This particular circuit requires that the carry bits be reset upon their next state.  Since the last 

operation  was to determine the most-significant bit, A3, we can now undo the carry propagations that 

led up to determining the next state of A3 and thus reset the carry bits by performing reverse operations 

with each corresponding gate.  This is possible because all of these quantum gates are unitary in nature. 

Unitary transformations satisfy the condition:  

UU-1 = U-1U = 1 (1)

Thus, after having determined the most-significant bit value which is sent to the output register, 

we reset the carry propagations by proceeding in reverse order and mirror-imaging each previous gate. 

Recall that C1, A2, and C2 all had to be in state 1 for A3 to be determined.  Working backwards from A3 

and implementing a reverse-Toffoli gate yields:  

C2
+ = C2 + A2*C1 = 1 + 1*1 = 1 + 1 = 0  



which resets the C2 carry bit before it passes towards the next stage.  Similarly, C0 and A1 must have 

both been in state 1 for C1 to have propagated earlier.  Operating with another reverse-Toffoli gate 

yields: 

C1
+ = C1 + A1*C0 = 1 + 1*1 = 1 + 1 = 0

which resets the C1 carry bit before it enters the next stage.  Finally, A0 must have been in state 1 for C0 

to have propagated earlier.  Operating with a reverse-C-NOT gate yields:  

C0
+ = C0 + A0 = 1 + 1 = 0

which resets the C0 carry bit before it enters the next stage.  All of these operations constitute the first 

stage of the incrementer associated with determining A3, the most-significant bit. 

Now we proceed to the second stage, in which a similar procedure is executed in order to 

determine the next most-significant bit, A2, and send its next state value to the output register.  The first 

gate we encounter is a C-NOT gate.  This gate will invert the current state of C0 (coming from the first 

stage) if and only if A0 is set to 1; otherwise, it passes through the current state of C0.  The next gate is a 

Toffoli gate, which inverts the current state of C1 (coming from the first stage) if and only if the current 

states of C0 and A1 are both 1; otherwise, it allows the current state of C1 to pass through.  The 

following gate is a C-NOT gate, which inverts the current state of A2 if and only if the current state of 

C1 is set to 1; otherwise, it passes through the current state of A2 to the output register.  Similar to the 

first stage, we operate with reverse-Toffoli and reverse-C-NOT gates:  

C1
+ = C1 + A1*C0 = 1 + 1*1 = 1 + 1 = 0

C0
+ = C0 + A0 = 1 + 1 = 0

which reset the carry bits, C1 and C0, to zero before proceeding to the next stage.  

We arrive at the third stage with the objective of determining the next most-significant bit, A1. 

The first gate we encounter is a C-NOT gate.  This gate will invert the current state of C0 (coming from 

the second stage) if and only if A0 is set to 1; otherwise, it passes through the current state of C0.  The 



next gate is another C-NOT gate.  This gate will invert the current state of A1 (coming from the second 

stage) if and only if C0 is set to 1; otherwise, it passes through the current state of A1 to the output 

register.  We operate with a reverse-CNOT gate:

C0
+ = C0 + A0 = 1 + 1 = 0

to reset the carry bit C0 to zero before proceeding to the next stage.  Finally, the fourth and final stage 

consists of a NOT gate, which simply inverts the current state of A0 (coming from the third stage) and 

sends its next state value to the output register.  

Figure 8 shows the (4:3:RE) circuit with the specific unitary gates to be annihilated.  It is 

possible to annihilate the adjacent mirror-image unitary gates:

C-NOT*C-NOT-1 = 1
C-NOT*C-NOT-1 = 1

TOFFOLI*TOFFOLI-1 = 1

because of their unitary property (see Eq (1)).  This reduced circuit (see Figure 7) exhibits fewer gates 

and results in a simpler and possibly faster circuit.  Another simplification to this (4:3:RE) circuit after 

annihilation of mirror-image gates is that we could delete the two reverse-Toffoli gates if we are not 

concerned with resetting the carry bits after incrementation.  This (4:3:RD) circuit is shown in Figure 8. 



Figure 8.  Circuit layout for the (4:3:RE) highlighting the unitary gates to be annihilated.  
Note that the dashed vertical lines show how many stages are implemented.  

Each stage consists of various operations which set the current most-significant bit to its next state value.

Figure 9.  Circuit layout for the (4:3:RE) after annihilation of three specified sets of unitary gates.  
Note that the dashed vertical lines show how many stages are implemented.  Each stage consists of 

various operations which set the current most-significant bit to its next state value.



Figure 10.  Circuit layout for the (4:3:RD) when the carry bits are not reset after incrementation.  Note that the 
dashed vertical lines show how many stages are implemented.  Each stage consists of various operations which set the 

current most-significant bit to its next state value.

“4-Bit Incrementer, 1 carry bit, Reset Enabled (4:1:RE)” Circuit:

The final circuit is a 4-bit incrementer with only one auxiliary carry bit.  This one carry bit is 

reset upon reaching its next state at the output register.  This circuit is depicted in Figure 11.  It is 

essentially the (4:3:RE) circuit mentioned in Figure 9 with the C2/C2
+ and C0/C0

+ auxiliary lines deleted 

(refer to Figure 5 for the “mimicking effect”).  

Figure 11.  Circuit layout for the (4:1:RD) when two of the three auxiliary carry bits are excluded.

We have derived three main circuits which perform the same incrementation operation.  These 

circuits are the (4:0) circuit in Figure 6, the (4:3:RE) circuit in Figure 9, and the (4:1:RE) circuit in 



Figure 11.  

Table I.  Comparing the three main 4-bit incrementer circuit topologies.

Circuit (4:0) [Figure 4] (4:3:RE) [Figure 7] (4:1:RE) [Figure 9]
Number of Gates 4 10 6

Number of Carry Bits 0 3 1
Types of Gates (1)  C3-NOT

(1)  TOFFOLI
(1)  C-NOT
(1)  NOT

(4) TOFFOLI
(5) C-NOT
(1) NOT

(3) TOFFOLI
(2) C-NOT
(1) NOT

Table I compares these circuits in terms of their number of gates, whether carry bits are used, 

and their types of gates.  The (4:3:RE) circuit qualifies as having the most number of gates, the (4:0) 

circuit has zero carries, and both the (4:3:RE) and (4:1:RE) circuits have the simplest types of gates: 

C-NOT, Toffoli, and NOT.    

Generalization to the n-bit case (Proof and further elaboration in upcoming revision):

Figure 12.  Generalization of n-bit/n-gate circuit.

Figure 12 shows the generalization to n-bits of the 4-bit incrementer circuit aforementioned in 

Figure 6.  There are (n-1)-2 = n-3 auxiliary bits, where the (n-1) bit lines are sandwiched between the 

top and bottom bit lines.  We don't include the top or bottom lines because they are never auxiliary bits 

but rather the least and most significant bits in a given circumstance.  The auxiliary bits are found in 

between each of the (n-1) sandwiched bit lines.  Thus, the number of auxiliary bits is the difference 

between the (n-1) sandwiched lines and the top and bottom bit lines.  



Figure 13.  Generalization of n-bit incrementer with carry bits.

Figure 13 shows the generalized n-bit gate in terms of Toffoli, C-NOT, and NOT gates.  It also 

outlines a few implicit cancellations of C-NOT gates.  Recall that there are (n-3) auxiliary bits as we 

proceed towards determining the most-significant bit, AN.  As we reset the carry bits by proceeding 

backwards, we pass another (n-3) auxiliary bits.  

At the end of the process, n bits are determined (ie. AN, AN-1, ..., A1, A0).  Thus, the total number 

of gates added by using auxiliary bits sums to:  2(n-3) + n =  3n-6.  It is evident that using auxiliary bits 

increases the complexity of the initial circuit shown in Figure 13 by an order of 3n.  The increase in 

complexity by using carry bits is not too costly.  Recall that the original circuit has complexity on the 

order of n2.  

Conclusion:

Three main quantum incrementer circuits were derived and analyzed:  the (4:0) circuit, the 

(4:3:RE) circuit, and the (4:1:RE) circuit.  These circuits differ in their number of quantum gates, 

whether carry bits were utilized, and in their types of gates.  We learned that any one of these circuits 

can be mapped into three different topologies depending on one's particular design deliverables.  These 

three main topologies were presented in Table I.  



We commenced with the (4:0) incrementer circuit, which consists of high-order gates.  These 

high-order gates involve many interacting qubits, which presents a formidable challenge to physically 

implement.  One can reduce these high-order gates to simpler Toffoli and C-NOT gates, which are 

easier to manage and realize.

These 4-bit incrementers and 3-bit carries were generalized to n-bit incrementers and (n-3) bit 

carries, respectively.  If the mimicking effect shown in Figure 3 is employed, further reductions in 

carry bits can be made.  
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