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Abstract— Provision of security involves protecting lives and 

properties, and properties in this context include data and 

services. This paper investigates the impact of cyber-attacks on 

load scheduling applications by simulating various possible 

modes for these attacks while observing possible effects on the 

users.  The attack modes used are in the form of denial of service 

(DoS) and phishing attacks whereby the attacker is able to 

interfere with data intake to the Home Energy Management 

Systems (HEMS) or a modification of critical data to the HEMS. 

The dynamic pricing information and load profile data is the 

target here although other types of data utilized by the central 

controller for load scheduling purposes can also be targeted. The 

test-bed uses load scheduling applications based on genetic 

algorithm optimization. Results show the impact on optimized 

load profiles and how they can discourage active demand 

response participation if such attacks are not properly managed. 

Index Terms-- Cybersecurity, Demand Response, Dynamic 

Pricing, Home Automation and Optimization 

I. INTRODUCTION 

Cyber-attack is a familiar experience to internet users 

since the commercialization of internet services and 

operations. As in the real world, similar criminal activities are 

carried out by people who have capitalized on the 

vulnerability of data transferred over the internet for their 

own selfish needs. The realization that information 

transferred via the internet can be hacked, harvested and 

compromised, has offered intruders alternative ways to 

invading peoples’ privacy without having to physically step 

into their premises. As a result, evolution of traditional power 

grid network system to a smart grid network which primarily 

utilizes communication and data transfer infrastructure, 

requires adequate security in order to deter intruders from 

disrupting the network.  

The focus of this paper is on consumer side of the smart 

grid within a liberalized energy market, in particular on the 

emerging Home Energy Management Systems (HEMS) that 

may be linked to other external entities such as Virtual Power 

Plants, Distribution Network Operators (DNOs) and micro-

grid operators in order to provide for load balancing services, 

renewable energy integration and ultimately financial benefit 

to the consumer. Although a survey by promotional 

marketing firm Parago, suggests that only about 14% of 

consumers in the US currently participate in demand response 

programs, security of the HEMS still remains important [1]. 

Several factors can encourage cyber-criminals to consider 

hacking into people’s privacy but the commonest reasons 

seem to be just for fun, intending to prove a point that they 

can hack a new system or simply because they just want to 

bring down an organized system [2]. Sometimes information 

harvested from unsuspecting victims are sold to a third party 

for some monetary value, and this is one of the occasions 

whereby cyber-criminals trade directly the personal details of 

online users in the so called “dark web” [3]. This therefore 

leaves the energy grid itself as a matter of national security if 

it becomes subject to attack.  

The aim of the work is to demonstrate the possible impacts 

on the performance of a load scheduler which came under 

specific and successful cyber-attack on the HEMS. As a 

result, appropriate proactive defense mechanism can be 

provided which is capable of preventing the effectiveness of 

any such attack. Although authentication, firewalls, antivirus 

and other conventional protective mechanisms are absolutely 

necessary, it is also important to incorporate other protective 

mechanisms which act as the last line of defense in securing 

the HEMS. This is incorporated in the algorithm that runs the 

program such that required actions can be taken. 

II. RELATED WORK 

On December 23 2015, there was a recorded incidence of 

cyber-attack on the Ukrainian reginal electricity distribution 

company whereby seven 110kV and twenty three 35 kV 

substations were disconnected for three hours [4]. This attack 

was attributed to foreign government-sponsored cyber-

criminals who remotely controlled the SCADA and caused 

blackout on approximately 225,000 customers. This shows an 

example of the numerous threats which cyber criminals 

oftentimes, pose to the smart grid network and the disturbing 

disadvantages of being all connected via the internet. In 

trying to understand how to identify cyber-attack patterns and 
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preventing their occurrence, several authors have contributed 

through several experiments to this effect.  

Authors in [5] investigated the attack vectors on smart 

HEMS analyzed on a digitalSTORM installation using 

solution-based analysis. This was done by identifying and 

ranking possible attack vectors or entry points into a smart 

home systems with suggested ways of thwarting such attacks. 

Those entry points included: the server, communication bus, 

smart control device (e.g. smartphone or control station) and 

remote third party services which provides monitoring and 

control services. A malicious app was surreptitiously installed 

on the home owner’s android smart-phone and was used as 

entry vector which can turn appliances ON or OFF.  Results 

shows various vulnerabilities via the attack entry points on 

the HEMS while suggesting authentication from authorized 

users as a reliable means of preventing such attacks.  

Authors in [6] improved mesh network security used 

within various smart grid domains against cyber-attack by 

introducing a dynamically updating key distribution strategy 

on network protocols. The proposed method was mainly 

designed against DoS attack by utilizing a 4-way Merkle-tree 

based handshaking scheme. The reliability of the model was 

verified using Proverif and they were able to demonstrate the 

effectiveness of key refreshment strategy in thwarting DoS 

attack on the smart grid network. 

Authors in [7] [8] proposed means of detecting cyber-

attacks in HEMS by alterations on the load profiles.  Two 

models of attacks were considered which includes: Dynamic 

Load Altering Attacks (D-LAA) and Static Load Altering 

Attacks (S-LAA). D-LAA was considered because the 

possibility to control loads dynamically implies also, the 

possibility to attack loads dynamically. S-LAA is more 

common and is based on changing the volume of certain 

vulnerable loads, usually in an abrupt fashion. The paper 

suggested possible D-LAAs detection by applying frequency 

domain analysis of the load profile using Fast Fourier 

Transform (FFT) of the original load profiles [9] via spectral 

analysis. Another technique includes Real-time detection in 

frequency domain using Windowed-FFT (W-FFT), and 

detection based on both load and frequency signals [10]. 

Several other forms of cyber-attack are possible and may 
include communication system failure which could originate 
from the utility or from the localized HEMS [11]. The next 
section is a description of the method applied in analyzing 
possible attacks within the HEMS and suggested ways of 
preventing possible impacts on the load profile generated.  

III. PROPOSED METHOD 

The impact of security breaches on homes that engage 

actively in demand response programs can be investigated by 

modeling possible attack scenarios which may affect the 

home network in order to analyze possible impacts due to 

these attacks. Unsecured or poorly secured communication 

links within the household are usually the target and the focus 

here is on communication links that send pricing information 

from the retailer to the HEMS. Each model of the various 

possible cyber-attacks is simulated in order to investigate the 

impact on the localized scheduler. Pricing is an important 

variable but also vulnerable due to energy cost savings 

capabilities thereby making them an attacker’s target [12] 

In this analysis, a household whose occupants are active 

demand response (DR) participants are presumed to receive a 

forecast load schedule of which they are prepared to abide 

with. Thereafter, an attack on the pricing data was 

encountered which affected the components of the objective 

function that has price information as a variable. The 

objective function is given as the following equation: 

 

Fj,i = wa*∑Aj,i + wb*∑Bj,i + wc*∑Cj,i - wd*∑Dj,i    (1) 

Where:  

    A (Impact on Occupants) = Change in Energy (∆ℰ) * Occupancy 

B (Cost) = Optimized Load (𝑥) * Dynamic Pricing (α) 

C (Discomfort) = ∆ℰ / Standard deviation of Load Profiles (σ) 

D (Optimization Factor) = Optimized Load (𝑥)/ Forecast Load (e) 

e = Forecasted load profile. 

i = Iteration number 

j = hourly time interval in a day. 

w = Weighting factor 

𝑥 = randomly generated load profile for optimization. 

 

Here, A represents the effect of absolute change in energy 
use on all occupants. However when nobody is in house, the 
change has no effect. This is why ∆ℰ is multiplied by the 
occupancy to give A, which offers a better measure than ∆ℰ. A 
low impact of such change is favorable to the consumer.  

B represents change that effects energy cost reduction. 
Cost is a major incentive to the adoption of demand response 
programs, hence its inclusion on the fitness function equation.  

C represents the discomfort experienced due to scheduling 
which is expected to be minimized in order to reduce drastic 
reassignments of loads from the original forecasted load 
profile to other times for the new day.  

D represents optimization factor which attempts to scale 
the optimized load to the magnitude of the forecast load 
profile at every iteration during optimization. A high effect of 
this application is considered favorable to the consumer.  

Various scenarios are therefore simulated in the next 

section by nullifying or modifying the affected variable with 

respect to the attack. Hence, impact of the respective cyber-

attack on the forecast scheduled load profile is observed.  

A. Genetic Algorithm-Based Model 

Genetic Algorithm (GA) is the optimization tool used 

mainly due to the ease in appending variables to the fitness 

function in order to accommodate any desired objective. Due 

to the dissimilarities of the variables in Eqn.1, each variable 

is converted to the per unit scale in order to allow additions of 

the variables while the weightings places more emphasis on 

any variable considered more important that the other. Eqn.2 



and Eqn.3 shows the constraints applied whereby Eqn.2 is an 

energy limitation equation, and the maximum and minimum 

energy level of every randomly-generated load profile sample 

remains within the limit of the forecasted load profile. 

𝑒𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑒𝑚𝑎𝑥                       (2)                               

On the other hand, Eqn. 3 is an energy conservation 

equation whereby the total energy of each randomly-

generated load profiles samples is equal to the total energy 

consumed in any given day.  

 

 ∑ 𝑥𝑗

24

𝑗=1

= ∑ 𝑒𝑗

24

𝑗=1

                                  (3) 

Eqn. 1 is a minimization of the fitness function. This 

means that the variables with positive signs are minimized 

while those with negative signs are maximized.  

B. Cyber-Attack Models and Impact on HEMS  

I. Denial of Service Attack 

A typical DoS attack can be initiated when an attacker 

deliberately generates multiple requests from his device to a 

target via a single protocol, thereby causing an impediment 

on data traffic and preventing the target from accessing their 

data online. Alternatively, the attacker can generate multiple 

requests through some master to slave computers while 

pretending to be the victim computer. The slave computers 

not recognizing the source of the request command presumes 

that all requests came from the victim computer and in an 

attempt to respond to those requests, they end up causing an 

unprecedented traffic and delays on the victim computer. 

Such requests are usually massive for the server to withstand 

and this type of attack is known as Distributed DoS (DDoS). 

 

Fig. 2: Distributed Denial of Service Attack on a Victim [13] 

Any such attack on the pricing information as shown in 

Fig. 2 is capable of preventing the load scheduling algorithm 

from accessing the pricing data required for load scheduling. 

The consequence of this attack is the non-availability of the 

pricing function to the fitness function of Eqn. 1. 

Mathematically, given the cost B, as a variable of the fitness 

function F, total Energy Cost per day is given as: 

BTotal = wb*α* ∑ 𝑥 j,i                                                    (4) 

For a DoS attack, Price = nil (data is delayed or unavailable) 

Then from Eqn. 4, 

Total Energy Cost per day = wb*0* ∑ 𝑥 j,i 

Therefore for a DoS attack, Eqn. 1 becomes: 

Fj,i = wa*∑Aj,i + 0 + wc*∑Cj,i - wd*∑Dj,i                     (5)  

II. Constant- Pricing Attack  

Reducing a dynamic pricing regime to a fixed pricing 

signal can be a consequence of an unsecured network 

hijacked by a cyber-attacker. In order to model this attack; 

Let Constant Price factor = Ύ,  

Then from Eqn. 4, total Energy Cost per day = wb* Ύ *∑ 𝑥 j,i 

Therefore for a fixed pricing attack, Eqn. 1 becomes:  

Fj,i = wa*∑Aj,i + wb* Ύ* ∑ 𝑥 j,i + wc*∑Cj,i - wd*∑Dj,i                  (6)                                                                        

III. False Data Injection Attack  

    A cyber-attack on the dynamic pricing information can 
occur in form of false data injected on the actual pricing 
signal. The aim of this sort of attack can be to cause the 
generation of random and unpredictable results thereby 
presenting a scheduled load which is not a true reflection of 
the market events. The result is important because this type of 
attack can be difficult to detect since different types of results 
can be generated each time the algorithm is run. 

 

Fig. 3: False data Injection Attack on Actual Price Signal 

Let us consider an attack scenario whereby the actual 
dynamic price signal α is injected with some discrete 
randomly generated false data ɳ to create distortion thereby 
creating a new price profile R as represented in Fig. 3. The 
new price profile R over a 24 hour interval is as given in 
Eqn.7. 

Rj = ∑ α𝑗 + ɳ𝑗

24

𝑗=1

                                 (𝟕)

A variation of false data levels introduced is evaluated and 
a maximum false data level of up to 20% of the peak dynamic 
price value is assumed. Therefore Rj is bound by a maximum 

allowable proportion of the actual pricing signal for only 
positive pricing values. This is as given in Eqn.8. 

αmin ≤  Rj ≤ 1.2αmax                           (8) 

The actual day-ahead pricing data was obtained from [14] 

and 20 iterations of increasing false data level was 

incremented in a step-wise manner from 0 up till 20% of the 

maximum price value. In order to model this attack, Let 

Noisy Price =Rj .  



Then from Eqn. 4, total Energy Cost per day = wb * Rj *∑ 𝑥 j,i 

Therefore for a fixed pricing attack, Eqn. 1 becomes:  

Fj,i = wa*∑Aj,i + wb* Rj* ∑ 𝑥 j,i + wc*∑Cj,i - wd*∑Dj,i           (9)   

IV. SIMULATION AND RESULTS  

In order to perform load scheduling, the controlled 
variable is given as the Forecast Load Profile obtained from 
[15] while the three principal input data used as controlling 
variables include: Price Profile, Standard Deviation of Load 
Profile and Occupancy.  

 

Fig. 5: Principal Input Variables for Load Scheduling 

The output is the Optimized Load Profile generated due to 
the effect of the controlling variables shown in Fig. 5. The 
results of the three attack scenarios are presented as well as 
means of mitigating each of the attacks encountered. 

Case 1. Impact of DOS Attack 

Here, Eqn. 5 is applied whereby the price data is not 
available for load scheduling optimization due to DOS attack. 
From Fig. 6, four events were carried out which includes: load 
profile with attack on price; load profile with actual day-ahead 
price; load profile with forecast load profile (generated 
locally) and load profile without scheduling (which acts as a 
control).It is observable that the optimized load profile during 
attack re-traces the forecast load profile. This is because when 
pricing information is not available the optimized load profile 
retains approximately same profile as the original forecast 
load profile. In other words, such an attack will render the 
scheduling operation temporarily dormant and ineffective. 

 

Fig. 6: DOS Impact on Load Profile and Possible Correction 

A reliable solution for this attack is to locally generate price 
forecast which uses historical prices to estimate the day-ahead 
price, if the use of previous day’s data is not acceptable. This 
outcome is also demonstrated in Fig.6 and it is impressive to 
observe how much of a good job the forecasted price did in 
providing a price profile that can be used as an approximate 
data to substitute a DOS attack on a pricing data.  

Case 2. Impact of Constant-Pricing Attack 

Here, Eqn. 6 is applied by replacing the dynamic pricing 

model with a fixed pricing system for different fixed pricing 

levels. This is as shown in Fig. 7a-c whereby the higher in 

magnitude of the fixed pricing value, the greater the deviation 

of the optimized load profile from the forecast load profile. If 

the constant pricing line goes below the minimum day-ahead 

price which is $0.02125/kWh in this illustration, the 

optimized load profile becomes almost indistinguishable from 

the forecast load profile. If the fixed pricing value becomes 

zero, DOS attack as shown in Fig. 6 becomes replicated.  

   

Fig. 7a: Scheduled Load Profile for high Constant Price 

  

Fig. 7b: Scheduled Load Profile for Medium Constant Price 

  

Fig. 7c: Scheduled Load Profile for low Constant Price 

This type of attack is considered to be relatively easy to 

detect especially because constant-valued pricing data is an 

anomaly in a dynamic pricing system hence, the HEMS can 

easily flag such as an error. It is therefore possible for the 

HEMS to find ways to nullifying its impact by requesting for 

a second update on the pricing information or by relying on a 

localized forecasting mechanism as discussed in Case 1. 
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Case 3. Impact of False data-Injection Attack 

This attack is modelled using Eqn. 9 and the impact on the 

optimized load profile is examined assuming the pricing data 

contains some randomly generated false data As this is 

gradually introduced to the price variable, the scheduled load 

responds in different ways. The graphs in Fig.9a-c represent 

the graphs of load schedules at some selected proportions of 

price and increasing false data signal combinations from a 

total of 20 samples. The optimized load profile in Fig.9a 

shows a greater deviation from the forecast load profile, 

unlike in Fig.9b and Fig.9c which shows lesser deviations. 

There is zero false data content in the pricing data according 

to Fig.9a whereas in Fig.9b and Fig.9c, the false data content 

is at 10% and 20% of the maximum price value respectively. 

This information is very important here because it shows that 

there is a significant difference between the optimized load 

profiles in Fig.9a and Fig.9b, but little or no difference 

between Fig.9b and Fig.9c. Hence, introducing false data can 

quickly degenerate the output almost instantaneously.  

  

Fig 9a: Load Schedule for High 0 % false data content 

  

Fig 9b: Load Schedule for Medium 10 % false data content 

  

Fig 9c: Load Schedule for Low 20 % false data content 

However, it is observable that there is always positive 

savings obtainable for any given false data injection on the 

price. This is due to the optimization program that tends to 

follow the cheapest possible cost for any given input hence, it 

will be difficult for the optimizer to detect them early enough.  

V. DISCUSSION AND CONCLUSION 

The optimization constraints are observed to play key roles 

in ensuring that the optimized load stayed within certain 

boundaries of the forecast load profile irrespective of the type 

of attack on the scheduler. This offers a great relief since the 

impact of such attacks on the household and the grid can be 

localized and the possibility of causing all the appliances in a 

household to turn ON at the same time can be suppressed.  

The metering system is a possible means to detecting 

anomalies in view of the availability of the historical load 

consumption stored in the HEMS. So if strange scheduling 

pattern is generated, the system could call for a reassessment 

of all the input data. This is a good step towards effective 

error detection which will in turn create the avenue to seek 

the best solution depending on the type of attack involved. 

In conclusion, every attack will produce results but with 

reduced savings and customer satisfaction. This may lead to 

reduced user engagement in demand response programs but 

with improved security, advancement of the grid is assured. 
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