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" Introduction A

Where is Earth’s Water?
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Source: Igor Shiklomanov's chapter "World fresh water resources” in Peter H. Gleick [editor),
1993, Water in Crisis: A Guide to the World's Fresh Water Resources.
NOTE: Mumbers are rounded, so percent summations may not add to 100.

e Runoff estimation is key component of any water  resources
project, planning or management.

e There are several methods for Rainfall-Runoff modeling
broadly divided into two categories: Conceptual and
N Data-driven technigues.
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‘Artificial Neural Network R

e The first artificial neuron was produced in 1943 by the
neurophysiologist Warren McCulloch and the logician
Walter Pits.
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From Human Neurons to Artificial Neurons
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'ANN cont. .... h

Feed-Forward steps:
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Objective function (1) can be minimized by Gradient descent

algorithm, Levenberg-Marquardt algorithm or any other
optimization method.
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4 e Gradient Descent method : A

o Uses first-order derivative to create search direction: s* =-vf(x®)
e Works well when initial point is far away from optimum.

 Newton’s method :
e Uses 2" order derivatives to create search directions:
s = —[VZ f (x(") )FVf (x("))
e Suitable & efficient when initial point is close to optimum.

* Levenberg-Marquardt method :
e Combination of Gradient Descent and Newton’s method

e Start with Descent method when required to search in a large
space and later with Newton’s method when required to search
near optimum point.
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'ANN Model Development for Bird Creek Basin'

e Study area : Bird Creek Basin, USA s
(Total Area: 2344 Km?) \\\

e Data available: Rainfall and Runoff data

(8/1/1995 to 31/10/2008) 2or)
 Data division: 60% for training and 40% gy T
for teSting. , ag(days)
e Inputs selection: ACF >0.7, CCF>0.25 | |
and PACF > 0.7 2o
e Inputs selected: P(t), P(t-1), P(t-2) and Q(t-1) | £ I .
e GD Algorithm Parameters: Learning SR N

Rate = 0.01 and Momentum constant = 0.9
e LM Algorithm Parameters: p=0.001 t
o ANN-Architecture selection: AARE, | £, /\\
R?, RMSE, NRMSE and Threshold Statistics | .
o Best architecture for BPA: 4 12 1 | S -
o Best architecture for LMA:4 12 1 N




Tablel: Performance comparison of ANN models trained using GD and LM Algorithms \

Training performance

Model AARE R NRMSE RMSE TS1 TS5 TS10 TS25 TS50 TS75 TS100
ANN-GD  72.52 0.863 0.234 0.029 1.14 6.31 15.56 41.96 68.10 79.22 83.40
ANN-LM  35.45 0.938 0.161 0.020 3.79  21.63 36.47 60.49 82.65 89.90 92.97

Testing performance

Model AARE R NRMSE RMSE TS1 TS5 TS10 TS25 TS50 TS75 TS100
ANN-GD  67.06 0.752 0.318 0.039 201 891 16.57 43.40 70.24 80.06 84.34
ANN-LM  48.19 0.787 0.305 0.034 3.63 2185 34.74 57.30 79.15 86.91 90.99
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Sensitivity of training methods on initial
welights
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‘Conclusion
* ANN is capable in forecasting runoff from rainfall data.

e LM method of training performs better than GD in ANN RR
modeling due to the least value of AARE(35.45), NRMSE(0.161)
RMSE(0.020) and higher values of R(0.938) and all Threshold
statistics.

 GD method is highly sensitive to initial weights as the standard
deviation of all the error statistics such as AARE(55.39),
R(0.064), NRMSE(0.169), RMSE(0.133) and all Threshold
statistics are high.

e LM method is nearly insensitive to initial weights as the standard
deviation of all the error statistics such as AARE(6.74), R(0.005),
NRMSE(0.028), RMSE(0.022) and all Threshold statistics are
less.
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