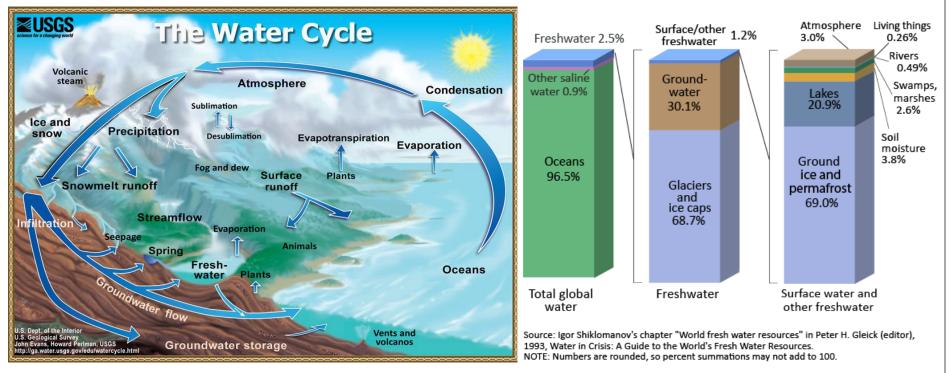


3rd International Conference on

September 15-16, 2014 HICC, Hyderabad, India

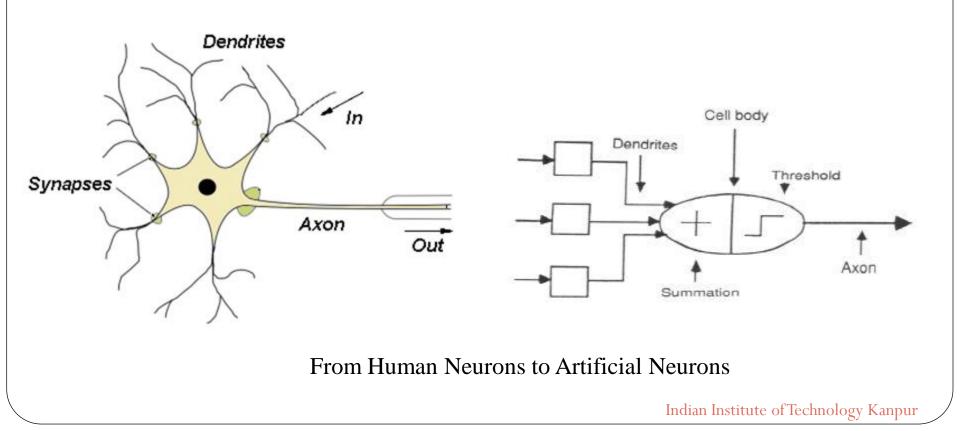
Investigation of Sensitivity of Popular Training Methods to Initial Weights in ANN Rainfall-Runoff Modeling


Vikas Kumar Vidyarthi Ph.D. Scholar Department of Civil Engineering IIT Kanpur

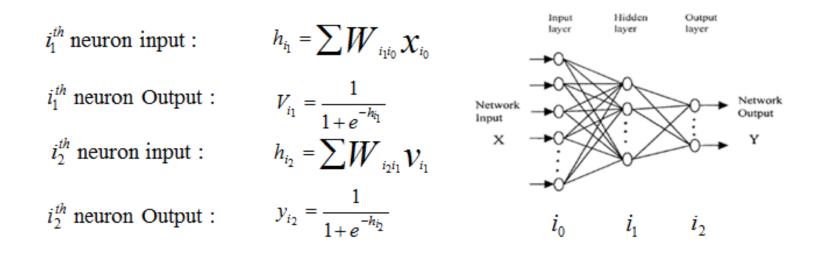
Outline:

- Introduction
 - Hydrologic cycle
 - Rainfall-Runoff modeling
- Artificial Neural Network
 - Gradient-Descent algorithm
 - Levenberg-Marquardt algorithm
- Sensitivity of optimization methods on Initial weights
- Results and discussion
- Conclusion

Introduction


Where is Earth's Water?

- Runoff estimation is key component of any water resources project, planning or management.
- There are several methods for Rainfall-Runoff modeling broadly divided into two categories: Conceptual and Data-driven techniques.


Artificial Neural Network

• The first artificial neuron was produced in 1943 by the neurophysiologist Warren McCulloch and the logician Walter Pits.

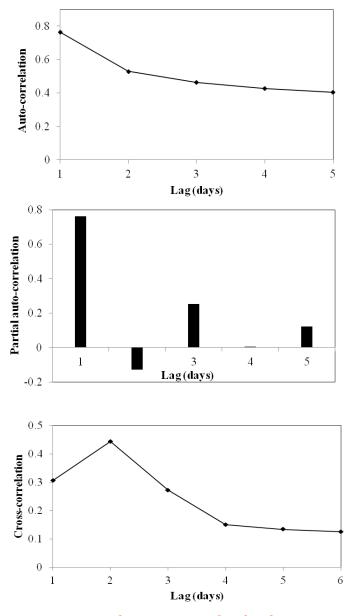
ANN cont.....

Feed-Forward steps:

Learning steps:

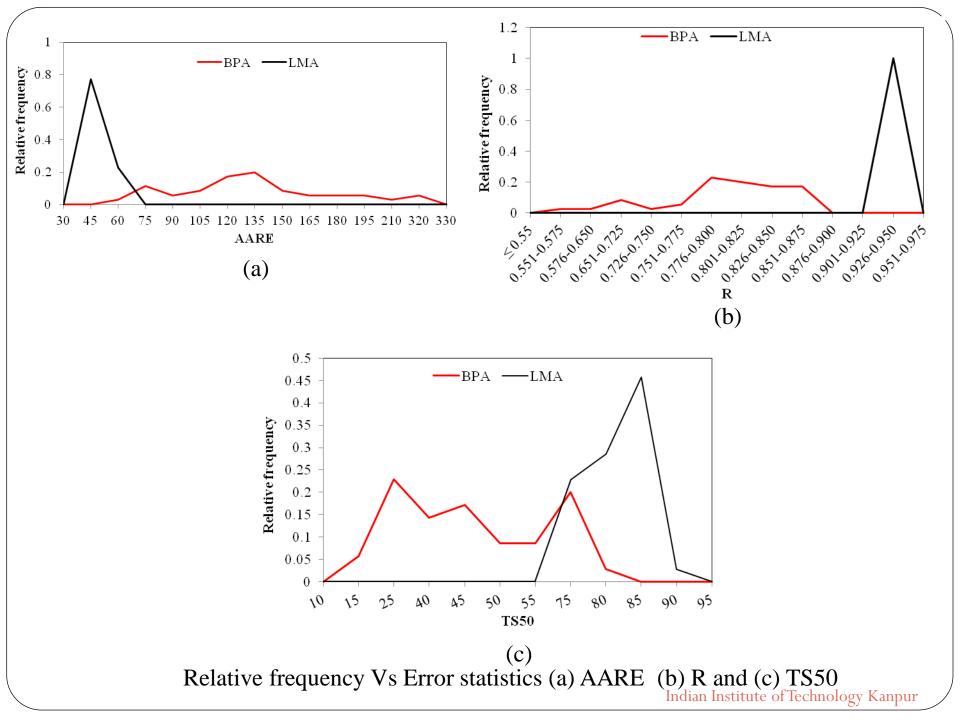
Error:
$$E(t) = \frac{1}{2} \sum (y_{i_2}^d - y_{i_2})^2$$
 ------ (1)

Objective function (1) can be minimized by Gradient descent algorithm, Levenberg-Marquardt algorithm or any other optimization method.


- Gradient Descent method :
 - Uses first-order derivative to create search direction: $s^k = -\nabla f(x^{(k)})$
 - Works well when initial point is far away from optimum.
- Newton's method :
 - Uses 2nd order derivatives to create search directions: $s^{k} = - \left[\nabla^{2} f(x^{(k)}) \right]^{-1} \nabla f(x^{(k)})$
 - Suitable & efficient when initial point is close to optimum.

• Levenberg-Marquardt method :

- Combination of Gradient Descent and Newton's method
- Start with Descent method when required to search in a large space and later with Newton's method when required to search near optimum point.


ANN Model Development for Bird Creek Basin

- Study area : Bird Creek Basin, USA (Total Area: 2344 Km²)
- Data available: Rainfall and Runoff data (8/1/1995 to 31/10/2008)
- Data division: 60% for training and 40% for testing.
- Inputs selection: $ACF \ge 0.7$, $CCF \ge 0.25$ and $PACF \ge 0.7$
- Inputs selected: P(t), P(t-1), P(t-2) and Q(t-1)
- GD Algorithm Parameters: Learning Rate = 0.01 and Momentum constant = 0.9
- LM Algorithm Parameters: $\mu = 0.001$
- ANN-Architecture selection: AARE, R², RMSE, NRMSE and Threshold Statistics
- Best architecture for BPA : 4_12_1
- Best architecture for LMA : 4_12_1

Table1: Performance comparison of ANN models trained using GD and LM Algorithms Training performance												
Model	AARE	R	NRMSE	RMSE	TS1	TS5	TS10	TS25	TS50	TS75	TS100	
ANN-GD	72.52	0.863	0.234	0.029	1.14	6.31	15.56	41.96	68.10	79.22	83.40	
ANN-LM	35.45	0.938	0.161	0.020	3.79	21.63	36.47	60.49	82.65	89.90	92.97	
Testing performance												
Model	AARE	R	NRMSE	RMSE	TS1	TS5	TS10	TS25	TS50	TS75	TS100	
ANN-GD	67.06	0.752	0.318	0.039	2.01	8.91	16.57	43.40	70.24	80.06	84.34	
ANN-LM	48.19	0.787	0.305	0.034	3.63	21.85	34.74	57.30	79.15	86.91	90.99	
	(a) Scatter plot during training						(b) Scatter plot during testing					
	25 20 20 20 5 10 5 0 5 0 5 0 5 0 5 0 100 10						25 20 15 10 5 0 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000 Time (days)					
	(c) Time series plot during training						(d) Time series plot during testing					
Indian Institute of Technology										logy Kanni		

Sensitivity of training methods on initial weights

Conclusion

- ANN is capable in forecasting runoff from rainfall data.
- LM method of training performs better than GD in ANN RR modeling due to the least value of AARE(35.45), NRMSE(0.161) RMSE(0.020) and higher values of R(0.938) and all Threshold statistics.
- GD method is highly sensitive to initial weights as the standard deviation of all the error statistics such as AARE(55.39), R(0.064), NRMSE(0.169), RMSE(0.133) and all Threshold statistics are high.
- LM method is nearly insensitive to initial weights as the standard deviation of all the error statistics such as AARE(6.74), R(0.005), NRMSE(0.028), RMSE(0.022) and all Threshold statistics are less.

References

- Maier, H.R., Jain, A., Dandy, G.C., and Sudheer, K.P. (2010), Methods used for the development of neural networks for the prediction of water resources variables in river systems: Current status and future directions, *Env. Mod. Software*, 25, 891-909
- Srinivasulu, S. and Jain, A. (2006), A comparative analysis of training methods for artificial neural network rainfall-runoff modeling, *J. Applied Soft Computing*, 6(3), 295-306.
- Govindaraju, R.S. and A.R. Rao editors (2000), Artificial Neural Networks in Hydrology, Kluwer *Academic Publishers*, Amsterdam.
- Kalyanmoy Deb, Optimization for Engineering Design: Algorithm and Examples, PHI publications, New Delhi.
- <u>http://water.usgs.gov/edu/watercycle.html</u>

Acknowledgement

- My mentor **Prof. Ashu Jain**, Department of Civil Engineering, IIT Kanpur.
- Computer centre, IIT Kanpur.
- Organizing committee, "HYDROLGY-21014".

Thank you for your attention ! Questions ?