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Abstract

High-throughput sequencing (HTS) technologies generate millions of sequence reads

from DNA/RNA molecules rapidly and cost-effectively, enabling single investigator

laboratories to address a variety of ‘omics’ questions in nonmodel organisms, funda-

mentally changing the way genomic approaches are used to advance biological

research. One major challenge posed by HTS is the complexity and difficulty of data

quality control (QC). While QC issues associated with sample isolation, library prepa-

ration and sequencing are well known and protocols for their handling are widely

available, the QC of the actual sequence reads generated by HTS is often overlooked.

HTS-generated sequence reads can contain various errors, biases and artefacts whose

identification and amelioration can greatly impact subsequent data analysis. However,

a systematic survey on QC procedures for HTS data is still lacking. In this review, we

begin by presenting standard ‘health check-up’ QC procedures recommended for HTS

data sets and establishing what ‘healthy’ HTS data look like. We next proceed by

classifying errors, biases and artefacts present in HTS data into three major types of

‘pathologies’, discussing their causes and symptoms and illustrating with examples

their diagnosis and impact on downstream analyses. We conclude this review by

offering examples of successful ‘treatment’ protocols and recommendations on stan-

dard practices and treatment options. Notwithstanding the speed with which HTS

technologies – and consequently their pathologies – change, we argue that careful QC

of HTS data is an important – yet often neglected – aspect of their application in

molecular ecology, and lay the groundwork for developing a HTS data QC ‘best prac-

tices’ guide.
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Introduction

The recent invention and development of several differ-

ent high-throughput sequencing (HTS) technologies

represents a major breakthrough in data acquisition

(Shendure & Ji 2008; Mardis 2013). With its broad appli-

cability and unprecedented data generation ability, HTS

has fuelled remarkable advances in multiple areas of

biology (Mardis 2008; Schuster 2008; Werner 2010; Egan

et al. 2012). Of particular interest to molecular ecologists

has been the impact of HTS on the fields of ecology

and evolutionary biology. By enabling the acquisition

and analysis of transcriptome and genome data in a

cost-effective fashion from virtually every organism, the

advent of HTS has greatly expanded the scope of these

fields, fundamentally changing the ranges and types of

questions that can be addressed (Hudson 2008; Rokas

& Abbot 2009; Tautz et al. 2010; Ekblom & Galindo

2011). Judging by how quickly HTS became the stan-

dard method for collecting large-scale DNA/RNA

sequence data (Shendure & Lieberman Aiden 2012), by

the recent emergence of bench-top (Loman et al. 2012)

and even travel-size personal sequencers (Eisenstein
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2012), as well as by the increase in HTS capacity and

flexibility (Glenn 2011), HTS will soon become, if not

already, a standard technology for molecular ecology

laboratories.

The novelty and enormity of HTS-generated sequence

data, however, pose several novel and significant chal-

lenges that can greatly impact downstream data

analyses. Currently, these challenges are augmented by

the fact that an increasing number of HTS data analyses

are performed by newcomers to the field, typically

experimental biologists well trained in the wet labora-

tory techniques of the type used to generate HTS data

but who usually lack the computational training

required for HTS sequence data analysis.

Recently, many efforts have been launched to address

these challenges. Notable examples include the develop-

ment of integrative platforms, such as GALAXY (Goecks

et al. 2010), which provide users convenient and intui-

tive web interfaces for accessing software tools that per-

form basic sequence read quality assessment and

filtering, as well as numerous downstream analyses

(e.g. the ability to map sequence reads against reference

genomes). These platforms streamline users’ ability to

perform, share and replicate certain types of analyses

on HTS data, in effect substantially reducing the burden

of acquiring computational skills without, however,

reducing the quality of the analysis output. Further-

more, a number of recent tutorials and reviews provide

expert guidance to several major steps of HTS studies

from platform choice and sample preparation to various

downstream analyses (Oshlack et al. 2010; Glenn 2011;

De Wit et al. 2012; Wolf 2013).

As data amount continues to increase, one critical

part of HTS studies that is becoming increasingly

important as well as increasingly complex is the quality

control (QC) of the actual sequence read data. This

aspect of QC is frequently overlooked (descriptions of

QC protocols dealing with sequence read data are often

absent from or barely mentioned in HTS studies, espe-

cially those done at small scale), even though it is

increasingly recognized that HTS sequence read data

harbour various quality issues, such as platform-specific

error profiles (Glenn 2011; Quail et al. 2012), uneven

sequencing quality across sequence reads (Dohm et al.

2008; Minoche et al. 2011) and contaminations (e.g.

sequencing adapter/primer, untargeted organisms)

(Longo et al. 2011; Dewoody et al. 2013). If undetected,

such artefacts may lead to inaccurate data interpretation

or even false discovery. Thus, good QC of sequence

read data is vital for any HTS experiment not only

because the concern of ‘garbage in, garbage out’ also

applies to HTS data but also because proper QC of

sequence read data can dramatically improve the

accuracy and quality of results of downstream analyses

(Taub et al. 2010; Bokulich et al. 2013; MacManes &

Eisen 2013).

We believe that guidance and discussion of QC of

HTS sequence read data is an urgent need faced by the

HTS user community, which is evidenced by the fre-

quent questions on this topic on forums such as SEQan-

swers (Li et al. 2012) and BioStar (Parnell et al. 2011).

Although these online threads discussing individual

QC-related topics are very useful, the lack of systematic

surveys that examine the rationale and procedures of

HTS data QC as well as the many available bioinfor-

matics tools adds to the challenge that users face when

analysing HTS sequence read data.

In this review, we present a comprehensive intro-

duction to the diverse ‘pathologies’ (i.e. types of QC

issues) frequently encountered in HTS sequence read

data. Because QC during the library preparation step

has been well covered (Gayral et al. 2011; De Wit et al.

2012; Wolf 2013), we focus exclusively on artefacts that

affect HTS sequence read data and that can be

detected and corrected after HTS data generation. We

use examples from our own research as well as the lit-

erature to illustrate the diagnosis and treatment of var-

ious HTS sequence data pathologies and the often

considerable positive impact that the addition of QC

steps has on data and downstream analysis quality.

Finally, we evaluate the performance of sets of QC

tools with similar functions, opening the path towards

the development of a set of best practices for HTS data

QC. We centre our discussion on data generated by

the Illumina technology due to its dominance in the

HTS market and literature, yet QC tools designed for

other HTS technologies are also discussed when

applicable.

‘Health check-up’: general QC assessment
measures for HTS sequence read data

Just like a complete health check-up is the first step in

combating real diseases, the journey of HTS sequence

read data QC starts with an overall assessment of its

quality. Typical HTS data sets consist of millions of

short sequence reads, each of which is several tens to

hundreds of nucleotide bases long and is accompanied

by quality values that measure the probability of

incorrect base calling. To efficiently summarize

sequence quality statistics from such large data sets,

numerous tools have been developed (for a description

of tool features and performance, see Box 1). Most of

these tools have adopted a core set of QC metrics that

evaluate essential aspects of HTS sequence data

quality.
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Box 1 Tools for assessing HTS sequence read data quality

General quality assessment of HTS sequence read data is a relatively straightforward task. The many available pieces

of software developed for this purpose mainly differ in their functionality and efficiency. We compared the features of

nine stand-alone tools, which are summarized in Table 1. While many tools can assess the distribution of quality, com-

position and sequence read length, FASTQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc) is the most

versatile; it supports all HTS technologies, is compatible with compressed input files and provides useful information

on duplication level and overrepresented sequences and k-mers. Some other tools, such as BIGPRE (Zhang et al. 2011),

HTQC (Yang et al. 2013b) and SOLEXAQA (Cox et al. 2010), can perform tile-based quality assessment, which helps to iden-

tify problems that affect specific regions (known as tiles) on a flow cell (see TILEQC (Dolan & Denver 2008) for a more

specialized tile-specific QC tool). Using these tools on the same high-quality data set examined in the ‘Health Check-

up’ section (16.5 million 93-bp sequence reads) showed that tools written in compiled languages [i.e. HTQC, FASTQC and

FASTX (STATISTICS; http://hannonlab.cshl.edu/fastx_toolkit)] were much faster than others (Fig. 1).

Table 1 Summary of tools for general quality assessment of HTS data.

Name

Supported

technologies Features Link/Reference Note

BIGPRE Illumina, 454 CC, CR, DF, DL,

PE, QC, QR, QT

http://sourceforge.net/projects/

bigpre; (Zhang et al. 2011)

FASTQC All CC, CR, DL, LD, OK,

OS, PL, QC, QR

http://www.bioinformatics.

babraham.ac.uk/projects/fastqc

Graphical interface; support

compressed input

FASTQ-UTILS FASTQ LD, QC http://ngsutils.org; (Breese & Liu 2013)

FASTX (STATISTICS) Illumina CC, QC http://hannonlab.cshl.edu/fastx_toolkit

HTQC Illumina CC, DF, DL, LD, PE,

PL, QC, QR, QT

http://sourceforge.net/projects/htqc;

(Yang et al. 2013b)

NGS QC TOOLKIT Illumina, 454 CC, DF, LD, QC, QR http://59.163.192.90:8080/ngsqctoolkit;

(Patel & Jain 2012)

PRINTSEQ Illumina, 454 CR, DF, DL,

LD, QC, QR

http://prinseq.sourceforge.net/index.html;

(Schmieder & Edwards 2011b)

Additional features for

metagenomic data

QRQC FASTQ CC, CR, LD,

OK, QC, QR

http://www.bioconductor.org/

packages/2.14/bioc/html/qrqc.html

R package in BIOCONDUCTOR

SOLEXAQA Illumina DF, LD, QC, QT http://solexaqa.sourceforge.net;

(Cox et al. 2010)

CC, composition per cycle; CR, composition per read; DF, data filtration; DL, duplication level; LD, length distribution; OK, over-

represented k-mer; OS, overrepresented sequence; PE, supports paired-end reads; PL, parallelization; QC, quality per cycle; QR,

quality per read; QT, quality per tile.
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Fig. 1 Run-time comparison of general quality assessment tools. QRQC was not included in the evaluation because it requires use

of the R environment. BIGPRE and SOLEXAQA can perform subsampling of sequence reads, which can substantially reduce their run

time. Note that PRINSEQ is designed primarily for 454 technology, which generates fewer but longer sequence reads. The run time

of each tool was measured 10 times, and the average value is shown. All tools were run on a single CPU thread on a desktop

with two Intel CPUs and eight gigabytes physical memory.
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A useful illustration of these core QC metrics is pro-

vided by the QC report generated by the popular tool

FASTQC (http://www.bioinformatics.babraham.ac.uk/

projects/fastqc) on a high-quality Illumina sequence

read data set. We have also used this high-quality data

set as a reference against which we compare other data

sets that show a wide variety of quality problems. For

this example, as well as for all other examples in this

review, we have strived to present the original soft-

ware-generated figures whenever possible or practical

so that they most closely match what readers will likely

encounter in their own analyses.

The most basic statistics for a HTS data set include

the number of sequence reads and range of sequence

read length (Fig. 1a; FASTQC also generates a detailed

plot on read length distribution, which is not shown

here). Typically, the sequence reads produced by Illu-

mina sequencing are of identical length; variation in the

length of sequence reads indicates that some kind of

sequence read trimming has already been performed

(e.g. the trimming of adapters that takes place automati-

cally for data sets generated on Illumina MiSeq instru-

ments). However, variation in the length of sequence

reads is the expected outcome for sequence read data

sets generated by other HTS technologies such as 454

and PacBio (Glenn 2011), making it more difficult to

assess whether read trimming has already been

performed for a given data set. In addition, FASTQC can

Q-5                                          Q40: Solexa
Q0                                      Q40: Illumina 1.3+

  Q2                                     Q41: Illumina 1.8+
!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~
33                             64

Quality scores across all bases

Position in read (bp)

Quality score distribution over all sequences

Mean sequence quality (Phred score)

Sequence content across all bases

Position in read (bp)

GC distribution over all sequences

Mean GC content (%)

Sequence duplication level >= 49.9%

Sequence duplication level

Measure Value

Filename 96.131.4_1.filtered.fastq

File type Conventional base calls

Encoding Illumina 1.5

Total sequences 16 520 407

Filtered Sequences 0

Sequence length 93

43CG%

(a) (b)

(c) (d)

(f) (g)

(e)

Fig. 1 Exemplar general quality assessment reports generated by FASTQC on a high-quality high-throughput sequencing data set. (a)

Overall summary statistics. (b) Illustration of the three base quality score formats used by Illumina; ‘Solexa’ and ‘Illumina 1.3+’ scores
represent different error rates for value below 10 (highlighted in the black dashed line box). (c) Distribution of quality score across

bases. (d) Distribution of quality score across reads. (e) Distribution of sequence composition across bases. (f) Distribution of GC

content across reads. (g) Estimated level of duplicate reads.
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detect the format in which base quality scores are

encoded. The standard output format for Illumina data

is FASTQ where base quality scores are presented as

ASCII printable characters; the format of data generated

by other technologies is either FASTQ (e.g. data gener-

ated by Ion Torrent) or other formats that can be read-

ily converted to FASTQ (e.g. the SFF files generated by

454 and the XSQ files generated by SOLiD) using tools

such as SEQ_CRUMBS (for SFF files; http://github.com/

JoseBlanca/seq_crumbs) and XSQ_TOOLS (for XSQ files;

http://www.lifetechnologies.com/us/en/home/technical-

resources/software-downloads/xsq-software.html).

Historically, three incompatible variants of FASTQ

format have been used for Illumina-generated HTS data

sets (Cock et al. 2010): ‘Solexa’, which encodes Solexa

base quality scores with an ASCII offset of 64; ‘Illumina

1.3+’ (or ‘Illumina 1.5+’, ‘Phred64’), which encodes

Phred base quality scores with an ASCII offset of 64;

and ‘Illumina 1.8+’ (or ‘Sanger’, ‘Phred33’), which

encodes Phred base quality scores with an ASCII offset

of 33 (Fig. 1b). Getting the base quality score format

right matters because many tools used for downstream

HTS data analysis do not currently automatically detect

the base quality score format of an HTS data set; thus,

misspecification of base quality score format will con-

found downstream analyses such that a high-quality

HTS data set in ‘Phred33’ format might be treated as a

low-quality data set if analysed using software whose

default format is ‘Phred64’.

Two of the most important questions regarding any

HTS sequence read data set are whether the data set is of

high quality and whether it accurately represents the

underlying biological sample. Answers to these ques-

tions can be obtained by examining quality metrics on

the distribution of base quality score and nucleotide fre-

quency for each sequencing cycle or read (Fig. 1c–f). Suc-

cessful HTS experiments produce high average base

quality scores for the vast majority of sequence reads

across all sequencing cycles, although it is typical to

observe a decline in base quality score towards the far 30-
end of Illumina sequence reads (Dohm et al. 2008; Min-

oche et al. 2011). For instance, FASTQC considers a HTS

data set to be of high quality if the error rates for lower-

quartile and median base quality scores are 10% or lower

and ~0.3% or lower, respectively, for all sequencing

cycles. In addition, given that the nucleotide bases

sequenced at a given sequence cycle in most HTS experi-

ments are randomly sampled, we expect the frequencies

of the four nucleotides to be even across sequencing

cycles and the overall GC content of the sequence reads

to match that of the targeted sample (e.g. if the reads are

from the exome of a particular species, we expect the GC

content of the reads to match that of the exome of the

species). Deviations from these expectations indicate the

presence of biases or artefacts in the sequence read data

set (see later section for detailed discussion).

Several other metrics can be highly informative in

identifying potential problems. For instance, the plot of

sequence duplication level (Fig. 1g) depicts the fre-

quency of sequence reads which appear more than once

in the data set (note that FASTQC only examines the first

200 000 reads, and if reads are longer than 75 bp, it

checks only the first 50 bp). If the sampling of DNA

fragments in HTS is truly random, the chance that two

or more identical fragments will be sequenced will be

small. Therefore, the duplication level is expected to be

low and a high duplication level might suggest biased

sampling. In contrast, it is normal to see higher levels of

duplication in sequence read data sets stemming from the

HTS of samples with highly uneven coverage, such as

from RNA-Seq experiments. To help identify potential

contamination, FASTQC also reports sequence reads with a

high frequency of occurrence and matches them with the

primers and adapters used in library preparation and

sequencing.

Another way for evaluating a data set for biased sam-

pling and/or contamination is by examining the data

set for the presence of overrepresented k-mers. A k-mer

is a sequence fragment of length k from a sequence read

and is considered as overrepresented if its observed

occurrence in the data set at a given read position is

substantially higher than expected assuming random

sampling. This approach has better sensitivity in detect-

ing problems such as contaminations that affect only

parts of sequence reads. For ‘healthy’ data sets, FASTQC

simply reports ‘no overrepresented k-mers (or

sequences)’, whereas for contaminated or otherwise

biased data sets the program reports a plot of overrep-

resented k-mers (see later section for example).

‘Common pathologies’ of HTS sequence read
data

Having established what is expected for a ‘healthy’

HTS data set, we move on to discuss the origins, diag-

nosis and treatment of various HTS sequence read data

‘pathologies’. Under the category of ‘common patholo-

gies’ falls a list of common problems in standard HTS

sequence read data sets that are closely associated with

library preparation and the sequencing process itself.

Identifying and correcting these problems constitutes

the major body of a typical QC workflow for HTS

sequence read data.

Chastity-filtered reads

During Illumina sequencing, several metrics are used to

monitor and control the quality of the generated data.

© 2014 John Wiley & Sons Ltd
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Fig. 2 Exemplar FASTQC plots demonstrating the diagnosis of common ‘pathologies’ present in high-throughput sequencing data. (a,

b) Distribution of quality scores across bases for the same Illumina data set with (panel a) and without (panel b) removing CHASTITY-

filtered reads. The overall quality of the data set is substantially improved after filtering, yet a decrease in average base quality score

towards the 30 end is still observed. In addition, the first few bases at the beginning of reads have lower quality. (c) Distribution of

sequence composition across bases for a barcoded Illumina data set. This data set has untrimmed barcode sequence (almost all reads

have the same sequence in the first six bases) and likely contamination of adapter sequences (irregular composition along the read).

(d) Relative enrichment level of k-mers over read positions for the Drosophila nuclear run-on sequencing data set. The enrichment of

multiple consecutive, overlapping k-mers near the 50 and 30 ends of sequence reads indicates adapter dimer and 30 adapter contami-

nation, respectively. (e) Distribution of sequence composition across bases for an Illumina RNA-seq data set. The variation in

sequence composition at beginning of reads is caused by nonrandom priming and is commonly observed among RNA-seq data sets.
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One such metric, known as CHASTITY, measures the sig-

nal purity in a given sequencing cycle by comparing

signals from the four possible bases; it equals the ratio

of the intensity of the brightest base over the summed

intensity of the two brightest bases. A sequence read

fails the CHASTITY filter if more than one of the first 25

sequencing cycles has a CHASTITY value lower than a

threshold. It has been shown that the removal of these

low-quality sequence reads can greatly reduce the error

rate of HTS data (Minoche et al. 2011), whereas their

inclusion may lead to dramatic decrease in the overall

data quality (Fig. 2a–b). Some older versions of the Illu-

mina Consensus Assessment of Sequence and Variation

(CASAVA) software (versions 1.8.0 and 1.8.1) mandatorily

report both the reads that passed and failed the CHASTITY

filter, whereas in the most recent version (version 1.8.2)

this report is an optional feature and is usually disabled

by default (e.g. on MiSeq platform). The latest FASTQ

format used by Illumina (‘Illumina 1.8+’) flags CHASTITY-

filtered reads by including a ‘Y’ in their sequence iden-

tifiers. FASTQC (in CASAVA mode) reports the number

of CHASTITY-filtered reads in a data set and, if present,

such reads can be filtered by using custom script or

compiled tools (e.g. the FASTQ_ILLUMINA_FILTER program

available at http://cancan.cshl.edu/labmembers/gor

don/fastq_illumina_filter).

Sequence reads of low quality

Powerful as they are, HTS technologies generate

sequence read data sets with nontrivial amounts of

sequencing errors (Glenn 2011), which can majorly con-

found downstream data analysis (Taub et al. 2010).

Sequencing errors introduce artefactual discrepancies in

the acquired sequence read data, thus complicating

studies that rely on sequence read mapping. Sequencing

errors are particularly harmful in de novo assembly

studies; they prevent proper overlap between sequence

reads and dramatically increase the complexity of the

assembly process, leading to both heavier computa-

tional burden and lower assembly quality (Paszkiewicz

& Studholme 2010).

The types and characteristics of sequencing errors

vary among HTS technologies (Glenn 2011). In data

generated by Illumina, the primary error type is incor-

rect base calling, which is more frequent towards the

30 end of sequence reads mainly due to the phasing

artefact (Dohm et al. 2008; Minoche et al. 2011). Specifi-

cally, for each read, the sequence at each cycle of

the sequencing reaction in Illumina technology is

determined based on the combined signal emanating

from a large number of fragments, also known as clus-

ter, generated from clonal amplification of the same

template. Each cycle involves the addition of nucleo-

tides with reversible terminator chemistry so that a

single base is incorporated to all the fragments in each

cluster being sequenced; at the end of each cycle, ter-

minators are removed to allow further extension of the

sequenced fragments in subsequent cycles (Mardis

2013). However, a small fraction of fragments in each

cluster either fails to incorporate any base (phasing)

because of incomplete removal of terminators from the

previous cycle, or incorporates more than one base

(prephasing) due to the lack of terminator in some nu-

cleotides (Mardis 2013). The noise caused by these un-

synchronized fragments in each cluster builds up with

increasing number of sequencing cycles, leading to

lower base quality scores. Other factors contributing to

sequencing errors include interfering signals from

neighbouring clusters or bases with similar emission

spectra (e.g. between G and T) (Kircher et al. 2011). In

addition, extraneous objects on the flow cell (e.g. dust,

air bubbles) have negative impact on sequencing

quality and may even be misidentified as sequencing

clusters, which in turn generate sequence reads of low

complexity (Kircher et al. 2011).

A commonly used strategy to handle sequencing

errors and artefacts in HTS data is the trimming of

low-quality sequence reads (Kircher et al. 2011; Min-

oche et al. 2011). It improves the overall data quality

and can usually give rise to better results in down-

stream analyses (see Box 2 for an example on genome

assembly). However, trimming can also lead to the

loss of potentially useful information which may bias

data interpretation (Delmont et al. 2013; Yang et al.

2013a). Therefore, determining how much trimming is

necessary is not always straightforward (Bokulich

et al. 2013; MacManes 2014). Nevertheless, data sets

should be filtered for sequence reads that are unreli-

able or likely artefacts. In Illumina data, many

sequence reads contain consecutive bases with a base

quality score of 2 at their 30 ends; these low-quality

segments can be detected and masked by sequencing

software. It has been shown that the removal of these

unreliable bases has the most dramatic effect on

reducing error rates (Minoche et al. 2011). In addition,

as mentioned above, low-complexity reads likely rep-

resent sequencing artefacts; they can be removed

using tools such as REAPER from the KRAKEN package

(Davis et al. 2013).
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Box 2 Adapter and quality trimming tools for HTS sequence read data

Adapter contamination is a prevalent problem in HTS studies, and many computational solutions have been devel-

oped to tackle it (Table 1). To better understand their performance, we evaluated these adapter trimming tools on

simulated Illumina SE and PE data sets with various degrees of adapter contamination. We specifically focused on

the removal of 30 adapter contamination, not only because this is the most common type of adapter contamination

in Illumina data but also because the lower base quality at 30 end of sequence reads makes this task much more

challenging than trimming adapters in the higher base quality 50 end. We measured the performance of different

adapter trimming tools following Lindgreen’s approach (Lindgreen 2012). Briefly, we defined true positive (TP) as

the number of reads that are correctly trimmed; true negative (TN) as the number of adapter free reads that are

not trimmed; false positive (FP) as the number of reads where nonadapter sequences are trimmed; and false

negative (FN) as the number of reads that still contain adapter sequence after trimming. We then calculated the

Matthew’s correlation coefficient (MCC), a commonly used quality measurement for binary classifier, based on the

following formula:

MCC ¼ ðTP � TN� FP � FNÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

p

As shown in Fig. 1, our results suggest that SCYTHE (http://github.com/vsbuffalo/scythe), CUTADAPT (Martin 2011)

and ADAPTERREMOVAL (Lindgreen 2012) showed the best overall performance in trimming SE read data, and SEQPREP

(http://github.com/jstjohn/SeqPrep), ADAPTERREMOVAL and TRIMMOMATIC (Lohse et al. 2012) in trimming PE read

data. It should be noted that all tests were performed using the default settings of tools. While it is highly likely

that tool performance could be improved through parameter adjustments, most researchers typically use these tools

with their default parameter settings. In addition, we also compared the time efficiency of these programs and

found that, while most tools had similar run time, a trade-off between performance and speed was observed in

some cases (e.g. SEQPREP).

Many of these adapter trimming tools can also perform quality-based filtering, as well as some of the general QC

assessment measures described above (Box 1). There are also dedicated quality-based trimming tools such as CON-

DETRI (Smeds & Kunstner 2011), SEQTK (http://github.com/lh3/seqtk) and SICKLE (http://github.com/vsbuffalo/

scythe). Because the trimming strategies implemented in these tools differ from all others, comparison of their per-

formance and efficiency is not straightforward. Nevertheless, tools that enable the use of input data in compressed

format and support parallelization (e.g. TRIMMOMATIC) may have advantages in speed.

To highlight the importance of adapter and quality trimming, we present two case studies that nicely illustrate

their impact on downstream analysis. The first case study is the analysis of Drosophila melanogaster HTS sequence

reads aimed at identifying promoters bound by RNA polymerase II (Kwak et al. 2013), in which a large fraction of

the fragments targeted for sequencing are very short (<50 bp, the length of the sequence reads) and thus the

sequence reads are expected to contain a high degree of adapter contamination. We mapped sequence reads with

and without adapter trimming against the fruit fly genome using BOWTIE2 (Langmead & Salzberg 2012) (‘end-to-

end’ alignment mode) and found that both the number of total mapped reads and uniquely mapped reads signifi-

cantly increased after adapter removal (Table 2). Similar results were obtained with another popular short read

aligner BWA (Li & Durbin 2010) (Table 2). Mapping the original sequence reads using BOWTIE2 in ‘local’ alignment

mode and BWA with ‘soft clipping’ enabled, both of which can omit unmatched nucleotides at read ends, also

greatly improved mapping, although the trimming of adapter sequence prior to mapping yielded a slightly higher

number of mapped reads (Table 2).

The second case study centres around the de novo genome assembly generated from a bacterial whole-genome

sequencing data set of Escherichia coli (Adey et al. 2010). We compared the impact of several QC procedures on de

novo genome assembly, including adapter removal (AR), quality-based trim (QT), error correction (EC) and their

combinations. Assemblies were evaluated by their contig and scaffold N50 values (a commonly used statistic which

refers to the largest contig/scaffold size such that half of the total assembly size is contained in contigs/scaffolds

no shorter than this value). We found that: (i) as expected, QC procedures lead to significantly better de novo

assembly; (ii) removal of adapter contamination improves assembly quality (e.g. QT vs. AR+QT, and EC vs.

AR+EC; see Fig. 2 for details); and (iii) error correction produces superior results than quality trimming.
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Table 1 Summary of tools for adapter trimming.

Name
Supported
data type Demultiplexing 50-adapter 30-adapter

Quality
trim Link/Reference Note

ADAPTERREMOVAL SE, PE + + + http://code.google.com/
p/adapterremoval;
(Lindgreen 2012)

ALIENTRIMMER SE, PE + + + + ftp://ftp.pasteur.fr/pub/
GenSoft/projects/
AlienTrimmer; (Criscuolo
& Brisse 2013)

BTRIM SE + + + + http://graphics.med.yale.
edu/trim; (Kong 2011)

CUTADAPT SE + + + http://github.com/
marcelm/cutadapt;
(Martin 2011)

Support colour-
space data* and
compressed input

EA-UTILS SE, PE + + + + http://code.google.com/
p/ea-utils; (Aronesty
2013)

Support
compressed input

FASTX (CLIPPER) SE + + + http://hannonlab.cshl.
edu/fastx_toolkit

FLEXBAR SE, PE + + + + http://sourceforge.net/
projects/flexbar; (Dodt
et al. 2012)

Support colour-
space data and
compressed input;
parallelization

KRAKEN

(REAPER)
SE + + + + http://www.ebi.ac.uk/

research/enright/
software/kraken; (Davis
et al. 2013)

Support
compressed input

NEXTCLIP MP + + + http://github.com/
richardmleggett/
nextclip/; (Leggett et al.
2013)

Specially designed
for Nextera MP
data

SCYTHE SE + http://github.com/
vsbuffalo/scythe

Support
compressed input

SEQPREP PE + http://github.com/
jstjohn/SeqPrep

Support
compressed input

TAGDUST SE + + http://genome.gsc.riken.
jp/osc/english/
dataresource; (Lassmann
et al. 2009)

TRIM GLORE SE, PE + + + http://www.
bioinformatics.babraham.
ac.uk/projects/
trim_galore

Support
compressed input

TRIMMOMATIC SE, PE + + http://www.usadellab.
org/cms/index.php?
page=trimmomatic;
(Lohse et al. 2012)

Support
compressed input;
parallelization

SE, single-end reads; PE, paired-end reads; MP, mate-pair reads.

*Colour-space refers to the dibase encoding used by SOLiD sequencing technology, in which every possible dinucleotide is

represented by one of four colours and each sequence read consists of a nucleotide at the beginning of read and a sequence of col-

ours which indicate consecutive, overlapping dinucleotides starting from the first base position.

Fig. 1 Comparison of performance and run time of adapter trimming tools on simulated data sets. All sequence read test data

were 100 bp long, paired-end (PE) Illumina reads simulated from human genome (0.19) at 1% average error rate using PIRS (Hu

et al. 2012), whose actual sequence fragment size follows a normal distribution. Simulated reads contained adapter sequence when

the fragment size was smaller than read length (100 bp). To simulate different degrees of contamination, we generated a series of

data sets with increasing fragment size distribution mean values (80–130 bp with a step size of 5 bp, corresponding to the dark

grey to light grey colours in panel 1a and 1c). PE sequence reads were treated separately in the evaluation of single-end (SE) read

tools. All reported run times were averaged values of 10 replicates. TAGDUST was not evaluated because it always removes the

entire read if contamination is detected.
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Further quality-based trimming, if necessary, should

be applied after the removal of adapter contamination

(see next section), because bases with lower base quality

scores can still be useful for the identification of adapter

sequences. For the purpose of sequence read mapping,

aligners that allow for soft clipping (i.e. ignoring mis-

matched bases at the beginning/end of sequence reads

according to certain criteria) such as BWA (Li & Durbin

2010) and BOWTIE2 (Langmead & Salzberg 2012) can deal

with mismatched bases on the fly. Alternatively, qual-

ity-based trimming could be applied beforehand if

the ‘soft clipping’ option is not available during align-

ment (e.g. the popular spliced aligner for RNA-seq data,

TOPHAT2 (Kim et al. 2013), does not support the ‘local’

alignment mode of BOWTIE2).

In de novo assembly studies, low-quality data can be par-

tially rescued through error correction rather than being

discarded entirely, which often leads to superior results

(Box 2). Assuming that each base in the genome/tran-

scriptome is sequenced multiple times and that sequenc-

ing errors occur randomly and infrequently, a sequence

read containing errors can be corrected by comparing it to

the many other reads that cover the same sequence region

and whose sequences are without errors or do not contain

the same errors. Error correction has been shown to signif-

icantly improve the quality of de novo assembly of both

genomes (Salzberg et al. 2012) and transcriptomes (MacM-

anes & Eisen 2013). Due to the significant benefits from

error correction in de novo assembly, a number of tools are

available to perform this task; many of them have been

summarized in a recent review (Yang et al. 2013a), yet

new tools are still being developed (Ilie & Molnar 2013; Le

et al. 2013; Liu et al. 2013b; Marcais et al. 2013; Nikolenko

et al. 2013; Sleep et al. 2013), including ones that are spe-

cially tailored for data sets with highly uneven coverage

(e.g. SEECER for transcriptome data and BAYESHAMMER for

single-cell sequencing studies). Some tools will automati-

cally remove low-quality data remaining after error

correction (Kelley et al. 2010; Marcais et al. 2013); alterna-

tively, a final pass quality-based trimming may be

Table 2 Impact of adapter contamination on sequence read alignment. ‘Original’ and ‘trimmed’ refer to data sets before and after

adapter removal. The original data set was also mapped with the ‘local alignment’ mode in BOWTIE2 (‘Local’) and ‘soft clipping’

function in BWA (‘Soft clipping’).

BOWTIE2 BWA

Original Trimmed ‘Local’ Original Trimmed ‘Soft clipping’

Uniquely

mapped

20 588 461

(49.63%)

31 155 597

(76.80%)

30 614 845

(73.80%)

15 598 067

(37.60%)

31 728 166

(78.21%)

29 515 461

(71.15%)

Total

mapped

25 262 729

(60.90%)

38 272 839

(94.35%)

37 774 172

(91.06%)

19 521 568

(47.06%)

38 101 178

(93.92%)

34 954 500

(84.26%)

Total reads 41 484 479 40 566 782 41 484 479 41 484 479 40 566 782 41 484 479
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Fig. 2 Impact of different quality control (QC) strategies on de novo assembly of the Escherichia coli genome. We performed adapter

trimming on the original data set and found that about 16% read pairs have adapter contamination; both the original and adapter

trimmed data sets were then subjected to quality trimming and error correction. The six data sets were assembled using SOAPDE-

NOVO (Li et al. 2010b) with multiple k-mer values. Two most commonly used measurements of assembly quality, contig N50 (a)

and scaffold N50 (b) values were shown for de novo genome assemblies generated from the original data set and five other data

sets derived from various combinations of QC procedures, including adapter removal (‘AR’), quality-based trim (‘QT’) and error

correction (‘EC’). Each data set was assembled using k-mer values from 19 to 73.
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performed separately. For a more detailed discussion on

error correction of HTS data, we refer interested readers to

the review by Yang and coworkers (Yang et al. 2013a).

Recent sequence read data sets generated using the

Illumina technology also show a drop in base quality

scores towards the 50 end of reads; specifically, in these

data sets, the base quality scores appear to be capped at

34, 37 and 39 for the sequencing cycles 1–3, 4–8 and 9–

13, respectively. This pattern consistently appears across

data sets generated in different types of studies (e.g.

DNA-seq, RNA-seq) or by different laboratories, sug-

gesting that it is unlikely to be due to the poor sample/

sequencing quality of particular studies or experiments.

Rather, it seems that the sequencing software behaves

more conservatively when assigning base quality scores

for the first few bases. Therefore, these bases with

seemingly lower quality are normal and may not need

to be trimmed unless other artefacts coexist.

Adapter contamination

In HTS experiments, fragmented DNA/RNA molecules

are ligated with adapters on both ends prior to sequenc-

ing. Adapter contamination is a common problem in

HTS data, and it can occur in several scenarios: (i) if the

sequence read length is larger than the fragment size, the

read will include sequence of the adapter in its 30 end (30

contamination); (ii) adapters might be ligated together

without any fragment insert in-between and the

adapter itself is sequenced (adapter dimer); and (iii)

sequence reads generated from certain library prepara-

tion protocols [e.g. Nextera mate-pair (MP) library] may

also contain adapter sequences in their 50 end (50 contam-

ination).

Adapter contamination has detrimental effects on var-

ious downstream analyses (Box 2). For instance, the

presence of adapter sequences may prevent contami-

nated sequence reads from being correctly mapped to

their reference sequences (Kircher et al. 2011), which

may in turn affect mapping-based analyses such as vari-

ant calling and abundance estimation. Adapter contami-

nation can also introduce noise into de novo assembly

analyses (Martin & Wang 2011); in some extreme cases,

the presence of adapter contamination can lead to highly

fragmented genome assembly and lower the average

size of assembled sequences by several orders of magni-

tude (see more details at http://pathogenomics.bham.

ac.uk/blog/2013/04/adaptor-trim-or-die-experiences-

with-nextera-libraries/). Finally, adapter contamination

may bias data analysis and lead to incorrect conclusions.

For example, Keegan and coworkers developed a novel

method to evaluate the quality of HTS data by compar-

ing putative duplicate sequence reads, and reported

surprisingly high levels of error for multiple Illumina

data sets (Keegan et al. 2012). However, it was found

later that the majority of errors they identified were a

result of adapter contaminations (Eren et al. 2013).

Therefore, the removal of adapter contamination is criti-

cal to a successful HTS data analysis.

As discussed in the ‘health check-up’ section, adapter

contamination can be identified by examining sequence

composition and overrepresented sequences/k-mers.

Irregular sequence composition along reads overrepre-

sented sequences that match known adapter/primer

sequences and consecutive overlapping k-mers that are

overrepresented towards the 30 end of reads all suggest

adapter contamination (Fig. 2c–d). In sequence read

mapping, adapter contamination can be handled by soft

clipping-enabled aligners such as BWA and BOWTIE2, in a

manner similar to the handling of sequencing errors

near the ends of reads (see previous section); otherwise,

adapter trimming has to be performed prior to any

downstream analyses. When the sequences of adapters

used in an HTS experiment are known, they can be fil-

tered from the resulting sequence read data set using

one of the many available tools (Box 2). If the sequences

of adapters are not known, they can be first inferred

from the data set using MINION from the KRAKEN package

(Davis et al. 2013) and then trimmed accordingly.

Discordant paired-end sequence reads

Paired-end (PE) sequencing is a powerful option avail-

able on most HTS platforms; it sequences each DNA

fragment from both ends, generating a pair of sequence

reads. This pairing information is extremely useful for

many applications, such as de novo genome and tran-

scriptome assembly (Treangen & Salzberg 2012; Wolf

2013), identification of gene fusion events (Maher et al.

2009) and detection of genome structural variation

(Alkan et al. 2011a). The sequence reads generated by

PE sequencing are usually stored in two separate

FASTQ files, each of which contains the reads of one or

the other end; the pairing information is recorded by

the fact that the reads of each pair have the same

sequence identifier except for the one-digit label (‘1’ or

‘2’) that distinguishes the two ends. However, many

HTS downstream data analysis tools assume that the

reads from a given pair appear in the same order in

both files without explicitly checking the sequence iden-

tifier. Therefore, it is important to keep PE sequence

reads in the exact same order in the two files to avoid

unexpected results. For instance, PE sequence reads are

important in de novo genome/transcriptome assembly

as their longer length and pairing aid HTS assemblers

in connecting short contigs into larger scaffolds. Incor-

rect pairing information will confound such analyses,

because out-of-order PE data can create both false
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positives, where contigs are mistakenly connected, and

false negatives, where genuine scaffolds are missed.

The order of PE sequence reads might be disrupted

during data processing if the files containing the

sequence reads from the two ends are manipulated sep-

arately. Most likely this would occur when reads are fil-

tered for low-quality or adapter contamination; some

sequence read pairs may have one read discarded and

the other retained, so that the two processed files will

have different read numbers and unmatched read

orders. In addition, although unusual, PE sequence

reads might be out of order within original data sets (as

encountered in one of our own studies as well as in

some public data sets). Therefore, we recommend that

researchers should always check the order of sequence

reads in PE data sets, and fix it if necessary, prior to

any analysis; one tool for validating sequence read

order in PE data is available at http://www.mcdonald

lab.biology.gatech.edu/bioinformatics/FastqPairedEnd

Validator.pl; any discordant PE data sets can be fixed

using PECOMBINER (De Wit et al. 2012).

Duplicate sequence reads

Duplicate sequence reads are frequently observed in

HTS data sets (Mamanova et al. 2010); it is not rare for

FASTQC to generate a ‘warning’ (when duplication level is

≥20%) or even ‘failure’ (when duplication level is ≥50%)

during the evaluation of sequence duplication in a data

set. Duplicate sequence reads have three main sources:

(i) natural duplicates, which represent independent mol-

ecules with very high sequence similarity present in the

original sample that when sequenced produce sequence

reads that are identical; (ii) PCR duplicates, which all

stem from the same original molecule through PCR

amplification during HTS library preparation; and (iii)

optical duplicates, which are generated by the same

DNA cluster on a sequencing flow cell but are mistak-

enly identified as separate clusters by image capture

software used during HTS. Ideally, one wishes to retain

all natural duplicates in a HTS experiment, but remove

all artefactual PCR and optical duplicates.

Among the three types of duplicates, the most easily

identified are optical duplicates; they have the same

sequence (or, if sequencing errors occur, highly similar

ones) and neighbouring coordinates on the flow cell.

Thus, duplicate sequence read artefacts stemming from

optical duplicates can be removed using the MARKDUPLI-

CATES program from the PICARD package (http://picard.

sourceforge.net). Identifying and removing PCR dupli-

cates is more challenging because natural duplicates

and PCR duplicates are indistinguishable at the

sequence read level. Because a large fraction of dupli-

cate reads found in single-end (SE) read data sets is

likely derived from distinct molecules (Bainbridge et al.

2010), blind removal of all duplicate reads will lead to

the loss of all natural duplicates, which might result in

substantial loss of genuine sequence data. In addition,

the expected level of natural duplicates is positively

correlated with the coverage of HTS experiment. The

situation is greatly improved by using PE sequence

reads because it is much less likely that independent

molecules are identical at both ends, but the level of

PCR duplicates may still be overestimated.

The best current solution to the problem of PCR

duplicates is the use of library preparation protocols

that are amplification-free (Kozarewa et al. 2009) or able

to explicitly distinguish between PCR and natural

duplicates (Shiroguchi et al. 2012). From the perspective

of HTS sequence data QC, deciding what is the best

treatment for duplicate reads largely depends on the

nature of the study. The removal of duplicate reads is

an essential step in the discovery of single-nucleotide

polymorphisms because errors introduced in early

cycles of amplification are shared by PCR duplicates

and lead to high false-positive rate (DePristo et al.

2011). It is also usually recommended to remove dupli-

cate sequence reads in ChIP-seq analyses for more reli-

able results (Chen et al. 2012). In these alignment-based

analyses, duplicates are often defined as reads that are

mapped to the exact same location in the reference

sequence; they can be removed by PICARD or SAMTOOLS

(Li et al. 2009). In de novo genome assembly, high levels

of duplicates may negatively affect the construction of

sequence scaffolds and increase memory usage (Martin

& Wang 2011). In the absence of reference sequences,

the removal of duplicates has to be based on comparing

sequences of reads (Box 3). Alternatively, more sophisti-

cated filtering options can be considered (see later dis-

cussion on digital normalization).

Box 3 Tools for sequence-based deduplication of HTS sequence reads

A common strategy for sequence-based deduplication is to collapse sequence reads or read pairs that have identical

sequences, as implemented in tools such as FASTUNIQ (Xu et al. 2012), FASTX (COLLAPSER; http://hannonlab.cshl.edu/

fastx_toolkit) and KRAKEN (TALLY) (Davis et al. 2013). While they are all able to process tens of millions of sequence

reads within minutes, KRAKEN is more memory efficient than the other two tools and supports both SE and PE

sequence reads. These tools also differ in how they report base quality values for collapsed reads; while FASTX only

generates FASTA output, KRAKEN combines the highest score observed among all duplicates for each base, whereas
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FASTUNIQ simply reports scores associated with the last appearing duplicate in the data set. The program FALCRUM

(Burriesci et al. 2012) can collapse near-identical sequence reads in addition to identical ones by ignoring low-quality

differences between reads, but can be substantially slower than tools that require exact match, thus limiting its

utility for large data sets. Several other tools are available for removing duplicate reads from 454 data, including

PRINSEQ (Schmieder & Edwards 2011b), PYROCLEANER (Jerome et al. 2011) and JATAC (Balzer et al. 2013).

The problem is more complicated for RNA-seq stud-

ies, where the range of transcript abundance can be

extremely broad (Wang et al. 2009). On the one hand,

the removal of duplicate reads will cause genes with

higher transcript abundances to have their expression

levels underestimated, as they are expected to have

more natural duplicates. On the other hand, given that

rates of PCR amplification are not equal for all genes,

keeping all duplicate reads will overestimate the

expression levels of genes that are more efficiently PCR

amplified (Kozarewa et al. 2009). Here, the better strat-

egy is to model the probability of natural duplicates in

a given HTS sequence read data set and adjust the

observed number of duplicate sequence reads accord-

ingly. This solution is implemented by IRECKON (Mezlini

et al. 2013) and RASTA (Baumann & Doerge 2013).

Biases

High-throughput sequencing experiments are complex,

consisting of multiple steps from sample collection and

library preparation to sequencing, during which various

biases can be introduced (Wang et al. 2009; Taub et al.

2010; Aird et al. 2011). Perhaps one of the most disturb-

ing biases for many researchers is the skewed sequence

composition at the 50 end of reads generated in tran-

scriptome studies, which is readily apparent when

examining the per-base nucleotide frequency plot gen-

erated by general quality assessment (Fig. 2e). This bias

is caused by the use of random hexamer primers and

may lead to nonuniform distribution of sequence reads

in the transcriptome (Hansen et al. 2010). Trimming the

affected bases from the 50 end of sequence reads does

not alleviate the problem because the bias in sequence

read distribution has already been introduced (Hansen

et al. 2010). Another potential reason for trimming is

that the skewed base frequency present in 50 end of

sequence reads may compromise de novo transcriptome

assembly. However, our analysis showed that such

trimming would reduce the completeness of assembly,

likely due to the loss of information (Box 4). To correct

the nonrandom priming bias, Hansen et al. (2010) pro-

posed an approach that weighs each sequence read

according to its first heptamer. Other more general

solutions are also available to deal with positional and

sequence biases in sequence read distribution which

can improve the estimation of gene expression levels

(Li et al. 2010a; Roberts et al. 2011).

Box 4 Trimming the 50 end of sequence reads with skewed base composition negatively affects de novo transcriptome

assembly

To evaluate the impact of 50-end trimming on the quality of de novo transcriptome assembly, we analysed Illumina RNA-

seq data frommouse (Grabherr et al. 2011) and rice (Zhang et al. 2010), both of which have biased nucleotide frequencies

at the 50 end of sequence reads. For both species, we performed de novo transcriptome assembly on data sets without and

with 50-end trimming and obtained greater numbers of both assembled transcripts in total and those longer than 1 Kbp

without trimming than with it (Table 1). We further compared the completeness of the assemblies generated from

original and ‘trimmed’ data sets by measuring the number of annotated genes and isoforms that were fully or nearly

fully recovered by assembled transcripts. Our results (Table 1) showed that, in both cases, 50-end trimming leads to a

Table 1 Summary of tools for sequence-based deduplication of HTS sequence reads.

Name

Supported

data type Quality value Link/Reference Note

FASTUNIQ PE Quality value of the last

appearing duplicate

http://sourceforge.net/projects/

fastuniq; (Xu et al. 2012)

FASTX (COLLAPSER) SE NA http://hannonlab.cshl.edu/

fastx_toolkit/index.html

FULCRUM SE, PE, 454 Consensus of all

duplicates

http://pringlelab.stanford.edu/

projects.html; (Burriesci et al. 2012)

Can also remove

near-identical reads

KRAKEN (TALLY) SE, PE Highest value among all

duplicates for each base

http://www.ebi.ac.uk/research/enright/

software/kraken; (Davis et al. 2013)
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significantly lower number of recovered genes/isoforms. Our results highlight the importance of judicious use of QC

procedures in HTS data analysis; while proper treatments of artefacts and errors can be greatly beneficial (see case stud-

ies in Box 2), too aggressive data filteringmay lead to the loss of useful information and harm downstream analysis.

Another well-characterized bias that is prevalent in

HTS data is the nonuniform relationship between GC

content and read coverage (Dohm et al. 2008; Benjamini

& Speed 2012; van Heesch et al. 2013); regions that are

either low or high in GC content tend to have relatively

lower coverage. GC-content bias is mainly caused by

PCR amplification, which is a common library prepara-

tion step in HTS experiments (Kozarewa et al. 2009; Aird

et al. 2011). Therefore, GC-content bias broadly affects

HTS studies that rely on read coverage information, such

as variant calling (Rieber et al. 2013), detection of copy

number variation (Teo et al. 2012) and also de novo assem-

bly (Chen et al. 2013). In comparative analyses (e.g. dif-

ferential gene expression) where the same sequence

regions (e.g. genes) are compared across samples, GC-

content bias may be ignored if samples are equally

affected; however, although not consistently observed in

all studies (Dillies et al. 2012), GC-content bias has been

found to be sample specific in some data sets (Pickrell

et al. 2010). To better inform downstream analysis, the

pattern of GC-content bias can be examined using RNA-

SEQC (DeLuca et al. 2012) for transcriptome studies or

using the COLLECTGCBIASMETRICS program from the PICARD

package for HTS data in general. Tools for GC-content

bias correction are available for different downstream

applications, including CQN (Hansen et al. 2012) and EDA-

SEQ (Risso et al. 2011) for RNA-seq, BEADS (Cheung et al.

2011) for ChIP-seq studies and GCCORRECT (Benjamini &

Speed 2012) for other DNA sequencing in general.

High-throughput sequencing is still an emerging

field; as our understanding of the different components

of HTS experiments improves, previously unknown

biases and artefacts will be characterized, and methods

for correction will be developed accordingly. For exam-

ple, a new type of artefact has been reported recently in

deep coverage-targeted capture sequencing data; oxida-

tive contaminants in DNA samples can induce DNA

oxidation events during acoustic shearing which can

later become transversion mutations (Costello et al.

2013). If uncharacterized, these artefactual mutations

can be mistakenly reported as true biological events.

‘Infectious pathology’: library contamination

The aforementioned ‘pathologies’ largely stem from

HTS-specific aspects of how experiments are performed

and how sequence read data are generated. In addition,

there are some old challenges which have become even

more troublesome in the new context of HTS. One such

example is contamination, where the data are ‘infected’

with sequences from undesired sources. Due to the

unprecedented sequencing depths achieved by HTS tech-

nologies as well as because of their abilities to sequence

directly pools of DNA fragments, HTS experiments are

more likely to contain contaminant sequences than tradi-

tional Sanger experiments. Contamination can result

from various reasons, including imperfect sample collec-

tion, human contamination and mix-up of samples. Fac-

tors such as close associations between organisms (e.g.

hosts and pathogens or symbiotic microbes) also add to

the complexity of the problem. Therefore, while it is pos-

sible to minimize contamination through careful experi-

mental procedures or to enrich DNA from targeted

sources (e.g. the approach to capture ancient human

DNA which often comprises <1% of the DNA in speci-

mens (Carpenter et al. 2013)), HTS read data should not

Table 1 Impact of 50-end trimming on the completeness of de novo transcriptome assembly. For both mouse and rice, the

‘trimmed’ data sets were generated by removing the first 12 nucleotides from all sequence reads in the original transcriptome

data. All data sets were assembled using SOAPDENOVO-TRANS (Xie et al. 2013). Assembled transcripts of mouse and rice were subse-

quently aligned against annotated transcripts in respective genomes using LASTZ (http://www.bx.psu.edu/miller_lab/) and an

identity cut-off of 95%. A gene was considered recovered if at least one of its isoforms met the criteria on alignment coverage.

Mouse Rice

Original Trimmed Original Trimmed

Number of assembled transcripts All 51 961 46 044 80 879 75 056

≥1 Kbp 12 883 11 889 15 922 13 026

Coverage = 100% Genes 4707 3613 1371 710

Isoforms 6821 4997 1503 757

Coverage ≥95% Genes 9060 8366 5818 3765

Isoforms 17 610 15 924 7329 4732
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be assumed to be contamination free in general. In fact,

contamination has been found to be prevalent in gen-

ome-scale studies; recent surveys have revealed wide-

spread human DNA contamination in genome databases

(Longo et al. 2011) and metagenomic data sets (Schmie-

der & Edwards 2011a). Such contaminant sequences

should be removed to the degree possible because their

inclusion will introduce noise into downstream analysis

and may lead to incorrect conclusions [e.g. (Alkan et al.

2011b; Laurin-Lemay et al. 2012)].

The identification and removal of contamination from

HTS data is particularly challenging due to the immense

volume of generated sequence reads. Traditionally,

sequence reads are compared against comprehensive

databases (e.g. NCBI nonredundant nucleotide/protein

database) to determine their sources of origin. Such an

approach is computationally challenging for HTS data

because of the great volume of sequence read data, typi-

cally hundreds or thousands of millions of sequence

reads, which need to be examined. The computational

burden can be greatly reduced if contamination sources

are known; this knowledge can narrow the search space

to a few species and allow for the use of tools optimized

for mapping HTS reads against reference genomes. How-

ever, such information is not always available a priori,

and other contamination may exist in addition to the

‘known’ one(s). In such cases, possible contamination

sources can be inferred from the data. For example, QC-

CHAIN (Zhou et al. 2013) delineates species composition

based on ribosomal DNA sequences (see Fig. 3 for an

example) and also estimates the relative abundance of

contamination by comparing a random subset of reads

against the NCBI nonredundant nucleotide database.

Once the sources of contamination are determined,

subsequent decontamination can be carried out using DE-

CONSEQ (Schmieder & Edwards 2011a). When reference

sequences from the sources of contamination are not

available (e.g. when the actual contaminant sequences

are divergent from available reference sequences used to

identify the contamination in the first place), a strategy

based on searching for contamination after sequence read

assembly may be preferable for better accuracy (Kostic

et al. 2011; Leese et al. 2012); in other words, a de novo

assembly of all the data is constructed first and then

assembled contigs are searched against a nonredundant

database to filter contigs that appear to be contaminants.

This approach could be further augmented by incorpo-

rating information on the GC content and read coverage

of assembled contigs (Kumar et al. 2013). Finally, in cases

where only prokaryotic sequences are of interest, eukary-

otic contaminants can be efficiently identified by using

tools that evaluate sequence composition instead of similar-

ity and vice versa [e.g. EU-DETECT (Mohammed et al. 2011)].

‘Inherited pathology’: complex genomes

Genome sequencing is one of the most powerful applica-

tions of HTS, and thousands of new genomes have been

Fig. 3 Diagnosis of potential contamina-

tion in high-throughput sequencing

sequence read data set. The plot gener-

ated by QC-CHAIN shows the taxonomic

distribution of rDNA sequences identi-

fied in a fungal genomic sequencing data

set. Besides the target species (Myxozyma

mucilagina), this data set also contains

sequences from other fungi, likely includ-

ing species sequenced on the same lane

(Saccharomyces humaticus and Aspergillus

flavus), indicating potential cross-contam-

ination during sample preparation.
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successfully sequenced and assembled based on HTS

data in the last few years (Pagani et al. 2012). However,

all genomes are not equal; de novo assembly is inherently

challenging for ‘complex’ genomes and has become even

more so when the shorter sequence reads generated by

HTS technologies are used. Features such as high repeat

content, heterozygosity and polyploidy often make

assembly difficult and give rise to assemblies that are

highly fragmented or downright erroneous, often requir-

ing custom study designs and sequencing strategies. For

example, multiple rounds of inbreeding can reduce the

level of heterozygosity (Hirsch & Buell 2013), while a

combination of longer reads and PE reads with longer

insert size [e.g. mate-pair (MP) reads with insert sizes of

several Kbp] can improve the assembly of repetitive

regions (Treangen & Salzberg 2012). In particular, prom-

ising results have recently been obtained by using the

combination of Illumina PE/MP reads and longer reads

generated by 454 and PacBio (Koren et al. 2012), or even

by using the PacBio reads alone (Koren et al. 2013), to

resolve complex repeat regions in bacterial and eukary-

otic genomes.

These idiosyncrasies, which pose great challenges in

designing algorithms for HTS data analysis, are inherent

to the genomes of the sequenced organisms and cannot

be said to be artefacts of the HTS data per se. However,

these idiosyncrasies can often be learned from the data

so that they better inform subsequent data analyses and

the interpretation of results. The ‘PREQC’ component of

SGA assembler (Simpson 2013) is a handy tool for this

purpose; it can estimate the levels of heterozygosity,

repetitive sequences and sequencing errors from

sequence read data, as well as generate other informa-

tive plots on data properties to further facilitate genome

assembly (see Fig. 4 for examples). If known ahead of

time, highly heterozygous genomes can yield better

assemblies with specialized programs [e.g. HAPSEMBLER

(Donmez & Brudno 2011)], whereas assemblies of highly

repetitive genomes can (and should) be examined for

misassembly by using evaluation tools such as REAPR

(Hunt et al. 2013).

‘Fitness’

Besides the diagnosis and treatment of various patholo-

gies of HTS data, there are also procedures that can be

incorporated during the data preprocessing stage that

improve data quality and boost downstream analysis,

that is, to improve the ‘fitness’ of the data (Magoc &

Salzberg 2011; Liu et al. 2012; Pell et al. 2012; Titus

Brown et al. 2012). Here, we briefly introduce two of

them.

Digital normalization

In de novo studies of transcriptome and metagenome

where the relative abundance of transcripts and species

can be extremely uneven, HTS experiments are usually

performed at very high sequencing depth in order to

achieve a comprehensive representation of the underly-

ing sequence repertoire. However, highly abundant

sequences, which can be readily covered at lower

sequencing depths and are extremely well covered at

higher sequencing depths, substantially add to the com-

putational burden of de novo assembly. To overcome

this burden, a ‘digital normalization’ approach was

developed that reduces the coverage of highly abundant

sequences to an even level (Titus Brown et al. 2012).

This procedure greatly reduces the size of HTS data sets

by mostly removing redundancy and sequencing errors
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Fig. 4 Evaluation of genome ‘complexity’ from high-throughput sequencing sequence read data. The plots were generated by PREQC

to evaluate the level of heterozygosity and repeat content. (a) Frequency of variant branches in the de Bruijn graphs constructed using

different k-mer values. High frequency of variant branches indicates high level of heterozygosity. (b) Distribution of the counts of 51

mers. While the genome with low heterozygosity shows only one peak in the distribution, the highly heterozygous genome has an

extra peak representing 51 mers (likely derived from heterozygous regions) whose counts are twice of that of the main peak. (c) Fre-

quency of repeat branches in the de Bruijn graphs constructed using different k-mer values. High frequency of repeat branches indi-

cates high level of repeat content.
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contained in these redundant sequences but retaining

real information, thus leading to much improved com-

putational performance and largely comparable assem-

bly quality (Titus Brown et al. 2012). For example, in an

analysis of mouse transcriptome data, digital normaliza-

tion removed 90.7% of the sequence reads containing

virtually all (more than 99.99%) of the errors (Titus

Brown et al. 2012). Digital normalization is a widely

applicable, promising solution for the ever increasing

size of HTS data sets, and has been integrated in TRINITY

(Haas et al. 2013), which is one of the most popular de

novo transcriptome assemblers.

Overlapping paired-end/mate-pair reads

One major limitation of many HTS technologies, includ-

ing Illumina, is that their shorter sequence read lengths

contribute to the difficulty of de novo assembly using

HTS data. While the original sequence read length is

determined by the sequencing technology being used, it

is possible to obtain longer sequence reads computation-

ally from PE data. This can be accomplished by connect-

ing paired reads into a single sequence if they overlap

with each other, which happens when the insert size is

smaller than the summed length of both reads. Overlap-

ping PE reads are highly useful in de novo studies; for

example, they are required by the ALLPATHS-LG assembler

(Ribeiro et al. 2012) to enable high-quality genome

assembly. There are also stand-alone programs for

merging PE reads, including aforementioned multipur-

pose QC tools (e.g. ADATPERREMOVAL, EA-UTILS and SEQPREP)

and dedicated ones [e.g. SHERA (Rodrigue et al. 2010),

FLASH (Magoc & Salzberg 2011), COPE (Liu et al. 2012),

PANDASEQ (Masella et al. 2012), XORRO (Dickson & Gloor

Adapter contamination?
(ex. tools: FastQC, Kraken)

PE readsSE reads

order of PE reads

Trim low-quality tails;
Remove low-complexity reads

Yes

Adapter trimming
(ex. tools: Scythe, Cutadapt,
AdapterRemoval for SE data;
AdapterRemoval, SeqPrep,
Trimmomatic for PE data)

Library contamination?
(ex. tools: QC-Chain)

Yes

Decontamination
(ex. tools: Deconseq, Eu-Detect)

No

Error correction
(ex. tools: Quake
for genome data;

SEECER for
transcriptome data)

Pre-assembly quality
assessment

(ex. tools: preqc)

Digital normalization

Overlapping PE reads
de novo assembly

too many reads?

need longer reads?

Short read alignment

Yes

No

Low-quality
reads?

Use soft-clipping
enabled aligners
(ex. tools: BWA,

Bowtie2), or perform
quality based

trimming (ex. tools:
Trimmomatic)

Remove PCR duplicates

Remove PCR duplicates;
Bias correction (ex.

tools: BEADS)

Adjustment of PCR
duplicates (ex. tools:

iReckon, RASTA);
Bias correction (ex.

tools: CQN, EDASeq)

RNA-seq

SNP discovery

ChIP-seq

No

Fig. 5 A suggested workflow for quality control (QC) of high-throughput sequencing (HTS) sequence read data. The first few steps

of this workflow (shown on the left side) summarize QC procedures that are likely relevant to most HTS data sets, including the val-

idation of PE reads order, the removal of extremely low-quality and artefactual reads, adapter trimming and the removal of library

contamination. The steps shown on the right side summarize QC procedures recommended for de novo assembly studies as well as

QC procedures recommended for studies based on short read alignment (e.g. SNP calling, ChIP-seq and RNA-seq). Rounded rectan-

gles represent QC procedures, hexagons represent decision-making steps, and dotted lines represent QC procedures that are optional

or applicable to only certain types of studies. Example tools for various QC procedures are listed in brackets.
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2013) and PEAR (Zhang et al. 2013)]. Alternatively, multi-

ple read pairs can be merged together if overlap can be

found between pairs, irrespective of whether reads over-

lap within each pair (Silver et al. 2013); this approach

can thus be applied to MP data. In a more aggressive

approach, sequences of the original fragments that give

rise to each read pair can be inferred by mapping PE/

MP reads to a preliminary assembly generated from the

original sequence reads (Liu et al. 2013a).

Conclusion

Quality control of sequence read data generated by

HTS technologies is an essential yet somewhat over-

looked component of data analysis. In this review, we

have outlined several of what we think ought to be

standard QC procedures as well as major types of HTS

data pathologies, and discussed currently available

approaches for diagnosis and treatment. We hope this

work will provide a useful guide for researchers work-

ing with HTS data, and also facilitate the future devel-

opment of best practice guides for HTS data QC. To

this end, we have constructed a workflow that

summarizes both the QC steps that are common to HTS

data in general and ones that are more relevant to cer-

tain types of studies (Fig. 5).

In the immediate future, greater efforts are needed in

several directions. For example, systematic evaluations

of tools with similar capabilities that build on the ones

we have provided in the Boxes of this review would

greatly help researchers better choose the appropriate

one in their studies and aid in the identification of treat-

ments that most improve data quality. In the context of

integrated pipeline construction, it is also important to

improve our understanding of how different combina-

tions of QC procedures affect downstream analyses.

Finally, perhaps the greatest challenge faced in efforts

to improve sequence read data quality is the amazing

rapidity with which the HTS field, and its associated

data pathologies, is changing; new QC measurements

will be needed to accommodate the new challenges that

would accompany the development of HTS technolo-

gies. As molecular ecologists fully embrace the power

of HTS technologies, our field will be well served to

once again heed the Red Queen’s advice to Alice:

‘Now, here, you see, it takes all the running you can

do, to keep in the same place. If you want to get some-

where else, you must run at least twice as fast as that!’
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