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Abstract

Cancer is a generic term for a large group of diseases that can affect any part of 
the body. Metastasis is the spread of cancer to other locations in the body. Almost all 
cancers can metastasize resulting in the major cause of human death. Retinoic acid (RA) 
is essential for normal regulation of various biological processes including development, 
differentiation, proliferation, and apoptosis, and also defined as a potent suppressor 
of the proliferation of cancer cells and has been discovered inhibit various signaling 
pathways in tumors. Some reports have been found that lack of RA to relate with tumor 
development and cellular migration Lots of cellular pathways, including Wnt/β-catenin 
signaling pathway, are related to cancer metastasis. Many reports have suggested that 
exaggerated Wnt signaling can lead to cancer initiation and progression in a wide 
range of human tissues. Dysregulated Wnt/β-catenin signaling in cancers appear to 
more invasive to develop to mesenchymal cells and will undergo metastasis at last. The 
development of new therapeutic compounds targeting the Wnt/β-catenin signaling 
pathway promises new hope to eliminate cancers, especially metastasis cancers 
by natural and synthetic RA. In this review, we provide a highlighting various RA in 
regulates the Wnt/β-catenin signaling pathway. The mechanism of its anti-tumor effect 
can be considered as a therapeutic option.

ABBREVIATIONS
RA: Retinoic acid ; NCDs: Non-Communicable Diseases; EMT: 

Epithelial to Mesenchymal Transition; GSK-3β: Glycogen Synthase 
Kinase-3β; CK-1: Casein Kinase-1; APC: Adenomatous Polyposis 
Coli; MMP-7: Matrix Metalloproteinase-7; HCC: Hepatocellular 
Carcinoma Cells; ATRA: All-Trans-Retinoic Acid; 9-cis-RA: 9-Cis 
Retinoic acid; 13-cis-RA: 13-Cis-Retinoic Acid; RARs: Retinoic 
Acid Receptors; RXRs: Retinoid X Receptors; HNSC CSCs: Head 
and Neck Cancer Stem Cells; PCP: Planar Cell Polarity; TCF: T Cell 
Factor; EC: Embryonal Carcinoma; NT2: NTERA-2 Clone D; MED: 
Mammalian Mediator

INTRODUCTION
Cancer is a generic term to describe a large group of diseases 

that can affect any part of the body. Other terms used are malignant 
tumours and neoplasms. One defining characteristics of cancer is 
the rapid creation of malignant cells that grow beyond their usual 
boundaries then invade adjoining parts of the body and spread to 
other organs, which is referred to as metastasizing. Metastases 
are the major cause of death result from cancer. According to 
the World Health Organization, cancers, cardiovascular diseases, 

respiratory diseases and diabetes are responsible for 80% of 
all deaths from non-communicable diseases (NCDs) worldwide. 
There were an estimated 14.1 million cancer cases around the 
world in 2012, of these 7.4 million cases were in men and 6.7 
million in women, and this number is expected to increase to 
24 million by 2035 [1]. Metastasis is a complex process while 
the original is called the primary tumor. Almost all cancers can 
metastasize [2]. In some cases, metastatic cancer treatments may 
help prolong life. Several cellular pathways, including Wnt/β-
catenin signaling pathway, are related to cancer metastasis. There 
are three Wnt/β-catenin signaling pathways, such as canonical 
Wnt/β-catenin signaling pathway, the non canonical planar cell 
polarity (PCP) pathway, and the Wnt/Ca2+ pathway [3]. A critical 
and most studied Wnt pathway is canonical Wnt signaling and is 
the primary subject of this review. Many reports have suggested 
that over expressed of Wnt/β-catenin signaling can lead to cancer 
initiation and progression in a wide range of human tissues [4-9]. 
Dysregulated Wnt/β-catenin signaling in cancers appear to more 
motility and invasive to induction of epithelial to mesenchymal 
transition (EMT) and will undergo metastasis at last [10,11]. The 
central hallmarks of EMT include the downregulation of cell–cell 
adhesion protein E-cadherin which represents the epithelial 
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phenotype and up regulation of vimentin, which represents the 
mesenchymal phenotype [12]. β-catenin plays a pivotal role as a 
transcriptional co-activator in this process. In the absence of Wnt 
signaling stimulation, cytoplasmic β-catenin is phosphorylated 
by disruption complex including glycogen synthase kinase-
3β(GSK-3β),  Axin and the tumour suppressor adenomatous 
polyposis coli (APC) , which is targeted for ubiquitin-mediated 
proteasome to degradation [13]. While stimulation by Wnt, 
β-catenin molecules are freed from the disruption complex and 
trans located into the nucleus and binds to LEF1/TCF family of 
transcription factors [14,15]. In turn, transactivate its target 
oncogenes such as cyclin D1 and C-myc lead to cancer initiation 
and metastasis (e.g., matrix metalloproteinase-7(MMP-7)) [3,16-
19]. Uncontrolled Wnt/β-catenin signaling pathway is often 
associated with tumorigenesis such as in breast cancer cells 
[20] and in colon cancer [21] and hepato cellular carcinoma 
cells (HCC) [22]. It is now believed that vitamin A, through 
its active derivative, retinoids regulate a variety of important 
cellular processes during normal development, help maintain 
homeostasis, and also exert anti-cancer activities in a number 
of types of cancer cells [23-28]. Vitamin A can transformed into 
isomers such as all-trans-retinoic acid (ATRA), 9-cis retinoic 
acid (9-cis-RA) or 13-cis-retinoic acid (13-cis-RA) reversibly, 
resulting in slightly different receptor binding properties 
and hence biological activities. Retinoids are essential for the 
maintenance of epithelial differentiation which can be oxidated 
to retinoic acid (RA) as an agent in chemoprevention of epithelial 
carcinogenesis [29]. RA regulates gene transcription through two 
nuclear receptor super family, retinoic acid receptors (RARs) and 
retinoid X receptors (RXRs) which with significant anti-cancer 
effects [29-31]. RARs as well as RXRs has three main subtypes α, 
β, and γ, and each receptor has an N-terminal A/B region which 
contains an autonomous transcriptional activation function 
called AF-1, a central DNA-binding domain (the C region), and 
a C-terminal E region which containing a ligand binding domain 
and a ligand-dependent activation function-2 (AF-2). These 
receptors are ligand-dependent DNA binding transcription 
factors. Retinoids have been investigated in preclinical models 
for a long time, by now clinical data have already supported the 
potential of these compounds in cancer prevention and treatment 
[32]. Such as retinoic acid is being increasingly included in both 
therapeutic schemes and chemo preventive for a series of tumour 
diseases [32-34] and inhibit invasion and metastasis in diverse 
types of cancer such as in breast cancer cells and HCC [35-38]. 
Several reports have demonstrated that RA treatment caused a 
significant decrease in MMPs expression in breast cells and also 
in colon cancer cells, they suggest that it may contribute to the 
cell migration and invasion decrease [39-40]. In general, RA is 
believed to inhibit carcinogenesis by blocking the promotion 
of initiated or transformed cells by three mechanisms: such as 
arrest of tumour growth and/or differentiation, induction of 
apoptosis [41]. RA alone can suppress proliferation of HNSC 
CSCs and glioma in vitro and in vivo [42-44]. Many reports have 
been showed that RA and its receptors can inhibit invasion and 
metastasis by regulating Wnt/β-catenin signaling pathway and 
blocking the transformation in a fibroblastic phenotype of cancer 
progression.

Cross talk between RA and Wnt protein in cancer cells 

The Wnt signaling pathway has been extensively studied 

which is related to cancer metastasis. Many reports have 
suggested that dysregulation of Wnt signaling can lead to cancer 
initiation and progression in a wide group of human tissues [4,7-
9]. Wnt family genes comprise 19 members which are classified 
as non-canonical Wnts and canonical Wnts. Non-canonical 
Wnt ligands Wnt4, Wnt5a and Wnt11 activate Wnt/planar cell 
polarity (PCP) and Wnt/Ca2+ pathways whereas canonical Wnt 
ligands including Wnt1, Wnt2, Wnt3, Wnt8a, Wnt8b, Wnt10a and 
Wnt10b, activate the β-catenin and translocate it into nucleus to 
induce its target genes [45]. And various evidences indicating 
that downstream components of the Wnt signaling pathway are 
over activated in many metastatic tumors [46]. The potential 
for Wnt signaling to cooperate with RA signaling pathways was 
revealed in a recent research demonstrating cross-talk between 
the two pathways. Researchers have found that non-canonical 
Wnt signals can repress β-catenin/TCF activity downstream 
of β-catenin, in parallel, evidence has been shown that RA can 
represses β-catenin/TCF activity in embryonal carcinoma (EC) 
NTERA-2 clone D1 (NT2) cells and that this is accompanied by 
increased expression of non-canonical Wnt protein Wnt-4 and 
Wnt-11 [47], both of which inhibit endogenous β-catenin/TCF 
activity. Wnt-1 is the oncogenic driver because this signaling 
pathway is hyperactivated in a high percentage of human cancer 
[48]. As in genuine cross-talk, some studies have demonstrated 
that retinoic acid-responsive gene stra6 could induced by Wnt-
1, and this process is strictly dependent upon retinoic acid 
receptor activity, while other genes such as tumor necrosis factor 
family 4-1BB ligan, ephrin B1 , autotaxinand ISLR synergistically 
induced by ATRA plus Wnt can be activated independently 
by Wnt signaling [49]. Moreover, up-regulation of stra6 gene 
transcription also happened in RA given to transplanted 
mammary tumors, derived from Wnt1 transgenic animals or 
colon cancer xenografts (lacking functional APC) [50]. Genomic 
analysis by Li laboratory found a major shift in expression of Wnt 
and RXR-α pathway genes (up and down, respectively) coincident 
with the transition from hepatoblasts to hepatocytes, which 
categorized HCC cells into two subtypes (high Wnt, low RXR-α 
and low Wnt, high RXR-α) [51]. These data imply that retinoids 
may be useful for increasing the efficacy of therapeutic targeted 
at oncogenic targets of Wnt transformed cells.

RA Regulates Wnt/β-catenin signaling pathway in 
various cancer cells 

The Wnt signaling pathway plays a critical role in gene 
expression, cell adhesionand is pivotal to every stage of cancer 
progression, including initiation, development, and metastasis 
[20,52-56]. A principal executioner of Wnt pathway is β-catenin 
and suppression of β-catenin may be a good target for inhibition 
of Wnt pathway. There are three different ways to degrade 
of cytosolic β-catenin: (1) by the serine/threonine kinase, 
glycogen synthase kinase (GSK)-3β, which is part of the Wnt 
signaling pathway, (2) by the p53/Siah-1 pathway, and (3) by 
a nuclear hormone receptor-mediated degradation pathway 
[21]. Some reports proved treatment with ATRA can decrease 
the phosphorylation of GSK-3β which causes the cytosolic 
β-catenin destruction complex to become stabilized, allowing 
for the disruption of β-catenin in the cytosol, decrease cellular 
proliferation, and increase the expression of pro-apoptotic 
proteins in cancer cells [57]. Thus, RA increase of GSK-3β 
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function leads to a disruption in the equilibrium of β-catenin 
concentration in nucleus and decreased Wnt signaling. As is 
widely known that cross-talk between the PI3K/Akt pathway 
and the Wnt/β-catenin signaling pathway occurs with GSK-3β 
(The relationships of RA regulates the function of GSK-3β and 
PI3K/Akt are shown in (Figure 1)). ATRA has been shown to 
inhibit PI3K activity and decrease the phosphorylation of GSK-3β 
which means the cytoplasmic β-catenin can be phosphorylated 
by disruption complex and weaken Wnt/β-catenin signaling, 
then decrease cell invasion and metastasis at last [58]. The 
phosphorylated form of GSK-3β also results in the increased 
accumulation of snail which is the repressor of E-cadherin, 
decreasing cell-cell adhesion through E-cadherin [59]. In 
additionally, retinoids have been shown to alter PTEN activity in 
many cancers, such as smooth muscle cells, neuroblastoma and 
glioblastoma cells, promyelocytes, leukemia cells, fibroblasts, 
and breast, endometrial, and HCC [60-69]. Increases of PTEN 
and consequent decreases of Akt and eventually decrease 
β-catenin in the cytosol. As described previous, the second way 
for RA regulates β-catenin is through the p53/Siah-1 pathway. 
Mutations of the tumor suppressor gene p53 are the most 
common mutations found in human cancers [70], this loss of 
p53 function during a defined step such as K-ras and the Wnt/β-
catenin signaling pathway may already be dysregulated. Siah-
1 is a p53-inducible protein that binds ubiquitin-conjugating 
enzymes and degrades both mutant and wild-type β-catenin 

result in a decrease in TCF/LEF reporter activity and the 
consequent reduction the levels of β-catenin target genes cyclin 
D1 and c-Myc [71]. Because Siah-1 expression is regulated by p53, 
the loss of p53 inhibits Siah-1 expression and activity, preventing 
the p53/Siah-1 pathway activity to cause β-catenin degradation 
[72]. A high percentage of evidences have proved that retinoic 
acid treatment in various different cell types induces p53 mRNA 
and protein expression, increased p53 expression resulted in 
increased degradation of β-catenin and a decrease in TCF/LEF 
activity(The relationship of RA regulates the function of P53 is 
shown in (Figure1) [73-76]. Another research has demonstrated 
that the β-catenin/TCF pathway was playing some role in the 
action of retinoic acid, treatment with retinoic acid, in fact, does 
stimulate the stabilization of β-catenin levels and retinoic acid 
prompts an activation of LEF-TCF-sensitive transcription in F9 
teratocarcinoma cells. This cross-regulation between retinoid 
signaling and the Wnt/β-catenin pathways is focused on the 
formation of primitive endoderm, so the mechanism is different 
from carcinoma [77]. Thus, the relationship between RA and Wnt 
pathways is variable, contextual and cell type specific. 

Retinoic acid receptors RAR and RXR regulate 
β-catenin 

Retinoic acid receptors (RARs) and retinoid X receptors 
(RXRs) are members of the nuclear receptor superfamily. All three 
RAR subtypes (α, β and γ) can be activated by ATRA or 9-cis RA, 

Figure 1 RA regulates β-catenin with PTEM and P53 signaling pathways 
1) RA alter PTEN activity , inhibit PI3K/Akt activity and decrease the phosphorylation of GSK-3β which causes the cytosolic β-catenin destruction 
complex(GSK-3β, APC, CK-1 and AXIN) to become stabilized, allowing for the disruption of β-catenin in the cytosol and inhibit gene expression in 
nucleus. 
2) RA induces p53 expression, and activates the p53/Siah-1 pathway to degrade β-catenin resulted in increased degradation of β-catenin and a 
decrease in TCF/LEF activity. 
3) RA inhibits the phosphorylation of GSK-3β results in the decreased accumulation of snail andincreasing cell-cell adhesion through E-cadherin 
and β-catenin.
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and function as heterodimers with retinoid-X receptors (RXRs) 
to enhance or drive the expression of target genes [78]. However, 
the specific receptor which mediates these effects varies with 
different cell lines. Both RARs and RXRs can bind response 
elements as RAR-RXR heterodimers or RXR homodimers, even at 
high protein concentrations [79,80]. More evidences have shown 
that β-catenin interact directly with RAR or RXR in a retinoid-
dependent manner (The mechanisms of RAR and RXR regulate 
β-catenin is shown in (Figure 2). RAR can compete with TCF for 
β-catenin binding suggest that direct regulation of β-catenin/TCF 
signaling is one mechanism whereby RA influences development, 
cell differentiation and cancer [81].

In general, retinoid receptors either inhibit β-catenin-
mediated gene transcription, as in the case of RAR, or decrease 
β-catenin protein levels, as in the case of RXR [82]. When treated 
with 9-cis-RA, a ligand for both RAR and RXR is recruited 
to enhance β-catenin protein stability in breast cancers cell 
SKBR3 which express low endogenous levels of β-catenin [83-
85]. But 9-cis–RA treatment do reduce β-catenin/TCF/LEF-
mediated gene transcription in the same cell SKBR3 as well as 
MCF-7, CaCo-2 and HS578t [81]. With a down-regulated RARβ 
expression, RA resulted ineffective to reduce cellular migration, 
suggesting that tumour cells could silence RARβ to facilitate the 
escape of the tumour triggering the metastatic process. RARγ 
acts as a tumor suppressor or oncogene in different cancers, 
depending on the cell-specific context [86-90]. RARγ plays as 
a tumor suppressor of the Hippo-Yap pathway in colorectal 
tumorigenesis and metastasis, where its expression correlates 
inversely with tumor size, TNM stage, and distant metastasis 
[91]. But in cholangiocarcinoma (CCA) and HCC, RARγ is a 
pivotal oncogene which was frequently over expressed and 
resulting in poor differentiation, and poor prognosis [89,92]. 
Researchers have found that RA treatment up regulated RARγ 
and down regulated phosphorylated β-catenin which escape 
from the degraded complex, means RARγ up regulating total 

β-catenin, then increased cyclinD1, P-P glycoprotein, PCNA and 
MMP9 which plays a critical role in early CCA metastasis [93]. In 
present studies, the only know molecular mechanism of tumor 
revealed that RARγ interacted with β-catenin and led to β-catenin 
nuclear translocation is in CCA, whether RARγ suppresses 
the level of β-catenin in other cancers is still unknown. These 
results showed that RARγ upregulated β-catenin in nuclear 
translocation and subsequently lead to the activation of Wnt/β-
catenin pathway. The paradoxical roles of RAR in the regulation 
of β-catenin might depend on its particular cellular location. As 
described previous, Wnt-1 promotes the up-regulation of RARγ, 
which could potentiate the response of the cell to retinoids and 
increase the expression of retinoic acid-responsive gene Stra6 
in many cancers [50]. These consequences indicate retinoids 
in various cancer models has been inconsistent, yielding both 
suppression and enhancement of tumor progression depending 
on genetic background and tumor type also by different 
administration protocol [94]. In additionally, Xiao et al found 
that retinoid X receptor (RXR) can mediated APC-independent 
pathway in the regulation of β-catenin in APC- and p53-mutated 
colorectal cancer cells, and results have been found that RXRα 
and β-catenin have been shown to directly interact in nucleus, 
which proved retinoids can increase β catenin degradation by 
a nuclear hormone receptor-mediated degradation pathway 
[82,95]. Revealing despite mutations in the p53 and APC 
proteins that regulate β-catenin protein degradation only by 
the RXR-mediated pathway remains functional in these human 
colon cancer cell lines [21]. Further evidence shows that retinol 
increases migration of β-catenin and RXRα from the nucleus 
into the cytosol concomitant with the β-catenin-RXRα binding 
complex, the provement demonstrated that cytosolic RXRα is 
proteasomally degraded, and more important, the evidence 
shows that the RXRα and β-catenin binding is required for the 
proteosome degradation of β-catenin (As is shown in (Figure 2)) 
[96]. These results are consistent with a transrepression model of 
β-catenin inhibition, which depends on the high-level expression 

Figure 2 The mechanisms of RAR and RXR regulate β-catenin
1) RAR competes with TCF for β-catenin binding to inhibit β-catenin-mediated gene transcription and cancer metastasis; 2) RXR and β-catenin 
constitute the β-catenin-RXRα complex, which migrate from the nucleus into the cytosol for proteasoma degraded.
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of RXRα. Removal of the AF-1 and DBD region of RXRα eliminated 
the ability of retinol to decrease β-catenin protein suggest the 
region mechanism dependent the special region to binding 
with β-catenin. Thus, these data suggested a distinct mode by 
which RAR or RXR regulates β-catenin. Whereas RAR operates 
by decreasing signaling by competition of nuclear cofactors in 
most cancer cells except RARγ which plays as an oncogene in 
cholangiocarcinoma, RXR appears to facilitate the degradation 
of β-catenin by an APC-independent proteasomal degradation 
pathway. The reasons for differential effects of RA treatment on 
β-catenin/TCF transcription are unclear, may be the different of 
basal β-catenin levels, relative levels of cadherins, and ratios of 
RAR/RXR or RXR/RXR dimers and cell context are involvement. 
However, the RXR-mediated pathway, which can be regulated 
by small molecule hormones, has the potential of being a very 
powerful pharmacological approach to treating Wnt/β-catenin-
related cancers. Many results show that β-catenin-associated 
tumors that concurrently express high levels of RXR have the 
most responsive to RXR agonist therapy. Furthermore, the use 
of RXR agonists in conjunction with pharmacological or genetic 
approaches to elevating RXRα protein levels in target tumors 
may be effective therapies for cancers [97].

RA increase cell-cell interaction by active E-cadherin

Invasion and metastases are the most life-threatening 
properties of malignant tumour, considering be later, but 
critically important carcinogenic steps. The importance of 
E-cadherin is essential for cell–cell adhesion, which control 
cell motility, and be considered as an ‘invasion suppressor’. 
E-cadherin works with α- and β-catenin as a functional unit 
which called the E-cadherin–catenin unit (ECCU), interaction at 
the cell membrane to maintain the epithelial phenotype [98-102]. 
Cytosolic β-catenin can be targeted for proteosomal degradation 
by non-phosphorylated GSK-3β which is complexed with APC, 
Axin, and CK-1. Nuclear β-catenin induces gene transcription 
when complexed with TCF/LEF transcription factors. Ultimately, 
all pathways increase the transcription of genes favoring cellular 
proliferation and invasion, most via increasing β-catenin-
mediated gene transcription. Besides its role in establishing tight 
cell-cell adhesion and nucleus gene transcription, β-catenin plays 
a dual role as a tumor suppressor and as an oncogene in human 
cancers [99,103]. Accumulating researches suggest that the 
induction of EMT plays a crucial role in cancer cell transformation 
and progression [100,104]. The central hallmarks of EMT include 
the down regulation of E-cadherin, and up regulation of vimentin, 
N-cadherin, snail and twist which represent the mesenchymal 
phenotype , loss of function or expression of E-cadherin is 
correlated with the progression of tumors to a more invasive 
phenotype [12,105]. And the disturbance in protein-protein 
interaction in the ECCU complex is one of the main events in the 
early and late steps of cancer development. Over expression of 
α/β-catenin appears to be important in the invasive phase of 
early tumor development, which hints loss of ECCU function 
is important. RA has a profound effect on cell-cell adhesion, 
invasiveness and cell differentiation in a number of cancer cell 
lines [106-110]. Result has been shown that RA can elevate the 
expression of E-cadherin in many different cancer cells and 
induce aggregation of the E-cadherin/catenin complex while 
induce cell differentiation and reduce transcription of cyclin 

D1 by diminishing TCF sites of β-catenin [83,110]. Additionally, 
Byers et al exposure of breast cancer cells to 9-cis-RA for as 
little as 4h was sufficient to maintain the adhesive phenotype 
for at least 4 days, the mechanism involving a 9-cis–RA induced 
increase in Ca(2+)-dependent adhesion, and β-catenin protein 
levels were markedly elevated in cancer cells SKBR3 with a poor 
adhesive phenotype which expresses no E-cadherin and very 
low levels of β-catenin protein, the involvement mechanism 
shows that 9-cis-RA treated cells do not change β-catenin 
mRNA levels but increase β-catenin protein stability and 
induce it move to cell membrane strength the cell-cell adhesive 
[83]. Another teams have observed RA treatment can reduces 
cytoplasmic levels of exogenously expressed β-catenin and 
increases the expression of a cadherin that mediates strong cell-
cell adhesion and translocates β-catenin to the cell membrane 
in the same breast cancer cell SKBR3, thereby mediating the 
effects of RA on cell morphology and differentiation and as well 
as in CaCo2 cells. These results proved RA treatment induce 
epithelial differentiation characterized by increasing in cadherin 
expression in regions of cell to cell contact [111]. Remarkably, a 
recent study performed in HCC concluded that ATRA not only up 
regulates epithelial marker E-cadherin but also down regulates 
of mesenchymal markers N-cadherin, vimentin, snail and twist 
[35]. Indeed the data demonstrated that RA suppressed the 
proliferation, migration, invasion of and effectively induced its 
differentiation in vitro through the reversal of EMT. Additionally, 
ATRA also effectively reversed EMT phenotype with increase in 
epithelial expression of E-cadherin and cytokeratin 18, as well 
as reduce expression of vimentin and fibronectin [59]. Recent 
studies found ATRA could suppress mammalian mediator 
subunit MED28 and Wnt/β-catenin pathway and up regulate 
E-cadherin to facilitate the maintenance of epithelial integrity 
and inhibit cell growth [112-114], for that MED28 can involve in 
cell growth, migration, and invasion in human breast cancer cells 
and colorectal cancer cells, and is necessary for the expression 
of β-catenin target genes and could physically interact with 
β-catenin and stabilize the trans activation of Wnt target genes. 
Until now, various experimental data of RA have demonstrated 
its functions in increasing cell-cell adhesion, and suppressing the 
proliferation, inhibiting the growth of a variety of neoplastically 
transformed cells and inducing differentiation [35,110,115,116], 
suggesting its potential role as a cancer chemotherapeutic agent. 
Furthermore, because of the potential to maintain EMT, it is 
regarded as an attractive target for cancer prevention.

DISCUSSION AND CONCLUSION

Conclusion

It is remarkable that RA is effective at the cell proliferation 
and differentiation as well as the anti-cancer functions during the 
process of carcinogenesis. Numerous of signaling pathways have 
involved in the initiation of cancer development and metastasis 
such as PI3K/AKt, Notch, TGF-β and Wnt/β-catenin pathway 
[117,118]. As described, RA decreases Wnt/β-catenin pathway 
and stabilizes cell-cell adhesion in many cancer cell lines. RA 
activated its receptor RAR and RXR to inhibit β-catenin/TCF 
transactivation by directly binding to β-catenin or recruiting 
proteosomal degradation complex to decrease β-catenin levels, 
and though RARγ acts as a tumor oncogene lead to the activation 
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of Wnt/β-catenin pathway in CCA [92]. More researches need 
to demonstrate the relationship between Wnt and RA receptor 
RARγ to verify its effect on up regulating β-catenin. Taken 
together with the recent discovery that Wnt-1 and RA signaling 
cooperate to regulate the expression of the RA responsive gene 
Stra6 which worked at the cell surface proves the cross talk 
between these two signals, revealing an appropriate application 
would be immunotherapy in the progression and metastasis of 
cancers. Furthermore, because of the potential to maintain cancer 
cells differentiation and strengthen cell adhesion, which are both 
linked to tumor progression and metastasis, RA is regarded as an 
attractive target for cancer prevention and might be useful for 
the clinical treatment of cancer.
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