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Challenges in Solid-Solid Interfaces
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*Krauskopf et al., Advanced Energy Materials, 2020, 10, 2000945.

*Lewis et al., Nature Materials, 2021, 20, 503.
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Iono-Mechanics Interactions: Electrodeposition 

Mechanical Response Mesoscale Interactions at the Solid-Solid Interface 

❑ Mechanical contribution to the reaction
kinetics causes irregular growth.

❑ Stress-driven transport counters this
tendency.

Ionic Fields in the Electrolyte  
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*Mistry and Mukherjee, J. Electrochemical Society, 167, 082510 (2020).
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Electrodeposition Stability and Material Design

❑ Molar Volume Mismatch – fundamentally responsible for the growth instability.

❑ Material inhomogeneities reflect as local variations in exchange current density,
cationic molar volume, ionic conductivity, stiffness, etc.

❑ Electrodeposition Stability Map ❑ Material Modifications  

*Mistry and Mukherjee, J. Electrochemical Society, 167, 082510 (2020).
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Reaction Descriptor

Can thermodynamics (solid electrolyte or interlayer) be favorably tuned to regulate 
plating morphologies?



Microstructure-Interface Stability Interactions
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Microstructure-Property

Correlation:  

Microstructure of the solid electrolyte has two
mechanistic implications:

❑ Effective ionic conductivity and mechanical
properties

❑ Local deposition stability at the Li-SE interface

*Verma, ....Mukherjee et al., Cell Reports Physical Science, 2, 1 (2021).

*Mistry and Mukherjee, J. Electrochemical Society, 167, 082510 (2020). 
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Interface Response: Crystalline vs Amorphous 



Solid Electrolyte matrix

via GrainIon Transport: via GB
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Interfacial Stability at Grain Boundary Junctions 

Grain-Grain boundary(GB)-metal junction

Competing Transport
Pathways

* Vishnugopi, Mukherjee et al., under review (2021).

❑ Grain boundaries cause a distortion in ionic transport pathways in the solid electrolyte.

and trigger mechanical strain hot spots in the solid electrolyte.

❑ Critical to consider the implications of grain boundaries (& material heterogeneities) in
the design of the solid electrolyte matrix.

How can the anode-solid electrolyte interface be synergistically designed to tailor
homogenous reaction kinetics?
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Electrodissolution Kinetics & Contact Loss 

Accumulation of Vacancies at the Interface 

Discharge of the Li-SSE system

Vacancies

* Vishnugopi and Mukherjee, under review (2021).

Contact Area Map

How can we deter the formation of point 
contacts during stripping? 
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Fast Charge Response: Kinetic-Transport Interactions
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*Naik, Vishnugopi, and Mukherjee, under review (2021).
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Temperature: Extrinsic Modulator  or Crosstalk Enabler?
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Thermal Enhancement 

Thermal-Electrochemical Modulation: 

Co-optimizing the electrochemical-thermal interactions could be critical 
toward achieving fast charging in solid-state batteries.  

*Vishnugopi, Naik, and Mukherjee, under review (2021).
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Design Space to Modulate Fast Charge Response

*Vishnugopi, ….,Mukherjee, et al., ACS Energy Lett., 6, 3734 (2021).
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Fast Charge of Solid-State Batteries

Plating current density (mA cm-2)
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Deconvolving the mechanistic implications of crosstalk and plating-stripping
asymmetry is critical toward achieving fast charge targets and long-term cycling stability
of the solid-state battery.

* Albertus, Babinec, Litzelman and Newman, Nature Energy, 3, 16 (2018).
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A Mechanistic Roadmap toward Fast Charging of Solid-State Batteries  

*Vishnugopi et al., ACS Energy Lett., 6, 3734 (2021)

[https://doi.org/10.1021/acsenergylett.1c01352]
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THANK YOU!

THE END

for now…
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