S\
SektionEins

http://www.sektioneins.de

10S S5
An Exploitation Nightmare?

Stefan Esser <stefan.esser@sektioneins.de>

Who am 1?

Stefan Esser

from Cologne / Germany

in information security since 1998

PHP core developer since 2001

Month of PHP Bugs and Suhosin

recently focused on iPhone security (ASLR, jailbreak)

Head of Research and Development at SektionEins GmbH

Stefan Esser ® iOS 5 - An Exploitation Nightmare? ® March 2012

What is the talk about?

iOS 5 introduced more than 200 new features and changes ...
some of them had a security impact

release of a public jailbreak for iOS 5 seemed to take forever

m this session will discuss some of these changes and
answer if iOS 5 exploitation is really a nightmare

Stefan Esser ® iOS 5 - An Exploitation Nightmare? ® March 2012

Real Reasons for Slow Jailbreaking

Jailbreaking scene’s biggest iOS kernel guru comex was snatched by Apple
Apple killed several bugs in iOS 5 that the jailbreak developers relied on
changes to iOS 5 restore process

® required more reverse engineering

® requires a more strategic vulnerability release

new devices like iPad 2/iPhone 4S do not have limeraln bootrom vulnerability

Stefan Esser ® iOS 5 - An Exploitation Nightmare? ® March 2012

Part |

1OS Restore Process or SHSH...it

Stefan Esser ® iOS 5 - An Exploitation Nightmare? ® March 2012

I0S 4 - Restore Process 101 - Request

® during restore an ApTicket request is sent to Apple gs.apple.com

® connection is plaintext HTTP

® ApTicket request contains hashes for each firmware file

POST /TSS/controller?action=2 HTTP/1.1
Accept: */*

Cache-Control: no-cache

Content-type: text/xml; charset="utf-8"
User-Agent: InetURL/1.0

Content-Length: 12345

Host: gs.apple.com

(here comes the Plist request file)

N\
Stefan Esser ® iOS 5 - An Exploitation Nightmare? ® March 2012 ¢ 6 ‘) SektionEins

iOS 4 - Restore Process 101 - APTicket Request (l)

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">
<dict>
<key>@APTicket</key>
<true/>
<key>@HostIpAddress</key>
<string>192.168.0.1</string>
<key>@HostPlatformInfo</key>
:i:;igg;::ﬁgz:g;n? ApTicket request is an XML Plist
<string>en US</string>
<key>@VersionInfo</key> contains device’s ECID
<string>3.8</string>

<key>ApBoardID</key> :
<integer> </integer> Apple can track how many devices are at

<key>ApChipID</key> what firmware version and how often/fast
<integer> </integer> people upgrade

<key>ApECID</key>

<string>****kkkkkkk**</string>

<key>ApProductionMode</key>

<true />

<key>ApSecurityDomain</key>

<integer> </integer>

<key>UniqueBuildID</key>

<data> </data>

N\
Stefan Esser ® iOS 5 - An Exploitation Nightmare? ® March 2012 o 7 ‘) SektionEins

http://www.apple.com/DTDs/PropertyList-1.0.dtd
http://www.apple.com/DTDs/PropertyList-1.0.dtd

iOS 4 - Restore Process 101 - APTicket Request (ll)

<key>RestoreRamDisk</key>
<dict>
<key>Digest</key>
<data>
<key>PartialDigest</key>
<data>
<key>Trusted</key>
<true />
</dict>
<key>iBEC</key>
<dict>
<key>BuildString</key> . . .
<string> </string> contains hashes for each firmware file
<key>PartialDigest</key>
<data> </data>) _
</dict> filled with values from
<key>iBSS</key> . . .
SkeyoiBSS</key BuildManifest.plist

<key>BuildString</key>
<string> </string> ' :
s Apple can verify each of the fields
<data> </data> against known good values
</dict>
<key>iBoot</key>
<dict>
<key>Digest</key>
<data>
<key>PartialDigest</key>
<data>
<key>Trusted</key>
<true />
</dict>
</dict>
</plist>

N\
Stefan Esser ¢ iOS 5 - An Exploitation Nightmare? ¢ March 2012 8 <) SektionEins

IOS 4 - Restore Process 101 - Response ()

® Response from server looks like

HTTP/1.1 200 OK

Date: Sun, 15 Aug 2010 19:25:18 GMT

Server: Apache-Coyote/1.1

X-Powered-By: Servlet 2.4; JBoss-4.0.5.GA (build: CVSTag=Branch 4 0
date=200610162339) /Tomcat-5.5

Content-Type: text/html

Content-Length: 123456

MS-Author-Via: DAV

STATUS=0&MESSAGE=SUCCESS&REQUEST STRING=(here comes the requested SHSH file)

® Following status responses are known

STATUS=0&MESSAGE=SUCCESS

STATUS=94&MESSAGE=This device isn't eligible for the requested build.
STATUS=100&MESSAGE=An internal error occurred.

STATUS=511&MESSAGE=No data in the request

STATUS=551&MESSAGE=Error occured while importing config packet with cpsn:
STATUS=5000&MESSAGE=Invalid Option!

N\
Stefan Esser ® iOS 5 - An Exploitation Nightmare? ® March 2012 ¢ 9 {) SektionEins

http://theiphonewiki.com/wiki/index.php?title=SHSH
http://theiphonewiki.com/wiki/index.php?title=SHSH

IOS 4 - Restore Process 101 - Response (ll)

in the good case Apple servers return a signed SHSH file
SHSH hashes are stitched to each firmware file on the device

SHSH signature is validated by the boot chain

this whole systems allows Apple to control
® if a specific device is allowed to get a specific firmware

® thatitis not possible to restore to an older firmware

® downgrading is not allowed

Stefan Esser @ iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 10

iOS 4 - Restore Process Weakness

luckily the whole process has an
obvious weakness

replay attacks are easily possible

ApTicket requests are plaintext
and therefore can easily be recorded

there is no token / nonce in the ApTicket request

Tinyumbrella / Cydia implement this attack

Stefan Esser ® iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 11

iOS 4 - Restore Process Weakness Consequence

® the replay attack vulnerability allowed to
® save SHSH for each new firmware (during signing window)

® restore to a firmware with a known vulnerability

e downgrade if a new version fixes a jailbreak vulnerability

Stefan Esser @ iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 12

iOS 5 - Restore Process Changes

® there are a number of changes in the iOS 5 restore process

® c.g. SHSH are not stitched but kept in a central file

® most important is the addition of an ApNonce in the ApTicket request

<key>ApBoardID</key>

<integer> </integer>
<key>ApChipID</key>

<integer> </integer>
<key>ApECID</key>
<string>****kkkkkk***</string>
<key>ApNonce</key>

<data> </data>

® ApNonce is validated by iBEC

N\
Stefan Esser @ iOS 5 - An Exploitation Nightmare? ® March 2012 ¢ 13 <) SektionEins

iOS 5 - Restore Process Changes Consequence

® downgrade to iOS 4 still possible it SHSH are saved (even on iPad 2)
® foriOS 5.x ApNonce closes the general replay vulnerability

® but verification of ApNonce can be bypassed with bootrom or iBoot exploit

= old devices can be downgraded to a lower iOS 5 version

m Pad 2/ iPhone 4S cannot be downgraded to a lower iOS 5

® jailbreak release must be timed strategically
® only when all devices are supported

® not too near to a new firmware update

Stefan Esser ® iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 14

Part Il

ASLR (Address Space Layout Randomization)

Stefan Esser @ iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 15

ASLR in iOS 4

® introduced with iOS 4.3 - iPhone 3G never got ASLR

® randomly slides dynamic library cache, main binary and dyld
® dyld_shared_cache randomness = ~4200 different positions
® main binary = 256 different positions (it PIE binary)
® dyld binary = 256 different positions (if main binary is PIE)

Stefan Esser @ iOS 5 - An Exploitation Nightmare? ® March 2012 ¢ 16

Position Independent Executables (l)

® main binary can only be slided if it is PIE compiled

® Xcode will only make PIE binaries if deployment target is iOS >= 4.3

3 HelloWorld.xcodeproj

T — ‘5‘ " (Paused) Indexing | Processed O of 4 files = @\ r’m g D\ | |

Scheme Breakpoints Editor View Organizer

HelloWorld.xcodeproj l i

PROJECT Summary Info Build Settings Build Phases Build Rules

" HelloWorld iOS Application Target
HelloWorld — e 9

h| HelloWorldAppDelegate.h TARGETS
m| HelloWorldAppDelegate.m t,Ag

D MainStoryboard.storyboard Version 1.0 Build 1.0
h| HelloWorldViewController.h
m/ HelloWorldViewController.m

Supporting Files Deployment Target 4.3
Frameworks 5.0

Products iPhone / iPod Deploy IENIIIEGEG

«A HelloWorld.app
. 4.2

Identifier sektioneins.

Devices | iPhone

Main Storyboard } 4.1

Main Interface]4'0
3.2

> 5.1

Add Target Validate Settings

N\
Stefan Esser e iOS 5 - An Exploitation Nightmare? ® March 2012 ¢ 17 {) SektionEins

Position Independent Executables (ll)

all system binaries are
compiled as PIE

most 3rd party apps are
not compiled as PIE

VR — ——————
source code of idapiescan.py is available at Github

https://github.com/stefanesser/idapiescan

Stefan Esser @ iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 18

https://github.com/stefanesser/idapiescan
https://github.com/stefanesser/idapiescan

WebKit - MobileSafari - Twitter - Facebook

® f there ever is another WebKit vulnerability (erm, erm, ...)
® in MobileSafari you have to bypass full ASLR
® but if the user clicks on a link in Twitter / Facebook

® you have a non PIE main binary

® no relocation of dyld (in iOS 4)

® gadgets can be taken from main binary or dyld

Stefan Esser ® iOS 5 - An Exploitation Nightmare? ® March 2012

ASLR in iOS 5

® mostly the same
® but Apple fixed the major weakness in its implementation

e dynamic linker is now slided regardless of main binary’s PIE status

= for the Twitter - Facebook case you now have to use main binary gadgets

N\
Stefan Esser e iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 20 <) SektionEins

iOS 5: remaining DYLD randomization weaknesses

dynamic linker is slided same amount as main binary

any main binary info leak allows determining dyld position

randomization is only 8 bit -> naive exploit = 256 tries

but multi-environment ROP payloads can greatly improve this

(BabyARM - ,HITB 2011 KUL - One ROPe to bind them all”)

Stefan Esser ® iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 21

BabyARM vs. DYLD from iOS 5.0.1

GADGET FOUND AT 2fe0le60
POP {r7, pc}

GADGET FOUND AT 2feOb7f6 - PC AT 4
POP {r7, pc}

GADGET FOUND AT 2fe02e60 16
POP {r4, r5, r6, r7, pc}

GADGET FOUND AT 2fe03e60 16 » GADGET FOUND AT 2feOc7f6 - PC AT 8
POP {r4, r5, r6, r7, pc} POP {r4, r7, pc}

GADGET FOUND AT 2fel2e60

POP.W {r8, rl0, rll}
POP {r4, r5, r6, r7, pc}

GADGET FOUND AT 2fel7e60
POP {r4, r7, pc}

e iOS5.0.1"s DYLD binary has 5 colliding gadgets

® using 0x2fel7e60 as gadget will work in 5/ 256 cases ~ 1/ 51 chance

N\
Stefan Esser @ iOS 5 - An Exploitation Nightmare? ® March 2012 ¢ 22 <) SektionEins

Part Il

iOS 5 and the Partial Code-signing Vulnerability

Stefan Esser @ iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 23

Partial Code-signing Vulnerability

in iOS 4.x jailbreaks the method of choice to launch untether exploits
when a mach-o is loaded the kernel will load it as is

a possible signature will be registered

missing signature is okay until a not signed executable page is accessed

dyld is tricked with malformed mach-o data structures to execute code

Y
Stefan Esser ® iOS 5 - An Exploitation Nightmare? ® March 2012 ¢ 24 <) SektionEins

iOS 3/4.0 - Tricking Dyld - Spirit & Star

when /var/db/.launchd use gmalloc exists launchd will re-exec itself with injected library

injected library /usr/1ib/libgmalloc.dylib is a malicious lib that tricks dyld

function interposing is used to redirect execution of the launchd binary into code gadgets

fixed by Apple by doing a range check on interposing function addresses

credits: comex

Y
Stefan Esser ® iOS 5 - An Exploitation Nightmare? ® March 2012 ¢ 25 <) SektionEins

iOS 4.1 - Tricking Dyld - pf2

still uses the libgmalloc.dylib trick
but uses mach-o module initializer function feature to start a ROP chain

dyld will start the ROP chain by executing the following gadget as initializer function

LDMIBMI R11, {SP, PC} # increments R1ll by 4, then pops SP and PC

fixed by Apple by doing a range check on initializer function addresses

credits: comex

N\
Stefan Esser e iOS 5 - An Exploitation Nightmare? ® March 2012 ¢ 26 <) SektionEins

iI0S 4.2.1 - Tricking Dyld - HFS

no longer uses the libgmalloc.dylib trick - instead launchd binary is replaced
abuses a flaw in the range check introduced by Apple
also uses mach-o module initializer functions feature to start a ROP chain

code changes in dyld now require two initializer functions for the stack pivot

POP {R6,R7} ; R6é=&context.programVars->mh, R7=inits
BX LR

SUB SP, R7, #0 ; do the stack pivot
POP {R7,PC}

= Apple did not fix this, but next iOS version had ASLR

credits: janO

Stefan Esser @ iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 27

iI0S 4.3.0 - 4.3.2 - Tricking Dyld - NDRV

replaces the launchd binary

uses function binding to overwrite size field in mach-o header

overwritten size field completely kills range checks

function binding is also used to set addresses of ROP gadgets to bypass ASLR
module initializer function feature is used to execute the module termination functions

module termination function feature is used to execute the following gadget

ldm r5, {r2, r4, r5, r7, r8, r9, rl1l0, rll, rl2, sp, pc}

m Apple did not fix this before the next trick was used

credits: stefan esser

N\
Stefan Esser ® iOS 5 - An Exploitation Nightmare? ® March 2012 « 28 <) SektionEins

iOS 4.3.4 - End of incomplete code-signing?

in iOS 4.3.4 Apple added a new check to the dynamic linker

dyld now verifies that the mach-o load commands are within an executable segment

therefore accessing the mach-o header is only possible if there is a valid signature

the end of incomplete code-signing ?!?

= not really because Apple failed to take care of LC_SEGMENTé64

N\
Stefan Esser e iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 29 ‘) SektionEins

LC_SEGMENTé64 Incomplete Code-signing Vuln...

LC_SEGMENTé4 is used for loading 64 bit segments

IOS kernel supports this load command and parses it correctly

the dynamic linker on the other hand does not know about LC_SEGMENTé64
check in dyld can be tricked by having

® aRW- LC SEGMENT64 for mach-o header

® and a fake R-X LC_SEGMENT for mach-o header

= FAIL: | mentioned this bug on Twitter because | wrongly believed it was fixed in iOS 5.0

N\
Stefan Esser e iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 30 <) SektionEins

Alternative Way to bypass ASLR in an untether

® ASLR can be easily bypassed within a launchdaemon configuration
® unfortunately now public due to corona

<?xml version="1.0" encoding="UTF-8"7?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://
www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
<key>Label</key>
<string>jb</string>
<key>ProgramArguments</key>
<array>
<string>/usr/sbin/corona</string>
<string>-£f</string>
<string>racoon-exploit.conf</string>
</array>
<key>WorkingDirectory</key>
<string>/usr/share/corona/</string>
<key>RunAtLoad</key>
<true/>
<key>LaunchOnlyOnce</key>
<true/>
<key>DisableAslr</key> <
<true/>
</dict>
</plist>

might be fixed in yesterday’s iOS 5.1 update

Y
Stefan Esser ® iOS 5 - An Exploitation Nightmare? ® March 2012 ¢ 31 <) SektionEins

Part IV

iOS 5 Kernel Heap Allocator Changes

Stefan Esser @ iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 32

Kernel Heap Allocators (Extract)

XNU has many different kernel
heap allocation functions

this is just a small extract
around _MALLOC and friends

iOS 5 brings changes to
_MALLOC and kalloc

[kmem_alloc_kobject]

more in my upcoming
paper about the
iOS 5 kernel heap

kmem_alloc

Stefan Esser @ iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 33

_MALLOC() in iOS 4.x

void * MALLOC(size t size, int type, int flags)
{
struct _mhead *hdr;

size t memsize = sizeof (*hdr) + size;

if (type >= M LAST)
panic(" malloc TYPE");

possible integer overflow

if (size == 0) with huge size values

return (NULL) ;

if (flags & M NOWAIT) {

hdr = (void *)kalloc noblock (memsize) ;
} else {

hdr = (void *)kalloc (memsize) ;

} struct _mhead ({

size_ﬁ mlen;

hdr->mlen = memsize; char dat[0];

return (hdr->dat);

N\
Stefan Esser ® iOS 5 - An Exploitation Nightmare? ® March 2012 ¢ 34 <) SektionEins

_MALLOC() in iOS 5.x

void * MALLOC(size t size, int type, int flags)
{

struct';mhead *hdr;
size t memsize = sizeof (*hdr) + size;
int overflow = memsize < size ? 1 : 0;

if (flags & M _NOWAIT) ({ \ integer overflow

i1f (overflow) detection
return (NULL) ;
hdr = (void *)kalloc noblock (memsize) ;

} else {

if (overflow)
panic (" MALLOC: overflow detected, size %1llu", size);

hdr = (void *)kalloc (memsize) ;

attacker can use
overflow to panic

hdr->mlen = memsize; kernel
M_WAIT

return (hdr->dat);

N\
Stefan Esser ® iOS 5 - An Exploitation Nightmare? ® March 2012 ¢ 35 <) SektionEins

This bug is dead now...

static int ndrv_do remove multicast(struct ndrv _cb *np, struct sockopt *sopt)
{

struct sockaddr* multi addr;

struct ndrv _multiaddr* ndrv _entry = NULL;

int result;

if (sopt->sopt val == | | sopt->sopt valsize < 2 ||
sopt->sopt level != SOL NDRVPROTO)
return EINVAL;
if (np->nd if == NULL) sopt_valsize
return ENXIO; is size_t
can be OxFFFFFFFF
// Allocate storage
MALLOC (multi addr, struct sockaddr*, sopt->sopt valsize,

M TEMP, M WAITOK) ;
if (multi addr == NULL) \
— user controlled

return ENOMEM:; allocation

// Copy in the address
result = copyin(sopt->sopt val, multi addr, sopt->sopt valsize);

// Validate the sockaddr \ buffer overflow
if (result == 0 && sopt->sopt valsize !'= multi addr->sa len) for values >
result = EINVAL; OxFFFFFFFC

N\
Stefan Esser ® iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 36 <) SektionEins

Integer Overflow Fix in _MALLOC()

the integer overflow fix in _MALLOC() killed a bunch of real bugs
| already had working exploit code for several paths exposing it
by fixing it Apple killed some of my private untethering exploits

most of the affected code pathes are only triggerable as root

Apple did not fix it in Mac OS X Lion 10.7.3
(but it is fixed in Mac OS X Mountain Lion 10.8 - according to beta tester)

Stefan Esser ® iOS 5 - An Exploitation Nightmare? ® March 2012 ¢ 37

kalloc()

kalloc() is a wrapper around zalloc() and kmem_alloc()

for small requests zalloc() is used
for bigger requests kmem_alloc() is used

kalloc() registers several zones with names like kalloc.*

Stefan Esser @ iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 38

iOS 4 - kalloc() Zones

‘ - —

® kalloc.* zones exists for different powers of 2

® smallest zone is for 16 byte long memory blocks

® cvery memory block is aligned on its own size

N\
Stefan Esser ® iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 39 {) SektionEins

iOS 5 - kalloc() Zones

$ zprint kalloc
cur alloc alloc
zone name 1] | inuse size count

kalloc.
kalloc.
kalloc.
kalloc.
kalloc.
kalloc.
kalloc.
kalloc.
kalloc.

kalloc. :) -
kalloc. introduces new kalloc.* zones

kalloc. . that are not powers of 2
kalloc.

kalloc. ‘ smallest zone is now for 8 byte long
kalloc. block
folles ‘ memory blocks

kalloc.
kalloc. memory block are only aligned to their

kalloc. own size if in power of 2 zone
kalloc.
kalloc. 420K /6K 70 96 38

kalloc. 176K 32768K 22 4096 20

oNoNONONONONONONS

Stefan Esser ® iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 40 SektionEins

iIOS 5 kalloc() Zone Changes Consequencsg

thank you to Apple
because this change made
one kernel bug | have
exploitable

and for another bug it
, . . made exploitation a lot
From Apple’s point of view easier

® new kalloc() zones are most probably there to save kernel memory

® changes are not in Mac OS X Lion 10.7.3 / Mountain Lion 10.8
(hot embedded - 10.8 info from beta tester)

From attacker’s point of view
® new zone sizes require adjustment of your kernel heap spraying code
® new zone sizes have impact on exploitability of bugs (e.g. off by one situation)

® new zone alignment has impact on exploitability of bugs (NUL byte overflow)

N\
Stefan Esser ® iOS 5 - An Exploitation Nightmare? ® March 2012 « 41 ‘) SektionEins

Part V

iIOS 5 and KDP Kernel Debugging

Stefan Esser @ iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 42

iIOS Kernel Debugging in iOS 4 days

KDP kernel debugging of iOS
is possible over serial connection

requires SerialKDPProxy
and setting a kernel boot-arg

easily possible with limeraln

IOS SDK comes with usable gdb

N\
Stefan Esser ¢ iOS 5 - An Exploitation Nightmare? ® March 2012 43 ‘) SektionEins

iIOS Kernel Debugging in iOS 5

Kernel debugging demo at BlackHat / SyScan only covered iOS 4

Apple said they would not remove KDP, but people expected it to go away

when iOS 5 came out the instructions on my slides did not work anymore

serial kprintf() still worked but not connecting to KDP

Stefan Esser ® iOS 5 - An Exploitation Nightmare? ® March 2012 ¢ 44 SektionEins

SerialKDPProxy vs. Mac OS X Lion

after | upgraded to iOS 5 | could not debug the kernel anymore

my inbox got flooded with emails asking about the same problem

however | could still see the KDP code inside the kernel binary

it seemed like Apple had somehow disabled it

and then | realized that | could use KDP in iOS 5 with my old MacBook
problem was that upgrading to Lion broke Serial KDPProxy

so just use the fixed Serial KDPProxy from
https://github.com/stefanesser/Serial KDPProxy

Stefan Esser ® iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 45

https://github.com/stefanesser/SerialKDPProxy
https://github.com/stefanesser/SerialKDPProxy

KDP and iPad 2 / iPhone 4S

debugging kernel exploits on these devices interesting
both have new hardware drivers and a multi-core CPU

and soon older devices will be outdated

however activating KDP requires a kernel boot argument
only possible with a bootrom or iBoot level exploit

but iPad 2 and iPhone 4S come with a fixed bootrom

Stefan Esser @ iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 46

Activating KDP for iPad 2 / iPhone 4S

there is no public bootrom exploit
but we can trick an already exploited kernel
we have to fake boot arguments, patch some data

and call several initializer functions

= Chicken & Egg - need a working kernel exploit to do KDP debugging

Stefan Esser ® iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 47

Activating KDP for iPad 2 / iPhone 4S - Step 1

find kalloc() in kernel binary

call it to allocate some memory

write debug=8 boot argument into this memory

alternatively just write debug=8 into an unused kernel area

Stefan Esser ® iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 48

Activating KDP for iPad 2 / iPhone 4S - Step 2

e find PE_boot_args() in kernel binary

® patch it to return a pointer to our fake boot arguments

80240084 _PE boot args ; CODE XREF: 80016886p
80240084 ; J__PE boot argsj ...
80240084 LDR RO, =dword 802F52F8

80240086 LDR RO, [RO,#(dword 802F5368 - 0x802F52F8)]

80240088 ADDS RO, #0x38

8024008A BX LR

N\
Stefan Esser ® iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 49 ‘) SektionEins

Activating KDP for iPad 2 / iPhone 4S - Step 3

find PE_i_can_has_debugger() in kernel binary

use it to lookup address of debugging_allowed variable
use it to lookup address of debug_boot_arg variable
set debugging_allowed to 1

set debug_boot _arg to 8 / DB_KPRT

80240B90 _PE i can has_ debugger ; CODE XREF: sub 80009D58+42p
80240B90 ; sub 8007C240+16p ...
80240B90 CBZ RO, loc 80240BA2

80240B92 LDR R1l, =debug allowed

80240B94 LDR R1, [R1]

80240B96 CMP R1, #0

80240B98 ITEE EQ

80240B9A MOVEQ R1, #0

80240BOC LDRNE R1l, =debug boot arg

80240B9E LDRNE R1, [R1l]

80240BA0 STR R1, [RO]

80240BA2

80240BA2 loc_80240BA2

80240BA2 48 LDR RO, =debug allowed

80240BA4 68 LDR RO, [RO]

80240BA6 47 BX LR

80240BAS 53 2F 80 off 80240BAS8 DCD debug allowed

80240BAC 11 2E 80 off 80240BAC DCD debug boot arg

N\
Stefan Esser ® iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 50 <) SektionEins

Activating KDP for iPad 2 / iPhone 4S - Step 4

e find PE_init_kprintf() in kernel binary

® call it with parameter 0 to initialize the serial kprintf()

80240DF4 _PE init kprintf

80240DF4

80240DF4 var 8 = -8

80240DF4

80240DF4 {R4,R7,LR}
80240DF6 R7, SP, #4
80240DF8 SP, SP, #4
80240DFA R4, RO

80240DFC RO, =dword 802F52F8
80240DFE RO, [RO]
80240E00 RO, #0

80240E02

80240E04 RO, #0

80240E06 sub 80016428
80240E0A R4, loc 80240E42

N\
Stefan Esser ® iOS 5 - An Exploitation Nightmare? ® March 2012 ¢ 51 <) SektionEins

Activating KDP for iPad 2 / iPhone 4S - Step 5

e finally find kdp_init() in kernel binary

® call it to initialize the serial KDP

8000BD14 ; CODE XREF: 80024212p
8000BD14

8000BD14 {R4,R5,R7,LR}

8000BD16 R7, SP, #8

8000BD18 SP, SP, #0x5C

8000BD1A RO, =unk 802D757C

8000BD1C . R2, #0x100

8000BD20 Rl, =aDarwinKernelVe ; "Darwin Kernel Version 11.0.0"...
8000BD22 sub 8007BAFO0

8000BD26 RO, =byte 802D8980

8000BD28 RO, [RO]

8000BD2A RO, loc 8000BD46

8000BD2C R4, =unk 802D757C

8000BD2E R2, #0x100

8000BD32 R1, =aUuid ; "; UUID="

N\
Stefan Esser e iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 52 <) SektionEins

Part Vi

Return to Syscall Arguments - A Story of FAIL

Stefan Esser @ iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 53

Returning to Syscall arguments

in the iIOS 4.3.x untethering exploit | used a BX R1 gadget

gadget replaced one of the system call handlers
idea was to return to the system call argument buffer

introducing code as easy as storing it in the syscall arguments

e syscall (185, 0xe0800001, Oxel2fffle)

but when | tried it in a iOS 5.0 exploit it just crashed...

Stefan Esser ® iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 54

And so the Story of FAIL began

my experiments showed an attempted execution at 0xCxxxxxxx

back in the iOS 4.3.x days it always had been 0x8xxxxxxx

roughly speaking kernel memory at
® Ox8xxxxxxx is executable

® (OxCxxxxxxx or 0xDxxxxxxx IS not executable

made me believe Apple moved system call arguments into NX memory

my iOS 5.x exploits use therefore ditferent methods

Incident Identifier: XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
CrashReporter Key: bb3508569b89cdbabb7e5bea39c£f09162dfef9c91
Hardware Model: iPhone4,1

Date/Time: 2012-02-28 14:45:24.012 +0100

OS Version: iPhone OS 5.0.1 (9A406)

panic(cpu 0 caller 0x8007e8d4): sleh abort: prefetch abort in kernel mode: fault addr=0xcl35b08c

r0: 0x820e5b54 rl: 0xcl35b08c r2: 0x8fl13dlc4 r3: 0x80357925
r4: 0x8£f13dlc0 =r5: 0x000000dl =r6: 0xcl35b088 =r7: 0xd27abfa8
r8: 0x8£f13d180 r9: 0xcl35ae50 rl0: 0x00000006 rll: 0x802ccf44
12: 0x00000000 sp: 0xd27abf78 1lr: 0x80l1lelld44 pc: 0xcl35b08c
cpsr: 0xa0000013 fsr: 0x0000000f far: Oxcl35b08c

Stefan Esser @ iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 55

\
<)SekﬂonEms

And | was so wrong...

® when | researched the “change” for CanSecWest | realized my FAIL

® have a look at the decompiled version of the ARM unix_syscall() function

maxstateargs = 7;

uthread->uu _ap = NULL;

args = &uthread->uu ap;

numargs = callp->sy narg; .

if (!vA3) maxstateargs — 6; if less than8.parameters
use them directly from

if (numargs <= maxstateargs) { ‘(//’////”' arm_saved_state
uthread->uu ap = &state->r[firstarg];

} else if (numargs <= 8 - firstarg) {

memmove (&uthread->uu_args, &state[firstarg], 4 * maxstateargs);
if ('copyin(state->sp + 28, &uthread->uu args[maxstateargs]),

4 * (callp->sy narg - maxstateargs))) {
uthread->uu _ap = uthread;

} \
} if 8 or more parameters

uthread->uu flags |= 4u; .
uthread->uu_rval[0] = O; copy them into uthread
uthread->uu rval[l] = 0;

state->cpsr &= OxDFFFFFFFu;

error = (callp->sy call) (p, uthread->uu ap, uthread->uu rval);

N\
Stefan Esser ® iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 56 <) SektionEins

The Truth

® Apple did not actually fix this exploitation vector in iOS 5

® if there are less than 8 defined parameters
® they are used directly from the arm_saved_state
® the saved state is on the ARM supervisor mode stack

® that happens to be in the 0xCxxxxxxx memory area which is NX

® if there are 8 or more defined parameters

® they are copied into uthread struct
® ythread is allocated via zalloc()

® usually resides in the executable kernel heap area 0x8xxxxxxx

Stefan Esser ® iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 57

iPhone 4S - CacheFAIL

® however if you try this attack on an iPhone 4S it will likely crash
® and the crash reports will make no sense at all

® |t executes code but crashes at an address it should never reach

Incident Identifier: xXxXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX
CrashReporter Key: bb3508569b89cdbabb7e5bea39cf09162dfe9c91
Hardware Model: iPhone4,1

Date/Time: 2012-02-28 15:24:42.980 +0100

OS Version: iPhone O0S 5.0.1 (9A406)

panic(cpu 1 caller 0x8007de74) : undefined kernel instruction
r0: 0x89138000 rl: 0x8a337c00 r2: 0x8a337c44 r3: 0x80524070
r4: 0x8a337c40 r5: 0x000000d r6: OxcO0fdle58 «r7: 0xd281bfa8
r8: 0x8a337c00 r9: 0xc0£fdlc20\rl10: 0x00000006 rll: 0x802ccf44
12: 0xc0fdlc20 sp: 0xd281bf78 \lr: 0x80lell44 pc: 0x8a337cal
cpsr: 0xa0000013 fsr: 0xd28lbf2c\far: 0x915bdé600

execution obviously happend

N\
Stefan Esser ® iOS 5 - An Exploitation Nightmare? ® March 2012 ¢ 58 <) SektionEins

It is only a Caching Problem

® the obscure problem is caused by the CPU cache
® the easiest solution seems to be an extra roundtrip into the kernel

® syscall (222, 0xe0800001, Oxel2fffle) -> normal

 syscall (185, 0xe0800001, Oxel2fffle) -> overwritten

Stefan Esser @ iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 59

Part Vi

Honey, there is a weird machine in my kernel ...

Stefan Esser @ iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 60

Kernel Based Weird Machines

® when you believe easy solutions are gone
® and are very bored
® and watch too many Halvar talks

® then you start to see weird machines everywhere

N\
Stefan Esser ® iOS 5 - An Exploitation Nightmare? ® March 2012 ¢ 61 <) SektionEins

BPF a weird machine for free

BPF - Berkley Packet Filter / BSD Packet Filter
comes with a virtual machine for filtering packets
can only read packet data, but can read & write to scratch memory

BPF programs are validated before execution - not during

BPF programs can only be added by the root user

BUT we can use bpf_filter() instead of injecting own code into kernel

Stefan Esser @ iOS 5 - An Exploitation Nightmare? ® March 2012 ¢ 62

BPF Instructions

each instruction is 64 bit wide

16 bit opcode
8 bit jump true delta
8 bit jump false delta

32 bit constant parameter

Instruction types

load instructions
store instructions
ALU instructions
branch instructions
return instructions

misc instructions

opcodes

addr modes

1db
1ldh

[k]
[k]

[x+k]
[x+k]

1d

#len

M[k]

[kK] | [x+k]

ldx

#len

M[k]

4% ([k]&0xf)

st
stx

M[k]
M[k]

jmp

L

jeq
jgt
jge
jset

Lt,
Lt,
Lt,
Lt,

add
sub
mul
div
and
or

lsh
rsh

ret

X K N XK X XN

tax
txa

Source: S. McCanne, V. Jacobson, “The BSD Packet Filter: A New Architecture for User-level Packet Capture”, 1992

Stefan Esser ® iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 63

\
<) SektionEins

Unchecked Scratch Memory

® Access to the stack base scratch memory is not validated
(at execution time)

= BPF programs can read and write stack values

® BPF program can use ROP to re-execute another BPF program
® BPF program can modity itself it address and SP is known

® this allows read and write access to whole mem

= such a BPF program can apply all kernel patches

Stefan Esser ® iOS 5 - An Exploitation Nightmare? ¢ March 2012 ¢ 64

Conclusion

Apple killed a lot of bugs in iOS 5

new HW and changes to restore process require
more strategic jailbreak release

iIOS is a hard to debug environment
slightest test error might lead to wrong conclusions

in reality Apple still makes it too easy to PWN the kernel

Y
Stefan Esser ® iOS 5 - An Exploitation Nightmare? ® March 2012 ¢ 65 <) SektionEins

Questions

Checkout my github
https://github.com/stefanesser

Stefan Esser @ iOS 5 - An Exploitation Nightmare? ® March 2012 ¢ 66

https://www.github.com/stefanesser
https://www.github.com/stefanesser

