loT Prototyping with Arduino,
Particle Photon and IFTTT

thomas.amberg@yaler.net
CC BY-SA tamberg.org
September 2015

Internet of Things (loT)

Computers with sensors and actuators
connected through Internet protocols

Instead of just reading and editing virtual
resources, we can now measure and
manipulate physical properties

The Internet starts pervading the real world

L0

Topics of this workshop

Getting started
(Setup and programming of loT hardware)

Measuring and manipulating
(Physical computing: sensors and actuators)

Connecting your device to the Internet
(loT: monitoring sensors, controlling actuators)

Mash-ups with 37 party services and devices
(Connecting Web-enabled devices to each other)
How the Internet works under the hood

(Some definitions and details, in case you wonder)

Questions? Just ask / Use Google / Help each other

Choosing your hardware

We use Arduino and Particle Photon hardware
Both speak the same programming language
Arduino is a classic and easier to set up

Know Arduino? Try the Photon!

Note: Check arduino.cc and particle.io to learn more

o)

Getting started

The IDE (Integrated Development Environment)
allows you to program your board, i.e. “make it
do something new”

You edit a program on your computer, then
upload it to your board where it’s stored in the
program memory (flash) and executed in RAM

Note: Once it has been programmed, your board

can run on its own, without another computer ST

Getting started with Arduino

To install the Arduino IDE and connect your Arduino
ooard to your computer via USB, see

nttp://arduino.cc/en/Guide/MacOSX or
nttp://arduino.cc/en/Guide/Windows or
nttp://arduino.cc/playground/Learning/Linux

Or install https://codebender.cc/static/plugin and
use the https://codebender.cc/ online IDE

Note: Codebender is great, but has some limitations

http://arduino.cc/en/Guide/MacOSX
http://arduino.cc/en/Guide/MacOSX
http://arduino.cc/en/Guide/Windows
http://arduino.cc/en/Guide/Windows
http://arduino.cc/playground/Learning/Linux
http://arduino.cc/playground/Learning/Linux

Getting started with Photon

To install the Particle CLI and connect your Photon
board to your computer via USB, see

https://docs.particle.io/guide/getting-started/
connect/photon/

Then access the Particle IDE online at https://
build.particle.io/

Or use the Atom IDE https://www.particle.io/dev

Note: There is an app for Photon setup, but the

command line interface (CLI) is more robust
©

https://docs.particle.io/guide/getting-started/connect/photon/
https://docs.particle.io/guide/getting-started/connect/photon/
https://docs.particle.io/guide/getting-started/connect/photon/
https://build.particle.io/
https://build.particle.io/
https://build.particle.io/

Hello (serial output)

void setup () { // runs once
Serial.begin(9600); // set baud rate
!

void loop () { // runs again and again
Serial.printin("Hello"); // print Hello
}

Note: type this source code into your IDE and
upload it to the device, then check the next slide

Serial output with Arduino

Click the Serial Monitor icon to see serial output, and
make sure the baud rate (e.g. 9600) matches your code

® 0 sketch_aug27a | Arduino 1.6.5

P N
Serial Monitor .

sketch_aug2?7a

void setup() {

Serial .begin(9600); O O] /dev/cu.usbmodem1411 (Arduino Uno)
}
Send
void loop() {
Serial.println(“Hello");|Hello
3} Hello
Hello
Hel
— | |}\/_¢ Autoscroll Both NL & CR = 9600 baud v

Note: Serial output is great to debug your program oo

Serial output with Photon on Mac

Open a terminal, connect the Photon to USB, and type

S screen /dev/tty.u On Linux
Then hit TAB to find the USB device name it's /dev/
S screen /dev/tty.usbmodem1431 ttyACM

Add the baud rate matching your source code
S screen /dev/tty.usbmodem1431 9600
And h|t RETURN to see the output

> tamberg — screen — 80x24
screen ar

Hello
Hello

Note: Serial output is great to debug your program

Halla

Serial output with Photon on PC

Install TeraTerm https://en.osdn.jp/projects/ttssh2

/releases/ and follow https://learn.sparkfun.com/tutorials

/terminal-basics/tera-term-windows to see the output

2. Tera Term - [disconnected] VT

ICPAIP

0K |

Note: Serial output is great to debug your program

192.168.20.57

UNSPEC

Port: [COM1: Communications Port (COM1) ~|

COM1: Communications Port [COMT1)
COM23: USB Serial Port (COM23

COMS56: Standard Serial over Bluetooth link [(‘OMSB

https://en.osdn.jp/projects/ttssh2/releases/
https://en.osdn.jp/projects/ttssh2/releases/
https://en.osdn.jp/projects/ttssh2/releases/
https://en.osdn.jp/projects/ttssh2/releases/
https://en.osdn.jp/projects/ttssh2/releases/
https://learn.sparkfun.com/tutorials/terminal-basics/tera-term-windows
https://learn.sparkfun.com/tutorials/terminal-basics/tera-term-windows
https://learn.sparkfun.com/tutorials/terminal-basics/tera-term-windows
https://learn.sparkfun.com/tutorials/terminal-basics/tera-term-windows
https://learn.sparkfun.com/tutorials/terminal-basics/tera-term-windows
https://learn.sparkfun.com/tutorials/terminal-basics/tera-term-windows

Examples on Bitbucket

The source code of the following examples is
available on Bitbucket, a source code repository

Download the ZIP from https://bitbucket.org/
tamberg/iotworkshop/get/tip.zip

Or browse code online at https://bitbucket.org/
tamberg/iotworkshop/src/tip

Note: use the Raw button to see files as plain text

https://bitbucket.org/tamberg/iotworkshop/get/tip.zip
https://bitbucket.org/tamberg/iotworkshop/get/tip.zip
https://bitbucket.org/tamberg/iotworkshop/get/tip.zip
https://bitbucket.org/tamberg/iotworkshop/get/tip.zip
https://bitbucket.org/tamberg/iotworkshop/get/tip.zip
https://bitbucket.org/tamberg/iotworkshop/src/tip
https://bitbucket.org/tamberg/iotworkshop/src/tip
https://bitbucket.org/tamberg/iotworkshop/src/tip
https://bitbucket.org/tamberg/iotworkshop/src/tip
https://bitbucket.org/tamberg/iotworkshop/src/tip

Measuring and manipulating

Measuring and manipulating

loT hardware has an interface to the real world
GPIO (General Purpose Input/Output) pins

Measure: read sensor value from input pin
Manipulate: write actuator value to output pin

Inputs and outputs can be digital or analog

L0

The LED , ‘
Anode Cathode +

The LED (Light Emitting Diode)
is a simple digital actuator

LEDs have a short leg (-) and a long leg (+)
and it matters how they are oriented in a circuit

To prevent damage, LEDs are used together with
a 1KQ resistor (or anything from 300Q to 2KQ)

@90

The resistor J "

Resistors are the workhorse of electronics
Resistance is measured in Q (Ohm)
A resistors orientation does not matter

A resistors Q) value is color-coded right on it

Note: color codes are great, but it’s easier to use a

multi-meter if you've got one, and just measure Q
©

The breadboard

A breadboard lets you wire electronic
components without any soldering

Its holes are connected Ifd I Ewwe
 EEREEEER
“under the hood” as | AL

shown here wem—,
E R R EE R

iiiiillli.......-

L

E R R EREE RN

@90

Wiring a LED with Arduino

Note: the additional
1K Q resistor should
be used to prevent
damage to the pins /
LED if it’s reversed

The long leg of the
LED is connected to
.......... pin D7, the short leg
CDoiiul el to ground (GND)

....................
....................
....................
....................
....................

fritzing ()

Wiring a LED with Photon

Note: the additional
1K Q resistor should
be used to prevent
damage to the pins /
LED if it’s reversed

The long leg of the
LED is connected to
pin D7, the short leg
to ground (GND)

fritzing

@90

Controlling a LED (digital output)

int ledPin = 7;
Note: blinking a LED
void setup () { is the Hello World of
pinMode(ledPin, OUTPUT); embedded software
} Set ledPin as wired
void loop () { in your LED circuit

digitalWrite(ledPin, HIGH);
delay(500); // wait 500ms ,

o _ . means LED is on,
digitalWrite(ledPin, LOW); LOW = digital 0 (OV)

delay(500); means LED is off
))

HIGH = digital 1 (5V)

Controlling a relay (digital output)

s - il -
.:,q 2 LB

NN
avaau-d Le avran

Note: the relay shield uses pins DO-D3 for the relays

The switch

A switch is a simple, digital sensor

Switches come in different forms, but all of them
in some way open or close a gap in a wire

The pushbutton switch has four legs for easier
mounting, but only two of them are needed

Note: you can also easily build your own switches,

for inspiration see e.g. http://vimeo.com/2286673 © 00

Wiring a switch with Arduino

Note: the resistor in
this setup is called
pull-down ‘cause it
pulls the pin voltage
down to GND (0V) if
the switch is open

Pushbutton switch
10K Q resistor
5V
GND
(max input 5V!)

fritzing

Wiring a switch with Photon

Note: the resistor in
this setup is called
pull-down ‘cause it
pulls the pin voltage
down to GND (0V) if
the switch is open

Pushbutton switch
10K Q resistor
fritzing VIN = 4.8V out
GND

(max input 5V!)

Reading a switch (digital input)
int sensorPin = 2; // e.g. button switch

void setup () {

Serial.begin(9600); // set baud rate Oper.1 the IDE Serial

pinMode(sensorPin, INPUT); monitor or terminal
) to see log output
void loop () {

int sensorValue = digitalRead(sensorPin);

Serial.printIn(sensorValue); // print O or 1
}

L0

Switching a LED

int switchPin = 2;

intledPin=7; // or 13

void setup () {
pinMode(switchPin, INPUT);
pinMode(ledPin, OUTPUT);

}
void loop () {

int switchValue = digitalRead(switchPin);

if (switchValue ==0) {
digitalWrite(ledPin, LOW);

}else { // switchValue ==
digitalWrite(ledPin, HIGH);

}

Note: figure out the
wiring or just use
the built-in LED, i.e.
pin 13 on Arduino
and D7 on Photon

The code inside an if
statement is only
executed if the con-
dition is true, else is

executed otherwise

The LDR

: : O
A photoresistor or LDR (light

dependent resistor) is a
resistor whose resistance
depends on light intensity

An LDR can be used as a simple, analog sensor

The orientation of an LDR does not matter

L0

Wiring an LDR with Arduino

fritzing

Note: this setup is a
voltage-divider, as
the 5V total voltage
is divided between
LDR and resistor to
keep OV < A0 < 2.5V

Photoresistor (LDR)
10K Q resistor

5V

GND

Wiring an LDR with Photon

Note: this setup is a
voltage-divider, as
the total voltage is
divided between
LDR and resistor to
keep OV < A0 < 2.5V

Photoresistor (LDR)
10K Q resistor

VIN = 4.8V out
GND

fritzing

@90

Reading an LDR (analog input)

int sensorPin = AO; // LDR or other analog sensor

void setup () {

Serial.begin(9600); // set baud rate Open the IDE serial
} monitor or terminal

to see log output
void loop () {

int sensorValue = analogRead(sensorPin);

Serial.printIn(sensorValue); // print value
}

Note: use e.g. Excel to visualize values over time SO

The Servo

A servo motor takes an
input between 0 and 180
which is translated into a
motor position in degrees

fritzing

A servo is a analog actuator

To create an analog output for the servo, the
device uses pulse width modulation (PWM)

L0

Wiring a Servo with Arduino

Note: PWM pins on
Arduino are those
with a ~ symbol

5V
GND

fritzing

@90

Wiring a Servo with Photon

Note: PWM pins on
Photon are DO - D3,
A4 and A5

VIN = 4.8V out
GND

fritzing
)

Controlling a Servo (PWM output)

#include <Servo.h> // remove this line on the Photon
Servo servo; // create a new Servo object

int servoPin=3; // a PWM pin .
Note: Servo objects

void setup () { let you use Servos

servo.attach(servoPin); without PWM skills

}
The for loop repeats

void loop () { from pos O until pos

for (int posS = 0; pOS <= 180; pOS += 10) { . . f
servo.write(pos); Is 180, in steps of 10

delay(100);

}
} @NoIe)

Controlling a Servo with an LDR

#include <Servo.h> // remove this line on the Photon

Servo servo; // create a new Servo
int servoPin=3; // a PWM pin
int sensorPin = AQ; // LDR

void setup () {

servo.attach(servoPin);
}

void loop () {
int val = analogRead(sensorPin);
int pos = map(val, 0, 255, 0, 180);
servo.write(pos);

}

Note: combine the
wiring diagrams of
both, Servo & LDR

The map function is
useful to map one
range onto another

@90

Connecting to the Internet

Web client with Curl

Install Curl from http://curl.haxx.se/ then open a
terminal and type, e.g.

S curl -vX GET http://www.oh-a-show.net/

The result is the same as opening the page
http://www.oh-a-show.net/ in your browser,
right-clicking it and selecting View Page Source

Note: browsers, curl or a device can be Web clients

http://curl.haxx.se/
http://curl.haxx.se/
http://www.oh-a-show.net/

Adding Ethernet to Arduino

Note: the Ethernet
shield stacks onto
the Arduino - just
make sure the pins
line up properly

Pins 10, 11, 12 and
13 are used by the
shield according to
http://playground.
arduino.cc/Main/

$8% ga237z3 ShieIdPinusage
fritzing @

Adding CC3000 Wi-Fi to Arduino

Note: make sure to
use a reliable power
source, e.g. USB, as
Wi-Fi consumes lots
of power

CC3000 VIN to 5V
GND to GND

@90

Web client with Arduino (Ethernet)

After adding an Ethernet shield to the Arduino,
connect it with the Ethernet cable, then open File >
Examples > Ethernet > WebClient

byte mac[] ={... };, // MAC from sticker on shield
IPAddress ip(...); // set a unique IP or just ignore

If it works, change the HTTP request path and host

Note: open the serial monitor window to see output

o)

Web client with Arduino (CC3000)

Install the library http://learn.adafruit.com/
adafruit-cc3000-wifi/cc3000-library-software

then open File > Examples > Adafruit_CC3000 >
WebClient

#define WLAN_SSID "..." // set local Wi-Fi name
#define WLAN_PASS "..." // set Wi-Fi password
If it works, change the WEBSITE and WEBPAGE

Note: open the serial monitor window to see output

http://learn.adafruit.com/adafruit-cc3000-wifi/cc3000-library-software
http://learn.adafruit.com/adafruit-cc3000-wifi/cc3000-library-software

Web client with Photon

The Particle Photon has built-in Wi-Fi. See Getting
Started with Photon, or press SETUP for 3s and set
up SSID and password of a new local network with

S particle setup wifi

In the Particle IDE, go to Libraries > Community
Libraries > HttpClient and click Use This Example
If it works, change request hosthame and path

Note: open the serial monitor window to see output

o)

Monitoring connected sensors

ThingSpeak with Curl

The ThingSpeak service lets you store, monitor
and share sensor data in open formats. Sign up
at https://thingspeak.com/ to create a channel
and get API keys, then try the following:

S curl -vX POST http://api.thingspeak.com/
update?key=WRITE _AP| KEY&field1=42

S curl -v http://api.thingspeak.com/channels/
CHANNEL ID/feed.json?key=READ API KEY

L0

https://thingspeak.com/

ThingSpeak with Arduino (Ethernet)

Copy & paste the code https://github.com/iobridge/
ThingSpeak-Arduino-Examples/blob/master/Ethernet/
Arduino_to ThingSpeak.ino

Note: use Raw to get text

byte mac[] ={... };, // MAC from sticker on shield
String writeApiKey = "..." // from channel AP| keys

Analog input expected on pin A0, e.g. from an LDR

See https://thingspeak.com/channels/CHANNEL_ID
)

https://github.com/iobridge/ThingSpeak-Arduino-Examples/blob/master/Ethernet/Arduino_to_ThingSpeak.ino
https://github.com/iobridge/ThingSpeak-Arduino-Examples/blob/master/Ethernet/Arduino_to_ThingSpeak.ino
https://github.com/iobridge/ThingSpeak-Arduino-Examples/blob/master/Ethernet/Arduino_to_ThingSpeak.ino
https://github.com/iobridge/ThingSpeak-Arduino-Examples/blob/master/Ethernet/Arduino_to_ThingSpeak.ino
https://github.com/iobridge/ThingSpeak-Arduino-Examples/blob/master/Ethernet/Arduino_to_ThingSpeak.ino
https://github.com/iobridge/ThingSpeak-Arduino-Examples/blob/master/Ethernet/Arduino_to_ThingSpeak.ino

ThingSpeak with Arduino (CC3000)

Open File > Examples > Adafruit CC3000 >
WebClient and set WLAN_SSID and WLAN_PASS
as before, then change web site and page to
#define WEBSITE "api.thingspeak.com”

#define WEBPAGE "/update?
key=WRITE_AP|_KEY&field1=42"

If it works, replace 42 with analog input, e.g. from an
LDR using something like + String(analogRead(A0))

See https://thingspeak.com/channels/CHANNEL ID

Note: this example requires a bit of programming ST

ThingSpeak with Photon

In the Particle IDE, go to Libraries > Community
Libraries > ThingSpeak and click Use This Example

Replace YOUR-CHANNEL-KEY with a write APl key

If it works, replace int rand = ... with analog input,
e.g. from an LDR on pin AO

See https://thingspeak.com/channels/CHANNEL ID
©

Controlling connected actuators

The NeoPixel

Flat side

Datain Data out

Ground

A multi-color LED with a chip in each pixel that

can be controlled with a (PWM-based) library
(QUOC

Wiring a NeoPixel with Arduino

Note: PWM pins on
Arduino are those
with a ~ symbol

Flat side of the LED
is left on this picture

5V
GND
D6 (PWM)

fritzing @

Wiring a NeoPixel with Photon

Note: PWM pins on
Photon are DO - D3,
A4 and A5

Flat side of the LED
is left on this picture

VIN = 4.8V out
GND
D2 (PWM)

fritzing

@90

Testing a NeoPixel with Arduino

Install the library https://github.com/adafruit/
Adafruit NeoPixel then open File > Examples >
Adafruit_Neopixel > strandtest

Adafruit NeoPixel strip = Adafruit_NeoPixel(1, PIN,
NEO GRB + NEO _KHZ400);

If it works, replace loop content with strip.setPixel
Color(0, strip.Color(0, 255, 0)); strip.show();

Note: the rapid blinking is intended for LED strands

https://github.com/adafruit/Adafruit_NeoPixel
https://github.com/adafruit/Adafruit_NeoPixel
https://github.com/adafruit/Adafruit_NeoPixel

Testing a NeoPixel with Photon

In the Particle IDE, go to Libraries > Community
Libraries > NeoPixel and click Use This Example

#define PIXEL COUNT 1 // 10
#define PIXEL TYPE WS2811 // \WS2812B

If it works, remove the for loops and try
strip.setPixelColor(0, strip.Color(0, 255, 0));

Note: the pixel is set green, red, blue (GRB), not RGB 590

Connected LED with Arduino (Ethernet)

Sign up at https://valer.net/ to get a relay domain

https://bitbucket.org/tamberg/iotworkshop/src/

tip/Arduino/NeoPixelWebService/
NeoPixelWebService.ino

S curl —vX PUT http://RELAY DOMAIN.try.yaler.net
/led/color/ee6600

Note: replace RELAY _DOMAIN with your relay domaln@

https://yaler.net/
https://bitbucket.org/tamberg/iotworkshop/src/tip/Arduino/NeoPixelWebService/NeoPixelWebService.ino
https://bitbucket.org/tamberg/iotworkshop/src/tip/Arduino/NeoPixelWebService/NeoPixelWebService.ino
https://bitbucket.org/tamberg/iotworkshop/src/tip/Arduino/NeoPixelWebService/NeoPixelWebService.ino

Connected LED with Arduino (CC3000)

Sign up at https://valer.net/ to get a relay domain

https://bitbucket.org/tamberg/iotworkshop/src/

tip/Arduino/NeoPixelWebServiceCc3k/
NeoPixelWebServiceCc3k.ino

S curl —vX PUT http://RELAY DOMAIN.try.yaler.net
/led/color/ee6600

Note: replace RELAY _DOMAIN with your relay domaln@

https://yaler.net/
https://bitbucket.org/tamberg/iotworkshop/src/tip/Arduino/NeoPixelWebServiceCc3k/NeoPixelWebServiceCc3k.ino
https://bitbucket.org/tamberg/iotworkshop/src/tip/Arduino/NeoPixelWebServiceCc3k/NeoPixelWebServiceCc3k.ino
https://bitbucket.org/tamberg/iotworkshop/src/tip/Arduino/NeoPixelWebServiceCc3k/NeoPixelWebServiceCc3k.ino

Connected LED with Photon

https://bitbucket.org/tamberg/iotworkshop/src/
tip/ParticlePhoton/NeoPixelWebService/
NeoPixelWebService.ino (include NeoPixel library)

S curl -vX POST https://api.particle.io/vl/devices/
DEVICE ID/led -d access token=ACCESS TOKEN -d
args=330033

toni v
Device ID:

3500460000473

You are building with
firmware: Latest (0.4.4) [

Note: the Particle Cloud API simplifies Web services

https://bitbucket.org/tamberg/iotworkshop/src/tip/ParticlePhoton/NeoPixelWebService/NeoPixelWebService.ino
https://bitbucket.org/tamberg/iotworkshop/src/tip/ParticlePhoton/NeoPixelWebService/NeoPixelWebService.ino

IFTTT

If This Then That (IFTTT) is a mash-up platform

An IFTTT Recipe connects two Web services (or a
service and a device) using their Web APIs

The IFTTT Maker Channel uses Webhooks
(outgoing HTTP requests) to call your device, and
you can use Web requests to trigger IFTTT, the

Particle Channel (for Photon) explains itself
)

IFTTT Do Button with Arduino

Connect the Maker Channel at https://ifttt.com/maker

Get the Do Button App, tap +' > Channels > Maker >
Create a new recipe > Make a Web request > ... then

go to https://ifttt.com/myrecipes/do for convenience

URL: http://RELAY_DOMAIN.try.yaler.net/led?color=330033
Method: POST
Content Type: application/x-www-form-urlencoded

)

https://ifttt.com/maker
https://ifttt.com/maker
https://ifttt.com/myrecipes/do
https://ifttt.com/myrecipes/do

IFTTT Do Button with Photon

Connect the Particle channel at https://ifttt.com/particle

Get the Do Button App, tap '+' > Channels > Particle >

Create a New Recipe > Call a function and select, e.g.
led on DEVICE_NAME

Set the with input field to a color value, e.g. 330033

L0

https://ifttt.com/particle
https://ifttt.com/particle

IFTTT Recipes

Once a recipe works, you can publish it (hiding
unneeded fields) for everybody to clone, e.g.

https://ifttt.com/recipes/320868-light-up-
arduino-led-at-sunset

https://ifttt.com/recipes/320870-light-up-
photon-led-at-sunset

Note: "Do" recipes cannot be published for now

L0

https://ifttt.com/recipes/320868-light-up-arduino-led-at-sunset
https://ifttt.com/recipes/320868-light-up-arduino-led-at-sunset
https://ifttt.com/recipes/320868-light-up-arduino-led-at-sunset
https://ifttt.com/recipes/320870-light-up-photon-led-at-sunset
https://ifttt.com/recipes/320870-light-up-photon-led-at-sunset

o @ ‘Light up LED at sunset by X

T C https://ifttt.com/recipes/320870-light-up-led-at-sunset Rt

I]F?T? Browse tamberg~

Light up LED at sunset

How the Internet works in detail

If you wonder what TCP/IP, HTTP or DNS means -
or care about the difference between protocol,
data format and API, read on...

qye

o:a ‘s;?“’
THE ARPA NETWORK

PDEC (94
L0

Protocols

Parties need to agree on how to exchange data

(communicating = exchanging data according to a
protocol)

e.g. Ethernet links local computers physically,

TCP/IP is the foundation of the Internet, and
HTTP is the protocol that enables the Web

Note: protocols are layered, e.g. HTTP messages

transported in TCP/IP packets sent over Ethernet ST

TCP/IP

IP (Internet Protocol) deals with host addressing
(each host has an IP address) and packet routing

TCP (Transmission Control Protocol): connection
oriented, reliable data stream (packets in-order,
errors corrected, duplicates removed, discarded
or lost packets resent) from client to server

Note: DHCP assigns an IP address to your device

which is mapped to the device’s MAC address 600

HTTP

HTTP (Hypertext Transfer Protocol) enables the
distributed, collaborative system we call the Web

Google
(Server)

The client sends an HTTP request,

GET /search?q=IoT
the server replies with a response | oo asvgooglocony

HTTPR/ 1]l 300 ok

HTTP Message = Request|Response Comremt-Longti ..
Request = (GET|POST]...) Path CRLF *(Header CRLF) CRLF Bodly wraL comenr.. |
Response = "HTTP/1.1" (200|404]...) CRLF *(Header CRLF) CRLF Body

CRLF = "\r\n"

(Read the spec: http://tools.ietf.org/html/rfc2616)

Note: HTTP is human readable, i.e. it’s easy to debu
Y 5

http://tools.ietf.org/html/rfc2616

URIs

The URI (Uniform Resource ldentifier) is a string of
characters used to identify a resource

http://blog.tamberg.org/2011-10-17/side-projects.html

scheme authority = host [*. port] path

(Read the spec: http://tools.ietf.org/html/rfc3986)
QR codes, NFC tags can contain a machine readable URI

loT: URIs can refer to things or their physical properties

Note: good URIs can be hand-written on a napkin

and re-typed elsewhere, without any ambiguity GO0

http://tools.ietf.org/html/rfc3986

DNS

DNS (Domain Name System) maps Internet
domain names to one or more |IP addresses

Try it in your desktop computer terminal, e.g.
S nslookup google.com
173.194.35.6 ...

Note: if your device doesn’t support DNS you can

connect to the server’s IP, but beware of changes ST

Data formats

Parties need to agree on what is valid content
(parsing = reading individual content tokens)

CSV: easy to parse, suited for tables, old school
JSON: easy to parse, de facto standard

XML: used by many services, W3C standard
Semi-structured text, e.g. Twitter’s @user, #tag
Binary formats, e.g. PNG, MP3, ...

L0

RSS

In addition to generic data formats like CSV,
JSON, XML there are refinements that add
semantics to the document

RSS (or Atom) is a data format for lists of items

Invented for blogs, RSS is great for data feeds

Note: RSS documents are also XML documents,
but not all XML documents contain valid RSS

L0

HTML

HTML (Hypertext Markup Language) is a data
format describing how a Web page should be

structured and displayed

Look at the HTML (and Javascript) code of any
Web page with "view source" in your browser

Note: HTML documents are not always valid XML

documents, but Web browsers are very forgiving IOt

APIs

An API (Application Programming Interface), is
an agreement between clients and providers of a
service on how to access a service, how to get
data out of it or put data into it

The Ul (User Interface) of a service is made for
humans, the APl is made for other computers

Note: good APIs are documented or self-explanatory

REST

REST (Representational State Transfer) is a style
of designing an APl so that it is easy to use

REST APIs use HTTP methods (GET, PUT, POST,
DELETE) to let you perform actions on resources

REST APIs can be explored by following links

Note: good Web Uls are often built following the

same principles, therefore REST APIs feel natural ST

Learning more

Electronics: Ohm’s law, Kirchhoff’s current and voltage
law (KCL & KVL), Make: Electronics by Charles Platt

Interaction Design: Smart Things by Mike Kuniavsky,
Designing Connected Products by Claire Rowland et al.

Physical Computing: Making Things Talk by Tom Igoe
REST: RESTful Web Services by Leonard Richardson
Programming: read other people’s code, e.g. on GitHub

loT: Designing the Internet of Things by Adrian McEwen
and Hakim Cassimally, Postscapes.com, loTList.co

Note: MechArtLab Zirich has an Openlab on Tuesday

Reducing E-waste

Tired of hacking?
Donate your hardware...
e.g. MechArtLab
Hohlstrasse 52

8004 Zurich

L0

Thank you

thomas.amberg@yaler.net
twitter.com/tamberg

tamberg.org

Slides online at http://goo.gl/n3hCbK

