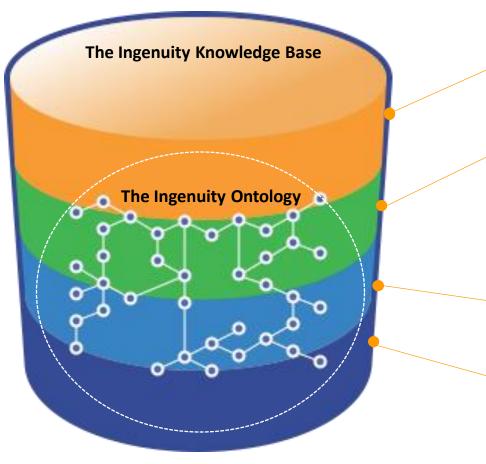


IPA Training: Maximizing the Biological Interpretation of Gene, Transcript & Protein Expression Data with IPA

× (Share Browser WebEx 🔻	Ingenuity Products Login ×	
	INGENUITY* PRODUCTS	SCIENCE BLOG	GIN
		Choose a product to login	
	INGENUITY PATHWAY ANALYSIS		INGENUITY VARIANT ANALYSIS
	Comprehensive pathway and network analysis of complex 'omics data	For current customers	Rapidly find causal variants using a knowledge-driven approach
	NEW: INSTALL IPA CLIENT	LOGIN	LOGIN
		me! Please login	
	Emai Pass		
		Remember my password LOG IN	
		Sign Up Forgot Password	



IPA

- Deep pathway understanding of a single gene/protein
 - □ Drug/therapeutic target discovery
- Biological understanding of large data sets, including
 - Differential gene expression, array and RNAseq (transcriptomics)
 - Isoform annotation (New)
 - Differential protein expression (proteomics)
 - □ Genes with loss/gain-of-function variants (New)
 - Metabolomics
 - □ miRNA expression
 - □ Gene List
 - Chip-seq
 - siRNA screening
 - Sequence Variants (see also Ingenuity Variant Analysis)
 - Methylation
 - □ Protein phosphorylation

Ingenuity Knowledge Base

Ingenuity Findings

Ingenuity® Expert Findings – Manually curated Findings that are reviewed, from the full-text, rich with contextual details, and are derived from top journals.

Ingenuity® ExpertAssist Findings –

Automated text Findings that are reviewed, from abstracts, timely, and cover a broad range of publications.

Ingenuity Modeled Knowledge

Ingenuity[®] Expert Knowledge – Content we model such as pathways, toxicity lists, etc.

Ingenuity[®] Supported Third Party

Information – Content areas include Protein-Protein, miRNA, biomarker, clinical trial information, and others

- File > New > Core Analysis
 Or File > Data Set Upload
- Upload Data (gene expression, protein expression, metabolomics, etc.)
- Set Core Analysis Settings
- Run Analysis
- Interpret Results

Data Upload

Typical value-types that are uploaded to IPA

Identifier List

A A	1							
1 ID	+differentia	l expression						
2 NM 130786	A	В						
3 NR 015380		0						
4 NM_138932	$\left(\right)$	Log2Ratio						
5 NM_014576	130786	0.14						
5 NM_138933	015380	-0.99	+significa	anco sta	+			
NM_000014	138932	-0.02			<u> </u>			
8 NR_026971	014576	-0.02	В	С		+RPKM		
NM_144670	138933	0.02	La sal Dation			(maximum	RPKM he	tween
0 NM_001080438	000014	-4.79	Log2Ratio			`		
1 NM_017436	026971	-0.67	0.14	8.68E-0		•		on and conti
2 NM_016161	144670	-5.96 32	-0.99	2.24E-0		recommen	ded for RI	NAseq)
3 NM_015665	001080438	-1.97 76	-0.02	9.83E-0 9.85E-0		В	С	D
1	017436	-1.09 33	-0.02	9.05E-0		0		Intensity/
12 N	M_016161	2.02 14	-4.79	1.02E-0		Log2Ratio	p-value	RPKM/FPKM
13 N	M_015665	-0.27	-4.75	6.17E-(0.14	8.68E-01	2931.69
has such as	Marcaceso	9 INIVI_144070	-5.96	1.30E-(-0.99	2.24E-01	1649.26
	-	10 NM_001080438	-1.97	3.47E-(11 32	-0.02	9.83E-01	1.67
		11 NM_017436	-1.09	5.02E-(1 76	-0.02	9.85E-01	1.77
		12 NM_016161	2.02	5.97E-(2 33	0.02	9.79E-01	1.83
		13 NM 015665	-0.27	5.68E-(01 14	-4.79	1.02E-01	239.75
				100E		-0.67	6.17E-01	213.79
				9 NM 14	44670	-5.96	1.30E-01	610.64
				10 NM_0	01080438	-1.97	3.47E-01	3.91
				11 NM_0	17436	-1.09	5.02E-01	6186.83
				12 NM_0	16161	2.02	5.97E-02	149.85
				13 NM 0	15665	-0.27	5.68E-01	13330.34

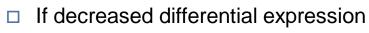
Format for multi-observation upload

- Multiple experimental differential expressions can be grouped into a single spreadsheet and upload
 - Nice-to-have if you are comparing a series of expression values such as a timecourse
 - □ Be sure and name your observations at the time of upload in IPA

		O	oservation	1	Obs	ervation	2
		γ)
	Α	В	С	D	E	F	G
		12 Hour	12 Hour	12 Hour	24 Hour	24 Hour	24 Hour
1	ID	Log2Ratio	p-value	Intensity/	Log2Ratio	p-value	Intensity/
2	NM_130786	0.14	8.68E-01	2931.69	-0.83	4.65E-01	4791.17
3	NR_015380	-0.99	2.24E-01	1649.26	0.72	5.32E-01	198.72
4	NM_138932	-0.02	9.83E-01	1.67	1.58	8.31E-03	7879.80
5	NM_014576	-0.02	9.85E-01	1.77	-0.77	1.26E-02	46757.06
6	NM_138933	0.02	9.79E-01	1.83	0.90	2.03E-02	26426.36
7	NM_000014	-4.79	1.02E-01	239.75	-0.01	9.82E-01	2117.73
8	NR_026971	-0.67	6.17E-01	213.79	0.12	8.64E-01	14076.24
9	NM_144670	-5.96	1.30E-01	610.64	-1.62	1.46E-01	31.85
10	NM_001080438	-1.97	3.47E-01	3.91	0.12	8.25E-01	10491.96
11	NM_017436	-1.09	5.02E-01	6186.83	2.02	4.44E-01	14788.50
12	NM_016161	2.02	5.97E-02	149.85	-0.57	1.09E-01	273101.00
13	NM_015665	-0.27	5.68E-01	13330.34	0.36	4.87E-01	11876.00
1/	NM_023928	_1 //2	1 03E-02	22828 45	_0 17	7 /8E-01	3330 36

Verify the differential expression calculation

Recommend Log₂(ratio) differential expression

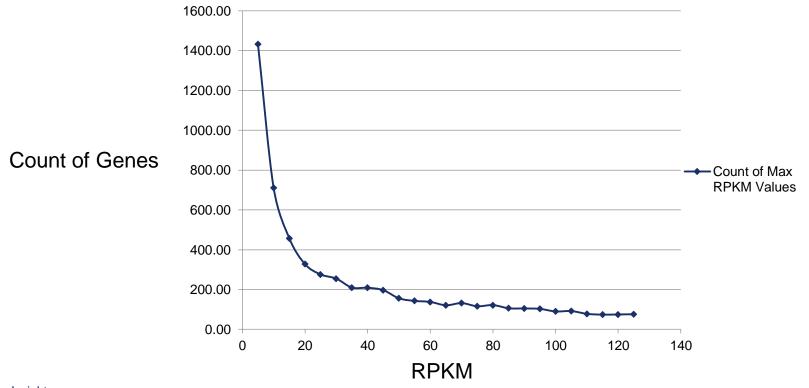

 $Log_2\left(\frac{Experimental Condition Exp.}{Control Exp}\right)$

Ratio differential expression

 $\left(\frac{Experimental\ Condition\ Exp.}{Control\ Exp}\right)$

- Fold Change
 - □ If increased differential expression

 $\left(\frac{Experimental\ Condition\ Exp.}{Control\ Exp} \right)$


 $-1\left(\frac{Control Exp.}{Experimental Condition Exp.}\right)$

Fold change will never have values between 1 and -1

Filtering on absolute expression

- RNAseq measurements often result in many significant differential fold changes at low absolute transcript expression levels
- Including the maximum RPKM value of your experimental condition and control allows for later filtering on absolute expression value in addition to fold change and p-value

Best practices

- Calculate metrics outside of IPA (e.g. fold-change, p-value)
- Create an Excel spreadsheet or tab delimited file
 - □ Only 1 header row allowed
 - □ One column must have identifiers, preferably the left-most column
 - □ Can have up to 20 observations
 - □ IPA will only look at the top worksheet in an Excel workbook
- Group related observations into a single spreadsheet if possible
 - □ Time course, drug concentration, cell lines, etc.
- Specify array platform (chip) if possible
 - □ It is OK to use "Not specified/applicable"
- Pre-filter data at the lowest threshold that you have confidence in
 - □ For example, probe measurement p-value of .05 or other criteria
 - □ Use the Recalculate button to refresh the screen

Examples of data set types

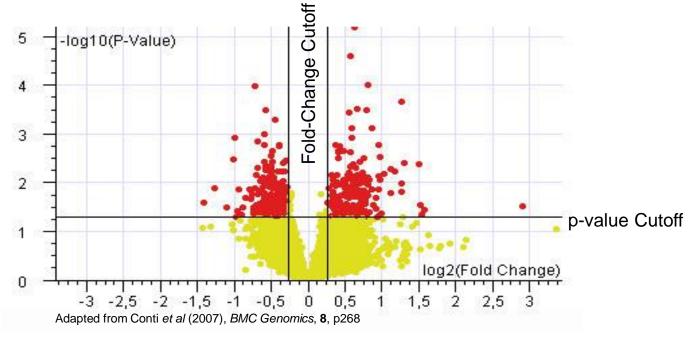
- Differential gene expression, array and RNAseq (transcriptomics)
 - Isoform annotation (New)
- Differential protein expression (proteomics)
- □ Genes with loss/gain-of-function variants (New)
- Metabolomics
- miRNA expression
- Gene List
 - Chip-seq
 - siRNA screening
 - Sequence Variants (see also Ingenuity Variant Analysis)
- Methylation
- Protein phosphorylation

- The gene ID might not correspond to a known gene product. For example, most ESTs are not found in the knowledge base (exception: ESTs that have a corresponding Entrez Gene identifier are found in the knowledge base).
- A gene/protein ID might correspond to several loci or more than one gene. Such identifiers are left unmapped in the application due to the ambiguity of the identity.
- Identifiers for species other than human, mouse or rat must map to human, mouse or rat orthologues in order to map in IPA.
- SNPs must map to a single gene. SNPs that fall greater than 2 KB upstream or 0.5 KB downstream of a gene coding region will not be mapped in IPA during data upload, since they cannot be unambiguously mapped to a single gene.
- There may be insufficient findings in the literature regarding some molecules.

If you are using a standard vendor platform supported by IPA, then that platform should be selected as your reference set.

If you do not know the platform or the data were taken from different platforms, select a reference set that best estimates the entire population you evaluated.

- For gene expression data, select the "Ingenuity Knowledge Base (genes only)"
- For metabolomics, select the "Ingenuity Knowledge Base (endogenous chemicals only)"
- You have the option to having your uploaded data set used as the reference set (User Data Set)



Core Analysis Set-up

'Ideal' set size for IPA core analysis from gene expression data is typically 200-3000

- Small sets will not have many directional effect z-scores (downstream functions, upstream regulators)
- Very large data sets will tend to have more 'noise'

eate Core Analysis - [analysis : GSE26129_M	ICF-7_A2780_IPA.xls]	66666666666	reference set ce of molecules	Analysis Filter Summary
General Settings O Networks Interaction & Causa	Population of genes to consider for p-value conside			Consider only relationships where confidence = Experimentally Observed
Data Sources (2) Confidence Experimentally Ob (2)	Relationships to consider: Affects networks and upstream regulator analysi	S Optional An	-	
Species All (?) Tissues & Cell Lines (?)	 Direct and Indirect Relationships Direct Relationships 	regulators w	ith only direct re	entifies transcriptional lationships. Results in
Mutation All				are nearer neighbors of binding relationships.
ADVANCED SAVE Set da Set Cutoffs Expression Value Type Cutoff Ran	ta cutoff filters	Click here to appl that are netw	vork and functio	
Log Ratio -8.8	771 to 8.2299 Both Up/Downregulated 💌	RECALCULATE 19495 analysis-re	ady molecules across obser	vations
	0.206 to 300.24 Both Up/Downregulated ▼			
Preview Dataset GSE26129_MCF-7_A274 Analysis-Ready (19495) \ Mapped IDs (3)		CC (19493) •	ld be 100-2000 f other values	
	oservations if a multi-		ne Name Location B glycop Extracellular Spa	ows: 1 - 100 Image: Comparison of the second secon
□ +-0.407 +-1.326	1.56E-02 A_24_P721699		tisense R unknown	other 🦉

CANCEL

RUN ANALYSIS

Ge	chemical	clude end s from net	works		increases analysis time)	Option to tur networks for			er Summary nly relationships
	tworks Interaction	on & Causa	6	e endogenous chemica always included	lls Molecules per ne 35 ▼	twork Networks pe	r analysis	confidence Observed	e = Experimentally
	nfidence Experin ecies All	nentally Ob ?		tions, diseases and ger	nes for each network (ma		Fine-tur	ne format	of networks
	sues & Cell Lines	? ?	chem	· · ·	ast cancer cell lines [chen				
	ADVANCED 5/ utoffs ision Value Type	Cutoff Rai		Turn On Caus (Advanced A Focus On					
	Ratio		8771 to 8.2299	Both Up/Downregulat		2026 analysis-ready r	nolecules across ob	bservations	
Fold	Change	3.0 -47	0.206 to 300.24	Both Up/Downregulat	ted 💌				
p-va	lue	0.01 0.0	to 0.9999						
				rvation: MCF-7TxtD10					
	ТО МҮ РАТНЖАҮ							Rows: 1 - 1	.00 🔻 💌 👀
	og Ratio I	old Change	p-value	ID Not	es 🔥 Symbo	I Entrez Gene Nam	Location	Type(s)	Drug(s)
	3.668	† 12.712	1.69E-04	A_24_P235429 D	ABCA1*	-	Plasma Membra t		probucol
_	1.697	↑3.242	7.76E-04	A_24_P67096 D	ABCA5*	ATP-binding cas	Plasma Membra t	transporter	defensiden VD

Network Generation O Reference Several filters available. Set criteria to filter out findings of criteria to filter out findings of less interest. Optional Analyses: Confidence Experimentally Observed Ontidence Experiment Direct anect Relationships Optional Analyses: W My Project Optional Analyses: W My Project Direct anect Relationships W My Ethways W My Ethways W Iste Species All Direct anect Relationships W My Ethways W Iste W Iste Wutation All W Y Pathways W My Lists W Justs W Iste W Iste spression Value Type Cutoff Range Focus On Focus On Statematic Statematic Fold Change 2 -17.2747 to 46.8718 Both Up/Downregulated Iterations (304) Statematic Statematic Prvalue .05 .00 to 0.9994 Entre Course. Treated vs untreated Observation Coon (Course Course C		0 -						Analysis	Filter Summary
Fold Change p-value ID Notes Symbol Entrez Gene Name Location Type(s) Drug(s) Fold Change 2.00E-06 209459_s_at ABAT 4-aminobutyrate a Cytoplasm enzyme value(sin, alpha, cardia Cytoplasm enzyme enzyme value(sin, alpha, cardia Cytoplasm enzyme value(sin, alpha,	Data Sources All Confidence Expe Species All Tissues & Cell Lin Mutation All	ation O ? Refu	er Several filt criteria to fil less Direct arect Re	lter out findir s interest.		Optional Analyses: My Project My Pathwa My Lists My Pathwa My Pathwa My Lists My Lists My Lists My Lists My Lists My Lists My Pathwa	S ys	Consider	r only relationships whe nce = Experimentally
Fold Change p-value ID Notes Symbol Entrez Gene Name Location Type(s) Drug(s) +2.974 2.00E-06 209459_s_at ABAT 4-aminobutyrate a Cytoplasm enzyme valproic acid, vi +14.652 1.59E-04 207692_s_at D ACAN* aggrecan Extracellular Space enzyme valproic acid, vi +41.570 0.00E00 205132_at D ACAN* aggrecan Cytoplasm enzyme enzyme +19.161 0.00E00 226814_at D ADAMTS9* ADAM metallopep Extracellular Space peptidase	pression Value Ty				Ilated -	363 analysis-ready	molecules across of	oservations	
*2.974 2.00E-06 209459_s_at ABAT 4-aminobutyrate a Cytoplasm enzyme valproic acid, vi *14.652 1.59E-04 207692_s_at D ACAN* aggrecan Extracellular Space other valproic acid, vi *41.570 0.00E00 205132_at ACTC1 actin, alpha, cardia Cytoplasm enzyme *19.161 0.00E00 226814_at D ADAMTS9* ADAM metallopep Extracellular Space peptidase	p-value eview Dataset Tir Analysis-Ready (30	me course. Treated	d vs untreated Obse	(20) \ All IDs (481)					20045: 1 - 50 - 73
14.652 1.59E-04 207692_s_at D ACAN aggrecan Extracellular Space other *41.570 0.00E00 205132_at ACAN* actin, alpha, cardia Cytoplasm enzyme *19.161 0.00E00 226814_at D ADAMTS9* ADAM metallopep Extracellular Space peptidase	p-value eview Dataset Tir Analysis-Ready (30	me course. Treated 04) \ Mapped IDs (4 ADD TO MY UST CREAT	d vs untreated Obse (61) Unmapped IDs TE DATASET CUSTOMIZE T	(20) \ All IDs (481)	1	Entrez Gene Name			
+41.570 0.00E00 205132_at ACTC1 actin, alpha, cardia Cytoplasm enzyme +19.161 0.00E00 226814_at D ADAMTS9* ADAM metallopep Extracellular Spacepetidase	p-value eview Dataset Tin analysis-Ready (30 pp TO MY PATHWAY Fold Change	Mapped IDs (4 ADD TO MY IDST CREAT	d vs untreated Obse (61) \Unmapped IDs TEDATASET CUSTOMZET	(20) \ All IDs (481)	∑			Type(s)	Drug(s)
19.161 0.00E00 226814_at D ADAMTS9* ADAM metallopep Extracellular Space peptidase	o-value view Dataset Tin nalysis-Ready (30 p to MY PATHWAY Fold Change +2.974	me course. Treated 04) \ Mapped IDs (4 ADD TO MY UST CREAT p-value 2.00E-06	d vs untreated Obse 161) Unmapped IDs 161 Unmapped IDs 161 Unmapped IDs 161 Unmapped IDs 161 Unmapped IDs 10 Unmapped I	(20) \ All IDs (481)	∑ Symbol	4-aminobutyrate a	Cytoplasm	Type(s) enzyme	
	-value view Dataset Tin nalysis-Ready (30 p to My Pathway Fold Change †2.974 †14.652	me course. Treated 04) \ Mapped IDs (4 ADD TO MY UST CREAT p-value 2.00E-06 1.59E-04	d vs untreated Obse 161) Unmapped IDs 1610 CUSTOMZET ID 209459_s_at 207692_s_at	(20) \ All IDs (481)	A Symbol ABAT ACAN*	4-aminobutyrate a aggrecan	Cytoplasm Extracellular Space	Type(s) enzyme other	Drug(s)
14.034 0.00E00 2213974_at ADAMISLS ADAMIS-like's junknown jother	-value view Dataset Tir nalysis-Ready (30 D TO MY PATHWAY Fold Change †2.974 †14.652 †41.570	p-value 2.00E-06 1.59E-04 0.00E00	d vs untreated Obse 161) Unmapped IDs 161) Unmapped IDs 10 CUSTOMIZET 10 209459_s_at 207692_s_at 205132_at	(20) \ All IDs (481) ABLE Notes D	A Symbol ABAT ACAN* ACTC1	4-aminobutyrate a aggrecan actin, alpha, cardia	Cytoplasm Extracellular Space Cytoplasm	Type(s) enzyme other enzyme	Drug(s)
	-value view Dataset Tir nalysis-Ready (30 p to My PATHWAY Fold Change † 2.974 †14.652 †41.570 †19.161	p-value 2.00E-06 1.59E-04 0.00E00	d vs untreated Obse 161) Unmapped IDs 161) Unmapped IDs 100 100 100 100 100 100 100 10	(20) \ All IDs (481) ABLE Notes D	ABAT ACAN* ACTC1 ADAMTS9*	4-aminobutyrate a aggrecan actin, alpha, cardia ADAM metallopep	Cytoplasm Extracellular Space Cytoplasm Extracellular Space	Type(s) enzyme other enzyme peptidase	Drug(s)
*2.267 3.00E-06 205771_s_at AKAP7 A kinase (PRKA) an Plasma Membrane other *4.429 1.00F-06 215783 s_at ALPL alkaline phosphata Plasma Membrane phosphatase		p-value 2.00E-06 1.59E-04 0.00E00	d vs untreated Obse 161) Unmapped IDs 161) Unmapped IDs 10 10 209459_s_at 207692_s_at 205132_at 226814_at 213974_at	(20) \ All IDs (481) ABLE Notes D	ABAT ACAN* ACTC1 ADAMTS9*	4-aminobutyrate a aggrecan actin, alpha, cardia ADAM metallopep ADAMTS-like 3	Cytoplasm Extracellular Space Cytoplasm Extracellular Space unknown	Type(s) enzyme other enzyme peptidase other	Drug(s)

reate Core Analysis - [a	analysis : Time	course. Treated vs untreated]				rø"⊠
Seneral Settings		Population of genes to consider for p-v	alue calculations:		Analysis Filter Summary	/ ^
					Consider only relations	-
Network Generat		Reference Set Human Genome U133 Plu	<u>.</u>		confidence = Experime Observed	ntally
Data Sources All		Relationships to consider: Affects networks and transcription factor ana		ional Analyses:		
Confidence Experi	imant O	Direct and Indirect Relationships	19515	Make sure molecule colori		
Species All	`	Direct and indirect Relationships Direct Relationships		is set for a metric such a		
species All	·	Directiverationships		fold change, log ratio, etc	.	
Tissues & Cell Lin	es All 🕜	Advanced Settings	L i		×	
Mutation All	0					
	AS DEFAULTS	Select expression value for node col-	oring: Fold Change 👻	This expression value type will be use	d to calculate the	
				directionality of functions and will be		
Set Cutoffs				pathways and networks.		
Expression Value Typ	e Cutoff	Duplicate Resolution				
Fold Change	2	When IDs map to the same gene, pro	otein, or other molecule:			
p-value	.05	Apply cutoffs before consolidating I	Ds: Yes (recommended) 🔻	Confirm how you to resolve du		
Preview Dataset Tim	e course. Trea	Resolve duplicates using Exp Value	Fold Change 👻	to resolve du	plicates	
Analysis-Ready (304	1					
	DD TO MY LIST	Observation to Include				
Fold Change	p-value 2.00E-06	Include Observation Name	Analysis Ready	Deselect any obs	ervations	cid, vig 🔺
14.652	1.59E-04	#1 2 hours	9	that you would		
□ ↑ 41.570 □ ↑ 19.161	0.00E00 0.00E00	#2 🗹 24 hours	169	exclude from the		
□ ↑4.054	0.00E00	#3 🗹 120 hours	304			
□ ↑2.267	3.00E-06					_
4.429	1.00F-06					
					<u>O</u> K CANCEL	NALYSIS CANCEL

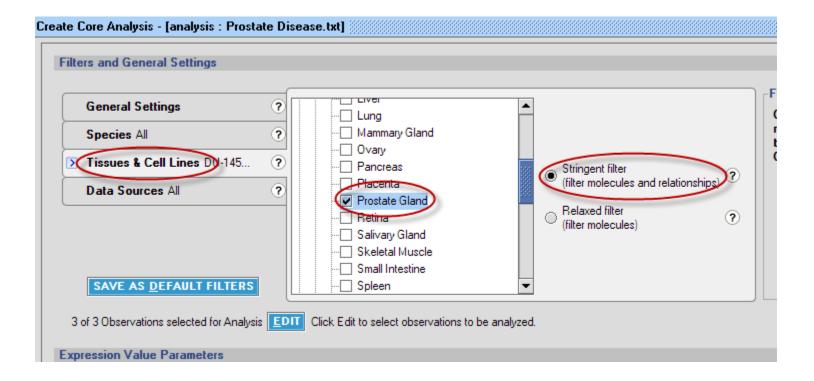
Set criteria to filter out findings of less interest.

- Species
- Tissue

Filter stringency

- A "Stringent" setting requires that each of a pair of molecules and the relationship that connects them meet the filter criteria
- A "Relaxed" filter requires that the gene or protein expression of the molecules connected by a relationship meet the filter criteria

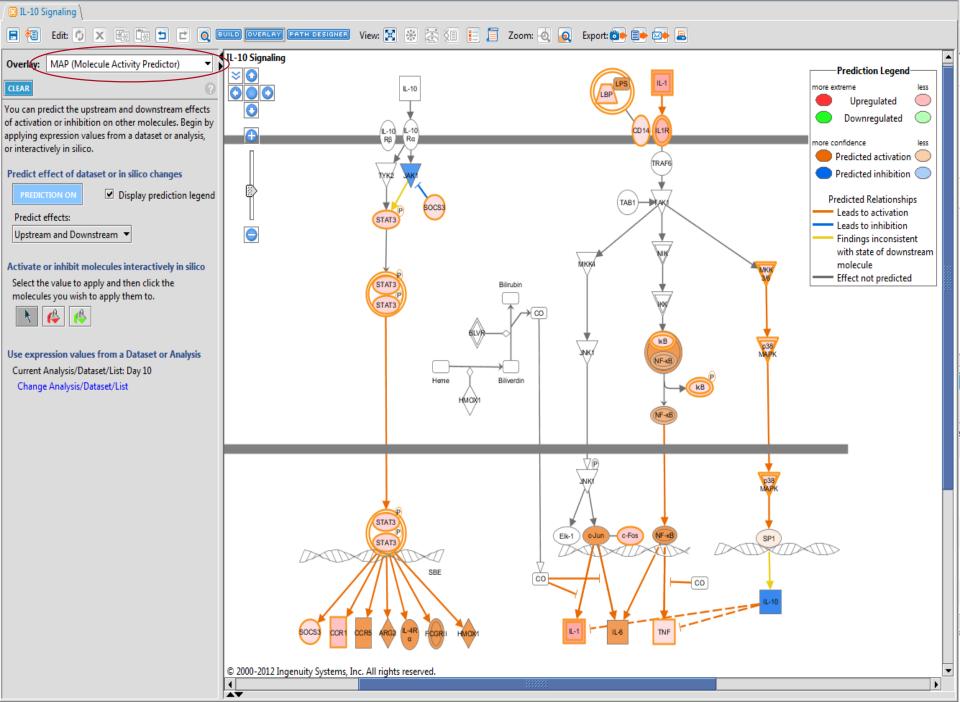
Unspecified refers to findings or molecules where cell/tissue/organ is not specified or classified


protein-protein interactions [1]

Binding of MATRILYSIN [MMP7] protein and human TIMP2 protein occurs in a cell-free system.

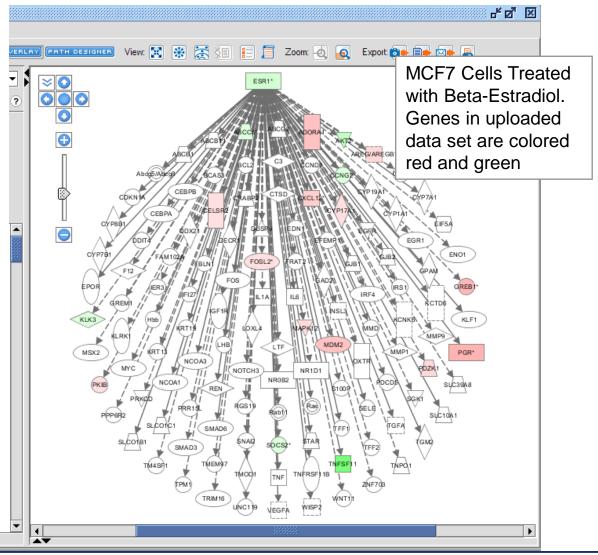
Pre-filter Advantages

- Focuses IPA analysis on networks, biological functions, and canonical pathways on molecules and relationships closely related to the experiment.
- Pre filter Disadvantages
- Loss of information
- Loss of relationships that may be applicable to your species or tissue but were described in a different speices or tissue.


Large Scale Data Analysis

IPA Core Analysis

- Pathway Analysis
 - Predicts pathways that are changing based on gene expression
 - □ New tools to predict directional effects on the pathway (MAP overlay tool)
- Upstream Regulator Analysis
 - Predicts what regulators caused changes in gene expression
 - Predicts directional state of regulator
 - □ Creates de novo pathways based on upstream regulators (Mechanistic Networks)
- Diseases and Functions Analysis
 - Predicts effected biology (cellular processes, biological functions) based on gene expression and predicts directional change on that effect
 - "Increase in cell cycle"
 - "Decrease in apoptosis"
- Regulator Effects
 - Models pathway interactions from predicted upstream regulators, through differentially expressed genes, to biological processes
- Networks
 - □ Predicts non-directional gene interaction map


Canonical Pathways

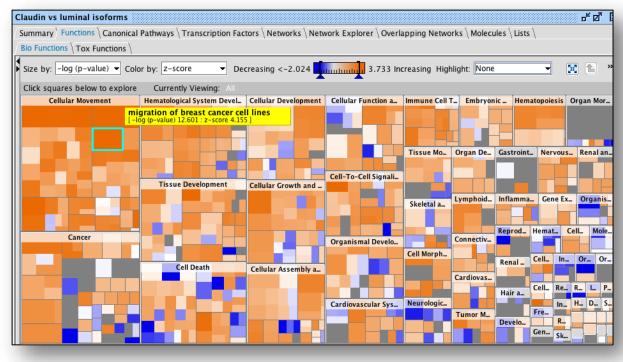
IPA Upstream Regulator Analysis

- Use published experimental molecular interactions to identify upstream regulators
- Identify upstream regulators by determining gene enrichment in downstream genes
- Predict the activity state of regulators by correlating literature reported effects with observed gene expression

Current Overlay: Hr12Out

IPA Mechanistic Networks

 Upstream Regulators Causal Networks Upstream Regulators Causal Networks Upstream Regulator Fold Change Chemical - endogen Activated Chemical - endogen Activated Control A	Sur	Summary \Functions \Canonical Pathways \Upstream Analysis \Networks \Molecules \Lists \My Pathways \									
 Upstream Regulator Fold Change Molecule Type T Predicted Activation. Activation 2-sc., p-value of overlap Target molecules in Mechanistic Net., all 12 beta-estradiol beta-estradiol chemical endogen Activated group Activated<!--</td--><td>Up</td><td colspan="10">Upstream Regulators Causal Networks</td>	Up	Upstream Regulators Causal Networks									
 beta-estradiol chemical - endogen Activated group Activated d.697 1.24E-26 +ABCA1, +all 22 186 (13) ranschild rug Activated d.683 7.37E-07 +ABCA1, +all 19 129 (13) 129 (13) 128 (13) 128 (13) 128 (13) 129 (13) 128 (13) 128 (13) 128 (13) 128 (13) 128 (13) 128 (13) 129 (13) 128 (13) 128 (13) 128 (13) 128 (13) 128 (13) 128 (13) 129 (13) 128 (13) 129 (13) 128 (13) 128 (13) 128 (13) 128 (13) 129 (13) 128 (13) 129 (13) 128 (13	AD	ADD TO MY PATHWAY ADD TO MY LIST CUSTOMIZE TABLE DISPLAY AS NETWORK MECHANISTIC NETWORKS									
 Mek estrogen estrogen chemical drug Activated 3.683 7.37E-07 +ABCE1, +all/4 +ABCA1, + all/4 +ABCA1, + al			Fold Change	Molecule Type 🔳	Predicted Activatio		p-value of overlap				
 estrogen ESR1 H-1.708 ligand-dependent mActivated J.504 2.00E-04 +ABCAI, +, of 19 129 (13) 128 (13) 128 (13) 133 (13) 143 (13) 143 (13) 143 (13) 143 (13) 144 (14) 144 (15) 144 (14) 144 (14)<				chemical - endogen	Activated	6.097					
 ESRI +1.708 ligand-dependent nt Activated 3.504 2.84E-13 +ABCC5,		Mek			Activated	3.683					
 Identify potential upstream regulator signal transduction Using shared downstream gene effects and gene-gene interactions, pathways (mechanistic networks) 		-				3.661		900			
 Identify potential upstream regulator signal transduction Using shared downstream gene effects and gene-gene interactions, pathways (mechanistic networks) 			+-1.708								
 Using shared downstream gene effects and gene-gene interactions, pathways (mechanistic networks) 		IL3		cytokine	Activated	3.190	1.74E-02	↑ADA ↑ARall 16			
IPA Winter Release 2012 BRCA1 SP1 MYC FOXO3 RBL1 E2F2	•	 Identify potential upstream regulator signal transduction Using shared downstream gene effects and gene-gene interactions, pathways (mechanistic networks) are created. 									

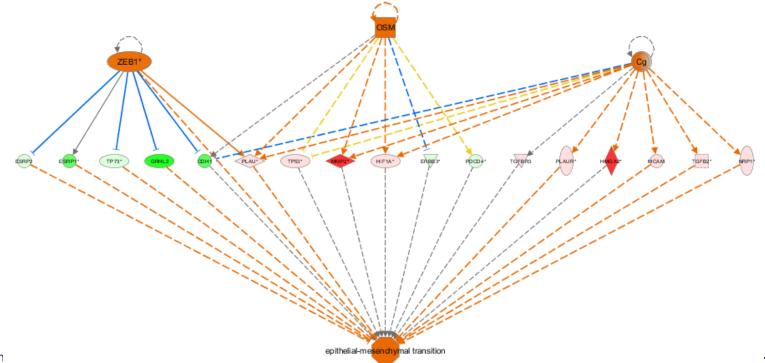


A novel approach to visualize and predict biological impact of gene expression changes

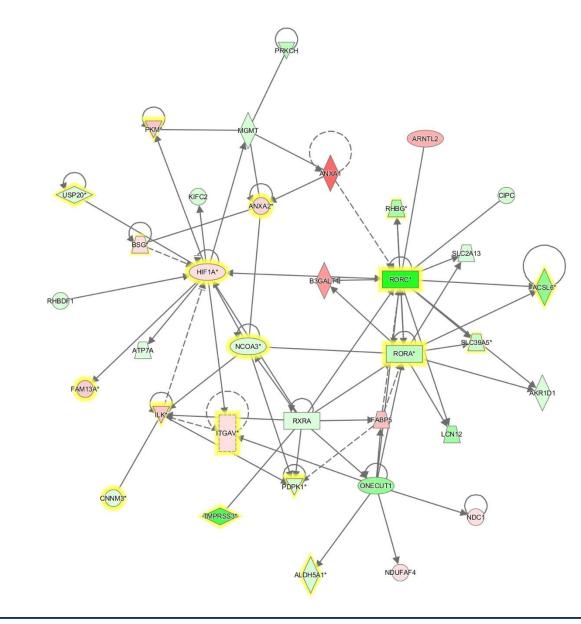
Downstream Effects Analysis

Identify key biological processes influenced by differentially expressed genes

Understand whether cellular processes are being driven up or down by correlating observed expression with reported experimental gene effects



- Each box represents a biological process or disease
- The size of the box represents gene enrichment
- The color of the box indicates the predicted increase or decrease



Regulator Effects

- Hypothesis for how a phenotype, function or disease is regulated in the dataset by activated or inhibited upstream regulators
- Explain impact of upstream molecules on downstream biology
- Explain potential mechanism for a phenotype or drug
- Define drug targets

.....

QIAGEN

Analyzing and Interpreting Results

- IPA will subdivide your data into slices based on molecule connectivity (networks), cellular functions, and involvement in canonical pathways
- Spend time surveying the information. Not everything is of scientific interest, look for slices of your data that address your scientific question, are consistent with known biological processes, are consistent with pathology, etc.
- Typically the goal will be to find a set of genes/molecules that can be looked at in greater detail by building a custom pathway
- If you are comparing observations, run comparison analysis.

IPA calculates two distinct statistics as part of a core analysis

P-value:

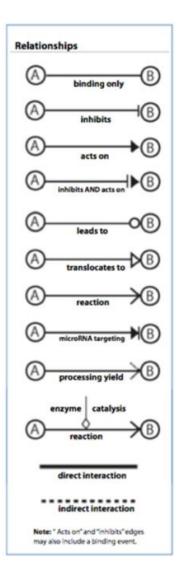
- Calculated using a Right-Tailed Fisher's Exact Test
- Reflects the likelihood that the association or overlap between a set of significant molecules from your experiment and a given process/pathway/transcription neighborhood is due to random chance. The smaller the p-value the less likely that the association is random.
- □ The p-value does not consider the directional effect of one molecule on another, or the direction of change of molecules in the dataset.

Z-score:

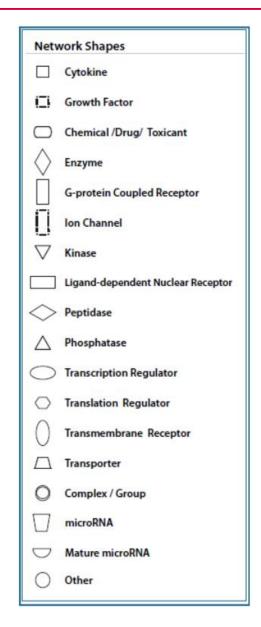
- Applied in some analysis types and provides predictions about upstream or downstream processes.
- Takes into account the directional effect of one molecule on another molecule or on a process, and the direction of change of molecules in the dataset.

Analyzing Results

Canonical Pathway Analysis



- What known biological pathways appear most significantly affected by the genes in my data set?
- What genes within a pathway are changing in expression and what effect might that change have on the pathway?



- Bar-chart represents significance of gene enrichment for any given pathway
 - □ Significance is most important metric
- Ignore bumpy yellow line: ratio/percent coverage of a pathway subject to pathway size bias
- Bar-chart color indicates predicted directionality
 - \Box When considering pathway directionality, focus on 2 < z-score < -2
 - Just because a pathway does not have a good z-score does not make it uninteresting
- To open pathway, look for open pathway button on far right after bar-chart selection

	Relationship Labels
A	Activation
в	Binding
С	Causes/Leads to
CC	Chemical-Chemical interaction
CP	Chemical-Protein interaction
E	Expression (includes metabolism/ synthesis
EC	Enzyme Catalysis
1	Inhibition
L	Proteolysis (includes degradation for Chemicals)
LO	Localization
м	Biochemical Modification
miT	microRNA Targeting
MB	Group/complex Membership
nTRR	Non-Targeting RNA-RNA Interaction
P	Phosphorylation/Dephosphorylation
PD	Protein-DNA binding
PP	Protein-Protein binding
PR	Protein-RNA binding
PY	Processing Yields
RB	Regulation of Binding
RE	Reaction
RR	RNA-RNA Binding
т	Transcription
TR	Translocation
UB	Ubiguitination

Interpretation Tips

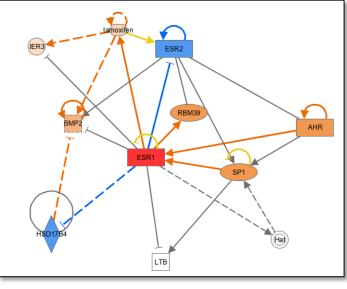
- Look for pathway biological themes
 - □ Use Overlapping Pathway tab to filter and view pathways with shared genes
 - Often lesser scoring pathways of a theme are simply subsets of genes found in a better scoring pathway
- Scan CP names for pathways of particular interest
 - □ Statistical significance does not equal biological significance and visa-versa
 - Pathways may have many second messengers which can be regulated posttranscriptionally
- View pathways by clicking the bar-chart and the OPEN PATHWAY button on right
- Use MAP tool (OVERLAY tool) to help interpretation
- Overlay other analyses as applicable
- Sample to Insight **Toggle overlay options**

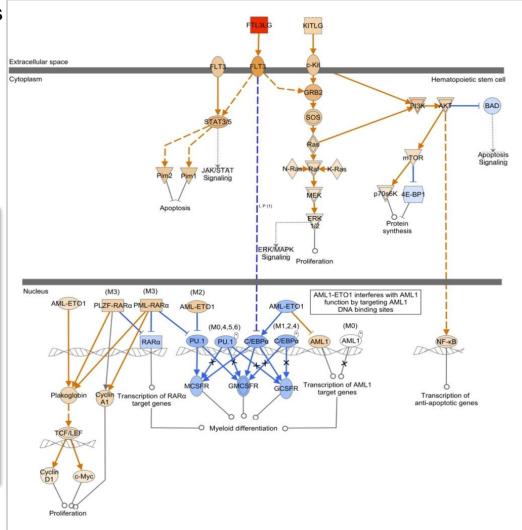
- Scroll-wheel on mouse controls zoom, or use toolbar zoom butt oo
- Left-click selects (turns blue)
- Left-click-drag on nodes moves the node
- Right-click hold-and-drag moves your view
- Right-click brings up menu for controlling
 - □ tool tip (mouse-over node pop-up)
 - □ copy/paste
 - □ Highlighting (colored outline)
 - selection
- Node shapes indicate a protein's primary function, see Help>Legend
- Relationship lines indicate the type of relationship and the mouse-over letter the type of relationship, see Help>Legend

Navigation Control

Θ

θ




- Double-clicking a node brings up the node summary
 - You can navigate to the Gene/Chem View page by clicking the protein name at the top of the summary window pane.
- Double-clicking a relationship line brings up the relationship summary
 - □ You can to the literature evidence findings by clicking the "<u>View relationships</u> <u>between:</u>…" link at the top of the summary window pane.
- Groups
 - Groups are represented by a double outline applicable to any molecule shape. These represent cases where findings use a general gene name to describe a gene class or group of isoforms
 - □ Complexes of different proteins are also given a double outline
 - View members by left-click selecting, then right-click>Show Membership

OVERLAY button -> MAP (Molecule Activity Predictor)

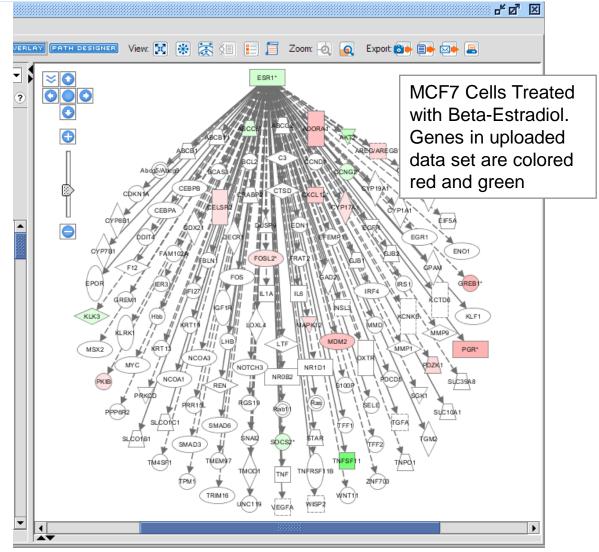
- Use observed expression changes to suggest functional effects on neighboring molecules
- Manually set activation states to observe predicted effects on canonical pathways

OVERLAY button -> Analyses, Data sets, and Lists

- Select other analyses from projects
- Useful for comparisons

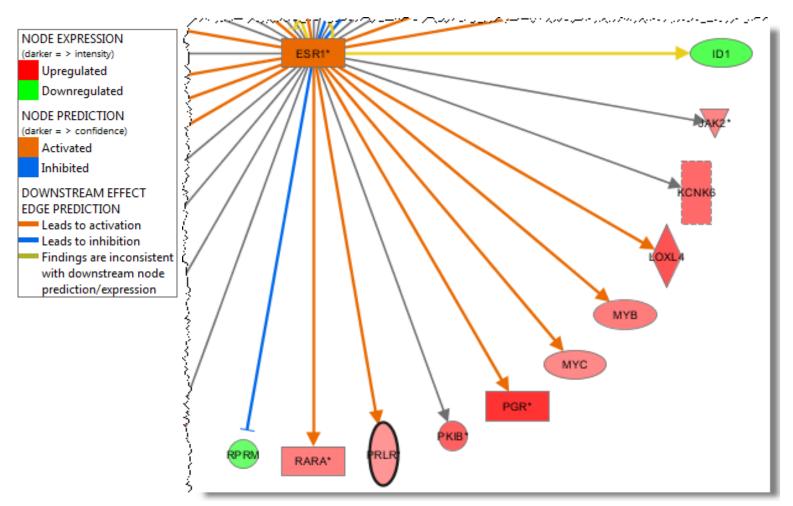
Analyzing Results Upstream Regulators

- What transcription factors likely led to observed gene expression changes?
- What *de novo* pathways can be created based on predicted upstream regulator interactions?


Identify important signaling molecules for a more complete regulatory picture

Hr1:	2FC							r 🛛	×
Sur	mmary \ Functions \ C	anonical Pathways	Upstream Analysis N	etworks \ Molecules \	Lists \ My Pathways \	1			
Up	stream Regulators Ca	ausal Networks							
	D TO MY PATHWAY								»
AL				AS NETWORK	ANISTIC NETWORKS	📑 🖪 🖉			_
	Upstream Regulator	Fold Change	Molecule Type 🔳	Predicted Activatio	Activation z-score		Target molecules in		
	beta-estradiol		chemical - endogene	Activated	6.097		♦ABCA1, ♦all 122		
	raloxifene		chemical drug		-0.751	1.83E-14	AREG/AREGBall 28	125 (15)	335
	ESR1	+-1.708	ligand-dependent nu	Activated	3.504	2.84E-13	↓ABCC5, ↑all 37	186 (20)	
	trichostatin A		chemical drug		-0.620	1.02E-11	+ABCA1, ↑all 45	189 (20)	
	valproic acid		chemical drug		-1.593	5.88E-11	↓ABCG1, ↓all 33	193 (18)	
	fulvestrant		chemical drug	Inhibited	-2.826	2.72E-10	↑ADRB1, ↑all 27	181 (22)	
	TGFB1		growth factor		-0.325	4.02E-10	↓ABCA1, ↑all 86	187 (20)	
	RAF1		kinase		-0.321	6.96E-10	AREG/AREGBall 25	145 (19)	
	ESR2		ligand-dependent nu		0.095	9.98E-09	↑ADORA1, トall 18	184 (19)	
	MYC	† 1.855	transcription regulate	Activated	2.599	1.02E-08	↑ABCE1, ↓all 52	157 (15)	
	CCND1	† 1.371	other		0.777	1.28E-08	◆BCL2, ◆Ball 24	154 (18)	
	ERBB2	+-1.822	kinase		0.591	1.68E-08	AREG/AREGBall 43	144 (20)	
	TNF		cytokine		-0.134	2.00E-08	↓ABCA1, ↓all 77	227 (22)	
	dexamethasone		chemical drug		-0.930	2.64E-08	↑ABHD2, ↓all 79	203 (18)	
	Salmonella enterica s		chemical toxicant		1.149	5.11E-08	AREG/AREGBall 20		
	ZNF217	+-1.315	transcription regulate		0.555	7.38E-08	+ADM, +Aall 13		
	PGR	† 5.528	ligand-dependent nu		1.879	8.41E-08	↑AREG/AREGBall 18	168 (20)	
	tretinoin		chemical - endogene	Inhibited	-2.611	1.02E-07	↓ABCA1, ↑all 70	159 (20)	
	methylselenic acid		chemical reagent		0.152	1.16E-07	↓ACSL3, ↑all 24	180 (12)	-
Sele	ected/Total upstream r	egulators : 0/709							

- Quickly filter by molecule type
- Filter by biological context
- Generate regulators-targets Network to identify key relationships



- Use experimentally observed relationships (not predicted binding) between regulators and dataset genes to predict upstream transcriptional regulators.
- Calculate z-score to predict activation or inhibition of regulators based on relationships with dataset genes and direction of change of dataset genes.

Directional Effects: Molecule Activity Predictor Examine Expression Relationship Consistency

IPA Winter Release 2012

		pstream	Regulator A	naiysis			
r1)	2FC						r _k ⊠, ⊠
Sui	mmary \setminus Functions \setminus C	Canonical Pathways	s Vpstream Analysis \ N	etworks \setminus Molecules \setminus	Lists \ My Pathways \)	
Up	stream Regulators \C	ausal Networks \					
AD	DD TO MY PATHWAY		USTOMIZE TABLE DISPLA	Y AS NETWORK	ANISTIC NETWORKS	📑 🔳 💆	»
	Upstream Regulator	Fold Change	Molecule Type	Predicted Activatio	Activation z-score	△ p-value of c	overTarget molecules inMechanistic Net
	beta-estradiol		chemical - endogen	Activated	6.097	1.24E-26	↓ABCA1, ↓all 122 186 (17)
	raloxifene		chemical drug		-0.751	1.83E-14	↑AREG/AREGBall 28 125 (15)
	ESR1	+-1.708	ligand-dependent nu	Activated	3.504	2.84E-13	↓ABCC5, ↑all 37 186 (20)
	trichostatin A		chemical drug		-0.620	1.02E-11	+ABCA1, ↑all 45 189 (20)
	valproic acid		chemical drug		-1.593	5.88E-11	↓ABCG1, ↓all 33 193 (18)
	fulvestrant		chemical drug	Inhibited	-2.826	2.72E-10	↑ADRB1, ↑all 27 181 (22)
	TGFB1		growth factor		-0.325	4.02E-10	↓ABCA1, ↑all 86 187 (20)
	RAF1		kinase		-0.321	6.96E-10	↑AREG/AREGBall 25 145 (19)
	ESR2		ligand-dependent nu		0.095	9.98E-09	Molecule Types
	MYC	† 1.855	transcription regulat	Activated	2.599	1.02E-08	Unfiltered
	CCND1	† 1.371	other		0.777	1.28E-08	
	ERBB2	+-1.822	kinase		0.591	1.68E-08	O Transcription Factors
	TNF		cytokine		-0.134	2.00E-08	⊖ miRNA
	dexamethasone		chemical drug		-0.930	2.64E-08	O Drugs and Chemicals
	Salmonella enterica s		chemical toxicant		1.149	5.11E-08	○ Select from list below
	ZNF217	+-1.315	transcription regulat		0.555	7.38E-08	Select all
	PGR	† 5.528	ligand-dependent nu		1.879	8.41E-08	
	tretinoin		chemical - endogen	Inhibited	-2.611	1.02E-07	biologic drug
	methylselenic acid		chemical reagent		0.152	1.16E-07	chemical - endogenous mammalian
ele	ected/Total upstream r	regulators : 0/709	1	1	·	\	chemical - endogenous non-mamma
							chemical - kinase inhibitor
						\backslash	

🗌 chemical - protease inhibitor

•

Cancel

Apply

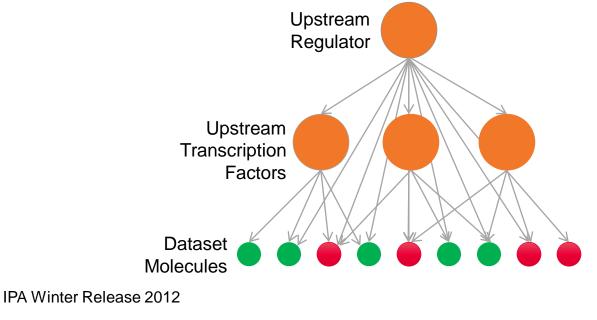
----- chemical drug

- Quickly filter by molecule type
- Filter by biological context
- Generate regulators-targets Network to identify key relationships

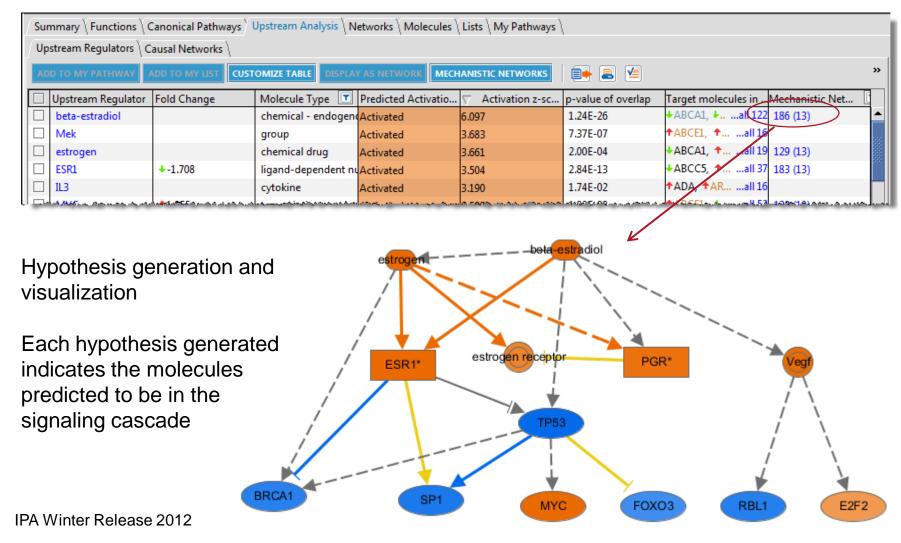
- Entities with positive z-scores are known to elicit the same gene expression changes as seen in your data
 - □ Entities you might want to knock-down to inhibit effects of experiment
- Entities with negative z-scores are known to elicit the opposite gene expression when active
 - □ Entities you could add to an experiment to counter effects of experiment
- Contradictions between z-score direction prediction and measured gene expression could be the result of
 - □ A discrepancy between protein activity and expression level
 - □ Lag time between change in gene expression and effect of that expression
- A regulator with significant z-score but poor p-value could represent a situation where only a few downstream genes in your experimental condition correlate in expression, but many other genes may be expressed in other conditions (or is junk).
- A regulator with insignificant z-score and significant p-value could represent a situation where the genes in your data are downstream of the regulator, but their expression pattern is unique to your experimental condition (or is junk).

IPA Upstream Regulator Analysis

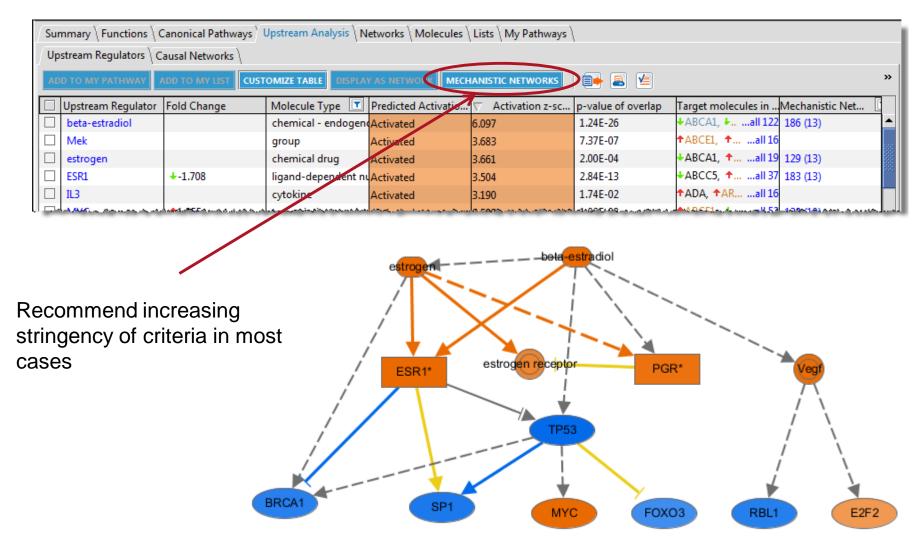
Sur	mmary $\overline{\setminus}$ Functions $\overline{\setminus}$ C	anonical Pathways	Upstream Analysis \ N	etworks \ Molecules \	Lists \setminus My Pathways \setminus	l.			
Up	stream Regulators \ C	ausal Networks \							
AD	D TO MY PATHWAY	DD TO MY LIST CU	STOMIZE TABLE DISPLAY	Y AS NETWORK MECH	ANISTIC NETWORKS	📑 🖪 🛀			»
	Upstream Regulator	Fold Change	Molecule Type	Predicted Activatio		p-value of overlap	Target molecules in	Mechanistic Net	C
	beta-estradiol		chemical - endogene	Activated	6.097	1.24E-26	♦ABCA1, ♦all 122	186 (17)	
	Mek		group	Activated	3.683	7.37E-07	↑ABCE1, ↑all 16	116 (13)	360
	estrogen		chemical drug	Activated	3.661	2.00E-04	♦ABCA1, ↑all 19	160 (18)	
	ESR1	+-1.708	ligand-dependent nu	Activated	3.504	2.84E-13	♦ABCC5, ↑all 37	186 (20)	
	IL3		cytokine	Activated	3.190	1.74E-02	↑ADA, ↑ARall 16		
	MYC	† 1.855	transcription regulat	A	5 500	1.025.09	◆ABCE1, ↓all 52	157 (15)	
	LEP	- H.	ow might t	hese upst	tream redi	ulators	2, ↓ESR1all 13		
	Cg		0				I, ↑A all 21	215 (19)	
	Vegf	In	iteract?				2, ↑ C all 27	141 (19)	
	PI3K (complex)						A1, 🕇all 14		
	FSH	_	complex	Activated	2.291	0.10E-07	→ADIVI, ↑Aall 29	202 (22)	
	F2		peptidase	Activated	2.287	1.50E-03	B4GALT1, *all 16	163 (16)	
	NFkB (complex)		complex	Activated	2.258	2.02E-02	♦ABCG1, ↑all 24		
	Immunoglobulin		complex	Activated	2.236	7.32E-02	◆ADM, ◆Ball 10		
	lithium chloride		chemical drug	Activated	2.213	4.22E-04	◆BCL2, ◆CDC6all 9	147 (17)	
	ERK		group	Activated	2.200	1.05E-02	AREG/AREGBall 12		
	MYB	† 2.039	transcription regulate	Activated	2.199	6.99E-02	◆BCL2, ◆CDall 5		
	NFKBIA	+-1.204	transcription regulat	Activated	2.183	7.24E-02	↑ATP11A, ↑all 17		
	CSF1	↓ -1.195	cytokine	Activated	2.154	4.52E-01	◆BCL2, ◆EGR3 …all 5		-
Sele	ected/Total upstream r	egulators : 0/709				·			


- Quickly filter by molecule type
- Filter by biological context
- Generate regulators-targets Network to identify key relationships

IPA Mechanistic Networks


Goal: To discover plausible sets of connected upstream regulators that can work together to elicit the gene expression changes observed in a dataset

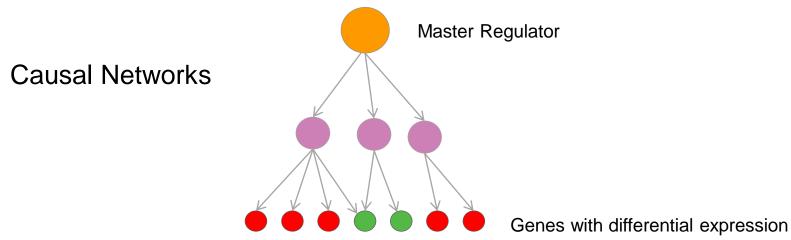
How: Take IPA Upstream Regulator results and computationally seek pairs of regulators predicted to affect the expression of a similar set of genes. Repeat to build a network:



How might the upstream molecule drive the observed expression changes?

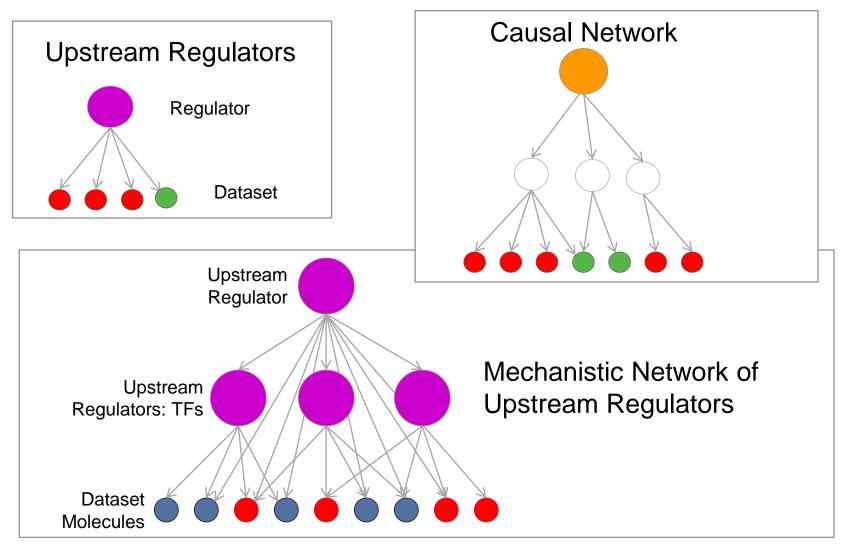
Advanced Analytics

Causal Networks


Advanced Analytics requires an additional subscription fee

- Sample to Insight

Advanced Analytics


- Alternate method of predicting upstream regulators based on causal relationships and allowing multiple interaction steps to gene expression changes
- Identify potential novel master-regulators of your gene expression by creating pathways of literature-based relationships
- Expands predictions to include indirect upstream regulators not in mechanistic networks

Single- vs. Mechanistic- vs. Causal Networks Leveraging the network to create more upstream regulators

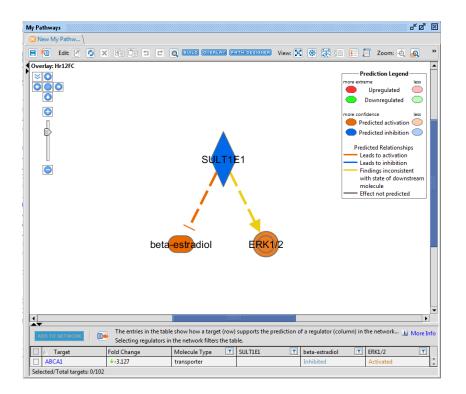
Advanced Analytics: Causal Network Analysis

General Settings	Generate the following Networks (increases analysis time)
Networks Interaction & Causa	Interaction networks
Node Types	Include endogenous chemicals Molecules per network Networks per analysis
Data Sources All	Genes are always included 35 - 25 -
Confidence Experimentally Ob	Causal networks Score master regulators for relationships to diseases, functions, genes, or chemicals (max 50)
Species All	Score using causal paths only
Tissues & Cell Lines All	2 ADD
Mutation All	REMOVE
ADVANCED SAVE AS DEFAULT	S
Set Cutoffs	
veression Value Type Cutoff	Range Focus On
xpression Value Type Cutoff F	
· · · · · · · · · · · · · · · · · · ·	-22.7434 to 25.1208 Both Up/Downregulated 🔻 RECALCULATE 9574 analysis-ready molecules across observations
Exp Fold Change	-22.7434 to 25.1208 Both Up/Downregulated RECALCULATE 9574 analysis-ready molecules across observations 0.0 to 0.05
Exp Fold Change	0.0 to 0.05

- Sample to Insight

Advanced Analytics: Causal Network Analysis

Summary \ Functi	ons \ Canonical I	Pathways Upstream Analy	is \ Networks \ Molecules \ Lis	s \ My Pathways \							
Upstream Regulat			,))								
opstream Regulat	ors coustinated	Volka									
ADD TO MY PATHW	AY ADD TO MY I	15T 🚇 📑						p-value of over	2.02E-21 - 2.42E-11	. (p1 of 10) 🔻 📧	主 🚺 🕪
										Add column(s) 🗐	Rela Add co
Master Regulator	Fold Cha 🕱	Molecule Type 🝸 🕱	Participati 🕱 Depth 🕱	Predicted 💌	Activation z-score 🝸 🕱	🛆 p-value 🝸 🕱	Net 🝸 🕱	Target molec 🝸 🕱	Causal network		In T 💌
SULT1E1		enzyme	beta-estrall 32	Inhibited	-4.951	2.02E-21	1.00E-04	+ABCA1, +ABall 107		2	anall 8
beta-estradiol		chemical - endogenous	beta-estrall 11	Activated	5.528	2.52E-21	1.00E-04		99 (1)	1	8-broall 8
trans-hydroxytam		chemical drug	trans-hyall 11		0.928	4.24E-20	1.00E-04	+ABCC5, ↑AREall 29	29 (1)	1	
fulvestrant		chemical drug	Akt, AKT1all 212		-1.555	2.12E-16	1.00E-04	ABCA1, ADA,all 93	93 (21)	21	
bisindolylmaleimi		chemical - kinase inhibitor	ATF2, ball 442	Inhibited	-2.502	3.98E-16	2.00E-04	↑ABCE1, ↓ABall 108		44	
SORBS3		other	AKT1, aall 493		1.362	1.69E-15	1.00E-04	↑ABCE1, ↑ABall 138	138 (49)	47	EGFall 1
raloxifene		chemical drug	Akt, AKT1all 152		0.000	5.66E-15	1.00E-04	+ABCA1, +ADA,all 82	82 (15)	15	
NR1I3		ligand-dependent nucle	acetamiall 233		-0.913	6.47E-15	6.00E-04	+ABCA1, +ABall 120		20	8all 10
1,4-bis[2-(3,5-dich		chemical toxicant	. Ahr-aall 183		-0.368	6.78E-15	7.00E-04	+ABCA1, +ABall 118	118 (18)	18	
CSF1	↓ -1.195	cytokine	Akt, AKT1all 372		1.616	1.18E-14	5.00E-04	◆ABCE1, ↓ABall 124	124 (37)	37	C3,all 12
BAG1	† 1.110	other	AR, +BAG1all 92		1.890	1.31E-14	1.00E-04	↑ABHD2, ↑ADA,all 63	63 (9)	9	IL2, 🕈all 2
RAC3		enzyme	Akt, AKT1all 413	Activated	2.514	1.85E-14	3.00E-04	↓ABCA1, ↑ABall 124	124 (41)	39	
UBE2L3	↓ -1.071	enzyme	AR, EGFR,all 82		1.722	1.95E-14	1.00E-04	↑ABHD2, ↑AREall 57	57 (8)	7	
MMP11		peptidase	AGT, Aktall 633	Activated	2.214	2.46E-14	2.00E-04	↓ABCA1, ↓ABall 160	160 (63)	61	FURINall 3
Ap1		complex	Akt, AKT1all 493		0.709	3.00E-14	3.00E-04	+ABCA1, +ABall 161	161 (49)	49	betaall 38
NCOA4		transcription regulator	AHR, AR, 🗉all 52		1.980	3.04E-14	1.00E-04	↑ADA, +ADM, トall 50	50 (5)	4	
BAD		other	Akt, AKT1all 453	Inhibited	-2.227	3.57E-14	1.00E-04	↓ABCA1, ↑ABall 147	147 (45)	44	8-(4all 32
dihydrotestosteror		chemical - endogenous	Akt, AR,all 262	Activated	2.636	4.20E-14	5.00E-04	+ABCA1, +ABall 121	121 (26)	26	
androstenedione		chemical - endogenous	Akt, AKT1all 333		1.281	5.48E-14	7.00E-04	♣ABCA1, ♠ABall 103	103 (33)	31	8-broall 6
CMA1		peptidase	APP, Call 523		-0.077	6.06E-14	1.50E-03	↓ABCA1, ↑ABall 167	167 (52)	49	
SMARCE1	↓ -1.177	transcription regulator	Akt, AKT1all 293		1.400	6.65E-14	5.00E-04	↓ABCA1, ↑ABall 100	100 (29)	29	
FKBP4	1 2.700	enzyme	AKT1, aall 363		-1.754	9.04E-14	1.70E-03	◆ABCE1, ◆ABall 130	130 (36)	35	Ca2+all 1
CSF2		cytokine	Akt, AKT1all 342	Activated	2.307	9.28E-14	2.00E-03	+ABCA1, +ABall 137		34	CCL21all 9
Cxcl11		cytokine	Akt, ↓Call 163	Activated	3.305	1.13E-13	4.00E-04	↓ABCA1, ↑ABCE1all 77	77 (16)	13	MAPall 2
raloxifene		chemical drug	raloxifeneall 1		-0.784	1.19E-13	1.00E-04	↑AREG/AREGB, Nall 26	26 (1)	1	
FURIN	+-1.256	peptidase	ADAM12all 473		1.698	1.76E-13	6.00E-04	↓ABCA1, ↑ABall 153	153 (47)	44	MAPK3all 2
SMAD2	↓ -1.153	transcription regulator	androgenall 533		0.811	1.83E-13	9.00E-04	♣ABCA1, ♠ABall 152	152 (53)	50	ACVall 20
Hdac		group	Akt, AKT1all 523	Inhibited	-2.280	1.83E-13	6.00E-04	↑ABCE1, ↓ABall 130	130 (52)	51	7S NGFall 4
VEGFA		growth factor	ADAM17all 1113	Activated	2.154	2.22E-13	6.00E-04	+ABCC5, ↑ABall 194	194 (111)	94	12-hall 50
TCF7L2	↓ -1.576	transcription regulator	Akt, AKT1all 333		-1.106	2.42E-13	8.00E-04	+ABCA1, ↑ABCE1all 99	99 (33)	32	LNX2all 1
cardiolipin		chemical - endogenous	ABL1,all 363	Activated	2.108	2.75E-13	1.00E-04	↑ABCE1, ↓ABCG1all 90	90 (36)	30	


Beta-estradiol of MCF7 cells at 12 hr.

SULT1E1 is top master regulator, but does not appear in upstream regulator table

SULT1E1 Causal Network

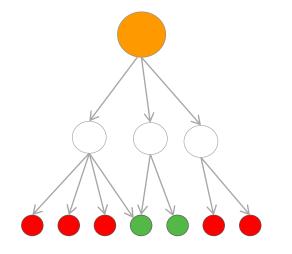
Advanced Analytics: Causal Network Analysis

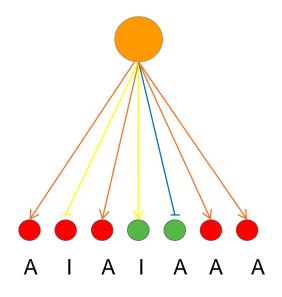
- SULT1E1 is an enzyme that converts estrone and estradiol to an inactive form
- Causal network predicts the absence, inhibition, or saturation of this enzyme in this experiment where estradiol was added exogenously
- SULT1E1 does not have downstream gene expression relationships and, thus, does not appear in the Upstream Regulator table or Mechanistic Networks
- Hypothesis: increasing SULT1E1 activity can have an anti-estrogen effect

Advanced Analytics: Causal Network Analysis

Only considers edges of unambiguous direction of regulation to downstream genes

Edges that cannot be assigned a direction of regulation, including all types of binding edges are excluded


- Included relationship types
 - □ activation (A)
 - □ inhibition (I)
 - □ expression (E)
 - □ transcription (T)
 - □ group/complex
 - membership edges (MB, considered activating)
 - phosphorylation (P)


Up to 3 interactions edges from root are considered

Expression/Transcription must be last edge type

Advanced Analytics: Causal Network Analysis

2 inhibitory edges 5 activating edges

Two p-values are calculated

- Fishers Exact Test of whether there is a greater than expected proportion of downstream data set genes than expected by chance
- Network bias corrected p-value is a measure of how often a more significant result was seen in 10K iterations of selecting random data sets of genes with similar relationship number.

z-score

Activation z-score is calculated and represents the bias in gene regulation that predicts whether the upstream regulator exists in an activated or inactivated state

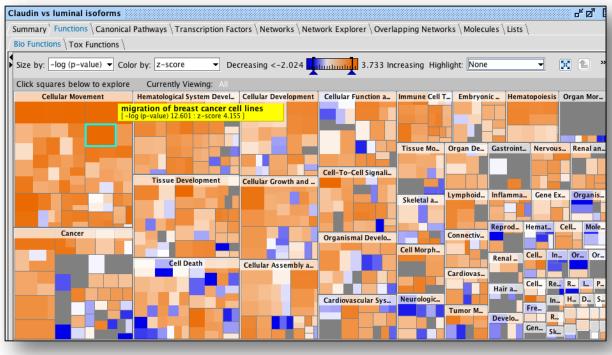
$$z = \frac{N^+ - N^-}{\sqrt{N}},$$

z-score represents the number of standard deviations from the mean of a normal distribution of activity edges.

Analyzing Results

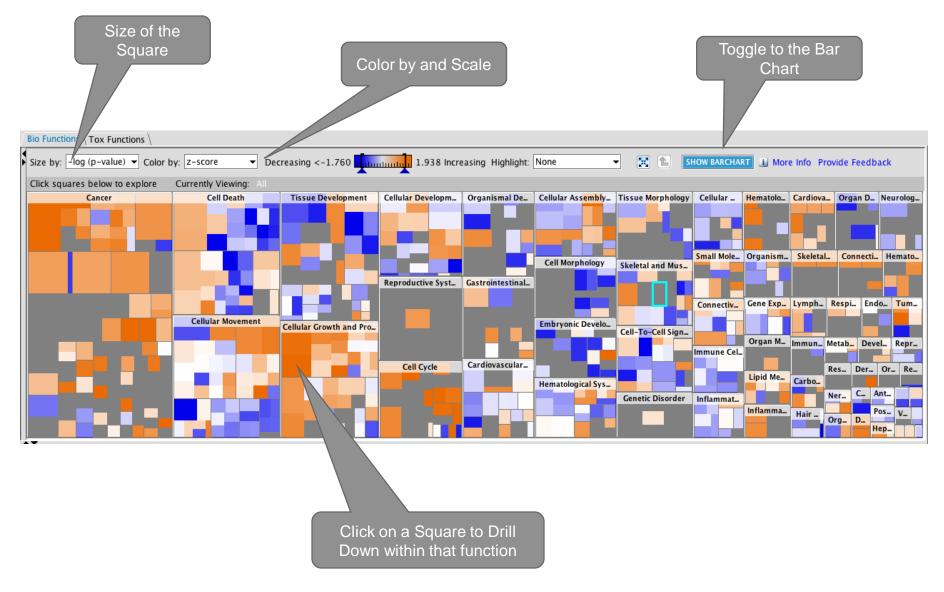
Diseases & Functions (Downstream Effects)

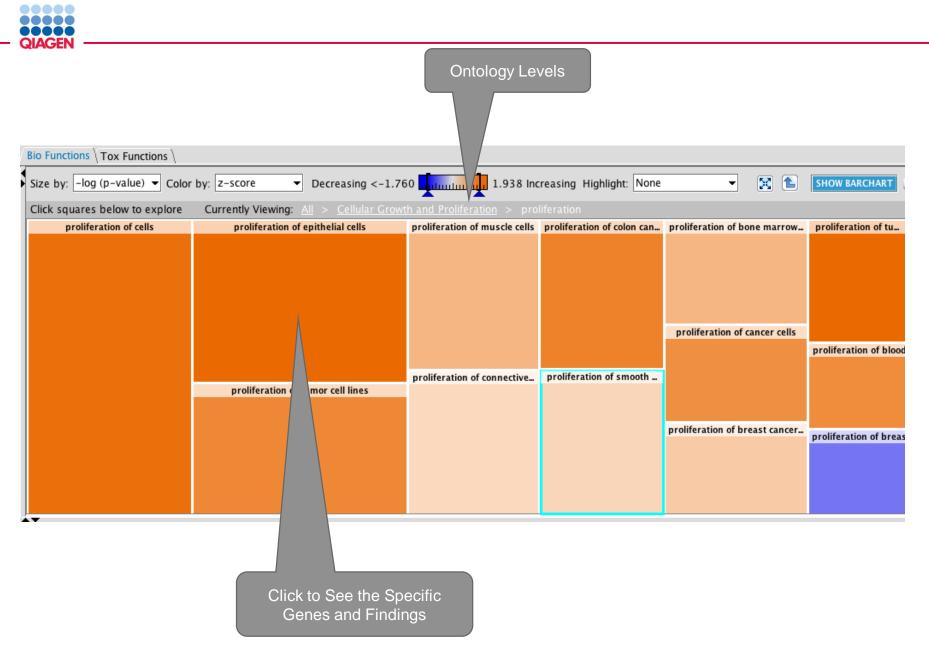
- How are cellular processes are predicted to be changing based on my gene expression data?
- What genes are driving these directional changes?



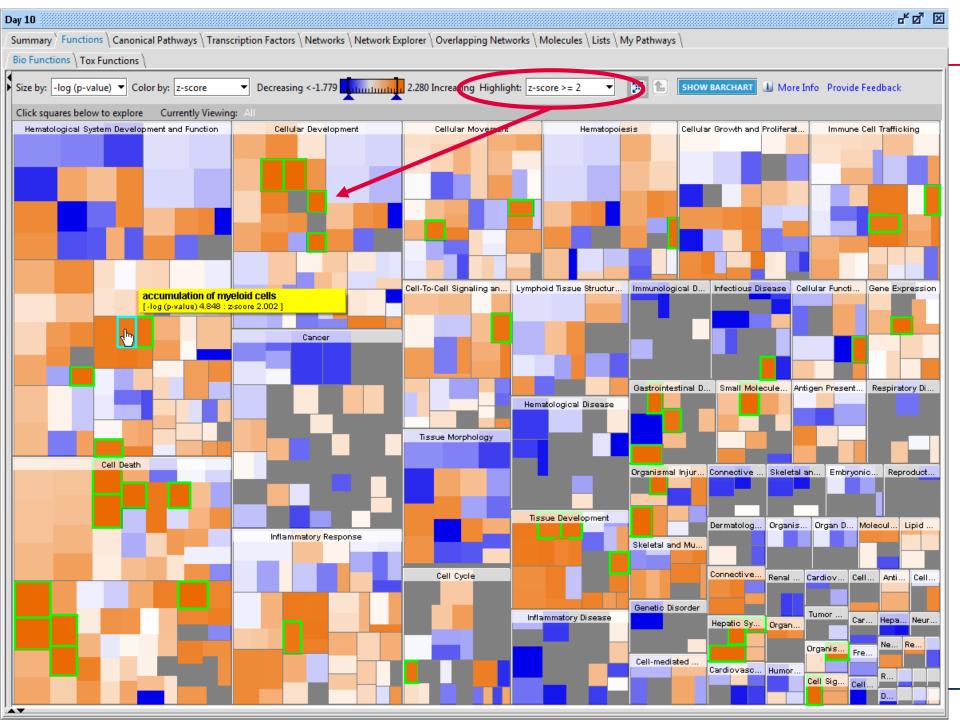
A novel approach to visualize and predict biological impact of gene expression changes

Downstream Effects Analysis


Identify key biological processes influenced by differentially expressed genes


Understand whether cellular processes are being driven up or down by correlating observed expression with reported experimental gene effects

- Each box represents a biological process or disease
- The size of the box represents gene enrichment
- The color of the box indicates the predicted increase or decrease

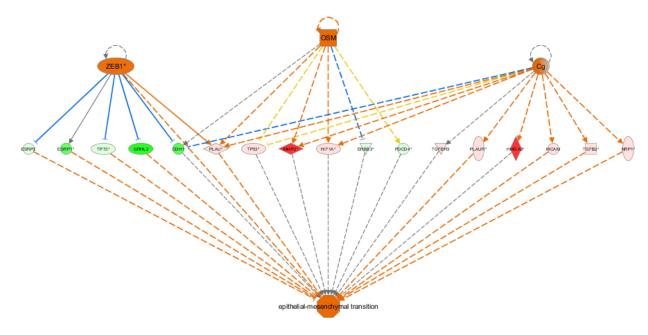


Functior	nal Category and Statistic Result	al		Access Finding
Downstream Effects A	nalysis vidence for Effects			
	pithelial cells(z-score 1		e 8.80E-10	
🗌 ID	Genes in dataset	Prediction (based on	expre 🗸 Fold Change	Findings
🗌 H62162	HPN	Decreased	† 3.016	Decreases (1)
AA464600	MYC	Increased	† 2.761	Increases (8)
AA030029	PRKCA	Increased	† 2.175	Increases (3)
H24650	LAMC1	Increased	† 1.917	Increases (1)
N71159	MTA1	Increased	† 1.873	Increases (1)
R19956	VEGFA	Increased	† 1.807	Increases (2)
□ N4	P		† 1.787	Affects (1)
🗆 нз; Predictio	n Logic 🛛 🔁	Decre VEGFA:Known	to increase proliferation of epi	thelial cells and is (1)
AA459263	BCL2A1	Increa to increase the	in the dataset therefore predice function	(1)
AA488645	NAB1	Decreased	† 1.576	Decreases (1)
□ N74882	DLX5	Increased	† 1.572	Increases (1)
H65052	F2	Increased	† 1.564	Increases (2)
W48713	EGFR	Increased	† 1.515	Increases (10)
H84048	RBL1	Increased	↓-1.559	Decreases (5)
AA456439	SMAD4	Increased	+-1.565	Decreases (4)
□ N67039	CDK6	Increased	↓-1.570	Decreases (1)
AA487589	METAP2	Decreased	↓ -1.570	Increases (1)
	CCNG2	Increased	1.578	Decreases (1)
AA489752				

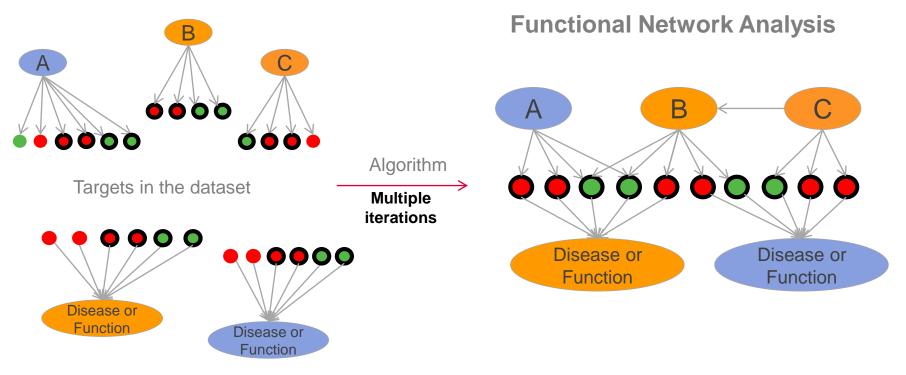
Expression Value in Your Dataset

Goal is understand biology and identify smaller subsets of genes that are of interest

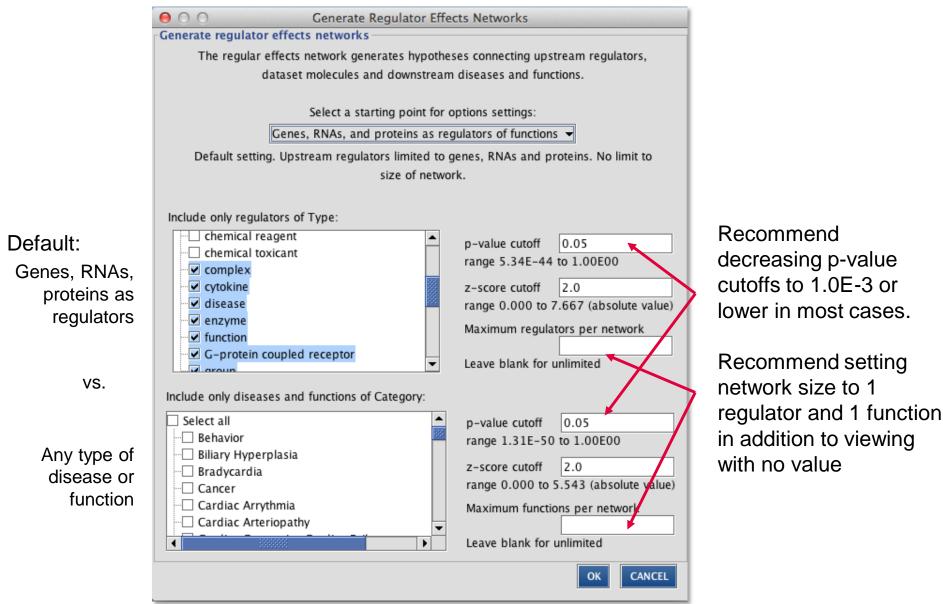
Genes related to a particular function can be :


- sent to a pathway for building and/or overlay analysis
- saved as a new Data Set and sent to Core Analysis for additional categorization and segmentation

Analyzing Results Regulator Effects

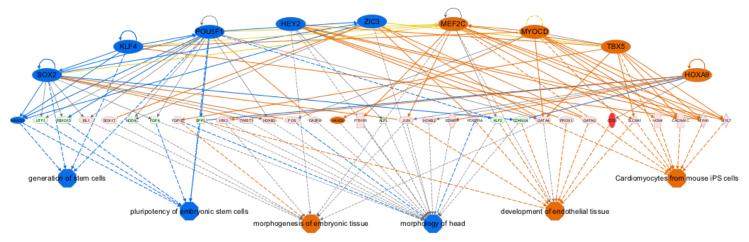


- Hypothesis for how a phenotype, function or disease is regulated in the dataset by activated or inhibited upstream regulators
- Explain impact of upstream molecules on downstream biology
- Explain potential mechanism for a phenotype or drug
- Define drug targets
- Discover novel (or confirm known) regulator → disease/phenotype/function relationships

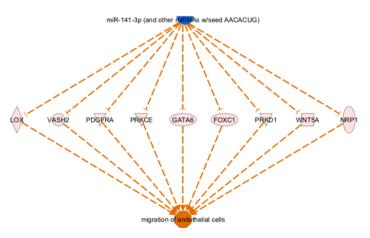


Upstream Regulator Analysis

Downstream Effects Analysis




OIAGEN Silicon Valley


Transcription factors and functions

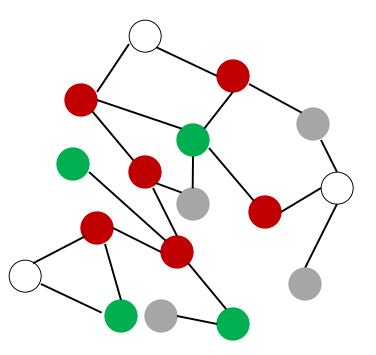
Compound as regulator of functions

Minimal regulator to function networks

Analyzing Results Networks

- To show as many interactions between user-specified molecules in a given dataset and how they might work together at the molecular level
- Highly-interconnected networks are likely to represent significant biological function

- Networks are assembled based on gene/molecule connectivity with other gene/molecules.
 - Assumption: the more connected a gene/molecule, the more influence it has and the more "important" it is.
- Networks are assembled using decreasingly connected molecules from your data set.
- Genes/molecules from the Knowledge Base may be added to the network to fill or join areas lacking connectivity.
- □ A maximum of 35, 70, or 140 genes/molecules can comprise a network based on parameter settings.
- □ Networks are annotated with high-level functional categories.

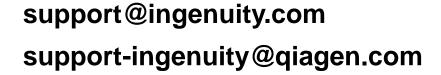

Focus molecules are "seeds"

Focus molecules with the most interactions to other focus molecules are then connected together to form a network

Non-focus molecules from the dataset are then added

Molecules from the Ingenuity's KB are added

Resulting Networks are scored and then sorted based on the score


Keep in mind..

- Networks may contain smaller networks of connectivity related to specific functions. It might make sense to subset a network. (What does this mean? Just focus on subportions of the network?)
- □ Larger cellular networks may span IPA assembled networks. Merging networks may allow you to visualize these larger networks.
- Networks should be treated as "starter pathways" that you then modify based on your biological understanding of the system and the questions that you want to answer. Use the pathway building ('Build' button) and Overlay tools to expand on your initial results.

99

Getting Help

+1 650 381-5111 6am-5pm Pacific Time (M-F)

QIAGEN Redwood City/Silicon Vall

1700 Seaport Blvd., 3rd Floor

Redwood City

CA 94063, USA

INGENUITY[°] PATHWAY ANALYSIS

INGENUITY[®] IREPORT

INGENUITY° VARIANT ANALYSIS

anniversary

For Help and Technical Support contact our Customer Support team by email to <u>support@ingenuity.com</u>, or by phone to +1 650-381-5111

For getting started tutorials and training videos see the 'Tutorials' link on the help menu within IPA

To see case studies, application notes, and white papers visit <u>www.ingenuity.com/library</u>

To view our future scientific seminars, and to watch the series archive visit <u>www.ingenuity.com/science/scientific-seminar-series.html</u>

To see how IPA has been used and cited in over 9000 publications visit <u>www.ingenuity.com/science/search-pub.html</u>

IPA search and explore series videos:

- The Ingenuity Knowledge Base for IPA http://youtu.be/4IFxsfMkpQg
- Searching and accessing the Knowledge Base http://youtu.be/iU9ihqzfeEY
- Building a pathway: Filtering and growing http://youtu.be/8rYEs8F0Cws
- Building a pathway: Exploring the path of interaction http://youtu.be/--TRmuMVP9E
- Overlay contextual information http://www.youtube.com/watch?v=rSp8X6Y6WIc
- Editing a pathway for publication http://youtu.be/yEJjqIUM4So

IPA data analysis series videos:

- Data analysis : Part 1 (Data upload) http://youtu.be/XrdMN9eGWjg
- Data analysis : Part 2 (Results interpretation) http://youtu.be/PfF_Ru73-10
- Comparison analyses
- Analysis results
- Statistical calculation
- Canonical pathways
- Network Analysis
- Downstream effects analysis
- Upstream regulator analysis
- Human isoforms
- Molecular toxicology
- Biomarker filter and comparison analysis
- MicroRNA target filter http://www.youtube.com/embed/06xoKQL9-KA

http://youtu.be/JCanWpyfvQE http://youtu.be/rrppI9OGPUY http://www.youtube.com/watch?v=0oxCQ9dOQIE http://youtu.be/6iZdD9OjII0 http://youtu.be/eReZrNE2bWY is http://youtu.be/CYMrhwuvVKs

http://www.youtube.com/watch?v=X2bStYNJXm4

http://youtu.be/Po07vk3pOVE

http://youtu.be/m1nYDFdY_Zg

http://youtu.be/XQFUy0s6wCU

http://ingenuity.force.com/ipa/articles/Tutorial/Tutorials

- Search for genes tutorial
- Analysis results tutorial
- Upload and analyze example eata tutorial
- Upload and analyze your own expression data tutorial
- Visualize connections among genes tutorial
- Learn about specialized features
- Human isoforms view tutorial
- Transcription factor analysis tutorial
- Downstream effects analysis tutorial

Comparing Core Analyses

- Multiple Comparison
 - Time course
 - Does response
- Multiple Platforms and Data Integration
 - Systems biology
 - □ Combining SNP, CNA, mRNA, microRNA, proteomics, etc.
- Analysis Comparisons work best with Canonical Pathways, Upstream Regulators, and Disease and Functions
- Regulator Effects and Mechanistic Networks are similarly difficult to compare because these networks are created in the context of the single analysis.
 - To compare these networks across analyses, open, view the network, and then use the OVERLAY -> "Data Sets, Analyses, and Lists" to overlay colored representation of gene changes.

Comparing Analyses

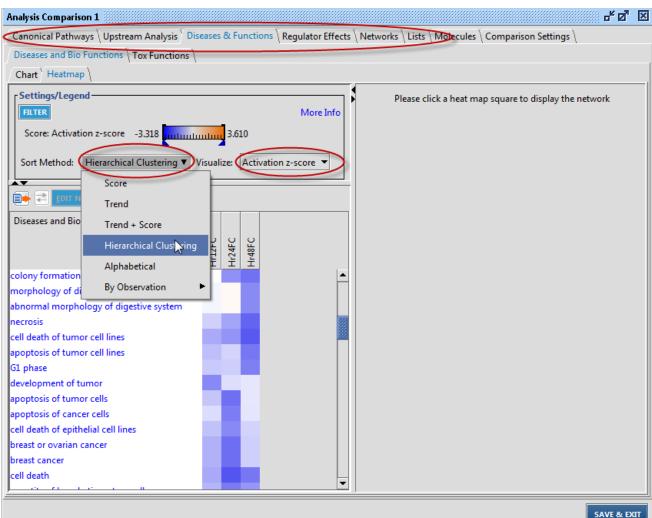
🔊 IPA

<u>File Edit View W</u> indow <u>H</u>	<u>H</u> elp			Provide Feedback Support
<u>N</u> ew	۱.	Core Ana <u>l</u> ysis	Ctrl-N	ox Lists
<u>O</u> pen	•	<u>T</u> ox Analysis	Ctrl+Shift-T	
Save	Ctrl-S	<u>B</u> iomarker Filter	Ctrl+Shift-B	Advanced Search
S <u>a</u> ve As		Met <u>a</u> bolomics Analysis	Ctrl+Shift-A	
Upload Dataset	Ctrl-U	Core, Tox or <u>M</u> etabolomics Comparison An		
Batch Upload Datasets		Biomarker Comparison Analysis	GCtrl+Shift-K	
Search Datasets and Analyses		microRNA Target Filter	Ctrl+Shift-I	
		My Pat <u>h</u> way	Ctrl+Shift-N	
Refresh Project Manager	F5	Path <u>D</u> esigner	Ctrl+Shift-D	
Vie <u>w</u> References		Advanc <u>e</u> d Search	Ctrl+Shift-S	
Export <u>D</u> ata	Ctrl-E	<u>P</u> roject	Ctrl+Shift-P	
Export <u>I</u> mage	Ctrl+Shift-E	Compare	Ctrl-R	
Send <u>T</u> o		Filtered Dataset	Ctrl-D	
Sha <u>r</u> e	· · ·	Import Pathway		
Prop <u>e</u> rties	•			
Preferences	•			
<u>P</u> rint	Ctrl-P			
Close IPA	Ctrl-Q			
Influenza Wouse Lung 20 Welding Gas Toxicity Melanoma 2013-06-13 Diabetes and Rosi E2 Treatment, MCF7 2013 Summer 2013 Diabetes and Rosiglitazor Influenza 2013_04	3_05			

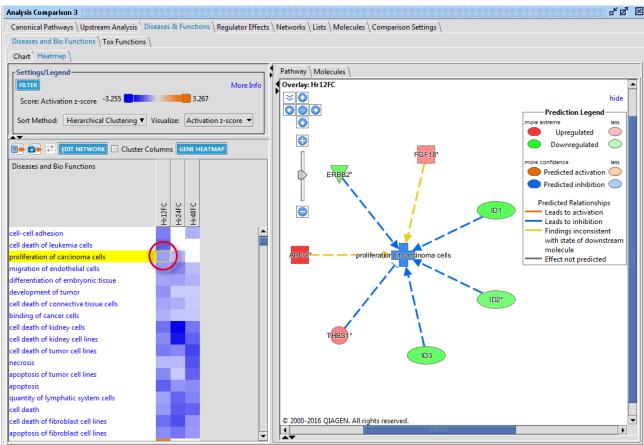
🔊 Create Comparison Analysis

Select analyses for side-by-side comparison. Click View Comparison to view comparison results.

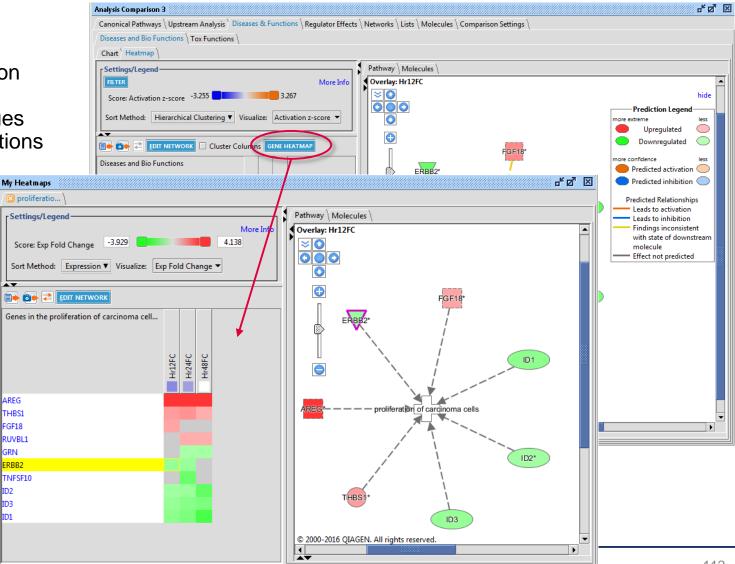
	SORT	Analyses to Compare		
E2 of MCF7 FC 1.5 P .01	ADD :			UP 🛠
Hr12FC	222	Hr24FC		
Hr24FC		Hr48FC		DOWN
Hr48FC				
🕀 🛅 Customer Data				
🕀 💼 E2 Comparison				
🖶 🛅 AD 2013				
🕀 🚞 E2 treatment of MCF7 2013_10				
🕀 🛅 db/db Mouse				
🛅 Fall Release 2013				
🕀 🛅 Influenza Mouse Lung 2013_07				
🕀 🛅 Welding Gas Toxicity				
🕀 🛅 Melanoma 2013-06-13				
🕀 🛅 Diabetes and Rosi				
🕀 🛅 E2 Treatment, MCF7 2013_05				
🛅 Summer 2013				
🕀 🚞 Diabetes and Rosiglitazone				
🕀 🛅 Influenza 2013_04				
🕀 🚞 E2 treatment, MCF7				
🕀 🛅 Melanoma 4				
🕀 🛅 Test Meta				
🕀 🚞 Lupus Nephritis II	-			
			« REMOVE	
			« REMOVE	1
				<u> </u>


×

Tabs at top navigate to the analysis-type of interest


Heatmap can be generated using different calculation methods

Heatmap can be based on different metrics depending on analysistype.



Selecting heatmap element displays pathway or network with data-values overlay and MAP coloring (if applicable)

Clicking GENE HEATMAP button displays gene expression values across observations

Sample to Insight

Micro-RNA Target Filter

Filter miRNA differential expression data set (if corresponding mRNA differential expression data, filter as well)

File -> New -> Filtered Data Set

Start microRNA Target Filter

- File -> New -> miRNA Target Filter
- Open miRNA filtered data set

Using funnel in column headers, filter mapping based on information type/confidence

Add annotation columns, if desired, by clicking the plus sign in column header and filter as desired

If corresponding mRNA, click "ADD/REPLACE MRNA DATA SET" to filter mRNA mappings to genes in the mRNA expression data set

- Click "EXPRESSION PAIRING" to pair the expression between the miRNA and mRNA
- Click the funnel in the column header of the expression pairing column to filter for the miRNA-mRNA pairing desired

Click to summary tab to view a summary of miRNA-mRNA mappings

For further analysis, select one or more miRNAs from the summary tab and add the miRNA and targets to a new pathway and perform overlays for interpretation of functions, pathways, drug targets, etc.

m	microRNA Target Filter													
	68 microRNA families have targeting information available. ADD/REPLACE MRNA DATASET EXPRESSION PAIRING **													
	Details \ Summary \													
-	ADD TO MY PATHWAY ADD TO MY LIST Image: Comparison of the second se													
	microRNA dataset: ma	elanoma microRI	NA_data Add column(s) 💽	Relationship				Add column(s) 💽	mRNA datas	et: mRNA Metas	stasis vs Normal - 2	PC,0.05PV	Add column(:
	ID 🗙		metastatic melanoma (Fold C	Source	T	Confidence	🝸 E:	xpression Pairing 🔋			Symbol	Fold Change 💌		Pathway 🚺
	hsa-let-7c	let-7	↓ -3.120	TargetScan H	uman	High (predicted)		44		8072015	ADRBK2	↑ 3.394	kinase	Colorectal Cancer Met
	Ansa-let-7c	let-7	↓ -3.120	TargetScan H	uman	Moderate (predicted	d)	44		8067167	AURKA	† 2.136	kinase	Molecular Mechanisms
	Ansa-let-7c	let-7	↓-3.120	TargetScan H	uman	High (predicted)		44		8105121	GHR	† 2.052	transmembrane receptor	Growth Hormone Signa
	hsa-let-7c	let-7	↓ -3.120	TargetScan H	uman	Moderate (predicted	d)	44		7994131	PRKCB	† 4.995	kinase	Breast Cancer Regulat
	hsa-miR-206	mir-1	↑ 1.880	TargetScan H	uman	Moderate (predicted	d)	+↓		7956301	LRP1	↓ -3.463	transmembrane receptor	Colorectal Cancer Met
	hsa-miR-206	mir-1	↑ 1.880	TargetScan H	uman	High (predicted)		+↓		8008201	NGFR	↓ -2.917	transmembrane receptor	PTEN Signaling
	hsa-miR-122	mir-122	↑ 1.970	TargetScan H	uman	High (predicted)		+↓		7963670	MAP3K12	↓ -3.119	kinase	Germ Cell-Sertoli Cell J
	hsa-miR-122	mir-122	↑ 1.970	TargetScan H	uman	Moderate (predicted	d)	+↓		8157524	TLR4	↓ -6.290	transmembrane receptor	Colorectal Cancer Met
	hsa-miR-125a-5p	mir-125	↓ -1.450	TargetScan H	uman	Moderate (predicted	d)	44		7985213	CHRNA5	↑ 2.965	transmembrane receptor	AMPK Signaling
I F	bca-miD-125a-5n		L_1 450				в			7004131		4 4 005		

miRNA data	miRNA Target Filter	Molecule Type	Pathways (Cancer/ Growth)	mRI	NA IT	?
88 data	13,690	1,090	333	39	32	
points	targets	targets	targets	targets	targets	

Use Pathway tools to build hypothesis for microRNA – target association to melanoma metastasis.

Ingenuity ® Knowledge Base

IPA has high-quality microRNA-related findings (including both experimentally validated and predicted interactions)

- TarBase: experimentally validated microRNA-mRNA interactions
- Target Scan: predicted microRNA-mRNA interactions (low-confidence interactions were excluded)
- miRecords: experimentally validated human, rat, and mouse microRNA-mRNA interactions
- Literature Findings: microRNA-related findings manually curated from published literature by scientific experts and structured into the Ingenuity[®] Knowledge Base

Single source for microRNA content plus related biology enables biologically relevant target prioritization in minutes vs. weeks

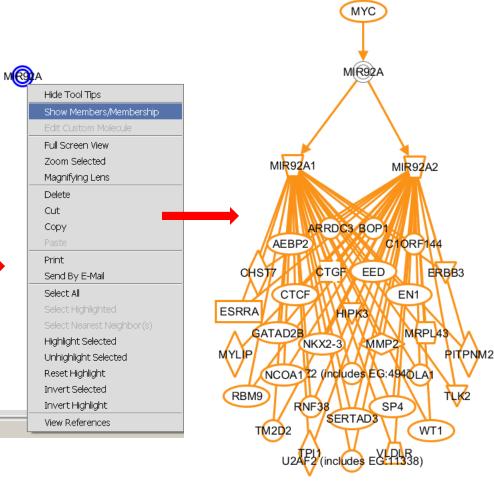
Extensive human, mouse, and rat coverage

For Searching, IPA Supports:

- miRBase Identifiers
- □ Entrez Gene Symbols and Entrez Gene IDs
- □ Other synonyms used in the literature
- For Data Upload, IPA Supports:
 - miRBase Identifiers for mature miRNAs
 - miRBase Accession Numbers (format MIMAT#####) are preferred. These are stable identifiers.
 - miRBase Name Identifiers (format: mmu-miR-###) are allowed. Since some miRNA arrays provide annotations only with the name, we have provided mappings for them. These change over time so use MIMAT instead if available.
 - □ Precursor identifiers are NOT supported
 - □ Entrez Gene IDs (not Entrez Gene Symbols)
 - □ HUGO gene symbols (human only)

Mapping microRNA IDs in IPA during Data Upload

- A given ID can only map to a single node in IPA
- miRNA identifiers each map to either a group node or a locus-specific node:
 - miRNA identifiers that correspond to mature miRNAs that do NOT appear in a group (ie, they arise from only one known precursor, and that precursor has no more than one known Entrez Gene ID/locus) are mapped to a locusspecific node.
 - miRNA identifiers corresponding to mature miRNAs that ARE in a group map to that group.
 - □ No miRNA maps to more than one group node in IPA.


- Mature miRNAs may arise from multiple precursors:
 - □ A given mature form may arise from multiple distinct miRNA precursors.
 - □ A given precursor may arise from multiple distinct loci.
- Groups are created in the knowledge base to represent mature miRNA's that may arise from multiple precursors or multiple loci.
 - When authors refer to a particular mature miRNA form that may arise from multiple distinct precursors and/or multiple genetic loci, the finding is mapped to a group concept that contains all potential "parent" precursors.
- Groups might have different network connections compared to the individual members of the group.
 - Findings might be mapped to the individual members or to the group, depending on information provided by the author.
 - Grow' functionality does not 'look inside' the groups.
 - Additional steps will ensure that all members of group will be considered when applying 'Grow'

Expanding groups prior to Growing will provide information on known molecular interactions for all members of the group.

MYC

M(R92A

Biomarker Filter

IPA-Biomarker[™] analysis filters/refines candidate lists based on biological criteria such as association to a disease, normal presence in a fluid, or normal expression in a tissue/cell type/cell line and/or clinical usage.

- □ Species
- □ Tissues and Cell Lines
- Biofluids
- Diseases
- □ Clinical Biomarkers

The output is a refined list of candidates

□ It does not calculate functions, Canonical Pathways, or networks

Different observations or datasets can be compared using the Comparison Biomarker Analysis

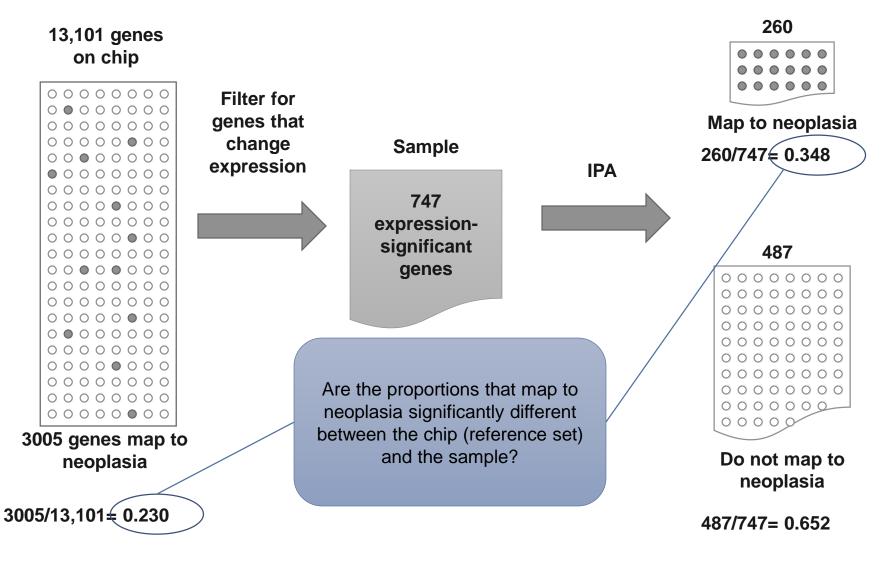
□ Calculates unique and common molecules

The Biomarker Filter capability rapidly priorities biomarker candidates based on biological characteristics and clinical usage.

Species	?	Select Biomarker Applications:		Select Biomarker Diseases:	
Tissues & Cell Lines	ি	Select All Diagnosis		Select All	
Molecule Types	ৃ	Disease Progression	24	🕀 🗌 Cancer	
Diseases	ি	Efficacy		Cardiovascular Disease Connective Tissue Disorders	
Biofluids	્	Response to Therapy		Dermatological Diseases and Conditions	
Biomarkers	্	Unspecified Application	•	Endocrine System Disorders	-
		Not a known Biomarker	-		_

Clinical Usage (Biomarkers):

Identify biomarkers by their specific application, including markers for Disease Diagnosis and Prognosis, Disease Progression, markers of Drug Efficacy and Safety, and Patient Response to Therapy


Statistics in IPA

Is the proportion of genes in my sample mapping to a gene set (those that are significant) similar to the proportion of all measureable genes (reference set) that map in the gene set?
 If the proportions are similar, there is no biological effect

Mapping Colorectal Cancer Expression Data to the Function "Neoplasia"

A 2x2 contingency table is created based on the total population, the sample, and how many genes map to the function/pathway. This table is used to calculate the Fisher's Exact Test

	Neoplasia	Not Neoplasia	
In Sample	k	n - k	n
Not in			
Sample	m - k	N + k - n - m	N - n
	m	N - m	Ν

m= Total that map to function/pathway

N= Total

k= Number that map to function/pathway in sample

n= Total sample

Numbers based on the colorectal cancer data mapping to neoplasia

	Neoplasia	Not Neoplasia	
In Sample	260	487	747
Not in			
Sample	2745	9609	12354
	3005	10096	13101

3005 = Total that map to neoplasia on chip

13101 = Total on chip

260 = Number that map to neoplasia in sample

747 = Total sample

Fisher's Exact Test p-value = 2.13 E-14

What Can We Say About Our Colorectal Cancer Data Set And Neoplasia?

We can conclude that the proportion, or over representation, of genes mapping to neoplasia is not likely the result of sampling (and is likely an effect of the disease)

If you are using a standard vendor platform supported by IPA, then that platform should be selected as your reference set.

If you do not know the platform or the data were taken from different platforms, select a reference set that best estimates the entire population you evaluated.

- For gene expression data, select the "Ingenuity Knowledge Base (genes only)"
 - □ This setting uses all function- and pathway-eligible genes in the knowledge base.
- For metabolomics, select the "Ingenuity Knowledge Base (endogenous chemicals only)"
- You have the option to having your uploaded data set used as the reference set (User Data Set)

Low density arrays are problematic because the genes that are being measured are usually not randomly chosen to start with, but are typically selected based on a priori function or pathway knowledge

Let's assume a inflammatory cytokine array

- If you select the Ingenuity Knowledge Base as your reference, your p-values for inflammation functions and pathways will be artificially low (significant) because the array was heavily biased for these genes.
- If you upload every gene on the array, and select the "User Data Set" reference option, your p-values are statistically accurate, but inflammatory functions and pathways may not appear significant because the likelihood of having a random sample with similar proportions to inflammation processes is extremely high.

Benjamini-Hochberg method of multiple testing correction

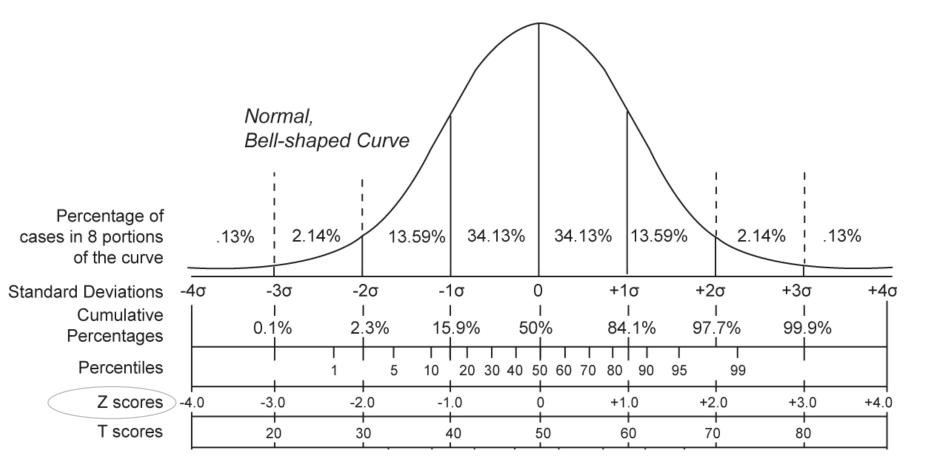
Based on the Fisher's exact test p-value

Calculates false discovery Rate

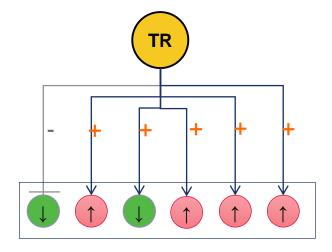
Threshold indicates the fraction of false positives among significant functions

5% (1/20) may be a false positive

"What is the significance of function X in relation to my dataset?"


Use Fisher's Exact test result

"What are all significant functions within this dataset?"


Use Benjamini-Hochberg multiple testing correction

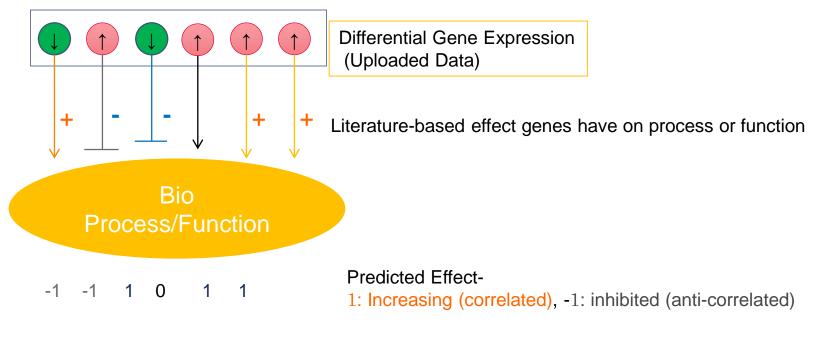
A set of genes chosen at random should be about equally likely to have an increasing or decreasing effect, thus, about 50% each direction, or a z=0. A z-score represents the nonrandomness of directionality within a gene set

Every TR is analyzed

Literature-based effect TR has on downstream genes

Differential Gene Expression (Uploaded Data)

1 1 -1 1 1 1


Predicted activation state of TR: 1: activated (correlated), -1: inhibited (anti-correlated)

$$z = \frac{x}{\sigma_x} = \frac{\sum_i x_i}{\sqrt{N}} = \frac{N_+ - N_-}{\sqrt{N}} = \frac{4}{\sqrt{6}} = 2.04$$

- z-score is statistical measure of correlation between relationship direction and gene expression.
- z-score > 2 or < -2 is considered significant

Actual z-score *can* weighted by relationship, relationship bias, data bias

$$z = \frac{x}{\sigma_x} = \frac{\sum_i x_i}{\sqrt{N}} = \frac{N_+ - N_-}{\sqrt{N}} = \frac{1}{\sqrt{5}} = .447$$

- "z-score" is statistical measure of correlation between relationship direction and gene expression.
- z-score > 2 or < -2 is considered significant

Actual z-score is weighted by relationship, relationship bias, data bias