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• Real-time and offline rendering have one 
important gap: the use of global illumination for 
physically based, realistic lighting

• Games use light mapping 
– Approximates global illumination on the surface
– Only for static scenes!
– Does not address dynamic objects that move through 

the scene
– Result in beautifully rendered, globally illuminated 

scenes that contain unrealistic, locally lit dynamic 
objects

• Solution: 
– Precomputed Irradiance Volumes for static scenes 
– Precomputed Radiance Transfer for objects within 

those scenes

Motivation



[Greger98]

The Irradiance Volumes
• We aim to solve as much of the global 

illumination calculation during preprocess 
time

• A 3D light map: volume of diffuse lighting 
samples

This is what we’re 
trying to achieve



• These techniques were used as a drop in replacement 
for diffuse lighting in the Ruby: Dangerous Curves demo

• At the very least, these techniques could serve as an 
ambient lighting solution in your games

• Before diving into the details it is necessary to have a 
basic familiarity with the following terms:
– Radiance, Irradiance, and Transfer

Used in Ruby: Dangerous 
Curves



Demo

Ruby2: Dangerous Curves
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• Radiance is the emitted energy per unit time in 
a given direction from a unit area of an emitting 
surface 

[Greger98]

Radiance



• Capture radiance at a point for all 
directions
– Place a camera at that point
– Render the surrounding scene into a 

cubemap
– Scale each texel by its projected solid 

angle
• The cube map represents the radiance 

for all directions for this point
– Known as the radiance distribution 

function
– Not necessarily continuous (Even in 

simple environments)
• Every point in space has a radiance 

distribution function
– Radiance is a 5D function (3 spacial

dimensions and 2 directional 
dimensions)

[Greger98]

Capturing Radiance 



Radiance

• The radiance of a surface is a function of its BRDF and 
incident radiance

• The incident radiance defined on the hemisphere of 
incoming directions is called the field-radiance function

[Greger98]



• The radiance of a purely diffuse surface is defined in 
terms of the surface’s irradiance

• Irradiance is an integral of the field-radiance function 
multiplied by the  Lambertian cosine term over a 
hemisphere
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• We could compute irradiance at a point for all possible orientations of a 
small patch:

– For each orientation, compute a convolution of the field radiance with a 
cosine kernel

• The result of this convolution for all orientations would be an irradiance 
distribution function 

• The irradiance distribution function looks like a radiance distribution 
function except much blurrier because of the averaging process 
(convolution with cosine kernel)

• The irradiance distribution function is continuous over directions

Irradiance

[Greger98]



Irradiance

• The irradiance distribution function can be computed for 
every point in space: irradiance is a 5D function (3 
spatial dimensions and 2 directional dimensions)

• Evaluating the irradiance distribution function in the 
direction of a surface normal gives us irradiance at that 
surface location

• Computing irradiance distribution functions on demand is 
possible but can be costly.  An obvious optimization is to 
precompute irradiance distribution functions for a scene 
at preprocess time and then use this precomputed data 
at runtime



Rendering with Irradiance
• The Irradiance Distribution Function at a point can be 

stored using a “Diffuse Cube Map”
• The cube map is indexed with an object’s surface normal



Efficient Storage of 
Irradiance

• We need an irradiance distribution function for objects 
moving in the scene

• Capture the lighting environment at many points in the 
scene
– At preprocess time
– Then we’ll have a volume of irradiance distribution functions

• But! We’re still left with the cost of storing tons of cubemaps
– For all the points in the scene
– And the bandwidth overhead of indexing these maps at render 

time
• Instead! Compress irradiance maps 

– Represent each as a vector of spherical harmonic coefficients
– Reduces both storage and bandwidth costs
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Spherical Harmonics
• Infinite series of spherical functions
• Can be used as basis functions 

– Stores a frequency space approximation of an 
environment map

• Use Microsoft DirectX SDK for spherical 
harmonics computations
– Includes functions for projecting a cubemap into a 

representative set of spherical harmonic coefficients
– Also functions for scaling and rotating spherical 

harmonics – important if your object is moving
• For code snippets that will help your write your 

own spherical harmonic helper functions, see 
Robin Green’s Spherical Harmonic Lighting: 
The Gritty Details



Fourier Theory

• Recall that it is possible to represent any 1D signal as a sum of 
appropriately scaled and shifted sine waves

• Spherical harmonics are the same idea on a sphere!
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From [Green]

Spherical Harmonic Basis



• Projecting an environment map into 3rd order spherical harmonics effectively 
gives you the irradiance distribution function [Ramamoorthi] 

• Projection into 3rd order SH is not only a storage win but a preprocessing win 
too since SH projection is much faster than convolving an environment map 
with a cosine kernel for all possible normal orientations

Original 
Environment 

Map

Filtered 
Environment 

Map

SH 
Representation

[Ramamoorthi]

Spherical Projection: 
Storage and Computation



Spherical Harmonics
• Once an environment map has been projected into spherical 

harmonics, the coefficients can be used to evaluate the original
map in a given direction

• Storing these coefficients VS constants allows us to compute 
irradiance per-vertex rather than having to sample a cubemap 
per-pixel



SH Evaluation With 
Normal

float4 cAr; // first 4 red irradiance coefficients
float4 cAg; // first 4 green irradiance coefficients
float4 cAb; // first 4 blue irradiance coefficients
float4 cBr; // second 4 red irradiance coefficients
float4 cBg; // second 4 green irradiance coefficients
float4 cBb; // second 4 blue irradiance coefficients
float4 cC;  // last 1 irradiance coefficient for red, blue and green
float3 x1, x2, x3;
// Linear + constant polynomial terms
x1.r = dot(cAr, vNormal);
x1.g = dot(cAg, vNormal);
x1.b = dot(cAb, vNormal);
// 4 of the quadratic polynomials
float4 vB = vNormal.xyzz * vNormal.yzzx;   
x2.r = dot(cBr, vB);
x2.g = dot(cBg, vB);
x2.b = dot(cBb, vB);
// Final quadratic polynomial
float vC = vNormal.x*vNormal.x - vNormal.y*vNormal.y;
x3 = cC.rgb * vC;    
Output.Diffuse.rgb = x1 + x2 + x3;

Constant:

Linear:

Quadratic:

[Shader Code From DirectX SDK]



• Irradiance samples only store irradiance for a single 
point in space

• This really only works well if the lighting environment is 
infinitely distant (just like a cubic environment map)

• This error can be very noticeable when the lighting 
environment isn’t truly distant 

One Irradiance Sample: A 
Point in Space



• If an irradiance sample is used to shade the surface of an 
object, the potential error increases the further we move away 
from the point at which the irradiance sample was generated

• Irradiance gradients allow us to store the rate at which 
irradiance changes with respect to translations about the 
sample

Spherical Harmonic 
Irradiance Gradients



If irradiance varies greatly near a sample point, can store 
irradiance gradients along with each irradiance sample. [Ward 
92][Annen04]

Irradiance Gradients

No Irradiance Gradients

With Irradiance Gradients



• Translational gradients for spherical harmonic irradiance 
samples may be computed in a number of ways [Annen]…

• One simple way to find the gradients is to use central 
differencing to estimate the partial derivatives of the 
spherical harmonic irradiance coefficients

• Project 6 additional irradiance functions into spherical 
harmonics and perform central differencing on each of the 
coefficients

Spherical Harmonic 
Irradiance Gradients



Central Differencing

• Subtract the coefficients for samples taken at a small offset in
the +Y and –Y directions

• Divide by distance between the samples
• This gives you an estimate of the partial derivative with respect 

to y for each coefficient
• Do this for the other two axes as well…
• You now have a 3D gradient vector for each spherical 

harmonic coefficient
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First-Order Taylor 
Expansion

• At render time, the gradient may be used to extrapolate a new 
irradiance function

• Compute world space vector from the location at which the sample was 
generated to the point being rendered 

• This vector is then dotted with the gradient vector and added to the 
original sample to extrapolate a new irradiance function 

• Ii’ is the ith spherical harmonic coefficient of the extrapolated irradiance
function, Ii is the ith spherical harmonic coefficient of the stored 
irradiance sample,      is the irradiance gradient for the ith irradiance 
coefficient and d is a non-unit vector from the original sample location 
to the point being rendered 
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// Compute vector from original irdiance sample position to the position that is being shaded
float3 vSampleOffset = (vPos - vIrradianceSamplePosWS);
// Arrays for the extrapolated 4th order (16 coefficients per color channel) spherical harmonic irradiance
float4 vIrradNewRed[4]; float4 vIrradNewGreen[4]; float4 vIrradNewBlue[4];
// Extrapolate new irradiance for 4th order spherical harmonic irradiance sample
for ( int index = 0; index < 4; index++ )
{

vIrradNewRed[index] = float4( dot(vSampleOffset, vIrradianceGradientRedOS[index*4 + 0]),
dot(vSampleOffset, vIrradianceGradientRedOS[index*4 + 1]),
dot(vSampleOffset, vIrradianceGradientRedOS[index*4 + 2]), 
dot(vSampleOffset, vIrradianceGradientRedOS[index*4 + 3]) );

vIrradNewGreen[index] = float4( dot(vSampleOffset, vIrradianceGradientGreenOS[index*4 + 0]),
dot(vSampleOffset, vIrradianceGradientGreenOS[index*4 + 1]),
dot(vSampleOffset, vIrradianceGradientGreenOS[index*4 + 2]),
dot(vSampleOffset, vIrradianceGradientGreenOS[index*4 + 3]) );

vIrradNewBlue[index] = float4( dot(vSampleOffset, vIrradianceGradientBlueOS[index*4 + 0]),
dot(vSampleOffset, vIrradianceGradientBlueOS[index*4 + 1]),
dot(vSampleOffset, vIrradianceGradientBlueOS[index*4 + 2]),
dot(vSampleOffset, vIrradianceGradientBlueOS[index*4 + 3]) );

vIrradNewRed[index] = vIrradNewRed[index] + vIrradianceSampleRed[index];
vIrradNewGreen[index] = vIrradNewGreen[index] + vIrradianceSampleGreen[index];
vIrradNewBlue[index] = vIrradNewBlue[index] + vIrradianceSampleBlue[index];

}



• Gradients improve the usefulness of each sample but we still haven’t 
solved all our problems…

• One limitation of irradiance mapping is that it doesn’t account for an 
object’s self occlusion or for bounced lighting from the object itself

• This additional light transport complexity can be accounted for by 
generating pre-computed radiance transfer (PRT) functions for points 
on the object’s surface 

What About Self Occlusion 
or Bounced Lighting?



• Radiance Transfer maps incident radiance to reflected radiance
• PRT require incident radiance, we’re dealing will irradiance?!

– If you project an environment map into 3rd order SH and evaluate with a surface normal then the 
SH data represents irradiance

– If you project an environment map into SH and integrate the product of the environment and 
transfer functions then the SH data represents low-frequency incident radiance (where “low-
frequency” is relative to the order of the SH projection)

– As long as we’re assuming low-frequency, the data is the same… the difference is semantic 
• If stored as SH, the integral of (Incident Radiance * Transfer) reduces to a dot product of 

two vectors (the vectors contain SH coefficients for incident radiance and transfer)

Precomputed Radiance 
Transfer



• If using samples for irradiance distribution, the surface normal
used for finding irradiance should be transformed into world 
space (skinned) before evaluating the SH function

• If using the samples for PRT, the transfer function can not be 
easily rotated on the GPU so instead rotate the lighting 
environment by the inverse model transform on the CPU

Handling Rotation
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Irradiance Volume: 
Background

• Irradiance volumes have been used by the film industry as an 
acceleration technique for high quality, photorealistic offline 
rendering

• The volumes store irradiance distribution functions for points in 
space by utilizing a spatial partitioning structure that serves as 
a cache

• Sampling the volume allows the for the global illumination of a 
point in space to be quickly calculated

• Spherical harmonics allow irradiance volumes to be efficiently 
stored and evaluated

• These volumes are compatible with precomputed radiance 
transfer and allow for fast, efficient and realistic rendering in 
real time applications such as games



• A grid of irradiance samples is taken throughout the scene
• At render time, the volume is queried and near-by irradiance 

samples are interpolated to estimate the global illumination at a 
point in the scene

From [Greger]

The Irradiance Volume



• Subdividing a scene into evenly spaced voxels is one way to 
generate and store irradiance samples

• Irradiance samples should be computed for each of the eight 
corners of all the voxels

• A uniform grid is easy to implement but quickly becomes 
unwieldy for large, complex scenes that require many levels of 
subdivision

Uniform Volume 
Subdivision



• Choosing an adaptive subdivision scheme such as an octree 
will allow you to only subdivide the volume where subdivision is
beneficial

– For a given scene, some areas will have slowly changing 
irradiance and can be subdivided coarsely

– Areas with quickly changing irradiance will need to be subdivided 
more finely 

Adaptive Volume 
Subdivision



Demo

Irradiance Volumes with 
Irradiance Gradients 
Computed Using Adaptive 
Subdivision



Adaptive Octree 
Subdivision

• Knowing which areas of your scene need further 
subdivision is a challenging problem 

• For example, a character standing just inside a house 
will appear shadowed on a sunny day but if the character 
moves over the threshold of the door and into the 
sunlight they should appear much brighter; irradiance 
can change very quickly 

• We need a way to find areas of rapidly changing 
irradiance so that these areas can be more finely 
subdivided 



Adaptive Subdivision
• Since irradiance sampling is done as a preprocess, one option 

is to use a brute force method that starts by super-sampling 
irradiance using a highly subdivided uniform grid 

• After this super-sampled volume is found, redundant voxels 
may be discarded by comparing irradiance samples at child 
nodes using some error tolerance to determine if a voxel was 
unnecessarily subdivided 

• This brute force method isn’t perfect though because it 
assumes you know the maximum level of subdivision or super-
sampling that is needed for a given scene 

• Instead, certain heuristics may be used to detect voxels that 
might benefit from further subdivision 



Subdivision Heuristics
• Measuring irradiance gradients and flagging voxels where the 

irradiance is known to change quickly with respect to translation (large 
gradient) is one way to test if further subdivision is necessary

• Testing gradients isn’t perfect though, because this will only subdivide 
areas where you know that irradiance changes rapidly. There may still 
be areas that have small gradients but contain sub-regions with quickly 
changing irradiance 

• Subdivide any voxels that contain scene geometry [Greger98]
• Find the harmonic mean of scene depth at a sample point to 

determine when subdivision is needed [Pharr04]
• The idea is that areas that contain a lot of geometry will have more 

rapidly changing irradiance
– Not a bad assumption, the more geometry surrounding a sample point the 

more opportunities for shadows, bounced lighting, etc…
– In the center of a room, lighting doesn’t change much.  As one approaches 

the walls things get interesting.



Harmonic Mean of Scene 
Depth

• Shoot a bunch of rays out from the irradiance sample’s position
• Compute the harmonic mean of distance traveled by all rays before intersection 

• N is the total number of rays fired, and di is the distance that the ith ray traveled 
before intersecting scene geometry 

• The harmonic mean is then used as an upper-bound for the sample’s usefulness.  
If the neighboring irradiance samples are further away than this upper-bound, 
then their associated voxels should be subdivided 

• The harmonic mean is chosen over the arithmetic mean (or linear average) 
because large depth values—due to infinite depth if no geometry exists in a given 
direction—would quickly bias the arithmetic mean to a large value 
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Using the GPU: Harmonic 
Mean of Scene Depth

• For each sample location, render the scene into each 
face of a floating point cubemap

• The scene should be drawn with a shader that outputs: 
1/depth

• Read the cubemap back into system memory and find 
the harmonic mean



Using the GPU: Voxel 
Contains Scene Geometry

• If you’re already reading back scene depth for the 
harmonic mean test, you can also use this data to 
determine if any scene geometry exists inside the voxel
– Scene depth is sampled at the voxel corners, so only some 

of the cubemap texels should be used to test for scene 
intersection

• Alternatively, you could use occlusion queries:
– Place the camera at the center of a voxel
– Render into each face of a cubemap

• First draw quads for each face of the voxel
• Second draw the scene

– If any of the scene’s draw calls pass the occlusion query, a 
part of the scene is inside the voxel



Adaptive Subdivision

• Specify a Min and Max level of subdivision
• Allow thresholds to be specified for each subdivision 

heuristic
• After you’ve fully sampled the volume, go back and 

reject any redundant samples: if a voxel has been 
subdivided and it’s children don’t differ enough from the 
parent, these samples may be culled



Sampling the Volume

• If you’re using an octree, search the tree for the 
voxel that contains the object’s centroid

• Use the surrounding samples to determine 
irradiance
– Interpolate surrounding samples (trilinear)
– Find a weighted sum of surrounding samples 

(weighted by 1/distance)



Trilinear Interpolation

• Seven LERPs of the spherical harmonic coefficients
• Works well for uniformly subdivided volumes
• Adaptively subdivided volumes require slightly more care



Trilinear Interpolation

• When transitioning between voxels that have been adaptively 
subdivided, naïve trilinear interpolation can produce popping 
artifacts

• As an object moves from finely subdivided voxels to coarsely 
subdivided voxels, some of the sample data will suddenly be 
ignored



Trilinear Interpolation

• To prevent popping, continue using samples from 
subdivided neighbors for interpolation

• Each octree node should store pointers to samples that 
lie on each face



Using Gradients for 
Interpolation

• Before using a sample for interpolation, evaluate the 
first-order Taylor expansion, then interpolate as usual.

Linear interpolation between 
left and right samples

Gradients used for first-order 
Taylor expansion before 

interpolation



Tricubic Interpolation

Use samples and gradients to construct cubic patches for 
interpolation.  Hermite patches are well suited for this since 
they only require four control points and four tangents 
(gradients).



GPU Memory Requirements 
(Constant Store)

6th order SH approximation for R, G and B:    108 floats
6th order SH gradients for R, G, and B:          324 floats

-------------
432 floats / sample

3rd order SH approximation for R, G, and B:     27 floats
3rd order SH gradients for R, G, and B:            81 floats

-------------
108 floats / sample

Modern GPUs can typically store 1024 to 2048 floats in VS constant store



GPU Memory Requirements 
(Constant Store)

• If you have enough constant store available, you can 
send all nearby samples and their gradients to the vertex 
shader and do the interpolation per-vertex

• If this is too costly for you, interpolate on the CPU and 
send a single interpolated sample and interpolated 
gradient to the vertex shader
– We did this for Ruby: Dangerous Curves and were very 

pleased with the results



System Memory 
Requirements

Uniform Subdivision Scene:

4913 Unique Samples

3rd Order SH + Gradients: ~2MB

6th Order SH + Gradients: ~8.2MB

Adaptive Subdivision Scene:

2301 Unique Samples

3rd Order SH + Gradients: ~970kB

6th Order SH + Gradients: ~3.8MB



Pros:
• Fast, efficient global illumination: A 3D light map for characters 
• Much smaller memory cost compared to diffuse cubemaps
• Scalable: use higher/lower order SH approximations depending on 

needs
• Compatible with lower-end hardware

• Doesn’t handle dynamic lighting well
• Articulated characters are tricky

– Works fine if evaluating irradiance samples with a vertex normal but PRT can 
be problematic

– Instead of using Spherical Harmonic basis functions…
• Valve uses a Cartesian basis in HalfLife2 (Ambient cube): 

http://www2.ati.com/developer/gdc/D3DTutorial10_Half-Life2_Shading.pdf
• Zonal Harmonics are more GPU rotation friendly.  See Microsoft’s GDC 2004 talk on 

LDPRT

Cons:



Conclusion

• A lighting technique for dynamic characters in static 
scenes

• Compact storage of diffuse lighting functions using 
Spherical Harmonics for many points in a scene

• First order derivatives are used for Taylor series 
expansion of the incident lighting functions to increase 
the accuracy of each sample

• Adaptive scheme using an octree for efficiently 
subdividing a scene

• Interpolation between samples



Irradiance Samples Along a 
Path

• We used a technique, similar to the one presented today, for diffuse 
lighting in Ruby: Dangerous Curves

• We cheated a little though, rather than storing an entire volume, we 
only stored samples along each character’s animation spline

• Rather than parameterize the samples by position, we parameterized 
by time
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