Titce Adult Basic Education Mathematics Curriculum Guide.
INSTITUTION PUB Dfite NOTE

PUB TYPE
EDRS PRICE
DESCRIPTORS

IDENTIFIERS

British Columbia Dept: of Education; Victoria. 83
l4lp.; For Science Curriculum Guide see SE 044 358.

Guides - Classroom Use - Guides (For Teachers) (052)
MF01/PC06 Plus Postage.
太Adult Basic Education; Curriculum Guides;
*Mathematics Curriculum; *Mathematics Education;
Mathematics Instruction; Resource Materiais;
*Teaching Methods
British Columbia

ABSTRACT

This curriculum guide from British Columbia is divided into five parts part 1 ; on using the guide, first explains the place of the guide in the provincial curriculum development and articulation processes. Four purposes are defined; the scope of the curriculum is outłined; and an overview of curriculum aim, learner goals, and topics is given- in part 2 , the curriculum design is presented, beginning with a background survey of the current state and future needs in adult basic education (ABE) Mathematics. Guidelines for specific program and course planning are included, with representative course designs- Part 3; (Learning Tasks and Resources) contains a systematic array of mathematics topics; including descriptions of typical learning tasks keyed to a ímited selection of resource texts. Part 4; (approaches to Teaching and Learning) presents a variety of ideás for instructors to consider in planning ABE mathematics instruction, including brief sections on principles and methods of adult learning, math anxiety, problem solving, computers, and issues in evaluation. Part 5 contains a list éf seiected instructional resources and professional references, aiong with a íst of pubiishers addresses. The final pages constitute a response form for users to comment on this draft curriculum. (MNS)

[^0]
Mathematics

f

ADULT BÁSIC EDUCATİON

máthemátićs

CURRICUEUM GUUDE

PROVINCE OF BRITISH COLUMBIA
 MINISTRY OF EDUCATION
 1983

ACKNORLEDGMENTS

The Ministry of Education acknowledges the work of the following people who have contributed to the production óf this guide:

Eurriculum Developer
John Evans; Camosun College
Cūr̄iculum Wrítē̄s
Jack Crane, Camosun Cōllege
Larry Platz, okanagan College
David Harrison, Fraser Valley Cóllegé (Minístry of Education Consuitañt)

Project Advisory Committee
Sheldon Haruey, Minístry of Education (Chaír)
Pal Aggarwalg Pacific vocational. Institute
Bābara Bowmar, okanagan coliege
Joan Coñ̄̄rs, Coliege of New Caledonia
Tom Davis, Fraser Valley Colicge
Warren tittle, Uñ iversity of victoria
Chuck Nelsoñ; School District \#36; Sūrey
Patricia Nelson, Malaspina College
Gordon Pawelchak, Vancouver Community College
Ričhār̄ Warrington, Ministry of Education
Review panèl
Jack Chernoff, Cariboo College
Gōrdon. Danskin, Douglas College
Jack Mctaren; Fraser Valley College
Mary O'Neillos School District \#43; Coquitiam
Larry Stone, Malaspina College
Mary Telford, Northern Lights College
Kae Williams; Northwest Community College

Typist

Sherfy Estes; Ministry of Education
Special thanks are also extended to members of the Adult Basic Education Association of British Columbia; for many valuable suggestions; and to Camosun College for co-operation in administering the projeçt.

CONTENTS

Page
Acknowledgments if
The flan of This Book v
Part 1 USING TRE CUKRICULUM GÜIde
Curriculum Guides and Program Articuiation $\overline{1}$
Purposes of the Guide 3
Scope of the Curriculum 4
Overview of Curricuium Aīm, Learnēr Goàis, and Topics 5
Part 2 CURRICULUM DESIGN
ABE Mathematics: Gurrent State and Future Needs 13
Design of Programs and Courses 19
Representative Gourse Designs 23
Part 3 LEARNING TASKS AND PESOURCES
Mathematics for Personal Use 35
Personal Math Fundamentals 36
Personal Math Applications 43
Mathematics for Careers 56
Career Math Fundamentals 57
Career Math Applications 64
Mathema亡ics for Transfer 83
Iransfer Math Fundamentals 84
Transfer Math Applications 92
Part 4. APPROACHES TO TEACHING AND LEARNING
Principles of Adult tearning 105
Math Anxiety 108
Problem Solving in Mathematics 110
The Computer - A Teaching Tool 114
Evaluation of Student Progress 123
Pärt 5 SELECTED RESOURCES
Instructional Resources 129
Professional Réferences 132
Publioshèrs! Addrēsses 137
Response Form 139

THE PLAN OF THIS BOOK

This curriculum guide ís divided into five distinct parts for ease of use ant raference.

Part 1 Using the curriculum Guide first explains the piace of the guide in the provincial curriculum development and articuiafirprocesses. Four purposes of the guide are then defined Neit, the scope of the curriculum is outioned, followed by the overview of curriculum aim; learner goals; and topics.

Pār 2 Curriculum design begins with the background survey of the current state and future needs in $A B E$ Mathematics, which guided the overāl design of this curriculum: The following section provides instructors and programmers with guidelines for specific program and course planning, and includes reprēsentātive course đesigns.

Part 3 Learning Tasks and Resources is the 'working section of the book. It contains a systematic array of mathematics topics, including description of typical learning tasks keyed into a limited selection of resource texts.

Part 4 Approaches to Teaching and Leārining presents a variety of ideas for instructors to consider in plañing $A B E$ mathematics instruction. This part includes brief sections on principles and methods of adult leāning, math anxiety; problem solving, computers, and issues in evāūation.

Part 5 Selected Resources contains á ijt of sēected instructional resources and professional reférences, álong with a list of publishers' addresses.

The final pages of the book constitute the 'response form', which users are requested to return to the Ministry with their comments on this draft curriculum.

CURRICULUM GUIDES AND PROGRAM ARTICULATION

This document is one of árénes of adult basic edueation
 of the Ministry of Education. The guides cover the areas ōf English ànd Communications, Māthemātics, and Science, from the end of basic literacy through secondary school completion or equivalent.

It is intended that a wide variety ōf courses inciuding $A B E$ 3, $A B E$ 4, college preparation, and secondary school courses for adults will be developed or revised within the framework óf the curriculum guides. For this purpose, each guide contains a section on course design; including samples of à range of representative courses. Specific course content or textbooks are not; howeyer, prescribed by these guìdes.

Over the pást two years, several groups hás suggested to the Ministry that an articulation of $A B E$ eurriculum and eertification should be ác coompiished: Specificaliy, in the Spring of 1983, the project advisory committees for boththe Seience and Mathematic ç curriculum guides recommended that "the Ministry should initiate a process to address provincial articulation çoncerns of the $\bar{A} B E$ curriculum in Science, English and Communications; and Mathematics...".

Consequently, during the year 1983/84; the Ministry of Education plans to initiate a consultàtive articulation process for adult basic education programs. Expected outcomes of this process are as follows:

- rationalization of program and course tities;
= estātishment of certification criteria;
- consensū on appropriate balance of subjects wíthin a progrām.

The articulation process wili involve coñultation with a broadly based committee drawn from institutions involved in the delívery of adíit basic éducatiōn: Thé three $A B E$ curriculum guides produced to date will be an important part of the 'working papers' ōf the cōmmittee. It is expected that this activity will, among other benefits; improve transferability of $\overline{A B E}$ stucénts bétwen institutions.

Meanwhile, this guīde is béing dístríbuted as a Response Draft: This step in the curriculum development process provides further opportunity for practitioners to examine, discuss; and comment on this major area of adult learning.

Written comments and suggestions should be sent, either on the sheet at the énd of this book, or separately, to:

Co-ordinator, Adult Basic Education
Continuing Education Division
Post-Secondary Department
Ministry of Education
Paritament Buildings
Vietoriã, B.C. $\mathbb{C} 8 \mathrm{~V}$ 2M4 by March $31 ; 1984$.

It is the hope of the Ministry o. Education that instructors; administrators; and representative groups will take this opportunity to provide the 'responsé from the field' that will improve the effectiveness and use of this document.

Ron Faris
Executive Director
Continuing Education Division

PURPOSES OF THE GUIDE

Beyond the global purpose of encouraging high=quãity learning opportunities for adults in $A B E$ mathematics courses, this guide has: four specific purposes.

The: first is to define the place of mathematics in adult básic education by à stātement of aim and goals.

The second purpose is to present an array, of iearning topics, with sample tasks and resources for instruction. Instructors and course designers can select from this array when planing
 appropriate to student goals, -instructor preferences; and local resources.
 course design, which can accomodate:
*. various effective approaches to mathematics instruction for aduits;
天 selection and adaptation of curriculum so that it is appropriate to adult interest and need;

* Garious defivery modes including on-campus ${ }^{\circ}$ instructicn, outreach elasses or distance learning;
* direct group instruction or self-paced learning;
* adaptation to a wide range of texts and other resources that may change from time to time;
* other constránts of time; space, and resources.

The fourth purpose of the guide is to provide administrators and instructors with a plañing framework that will assist them to:

* co-ordinate courses within an institution;
* articulate. course outcomes among institutions across the province;
\star assess and certify levels of studeñ achievement;
* define.curriculum development needs:

SCOPE OF. THE CURRICULUM

This currieulum is intendē for aduit learners who hàve gone beyond the minimum competency level best described as
'numeracy'. A minimum facility with the basic operations of the base 10 number system is assumed. The upper limit of the cūrriculum rānge may generally bé tāken ás secondary school complétion or equivalent.

Current tities of courses within this range inciude ABE/BTSD lēvels 2; 3 ; ànd 4; College Foundatiōns ōr Cōliege a Preparatory Mathematics, Mathematics Improvement, and Māthematics 10, Algebrā 11 , and Algebra 12 ; Busiñess and Consumer Mathematics 11, Industrial and frade Máthematics 11 in the àdüt secondary school program. Further rationalization of curriculum in these courses will be facilitated by $A B E$ articulation éfforts now underway (seé page 1).

The primary approach of this guide, however, is to define a
 improve their competence in mathematics.

Grade level equivalents and conventional course tities have therefore been put aside for the purpose of this guide. Instead, the topics and learning tasiss emerge from a general aim and three broad goals estabiished for the $\bar{A} \bar{B} \bar{E}$ mathematics curriculum; i.e., mathematics for personal usē; for cōreer needs, and for transfer to further education.

OVERVIEW OF CURRICULUM AIM, LEARNER GOALS, AND TOPICS
 by the curriculum development team on the basis of:

* .a survey of the current state and future needs in ABE Mathematics (summarized in Part 2 of, this guide;
${ }^{\bar{*}}$. direction from, \bar{a} feel $\overline{1}-\mathrm{b}$ as ed, provincial advisory committee;
* consultation with a field review pane i of $\bar{A} B E$ mathematics instructors;
» current trends in mathematics education.
The topics are first categorized according to i earner goal; i. \bar{e}, Personal; Career or Transfer. They are then subdivided into sets of Fundamental and Application topics.

Learning tasks and resources are outlined for each topic and acre presented in detail in' Part 3 of the guide

- 5 -

戠: 12.

The relationship of the aim; goals; topics, tasks, and resources is shown by this diagrame

For each set of topics, the curriculum guide identifies
LEARNING TASKS ánd RESOURCES
\qquad

- 6 -

CURRICULUM AIM

The aim is to enabie adult learners to acquire the mathematical knowledge, skills; and strategies needed to attain personal or career goals andor transfer to further education.

LEARNER GOALS

Persōnal: Acquire the competence in mathematics required for personal use in the sócíetal rojes of family member, consumer; community member; and citizen.

Career: Acquire the competence in mathematics required for career use in the sōciétaj rōes related to work.

Transfer : Acquire the competence in mathématićs required for transfer to further educational study in thé sociétā role of iffelong learner.
$-7-14$

TOPICS

```
(PF) Personal Math Fundamentāls
PF1: Whole Numbers
PF2: Decimals:
PF3: Fractions
PF4: Metric Measumrement
PF5: Percentages
PF6: Tables, Graphs and Chārts
PF7: Calculators
(PA) Personal Mãth Applications
PA1: Bānk Accounts
PA2: Budget
PA3: Cassh Transactions
PA4: Consumer Credit
PA5: - Hoúsing
PA6:: Trãel
PA7: Transportation
PA8: Home Renovation
PA9: Insurance
PA10: Pay Cheques
Pal1: Income Tax
PA12: Property Tax
PA13: Utilities
```

```
(CF) Ca`reer Math Fundamentais
CFi: Whōe Numbers
CF2: Decimals
CF3: Fractions
CF4: Metric}M\mathrm{ Measurement
CF5: Formulae
CF6: Ratio and Proportion
CF7: Perceñtages
(CA) Cārēer Math Áppicications
CÃ1: Numéricaji dàta
CǍ: - Geometry - Liñes ànd Angles
CA3: Geometry - Circies àd Polygons
CA4: Piane Figures - Basic Measures
CA5: Solid Figures - Basic Measures
CA6: Pythagoreañ Theoorem
CA7: Right Triangle Trigonometry
CA8: Geometric Construction
CA9:- Profit and Loss
CA10: Simple and Compound Intereve\overline{t}
CA11: Discount and Commission
CA12: Payroll
CA13: Statistics
CA14: Plane Figures - Linear and Area Measurement
CA15: Solid Figures - Surface Area and Volume
CA16: Trigonometry
CA17: Advanced Constructions
CA18: Advanced Interest and Biscount
CA19: Compound Interest and Annuities
```

(TF) Transfer Math Fundamentā s
TF1: Properties of the Number System
TF2: Rational Numbers and Exponents
TF3: Polynomials
TF4: Linear Equations
TF5: Cartesian Graphing
TF6: Systems of Equations:
TF7: Quadratic Sentences
(TF) Transfer Math Appications
TA1: Polynomials and Rational Expressions
TA2: Radical Expressions
TA3: Quadratic Sentences
TA4: Systems of Equations
TA5: Trigonometry = Basics
TA6: Imaginary and Complex Numbers
TA7: Conics
TAB: Exponentiá and logarithmic functions
TÁ9: Polynomía functions and Graphing Téc̄niques
TA10: Sequences; Series and Binomial Theorem
TA11: Trigonometry - Advanced

abe mathematics: current state and future needs

Institutions throughout British Columbia offer instruction in mathematics in a variety of forms and at a number of levels.
 Education programs from Level 1 through Level 4 ; college preparatory, and adult secondary compietion: courses are offered at central campuses; at isolated satelites; and through distance learning. They are of $\bar{f} \bar{t} \bar{n}$ vaifabie both day and night, and for both fulj-time or part-time jearners. Instruction may be by conventionaj ciassroom jecturej demonstration methods, by individualized tutoring and
 these and other methods in combination.

While a review of current course offerings in $A B E$ mathematics revealed this diversity, it also discoverē à nēē fō definition and ciarification of the common ground in the curriculum. A recurrent theme voieed by practitioners was the need for a clearly defined, provincewide curriculum that would provide guidance in discussions and decisions about course content, standards, certification, transfer of student credit, and genérā program articulation and co-ordination.

In its investigations into the current state and future needs in $A B E$ mathematics; the development teàm were able to draw on the experience and advice of three groups of practitioners. A broadly based advisory committee included representatives from colleges, school districts, and both the post-secondary and schools departments of the Ministry of Education; the advisory committee provided project guidelines and reviewed major drafts. A field review panel, from seven colleges and
a large school district program provided specific feedback on curriculum content; éspecíally regarding the arrays of learning tasks and résourcess. (The membership of these groups is shown in the Acknowledgments section of this guide). Also vāuabie wera the suggestions of 15 participants in an instructor's workshop held in co-operation wich the Adult Basic Education Association of British Columbia in March $\quad 1983$.

Common to these discussions were several familiar curricular questions.

* What should be the àim of $A B E$ mathematics instruction?
* What use is mathematics to the adult learner?
* What topics should be inciuded in an aduit mathematićs curriculum?

天 Whà is the most useful way to àrāy thése topics in a curriculum guide?

Summarized beiow are the brōd answers to these questions, ás the curriculum development team interpreted them in the course of their work.

What should be the aim ōf $\bar{A} B E$ mathematics instruction?

A broad státement of aim can help set the overall direction of a curriculum revision effort. While it is à general státément, this aim is built around. six key words: the
knowledge, skilis, and strategies that constitute the discipline of mathematics; and the personal, career; and transfer goais of the learners. Thus, the aim of the curriculum is as follows:
"to enabie aduly learners to acquire the mathematicá knowledge, skills, and strategies needed to attain personal or career goals and/or transfè to fürther edücation".

What uso is mathematies to the aduly learner?

The value of any new learning lór refreshing the memory of past learning and experiencé in an adult education context is capable of almost infinite, and very individual, variation. A group of 30 adult learners could readily attest to well over 30 different uses that mathematics might have for \bar{t} hem. Yet a curriculum devēoper seeks to categorize these actual or potential uses in some way to guide curriculum design. If the design and content direçity réflect adult learning needs, then the resuiting curriculum will likely display the characteristics of adult interest, rēēānce, practicality, challenge, and flexibility.

The ápproach taken in several current provinciáa curricuium development projects (including the ABE Eriglish and Communications curricuilum Guide, the ABE Science curriculum Guide, and the (ESL) English for Work guide once again proved to be a useful organizer. The approach is outlined in a working paper on curriculum development in $A B E$ (B.C. Ministry of Education, 1983), which anālyzés adult learning needs in the context of six societal roles.

These are the roles defined for the purpose of currieulum development and design.

Fámíly Mémber
Consumer
Community Member
Citizen
Worker
Learner

In each of these life roles; adults continually face a range of devēopmental tásks, of ten looking to the education systems for learning opportunities: Their expressed learning nēeds reflect not only their own interests, but also the changing expectations of society :

The role of learner is particularly critical: It may serve as an adjunct to one of the other roles; moreover, it may also set the context for an individual's fundamental desire for personal growth and intellectual development, independently of other social role expectations.

For the purposes of this curriculum guide, it was found practical to consolidate the learner goals into three cotegories.

```
Pérsonal: Acquire the competence in mathematics required for personal use in the societal roles of family member, consumer, community membē; and citizen.
```

Career: Acquire the competence in mathematics required for career use in the societal roles related to work.

Transfer: Acquíre the co ópétence in mathematics required for transfer to furthè educational study in the societal role of lifelong learner.

These three iearner goais provided a key dimeñion in the structuring of the topics and learning tásks subsequently selected for inclusion in this draft of the guide.

Whà top ícs shouid be inciuded in an ádūt mathematicics curriculum?

A number of recent studies in British Columbia; as weil as a serịes of federai Cānádian studies and a major united States ABE project, provided a rich base of irformation on pótential mathematics content and ways it might be organized. The $\bar{B} \cdot \bar{C}$. studies were those reported by Stār owen (1979) and paul Grinder (1983).

Ówen identified the mathematics and science knowiedge and skills required by adult students prior to entering trades
 surveged in detail the mathematics competence considered prérequisite to vocational programs àt Cāíbō \bar{o}, Eas \bar{t} Kootenay, Okanagan and Selkirk Colleges. He ā so determined what skilis were actuāly taught or reviewéd in the $\overline{\mathrm{h}}_{\mathrm{y}}$ various vocatioñal programs themselves.
1.n ā sēriés ōf féderá government studies, Árthur smith (Canada Employment and Immigration Commission; 1978) sought to define those 'genéríc' skīis that were the common requirements of occupations in Canada.

In contrast to foregoing research that focussed primarily on the roles of the adult as workēs ō learners, the Aduit Performance Level study in the United States (Northcutt, 19.75) identified specific computational skilis and ṕroblemsōving strategies needed by aduits seeking to function éffectivēy and independently as consumers, commúty membē $\bar{r} \bar{s}$, and cítitens.

Essential ā so to the development of this guide were two key documents of the Schools Department of the Ministry of Education, the current Mathematics Years 1-12 Curriculum Guide (1978), and the extensive report. on the present state and future directions of the schoois curriculum described in the B.C. Mathematics Assessment 1981.

The resulting topics of study, subsequentiy expanded into
 provided in detail in Part 3 of this guide.

What is the most useful way to array these topics in a currículum guide?

The májō decision made; in response éspecialiy to requests from the field for scope and flexibility, was to adopy 'būíding-biocks' approach to curriculum design. The topics and component tasks were categorized, first, according to. learner goal, and then éstablished as either 'fundamental or 'appication': This organizing framework and a useful. overview of the whole curricūum guide à $\overline{\text { áe }}$ presented in graphic form on page 6 .

It merits repeating that this guide represents an intémediate stage in what should be a continuing cycie of curriculum development and revision. Of all periods of the history of adult education, the current era is the one least amenable to curricula set in stone.

This section outliones an appoch to the design of programs and courses that may be a uséful point of departure for jnstructors or deparyments às they review their nathematics curriculum: First, some terms commoniy ased (and frequentiy confused) in curriculum plann̄ing are derined. Then a simplified prograll design model is presented and expiained. The section is followed by à number of representative course designs, which together might constitute the cōre ō a department's mathematics program.

Définitions

The folocing, definictons áre largely derived from Pratt (1980), añ Geod (1973) - Practitioners seeking further
 curriculum design and development will find David Pratt's basic textsáach source of ideas.
Design: à delīberáte process of dévising, pianing, and selecting the eqents, techniques, and procedures that conctitute some object or endeavor
$\frac{\text { Curyiculum: }}{\text { intentions }}$ organized set of formā educationál

Course: a set of topics thāt have been determined to mét the goals of learners
Topic: a major subdivision of a course for the purpose of integrāted study ; synonym.for a
theme theme

Learning Task: à description of what à person should be àbie to do às $\overline{\text { a }}$ résult of learning; syñnym for jearning objective

A Simplified Program Design model

The following mode i of program（or courses design is presented ass one approach that a department，or even an individual instructor，might adopt to work through the steps of the planing process．It consists of four steps．
step 1：角Ho？

FEEDBACK

Estābīsh who is going to receive instruction and who is going to provide instruction．

1．1 Who are the learners？Consider information such as the following：
＊Age range and sex distribution or the learners－－ note any predominant groups：
＊Career expectations．What are learners＇career goals？Wifi they change？
＊Motivation factors．Why has each learner enc olid？ What type of sponsorship or financial assistance has been made available？

$$
=20=26
$$

 for learners when thē hāve met their immediate goajs in mathematics?

* Preferred learning styles of students.
* Previous experience of learners; including any type of fearning endeavors.
1.2 Who wíli provide instruction? Consider information such as the following:
* Background and experience of instructors in mathematics teaching.
* Preferred teaching methods and styles of instructors.
* Background and experience of instructors in adult ēucūāion.
* Potential for using other human resources; such as màrkers; àīes; or volunteers.

Step 2: WHAT?
 dominant learner goàs. Any modifications and
 guide should bé noted and a consénsús established among those providing instruction.
f
2.2 Determine what séēctions of tō $\overline{\mathrm{p}} \overline{\mathrm{c}} \overline{\mathrm{s}}$ best mét the goals of learners and what is the best way to organize these topics into courses.

Step 3: HOW?

Establish how the courses áre to be offered, considering key variabiés such às the following:

* Location, time, and cost;
* Class size; or learner-instructor ratio;
* Delivery method;
* Leāriñ resourcess;
* Professisional rēsuurcés;
* Student placement or course selection procedures;
* Assessment of student progress;
* Course completion or certification criteriá
* Instructor evaluation;
* Course ànd progràm evaluātion;
* Cưriculúm rē̃ision procéṣs.

The process of program and course design is a coritical element in the effective delivery of adult basic education.
Time and.resources invested in that planning process, however, frequently provide a worthwhile rate of return; even in théshort term.

Step 4: FEEDBACK

Establish a system to monitor continuousiy key aspects of the

天 Needs of learners and how they are being met;

* Reriability and validity of the student placement procedure;
夫 Sueess of completing students at the next level of study;
* Potentiā and actūā performance of instructors ;
* Relevance of curriculum topics;
* Effective use of àll instrūtionā rēsoúrces.

REPRESENTATIVE COURSE DESIGNS

This section présents sóme representative course désigns.
They have been developed to iloustrate several ways this. cưriculum guide may bé uséd in course pianning. Each course design includes a title and brief descriptions óf purposé, context, prereạuisítes, learning topics, instructionā method, evaluátion and grading; and resources.

Three examples of courses àre provided, one corrēsponding tō each of the three learner goals defined earioer in this curriculum guide (see page 7).

Example 1 is "Mathematics for Personal Use" (Personā Gōal);
Example 2 is "Māthemátićs for Career Use = ABE Levè $\overline{3} \bar{\prime}$
(Cāēér Goāl);
Example $\overline{3}$ ís "Máthemátićs 12 for Āduits" (Transfer Goai).

It is expéctē thāt the program articulation process wī yield additional representiative course designs. Meanwhīe, the following outiones will provide a model and a framework for further development both within institutions and between providers of $\overline{A B E}$ programs across the province.

- 23 -

29

Exampie 1: MATHEMATICS for PERSONAL USE
(Lēārnēr Gōāl: Pērsōnāl)

Purpose

This coūrse will provide adūlts with the opportūnity to develop knowledge and skills of immediate use to them in their daily lives:

On completion of the course; participants will be able to:

* show that they have mastered the skilis of computation most oftēn required of adulis in society; and
* apply their mathematical knowledge and skills to practical problems in which they are particularly interested, such às household budgeting, home buying, etc.

Context

Skill in working with numbers is becoming increasingly important in sociéty, éspecialiy às more technology is introduced. In particular, an individual's ability to handle mājor and minor changes in personal and fámily incóme ō expenditure can have a direct effect on daily life. For most adults; therefore, it is essential to have a basic competence with numbers and how to ūse them to understand and solve problems.
 are seeking careers in which mathematics has limited appiication may aiso fiñ īt valuabie.

Prérequisites

Some knowledge of the base 10 number system, whole numbers, fractions; and decimals is needed. Students should have a baṣic reading ability.

Leārning Topics

Fundamentals: Sufficient knowledge and skill in thé following topics to be abie to apply them to p $\overline{\mathrm{r}} \overline{\mathrm{a}} \overline{\mathrm{c}} \overline{\mathrm{t}} \overline{\mathrm{i}} \overline{\mathrm{c}} \mathrm{a} \overline{\mathrm{l}}$ personal situations.

PFi: Whole Numbers
PF2: Decimals
PF3: Fractions
PF4: Metric Measurement
PF5: Percentages
PF6: Tables; Graphs and Charts
PF7: Calculators
(See pages 35 to 41 for specific learning tasks.)
Applications: Applications of mathemátics to selected topics of personal interest and need. Participants will choose topics from the following.

PAí: Bank Accounts
PA2: Budget
PA3: Cash Transactions
PA4: Cōnsumer Credit
PA5: Housing
PA6.: Travel
PAㄱ: Transportation
PA8: Home Renovation
PA9: Insurānce
PA10: Pāy Chequés
PA11: Income Tax
PA12: Property Tax
PA13: Utilitites
(See pages 42 tō 54 for specific leãring tasks:)

Instructional Method

 wili feature self-paced mástery learning with tutorial help
 decide which topics and tasks they need to study or review. Each topic will be mastered to the learner's satisfaction before the next one is begun. Study groups will be set up āñ coo-operation between students encouraged. Provision will be māde fō people who want to work fāster or more slowly.

Evaluation and Grading

Evaluation of learning will be based on a combination of mástèry tēsts (for fundamentais units) and self-assessment (for applications units). No grades will be àssigned.

Rēsources

Instructors have developed individual study units that may be purchased or borrowed. The following texts will also be made availàbie.

Barker, Arithmetic.
Bolster, Mathematics in Life.
Enns, ABE Mathematics 2.
Newton, Consumer and Career Mathematics:

Example 2: MATHEMATICS FOR CAREER PREPARATION:

Púrpose

This course is designed to provide aduits with the opportunity to develop the knowledge and skilis required for entry into contemporary career, trade, vocational, technical,

Context

The availability of relevant education and training is a critical factor in the economic well-being of a communty; region, or nation. Likewise, access to tràning opportunities is essential for adults faced with an accelerating rate ōf techn̄ōōgícā and socíaj change. Most people will hàve to retrain at least once during their working life. This course is designed for those adūts who wish to train for a new career but who first need to develop or improve necéssary mathematicā skills. A grade 10 equūvalency cértificāte is àlso āāilable on completion of a specific number of course units (see. 'Applications' in this: example).

Prerequisites

The prerequisites for this course are knowledge and skilis in basic arithmetic: sufficient reading ability to study from standard mathematics texts, such as those íisted in this example (see 'Resources'). For many adults; the fundamentals of whole numbers, decimals, fractions, and pereentages ean often be recāled with the aid of á $\overline{\mathrm{b}} \overline{\mathrm{i}} \mathrm{i} \bar{f}$ review unit.

Learning Tōpics

Fundamentals: The following topics, each one a separate study unit, review the knowledge and skills required for any career application.

CFi: Whole Numbers
CF2: Decimals
CF3: Fractions
CF4: Metric Measurement
CF5: Fōrmuláe

CF7: Percentage
Applịcations: Students wili choose appications of
mathematics in number of areas relevant to their career interest. This selection should be guided by the specific requirements for entry to particular training programs. Thus; the number and selection will vary between students. Two sample course outlines are provided in this example (Sample Selection i and 2).

It should also be noted thāt, for this instítution, a minimum of 8 units (including at least 5 applications units) are required for a Grade 10 equivalency certificate.

All students select applications topićs from this list.
C̄Al: Numericā Data
CA2: Geometry - L'ines and Angles
CA3: Geometry - Circles and Polygons
CA4: Plane Figures - Basic Measures
CA5: Sclid figures - Basic Measures
CA6: Pythagorean Theorem
CA7: Right Triangle Trigonometry
CAB: Geometric Construction
CA9: Profit and Loss
CA1J: Simple and Compound Interest
CA11: Discount and Commission
CA12: Payroll
Sample Selection 1: Career Goal- Office Administration
Fundamentals: Topics CFi through CF7
Ápplications: CĀ1 Numerical Data
CA9 Profit and Loss
CA10 Simple and Compound Iiterest CA11 Discount and Commission
CÁ12 Payroil

Sample Selection 2: ${ }^{\circ}$ Career Goā = Carpentry
Fundamentals: Topics CFi through CF7
Applications: EAl Numerical Data
CA2 Geometry - Lines and Angles
CA3 Geometry - Circles and Polygons
CA4 Plane Figures - Basic Measures
CA5 Solid Figures Basic Measures
CA6 Pythagorean Theorem
CA7 Right Angle Triangle
CA8 Geometric Construction
Instructional Method
This course will be an individualized one The study units
 às requíred. Self=tests wili be āvailable tó help learnés
 Each topic will be mastered to the learner's satisfaction before the next one is begun. Study géoups wîl be set up
 be made for people who want to work faster or more slowly.

Evaluation añ Grā̄ing

Evaluation of learning is based on performance on criterionreferenced tests taken at the endof each unit of study. Within each unit, students may à so ássess their progress with self-scored tests. Fiñal grādes are accumulated from unjt tests. There is no final examination. A course completion cértificate will list specific topics másternd.

Rēsürces

Basic Texts (availabie on loan or may be purchased)
Boyce, Mathematics for Technical and Vocational students. Newton Consumer and Career Mathematics.
Rogers, Mathematics for Trade and Industrial oceupations.
(Awaiting publication, 1984) ABE Mathematics 3.
Supplementary Texts (available in lab and resource centre)
Bcisselle, Using Mathematics in Business.
Carman, Mathematics for the Trades.
Enns, ABE Mathematics 2.
VAST 3 Mathematics.
VAST 4 Mathematics.

Exampie 3: MATHEMATICS 12 FOR ADULTS
(Learner Goal: Transfer)

Purpose

Thís course is parallel to the Grade 12 survey course in the provinciái schoois curriculum guide Mathematirs 1-12 (1978). It ís specified as prérequisite for a number of postsecondary coilege and-institute prográms.

Context

Many adults who plan to transfer from the adult basic education program to a university degree , technology diplomá or similar program will require a thorough background and appropriate certification in mathematics at the ievei outioned bélow. Emphasis, therefore; will be on a sound understanding of mathematical concepts; theory and preparation for further study, éspećáliy in a scientific or technological field.

prerequisites

Prerequisites include Máthematics 11 or equivalent, or demonstration of appropriate levē of knowiedge and skifion a $\overline{\mathrm{p}}$ lacement test.

Learning Topics

The course is divídē into two parts, 'Review' and 'Extension'. All topics are selected from the Transfer Appíications section of the guide (see páges gi to tol).

Review
TĀ1: Polynomiais and Rationaj Expressions
TA2: Radical Expressions
TA3: Quadratic Sentences
TA4: Systems of Equations
TA5: Trigonometry.Basics

Extensions

TĀ : Imãinary and Complex Numbers
TA7: Conics
TA8: Exponentiā ānd Logarithmic Functions
TA9: Polynomiā Functions and Graphing Techñques
TA10: Sequencés, Sēries, and Binomial Theorem
TA11: Trigonometry-Advanced

Instructional Methods

The course will be cōn $\bar{n} \bar{c} \bar{t} \bar{t} \bar{d}$ ōn à jećture and demonstration basis: In addition, small groups will be estabijshed to work. às s̄udy teáms. These teams will meet once a wēk to discuss areas of common interest and to shāe ideas. Each team will prepare a report on a speciā project (á particularly interesting application of mathematics to a current topic).

Evaluation and Grading

Study of each topic will bé fōliowē by à comprehensive test. Resuits will provide fēedback to the léarner on those topics that have been mastered and those that require additionā study.

Grading will be based on a final examination and a secial project. The final examination wili be worth 80\%, and the special project will be worth 20% of the final grade. Letter grades will be assigned as follows:

A	$86 \%=100 \%$
B	$76 \%=85 \%$
C	$66 \%=75 \%$
D	$60 \%=65 \%$
F	$\mathrm{Be} \overline{\mathrm{C}} \mathrm{low} 60 \%$

Rēsoūrces.

Bāic $\bar{T} \overline{e x t}$
Keedy, Algebrā and Trigonometry.
Suppiementary $\overline{\text { Text }}$
Doleiani, Algebra and Trigonometry: Book 2 .

MATHEMATICS FOR PERSONAL USE
Quick Index of tearning Tásks and Resources
Page
(PF) Personal Math Fundamentals
PF1: Whole Numbers 36
PF2: Decimals 37
PF3: Fractions 38
PF4: Metric Measurement 39
PF5: Percentages 40
PF6: Tables, Graphs; and Eharts 41
PF7: Calculators 42
(PA) Personal Math Applications:
PA1: Bank Accounts 43
PA2: Budget 44
PA3: Cash Transactions 45
PA4: Consumer Credit 46
PA5: Housing 47
PA6: Travel 48
PA7: Transportation 49
PA8: Home Renovation 50
PA9: Insurance 51
PAlo: Pay Cheques 52
PAl1: Income Tax 53
PA12:: Property Tax 54
PA13: Utilities
PA13: Utilities 55

PERSONAL MATH FUNDAMENTALS

Personal Math fundamentals 1 : Whole Numbers
Tasks
PFl:1 Add whole numbers, using a calculator to verify answers.

Subtract whole numbers' u sing a calculator to verify answers.
PEI. 3 Read and write whole numbers to the billions place, and recon ionize truncated ways of writing. large numbers (egg., 2 billion, 45 million):
 the mūltipliér, using a calculator to verify añōers.

PEi. 5 Divide whole numbers with a maximum of three digits in the divisor, uṣing a calculator to verify ans ewers.

PF. $\overline{6}$ Round off whole numbers to the ne ares $\bar{t} \bar{n} \bar{n}$; hundred, thousand, hundred thousand, and million-

PEI. 7 Find an average:
 sentences, applying a consistent strategy.

Barker, Arithmetic: Chapter 1 .
Bolster, Mathematics in Life: Chapterssio.
Cns, ABE Mathematics 2: Units in.
Nov ak, Arithmetic: Cháptersiti.
VAST 3 Mathematics: Unit 1 .

Personal Math fundamentals 2：Decimals

Tāsks
PF2．1 Add decimals；with concentration on，money and meãsurement，using ácalcuiator to verify answers．

PF⿳亠二口欠口 $\overline{2}$ Subtract decimals，with concentration on money and meásurement，using à calculator to verify answers．
PF2．3 Reã and write décimá numbers appropriate to personal use．

PF2． 4 Round off decimal numbers to the ten－thousandths place，using mainiy examples of money and mēāürement．

PF2．5 Mūtiply decimals as ápropriate to personai situātions，using a calculator：

PF2．6 Divide decimals as appropriate to personal situations，using a calcuiator．

PF2． 7 Solye basic problems involving decimals by writing arithmetic sertences；applying a consistent stratēg．

Resourcés
Barker，Arithmetic：Chapter 4：
Bolister，Mathematics in Life：Ghapters 4－5．
En̄̄s，$\overline{A B E}$ Mathematics $\overline{2}$ ：Units $\overline{\overline{7}}-\bar{\varepsilon}$ ．
Novak，Árithmetic：Chepier 4.
VAST 3 Máthematics：Unit $\overline{3}$ ．

Personal Math Fundamentals 3 : Fractions

Tasks
PF3.1 Read and write fractions with denominators of 1,2 , 3; 4; 5; 8; $10 ; 16 ; 20 ; 25 ; 32 ; 50$; and 100 .

PF3.1.1 Identify a fractional number e

* as a part of a whole number;
* as a part of a set;
* as a comparison of two numbers by division; * as one with a numerator and a denominator.

PF3.1.2 Identify common, proper, improper, and mixed fractions.

PF3.1.3 Change mixed numbers to improper fractions:
PF̄̄.2 Reduce fractions to their lowest terms.
PF3.3 Find the product of two or more commonly used fractions or mixed numbers.

PF3.4 Find the quotient of two commonly used fractions or mixed numbers.

PF3.5 Write equivalent fractions for numbers having common application (e:g: $1 / 10=10 / 100 ; 3 / 4=75 / 100$).

PF3.6 Find the sum ōf two ō more commonly used fractions or mixed numbers:
 fractions ōr mixed numbers.

PF3:8 Conver̄ commonly used fractions to decimals, and vice versa:

PF3.9 Solve practical problems by writing arithmetic sentences involving fractions, applying à consistent strategy.

Resources
Barker, Arithmetic: Chapter 3.
Boister, Mathematics in Life: Chapters $\overline{7}-\overline{8}$.
Enns, ABE Mathematićs 2: Units 5-6.
Novak, Arithmetic: Chapter 3:
VAST 3 Mathematics: Unit 2.

Personal Math Fundamentāls 4: Metric measurement

Tasks

PF4:1 Identify commoniy used SI units of linear measurement, mass and capacity, their prefixē $\overline{\text { a }} \overline{\mathrm{n}} \overline{\mathrm{d}}$ abbreviations.

PF4:2 Change commonly used metric units of one denomination to ūnits of ánother denomination (e.g., change 1.5 L to 1500 mL).

PF4.3 Measure and calculate the linear dimensions of common geometric figures, süch às the rectangle, square, and triangle.

PF4:4 Measure and calcúlate the inear dimensions of the circie such as the radiūs, diameter, and circumference.
 (weíght):

Measure and calculate rommon examples of cāpacity (liquid meásure):

PF4.7 Solve practicáa probiems in metric meásurement.
Resources
Barker, Aríthmetic: Chāpér 7:
Bolster, Mathematics in Lifé: Chapter 6 .
Newton, Consumer and Careér Máthematics: Chapter 3.
Novāk, Arithmetic: Chaptēr 7.

Personā Māth Fundamentals 5: Percentages

- Tasks

PF̄. $\overline{1} \quad$ Read and write commonly uséd percentages :
PF5. $2 \quad$ Change commonly uséd percentáges iño dēcimals and vice versa, using a calculator.
 (e.g., 28 is what percent of 35 ?), using à calculator.
 4.85) using a calculator.

PFF̄. 5 Solve practical problems using percent operations including rate and amount of increase le.g., markup, taxes, salary increase, commíssion, simple interest); rate añ amount of decrease (e.g., discount, depreciation, pay-cheque deductions). A consistent strategy will be used to determine à solution, and calcūlatō employed for computation and verification.

Resources
Barker, Arithmetic: Chapter $\overline{6}$.
Boister, Mathematics in Life: Chapter 1.1.
Enns; ABE Mathematics 2: Units 9-10.
Novak, Arithmetic: Chapter 6:
VAST 3 Mathematics: Unit 5.

Personal Math Fundamentals 6: Tables; Graphs, and Charts
Tāks
PF6.i Recognize the value of representing and interpreting mathematicà datā by tables; grāphs, or charts.

PF6.2 List and categorize instaices where tables, graphs, and chārts may be used efféctively to store, display, or retrieve information (ég., maps, square root tabless, income tā tablēs; height/weight charts).

PF6.3 Read specified datā from line graphs, bar graphs, circle graphs, and pictographs.-

PF6.4 Draw ine grāphs ànd baŕr graphs réprésenting a sét of given dàta.

PF6:5 Calculate percent of the whole fō à $\overline{\text { a }}$ iven sét of appropriate dātā, and draw a cīrcie graph based on the data.

PF6.6: Use map coordinates to locate points on various maps, e.g., city stréet maps; provinciai road maps.

PF6.7 Use the scale of máps to estimate distancés bétween places.

PF6.8 Recognize that information displayed graphicaliy may be intentionaliy or unintentionally distorted by use ōf different scales.

PF6:9 Distinguish between (a) graphs thāt show a causā relationshíp (e.g., electrical resistance of a wire in réation to its diameter), and (b) graphs that
 population over a period of time).

Resources
Bolster, Mathematics in Lifé Chapter $\overline{1} \overline{2}$.
Nēton, Consumer and Cāreér Mathematics: Chaptérs $\overline{\mathbf{3}}$ and 9. VAST 3 Mathematics: Unit 9 .

Personā Màth Fundamentā s 7: Calculators
Tasks
PF7.1 Select à cācūator with features appropriate to personal needs (e.g.., special function keys, metrisc conversion, printing capability)..

PF7.2. Use à cāculator to add, subtract, multiply, and divide whole numbers and decimals.

PF7.3 Use a calculator to convert any common fraction to a decimal fraction, recognizing that many decimal fractions múst be approximate values.

PF7.4 Use a cālculator with percentage:
PF7.4.1 Find no of a given number.
(e.g., 7\% of \$19.95)

PF̄̄.4. $\overline{2}$ Compáre to quantities ty percentágé.
(e.g., 25 is n\% of 95).

P̄̄̄.4. $\overline{3}$ Find the total of a purchase using $100 \%+$ n\% (e.g.s sales tax on item is 7\% cost of item is \$19.95 iotal cost $=107 \% \times \$ 19.95 \%$.

PF7.5 Appreciate that a calculator cañ save à great deal of time and effort if used appropriately.-

Resources
No specific resource references are cited for this topic. Each calculator may vary sifigtly in operating procedure and capability.. Many recent texts inciude calculator exercíses.

NOTE: It is recommended that the calculator be used ās a tool for learning throughout the mathematics curriculum. Appicications may be introduced àt many appropriate : ints within most units of study.

PERSONAL MATH. APPLICATIONS

Personà Máth Appíćations $1:$ Bank Accounts

Tasks
PA1.1 Explain and compare the mán features, advantages and dísadvantages of various bank accounts (e.g., (hequing, savings, daily interest).

PA1. 2 Prepare deposit síps for a variety of bank accounts.

PA1.3 Write cheques or withdrawal forms as appropriate to an account.

PA1. 4 : Apply fundamentā àrithmetic required for compietion of deposit silips, chequebook bélancess, bank reconciliations, and interest payments.

Resources
Bolster, Mathematics in Lifé: Chapter 4 .
Newtoñ, Consumer and Career Mathemátics: Chāpter. 5.
VAST 3 Mathematics: Unit 6.

Personal Math Applications 2: Budget

Tasks
PAZ:1 Distinguish the general categories of personal or family income (e.g.; wages; dividends; family allowance).

PA2.2 Distinguish the general categories of expenditure in a family or personal budget (e.g., housing;

- utilities; health; clothing; food, transportation, emergencies).

PA2.3 Demonstrate at least one method of preparing a budget.

PA2:4 Solve problems relating to budget preparation; management; and analysis. (See also PA4: Consumer Eredit).

PAZ.5 Prepare budgets for different levels of income and personal or family needs.

Resources
Newtoń Consumer and C̄areer Mathematics: Chapter 18.
VAST 3 Máthematics: Unit 6.

Personal Math Applications 3: Cash Transactions

Tasks
PA3.1 Find the cost of 'n' units of a commodity when the price of one unit is known.

PA3.2 Find-the price óf one unit of a commodity when the cost of 'n' units is known.

PA3.3 Determine the price per given unit of a commodity when the commodity is sold in different sized packages.

PA3.4 Verify a sales silp that inciudes more than one item and sales tạ at the current rate.

PA3. 5 Cālculate the total cóst of áa máor articie (è.g., appliance onatomobilé after sales tax is applied.

PA3.6 Determine the amount of discount andor the net price when the list price and rate of discount are known.

PA3. 7 Detérmine the rate of discount when the īst price and the amount of a discount are known.

PA3.8 Determine the amount of discount and the rate of discount when list price and reduced price are known.

Resources

Bólster, Mathematics in Lifé: Chapters 2, 3, 4, 10, and 11.

Personal Máth Appiocations 4 : Consumer Credit

Tasks
 accounts, revoiving credit, instaliment credit).

PA4:2 Líst the various sources óf copedit lége, banks, credit unions, loan companies, credit card companies).

 credít, čredit rating, crēict check, credit reference, etc.
 máthematicat skilis to verífy ciarges (e.g. fiat sum, pèrceñāge, monthiy rate; çharge on unpāid balance).

PĀ4. $\overline{6}$ I dentify and descríbe factors affecting credit cōsts, and apply mathematical skills to compute costs le.g., service charge, rate of interest, loan insurance, amount borrowed).

PE4.7 Explain the opportunities and problems assoeiated with consumer use of credit.

Resources
Bōiselle-, Using Mathematics in Business: Ehapter 10.
Bolster, Mathematics in tife: Chapter. 11.
Nenton; Consumer and Career Mathematics: Chapter 6.
VAST 3 Mathematics: Unit 6 .

Personā Math Applications $\overline{5}:$ Housing
Tāks
PA5. 1 List and explain factors that should be considered before buying a home (e.g., length of stay in a community, financing; location; nearness to schools).

PAS.2 List and explan costs connected with buying or selling a home (e.g., real estate fees; legal fees; mortgage types and infiuence of rates; taxes).

PA5:3 List and expiain costs associated with owning a home (e.g., repairs; upkeep, utilities, tāes; insurance).

PA5:4 Solve probiems reiated to hogle ownership (e.g., compute ownership costs, use amortization tabies).

FĀ.5 Lísit and expíain costs associated with renting a home (e.g. utilities, insurance, damage deposits).

PA5: $\overline{6}$ Sōve problems reiating to utilities. (See aiso pá 13: Utilitiess)

PA5:7 Cōppré the retative consts of buging a home and renting accommodation:

Resources
Boisselle, Using Mathematics in Business: Chapter 10.
Newton, Consumer and Career Mathematics: Chapters 10-12.
VAST 3 Mathematics: Unit 6.

Personal Math Applications 6: Travel

Tasks

P.A6. 1	Usē árithmetic skilis to determine component and total custs of a real (or hypothetical) trip between any two points.
PA6. 2	Solve problems relating to travel by railroad, bús, plane or private automobile le.g., compare costs and time, compute average speed, use timetables).
PĀ6. ${ }^{\text {a }}$	Use arithmetic skills to determine best means of travel for various business or pleasure trips; taking into account factors such as time, distance, purpose, and cost.
PA6. 4	Convert Canadian doliars into foreign currency by using appropriate exchange rate tables from a newspaper.
Resources	
Bolste	Mathematics in Life: Chapters 1 and 10.
Newton, Consumer and Career Mathematics: Chapter 9.	

Personal Math Applications 7: Trānsportation

Tasks
PĀ:1 List and explain advantages and disadvantages of buying a new or used véhiclé.

PA7:2 List and expiain ítems to consider when buying à new or used vēiclée (è.g., sizē, ēxtrās, fiñancing, operating costss).

PA7:3 L of a new or used vehicié (e.g., mark up, depreciation, sales comission, mileage, previous ownership).

PA7: 4 Lisstand caicuiate costs of purchāsing a new or used vehicle (e.g., insurance, interest charges, operating costs, repairs).

PĀ.5 Cómpare relative dollar vāue of purchāsing a new and used vehicie.

Rēsources

Newtōn; Cōnsumer añ Career Mathematics : C̄haptérs $\overline{7}$ and $\overline{8}$.
VAST 3 Màthematics: Unit 6.

```
Personac Math Apppifcations 8: Home Renoyation
Ta每ks . % 
PA8:1` Measure accurately, using tape; or earpenter rule; to
                                determine needed information in appropriate units',
                                (e.g., linear measure for a fence; square measure
                                for carpet; paint or wallpaper; cubic measure for
                                heating).
PA8:2 Draw to scale appropriate jiagram of proposed
                                renovations (e.g:; floor plan for purchase of
                        carpet).
PA8:3 Estimate costs of renovations based on materials.g
        time; and labor'.
PA8.4 Betermine the most economieal way to finance a
        renovation plan; applying principles of cash and
        credit purchases.
PAB:5 Mǎe a detailed plan for real (or hypothéticall)
    renovations; including}\mp@subsup{}{}{\circ
        of atl costs; and a complete time plan.
Resources
Newton, Consumer and Eareer Mathematics: Chàptēr 7.
```

Personā Math Applications 9: Insurance
-Tasks
PA9.1 Explain; with examples, the concept of insurance ás a method of providing protection against lossés incurred as a result of death, accident; damage, unemployment, etc.
PĀ. 2 Eist and explain factors involved in pianning insurance coverage (e:g:, selection of risks to cover, determining amount of insurance needed, affordability of premiums):

PĀ. $\overline{3}$ Understand and explain information contaned in common insurance policies (e:g., coverage, exclusions, deductible benefits, premium amount, term of policy).

PA9.4 Explān different types ōf insurance (e.g., term life, whole life, property insurance, duto insurance, disability insurance; unemployment intưancel.

PA9.5 Solve problems involving the purchase of insurance in real (or hypothetical) situations:

Rescurces
Newton, Consuser and Career Máthematics: Chap $\bar{t} \overline{\mathrm{C}} \overline{\mathrm{r}}$ 5:

Personal Math Applications 10: Pay Cheques
Tāsk
PA10:1 Explain, with examples, the differences between - gross pay and take-home pay.

PAIO.2 Identify on a typical payrolit stub the various deductions from gross pay (e.g., income tax, CPP, UIC, union dues, medical plans; pensionl, ard explain how they are calculated or determined.

PA10.3 Compute take-home pay when given hourly wage rate, hours worked, and deductions.

PAi日. 4 Identjfy possibie voluntary deductiens, and establish persoṇá criteria for decisions about them.

PA10.5. Compute wages and income for different types of pāment methods; including straight-time pay, overtime pay, commissions, and piece rates.

PA10. \bar{G} Detérmine the kind and amount of benefits or coverage received from pay-cheque deductions.

PA10.7 Detail procedures for ciaiming benefits.
Rēsources
Bolster, Mathematics in Lifé: Chātēr 3.

Personal Math Applications 11: Income Tax

Tasks

PA11:1	Explain the reasons for income tax; how income tax dollars are úsed by various levels of government, and the reationship of federal and provincial tax rates.
PA11.2	Identify varioús types of taxes óther than personal income tax (e.g., excise tax; sales tax; gas tax).
PA11:3	Explain the principle of graduatē income tax rates and the way the rates work in practice:
PA11-4	Distinguish between gross income; $\bar{n} \bar{t} \bar{i} \bar{n} c o m e, ~ a n d ~$ taxable income.
PA11:5	Comp iete a to taxation form accuratéy, ān expiain the reason for this form.
PA11: 6	Explain the principle and practice of common income tax dedućtions (e.g., persoñal exemption, márīéd exemption, child dedúction, union dues; pensioñ).
PA11:7	Comple tax réturn.
PA11.8	Determine federál and provincià tā payable; añ amount of due payment or refund.

Resources
Newton, Eonsumer and Career Mathematics: Chapters 4 and 13.
Sēt of forms obtainable from Revenue Canada office.

Personal Math Appifcations 12: Property Tax

Tasks
PĀ12. I Identify and expiain with exampies the key terms used on property tax forms (e.g assessed value, real value, school tax ássessment, mill ratel.

PA12.2 Verify a property tax bīli whē the reài āñ assessed values and mill rates are provided.
 bīi.

Resources
Newtōn; Consumér and Cāeér Mathematics: Chapter il.

Personal Math Applications 13: Utilities

Tasks

PA13:1 Determine the cost of operating a variety of electric appliancess, given the rate of eltétricity consumption of each appliance and the rate per kilowatt hour.

PA13:2 Verify total billing for electricity, given meter readings and rate fer kilowatt hour (including taxes) :

PA13:3 Verify total billing for oil or gas when consumption and rates are provided (inciuding tāess).

PAl3:4 Vérífy téephone bilíing given rentā costs ànd

PA13:5 Solve problems rejating to utipity costs (e. $\overline{\mathrm{e}} . \mathrm{g} .$, compare costs of heating by alternative methodsl.

Resource
Bolster, Mathemátićs in Lífé: Chapter 5.

MATHEMATICS FOR CAREERS

Quick Index of Learning Tasks and Resources

Page

(CF)

Career Math Fundamentals

GE1: Whole Numbers 57
CF2: Decimals 58
CF3: Fractions 59
CF4: Metric Measurement 60
CF5: Formulae 61
CF6: - Ratio and Proportion 62
CF7: Percentages 63
(CA) Career Math Applications
CA1: Numerical Data 64
CA2: Geometry - Lines and Angles 65
CA3: Geometry - Circies and Polygons 66
CA4: Plane Figures - Basic Measures 67
CA5: Solid Figures - Basic Measures 68
CA6: Pythagorean Theorem 69
CA7: Right Triangie Trigonometry 70
CA8: Geometric Construction 71
CA9: Profit and Loss 72
CA10: Simple and Compound Interest 73
CA11: Discount and Commission 74
CA12: Payroll 75
CA13: Statistics 76
CA14: Plane Figures - tinear and Area Measurement 77
CA15: Solid Figures - Surface Area and Volume 78
CA16: Trigonometry 79
CA17: Advanced Constructions 80
CA18: Advanced interest and Discount 81
CA19: Compound Interest and Annuities 82

CAREER MATH FUNDAMENTALS

Career Math Fundamentals 1: Whole Numbers

Tasks
CFi.1 Add whole numbers.
CF1:2 Subtract whole numbers.
CF1.3 Read and write whole numbers.
CF1.4 Mūtiply whole numbers.
CF1.5 Divide whole numbers.
CF1.6 Round off whole numbers.
CFi.7 Find ān averāge.
CFi. 8 Solve practicā probiems using the arithmetic of whole numbers.

Resources
Barker, Arithmetic: Chapter 1.
Bolster, Màthematics in Life: Chaptēs i-3.
Eñós ABE Māthematics 2: Units 1-4.
Novak, Arithmetic: Chapters i-2.
VAST 3 Mathematics: Unit 1 .

Cāēē Māth Fundameñāis 2: Decimást

Tásks
CF2.1 Ād dećímais.
CF2.2 Subtract decimais.
CF2:3 Read and write decimà numbers.
CF2.4 Rouñ ōff décimá numbers.
C̄2.5 Muitiply decímās.
CF2.6 Divíde décimàis.
CF2.7 Sōive practical prōbems using the arithmétic óf decimal numbers.

Résources
Barker, Arithmetic: Chāper
Bōster, Máthematics in Lifé: Chapters 4 and 5 :

Novāk, A
VAST 3 Máthematics: Unit 3 .

Career Math fundamentals 3: Fractions

Tasks
CF3.1 Rēad. ànd write fractions; inciuding:
C̄F̄.1.1 ídentify a fāactionā number

* ás one with a fumerator and a denominator.

CF3.1.2 Identify common, proper, improper, and mixed fractions.

CF3.1.3 Change mixed numbers to improper fractions.
CF3:2 Reduce fractions to their lowest terms.
CF3:3 Find the product of two or more factutins or mixed numbers.

CF3. $\overline{4}$ Find the quotient of two fractions or mixed numbers.

CF3:5 \quad urite equivaient fractions.
CF3.6 Fīn the sum of two or more fractions or rixed numbers:

GF3.7 Fīnd the difference between two fractions med numbers.

CF3.8 Convért áraction to a decimal, and vice vo.
CF3.9 Sotve practićal probiems using the arithmetie a fractional $\cdot \bar{n} u m b e r s$.

Resources
Bärker, Arithmetic: Chaptēr 3.
Bolstēr, Mathematics in Lifé: Chapters 7 and 8.
Eñ̄s, ABE Māthematics 2: Unitē 5-6.
Novak, Arithmetic: Chapters 3.
VAST 3 Mathematics: Unit 2 .

Tāsks

CF4.1 Identify the base SI units of linear measurement, mass, and capacity, their prefixes and abbreviations.
C.F4.2 Change metric units of one denomination to units ōf another denomination (e.g., change 3762 metrés to kilometres).

CF4.3 Measure and cālculate the linear dimensions of common geometric figures, such as the rectangle, squàre, and triangle (e.g., find the perimeter of à squàre with side 17.5 cm).

CF4.4 Meásüē and cāculate the linear dimensions of the circlé, such às the radius, diameter; and circumference.

CF4. 5 riaasure and calculate mass (weight):
CF4.6 Mésure ànd cālculate capacity (liquīd mēsuré).
C̄4. $\overline{7}$ Solvè practical problems in métric measurement.
Resources
Barker, Arithmetic: Chapter 7.

Newton, Consumer and Cāēē Mathematics: Chapter 3.
Novak, Árithmetic: Chāpter 7.

Cāēē Màth Fundamentàis 5: Formūāe

Tasks

CF5.1 Deffie the signs, symbols; and terms used for 'ódering' (ég., <,, , 三, etc.), 'grouping (e.je [()], etc.), and the mathematical operations (e.g., $+, \cdots, x$, etc.) used in manipulating formulae.

CF5.2 Défine an unknown number by suitable letter or sympol (e.g., let the length of the distance around this circie be represented by E):
C̄F. 3 Transiate a word problem into equivalent mathematical form; or reverse this process.
C̄5.4 Solve examples by using the rules for the order of opēātions.

CF5.5 Evaluà te formula by substituting designated values for the variabies (e.g., find the value of d h when

CF5.6 Deffine an equation as atatement of equality betwon two mathematical expressions separated by an 'equalos' sign.

C̄F5. $\overline{7}$ Solve first degree equations in one variable by using one or more of the following techniques:

* collecting like terms,
* removing grouping symbols,
* appiying the appropriate 'reverse operations' axiom(s).

CF5.8 Manipulate formulae to isolate the required
Resources
Carman, Mathematics for the Trades: Chāptér $\overline{6}$.
Roge:s; Mathematics for- Trade and Industrial occupations :
Chapter 10 .
VAST 4 Mathematics: Unit 6.

Career Math Fundamentais 6 : Ratio and Proporiton
Tāsks.
CFE. 1 Define and represent ratio as the simplest form of the relátionship between two numbers or quantities.

CF6.2 Solve examples using direct and inverse ratio, including gear ratio, roof pīch;, probability, etc.

CF6.3 Define and represent proportion as a statement of equivalence between two ratios.

CF6. 4 . Solve praćtical próblems, using dírect, joint, and combined proportion to find the unknown term in scale drawings, unit cosit, motion, recipes, mixtures, etc.

Resources
Barker, Ar thmetic: Chapter 5 .
जïovak, Arithmetic: Chapter 5 :
Rogers, Mathemátićs for Trade. and Indústriā occupations: Chapter 11.

VÁST 3 Māthemátics : Unity 4.

Career Math Fundamentāls 7: Percēntages

Tasks
CF7.1 Read and write percentajes.
CF7.2 Change a percent into a decimal or a fraction, and vice versa.

CF7.3 Find what percent one number is of another number (e.g., 28 is what percent of 35?).

CF7.4 Find a percentage of a number (e.g.; find 18% of 4.85) .

CF7.5 Find an unknown number when a percentage of it is known (e.g., 85% of what number is 695?).

CF7. $\overline{6}$ Solve practical problems using percent operations including:

* rate and amount of increase le.g.; mark-up, taxes, salary increase; commission; simplêinterest; etc.)
* rate and amount of decrease le.g., discount; depreciation, pay-cheque deduction; etc:)
* unknown base amount; when both the rate and the amount of increast or decrease are known le.g.; How much would have to be invested at 7% per year in order to receive $\$ 580$ interest annūally?):

Resources
Barker, Arithmetic: Chapter 6.
Bolster, Mathematics in Life: Chapter 11.
Enns; ABE Mathematics 2: Units 9-10.
Novak, Arithmetic: Chapter 6:

- VAST 3 Mathematics: Unit 5:

- Eareer Math Applications $1:$ Numerical Data

Tāsks
CĀ1. $\overline{1}$ Détermine the common measures óf ceentrai tendency of data (mean, median, mode) and range:
$\overline{\mathrm{CA}} \mathrm{A}^{2}$
 tendency and graphs.

Resources
Boister, Mathematics in Life: Chapter 12:
Nēton, Consumer and Career Mathematics: Chapter 3 .
VAST 3 Mathematics: Unit 9 :
NOTE: For more advançed work; see CAi3: Statistics

Career Math Applications 2: Geometry - Lines añ Angies

Tasks

CA2.1 Identify, define, and use standard geometric terms and notation as applied to lines and angles (e.g., point; segment; line $A B$; vertex).

CA2.2 Identify, define, label, measure, and draw different kinds of lines (e.g.; straight; vertical, horizontal; parallel; perpendicular, transversal, oblique).

CA2.3 Identify, define, label; measure, and draw different kinds of angles le.g., acute, obtuse, straight, reflex, right, correspaing, vertically opposite, internally opposite; complementary, supplementary).
Resources
Bolster, Mathematics in ife: Chapter 16.
Carman; Mathematics for the Trades: Chapter 7.
Novak, Aritrmetic: Chapter 8:
Rogers, Mathematics for Trade and Industrial occupations: Chapter 12.

VAST 3 Māthemātics: Uñit 10.

Career Math Applications 3: Geometry - Circies and Polygons

Tasks
CA3.1 Identify, define, and use standard geometric terms and notation as applied to figures (è.g., ctrcumference, triangle, hexagon):
GA3. 2 Identify, define, label, measure, and draw different kinds of triangles, and deductively determine the measuife of their sides and ángles foge, scalene; right, acute, obtusé, isosceles, equilateral; congruēt, similar).

EA3.3 Identify, define, label, messure, and craw different Kinds of polygons, and deductively determine the meāsüe of their sides and angles (ε ís., square, rectangle, rhombus, trapezcta saraiteiogram, pentagon, hexagon, polygon).

CA3.4 Identify, define, label, measura, and draw the circle and its parts le.z., ceizte, radius, diametér, circumference, arc. chord, central anglé segment, sector).

Resources
Bolster, Mathematics in Life: Chapter if.
Carmañ, Mathematics for Trades: Chapter 7 .
Novak, Arithmetic: Chapter 8.
Rogers, Mathematics for Trade and Industrial occupations: Chāpter 12.

VAST 3 Máthematics: Unit 10.

Cáreer Math Appifcations 4 : plane figures = Bāic

 Measuresi
Tasks
 surfāe ō $\overline{\text { a }}$ figure $\overline{\mathrm{i}} \mathrm{n}$ appropriate units.
CA4.2 Calculate the equas óf circies and polygons and the lī̄ear measure of their constituent parts (e.g., calculate the area, the base, or the height of a triangle given two of tie measures).

CA4.3 Solve practical probiems invoiving area and inherent linear meásurements of iriangies, squares, rectāngiés, paraileiograms, trapezoids, circies.

Resources
Barker, Arithmetic: Chaptēr. 7.
Carman, Mathematics for the Trādess: Chapter 7.
Novak, Arithmetic: Chapter 8.
VAST 3 Máthematics: Units 8 and 10 .
NOTE: For more advanced work, see CAl4: Plane figures Linear and Area Measurement.

Cārēer Máth Applications 5: Sōid Figures - Basic Measures

Tāsks
CA5:1 Identify, define, label, and draw different kinds of solid geometric jures (e.g., cubes; rectangular. solids; cylinders; spheres):

CA5.2 Identify, define, and calculate the surface area of geometric solids i appropriate units.

CA5:3 Identify a:: define volume as the measurement of the space rn: la, by the geometric form given in appropriactunits.

CA5.4 Galculace the volume of geometric solids and the linear and area measure of their constituent parts (e.g., calculate the carea of the circular base, the height; or the volume of a cylinder given two of the measures).

CA5.5 jentify and define tre ceiationihip between volume and capacity, and convore wits uf cubic measurement to and from units of capsoity
(e.g., $1500 \mathrm{~cm}^{3}=1500 \mathrm{~mL}=1.5 \mathrm{~L}$).

CA5.6 Snlve practical problems involving surface area and volume o geumetric solids and their constituent parts.

Resources:
Barker, Arithmetic: Chapter 7.
Bolster, Mathematics in Life: Chapter 17.
Novak, Arithmetic: Chapter. 8.
Rogers; Mathematics for Trade and Induserial occupations: Chapter 9:

VfST 3 Mathematics: Units 8 and 10 .
NOTE: For more advanced work, see EA15: Solid Figures Surface Area and volume.

Career Math Applications 6: Pythagorean Theorem
Tasks
CA6.1 Identify and define the eoncepts añ symbols rejated to powers of numbers and square roots, and find such powers and squāre roots le:g:, by calculatōr, tabie, or triā and érror, find square root of 900):

CA6:2 Identify and define the Pythagorean Theorem, and use it to calculate the length of a side of a right triangle.

CA6:3 Solve practicā problems using the pythagorean Theorem (ég., àreass, sides; diagonals; indirect measurement).

Resources
Barker, Arithmetic: Chaptēr. 9.
Bolster, Mathematics in Life: Chapter 18.
Carman, Mathemarics for the Tiades: Chapter 7.

Career Math Appifcations 7 : Right Triangie Trigonomatry
Tasks
CĀ. 1 Identify and define $\overline{t h e}$ concepts and rèationships of the trigonometric ratios for angles in a right triangle for sine, cosine, and tangent

$$
\text { le.g., tangent }=\frac{\text { leng } \bar{t} \bar{h} \text { óf side opposite the angle }}{\text { length of side adjacent to the angle }} \text {). }
$$

CAT. 2 State the fraction form and décimal form of the trigonometric ratiós for angies in a right triangie le.g., in triange $A B C$ where $A B$, the hypotenuse, is 25 and $B C$, the side opposite, is 7 ; then sine angle $\bar{A}=7 / 25$ or 0.28).

CA7.3. Solve for the unknown sides or angles of a right tríange, when given at least one side and any two other parts , by using tábies or a calculator le.g.,
 find the hypotenusél.

C 77.4 Solve practical problems for unknown sides or angies
 calculator (e-g.; angles of elevation and depression; tapers; slope; piteh).

Resources
Bolster, Mathematics in tife: Chapter 18.
Boyce, Mathematics for Technical and Vocational Students: Chapter 15.
Carman; Māthemā́ics for the Trades: Chapter $\overline{9}$.
Rogers; Mashematics ior Trade and Industrial occupations: Chapter 14.

VAST 4 Mathematics: Unit. 8.
NOTE: For more advanced work, see C̄A16: Trigonometry.
$-70-74$

Career Máth Applications 8: Geometric Construction

Tasks
CAB.1 Identify and define a 'geometric cónstruction' as one made using only à compass añ a strāight edge.

CA8.2 Make bāsic geometric eonstructions inciuding:

* constructing à line segment equal to à gَiven one,
* bisecting a line segment;
\star constructing an āngle equal to a givén àngie,
\star bisecting an angle,
* constructing a line perpendicuiàr to à given ione : from a point on the line.

CA8:3 Use the basic geometric construetions to :

* construct a perpendicūàr to a line through a point outside the line,
* Construct a line parālè to a given line ,
* divide a line segment into equal parts;
* construct a rectangúlar figüre;
* find the centre of a circie,
* construct a circle contāining añ three noncollinear points.

EA8:4 Identify, define, and use the basic geometric constructions to construct the mediums and altitudes of a tríangle.

EAB:5 Use the bas íc geometric constructions and given measurements to construct:

* a triangié, given three sides,
* a triangle given two sides and the inciuded angie, * a triangie given two angles and the incuuded side, * a ractangular fígure given the sides.

CA8.6 Solve practical problems, using the basic geometric constructions and given measurements.

Resources

Boyce, Mathematics for Technical and Vocational Students: Ch. 13.
Rogers;- Mathematics for Trade and Indū́trial occupations: $\bar{C} h \overline{1} . \overline{1} \overline{2}$. VAST 4 Mathematic̄s: Ū̄ít 9 .
NOTE: For more advanced work, see CA17: Advanced Eonstruetions.

Cāréer Máth Applications g: profit and Loss
Tāsks
CA9.1 Identify and define the concepts and terminology used in profit and loss le.g., gross sāes, net sales, invoice price, cost price, cost, inventory, handlinc costs, operating expensess, expensé, overhead, profit, gross profit, margin, mark up, net profit, selling pricé, retāil pricé, sā̄e pricé, mark down, loss).

CA9.2 Identify and define the concept of rāte, in profit or loss applications.

CA9.3 Determine profit and loss, including rate, from given tābles of dătā.

CA9.4. Solye practicā probiems involving prufit and ioss, including rāte.

Resources
Boisselle, Using Mathematicsin. Business: Chapter 6.

Career Math Applications 10: Simple and Compound intérest
Tasks
CAMo. I Identify and define the concepts and terminology used in simple añ compound interest (e.g., bāance, principalj amounf, period, present valije, time, rate, interest, innual, semi=annual, quārteriy).

CA10.2 Determine c̄āeñar time inciuding:

* exact time between two dates, * due date or dā̄e óf mā urity, * days of grāé.

CA10.3 Calculate the unknown when two of principal, amount, or interest are given (ịé., $p+i=A$).

CA10.4 Use the simple interest formula, \equiv prt, to find any unknown when three óf interest, principal, rāte, or time are given (éeg., How much interest is due áfter nine months ofi a loan of $\$ 1,400$ at 11% ?).

CA10.5 Galculate compound interést by:

CĀ̄̄. $\overline{6}$ Solve practical problems involving simple and compound interest, including loans, mortgages, savings accounts, savings plañ, bank discount, étc.

Resources
Boisselie, Using Máthematics in Business: Chapter 9.
Carman, Mathematics for the Trades: Chapter 4.
NOTE: For more advanced work, sēe ćal $\overline{\mathrm{C}}$: Adyanced interest and Discount, and CA19: Compound Intesist and Annuities.

Career Math Applications if: Biscount and Gommission
Tāsks
CA11.1 Identify and define the concepts and terminology used in discount ard commission (e.g., list price, márk down, sales discount, trade aiscount, chāin or series discounts, single equivalent discount, sash discount, net, straight commission, quotá, consignment).

CA11.2 Identify and define the concept of rate in discount and commission applications.

CA11.3 Solve examples of discount and commission, including single discount, series discount, cash discount, stràight commission, sales over quotá, consignment sales, etc.

CA11.4 Solve fracticā problems involving discount ānd commission.

Resources

Boisselle, Using Máthematics in Business: Chápters 5 and 7.
Cárman, Mãthematics for the Trades: Chāptér 4.
NOTE: For more adyanced work, see C̄Ā̄: Ádvanced Interest and Discount.

Gareer Math Appicictions 12: Payroli

Tasks
EA12:1 dentify and define the concepts and terminology used in the three basic parts of payroll calculations: gross earnings, deductions, net pay (eg., salary, wage, piecework, overtine, time card, bonus; Canada Pension, Unemployment Insúrānce, heál th insurance, income tax, dependents, exemptions, union dues, vacation pay).
CA12. 2 Ealculate the three basic parts of āayroli and the payroli summary, given the appropriate information and tābes for deductions.

CA12. 3 Solve practical problems invoiving payrolj calcuiations, including straight salary, hourly wages, overtime, straight piece rate, bonus piece rate, and compulsory and employee authorized deductions.

Resources
Boisselle, Using Mathematićs in Business: Chapter 11.
VAST 3 Mathematics: Unī $\overline{6}$:

Sāēer Máth Appifcations 13: Statistics

Tāsks
 outlined in CAl: Numerical Data.

C̄̄̄̄. $\overline{2}$ Extend the ability to determine the common mosures of central tendency, from finding from a sec of numerical data to finding from a frequency table.

CA13.3 Determine ich of the measures of central tendency describes inst appropriately a given set of numerical data. (recognizing validity, meaning, biás, distortion, etc.).

CA13.4 Calculate cumulative averages and moving averages from a setiof numerical data and graph the results.

C̄13.5 Construct a table of frequency añ cilass interval from raw data.
 the frequency of occurrence óf dāā ítems and cilass interval:

夫 thé wf è \bar{d} àverà $\bar{g} \bar{e}$ (méañ).

* the ${ }^{*}$. ${ }^{\prime}$ or frequency polygons including 'normal curves',
* quartiles; deciles, or percentiles.

CA13.7 Calculate range and standard deviation.
CA13-8 Solve practical problems inyolving statistics.
Resources
Boisselie; Using Mathematics in Business: Chapter 12.
Newton; Consumer and Career Mathematics: Chapter 3.
VAST 3 Mathematics: Unit 9 .
NOTE: . For more basic work; see CAl: Numerical Data.

Career:Math Applícations 14 : Plane figures $=$ ínear and Area Measurement

Tasks
CA14:1 Demonstrate mastery of skills and concepts; às outlined in CA4: Plane Figures = Basic Meastures.
CA14. 2 Extend the apility to identify, define; label, draw, and calculate the areas of circles and polygons and the 1 inear measure of their constituent parts le.g.; rhombus, annular rings, sector, segment, ellipse; etc:; aṇ combined figures.)

CA14.3 Solve practical problems involving areã and inherent linear -measurements of plane geometric figures.

Resources
Barker, Arithmetic: Chapter 7.
Garman; Mathematics for the Trades: Chapter 7.
Novak, Arithmetic: Chapter 8:
$=$ VAST 3 Mathematies: $\forall n i t \bar{s} 8$ and 10 :
NOTE: - For more basic work, sée CA4: Piane figuresty $=$ Bas

Caréé Math Appicications Solid Figures - Surface Area and Volume

Tasks
CA15:1 Démóntrate mastery of skills and concepts, a outioned in CA5: Solíd Figures - Basir Measurres..

CAlt-2 Extēnd the abillity to identify, defiñe, label, and dravi solid geometric figáres (e.g., prism, cone, pyramid, hollow cylinder, frustum, solid ringl.
CA15.3 Extend ths ability to identify, define, and calculate the surface or lateral area of geometric solid d .

CĀ5-4 Extend the ability to identify, define, and calculate the volume of geometric solts, and the in $\bar{n} e \bar{r}$ and area measure of their constituent parts (e.g., given the segment of a sphere with à het万f 1 cm and a radius of 3 cm, find the radiús of the sphére and the volume of the segmentl:

CA15.5 Solve practical problems involving surface area and volume of geometric solids and their constituent - \quad volume

Resources
Barker, Arithmetic: Chapter $\overline{7}$.
Novak, Arithmetic: Chapter 8.
Rogers- Mathematics for Trade and Industrial Occupations:
Chapter 9:
VAST 3 Mathematies: Units 8 and 10 .
NOTE: For fore basic work, see CA5: Soifd figures - Basic. Measurement.

$$
=78=8 \overline{2}
$$

Career Math Applications 16: Trigomotry
Tāsks
Sē Trānsfèr Applicātions 5 (TA:5).
i

- 8

8
$\stackrel{i}{c}$

Tásks
CA17.1 Demonstrate mastery of skills and conc 亏, as outioned in CAS: Geometric Constructic
 constructions such as:

* the circumcircie of a triangle,
* the incircle of a triangle,
* a tangent from a point outside the circle,
* the direct common tangent to two circiles,
* the transverse common tangent to two circies
* ellipse,
* arigles of $90^{\circ}, 45^{\circ}, 221 / 2^{\circ}$.

11 $1 / 2^{0}$ etc and combination thereof, * reguiar polygons.

CA17.3 Solve practical problems involving geometric constructions.

Resources
Boyce; Mathematics fer Technicā anc Vocational Students:
apter 13 .

VAST 4 Matnematics:-Unit 9.
NOTE: For more basic work, see CAB: Seometric Cons uctions.

Gareer Math Applications 18: Advanced Interest anc isiscount
Tasks
CA18.1 Demonstrate mastery of strys and concepts, as outlined in CAlo: Simple and Compound Interest.

CA18. $\overline{1}$ I Identify and define additional concepts and terminology used in simple interesi and ciscount (e.g:, bank discount, discount interest; noninal interest, effective interest, true interest, proceeds, present value, promissory note, demañ loan; instalment loan, revolving credit, carrying charges):
CA18. 3 C̄āculate a schedule of payments of principal and interest, earrying charges, and 干rue interest rate on loans; including demand loans, term loans, instalment loans, credit purchases:

CAí8.4. Cāculate bank and simple discount, procéds, and true interest rate en interest and non-interest bearing fromissory notes.

CA18.5 Cācislate present value of a debt.
CA18.5 Solve practical probleas involuing simple interest and simple discount.

Résourcés
Boisselle, Using Mathematics in Business: Ghapter 9 :
Carman, Methematics for the Trades: Chapter 4 .
NOTE: For more básic work, see calo: Simple and Compound Interest.

Career Máth Appifoations 19 : Compound Intérest and

 AñuitiesTāsks
C̄Ā̄. $\overline{1}$ Demonstrate mátery of skilis and concepts as outlined in CA10: Simple and Compound Interest.

C̄19.2 : Identify and define àditional concepts and terminology used in cumpond interest ánd annuities (ég. nominā rate, efféctive rate, present value, Equation of value, payment interval, amortization schèdule, sinking fund, contingent annuity).
 interest and annuities, including accumulated amount, approximation of time, approximation of rate, beginning principal, present value, etc.

C̄Āc. $\overline{4}$ C̄alculate and prepare amortization schedules and sinking fund schedules.
CĀ́g. $\overline{5}$ Solve practical probiems invoiving compound interest and annuities.

Resources

Carman, Mathematics for the Trāes: chāpter 4 .
NOTE: For more basic work, sce cAlo: Simple nd Compound Interest.

```
mathematies for transfer
Quick Index of Leārining Tasks and Resources
```

Page

TFI: Properties of the Number System 84
TF2: Rational Numbers and Exponents 86
TF 3: Polynomiàs 87
TF4: Linear Equations 88
TFF: Cārtésiān Grāphing 89
TF6: Systems of Equations 90
TF7: Quadratic Sēntencés 91
(Tf) Transfer Math Appicacions
TA1: Potynomials and Rational Expressions 92
TA2: Radical Expressions 93
TA3: Quadratic Sentecoss 94

- TA4: Systems of Equations 95
TA5: Trigonometry = Basics 96
TA6: Imaginary and Complex Numbers 97
TA7: Conics 98
TA8: Exponentiai and Logarithmic Functions 99
TA9: Polynomial Functions and Graphing Techniques 0
TA10: Sequences, eries, and Binomial Theorem ni
TA11: Trigonometry - Advanred -2

Trañfē Math Fundamentals $1:$ Properties of the Number System

This topic deals with properties of the base 10 number system as applied to the sets of whole numbers, ráations, and integers.

Tasks
TFi.1 Identify and deiine:

- the set óf naturā numbers,
- the set of whole numbers
- the sét of fractions.

TF1. $\overline{2}$ Défine mútiplication, subtraction, division, and exponentiation for whole numbers as:

$\overline{\bar{a}}=\dot{b} \equiv c$ if and only if $c+b=a$
$a-b \equiv c$ if and oniy if $c-b=a$
The multiplicative inverse (reciprocai) of $\bar{a}=\frac{1}{a}$
when $a \neq 0$

$$
a=\frac{a \cdot a}{r \text { facto }} ;
$$

TFi.s Identify and wse the cómmutátive, associative, and distributive properties as:

TF1.4 Add, subtract, multyply, and divide whole numbers and fractions.
$\overline{\mathrm{T}} \overline{\mathrm{F}} . \overline{5}$ Identify the sēt ō $\overline{\mathrm{f}}$ integers and graph members of the set on a number inne.

TF̄ $\overline{1} . \overline{6} \quad$ Define absoiute value:
TFi. $\bar{\prime}$ Add, multiply; and divide with integers.
TFi. 8 Apply the 'order of óperations' to computation of whole numbers and integers.

Resources
Barker, Bas.c Algebra: Chapter 1:
Keddy, In © eductory Algebra: Chapter 1 .
Novak, Introductory Algebra: Chapter 1 .

人"

- 85 -
$Q \cap$

Trañfer math Fundamentals à: a

```
    C!口!?%
```

 as applied to racional numbers and tipo ants:

Tasks
TF2.1 I Identify and define the sé $\overline{\mathrm{f}} \mathrm{f}$ rational numbers and graph numbers on a number ling.
TF2.2. Perform the operations of ád ítion, subtraction; multiplication, and division on the set of rational numbers.
 rational numbers.

TF2.4 Identify the terms: base, power, exponent, and root.

TF2.5 Write examples of multiplication using exponents.
TF2. $\overline{6}$ Use the rules exponents to simplify expresions involving exponants.

TF2. $\overline{7}$ Identify the commutative; associative, and distributive principles as apoíied to exponents.

TFZ. $\overline{9}$ Use a calculator with examples invo ing scientific notation.

Resources

Barks, Basic Ájebra: Chapter 2.
Keedy, Introduciory Algébrá: Chapter 2.
Novak, Introductory Algebra: Chapter 2.

Tratisfer Māth Fundomentals 3: Poiynomials
This Lopic deās with basic operations of addition, subtraction, multiplications and division with literal expressions.

Tasks
TF3.1 Identify the following terms: monomíal, binomial, trinomial; polynomial; degree; like terms.
r.3.2 riven any polynomial, combine like terms by adding and subtracting to obtain a polynomial in simplest form.

TF3.3 Find the sum or difference of polynomils.
TF3.4 Evaluate polynomiais for given replacements of the variables.

TF3.5 Multiply and divide polynomials.
TF3:6 Carry out factoring operations such as:

```
\star find the grcatest common monomial factor,
```

ॠ factor trinomials;
末 factor the difference of squares;

* factor bj gruaping.

Resources
Barker, Basic Algebrá: Chaptécis 3 and 4.
Keedy, Introductory Algebra: Chapt

Transfer Math Fundenentals 4: Linear Equations
This topic deals with linear. equations in one variable and the application of properties of the number system to solving equations and inequalities.

Tasks
TF4.1 Using the method of applying the inverse operáion, solve an equation that involves one operation.

TF4.2 Solve án equàtion thāt \mathfrak{i} ás more than one operation, ānd the colle. of like terms.

TF4. 3 Transiate verbā sentence to à gebraic expressions and equations.

TF4.4. Estáblish protyem=soiving strategies and apply tiam to formula prodiems; age problems, number problems, percentage problems; and mixture problems.

Resources

Keedy, Introductory Algebra: Chapters. 3 and 6.
Novak, Introductory Algebry: Chapters 3 and 4 .

Transfer Math Fundamentals 5: Cartesian Geraphing.

Tf sopic deals with the solution of probiems by combina ion d. \quad or interpretation of cartesian graphs to ist and 2 nd d. ee equātions.

FF5.1 Identify any pón $\overline{\text { in }}$ in the cartesian piane with an ordered pair of numbers.
TF5.2 Given an ordered páir of numbers (co-ordinates), plot any point in the cartesian plane.

TF5.3 Write the equation of a straight ine in standard
TF5. $\overline{4}$ Ḡạph equations of . .aight ines.
TF5.5. Grāp simple ineqialitios and absolute value
TF5.6 List the conditions for which ines are perpendicular.
TF5.7 List the conditions for which ines are parallel.
T ¢. $8 \quad$ Given àn equation or the/graph of a $\overline{\mathrm{l}} \mathrm{ine}$, find thé
TF5.9 Given any ínear equation in variabies, construct its grāph.

TF5.10 Given an equation in standard form; fir. the slope
TF5:11 Using the distance formula find the distance between
any two points in the plane:
Resources
Barker, Basic Algebrá: Chapter 8 .
Kéeđy, Introductor-y Ā̀gebra: Chapter 6 .
Keedy, Intermediate Algebrā: Chapters 2 and 8.
Novàk, Introductory Algebrá: Chapters 6 and 7 .

irans $\bar{f} \overline{\text { e }}$ Māth Fundamentals 6 : Systems of Equations

Tije topic deals with the solution of problems requiring the application of pairs of equations.
iàsks

TF6:1 Construct the graphs of systems of linear equations.

TF6:2 Identify the graphic solution systems of linear. equations.

TF6.3 Solve systems of equations algebrai: illy by:

* substitution method,
* addition-sistraction method;
* multiplication-division method;
* combinations of the above.

Resources
Barac: Basic Algebra: Chapter 9.
Kecdy. Algebra and Trigonometry: Ebapter 2.

Kéēy; ©tométiee Algébrā: Chāpter $\overline{3}$.
Novak; Lneroductory Algebrã: Chãpter 7.

Transfer Math Fundamentals 7: Quadratic Sentences

This topic deals with the identification of quadratic equations and the solution of related problems by factoring.
Tasks
TFTXefine a quadratic equation.
TF7.? : Write quadratic equations in steward form; ie., $a x^{2}+b x+c$.
TfFi.3 $\begin{array}{ll}\text { identify the value } \\ \text { equation. }\end{array} \quad$, and c i:: any quadratic
Tf7.4 Explain and use the concept of zen products.
TF7.5: Solve quadratic equations by factoring.
fry. 6 Develop strategies for problein solving and apply strategies to selected problem situations:
Resources
Barker, Basic Algebra: Chāptér ${ }^{\prime} 7$.
Kelter, Algebraand Trigonometry: Chapter 4. .
Keedy, Introductory Algopráa: Chap terr 10 .
Nova, Introductory Rigebrá: Chapter 1%.
t

- 91 -

TRANSFER MATH APPLICATIONS

Trāns̄ēe Māth Āppilcations 1: Polynomials and Rational Expressions

This topic deals with the solution of problems through the application of polynomials and rational expresions.

Tasks
TA1.1. Define an algebraic fraction and recognize the restrictions placed on variables in the denominator.

TAl. 2 Simpify algebraic fractions.
TA1. 3 Add, subtract, multiply, and divide algebraic fractions.

TA1. 4 Factor sum of cubes.
TA1. $\overline{5}$ Factor difference of cubes.
TA1.6 Solve equations involving factions.
Resources
Barker, Basic Āgebra: Chapters 3 and 5.
Keedy", Ālgebra and Trignnometry: Chapter 13.
Keedy, Intermediate Algebra: Chapters 4 and 5.;
Na:ak', Introdurtory Álgebra: Chapters 5 and 8.

$$
92=96
$$

Transfer Math Appicications 2: Rādicái Expressions
This topic deals with the application nf radical expressions:

Tacks
TA2:1 Identify and explán the following terms of a rādicà expression: radicail, radicand, root. :

TAZ:2 Muitiply añ simpicify with radicais.
TA2. 3 Divīde ánd simpiofy with radicais.
TAZ. 4 Ad̄ $\bar{d} \bar{n} \bar{d}$ sub̄tract with radicals.
TAZ:5 Rátionaíze numerators and denominators.
TA2.6 Sōive equátions with radicais.
Résourcés
Barker, Basic Algebra: Chapter 6.
Kéedy, Algébra and Trigonometry: Chapters 1 and 2.
Kéēdy, Intrōductóry Āgebra: Chapter 9.
Nōāk, Intróductōry Āgebra: Chapter 9.

Transfer Máth Applications 3: Quadratic Sentences

This topic deals with the solution of quadratic equations related problems by the quadrātic formula.

Tasks
TAЗ. $\overline{1}$ Construct graphs of quadratic equations.
TA3.2 Solve quadratic equations by completing the squar
 formula.

TA3.4 Trānslāte problems into quádrātic equations.
 ūse it to dètermine the nātừe of the roots.

TA3. $\overline{6}$ Find the maximum or minimum vā $\bar{u} \bar{e} \bar{e}$ of quādrātic sentēncēs.
 including: rāte = time = work problems and minimu māximum problems.

Resources
Barker, Basic Algebra: Chapter 7.
Keedy, Introductory Algebra: Chapter 10.
Keedy, Ālgebra and Trigonometry: Chapter 4.
Novak, Introductory Algebra: Chapter 10.

Transfer Math Applications 4: Systems of Equations

This topic deals with the solution of problems involving (1) systems of equation in 2 variables; and (2) ifnear systems in up to 3 variables.

Tasks
TA4:1 Solve systems of linear equations; using 3 equations and 3 unknowns.

TA4:2 Solve iinear and quadratic systems óf equátions.
TA4:3 Solve pàirs of second degree equatioñ.
TA4.4 Solve probiems involving 3 inear equations and 3 unknowns.
$\begin{array}{ll}\text { TA4:5 } & \text { Solve probiems involving pairs of second degree } \\ \text { equations. }\end{array}$
TA4: 6 . Solve 3×3 systems of equations, using déterminants and matrices.

TA4. 7 Evaluate 3×3 matricés.
TA4.8 Use determinants and matricés in solving probiems.
Resourčēs
Barkèr, Bāsīc Algébra: Chapter 9.
Keedy, Algébra ānd Triogonmetry: Chaptēr $\overline{2}$.

Keedy, intermédiàté Algébra: Chaptēr 3.
Novak, Introductory Algébra: Chapter 7.

Trānsfer Math Applications 5: Trigonometry - Basics
This topic deals with the solution of problems requiring the use of trigonometric functions:

Tàsks
TA5. $\overline{1}$ Define the sine; cossine; and tangent ratios.
 determine the missing side or the missing angle in a right triangie.

TĀ5. 3 Solve problems requīīng the use of sine, cosine; or tangent ratios ín right triangles:
 for the quadrántaj angles:

TĀ5.5 Find the vajues of sine; cosine, and tangent ratios for the spécíaj anges of $30^{0} ; 450 ; 60^{\circ}$.
 solution of problems:

Rēsources

NOTE: For more ādvanced work, see TAll: Trigonometry = Ad $\bar{d} \bar{a} \bar{n} c \bar{e} \bar{d}$.

Transfer Math Appifcations $\overline{6}$: Imaginary and Complex Numbers

This topic deals with the extension of the number system té include imaginary and complex numbers.

Tasks
TAG. 1 Define à complex number.
TÁ6:2 Add, subtract, and multiply complex nunbers ćf the form $a+b i \quad w h e \bar{e} i=\sqrt{-1}$ and therefore $1^{2}=-1$. .

TA6.3 Find the conjugates of complex numbers anc use tiam in the division of complex numbers.

TÁ6. $\overline{4}$ Determine if the roots of $a \bar{x}^{2}+b \bar{x}+\bar{c} \equiv 0$ (a, b, c, \bar{e}, r) are complex by using the discriminant. Determine the graph of compiex roots.

TÁ6.5 Find the sum and difference of cōmplex numbers grāphicāl'y.

Resourcēs

Transfer Math Apfifcations 7 : Conics
This toric deals with the solution of problems involving circles; ellipsess; panabolas; and hyperbolas.

Tasks
TA7.1 Define: focus, parabola, ellipse, and hyperbola:
TA7.2 Identify ne aquations of circies, elifipses, hyperbolās, and parabolas.
TA7.3 Given an equātion of a circie, express the equation in standard form and construct the corresponding graph.

TA7.4 Given the equation of an ellipse, put the equation in standard form and construct the corresponding graph.

TA7:5 Given the equation of an hyperbōā, pūt the equation incstandard forin and construct the corresponding graph.

TA7.6 Given the equation of a parabō $\overline{\mathrm{a}}$, $\overline{\mathrm{p}} \mathrm{u} \overline{\mathrm{t}}$ the equation in standard form and construct the corresponding grāph.

Resources
Keedy, Algebráand Trigonometry: Chapter 14.

Transfer Math Applications 8: Exponential and Logarithmic Functions

This tepic deals with the solution of problems by application of exponential andor logarithmic functions.

Tāsks
TA8.1 Define exponential and lōgaríinmic functions.
TA8.2 Find logarithms and antilogàīthes óf numbers, using a calculator.

TA8.3 Given an exponential equation, find an equivaient logarithmic equation and vice versás.

TAB. 4 Apply the properties of logar $\overline{\mathrm{i}} \mathrm{t} \overline{\mathrm{t}} \mathrm{m} \overline{\mathrm{s}}$ in solving logarithmic equations.

TAB. 5 Apply logarithms to solving problems such às:

* radioactive decay problems;
* continuous growth problems;
* compound amount problems,
* population growth problems.

TA8.6 Apply logarithms to évāuating exponential expressions and computations, using a calculator.

Resources
Keedy, Āgebra anc Trigonometry: C̄hātēr $\overline{7}$.

Transfer Math Applications g: Polynomiat Functions and Graphing Techniques

This tópic deás with polynomial functions, including rational roots, synthetic division, and graphing techniques.

Tasks
TA9.1 Défine $\overline{\mathrm{t}} \overline{\mathrm{h}} \overline{\mathrm{e}}$ fōlowing terms and notations: relation, function, mapping; image, domain, rāne, f(x).

TA9.2 Given a relation or function, determine whether its inverse exists, write or graph the inverse, and solve related problems.

TA9.3 Use synthetic division to find factors of polynomials.

TA9.4 Solve polynomial equations.
TA9. 5 I Identify the inverse of grāps.
TA9.6 Slide à graph horizontāly and vertically.
TA9. 7 Determine how chānging coefficients in equesions affect the graph èther vertically or horizontaliy.

Resources.
Keedy, Āgebrà and Trigonometry: Chapters 3 and 13

Transfer Math Applicātions 10: Sequencés, Series, ànd Binomial Theorem

This topic deals with solution of probiems requiring the \Rightarrow knowledge of arithmétic and geometric series and binomial theorems.

Tāsks
TA10.1 Cāculate the arithmetic méan ō añ number of terms of an arithmetic progression.
TA10.2 Determine the formula for the sum of an arithmetic series, and write the sum for a given number of terms in an arithmetic series.

TA10:3 Determine the formula for the sum ōf áa gometric series, and write the sum for àgifen number of tērms in à geometric series:

TA10.4 Dètermine the formula for the sum of an infinite geometric series, and find the sum of infinite geometric series.
 integer léss thān 10 :

TA10.6 Find any term of a binomial expansion.
TÁlo. 7 : Develop a strategy to identify problem types and solutions, and solve problems requiring the use of arithmetic and geometric progression or the binomial theorem.

Resources
Kēēd, Algebra and Trigenometry: C̄hapters ī and ī̄.

Transifer Math Appifcations 11: Trigonometry - Advanced
This topic deals with the solution of problems by trigonometry, including application of sine and cosine laws, double ànd half=angle formula, with emphasis on a functions approach.

Tāsks
TĀíl $\overline{1}$ Détermine the trigonometric formulae for the sum and differences of two angies and solve related problems.

TA11.2 Determine the trigonometric formulae for double arigies and haif-angles:

TĀ1. 3 solve open séntences requiring substitution of any of the trigonometric identities.

TĀ1. $\overline{4}$ Convert degré méasure to radians or vice versā, and solve related problems.

TĀ1̄. Graph the functions $\overline{\mathrm{t}} \equiv$ sin $\bar{x}, \bar{y}=$ cos \bar{x}, and $y:=$ tan x.

TAil. \quad Sólve prōblems involving trigonometry, inciuding use of sine and cosine. laws, double añ half=angle formula, with emphásis on a functions approach.

Resources

$$
107
$$

ERIC

PRINCIPLES OF ADULT LEARNIGG

Adult education ins ţructors tend to agree on ánumer of generalized obsérvations ābout how and why adujt̄́s learn. It máy be reassuring to díscover that these observations are well supportéd by à stēady. stream of resear $\bar{r} \bar{c} \bar{h}$ studiés and syntheses of knowlédge ${ }_{\text {w }}$ áout adult jearning. The foljowing jist is extrācted from Knox (1978); simílár principjes are jisted by Kidd (1973), Dickinson (1973), and Brundage and MacKeracher (1980).

1. Performance: Adult learning usually entáís change and integration of knowléder, skilis, and actitudes to produce improved performance. Adults typically engage in a continuing education activity because they want to use what they learn soon after they learn it.
2. Motivation: The educàtionā goals; sources of eneouragement and barriers that characterize an aduit's

- Motives are multiple and varied in their specificity and in the eitent to which the learner is aware of them. overly intense motivation becomes anxiety, which interfere with learning.

3. Meaning: Adult learning is more effective when it -entails an active search for meaning and discovery of réationstips betweent current competence and new searnings.
4. Experience: An aduit's prior experience influences the apprōāh to a learning episode and its effectiveness. Prior learning may either facilitate; interfere with; or be unrejāted to new learnifigs.
5. Leāning Ability: Learning ability is relatively stable between 20 ànd $5 \overline{0}$ yeàrs of age, with gradual deciine thereafter; abilities that are associated with adult experience, such as vocábụlary, are best maintained and enhanced; and acuits who were initially the most able of their age group tend to increase their ability so that the range in abííties increas ses with age: Adults with the greatest learning ability tend to learn more rapidiy and to learn complex tásks more reádily.
6. Memory: An aduit's ábijity to remember information depends on the strength of the registration and on the factors operáting to érase the registration. The strength of registration depends on intensity, frequency, and importance to the learner. The factors that erase the registration include the passage of time and the activity that foilows the exposuré Recali is best under conditions that are similar to the original registration.
7.- Condition: An adūt's ability to learn can be substantialiy reduced by poor physical and mentā heāth. Condition and health inciude both gradual decíne into old
 in their vision and hearing can affect learning. Much can be córréc tē by glasses, better illumination, hearing àdsp, and sound amplification.
7. Pacing: Adults typically learn most effectively when
 at which they learn best: 0ider learnés tend to reduce the speed of learning and to give greater attention to àccürácy.
8. Complexity: An adult typically learns best when the learning task is complex enough not to be boring, but not so complex that it is overwhelming:
9. Content: The process of effective learning by aduits variés with the cóntent or nature of the learning task.
10. Féedbāck: Aduits learn more effectively when they receive feedback regarding how well they are progressing. Thīs àppīés to jearners of any age. Immediate feedback, recognition, and rewād help to shape and reinforce new

 théy experience substantial social or personal
 situation; it may represent a chāléngé when they do not, it may be perceived às à threà

MATH ANXIETY

Research indicates that anxiety about mathematićs may represent a major bárier to learning for mány ãdūts.
 b identified as the cause of math anxiety, (Gaskill, 1978). It seems, rather, that a complex and interwoven set of influences work together to genēāte the anxiéty thāt māny instructors have recognized in their students.

The previous experiences of aduits; even as far back às elementāry school, thèir pérceptions of the real valué of mathematics; and the fear of being wrong; or of making a
 suggested that the various sexual biases of society have been pàrticū $\overline{\mathrm{a}} \mathrm{ar}$ c caúsés of math anxiety in women.

Regāralēss of the cause of math anxiety, instructors have been developing a number of strategies to help learners overcome or at ieast deal effectively with the prōbiem. In généal; a positive, supportive approach providing many eariy
 success": Gradually, the cumulative experiences of facing a situation or probiem, coping with ít, àn \bar{d} experiencing successful resolution of the tāk will build feelings of success that wîi suppiant $\bar{t} \bar{h} \bar{e} \bar{a} n \bar{x} \bar{e} \overline{t y}$.

Here are some ōthér récommended strategies.

夫 Begin the anxious learner at a level of instruction well below the fústration level. Many instructors explain the procéss to the "anxious" leãrner by emphāsizing the benéfits of a warm=up. This simple procedure will allow the jéarner to build on a basis of eárly successs.

Make every effort to relate mathematical concepts to the learnér's own experiencé. Bécuse the anxious adulít iearner has most probably avoided situations involving computation or terminology; be very certāin thā the terminology commonly emplojed is part of the leārner's working vocabulary.

* Át accēptablé būt $=$. whèn identified ās such $=$ càn be most valuable léarning experiencēs.
 bè lieve to be trivià. "Thére is no sưch thing ā à stūpid
 off=hand remark about a problem béing "eāsy" may be
 that which is intēnded. "If its ēāy and I'm confīsed thēn 1 must be stupād:"
* Provide learners with ōpportunities à the cōncrete ievei. (The concept of a faction is not as "easy" to internalize as one assumes:)
* Emphasize the transferability of "real-life" problem solving to the solution of math-based problems.

A word of caution is appropriate here. Some anxiety symptoms may be brought on by the natural apprehension associated with à new situation (such as math or computer work); but there are other displays of anxiety that may well be related to
 either case for the instructor to consult with or refer to a
 problems.

PROBLEM SOLVING IN MATHEMATICS

(Adapted from Mathematics 221; $2 \overline{3} 1,241:^{\prime}$ A Teaching Guide ${ }^{\prime}$, pubioshed by the Nova Scótia Départmeñ of Education.)

It is particulariy important for adult leárners to be conscious of the general nature of problem-solving techniques and to see that appications have some immediacy to their $\bar{i} \bar{f} f$ situátion. Solving problems and making decisions in mathematics require the same processes as solving problems in many ōthér situations:

While óne can argue the validity of many problem-solving algorithms, the following chart incorporates those features commoniy hèd to be useful.

A GENERAL ALGORITHM

1. Interpret and analyse the situation.
2. Collect information.
3. Decide the most effective and appropriate plan of àttāck.
4. Determine the operational aspects of putting the plan into effect.
5. Veriffythat the solution is satisfactory:
6. Communicate the solution of the problem; either by actualiy using the result or by explaining it to someone else.

A MATHEMATICS ALGÓRITHM

1. Understand-and define the problem.
2. Collect information - check for latent information.
3. Translate the problem to a mathematical expression.
4. Manipulate the mathematical expression.
5. Check the answer for reasonableness.
6. State the answer to the problem in sufficient detail that $\bar{i} t \bar{i} \underline{s}$ understandabie to someone else.

The appication of these concepts and skijís to mathematics does not come easily to adult learners - even though they may intuítively apply the same procedures in their everyday íves. Māny leãrners - some might argue a májority concentrate all their energies on the manipulation step, that of pērforming the actual matnematical operation lof tén a simple computation requiring recall of previousiy learned math procedūés). Secause instructional materīás teñ to present patterned "word problems" based on a "just tāught" skili, this ápproach is often rewarding. It of ten jeāds tō the 'right' answer (the one in the answer key). The jeárier, howéver, may never achieve the satisfaction of íternáizing an effective problem-solving strategy.
'Real' problem-solving activities and situations should be an integrā part of every unit of study, wnether the topic bé finance, geometry; measurement, statistics, the number system, or any other. The reā àim of every math course is to enable people to solve problems. Especially in the adult basic education context, the more rēevant the problems are to present or future goals; the greater wili be the impact on jearning.

An ídeal mathematics course for adult learners wily enạibe them to develop and apply such 'higher leel thinking skijis' ās:

*.generalization;
天 pattern recognition,

* estimation,
* evalution of alternative solutions.

General Recommendations

1. Problem solving should be highionted as an important component óf évery mathematics course and be given prominence in course descriptions and outiones. This stated emphásis will remind both learners and instructors of the central place of problem solving in the curricilum.
2. Probiem-sóvíng strátégés léarned in mathematics may bé applied in other súbject areas and used in solving a variety ōf reálīife problems of interest to adults.
3. Learners ćan develop their own problem-solving algorithms. Computer flow-charting may al so be intrō̃uced, às an aid to development of ánāytic skills and the sequencing of steps towards a solution:
4. To illustrate the necessity for clear and complete enunciation of a problem, tearners may be shown how tô write computer programs.

Teachins Probiem Sólving

While probiem sóiving may also be treated ás a holistic process, there appear to be severai logical techn̄ques for developing and strengthening specific aspects of that process. As an example, here are a few techntques.

* Illustrate different ways thāt. $\overline{\mathrm{p}} \overline{\mathrm{r}} \overline{\mathrm{o}} \mathrm{l}$ ems may be described àñ transiated.
* Have learners transiate problems into different modes of commúnicātion, e.g., pictorial, symbolić vér̄ā concréte.
※ Have learners indicate the process that is required to solve a problem without actually carrying it out.
*. Put the emphasis on the process; by substituting simple

* Provide probiem sítuations with incomplete data, requiring learners to identify what additional data are needed in ōrder to woŕk the process.
* Show learners how to transiate reai-ijfe probiem s.ítuations inso mathematical equivalents.
※ Require students to estimate solutions; especiāly before vérifying them on calculator.
$\because 113-116$

THE COMPUTER -- A TEACHING, TOOL

(Based on Walter Muir, Computer Awareness: An Introduction
 It is used with permission.)

The purpose of this section is to remind instructors of the
 mathemátics. It includes à definition of computer litēacy,
 Readers will recognize the similarity between a computer
 section for geñēal mathematics learining.

Computer Literacy

Just as the Indsutrial Revolution created the need for a. 'literate' populace thàt could understand and work éffectively with machines; the Computer Revolution has created the need for people who are skilled in the use of computers: The term computer literacy therefore refers to a genérā understanding of computers, and an ability to use

Speceificcally, the 'computer literate' educator will have acquired:

* Knowiedge of the history of computing;
* An understanding of the components of computing system;
* An āwānéss of how computers function and how they are programmed;
* An understanding of the range of possible educationā applications and the ability to implement the most appropriate ones;
${ }_{\star} \quad$ An awareness of the sources of hādware and software;
* The ability to evaluate the éffectiveness of programs and appications;
* Knowledge of career opportunitīés computers; and
${ }_{\star}$ An àwareness of the present and possible future effects of computer technology on society.

The Computer as an Aid to tearning

Computer Assisted instruction (CAI) hás been used very succéssculiy by universities; by business and industry, and by the military, since the 1960 s : PLATO systems, for example, developed at the University of lilinois, and in use throughout North America, have provided effective instriction in medic $\overline{\mathrm{i}} \overline{\mathrm{n}} \mathrm{\bar{e}}$, eng ineering, physics, chemistry, creative writing; ānd many other disciplines: CAl is ōne óf severai terms used to describe the interaction of a learner with a computer. Othér terms include Computọ Aidē léarning. (CÁL). For the purposes of this section, the term CAI will be used to inciude ā of these applications.

Considerābe résearch into CAl has been carried out over the past 20 yeârs; most of which has shown that well=designed CAI is at least as éffective ās the tráditionaj methods of : lecturing and note-taking. A further benefit, particulariy to slower learners, is thàt CAl álows each learner to proced at an individual rate while the computer acts ás à pātent tutor. The main $\bar{C} \bar{A} \bar{l}$ modes currentiy in use are 'Orili and Practice' and 'Tutorials'?

Brill and Practice is the lowest level of CAI, and it is probabiy the ōne mos \bar{t} frequentiy used in education at this time. These routines are úsed mainiy in the development of básic sckilis in such àreas as vocabulary, speliong, árithmetic operations, geometric and aigebraic relationships, or balancing chemical equations: In other words; the major benefits occur in circumstances where repetition can improve the learning of operations and concepts.

Tutorials: When a learner is presented with new information by a computér. and is regúariy tested to determine whether the information has seen learned, then CAI is functioning in the Tutoriā mode. The best tutorials are capabie ōf taking a learner from virtually no knowledge of a topic to a very high levē of understanding. In planning CAl sequences; the question that should always be asked is, "Can CAI improve
 is no, it is probably better to use a traditional approach. : However, it thè answer seems to be yes, try CAI añ evaluáte the results.

Cōputér-Managed instruction

Many instructors have applied the principles of Individually Prescribed Instructiōn (IPI) to computer-managed instruction. This approach involves breaking the content to be learned into relatively smail packages ō 'iearning modules'. Each module is comprised of à variety of learning activitier such as reading a resource bōok, doing library research, or víewing a videotape. Students proceed independentiy through successive modules and àre tested at the completion of each to determine whether the minimum criterion for mastery has been achieved.

A major problea with a conventionai modular course hā seen the amount of 'paperwork required to record the progress of each student. Computers offer an $\overline{e f f i c i e n t ~ s o l u t i o n ~ s i n c e ́ ~}$ they can be programed tō perform such tāks às prescribing learning activities on a daily or weekiy basis, aind presenting and scoring the criterion tests. They can also record the results of the test and direct the student to the next phāse ōf jearning.

Simulations

For more than 20 years, computers have been used to simulate a great váriety of phenomená inciuding the growth of the world's population, the economies, of nations, the ecology of vast land areas; chemicā reactions at very high temperacures ànd piessures, $\bar{t} \bar{i} e^{-} \bar{f} \bar{i} \bar{h} \bar{t}$ of jet aircraft, even the functioning of the human brāin.

Simulations have also been programmed for ciassroom use.
 constéliations, physics and chemistry experiments, genetics laboratories, the operation of automotive engines, the operātion óf smali businesses, and many others. Welldesigned computer simulations of this nature can help instructōrs provide students with unique ieárning experiences.

Problem Solving

The computer has the capacity to supplement the mentap functions of humans in many useful ways. It greatiy entances onés ability to perform calculations, and to store and rétrieve information:

Problem solving has been an important part of mathematics and scíence cur̄icu’a for mány yeàrs. Applications of mathematical concepts to the real world can fe found in almost every current mathematics publication. Furthermore; there is virtualiy no inity fo the variety of such problems to which the computer can be applied.

The following steps constitute a generai procedure that may be used to solve a probiem with the aid of a computer.

1. Anaiyse the probiem: Thís step involves breaking the : problem down into its component parts. The student will then determine the àdūtional information and resources needed to proceed.
2. Develop an Algorithm: Creating the procedure by which the prōiem will be solved is the most important step. It is here that the student's knowlóge of the subject matter will be directiy applíed. Each detail of the procedure should be clearly státēd. A relatively simple problem, such as calculating the area of a rectangie; could be dealt with as a single procedure. A more complex problem coula require several ísub-āgorithins' to bé developed separately and finally merged to provide a single comprehensive solution.
3. Prepare a Fluwchart: The advantages of a fowchart is that it provided à picture of the procedure to be applied. It permits the learner to check for accuracy àt an intermediate point.
4. Write the Program: The flowchar̄ then must be transiated. into the language of the computer. This requires a basic understanding of a computer languaçe by both instructor and student.
5. Debug the program: Removing the érrors from a computér program provides the learner with ano ther opportunity for analytical thinking: Unlike humans, who can often fill in the blanks when incomplete $\bar{i} \bar{n}$ formátion is given, the computer is unable to make assumptions rabout what the programmer intended. Every clittle détāil of the program must be correct.
E. Document the progran: Once thé student and instructor are satisfied that the programanas córrectiy sotvē̃ the problem; the student should formaily 'document' (describe) the program. Good documentation is critical to the future use of computer program.

These six steps may be applied to solving virtualiy any problem in any subject area. The challenge to instructors is to identify appropriate prō̄̄ems and to assist thérir students in soiving them.

Thé Electronicolackboard

The coomputer sability to store, retrieve, and display information can be used in many instrumeñá situations.
 be fed into one or more television moñ tors at once to provide the instructor with an 'electronic blackboard'.
 stored on a diskette, and then presented as many times as necessary. Móréover the materiales cañ be quickiy modified or updated.

Programming for the electronic blackboard is relatively eásy; it is simply a matter of éntering the textual materiai into a series of PRINT stātements. Thē prēēntation routine pémits the instructor to advance to the next step in a sequence by simply touching a key on the computer's keyboard. If a
 identical to those appearing on the screen; may be printed for the ciass.' Tó further simplífy the process; programs are available that provide shells' into which the instructor can
 generate large characters that can be more easily seen by the viewers: Graphicifiustrations can ápo be préséted on the screen as part of an instructional sequence. Again, the
 way.

Achiekement Testing

With a computer it is possibie for instructors to administer their own tésts and receive the results on the same day the test was administéred.: This can be done either by having each studen \bar{t} sity $\overline{\mathrm{a}} \overline{\mathrm{t}}$ the computer and answer the questions 'on-linei, or by having learners respond to the test on computer cards, which can be quickly entered into the computér through a card reader for scoring and analysis.

Computérs are being used to store 'item banks' (i.e.; files of tess quest,ions in various subject areās). The banks may be purchased on diskettes that include the test items and the progràm necessary for sēecting items and printing $\overline{\bar{a}}$ test, and for modifying the items: Useful items may be retained for future tests, while fáulty items can be modified or discarded and new ones added: The main advantage to the
 the instructor needs to do is specify the items to be inciuded in the test and the computer will print two versions of the test; one that ean be used as the 'master' for copying, and one that constitutes the 'answer key'. Item banks can remove much.of the ēffort required to creãte class room achievement tests and can help to improve their quality.

Acquiring Softwāe and Courseware

There are sēperā ways to acquīe sóftware and coursēwáre for review. The most convenient may be to consult with a fellow instructor who is àready using programs óf the type you have in mind. Alternatively, there are a growing number of central sources.

In Brítish Columbia, the Provincial Educationál Media Centre (PEMC) hás the responsíbīity to acquire and distribute software, àt cost, to the schools of the province. A inst of software currently available can be obtained from• PEMC; at

Software and courseware information is ā so avaíabie from the Computer Using Educators of $B \cdot \bar{E}$: (CUEBC), a specialist association of the $\bar{B}: C$. Teachers ${ }^{i}$ Féderation, also based in Vancouver.

Computer stores are other important sources of software. In addition to the packāés they have on hand, most computer stores have catalcgues that deseribe the software and courseware available fō the cómputers thē sē̄ $\overline{\mathrm{j}}$.

Evaluating Courseware

The quality óf ávailābie courseware varies greatly. Courseware should be evaluated by those who actualiy use it, and $\overline{i t}$ is then helpful if the resuits of these evaluations càn be made àvailabie to others.

A number of educational authorities have éstāíshed courseware evaluation services to assist instructors. In British Columbiáa, the Provincial Educationá Media Centre provides a courseware evaluation service in parallel with its
 courseware; and PEME involves instructors throughout the province in fieid-testing and evaluating computer-based materials: Gourseware is evaluated according to a standard form and an 'evaiuators guide'.

The result \bar{s} of $\bar{f} \bar{h} \overline{s e}$ courseware evalutations are published reguiariy by PEMC in Evaluations: Mircowave, which is distributed to computer-using instructors and school district resource centres. You may obain copies of the evaluation form añ \bar{d} guide, or be put on the máling list for Evaluations, by contacting PEMC directly.

EVALUATION OF STUDENT PROGGESS

In $A B E$ mathemātićs courses, severā key decisions must bé made concerning the method and procedurēs ō evaluating student progress:

Many instructors prefer (and some institutions require) formal evaluation by tests. However \bar{r}, $\bar{t} \bar{i} \bar{s}$ possibie to evaluate student progress on the basis of day-to-day class work, written āssignments, particípation in discussion, etc. These are more natural methods than formal testing and may bē
 instructor's marking load is likely to be greater.

Some $A B E$ programs use formal tests at the end of each uñ and also requíre \bar{a} final examination $\overline{\mathrm{a}} \overline{\mathrm{t}}$ the end of the course: If a broad choice of possible units is available; then preparation of án fina examination wíl require carefú advance plañing.

An importañ emphasis in the mathematics curriculum is to equip studenis with the knowledge needed to use or understand
 Any testing should therefore emphasize the practical application of mathematics wherever this is appropriate.

Güidelines : fō Tést Construction

A student is àskē to write a test or do an exercise. The instructor does not want an evaluation to take too much time to prepare or mark. The following gūidelines are suggestéd to facilitate the task for both student and instructor.
 tésts can be constructed to suit that purpose. Typically, thrēe types ōf tésts àre cōmmoniy used, each with a distinct purposé.

* placement tēsts find oút if a course is appropriate for a student: Do students. know the course content and manipulative skilis already? If not, do they know enough to begin?
* Formative tests measure how well students are achieving learning objectives, for the purpose of improving instruction. When objectives are not met, the materiā may need to be retaught or additional work assigned. These tests are not used in the determination of letter grades for students.
※ Summative tests determine if learning objectives have been attained to such an extent that a student has
 may be used to determine lettér grades; and/or competence

Other uses óf tésts may inciude providing motivation, increasing retention and transfer of ideas; or increasing understandīng. ${ }_{f}^{\prime} \bar{n}$ these senses, they are more akin to instrüctionā techniques than assessment devices:

Genéā $\overline{1}$ Principles of Test Construction (Gronilund, 1977)

1. Tēsts should measure ciearly defined learning outcomes that are in harmony with the instructionā objectives.
2. Tests should measure áapresentative sample of the learning outcomes and subject matter inciuded in the instruction.
3. Tests should include the type of test items that are most áppropriate for meásuring the desired learning outcomes.
 made of the results:
4. Tests should be as reitable as possibie and should then bé interfreted with caution.

6: Tésts should be ūsed to improve student learning.
Ćríticá tasks in test construction include the séection of test items, ensuring correct interpretation of the question; - and the ássignment of marks.

Test scores may be norm-rēferenced - i.e.; may indicate how an individuãl's performance cōmpares to that of others - or
 performance compāres to a prēsēt standard. C̄riterion= referenced tésting may also be caliled mastery testing léter grade systems may be developed fō ét ther approach. Whichever is used, a score interpretation guide should be prepared.

It should be notéd, however, that evaluation is not the same as grading. Evaluation is, at best a $\bar{c} \bar{c} \bar{n} \bar{t} \bar{i} n u o u s ~ p r o c e s s s, ~$ which enables both learner and instructor to control learning, somewhat along the ines of à system's thermostat. Evaluation is thus most éffective if it directs correetive action before learning difficulties get out ōf control.

129

INSTRUETIONAL RESOURCES

This selection of learning materials is divided into two parts: keyed texts listed in the array of learning topics and tásks (Part 3 of the guide), and supplementary texts of general use. I \mathfrak{t} should be noted that many other texts could be appropriate for this curriculum. Accompanying tests; supplementary materials; and instructor manuals are also usually àvailable.

Keyed Texts

Barker, Jack, and others. Arithmetic: 3rd edition. New York: Saunders; 1983.

Barker, Jack, and others. Basic Algebra. New York:
Saunders, 1983.
Boissel̄e, Arthur H., and others. Using Mathematics in
Business. Reading;. Máss.: Addison-Westey; 198!.
Bolster, L. Carey, znd H. Douglas Woodburn. Mathematics in Life. Toronto: Gage, 1978.

Boyce, John G., and others. Mathematics for Technical and Vocational Students. 7 th edition. New York: Wiley, 1982.

Carman, Robert A., and Hal M. Saunders. Māthematics for the Trades = A Guided Approach. New York: Wiley̆; 1981.

Enns, Molice ABE Mathematics 2. Victoriá, B.C.. Ministry of Education, 1983.

Keedy, Mervin L: and M.L. Bittinger. Algebra and Trigonometry: A Functions Approach. 3rd edition. Reading; Mass.: Addison-Westey, 1982.
\qquad edition: Reading; Mass: Addison-Westey, 1983.
edition: Reading; Mass:: Addison-Westey, 1981.
Newton; Kenneth E:; and others:- Consumer and Career Mathematics: Canadian edition: Toronto: Gage, 1980.

Novak, David. Arithmetic. Lexington, Mass.: Heath, 1983. - Introductory Algebra. Lexington, Mass.:

Heath; 1983.
Roger, William W. Mathematics for Trade and Industrial Occupations: Morristown, N.J.: Silver Burdett, 1980.

VAST 3 Mathematics. 2nd edition (revised). Books $1=3$.
Victoria; B.C.: Ministry of Education, 1976.
VAST 4 Mathematics. Victoria, B.C.: Ministry of Education, 1977.

Supplementany Texts
D'Arcangelo, Eartholomew, and others: Mathematics for Plumbers and Pipefitters. Albany; N:Y:: Delmar; 1973.

Driciati, Mary, and others. Modern Algebra and Trigonometry. (Metric) Book 2. Scarborough; Ont: Nelson; 1980.

Dottori, Dino, and others. Applied Mathematićs fór Today: An Introduction: Metric editio Toronto: McGraw-HilT Ryerson; 1976.

- Applied Mathematics for Today:

Intermediate: Metric edition: Toronto: MeGraw-Hill Ryerson; 1976:

Metric edition: Toronto: McGraw-hill Ryersoñ; 1977.

- Applied Mathematics for Today: Senior.

Gērādi, William.d., and others. Generā Māthematics = Skilis/Problem Solving7Applications. New Yörk: Hãcoúrt Brace Jovanovich; 1982.

Huth, Harry E. Practical Problems in Mathematics for Earpenters. Albañ, N.Y.: Dēliã Publications; 1979.

Lyng; Merwin, J., and othérs. Cāeèr Mathematics = Industry and the Trades. Markham; Ont.: Houghton Mifflin Canada, 1976.

McKeague, Chāries \bar{P}. Beginning Algébra. New York: Academic Presss, 1980.

- Intermediate Álgebra: A Text/Workbook: New

York: Academic Press, 1981.

Olivo, G. Thomas and Thomas P. Basic Mathematics Simplified. Metric edition: New York: Van Nostrand Reinhold, 1976.

Schell, Frank R.; and Bill d. Matlock. Practical Problems in Mathematics for Welders, Albany; N:Y: : Delmar, 1982:

Woodside, Bétty - Brush Up Your Máth - \bar{A} How to $\begin{gathered}\text { Handbook. }\end{gathered}$ - Toronto: McGraw-HiTl Ryerson; 1982:

PROFESSIONAL REFERENCES

The following selected list includes publications (other than instruetional resources) specifically referred to in this guide, as well as a number of other sources of pedagogical background and ideas for improving instruction.

Part 1: Curriculum Guides and Related Documents
British Columbiā. Ministry of Education, Continuing Educātion Division.

Adult Bāic Litērācy Assessment Kit, 1981. (\$10-00) Adult Basic Litéracy Curriculum and Resource Guide; 1980. (\$5.00)
ABE English and Communications Curriculum ride; 1982:
(\$5.00)
ABE Science Curriculum Guide, in press.
"Curriculữ Development in Adult Basic Education":
(ưnpublished, 1983).
ESL for Adults: English for Work, 1982. (\$10.00)
British Columbià. Ministry of Education, Curriculum Development Branch.

Mathématics: Years one to Twelve Curriculum Guide, 1978 : (\$2.00)
 Viewfield Road, Victoria, B.C. V9A $4 \vee 1$; $\bar{a} \bar{t}$ stāted priees plús 10% handling).
 Brāch.
B. C̄. Máthematics Āssessment 1981; Summáry Report (no charge) Cürricūū Models in Māthemàtics, 1982 (no eharge).

British Columbia: Ministry of Equcation, Post-Secondary Department "A Ministerial policy on the Provision of Adült Basic Education Prográms Including. English Lánguage Trāining in the Pubicic Education Systems of British Columbiá." (unpubīishéd, March 1982-no eharge).

Pārt 2: Cūrijcū̄um Désign

, Canada Fmployment and Immigration Commission. Generic Skills: Kēs to job Pérformance. ed. Arthur de w. Smīth . ottawa: Suppiy ãid Sérícēs Cañada, 1978.

Good, Carter \bar{y}. Dictionary of Education. New York: McGrawr Hili, 1973.

Grinder, Paul. "A Sưrvē of Mathematicial Skills Prerequísíte. to Selected Vocational Programs Offered āt Cariboo, Okanagan, Selkirk and East Kootenay Coljege. "Kelowna: Okanagen Coliege (for Minjstry of Education, Continuing Education Divisioñ), unipublistied, 1983.

Nōr̄̄̄çutt, N: Adult Functionaj Competency: Á Summāy. Austin, Texas: University of Texās, 1975.

Owen, Starr The Problem of Prerequisites: Math and Science Skijls Required at Vancouver Vocational Institute". Vancouver, B.C.: Vancouver Community Colipge, unpubitished; 1979 .

Prat \bar{t}, David Curriculum: Design and Development. New York: Harcourt Brace Jovanovich, 1980.

Part 4: Principies of Adult Learning

 Principlés ānd Théir Appicication to Program plañing. Toronto: Ontario Institute for Studies in Educationg 1980 .
 Jossey-Bass, 1981 .

Dickinsoñ, Gary. Teachin̄ Adults: A Hañbook for Instructors. Toronto: New press; 1973.-

Kidd, J. Roby, How Adults Learn. New York: Association Press, 1973.

Knowles, Malcolm S Self-Birected Learning New York: Association Press; 1975.

Knox, Alan B. "Helping Adults to Eearn" in Yearbook of Aduit and Continuing Education (1978-79). Academic Media; 1978 .

Smith, Robert M. (Ed.) Reiping Adults Learn Hwo to Learn (New Directions for Continuing Education No. 19). San Fransisco: Jossey-Bass, 1983.

Math Anxiety

Gaskill; J.t. Anxiety in Mathematics: Multivariate Factor Analytic Study. Vancouver, B.C.: ERIBC (Report No. 78:43), 1978.

Tobiás, Sheila. overcoming Math Anxiaty. Boston, Mass.: Houghton Mifflin; 1980.

Próbiem Sōving in Máthematics

Britísh Columbia. Ministry of Education, Curriculum Development Branch. Ed. James H. Vance Mathematical Prōblem Solving: A Resource for Elementary Teachers. Victoria; B.E.- 1981 (Publicatión Services Cat. No: XX0054, \$2.00).

K̄ulik, Stephen (Ed.). Problem Solving in School
Mathematics. Reston, Virginia: National Council of Teachers of Māthematics Yearbook; 1980.

Kरulik; Stephen and Rudnick, Jesse A: Problem Solving: A Handbook for Teachers. Toronto: Allyn and Bacon, 1980 .

Maroldā, Máriā. Átribute Games and Activities. Palo Alto, Californiá: Creative Publications; 1976.
 241: A Teaciong Guide: Halifax; N:S: Department of

Ohio Department of Education. Problem Solving-A Bāsic Máthematics Goal: 1- Becoming a Better Problem Sotyer, 2. A Resource, for Prṓlém Sōving: Columbus; Ohio.

Polyā, George, How to Sólve it , 2nd Edition; Princeton, New Jérsey: Princeton University Press, 1957.

The Computer $=A$ Teaching Tool
Baker, Frank B. Computer Managed Instruction: Theory and - Practice: Englewood Cliffs; N.J.: Educational Technology Publications, 1978.

Bork, Alfred M. Learning with Computers. Bedford, Mass.: Digital Press; 1981.

Digital Equipment Corporation. IDEAS (Index of Descriptions of Educational Applicable Software).

Huntington, John: Computer Assisted Instruction Using BASIC. Englewood; Cliffs; N.J.: Educational Technology Publications; 1979.

IBM Corporation. Computer Based Trainingzuser Guide. White Plains; New York: BM Corporatioñ; 1976.

Malaspina Côllege.- Microcomputér Orientation Manual: An Introduction to the Apple Microcomiuter for Adult Basic Education Instructors. Victoria; B.C.: Ministry of Education; 1981 .

Meredith, Joséph C. CAI Author/Instructor. Englewood Eliffs; N.J.: Educational Techñology Publications, 1971.

Muir, Waltér. Computèr Awāeness: An Introduction for Teachers. Victoria, B.C.: Ministrycof Education. TPublication Services Cat. No. XX0061 $\$ 1.50$ plus 10%).
 Art Assēsiment. New York: Academic Press; 1981.

Rahmlow, Harold F., and othérs. PLATO. Englewood Cliffs, N.J.: Educationā Téchnology PubTicàtions; 1980 .

University of Wisconsin, Instruction Media Laboratory, Index to Computer-Bāsed Learining. Mitwakee; p. 0 : Box-4-3,-wis. 53201.

Adult Education Quarterly, and Lifelong Learning
Americañ Association for Adult and Continuing Education Suite 3011201 Sixteenth Street, N:W:
Wāsington, D.C. 20036
Adult Literacy and Basic Education
203 Petrie Hall
Auburn University
Auburn, A1 abama 36830
Arithmetic Teacher, and Mathematics Teacher National Council of Teachers of Mathematics 1906 Association Drive
Reston, Virginia 22091
Performance and instruction
National Society for Performance and Instruction
Suite 3151126 Sixteenth Street N.W.
Washington, D.C. 20036

Academic Press
55 Barber Greene Rd.
Don Mills, Ont. M3C 2स्म1
Addison-Westey
26 Prince Andrew Place
$\mathrm{P}=0$ B BX 580
Dōn Mílis; Ont. M3C 2 T 8
Allyn ànd Bacon 791 St: Ciāir Ave: $\overline{\mathrm{A}}$. Toronto, ont. M6C 1B8

B

 tearning Assessment Branch
7451 Eimbridge way
Richmond; $\mathrm{B}=\mathrm{C} \div \overline{\mathrm{V}} \mathbf{6 X} 1 \mathrm{~B} 8$
B.C. Ministry of Educatioon Publication Services Branch 878 Viewfield Road Victoria; B.e V9A 4Vi

Book Center
1140 Beãulic Rd.
Montreāl, Qué. H4R iR8

C

Canadian Govérnment Publishing Cēntrè
Supply and Servicees Canada 0ttawa, Ont. R1A OS9

Creative Pubitcations
(see SETSCO)

Belmar
(use Nelson)
Bigital Presssjōgità Equipment 12-A Esquīre Rd.
North Billérica
Mãssachusetts MA 01862

E

Educational Research institute of B.C. (ERIBC)
701-601 West Broadway
Vancouver, B.E. V 5 Z 4C2
Educatjonal Technology
140 Sylvañe. Aven
Eng ewood cliffs
New Jersey, NJ 07632
$\overline{\mathbf{G}}$
Gage
164 Commander Bivd.
Agincourt, ont. M1S 3C7
GLC Pubitshers
115 Nugget Ave.
Agincourt, Ont. M1S 3B1

H

Harcourt Brace jovanovich
(use Academic Press)
Heath
100 Adéláde St . West
Suíte 1600

Houghton Mifflin 150 Stēelcase RA,
Markham, Ont. LuR 1 B2

I

IBM
Armonk
New York; NY 10504
j

Jossey-Bass
(use Book Center)
\bar{M}
McGraw-Hill Ryerson 330 Progress Ave.
Scarborough, Ont. M1P $2 Z 5$
Marquis Academic Media 4300 W. 62 nd St.
Indianapoliss, Indiana, IN46206
Merrili
Bell and Howell Canada 230 Barmac Dr. Weston; Ont: M9L 2×5

N

National Council of Teachers of Mathematics (NCTM) 1906 Association Drive Reston; Virginia VA 22091

Nelson
1120 Birchmount Rd.
Searborough; Ont. Mik 5G4
New Press
30 Lesmill Rd.
Don Mills, Ont. MзB $2 T \overline{6}$

Nova Scotia Bept. of Education Box 578
Hàifā̃, Nova Scotia B3d 259

Ontario Institute for Studies in Education (OISE Presss) 252 Bloor St. W. Toronto, Ont. M5S 1V6

P
Princeton University Press (use Book Center)

S

Saunders
250 Stēelcāse Rd. E. Markham, ont. L3R 2S3

SETSCO Educational
567 Clärke Rd.
Coquitilam, B.C. V3J 3×4
Sitver Burdetet
(úse GLC)
 (use Canāajan Government)

U

Ūñ \bar{v} érsity of Texás àt Aūtin Ausítin, Texas TX78712

∇

Van Nostrand Reinhoid 135 W. 50th St.
Now York; N.Y. 10020
W
Wiley
22 Norcestèr Rd.
Rexdale, Ont. M9W iLi

When you have had an opportunity to examine the draft thoroughiy, please complete this response form, and return it to:

Shell Harvey
ABE Co-ordinatōr
Continuing Education Division
Ministry of Education
Parliament Buildings
Victoria; B.C. V8V $2 M 4$
Your comments will be particularly appreciated. Pleāse fēè free to submit written responses on separate paper if yoū prefer.

We would like to have the responses by March 31 , 1984 so thāt any changes may be included in the formal eđition tó be published soon after.

Thank you for your assistance.

RESPONSE TO THE DRAFT OF THE MATHEMATICS CURRICULUM GUIDE

Content

is the content generally appropriate? Yē _ No
Comment: \qquad

Are there parts that should be changed, added or dēēed? Yēs \qquad No \qquad Comment: \qquad

Style and Format

Are there any changes in style or format that would make the guide more use ful? Yes _ No \qquad Comment: \qquad

Resources

Āe there any resource materials not mentioned, which you have found useful? \qquad
Please list authors and titles: \qquad

Overall Impression
Please sumarize your overall impression of the guide.
\qquad
\qquad
\qquad
\qquad

Queen's Printer for British Columbia \mathbf{O}
Victoria, 1983

[^0]:
 Reproductions supplied by EDRS are the best that can be made from the original document.

