Is it possible to beat the lottery system?

Michael Lydeamore

The University of Adelaide
Postgraduate Seminar, 2014

THE UNIVERSITY of ADELAIDE

The story

One day, while sitting at home (working hard)...

The story

The story

The story

The article had a simple problem:

- Playing in the lottery is expensive, chances of winning are small
- Tickets with high chances are expensive
- So here is a better scheme!

Section 1

Counting and Probability Background

Counting and Probability Background

We denote the number of ways to choose k objects from n as

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

Counting and Probability Background

Odds:

1 : 800 implies that you will win once, and not win 800 times.

Counting and Probability Background

Odds:

1:800 implies that you will win once, and not win 800 times.
Probability:
$P=\frac{1}{800}$ imples that you will win once every 800 times.

Counting and Probability Background

Odds:

1:800 implies that you will win once, and not win 800 times.
Probability:
$P=\frac{1}{800}$ imples that you will win once every 800 times.

$$
\text { Prob. }=\frac{\frac{1}{o d d s}}{1+\frac{1}{o d d s}}
$$

Section 2

Lottery basics

Lottery basics

Each person has a game (or some number of games) which have 6 numbers on them.

Every week, lottery is drawn.
6 numbers are chosen randomly, followed by 2 'supplementaries'.

In order to win, you need a certain combination...

Lottery basics

Division	Main numbers	'Supps'
1	6	-
2	5	2
	5	1
3	5	0
4	4	2
	4	1
5	4	0
	3	2
	3	1

And here's why you never win...

To win division 1, you need all 6 numbers correct.
There are $\binom{45}{6}$ different tickets. Only one of them is a winner.
Thus, your odds of winning are 1 in $8,145,060$.

And here's why you never win...

To win division 1, you need all 6 numbers correct.
There are $\binom{45}{6}$ different tickets. Only one of them is a winner.
Thus, your odds of winning are 1 in $8,145,060$.
Or the probability of winning is 1.22×10^{-7}

And here's why you never win...

To win division 2, you need 5 numbers and 1 supplementary.
There are still $\binom{45}{6}$ different tickets but now the probability of having a winner is

$$
\binom{6}{5}\binom{2}{1}=12
$$

So, your odds of winning are 1 in 678, 755.

And here's why you never win...

To win division 2, you need 5 numbers and 1 supplementary.
There are still $\binom{45}{6}$ different tickets but now the probability of having a winner is

$$
\binom{6}{5}\binom{2}{1}=12
$$

So, your odds of winning are 1 in 678, 755.
Or the probability of winning is 1.47×10^{-6}

And it continues...

Division	Odds	Prob.
1	$8,145,060$	1.22×10^{-7}
2	678,755	1.47×10^{-6}
3	36,689	2.72×10^{-5}
4	733	0.0014
5	297	0.0034
6	144	0.0069

And it continues...

Division	Odds	Prob.
1	$8,145,060$	1.22×10^{-7}
2	678,755	1.47×10^{-6}
3	36,689	2.72×10^{-5}
4	733	0.0014
5	297	0.0034
6	144	0.0069

Roughly 1 of my Facebook friends will win division 5 if we all bought a ticket, while 1 of Kelli's Facebook friends would win division 4 if they all bought a ticket.

The winnings

Higher divisions give a higher payout:

Division	Payout
1	$1,013,557.14$
2	$8,871.65$
3	$1,014.45$
4	30.95
5	20.65
6	12.25

(Taken from 08/03/2014 X Lotto Draw)

Different ticket styles

In order to improve your chances of winning (or their profits) you can buy different types of tickets.

System 12: Choose 12 numbers, receive all combinations of those 12 numbers.

Different ticket styles

In order to improve your chances of winning (or their profits) you can buy different types of tickets.

System 12: Choose 12 numbers, receive all combinations of those 12 numbers.

How many games?

$$
\binom{12}{6}=924 \text { games }
$$

Which means more probability...

Division	Odds	Prob.
1	8,813	1.14×10^{-4}
2	734	0.0014
3	39.71	0.0246
4	0.79	0.5587
5	0.32	0.7576
6	0.16	0.8621

You can also win multiple times!

For example, should you get all 6 primary numbers and 2 supps, you win

Division	Amount
1	1
2	12
3	24
4	225
5	320
6	114

You can also win multiple times!

For example, should you get all 6 primary numbers and 2 supps, you win

Division	Amount
1	1
2	12
3	24
4	225
5	320
6	114

But, a System 12 ticket costs \$596.15...

Section 3

The Problem Itself

The Problem Itself

The article suggests instead of spending all your hard-earned money on a System 12, you should use an alternative scheme.

The Problem Itself

Consider winning division 1 . In a System 12 our probability is 1.14×10^{-4}. For the alternative, our odds are

$$
42 \text { in }\binom{45}{6}=1: 1.81 \times 10^{5}
$$

and so the probability is 5.53×10^{-6}.
So we lose a lot of the coverage, but the reduced System 12 costs only \$27.10.

So how does it work?

To test which scheme is better, we could look at the probability and calculated expected winnings.

$$
\begin{aligned}
\mathbb{E}\left[W_{12}\right] & =P(\text { Div } 1) \text { Payout }_{1}+\ldots+P(\text { Div } 6) \text { Payout }_{6}-\text { cost } \\
& =196.4182-596.15 \\
& =-399.71 \\
\mathbb{E}\left[W_{a}\right] & =14.27-27.10 \\
& =-12.83
\end{aligned}
$$

So, the alternative scheme is better... but not great.

The thing is...

There are many examples of people buying a ticket for the first time and immediately winning the big prize.

- The system is inherently stochastic
- Is it necessarily fair to look at the average case situation?

The thing is...

There are many examples of people buying a ticket for the first time and immediately winning the big prize.

- The system is inherently stochastic
- Is it necessarily fair to look at the average case situation?

Let's instead use some simulation to make sure.

Simulating

Relatively simple algorithm:
(1) Choose a set of 12 numbers, set up the 42 games in the alternative scheme.
(2) For each lottery game:
(1) Pick 6 numbers and 2 supplementaries,
(2) Check how many fall in the system 12 ,
(3) Check how many fall in each alternative game.
(1) Update winnings vector, including cost.

- Go to 2 .

And this is the result...

And this is the result...

Possible Extensions / Future Work

Need to think more about why the prediction doesn't match the simulation. But, simulation has shown us that the best scheme out of these two is...

Possible Extensions / Future Work

Need to think more about why the prediction doesn't match the simulation. But, simulation has shown us that the best scheme out of these two is...

Neither!

Possible Extensions / Future Work

Need to think more about why the prediction doesn't match the simulation. But, simulation has shown us that the best scheme out of these two is...

Neither!

The 0 scheme (where we don't bet) is better!

Conclusion

We have seen:

- The basics of counting,
- The basics of a lottery,
- Two alternative schemes for betting on lotteries,
- Validating results via a simulation,

Importantly, we saw that the better way to win on the lottery is to, in fact, not bet at all.

