
IS1200: Suggested Solutions For Exercise CE 1

Nios II Assembly Instructions

January 22, 2015

1. Nios II Computer Architecture

(a) Table 3-1 in the Nios II Processor Reference Handbook lists processor
registers. The table is reproduced in Figure 1.

Figure 1: General purpose registers in Nios II (from Nios II Processor Ref-
erence Handbook).

• Register r0 always contains zero.

• Register r1 should not be used - the compiler uses it for some
optimizations.

• Registers r2-r7 and r31 is used for function calls (also called
method call or subroutine). This is dealt in a later exercise.

• Registers r8-r15 can be used freely.

1



• Registers r16-r23 can be used freely, provided you save them
before use and restore them when done. This applies to the
context of subroutines, which you will learn in a later exercise.

• Registers r24 and r29 should not be used except in case of in-
terruption (interrupts) which is dealt in a later exercise.

• Registers r25 and r30 should not be used, they are used by the
debugger.

• Registers r26 and r28 should not be modified, they are used by
the compiler for reading and writing of local and global variables.

• Register r27 is the stack pointer and is handled in a later exercise.

(b) In the Nios II processor, an instruction is always 32 bits (4 bytes)
long.

(c) The program counter contains the address of the next instruction to
be fetched and executed.

(d) When an instruction is fetched, the contents of the program counter
is increased by 4, so that its value indicates the address of the next
instruction that is te be fetched. Important: It is not enough to
increase the program counter value by 1, because each instruction is
4 bytes long.

2. Different basic types of assembler instructions.

(a) Instructions to copy the data from memory to registers or conversely:
the load (ld) and store (st) instruction in different varieties.

(b) Instructions to copy data from one register to another: there is only
one instruction – mov.

(c) Instructions for making an arithmetic operation on two values: add,
sub, mul and div in different varieties.

(d) Instructions for logical calculations: and, or, xor and nor in dif-
ferent varieties.

(e) Instructions to shift or rotate the bit pattern in a register: sll,

sra, srl, rol and ror in different varieties.

(f) Instructions for comparing two values: cmp in different varieties.

(g) Instructions for jumping, i.e., changing the program counter: jmp

and br.

Important: The instruction jmpi is not supported in the version of
the Nios II processor used in lab exercises.

(h) Conditional branch instructions only change the program counter if
the value in one or two registers meets a certain condition. These
instructions are called b* , where * identifies the branch condition.

2



3. Load and store instructions in Nios II.

(a) Addressing mode for load and store instructions in Nios II is always
as follows. The contents of a register and a constant value contained
in a portion of the instruction is added. The constant value can be
both positive and negative. The result of the addition is used as the
memory address. This addressing mode is usually called indexed or
base-relative addressing.

(b) Operand size: the most common size is 4 bytes (called a word in
Nios II) - ldw and stw. Other possibilities are 2 bytes (a half-word)
- ldh and sth - and 1 byte, ldb and stb.

(c) Copying 4 bytes of memory to a register is shown in Figure 2. In
Nios II, the bytes that are closest to address 0 in memory are copied
to the least significant part of the register.

When copying the other way i.e., from register to memory, the byte
in the least significant part of the register is copied closest to address
0 in memory, so that the store operation is symmetric with Load
operation. See Figure 3.

(d) If 1 byte of memory is copied to a register, then it is placed in the
least significant part of the register. All the other bits in the register
are also changed. When the instruction ldbu is used, all the other
bits in the register are set to zero. If instead, the instruction ldb, the
other bits are set to the same value as the most significant bit of the
copied byte. This process is called a sign extension. See Figure 4.

(e) If 1 byte is copied from a register to memory with the instruction
stb, the other bytes in the register are ignored. Only the least
significant byte of the register is copied to the memory. Only one
byte is written to memory.

4. Addition and subtraction operations in Nios II.

(a) Addressing modes: add, sub, mul, div and divu all have their
operands in registers. For addi, subi and muli, there is a constant
operand that is part of the instruction.

(b) Only possible operand size is 4 bytes (32 bits).

(c) Possible number representations are integers with and without the
sign bit. Without the sign bit, numbers range from 0 to 232−1; with
the sign bit, numbers from - (231) to + (231−1). The instructions are
defined so that the difference between signed and unsigned numbers
only affects the division operation, which is available in two variants
– div and divu.

3



Figure 2: Copying from memory to register

5. A first assembly language program - straight code with load
and store instructions.

Program declarations

1 int a;

2 int b;

3 int c;

translate to

1 .data # indicates that variable declarations come after .data

2 .align 2 # needed to place a word on a valid address

3 a: .word 0 # reserves space for a word (4 bytes) with content 0

4 b: .word 0

5 c: .word 0

Program line c = a + b; then translates to

1 .text # indicates that code comes after the .text

2 .align 2 # needed for an instruction to end up on a valid address

3 movia r8, a # move the address of variable a in r8

4 ldw r9,0 (r8) # read the value of variable a from memory to r9

4



Figure 3: Copying from register to memory

5 movia r8, b # move the address of the variable b to r8

6 ldw r10,0 (r8) # read the value of variable b from memory to r10

7 add r11, r10, r9 # adding the values of variables a and b

8 movia r8, c # move the address of variable c in r8

9 stw r11,0 (r8) # write the sum of variable c to memory

Note: In the Nios II assembly language, the # character says the rest of
the line is a comment.

6. Comparison instructions in Nios II.

The comparison instruction is cmp (stands for compare). Its variants are:
cmpeq, cmpne, cmpge, cmpgeu, cmpgt, cmpgtu, cmple, cmpleu, cmplt,

cmpltu cmpeqi, cmpnei, cmpgei, cmpgeui, cmpgti, cmpgtui, cmplei,

cmpleui, cmplti, cmpltui

The instruction cmp sets the destination register to 1 if the condition is
met, and to 0 if the condition is not met. The type of condition is encoded
in the name of the cmp instruction (letters * in cmp* ).

The result of the comparison is stored as true (1) or false (0) in the
destination register. The contents of the register can be used as criteria

5



Figure 4: Sign extension

in a subsequent conditional branch instruction, or as a constant operand
to other cmp instructions. The latter may be needed to calculate the
complicated conditions.

One rule to remember the right cmp instruction in Nios II assembly is
to put the letter combination for the condition between the two source
operands and then read out the result. Example: Think of cmpge r1,

r2, r3 as cmp r1, r2 ge r3; then read out the condition as r2 greater
or equal to r3.

Condition encoding: eq - equal to, ne - not equal to, ge - greater than
or equal to, gt - greater than, le - less than or equal, lt - less than.

Compare instructions are available with and without u in their encoding.
The u stands for unsigned, which means that the most significant bit is
interpreted as a normal bit and not as a sign bit. An example: cmpgtu

interprets 1111 1111 1111 1111 1111 1111 1111 1111 which +4 billion,
which is larger than 0000 0000 0000 0000 0000 0000 0000 0001 (which of
course is the number +1).

The instruction cmpgt without u interprets 1111 1111 1111 1111 1111
1111 1111 1111 as -1 which is less than +1 (which of course is still being
written as 0000 0000 0000 0000 0000 0000 0000 0001).

6



Tips! Think about it and answer: why don’t the terms eq and ne exist
in unsigned versions?

Each cmp instruction is also available in versions with and without i in
their encoding. The i stands as usual for immediate and states that
one operand is a constant contained in the instruction’s binary code.
The constant in the immediate field is indicated using 16 bits. When
comparing unsigned values, the constant is extended with zeros from 16
to 32 bits. When comparing signed values (without u) the constant is
sign extended from 16 to 32 bits. The effect of these measures is that the
resulting 32 bit code always corresponds to the same value as the 16 bits
in the immediate operand.

In the MIPS, there are similar compare instructions but they are termed
Set On Condition operations. Their function is that a register is set to
true or false depending on whether a condition (condition) is met when
comparing two values.

7. Unconditional jumps in Nios II. The instructions br or jmp calculate
an address which is then written to the program counter. This means
that the next instruction fetched is from the location in memory indicated
by the calculated address.

The instruction jmp has a constant address operand that should be in a
register. The contents of the source register is copied unchanged to the
program counter.

The instruction br adds a constant offset to the current value in the pro-
gram counter. The constant number is indicated in the br instruction and
can be both positive and negative. Positive offsets give jump ahead, and
negative offsets give jump back in the program. The offset is indicated
by 16 bits.

8. Conditional jumps in Nios II. The following conditional jump instruc-
tions are available: beq, bne, bge, bgeu, bgt, bgtu, ble, bleu, blt,

bltu.

Conditional jump instructions evaluate the same kind of conditions as
cmp instructions. If the condition is fulfilled, then the jump is taken (the
program counter is changed), otherwise the program continues execution
with the instruction located immediately after the conditional branch
instruction in memory.

There is only one addressing mode: both of the operands being compared
must be in registers. It is not possible to use a conditional branch in-
struction for comparing a register content with a constant value, as the
instruction cmpeqi does. Such comparisons requires a cmp instruction
followed by a conditional branch instruction.

7



Exception: Comparing with register r0 can be seen as comparing with
value 0.

Example of a conditional branch instruction:

1 bgt r8, r9, LABEL # jump to the LABEL on r8 > r9

The marker LABEL is written in the program as LABEL: at the begin-
ning of a line. The translation program (assembler) that translates as-
sembly into binary machine code calculates the distance from the address
immediately following the conditional branch instruction to the marker
LABEL, and provides it as the constant offset in the branch instruction.
Remember that the distance is counted as negative if the LABEL is be-
fore bgt r8, r9, LABEL in the program (and as positive if the LABEL
available for bgt r8, r9, LABEL).

9. A program with a conditional branch.

Figure 5: Flowchart for the conditional branch program.

(a) Flowchart: See Figure 5.

8



(b) Declarations are translated the same way as before to

1 .data # indicates that variable declarations come after .data

2 .align 2 # needed for a word remains on a valid address

3 a: .word 0 # reserves space for a word (4 bytes) with content 0

4 b: .word 0

5 c: .word 0

Program line

1 if (a == b) / * then * / c = 17; else c = 4711;

is then translated differently according to sub task requirements.

To translate the program using only conditional branch instructions.

1 .text # indicates that code comes after the .text

2 .align 2 # needed for a word remains on a valid address

3 movia r8, a # move the address of the variable a in r8

4 ldw r9,0 (r8) # read the contents of the variable a from memory to r9

5 movia r8, b # move the address of the variable b to r8

6 ldw r10,0 (r8) # read the contents of the variable b from memory to r10

7 bne r10, r9, L1 # if the contents are different, skip to L1

8 movi r12,17 # then-part comes here, prepare to add 17 to c

9 goto L2 # skip past the else part

10 L1: # the else part comes here

11 movi r12,4711 # prepare to add 4711 to c

12 L2: # following program code is always executed

13 movia r8, c # move the address of the variable c in r8

14 stw r12,0 (r8) # write the final result to variable c in memory

Reminder: In the Nios II assembly language, the # character implies
that the rest of the line is a comment.

(c) To translate the program using cmp instruction.

1 .text # indicates that code comes after the .text

2 .align 2 # needed for a word remains on a valid address

3 movia r8, a # move the address of variable a in r8

4 ldw r9,0 (r8) # read content of variable a from memory to r9

5 movia r8, b # move the address of variable b in r8

6 ldw r10,0 (r8) # read contents of variable b from memory to r10

7 cmpeq r11, r10, r9 # compare if contents of variables a and b are equal

8 beq r11, r0, L1 # if (false) contents were different, skip to L1

9 movi r12,17 # then-part comes here, prepare to add 17 to c

10 br L2 # skip past the else part

11 L1: # the else part comes here

12 movi r12,4711 # prepare to add 4711 to c

13 L2: # following part of the program code is always executed

14 movia r8, c # move the address of variable c to r8

15 stw r12,0 (r8) # write the final result to variable c in memory

Reminder: In the Nios II assembly language, the # character implies
that the rest of the line is a comment.

10. A program with a loop.

The original program was:

9



1 int n;

2 int sum;

3 int i;

4

5 sum = 0;

6 for (i = 1; i <= n; i = i + 1)

7 {

8 sum = sum + i;

9 }

See the flow chart in Figure 6.

(a) For the while loop version, declarations at the beginning are retained,
the rest is replaced with the following.

1 sum = 0;

2 i = 1;

3 while (i <= n)

4 {

5 sum = sum + i;

6 i = i + 1;

7 }

(b) For the if and goto version, declarations at the beginning are retained,
the rest is replaced with the following.

1 sum = 0;

2 i = 1;

3 loop: if (i > n) goto endofloop;

4 / * note: condition has been inverted. * /

5 sum = sum + i;

6 i = i + 1;

7 goto loop;

8 endofloop: / * program continues. * /

(c) The corresponding program in Nios II assembly.

1 # This is a directive to the assembler.

2 # Everything that follows the .data statement is

3 # placed in a section of memory that is reserved for data.

4 # Data must be in read and write memory (RAM).

5 .data

6 sum: .word 0 # Reserving space for variable sum.

7 in: .word 0 # Reserving space for variable i.

8 n: .word 17 # Reserving space for variable n.

9

10 # This is also an assembler directive.

11 # Everything that follows the .text statement is

12 # placed in a section of memory that is reserved for program code.

13 # Program code can be in read-only memory.

10



Figure 6: Flowchart for the loop program

14 .text

15 movia r8, sum # point out the first variable.

16 stw r0,0 (r8) # zero sum, r0 contains zero

17 movi r9,1 # prepare to put in the first index

18 stw r9,4 (r8) # i is set to the first index

19 L1:

11



20 ldw r10,4 (r8) # read in

21 ldw r11,8 (r8) # read n

22 bgt r10, r11, L2 # if i> n, jump to L2

23

24 ldw r11,0 (r8) # read sum

25 add r11, r11, r10 # add sum

26 stw r11,0 (r8) # save the new value of sum

27

28 ldw r10,4 (r8) # read in

29 addi r10, r10,1 # increase in by 1

30 stw r10,4 (r8) # save the new value of in

31

32 br L1 # go to the beginning of the loop.

33 L2:

Assembly program is written in a particular style. In this program-
ming style, each C statement is translated separately, to one or more
assembler instructions. The variables are stored in memory. Each
variable is read from the memory before each update, and the new
value is written back to memory immediately after each update. An
advantage of this programming style is that the variables are declared
in sequence one after the other. The programmer has taken advan-
tage of this by placing the address of the first variable in a register r8,
which then does not change. Then each variable is read and written
with load and store instructions that use register r8 and an offset -
0 (r8), 4 (r8) or 8 (r8) - depending on the variable being referenced.
The programming style is meant to resemble the assembly code as
a C compiler produces without any optimization. The style has ad-
vantages especially when troubleshooting. Since every C program
line is translated separately, it is easy to connect a block of assembly
code to the corresponding C program line. It is of course possible to
shorten this assembly program, that is, optimize it. One possibility,
which may seem obvious, is to add the variables i and sum in sepa-
rate registers and to not write their values to memory until after the
entire loop is completed, after the state L2. The C compiler can do
this, but only if the user activates optimizations.

12


