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ISENTHALPIC THROTTLING (FREE EXPANSION) AND 

THE JOULE-THOMSON COEFFICIENT 
 

This paper is presented in four major sections.  In Section I we 

discuss the four basic operating regions in which isenthalpic 

throttling or free expansion of a pure fluid can take place.  In 

Sections II through IV, a fairly comprehensive study of the Joule-

Thomson coefficient is conducted.  An attempt is made to develop 

a generalized graphical correlation for the JT inversion curve for pure fluids within the 

framework of the law of corresponding states. 

 

The three-constant corresponding states equation of Miller (11) provides a very good 

overall or average representation of the inversion loci for light non polar gases.  In addition, 

an assessment is made of the accuracy of several closed-cubic equations of state for 

predicting the JT coefficients for nitrogen and carbon dioxide.  The four equations tested 

were: 

1. van der Waals equation 

2. Redlich-Kwong equation 

3. API (modified) Soave equation 

4. Peng-Robinson equation 

 

Of the four equations tested, the Redlich-Kwong equation provided the best overall 

predictions of the JT coefficients for gaseous nitrogen and for both gaseous and liquid 

carbon dioxide.  The overall statistical deviations or trends are summarized in Tables 5, 7 

and 8.   

 

Throughout this paper, eight numerical illustrations are given which depict typical 

computations involving free isenthalpic expansion, the determination of the Boyle 

temperature and inversion temperature(s) for nitrogen from virial coefficient data, and the 

calculation of the inversion point and JT coefficients from a typical set of isenthalpic T vs. 

P data for gaseous ethylene. 
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ISENTHALPIC THROTTLING (FREE EXPANSION) AND 

THE JOULE-THOMSON COEFFICIENT 

 

 I. Isenthalpic Throttling (Free Expansion) 

 

 

Introduction  The unrestricted expansion of a gas is known as free expansion.  For the specific 

conditions where no work is done, no heat is transferred, and there are essentially no kinetic or 

potential energy effects, the total energy balance reduces to, 

 

  0 1H   

 

For this specialized case, no change in the system enthalpy is realized.  Free flow of a fluid 

across a valve approximates this process very closely.  Some industrial applications of an 

expansion or throttling process would be in the cooling or liquefaction of gases. 

 

Joule-Thomson Coefficient  The Joule-Thomson (Lord Kelvin) coefficient is defined 

precisely as the differential change in temperature with respect to a differential decrease in 

pressure under isenthalpic (constant H) conditions.  This coefficient is expressed as, 

 

  2JT

H

T

P


 
  

 
 

 

It is related to the P-V-T  properties of a fluid by the exact relations, 

 

  
1 1

3V
JT

Pp P

T

P

V T
V T V T

PC T C

V



   
                    
    

 

 

  

The directional change in the temperature when the pressure is decreased (dP < 0) across a valve 

is dictated by the algebraic sign of the JT coefficient.  In summary, 

 

 Sign of JT   Result in dT (for dP < 0) 

 

        +    dT < 0, fluid cools upon expansion 

 

       -                                       dT > 0, fluid warms upon expansion 

 

        0    dT = 0, no temperature change (inversion point) 
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For the special case of an expanding ideal gas, Equation 3 reduces to, 

 

  0 4JT   

 

For an ideal gas no temperature change is realized in any case.  However, this is not strictly true 

if there is an appreciable change in kinetic energy across the valve or flow passage.  For instance, 

if an ideal gas is flowing from a large reservoir and expands immediately across a valve situated 

in the exit  pipe line, then the total energy balance written across the valve becomes, 

 

    
2

0 5
2 c

u
H KE H

g
        

 

where u is the fluid velocity prevailing at the valve exit.   

 

In Sections II through IV a more comprehensive treatment of the JT coefficient will be given.  

An attempt is made to develop a generalized inversion curve for fluids within the framework of 

the Law of Corresponding States.  In addition, an assessment is made as to how accurate several 

cubic equations of state are for predicting JT coefficients for nitrogen and carbon dioxide. 

   

Regions of Isenthalpic Throttling  Figures 1 through 5 illustrate four basic operating regions 

of special interest which are displayed on H versus T diagrams for the isenthalpic throttling  

(H = 0) of a pure fluid.  The first case (Figure 1) represents the situation where a superheated 

vapor is throttled from state 1 down to a lower pressure (state 2) such that the enthalpy lies above 

the saturated vapor locus during the entire traverse.  It should be pointed out here, that each end 

point reached is presumed to be at an equilibrium state i.e. sufficient time has elapsed for the 

final state of the system to reach equilibrium.  If an equation of state or CS correlation is being 

used to calculate T2, a trial and error procedure is involved.  The value of T2 is varied until the 

criterion  H = 0 (H1 = H2) is satisfied.  For this entire traverse, the sign of the Joule-Thomson 

coefficient is positive i.e. the temperature continually decreases as the pressure decreases. 

 

 
Figure 1. Region 1 of Isenthalpic Throttling (H=0) for a Pure Fluid. 

 

In the second case (Figure 2), the fluid is throttled from state 1 directly into the two-phase region 

(state 2).  The value of  H1 lies below the saturated vapor locus at P2, T2
sat

.  In other words, P2 is 
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the saturation (vapor) pressure of the fluid at T2.  The determination of T2 therefore does not 

require an iterative calculation.  The final state or quality x (wt. fraction vapor) of the fluid is 

readily computed by a simple enthalpy balance, Equation 6 below, 

 

  1 2 2 2(1 ) 6SV SLH H x H x h     

As in case 1, a temperature decrease is also effected upon expansion, and the JT coefficient is 

still positive. 

 

 
Figure 2. Region 2 of Isenthalpic Throttling (H=0) for a Pure Fluid. 

 

The third case illustrated on Figure 3 involves a high temperature vapor where the high pressure 

lines intersect and then, at higher temperatures, lie above the ideal gas (P = 0) and lower pressure 

lines. As the pressure is continually decreased at constant H from state 1, say P1 = 2500 psia, to 

lower and lower pressures P2, the temperature increases.  In this operating region, the sign of the 

JT coefficient is negative.  This behavior is readily observed for gaseous nitrogen above a 

temperature of 570 deg. F. 

 

 
Figure 3. Region 3 of Isenthalpic Throttling (H=0) for a Pure Fluid. 
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In the fourth and final case (Figure 4), we start out with a high pressure (compressed) liquid 

(state 1) at a temperature generally well below the critical temperature.  As the pressure is 

lowered at constant H, the liquid is gradually decompressed until the saturated liquid locus is 

reached.  During this process, the temperature increases.  At Point 2, on the saturated liquid 

locus, the temperature will reach a maximum value T2
sat

.  As the pressure is decreased further 

from this point, the temperature drops continually, and the two phase region is entered.  Point 3 

would be a typical example. The fluid continues to flash more and more as the pressure and 

temperature are further diminished at constant H (H1 = H2 = H3) and so on.  At any point in the 

two phase region, Equation 6 can, once again, be used to calculate the stream quality.  

 

 
Figure 4. Region 4 of Isenthalpic Throttling (H=0) for a Pure Fluid. 

 

 A qualitative plot of T versus P for this process, as illustrated in Figure 5, will display a point of 

maximum temperature at T2, P2
sat

.  To the right of this point, the fluid exists as a compressed 

liquid.  To the left, it exists as a two-phase V/L fluid. 

 

 
Figure 5. Qualitative plot of T versus P for region 4 of Isenthalpic Throttling (H=0) for a Pure Fluid. 
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Two-Phase Region  When Equation 6 is solved explicitly for the stream quality,x, it becomes, 

 

  1 2

2 2

7
SL

SV SL

H hV
x

F H h


 


 

 

Each of the enthalpy terms in Equation 7 can readily be calculated using a set of Corresponding 

States charts such as those of Lee and Kesler (1) or from an available equation of state.  With the 

aid of a corresponding states chart each of the enthalpy terms above would be computed from the 

following expressions: 

 

  1 1
1 1 8

o
o

C

C

H H
H H RT

RT

 
   

 
 

  

  2 2 2 2
2 2 2 2; 9 ,

o SV o SL
SV o SL o

C C

C C

H H H h
H H RT h H RT a b

RT RT

    
      

   
 

              

 

  
H1

o
 and H2

o
 represent the reference state ideal gas enthalpies for the inlet and outlet streams 

undergoing the isenthalpic process in question.  The terms in brackets represent the isothermal 

departure with pressure of the stream enthalpy from the ideal gas state.  Below, we first describe 

the Lee-Kesler CST method for calculating stream enthalpy departures, and then we address the 

procedure used for computing ideal gas reference enthalpies. 

 

Three-Parameter CS Correlation  In a series of three papers Pitzer and Curl (2,3,4) showed 

that the compressibility factor, the second virial coefficient and other thermodynamic property 

departure functions could adequately be represented at constant Tr and Pr by a linear function of 

the acentric factor, .  They proposed that any of the above stated properties, e.g. the 

compressibility factor Z, could be correlated by a functional relationship of the form, 

 

     

( ) (1)

( ) (1)

1 2

(10)

, ; , 11 ,

o

o

r r r r

Z Z Z

where Z f T P Z f T P a b

 

 

 

 

Z
(o)

 is the compressibility factor for simple (spherical) fluids and Z
(1)

 is the compressibility factor 

contribution due to the departure from sphericity or simple fluid behavior.  Z
(o)

 and Z
(1)

 are 

presented as separate charts or tables.  Generally speaking, the Curl-Pitzer correlation covers the 

operating range: 

 

0.8 4.0 0 9.0r rT to and P to   

 

Both the vapor and liquid regions are covered. 
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Nearly 20 years later Lee and Kesler (1) improved upon the Curl-Pitzer correlation for the 

following regions of application: 

 

  1. the critical region 

  2. low-temperature liquids 

  3. wide-boiling mixtures 

  4. and extended the temperature and pressure limits to 

      Tr from 0.3 to 4 and Pr from 0 to 10. 

 

Like Curl and Pitzer did, Lee-Kesler developed a graphical/tabular correlation for the 

compressibility factor, enthalpy departure, entropy departure, isobaric heat capacity departure 

and fugacity coefficient within the framework of three parameter CS theory. 

 

The enthalpy departure function is expressed in the following format: 

 

 

( ) ( ) ( )

( ) (1)

(12)

(13)

o r o
o o o o

c c r c c

o
o o o

c c c

H H H H H H H H

RT RT RT RT

H H H H H H
or

RT RT RT







         
       
       

     
    
   

 

 

The authors provide similar type expressions for the entropy and isobaric heat capacity departure 

functions.  In Equation 12, the groupings in brackets designated by superscripts (o) and (r) were 

correlated via a modified BWR equation of state.  Superscript (o) refers to simple fluids and 

superscript (r) to a reference fluid.  Both of the departure functions for the three thermodynamic 

properties plus the compressibility factor are calculated from a reduced form of the Benedict-

Webb-Rubin or BWR equation.  Lee and Kesler performed a multi-property fit and arrived at 

one set of BWR constants (12 total) for simple fluids and another set of 12 for the reference 

fluid.  n-octane with 
r
 = 0.3978 was chosen as the heavy reference fluid since it is the heaviest 

hydrocarbon for which there are accurate PVT and enthalpy data existing over a wide range of 

conditions. 

 

The data used to determine the simple fluid constants for the modified BWR equation were 

principally for Ar, Kr and methane (  0).  The authors present separate tables and charts for 

each of the thermodynamic property functions for Tr from 0.3 to 4 and for Pr from 0 to 10.  

Figure 6 and Figure 7 shown here provide plots for the enthalpy departure functions designated 

in Equation 13 as a function of Tr and Pr.  They will be used in an illustration to be given later in 

this section. 
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Figure 6. Simple Fluid Term - Enthalpy Pressure Effect. 

 

 
Figure 7. Real Fluid Term - Enthalpy Pressure Effect. 
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Ideal Gas Reference Enthalpy  Generally speaking, it is desirable to evaluate or express 

enthalpy relative to some base or reference level.  Procedure 7A1.1 of the Data Book of the 

American Petroleum Institute (5)  provides a thermodynamically consistent set of equations for 

this purpose.  These expressions consist of polynomial fits in temperature and are as follows: 

        
2 3 4 5

2 3 4

: (14)

: 2 3 4 5 (15)

o

o
o

p p

For enthalpy H A BT CT DT ET FT

d H
For C C B CT DT ET FT

d T

     

     

 

 

2 3

4

3 4
: 2

2 3

5
(16)

4

oFor entropy S B LnT CT DT ET

FT G

   

 

 

 

These three expressions are thermodynamically consistent with one another.  The various units 

employed in Equations 14-16 are as follows: 

 

   T = temperature in degrees Rankine 

   H
o
 = ideal gas enthalpy at T in Btu/Lb 

   Cp
o
 = ideal gas isobaric heat capacity at T in Btu/Lb-deg. R 

   S
o
 = ideal gas entropy at T and at some reference pressure in  

                                             Btu/Lb-deg. R 

 

The constants A through G are derived coefficients.  Procedure 7A1.1 of the API Data Book 

offers two sets of base levels for enthalpy and entropy.  They are: 

 

   1. H = 0 for the pure saturated liquid at -200 deg. F and 

       S
o
 = 1 for the ideal gas at 0 deg. R and 1 psia reference pressure. 

 

   2. H
o
 = 0 for the ideal gas at 0 deg. R and S

o
 = 0 for the ideal gas  

       at 0 deg. R and a reference pressure of 1 atm. 

  

The coefficients B through F are the same for both datum sets.  However, A and G are different 

for any given component.  An abridged list of coefficients for the second base level set is 

provided in Table 1 for some of the more common hydrocarbons and inorganic gases.  The 

second base level is used in the illustrations to follow. 
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The Total Energy Balance  Before proceeding any further here let us review the nature of the 

total energy balance.  For the general case of steady state flow of a fluid flowing through a 

hydraulic network, the total energy balance can be written as, 

 

 
2 2

2 1
2 1 2 1 (17)

2
s

c c

u u g
H H z z Q W

g g


       

 

This equation relates the changes in enthalpy, kinetic and potential energies between states 1 and 

2 of the flowing system to the net exchange of heat and mechanical shaft work between flowing 

system and its surroundings.  Below are given some special applications of Equation 17. 

 

  1. For the case of either a nozzle, venturi meter or orifice, a significant 

      change in fluid velocity is incurred because of a change in cross- 

      sectional area of the accompanying piping, without any shaft work or 

      heat being transferred..  For horizontal flow, we would then have, 

 
2 2 2 2

2 1 2 1
2 1 0 (18)

2 2c c

u u u u
H H H

g g

 
      

 

  2. For the case of a compressor or turbine situated in the network, the  

      change in kinetic energy is normally very small with the process being 

      almost perfectly reversible adiabatic.  For horizontal flow, once again, 

 

2 1 (19)sH H W    

 

  3. In the case of a heat exchanger, the process is essentially conducted 

      isobarically with negligible kinetic and potential energy changes and   

      no shaft work being performed.  The total energy balance then reduces 

      to, 

 

2 1 (20)H H H Q     

 

  4. For an expansion or throttling valve, the fluid has a very small initial 

      velocity with any velocity attained being almost immediately dissipated 

      into internal energy after passage through the valve.  Because of the  

      rapidity of the process, no shaft work or heat is transferred, and for a 

      horizontal configuration we would have, 

 

2 1 1 20 (21)H H H or H H      

 

For steady state flow, fluid velocity changes due to changes in cross-sectional flow area or pipe 

diameter and fluid density variation are accounted for via the continuity equation, 

 

1 1 1 2 2 2 (22)W mass flowrate u A u A     

 

where  is the fluid density or reciprocal of the fluid specific volume ( = 1/v).
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Illustration 1  An ideal gas flows through a valve where the pressure is reduced from 10 to 2 

atm abs.  The surrounding temperature and high pressure gas are at 25 deg. C.  The gas velocity 

is 10 ft/sec and is essentially the same on either side of the valve.  What is H through the valve 

and the gas temperature at the valve exit ? 

              

This expansion process occurs very rapidly.  As a result, there is basically no heat transfer 

between the system (gas) and surroundings.  No work is done along with no change in kinetic 

energy across the valve (u1 = u2).  Then, if we presume that the flow is completely horizontal, the 

total energy balance reduces to, 

 

 0H   

 

Since the flowing gas is a perfect gas with no change in enthalpy, T = 0, and the downstream 

temperature is 25 deg. C. 

 

Illustration 2  A stream of ideal gas at 700 deg. R exits a large tank and immediately enters a 

valve situated in the exit pipe line.  In the process of flowing through the valve, the gas is 

accelerated horizontally and adiabatically from rest to 1600 ft/sec.   

 

               a) Write the form of the total energy balance that applies in this case. 

 

    b) What is the temperature of the gas at the valve exit ? 

    

Gas properties:      Cp = 7 Btu/Lbmole- deg. R   ,    MW = 29 

 

Part a: 

 

For this case, there a very significant change in kinetic energy across the valve with Q = Ws = 0.  

Therefore, the total energy balance reduces to Equation 8.89, 

 

 
2 22

2 1
2 1 10 0

2 2c c

u uu
H H H where u

g g


        

 

 Part b:   

 

 
 

   

2
1600

0
2 32.16 778

Btu
Then we have H

Lb
    

 

 2 1 51.16
Btu

Solving for H we get H H H
Lb

       

 

 



11 

 

    51.16 29 1483.6
Btu

Or H
Lbmole

      

 

 2 1, ( ) 1483.6P

Btu
Since the gas is ideal H C T T

Lbmole
     

 

Now the valve exit temperature can be readily computed, 

 

 2

1483.6
700 211.9

7
T


     

 

 
2 488deg. 28deg.Or T R F   

 

Illustration 3  Ethylene gas (dense fluid) flowing in a pipeline at 60 deg. F and 1000 psia enters 

an expansion valve where the pressure is suddenly reduced to 200 psia.  It is required to estimate 

the valve exit temperature and the state of the exit fluid.  If it turns out that the exit fluid is in the 

state of two phases (V+L), what would be the stream quality (wt % vapor present) ?  For 

ethylene, over the temperature range of – 100 deg. F to the critical, the vapor pressure is well 

represented by the Antoine relation: 

 

 
3861.566

13.38425 deg. .
519.7205

VP VPLn P with T in F and P in psia
T

 


 

    

Two procedures will be employed and the results compared: 

 

 a) Use of the generalized Lee-Kesler CS charts for computing enthalpies                    

                (Figures 6 and 7)  

 

 b) Use of the H-T diagram developed specifically for ethylene  

                based on the Peng-Robinson equation. 

 

The following physical properties taken from the Data Book of the American Petroleum Institute 

(API) will be required for Part a: 

 

 729.8 ; 48.58deg. (508.28deg. ) ; 0.0868 ; 28.05C CP psia T F R MW     

 

Part a:  The first step consists of determining whether the exit condition 2 is in the two-phase 

region or not.  Define H1 as the fluid enthalpy at the valve inlet and h2
SL

 as the saturated liquid 

enthalpy and H2
SV

 the saturated vapor enthalpy, both at the valve outlet pressure.  If  h2
SL

 < H1 < 

H2
SV

, then the exit phase condition is definitely two-phase. 
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If H1 >H2
SV

, then the stream is all vapor at the exit.  The saturation temperature T2
sat

 at the 

specified valve exit pressure P2 is calculated from the specified VP equation after it is rearranged 

and solved explicitly for the temperature. 

 

 
2

2

3861.566
519.7205

13.38425

satT
Ln P

 


 

 

 
 

2

3861.566 3861.566
519.7205 519.7205

13.38425 200 13.38425 5.29832

satT
Ln

   
 

 

 

 
2 42.2 deg.satT F   

 

The various required enthalpy values are now calculated from the Lee-Kesler CS charts  

- Figures 6 and 7 and Equation 13. 

 

At the valve inlet, 60 deg. F and 1000 psia, 

 

 1 1

1000 60 459.7
1.37 ; 1.02

729.8 508.28
R RP T


     

 

Using Equation 14 and the appropriate coefficients for ethylene read from Table 1, the inlet ideal 

gas enthalpy at 60 deg. F becomes  H1
o
 = 155.0 Btu/Lb based on the API datum of H

o
 = 0 at 0 

deg. R.  From the Lee-Kesler charts we read, 

 

 

   1

1 1

3.3 ; 3.

o
o o

C C

H H H H

RT RT

    
    

   
 

  
 

 

  
  

  
1

1.987 508.28
3.30 0.0868 3.

28.05

oH H      

 

     
1

36.0 3.56 128.2 /oH H Btu Lb    

 

 1 155.0 128.2 26.8 /H Btu Lb    
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Saturation enthalpies at outlet: 

 

 
2 2

200 42.2 459.7
0.274 ; 0.82

729.8 508.28
R RP T

 
     

 

Also H2
o
 = 120.5 Btu/Lb at – 42.2 deg. F. 

 

 
  

     2

1.987 508.28
120.5 0.48 0.0868 0 120.5 36. 0.48

28.05

SVH         

 

 
2 120.5 17.3 103.2 /SVH Btu Lb    

 

      2 120.5 36. 4.6 0.0868 5. 120.5 181.2 60.7 /SLh Btu Lb        

 

Here it is readily apparent that H1 (26.8 Btu/Lb) lies between the values of h2
SL

 = -60.7 Btu/Lb 

and H2
SV

 = 103.2 Btu/Lb.  Therefore, the final state of the system is  two phase (V + L)  at – 42.2 

deg. F and 200 psia.  The exit stream quality can now be computed directly from Equation 7: 

 

 
 

 
1 2

2

2 2 2

26.8 60.7 87.5
0.534 .

103.2 60.7 163.9

SL

SV SL

H hV
x wt fractionvapor

F H h

  
     

   
 

 

Part b:  Figure 8 and Figure 9 represent H-T diagrams for ethylene.  They were developed by this 

author using a BASIC program which employs the Peng-Robinson equation to compute enthalpy 

departures. From Figure 8 we located the inlet condition of 60 deg. F and 1000 psia at H1 = 1038 

Btu/Lb.  Now by following this value of enthalpy horizontally to the left to a pressure of 200 

psia, we enter the two-phase region and wind up at a temperature of – 42 deg. F.  At this 

condition, 

 

 2 21104 / ; 947 /SV SLH Btu Lb h Btu Lb   

 

And then, once again, from Equation 9 we can compute the exit stream quality based on the 

enthalpy values read from the ethylene H-T chart, 

 

 
2

1038 947 91.0
0.580

1104 947 157.0
x


  


 

 

The quality predicted here is slightly higher than that calculated from Lee-Kesler enthalpies. 
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Figure 8. Enthalpy of Ethylene Based on the Peng-Robinson EOS. 

 
       Figure 9. Enthalpy of Ethylene Based on the Peng-Robinson EOS - 

High Temperature Region. 
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Illustration 4  An infinite supply of compressed liquid water at 250 deg. F and 6,000 psia is 

expanded across a valve to lower and lower pressure levels(equilibrium states).  After the water 

is isenthalpically decompressed to such an extent that the condition at the valve exit is a saturated 

liquid,  then a further drop in pressure will produce flashing.  Using the Keenan and Keyes steam 

tables, we wish to establish the temperature-pressure profile for the fluid at the valve exit. 

 

Keenan and Keyes (6), Steam Tables, John Wiley & Sons, 1969 (Table 4, Pages 104-107) 

provide thermodynamic properties for compressed liquid water from 500 to 20,000 psia.  At the 

valve inlet condition of 6000 psia and 250 deg. F, we read h1 = 231.19 Btu/Lb.  Next a host of 

lower pressures (valve exit) are selected and the temperatures determined such that h1 = h2 = 

231.9 Btu/Lb.  These operations were performed by reading values from Table 4 and using linear 

interpolation.  For example, at P2 = 4000 psia, we read, 

 

    T, deg. F h2, Btu/Lb 

    250  226.93 

300 277.15 

 

Then by simple linear interpolation, 

 

 2 250 231.19 226.93 4.26

300 250 277.15 226.93 50.22

T  
 

 
 

 

 
2 254.2 deg. 4000Or T F at psia  

 

Similar calculations were performed at the pressure levels of  2000, 1000 and 500 psia to give, 

 

    P, psia  T2, deg. F 

    2000      258.4 

    1000      260.4 

      500                 261.4 

 

As the downstream pressure is further diminished, the temperature continually increases to reach 

a maximum value at the saturated liquid locus.  This point was also determined by linear 

interpolation of the data read from the Steam Tables.  On Page 5 (Table 1of the steam tables) we 

read: 

 

    Sat T, deg. F  Sat P, psia  h2, Btu/Lb 

        262       36.64      230.79 

        264                             37.89                 232.83 
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 2 2262 36.64 231.19 230.79 0.40

264 262 37.89 36.64 232.83 230.79 2.04

T P
Then

  
  

  
 

 

 
2 2: 262.4deg. 36.89 ( )Solving for P and T T F and P psia saturated liquid   

 

At this point, a further decrease in the exit pressure will produce lower temperatures (saturation 

conditions). For example, at 250 deg. F and 29.82 psia, we read: 

 

 
2 2218.59 / 1164.2 /SL SVh Btu Lb and H Btu Lb   

 

The stream quality is determined from Equation 7: 

 

 
2

231.19 218.59 12.6
0.0133 . .

1164.2 218.59 045.6
x wt fr vapor


  


 

 

The results of similar calculations at lower saturation temperatures and pressures are summarized 

below: 

              Btu/Lb 

 Sat T2, deg. F  Sat P2, psia  h2
SL

    H2
SV

          x2   

      230         20.78  198.32    1157.1      0.0343 

      220                               17.19  188.22    1153.5      0.0445 

                 200                    11.53  168.07    1145.9      0.0645 

                 100                                 0.95                       68.05    1105.0      0.1573 

 

The above numerical results are plotted on Figure 10 as valve exit temperature versus exit 

pressure and on Figure 11 as stream quality (wt. % vapor) versus exit P, both over the pressure 

range of 1000 psia down to about 10 psia. 
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Figure 10. Effect of Isenthalpic Throttling of 
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Figure 11. Steam Quality Versus Pressure 
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The Throttling Calorimeter  The throttling calorimeter, which is frequently used to determine 

the quality of steam in a "wet" pipeline, is basically a constant enthalpy device.  A typical 

throttling calorimeter setup used in conjunction with a steam pipeline is illustrated below: 

 

 
Diagram 1. Throttling Calorimeter 

 

 

Steam is bled from the main line through an expansion valve into a small cylinder open to the 

atmosphere.  By knowing the temperature of the steam in the cylinder (superheated at 

atmospheric pressure) and the pressure in the main line, the quality of the steam in the line may 

be evaluated by following a constant-enthalpy path from the final state back to the line pressure.  

In essence, we would be using Equation 7 in the reverse manner.  For this process the heat 

balance equation yields the following expression for the steam quality in the line: 

 

(23)T L

vap

H h
x

H





   

 

where   x = weight fraction of vapor (steam quality) 

 

   HT = total steam enthalpy obtained from the calorimeter  

             conditions 

 

   hL = saturated liquid enthalpy at the line pressure 

  

   Hvap = latent heat of vaporization at the line pressure 
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Illustration 5  A throttling calorimeter attached to a steam line reads 220 deg. F (superheated at 

atmospheric pressure).  The line pressure itself is 20 psig.  What is the steam quality in the 

pipeline? 

 

The following enthalpies were read from the steam tables of Keenan, Keyes (6): 

 

  At the calorimeter conditions of T = 220 deg. F and P = 14.7 psia 

 

  HT = 1154.4 Btu/Lb 

 

  In the main line for saturated (wet) steam: 

 

  P = 20 + 14.7 = 34.7 psia (Tsat = 259 deg. F) 

 

  hL = 228.0 Btu/Lb  ;  Hvap = 939.3 Btu/Lb 

 

Then from Equation 23 we calculate, 

 

1154.4 228.0
0.986 .

939.3
x wt fraction vapor


   

 

This basically means that 1.4 wt. % of the "wet" steam in the line is liquid water. 
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II. Nature and Measurement of the Joule-Thomson Coefficient 

 

Introduction  At this point we wish to focus once again on the nature and measurement of the 

Joule-Thomson coefficient.  The sign and magnitude of JT determines whether a fluid cools or 

warms when subjected to an isenthalpic expansion and the extent of the resulting temperature 

change.         

 

The Joule Experiment  In 1843 James Prescott Joule (7) performed a preliminary experiment 

which eventually led to the discovery of the Joule-Thomson isenthalpic flow effect.  The 

apparatus he employed is described below: 

 

 
Diagram 2. The Joules Apparatus. 

 

Joule described his experiment as follows: 

 

 "I provided another copper receiver (E) which had a capacity of 134 cubic inches 

 ... I had a piece D attached, in the center of which there was a bore 1/8 inch in 

 diameter, which could be closed perfectly by means of a proper stopcock..... 

 Having filled the receiver R with about 22 atmospheres of dry air and having 

 exhausted the receiver E by means of an air pump, I screwed them together and  

 put them into a tin can containing 16 1/2 lb. of water.  The water was first thor- 

 oughly stirred, and its temperature taken by the same delicate thermometer which 

 was made use of in the former experiments on mechanical equivalent of heat.   

 The stopcock was then opened by means of a proper key, and the air allowed to 

 pass from the full into the empty receiver until equilibrium was established  

 between the two.  Lastly, the water was again stirred and the temperature care- 

 fully noted."   

 

Following this experimental work, Joule presented a table of experimental data, showing that 

there was no measurable temperature change, and arrived at the conclusion that "no change of 

temperature occurs when air is allowed to expand in such a manner as not to develop mechanical 

power i.e. so as to do no external work. 
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The expansion described by Joule above, with air rushing from R into the evacuated vessel E, is 

a typical irreversible process.  Inequalities of temperature and pressure arise throughout the 

system, but eventually a state of equilibrium is reached.  Application of the First Law here 

indicates no change in the internal energy of the gas since no work was done by or on it, and no 

heat has been exchanged with the surrounding water bath - otherwise the temperature of the 

water would have changed.  Therefore dE = 0, and experimentally it was observed that dT = 0.  

It would logically then be concluded that the internal energy must depend only on temperature 

and not on volume.  Mathematically, this conclusion can be expressed as follows: 

 

0

0 0

T V

v

T E

T E

E E
dE dV dT

V T

E T
or C

V V

E T
Then must if

V V

    
     

    

    
    

    

    
    

    

     

 

The fallacy here is that Joule's experiment was not capable of detecting small effects since the 

heat capacity of his water calorimeter (bath) was extremely large compared to that of the gas 

used. 

 

The Joule-Thomson Experiment  William Thomson (Lord Kelvin) suggested a much better 

procedure than the Joule experiment.  Working with Joule, he carried out a series of experiments 

between 1852 and 1862 employing the apparatus represented schematically below: 

 

 
Diagram 3. The Joule-Thompson Apparatus. 

 



21 

 

The principle involves the throttling of the gas flow from a high pressure side A to a low 

pressure side C by interposing a porous plug B.  The pressure on the A-side is maintained 

constant at P1, and that on the C-side is maintained constant at a lower value P2.  This is made 

possible by the action of the two pistons shown.  The effect of the porous plug is to allow the gas 

to pass slowly from A into C and thus promotes equilibrium.  As a result, the temperature can be 

measured directly and with a high degree of accuracy.  The entire system is thermally insulated, 

so that the process is an adiabatic one i.e. q = 0. 

 

The volume at the left (side A) decreases by V1 per mole of gas passing through the plug, and the 

volume on the right (side C) increases by V2 per mole.  As a result, the work done on the gas by 

the piston at the left is P1V1, and the work done by the gas on the piston on the right is P2V2.  

Therefore, the First Law for this case may be written as, 

 

 2 1 2 2 1 1

2 2 2 1 1 1

2 1

(24)

(25)

(26)

E E w P V P V

or E P V E P V

H H

    

  



   

 

 

Thus the enthalpy of the gas does not change in the expansion process.  The numerical value of 

the slope of an isenthalpic curve on a T-P diagram at any point condition is called the Joule-

Thomson or the Joule-Kelvin coefficient and is denoted by the symbol JT.  Thus, 

 

(27)JT

H

T

P


 
  

 
 

 

In the system or JT experiment described above Equation 27 effectively defines the temperature 

change per atmosphere difference in pressure measured at constant enthalpy. 

 

With most gases with the exception of hydrogen and helium a cooling effect is obtained at room 

temperature because the Joule-Thomson coefficient is positive.  For hydrogen at room 

temperature, the JT coefficient is negative.  However, for hydrogen, there exists an inversion 

temperature at around - 78 deg. C (where JT = 0) below which the JT coefficient is positive and 

hydrogen is cooled by the expansion.  The inversion temperature of a gas is highly dependent 

upon the pressure.  The JT effect has very important industrial applications such as in the 

liquefaction of air and other gases. 
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The JT Inversion Curve  The figure shown below shows a whole series of isenthalpic curves 

and the inversion curve plotted on a temperature versus pressure diagram, specifically for 

nitrogen (8). 

 

 
Figure 12.  Isenthalpic / Inversion Curves for Nitrogen. 

 

The series of individual plots at conditions of constant enthalpy are represented as solid curves.  

The locus of all points at which the JT coefficient is zero i.e. the locus of the maxima of the 

isenthalpic curves, is known as the inversion curve and is shown as a dotted closed curve.  The 

region inside the inversion curve where JT, as defined by Equation 27, is positive is called the 

region of cooling, whereas outside of the dotted locus, where JT is negative, is the region of 

heating.   

 

If a vertical line is drawn at an arbitrary pressure, it will intersect the isenthalpic curves at a 

number of points at which JT may be obtained by measuring the slopes of the isenthalpics at 

these points.  At this specific pressure we then would have a set of values of JT established at a 

series of different temperatures.  This process can obviously then be repeated at other designated 

pressures.       

 

Thermodynamic Relationships Involving JT  In order to be able to predict or calculate 

Joule-Thomson coefficients, we generally need to relate it to the PVT properties of the fluid of 

interest.   Here we provide a derivation of the pertinent required general thermodynamic 

relationships based on the First and Second Laws. 

 

For a closed thermodynamic system of constant composition, which exchanges only heat and 

work with its surroundings, there are two independent degrees of freedom.  As a result, a given 

thermodynamic property can be related directly to two other known intensive state variables or 

properties. 
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Based on the First and Second laws of thermodynamics we can readily derive the four 

differential equations which relate the state properties internal energy E, enthalpy H, Helmholtz 

free energy A and the Gibbs free energy F to the appropriate pairs of independent variables.   

These equations are summarized below and apply to closed systems only: 

 

(28)

sin

(29)

,

(30)

(31)

d E T dS P dV

and ce H E PV

then d H T dS V dP

Next by definition A E TS

therefore d A S dT P dV

Also by definition F H TS A PV

and finally d F S dT V dP

 

 

 

 

  

   

 

 

 

The four Maxwell equations for closed systems are readily derived from Equations 28-31 above 

using Green's theorem in a plane.  The complete mathematical details of this theorem are not 

presented here but only the highlights or results of its application to exact or perfect differential 

equations. 

 

First let us consider the general mathematical expression for an exact or perfect differential dZ in 

terms of two independent variables x and y: 

 

(32)dZ M dx N dy   

 

When the dependent variable Z is integrated over an entire process cycle or region, we get, 

 

0 (33)c d Z   

 

Another very important mathematical characteristic of a perfect differential is that, 

 

(34)

x y

M N

y x

    
   

    
  

 

If this latter condition is applied specifically to Equation 28, the result is, 

 

(35)

S V

T P

V S

    
   

    
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Equation 35 is commonly referred to as the first Maxwell equation.  In a similar fashion 

Equation 34 can be applied to the three remaining differential equations 29, 30 and 31.  All four 

Maxwell equations for closed thermodynamic systems involving PV work only are summarized 

below: 

 

. .

S V

S P

T V

T P

Differential Eqn Maxwell Eqn

T P
dE T dS P dV

V S

T V
d H T dS V dP

P S

S P
d A S dT P dV

V T

S V
d F S dT V dP

P T

    
      

    

    
     

    

    
     

    

    
     

      
 

Next we need to consider two very important rigorous relationships which give the isothermal 

effect of volume on the internal energy and the isothermal effect of pressure on enthalpy.  If we 

take Equation 28 and differentiate it throughout with respect to volume at constant temperature, 

the result is, 

 

(36)

T T

E S
T P

V V

    
    

    
 

 

If we substitute the third Maxwell equation listed above into Equation 36, the result becomes the 

first thermodynamic equation of state. 

 

(37)

T V

E P
T P

V T

    
    

    
 

 

Next a similar derivation is performed starting with Equation 29.  In this case we differentiate 

Equation 29 throughout with respect to pressure at fixed temperature. 

 

(38)

T T

H S
T V

P P

    
    

    
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Then the fourth Maxwell relation is substituted into the above expression to yield the second 

thermodynamic equation of state. 

 

(39)

T P

H V
V T

P T

    
    

    
 

 

 It is important to note here that the right hand sides of both Equations 37 and 39 are exclusively 

functions of the properties P, V and T.  This makes evaluation by an equation of state quite 

convenient. 

 

Let us consider the enthalpy to be a function of  the two independent variables P and T.   

And, since enthalpy H is a state thermodynamic property, we can write the exact differential 

expansion for H in terms of P and T as follows, 

 

(40)

P T

H H
d H d T d P

T P

    
    

    
 

 

By definition the temperature derivative in Equation 40 is the isobaric heat capacity CP. 

 

(41)P

T

H
Therefore d H C d T d P

P

 
   

 
 

 

For an isenthalpic expansion, dH = 0, and Equation 41 can  be rearranged and then solved 

explicitly for the Joule-Thomson coefficient, 

 

0

1
(42)

P

T

PH T

H
C dT dP

P

T H
and then

P C P

 
   

 

    
    

    

 

 

where obviously JT =  (T/P)H, the Joule-Thomson coefficient. 

 

Now if we substitute the second thermodynamic equation of state (Eqn. 39) into Equation 42, we 

arrive at the final desired expression for the JT coefficient expressed in terms of PVT properties 

and the isobaric heat capacity. 

 

 
1

43JT

PH P

T V
V T

P C T


     
       

      

 

 

Most closed equations of state, such as the Soave equation, are expressed as explicit functions of 

the molar volume i.e. P = f(V,T), and the volumetric derivative above is quite inconvenient to 

evaluate.  Therefore this derivative must be transformed to an equivalent or more convenient 

form using the chain rule of partial differentiation.  
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For a function of the form f(P,V,T) = 0, where two of the variables are independent and one 

dependent, the chain rule can be expressed as, 

 

1

:

T P V

V

P P

T

P V T

V T P

P

TV V
Solving for

T T P

V

       
     

       

 
 
      

    
      

 
 

 

 

 

This latter identity is readily substituted into Equation 43 to give, 
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T

P
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V



  
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  

   

 

 

 

Both of the pressure derivatives can be calculated from the appropriate equation of state of the 

form P = f(V,T). The remaining property which needs to be evaluated here is the isobaric heat 

capacity, CP.  Then we will have all of the terms or properties required to evaluate Equation 44 

for JT. 

 

First we consider the internal energy E to be a function of the two independent variables T and V 

and then write the exact differential expansion for E as, 

 

 (45)

V T

E E
d E dT dV

T V

    
    

    
 

 

By definition, the temperature derivative above is known as the isochoric or constant volume 

heat capacity, CV.  Therefore, 
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V
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Then we substitute Equation 37 into Equation 46 to get, 
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If Equation 34 (Maxwell Equation) is applied to the exact differential expression above, the 

result becomes, 

2

2

VV V

T V

P
T P

TC P
T

V T T

  
   

       
    

     
 

 

This expression can readily be integrated between the limits of the ideal gas state and the real 

fluid state to give the real fluid isochoric heat capacity relative to the ideal gas value at the same 

temperature. 
2

2
(48)

V

o

V V

V

P
C C T dV

T


 
   

 
  

 

 

Without providing a detailed derivation, we simply provide the expression relating the real fluid 

isobaric and isochoric heat capacities below, 
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Using the chain rule as applied previously, we can readily substitute for the volume derivative 

shown in Equation 49 to yield Equation 50, 
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Once CV is computed from Equation 48, CP is then readily computed directly from Equation 50.  

The ideal gas isochoric heat capacity is simply determined from the ideal gas isobaric capacity 

via the relation, 

(51)o o

V PC C R   

 

CP
o
 is computed at system temperature from Equation 15 and the appropriate coefficients read 

from Table 1.  Thus, in order to compute JT coefficients from a volume explicit closed equation 

of state (P = f(V,T)), the following pressure derivative functions need to be evaluated: 

 
2

2
; ;

V TV

P P P

T T V

      
    

      
 

 

In Section IV the appropriate expressions for these derivatives will be derived for several cubic-

in-volume closed equations of state.  Then, JT coefficients can be predicted from these equations 

of state and subsequently compared with the corresponding measured coefficients. 
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Illustration 6  A gas at 100 deg. F, with a fixed CP value of 7.0 Btu/Lbmole-
o
R, has a Joule-

Thomson coefficient that obeys the relation,   

 

0.0032 0.0008JT P    

 

where P is in units of atmospheres and JT is expressed in units of deg. R/atm.  For this particular 

gas let us calculate and plot as a function of pressure over the range 0 to 20 atm, the following: 

 

 1. the JT coefficient itself at 100 deg. F 

 

 2. the enthalpy relative to zero pressure, H - H
o
, in Btu/Lbmole    

  

At what pressure does the JT inversion point occur ? 

 

First we need to derive the appropriate expression for the enthalpy departure for this gas at 100 

deg. F.  This can readily be done by substituting the above pressure-dependent function for JT 

into Equation 42,  Thus, 

1
0.0032 0.0008 , deg. /JT

P T

H
P R Atm

C P


 
    

 
 

 

Upon integration of this equation between the limits of an ideal (P = 0) and the real gas state at P, 

we get, 

 
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0

2
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  

     

    

 

 

  

If CP is expressed in units of Btu/Lbmole-deg. R, then the enthalpy departure above will turn out 

to be in units of Btu/Lbmole.  Figure 13 and Figure 14 show the JT coefficient and enthalpy 

departure respectively plotted versus pressure up to 20 atmospheres. 
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Figure 13. JT Coeff. Versus Pressure. 
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Figure 14. Enthalpy Departure vs. Pressure. 
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The inversion pressure where JT = 0 occurs at a value of 4 atm.  Also at this point, the enthalpy 

of the system reaches a minimum value or H - H
o
 = - 0.0448 Btu/Lbmole.  At   P = 8 atm, the 

enthalpy departure from the ideal gas state returns to zero.  And above 8 atm,  the departure 

becomes positive i.e. the real gas enthalpy exceeds that of the ideal gas value. 

 

Illustration 7  In his textbook entitled "Chemical and Engineering Thermodynamics", Sandler 

(9) extracted some second virial coefficient data for nitrogen from the classical work of Dymond 

and Smith (10).  Sandler's tabulation is shown below and provides the second virial coefficient as 

a function of temperature from 75 to 700 deg. K. 
 

        Temp. (
o
K)       B (cc/gmole) 

      75 - 274 

    100 - 160 

    125 - 104 

    150 -   71.5 

    200 -   35.2 

    250 -   16.2 

    300 -     4.2 

    400 +    9.0 

    500 +   16.9 

    600 +   21.3 

    700 +   24.0 
 

From both experimental studies and statistical mechanics it is well known that at moderate 

pressures, the volumetric behavior of gases obey the open virial equation of state truncated after 

the second virial coefficient, B.  Here B is exclusively a function of temperature only.  Using the 

virial equation written as  PV = RT + BP, where V is the molar volume, we are asked to 

determine (estimate) the Boyle temperature (the temperature at which B = 0) and the inversion 

temperature(s) for gaseous nitrogen from the above tabulation of B-values for nitrogen. 

       

First we solve the truncated virial equation above for V and substitute the result directly into 

Equation 43 to get the appropriate expression for JT. 
 

;

1 1

1

P

JT

P PP

JT

P

RT V R d B
V B

P T P d T

V RT RT d B
and therefore V T B T

C T C P P d T
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B T

C d T




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 
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The above expression requires that we calculate the first temperature derivative of the second 

virial coefficient from the basic data shown graphically as B vs.T in Figure 15.  As a result, it 

would be quite convenient to have a relatively simple analytic representation of the data.  A 

successful least-squares fit was achieved using a hyperbolic function of the form, 
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Figure 15. Second Virial Coefficient for Nitrogen. 

 

 

The following regression constants were obtained for the 11 data points listed above by Sandler. 

 

    A = 413.4512     ;     B
/
 = - 1.253687      ;      

 

                                                C = -0.02837002 

 

The overall absolute average deviation and standard deviation produced by Equation 52 turn out 

to be 4.1 and 6.6 percent respectively. 

   

The Boyle temperature is defined by the exact mathematical limit: 

 

 ( ) 1 0
PV

Lim V V Lim V B
RT

  
      

  
 

 

If we apply this constraint to Equation 52, then, 

 
/ 0A B T   

 

/

413.4512
329.8 deg.

1.253687
B

A
or T K

B
    


 

 

which is an estimate of the Boyle temperature consistent with the virial coefficient data provided 

us.   
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At any inversion point, the JT coefficient assumes a value of zero.  Therefore, we have, 
 

1
0JT

P

dB d B
B T or B T

C dT d T


 
     

 
 

 

 

As a result, we need to differentiate Equation 52 to get dB/dT. 
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 

//

2
1 1

C A B Td B B
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2 2
1 1
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So then, for the JT coefficient to be zero we would have, 
 

 

/ /

2
1 1

A B T B T ACT

CT CT

 


 
 

 

  / /1A B T CT B T ACT     

 

This equation is readily rearranged into a form which is a quadratic in temperature, the result  

2

/ /

2
0

A A
T T

B B C
    

 

Next the numerical values of A, B
/
 and C are substituted and the resulting equation solved for T. 

 

 

    
2

2 413.4512 413.4512
0

1.253687 1.253687 0.02837002
T T  

  
 

 

or 
 

2 659.576 11,624.54 0T T    

 

Application of the general quadratic formula here yields the final result. 

 

   
2

659.576 659.576 4 11,624.54

2
T

 
  

 

659.576 623.332
641.5 deg. 18.1 deg.

2
T K or K


   

 

These values are the calculated (estimated) inversion point temperatures.  The lower temperature 

of 18 deg. K is highly suspect because it falls outside of the temperature range of the original B 

versus T data. 
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III. Generalized JT Inversion Curve in Corresponding States Format 

 

Introduction  It is possible to generate a generalized inversion curve for fluids within the 

framework of the Law of Corresponding States.  The simple van der Waals (VDW) equation of 

state is capable of predicting inversion PVT conditions for a fluid.  This equation can be inserted 

into Equation 44 with the constraint that JT = 0, and the appropriate interrelationships between 

P, V and T can easily be derived and placed in a convenient corresponding states framework 

involving reduced coordinate parameters (TR = T/Tc,    PR = P/Pc).  Miller (11) has also 

developed and recommended a three-constant equation for approximating the inversion curve 

locus in reduced coordinate form.   

 

Perry's Chemical Engineers' Handbook (12) tabulates approximate inversion-curve loci for 

several light hydrocarbons and non hydrocarbon gases.  These data were reduced to a 

corresponding states framework and subsequently plotted and compared against the generalized 

inversion curves predicted by the VDW and Miller equations.  In addition, we observed that the 

series of inversion curves for the non polar gas components appeared to follow a systematic 

pattern.  All of these comparisons and observations are discussed in detail below. 

   

VDW Equation as a Basis  If we begin with the rigorous relationship between the JT 

coefficient and PVT properties, i.e. Equation 44, and impose the constraint that JT = 0, 

we can readily write,   
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From the van der Waals equation written in the form, 
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V b V
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we first develop expressions for the pressure derivative functions. 
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These derivatives are now substituted directly into Equation 53 to yield, 
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Next we take advantage of the fact that the critical constants for a van der Waals fluid can be 

related to the constants a and b by using the critical point criteria that, 
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2
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P P

V V
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The resulting expressions for the critical volume and temperature become, 

 

 
8

3 ; 56 ,
27

C C

a
V b T a b

bR
   

 

However, the reduced volume and temperature are related to the operating volume and 

temperature by the basic definitions: 

 

                                              VR = V/VC     or      VC = V/VR 

 

 

and                                         TR = T/TC     or       TC = T/TR 
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These two expressions for VC and TC are then substituted directly into Equations 56 a and b to 

give, 

 

8
3 ; (57 , )

27
R R

a
V bV T T a b

bR
   

 

Insertion of Equations 57 a and b into Equation 55 leads finally to the relationship between the 

reduced inversion temperature and the reduced volume i.e. Equation 58, 
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which upon final simplification becomes, 

 

 
2

2

3 3 1
(58)

4

R

RInv

R

V
T

V


  

 

Now, in order to relate the inversion point to the reduced pressure a well, we need to return to the 

van der Waals equation itself written in the reduced coordinate form. 

 

Starting with the van der Waals equation written as, 

 

 2

a
P V b RT

V

 
   

 
 

 

we need to substitute for P, V and T in terms of reduced parameters.  Equations 57 a and b 

provide the necessary substitutions for V and T.  The other relationship which relates P and PR 

based on the critical point criteria described above is, 

 

2
(59)

27
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P a
P

P b
   

 

Now Equations 57 a,b and 59 are substituted directly into the van der Waals equation with the 

result, 
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This expression is readily simplified as follows 
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: 

 

and finally, 
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Next we substitute the expression for the inversion temperature, Eqn. 58, into the RHS of 

Equation 60 to get the van der Waals PR - VR relationship for the inversion curve. 
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The expression is further simplified to yield a quadratic equation in VR, 

 

2 18 9
0 (61)R R

R R

V V
P P

    

 

Equation 61 is used in tandem with Equation 58 to generate a generalized inversion curve in 

corresponding states framework based on the van der Waals equation of state. 

 

 1. Set or select a value for PR. 

 

 2. Calculate the two roots VR1 and VR2 (hopefully both real) from Eqn. 61. 

 

 3. For each value of VR from Step 2, calculate TR1Inv and TR2Inv from Eqn. 58. 

 

 4. Plot both sets of TRInv versus the selected value of PR.. 
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The numerical tabulation given below is the result of carrying out the four steps above when 

Equation 61 is solved using the quadratic formula i.e. 

 
2

18 18 36

2

R R R

R

P P P
V

 
  

 
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     Eqn. 58 

 

 PR  VR1  VR2  TR1  TR2 

            

 1  17.49  0.515  6.495  0.838 

 2    8.47  0.531  6.229  0.938 

 3    5.45  0.551  5.949  1.051 

 4    3.93  0.573  5.653  1.181 

 5    3.00  0.600  5.333  1.333 

 6    2.37  0.634  4.982  1.518 

 7    1.89  0.680  4.581  1.752 

 8    1.50  0.750  4.083  2.083 

 9    1.00  1.00  3.000  3.000 

 

It should be noted here that inversion curve terminates at a maximum reduced pressure of 9 (TR 

= 3), and only one inversion temperature exists at this point.  Below PR = 9, an upper and lower 

inversion temperature exists.   

 

Miller Equation  In his 1970 paper, Miller (11) utilized a host of experimental JT inversion 

point data for the components CO2, N2, CO, CH4, NH3. propane, Ar, and ethylene to develop a 

three-constant corresponding states equation.  The following expression was the result of a least 

squares fit of the collected data: 

 

218.54
24.21 0.825 (62)R R

R

P T
T

 
   

 
 

 

With this correlation, a maximum inversion reduced temperature of 5.0  and a minimum 

inversion reduced temperature of 0.8 are produced.  The maximum reduced pressure of  

PR = 11.75 occurs at TR = 2.25.  Miller also concluded from his studies that none of the better 

simple equations of state (van der Waals, generalized Dieterici, generalized Redlich-Kwong, or 

Martin) adequately characterizes the inversion curve.  In any case, prediction of JT inversion 

points is a very severe test of equations of state.       
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The upper and lower TR versus PR curves generated from the van der Waals and Miller equations 

have been plotted in Figure 16.  The van der Waals prediction is represented by the solid curves 

and the predictions via the Miller equation (Eq. 62) by the dashed inversion curve.  The Miller 

curve is generally flatter or narrower in nature than the VDW curve and displays a significantly 

higher maximum reduced pressure.   And, in general, the VDW equation generates a 

significantly higher upper inversion curve than does the Miller equation. 

 

 
Figure 16. Generalized JT Inversion Curves Generated from the 

van der Waals and Miller Equations of State. 
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JT Inversion-Curve Loci Data  Perry's Sixth Edition of the Chemical Engineers' Handbook 

(12) reports approximate JT inversion-curve loci (T versus P) for a host of light hydrocarbon and 

non hydrocarbon gases.  The detailed source references for these data are listed in Table 3-149, 

page 3-107, of the Handbook.  These data were supposedly derived from smoothed and 

extrapolated JT coefficients extracted from the specific data sources listed in Table 3-149.  As a 

result, they are designated as "approximate" inversion-curve loci.  Table 2 of our paper here 

summarizes these data.  The following specific components are included: 

 

  air    normal hydrogen 

  argon    methane 

  carbon dioxide   ethane 

  deuterium   propane 

 

Table 3 of our paper lists the component critical constants that were needed to transform these 

data to a corresponding states framework (TR versus PR).  Both upper and lower T-P loci are 

reported for all components above with the exception for ethane and propane where only the 

lower inversion curves are reported. 

       

On Figure 17 we have plotted all of the available upper and lower inversion points in 

corresponding states framework (TR vs. PR) for each component covered in Table 2 with the 

exception of deuterium.  In addition, the inversion loci generated from the VDW and Miller 

equations are superimposed upon the data. 
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Figure 17. JT Inversion Loci for Components Listed in Table 2. 

 

Below a reduced pressure of about 8, all of the data points, with the exception of CO2 and H2, 

fall nicely in line with one another.  In this region they also follow the Miller inversion curve 

very closely.  Above PR = 8, the various component curves display more of a spread but still 

agree reasonably well with the Miller curve in the specific region where the reduced pressure is 

at a maximum.  The VDW locus shows poor agreement with the data and appears to produce 

lower and upper inversion curves that are too high.  It is not surprising that the CO2 and H2 loci 

do not fall in line with the other components since CO2 is a polar compound, and H2 is a 

quantum gas.  All of the other components treated here are basically non polar compounds. 
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In Figure 18, we have plotted the smoothed JT inversion loci for each of the non polar gases 

only.  As we pointed out previously, above PR = 8, the various loci tend to show a spread.  We 

classified each curve according to the value of the component's Pitzer acentric factor .  In 

general, it can be observed here that the maximum PR point increases with increasing acentric 

factor.  The higher the acentric factor, then the higher is the departure of the molecular structure 

from perfect sphericity.  There is probably not enough data present here to allow us to conclude 

that we have arrived at a generalized graphical correlation.  The Miller inversion curve does, 

however, provide a very good overall (average) representation of the inversion loci for light non 

polar gases. 

 

 
Figure 18. Generalized Corresponding States Graphical Correlation for the JT. 
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Finally, Figure 19 provides smoothed plots for just the individual gases H2 and CO2.  As we 

discussed previously, these data do not line up with the data plotted for the non polar gases. 

 

 
Figure 19. Smoothed Approximate JT Inversion Curves Specifically for H2 and CO2. 
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IV. Prediction of JT Coefficients from Cubic Equations of State 

 

Experimental Data In addition to providing approximate JT inversion-curve loci data, Perry's 

Handbook (12) also gives measured Joule-Thomson coefficients for several non hydrocarbon 

gases.  The specific components covered are: 

 

  air 

  argon 

  carbon dioxide 

  helium 

  nitrogen 

 

Once again the detailed source references can be found in Table 3-149 of the Handbook. 

Because of time and energy constraints, we just focused our attention on the components 

nitrogen and carbon dioxide.  We compared the measurements reported in the handbook against 

the corresponding predictions of the following cubic equations of state: 

 

  1. van der Waals equation 

  2. Redlich-Kwong equation 

  3. API (modified) Soave equation 

  4. Peng-Robinson equation 

 

Before discussing the details of the numerical comparisons and the statistical deviations, we first 

briefly review the salient features of each equation of state and the relevant terms and properties 

that need to be calculated in order to finally predict the JT coefficient. 

 

van der Waals Equation  The first closed-cubic equation of state was proposed by the Dutch 

physicist J. D. van der Waals in 1873.  He proposed the equation, 

 

 2
(63)

a
P V b RT

V

 
   

 
 

 

for one mole of a single phase fluid.  The term a/V
2
 arises from the existence of intermolecular 

forces and the constant b is proportional to the volume occupied by the molecules (atoms) 

themselves.  Equation 63 affords a most fortunate circumstance in that it can be applied to either 

the vapor or liquid phases.  This is true because the equation is cubic in the volume, and, for a 

specified P and T, can have as many as three real roots for V.  The largest root will generally 

apply to the vapor and the smallest to the liquid.   

 

After rearrangement, Equation 63 can be transformed into a cubic polynomial in V with the 

result, 

 

3 2 0 (64)
RT a ab

V b V V
P P P

   
       
   
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Equation 64 can be further transformed to a cubic in the compressibility factor after substitution 

of the identity V= ZRT/P with the result being, 

 

 

2
3 2

32 2
1 0 (65)

b P aP abP
Z Z Z

RT R T RT

  
      
   

 

 

Furthermore, we can also define the following parameters and then simplify the above 

expression to even a more compact form, 

 

 
2

; (66 , )
aP bP

A B a b
RTRT

   

    

After substitution of these two identities into Equation 65, the final result becomes, 

 

 3 21 0 (67)Z B Z Az AB      

 

With this form of the VDW equation, the largest (vapor) or smallest (liquid) root will still be 

sought - in this case the correct value of Z.  The characteristic constants a and b are simply 

derived from the criteria for a pure substance that both a maximum in the saturation locus and a 

point of inflection (on the critical isotherm) coexist at the critical point.  Mathematically, these 

criteria are expressed as, 

 
2

2

, ,

0 (68)

c c c cT P T P

P P

V V

   
   

    
 

 

When these criteria are applied to Equation 63, the following expressions for a and b can be 

derived, 

 
2 227

; ; 0.375 (69 , , )
64 8

c c
c

c c

R T RT
a b Z a b c

P P
    

     

In Section II we derived the generalized thermodynamic functions required for the evaluation of 

the JT coefficient via a volume explicit equation of state i.e. P = f(V,T). 

The key derivative terms needed were, 

 
2

2
; ;

V TV

P P P

T T V

      
    

      
 

 

For the van der Waals equation written in the form, 

 

2
(70)

RT a
P

V b V
 


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these derivatives become, 

 

 

2

22 3

2
0 ;

V TV

P R P P a RT

T V b T V V V b

      
       

        
 

 

As a result, we readily see that Equations 48 and 50 become, 

 

 

2

23

2

o

V V

o

P V P V

C C

R

V b
C C C C T

a RT

V V b



 
 

     




 

 

The ideal gas isochoric heat capacity is simply computed from the ideal gas isobaric heat 

capacity from the simple relation, 

 
o o

V PC C R   

 

Cp
o
 is computed at system temperature from Equation 15 with the appropriate pure component 

coefficients read from Table 1.  Now we have all of the terms necessary to evaluate Equation 44 

for the JT coefficient. 

 

 
23

1
(71)

2
JT

P

R

V b
V T

C a RT

V V b



 
  
      

  
     

  

 

Needless to say, we need to use a consistent set of units for each term in Equation 71 in order to 

calculate the JT coefficient in the desired system of units (deg. R/psia, deg. K/atm, etc.). 
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Redlich-Kwong Equation  Many extensions of the van der Waals equation have been 

proposed and published.  One of the first modifications of any significance was the Redlich-

Kwong equation (13).  The proposed equation is written as, 

 

 0.5
(72)

RT a
P

V b T V V b
 

 
 

 

where a and b are true constants characteristic of the particular fluid of interest.  The authors 

have transformed this equation to the compressibility factor form after substitution the following 

identities: 

 

2

2 2.5
;

;

a b
A B

R T RT

BP ZRT
h V

Z P

 

 

 

 

 

The result is, 

 

 2 /1
(73)

1 1

A B h
Z

h h
 

 
 

 

Once again, the correct root (V or Z) for either the vapor or liquid must be determined by an 

iterative procedure.  Like the VDW equation, the RK constants can also be related directly to the 

critical constants by applying Equation 68 to Equation 72.   

 
2 2.50.4278 0.0867

; (74 , )c c

c c

R T RT
a b a b

P P
   

 

For the evaluation of the JT coefficient using the RK equation, the following quantities need to 

be substituted into Equation 44: 

 

   

 

 

 

2

1.5 2 2.5

2 20.5

0.5 0.75
;

2

V V

T

P R a P a

T V b T V V b T T V V b

a V bP RT

V V b T V V b

   
    

       

 
  

      

 

From Equation 48 we have, 

 

 2.5 1.5

0.75 0.75
;

V

o o o

V V V P

a dV a V
C C T Ln C C R

T V V b bT V b


 
       

  
   
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and from Equation 50, 

 

 

    

2

1.5

2 20.5

0.5

2
P V

R a

V b T V V b
C C T

a V b RT

T V bV V b

 
 

    
 
 
  

 

 

And finally, the appropriate expressions above can be substituted into Equation 44 for the 

prediction of the JT coefficient via the RK equation of state.  

 
 
Soave Equation  In 1971 G. Soave (14) proposed what is probably the most popular and 

extensively used cubic equation of state.  Basically, Soave modified the RK equation by 

replacing the term a/T
0.5

 with a more generalized temperature-dependent term a(T).  Thus, 

 

 
( )

(75)
RT a T

P
V b V V b

 
 

 

 

The Z-form of the Soave equation is derived by making the following substitutions: 

 

2 2
; ; (76 , , )

ZRT a P b P
V A B a b c

P R T RT
    

 

 with the result being, 

 3 2 2 0 (77)Z Z Z A B B AB       

 

Specifically for the Soave equation, 
2 20.42747

( ) (78)

0.08664
; 0.333 (79 , )

C
C C

C

C
C

C

R T
a T a

P

RT
b Z a b

P

 

 

 

 

The key feature of the Soave approach here is the comprehensive correlation of the term a as a 

function of temperature. 
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At operating temperatures other than the critical, 

 

( ) ( ) (80)Ca T a T  

where the temperature dependent function above is constrained by the limit   1 as T  TC.  

Values of  for a given substance were generated from vapor pressure data by numerical 

regression techniques.  When values of 
0.5

 were then plotted against 1 - TR
0.5

 , nearly straight 

lines were obtained for a host of hydrocarbons.  The result suggested the functional correlation 

form,   

 

 0.5 0.51 1 ; / (81)R R Cm T T T T       

 

The slope m is a parameter characteristic of the component identity.  It was successfully cross-

correlated against the Pitzer acentric factor  for a host of hydrocarbons.  The  "generalized" 

correlation  assumed the form: 

 
2 (82)m A B C     

 

The coefficients to Equation 82 used in our work are different than those originally derived by 

Soave.  We employed the modified coefficients developed by Graboski and Daubert (15) who 

used a more comprehensive vapor pressure data bank compiled by the American Petroleum 

Institute (API).  Their recommended fit for m is, 

 
20.48508 1.55171 0.15613 (83)m      

  

In his paper Soave recommends that Equation 75 be applied basically for non polar compounds.  

He warns that his equation is not accurate for polar substances like CO2 and NH3 or for quantum 

gases such as H2.   

 

The required pressure derivative functions and expressions for Cv and Cp based on the Soave 

equation are as follows.   

   

 

 

 

2 2 2

2

2 2

/ /
;

2

V V

T

P R da dT P d a d T

T V b V V b T V V b

a V bP RT

V V b V V b

   
     

       

 
   

      

 

 

From Equation 48 we can now formulate the isochoric heat capacity departure function. 

 

 

2 2 2

2

/
;

V

o o o

V V V P

d a d T T d a V
C C T dV Ln C C R

V V b b d T V b


 
       

  
  
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Then from Equation 50, we obtain the relationship between Cp and Cv. 

 

 

 

   

2

2 2

/

2
P V

R da dT

V b V V b
C C T

a V b RT

V bV V b

 
 

  
 




  

 

 

For a pure component the appropriate expressions for da/dT and da
2
/dT

2
 from the Soave equation 

become, 
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2
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0.5
0.50.5
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c c

C

c
c
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c

T
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T

a mda T T
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a m a md a d d
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



   





   
      

     

     
         

       

   
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
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1

C

d

T d TT T

 



 
 

 

 

 

 

where it is quite clear that d / dT is given by  

 
0.5

C

d m

d T T T

 
   
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Peng-Robinson Equation  Peng and Robinson of the University of Alberta (16) attempted to 

shore up some of the shortcomings of Soave's equation by amending the second term.  They start 

out by writing, 

(84)R AP P P   

 

where the repulsive contribution (PR) to the total pressure is, 

 

R

RT
P

V b



 

 

and the attractive portion (PA) is expressed as, 

 

( )
A

a
P

g V
   

 

The gist of Peng and Robinson's modification lies in the function g(V).  They propose that, 

 

   ( )g V V V b b V b     

 

and therefore, Equation 84 may be written as, 

 

     2 2

( ) ( )
(85)

2

RT a T RT a T
P

V b V bV V b b V b V bV b
   

       

 

 

The term b(V - b) was not present in the original Soave equation.  It was incorporated in order to 

improve the prediction of liquid density and produce a more realistic value for the universal 

critical compressibility factor.  Once again, this equation can be put into the more convenient 

cubic form, explicit in Z. 

   

     3 2 2 2 31 3 2 0 (86)Z B Z A B B Z AB B B          

 

2 2
; ( ) (87)

; 88 ,

aP
where A a a T

R T

bP PV
B Z a b

RT RT

 

   

 
2 20.45724

(89)

0.07780
( ) ; 0.307 (90 , )

C
C c

C

C
C C

C

R T
a T a

P

RT
b T b Z a b

P

 

  

 

 



50 

 

At temperatures other than TC, 
 

 ( ) ( ) , (91)

( ) ( ) , (92)

C R

C c

a T a T T

b T b T b no temperature dependency

 

 

 

 

Using regression techniques with vapor pressure data, in a similar as did Soave, Peng and 

Robinson arrived at the following correlation for (TR,). 
 

 0.5 0.5

2

1 1 (93)

0.37464 1.54226 0.26992 (94)

RT 

  

  

  

 

 

Both the Redlich-Kwong and Soave equations predict a universal ZC of 0.333 whereas the Peng-

Robinson equation yields a value of 0.307.  This is a little more realistic in that the majority of 

hydrocarbons have a ZC value of around 0.270. 

 

Now, for evaluation of the JT coefficient, we need to first calculate the following thermodynamic 

properties directly from the Peng-Robinson equation: 

 

 

   

2 2 2

2 2 2 2 2

2 2
2 2

/ /
;

2 2

2

2

V V

T

P R da dT P d a d T

T V b V bV b T V bV b

a V bP RT

V V bV bV b

   
     

         

 
  

    

 

  

Next the isochoric heat capacity departure for a Peng-Robinson fluid can be formulated from 

Equation 48. 
2

2 2

2 2 2

2

2 2 2 2

V

o

V V

d a

d a d V V b bd T
C C T T Ln

d T V bV b b V b b

  
      

    
  

 

After substitution of the identities b = BRT/P and Z = PV/RT, the above expression assumes its 

final form, 
2 2/ 0.414

2.4142 2

o

V V

o o

V P

d a d T Z B
C C T Ln

Z Bb

where C C R

 
    

 

 

  

 

The value of CP is then readily computed by substituting the above expressions for (P/T)V and 

(P/V)T into Equation 50.  The Peng-Robinson expressions for d a/d T and d
2
a/dT

2
 are the same 

as those used for the Soave equation; however the term ac is now calculated from Equation 89, 

and the term m is replaced by  which in turn is computed via Equation 94. 
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Comparisons for Nitrogen  In Table 3-155, page 3-110, Perry's Handbook (12) lists JT 

coefficient data for gaseous nitrogen over the following ranges of temperature and pressure: 

 

        deg. C      deg. F 

 Temperature  - 150 to 300  - 238 to 572 

 

        Atm        Psia 

 Pressure     1 To 200    14.7 to 2940 

 

Table 4 of our paper here provides a detailed point-by-point comparison
(1)

 between the measured 

JT data for gaseous nitrogen and the corresponding predictions of the four selected cubic 

equations of state.  Table 5 shows the average prediction trends
(1)

 for each level of pressure along 

with the overall average trends for the complete set of 122 data points.  A summary of the overall 

trends is given below:  

 

 Eqn. of State    Avg. Trend, % 

 

 van der Waals          113.8 

 API Soave          -77.7 

 Redlich-Kwong                      29.7 

 Peng-Robinson           39.0 

 

A positive trend indicates that the equation being tested is predicting values of the JT coefficient 

that are too high on the average.  Conversely, an overall negative trend indicates that the 

equation is predicting too low on the average. 

 

The largest error trend of 113.8 percent is given by the VDW equation whereas the Redlich-

Kwong equation produces the smallest average trend of 29.7 percent.  An overall negative trend 

of -77.7 percent is generated from the API Soave equation.  The Peng-Robinson yields about a 

10 percent higher average trend than does the RK equation. 

 

At the lower pressure levels, the experimental JT coefficients tend to decrease or become more 

negative as the temperature is increased.  At the higher pressure levels, say at or above 100 atm, 

the JT coefficients tend to pass through a maximum value with increasing temperature.  All four 

equations of state appear to at least capture this same general behavior. 

 

Comparisons for Gaseous Carbon Dioxide  In Table 3-153a, page 3-109 of Perry's 

Handbook, a total of 59 data points are listed for the JT coefficient of gaseous carbon dioxide.  

The following ranges of temperature and pressure are covered: 

      

          deg. C                            deg. F 

   Temperature  - 50 to 300     - 58 to 572 

 

        Atm                     Psia  

             Pressure               1 to 200       14.7 to 2940             

 

(1) See the bottom of Tables 4 and 5 for the definition of point % deviation and average      

      or overall trend in percent.
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Table 6 lists all of the point-by-point comparisons between experimental and predicted JT 

coefficients.  Table 7 summarizes the average deviation trends by pressure level, and also gives 

the overall error trends for all 59 data points.  The overall error trends for each equation of state 

tested are summarized below: 
 

  Eqn. of State   Avg. Trend, % 
 

  van der Waals            -5.7 

  API Soave            -2.5 

  Redlich-Kwong           -1.7 

  Peng-Robinson             3.9 
 

First of all, we point out that these error trends for carbon dioxide are at least an order of 

magnitude lower than those obtained for nitrogen.  This is quite surprising in that CO2 is a polar 

molecule and N2 is non polar.  Of the four equations tested the Redlich-Kwong generates the 

smallest trend of -1.7 percent, and the van der Waals equation produces the greatest overall trend 

of - 5.7 percent. 

 

The JT coefficients for gaseous CO2 basically follow a similar pattern as does N2 with increasing 

temperature at the various pressure levels.  At the lower pressure levels, the JT coefficients 

continuously decrease or become more negative with increasing temperature.  At the higher 

pressures, values of the JT coefficient exhibit maxima as the temperature is increased.  Both the 

measured and predicted JT coefficients exhibit this general overall behavior. 

  

Comparisons for Liquid Carbon Dioxide  Table 3-153a of Perry's Handbook also lists 20 

measured JT coefficients for liquid CO2 over the temperature range of - 75 to 0 deg. C and 

pressure range 20 to 200 atm.  Table 8 shows all of the point-by-point comparisons between 

predicted and experimental JT coefficients.  Most of the coefficients shown here assume negative 

values.  Therefore, we have expressed each point comparison as an absolute percent deviation, 

namely, 
 

 Pr . .

.

% 100
JT ed JT Exper

JT Exper

Abs Dev ABS
 



 



 
  

  

 

 

As a result, each point percent deviation is always a positive number.  Summarized at the bottom 

of Table 8 are the overall absolute average deviations produced by each equation for the entire 

data set.  They are as follows: 

 

 Eqn. of State   Overall Abs. Avg. Dev, % 

 

 van der Waals                   290.5 

 API Soave                     33.5 

 Redlich-Kwong         36.5 

 Peng-Robinson         34.8 

 

The van der Waals equation produces an overall absolute deviation of nearly 300 percent.  The 

other three equations produce comparable absolute average deviations of around 35 percent on 

the average.  
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Illustration 8  Based on an enthalpy-temperature diagram for ethylene developed from the data 

of York and White (17) and Benzler and Koch (18), the following isenthalpic T-P points were 

read over the pressure range 800 to 15,000 psia: 
 

At H = 1040 Btu/Lb* 
 

  Press., Psia  Temp., deg. F 

        800          52 

                  1000                     62 

       1200          72 

                  1500                     82 

                  2000                     92 

                  2500          96 

                  5000          105 

                 10,000           87 

                 15,000                      58 
 

* The enthalpy datum for this H-T chart is H
o
 = 1000 Btu/Lb in the ideal gas state at a reference 

temperature of 0 deg. R. 
    

We are asked to see if the above data can be fit with reasonable accuracy to an analytical 

equation (T = f(P)).  If such a fit is successful, we are then asked to calculate (predict) the 

inversion point if one exists.  Finally, it is desired to derive values for the JT coefficient from the 

above equation fit. 
 

Figure 20 is a basic plot of the above isenthalpic T-P data.  The plot shows a maximum at 

approximately a pressure slightly below 5000 psia.  We attempted to perform quadratic and 

hyperbolic equation regression fits of this curve with little success. 
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Figure 20. Ethylene Isenthalpic T-P Data. 

 

However, when the data were plotted on a log-log scale, a quadratic equation of the form, 
 

 
2

(95)LnT A Ln P B Ln P C    

 

could successfully be fitted via the method of least-squares.  The plot and resulting equation fit 

are displayed in Figure 21.  The coefficients to Equation 95 turn out to be 
 

    A = -0.2946    ;      B = 4.861      ;      C = - 15.392 



54 
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Figure 21. Ethylene Isenthalpic T-P Data (Log-Log Scale). 

 

 

Equation 95 predicts the isenthalpic temperatures for all nine data points with an average error 

trend of only - 0.11 percent.  The corresponding expression for the JT coefficient is readily 

derived by differentiating Equation 95 as follows: 

 

 

 

1 1
2

2 ( ) (96)JT

H

d LnT d T B
A Ln P

d P T d P P P

T T
or A Ln P B

P P


  

 
   

 

 

 

 In all of these expressions, the pressure is in units of psia and the temperature in deg. F.  The 

inversion temperature and pressure can be estimated as follows: 

 

First set JT = 0 in Equation 96 and solve for the inversion pressure with the result, 

 

  

2 0

4.861
8.2502

2 2 0.2946

3828.28

A Ln P B

B
or Ln P

A

whereby P Psia

 

    




 

The inversion temperature is readily calculated by substituting the above inversion pressure 

directly back into Equation 95, 

 

 20.2946(8.2502) 4.861 8.2502 15.392

4.66004

105.6 deg. max.

LnT

LnT

T F T

   





  

This represents the inversion temperature which is the maximum temperature on the isenthalpic 

curve.  And finally, we can substitute the observed values of pressure directly into Equation 96 in 

order to generate values for the JT coefficient.     
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These predicted values are summarized below: 

 

     Eqn. 95                             Eqn. 96 

 Press., Psia       Calc. Temp., F.                 JT Coeff, (
o
F/Psia)  

 

      800    51.3          0.0592 

     1000   62.1                                0.0491 

     1200   71.1                                0.0405 

     1500   81.6          0.0300 

     2000   93.3                                0.0178 

     2500             100.1          0.0101 

     5000             103.4                                 - 0.0033 

    10,000    80.5        - 0.0046 

    15,000                          61.0        - 0.0033 

 

Figure 22 shows the plot of these predicted JT coefficients against pressure. 
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Figure 22. Calculated JT Coefficients for C2H4. 
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Appendix of Tables 
 

Table 1. Coefficients for Equations 14, 15 and 16 - Ideal Gas Enthalpy, Entropy 
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Table 2. Summary of Approximate Inversion-Curves for Several Components as Reported in 

Perry's Handbook - 6th Edition (1978) Pages 3-107 Through 3-110  (12) 

  Approximate Inversion-Curve Locus for Air

P, bar 0 25 50 75 100 125 150 175 200 225

TL, deg. K 112 114 117 120 124 128 132 137 143 149

TU, deg. K 653 641 629 617 606 594 582 568 555 541

P, bar 250 275 300 325 350 375 400 425 432

TL, deg. K 156 164 173 184 197 212 230 265 300

TU, deg. K 526 509 491 470 445 417 386 345 300

  Approximate Inversion-Curve Locus for Argon

P, bar 0 25 50 75 100 125 150 175 200 225

TL, deg. K 94 97 101 105 109 113 118 123 128 134

TU, deg. K 765 755 744 736 726 716 705 694 683 671

P, bar 250 275 300 325 350 375 400 425 450 475

TL, deg. K 141 148 158 170 183 201 222 248 288 375

TU, deg. K 657 643 627 610 591 569 544 515 478 375

  Approximate Inversion-Curve Locus for Carbon Dioxide

P, bar 50 100 150 200 250 300 350 400 450

TL, deg. K 243 251 258 266 272 283 293 302 312

TU, deg. K 1290 1261 1233 1205 1175 1146 1146 1076 1045

P, bar 500 550 600 650 700 750 800 850 884

TL, deg. K 325 338 351 365 383 403 441 496 608

TU, deg. K 1015 983 950 914 878 840 796 739 608

  Approximate Inversion-Curve Locus for Deuterium

P, bar 0 25 50 75 100 125 150 175 194

TL, deg. K 31 34 38 43 49 56 65 77 108

TU, deg. K 216 202 189 178 168 157 146 131 108
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Table 2 (Cont). Summary of Approximate Inversion-Curves for Several Components as Reported in 

Perry's Handbook - 6th Edition (1978) Pages 3-107 Through 3-110  (12) 

  Approximate Inversion-Curve Locus for Normal Hydrogen

P, bar 0 25 50 75 100 125 150 164

TL, deg. K 28 32 38 44 52 61 73 92

TU, deg. K 202 193 183 171 157 141 119 92

  Approximate Inversion-Curve Locus for Methane

P, bar 25 50 75 100 125 150 175 200 225 250 275 300

TL, deg. K - 161 166 172 176 182 189 195 202 209 217 225

P, bar 325 350 375 400 425 450 475 500 525 534

TL, deg. K 234 243 254 265 277 292 309 331 365 400

TU, deg. K - - - - - - 505 474 437 400

  Approximate Inversion-Curve Locus for Ethane

Lower Inversion Curve Only

P, bar 0 25 50 75 100 125 150 175 200 225

TL, deg. K - 249 255 262 269 275 282 290 297 306

P, bar 250 275 300 325 350 375 400 425 450 475

TL, deg. K 315 325 335 345 357 370 383 398 415 432

P, bar 500 525 550 575 600

TL, deg. K 453 477 505 545 626

  Approximate Inversion-Curve Locus for Propane

Lower Inversion Curve Only

P, bar 0 25 50 75 100 125 150 175 200 225 250 275

TL, deg. K 296 303 311 318 327 336 345 355 365 374 389 403

P, bar 300 325 350 375 400 425 450 475 500 525 541

TL, deg. K 418 435 452 473 495 521 551 586 628 686 780
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Table 3. Critical Constants for Inversion Curve Components. 

Critical Pressure Critical Temperature Acentric

Psia Bars deg. F deg. K Factor

Hydrogen* 188.2 12.98 -399.8 33.28 0.00

Argon 705.6 48.65 -188.4 150.72 0.00

Nitrogen 493 33.99 -232.4 126.28 0.045

Oxygen 737.1 50.82 -181.1 154.78 0.019

Air** 544.3 37.52 -221.6 132.26 0.040

Carbon Dioxide 1070.6 73.81 87.9 304.22 0.231

Methane 667.8 46.04 -116.6 190.61 0.0104

Ethane 707.8 48.80 90.1 305.44 0.0986

Propane 616.3 42.49 206.0 369.83 0.1524

* Classical Critical Constants

** Composition of air is assumed to be 79 vol % N2/ 21 vol % O2

Component
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Table 4. Comparison of Predicted and Experimental Joule-Thomson Coefficients for Gaseous Nitrogen. 

Predicted Predicted Predicted Predicted

Measured* Measured* JT Coeff. JT Coeff. JT Coeff. JT Coff.

Temp. Temp. Press. Press. JT Coeff. JT Coeff. Orig. VDW Eqn. API Soave Redlich-Kwong Peng-Robinson

deg. C deg. F Atm Psia deg. C/Atm deg. F/Psia deg. F/Psia % Dev** deg. F/Psia % Dev** deg. F/Psia % Dev** deg. F/Psia % Dev**

-150 -238 1 14.7 1.2659 0.1551 0.0980 -36.8 0.1373 -11.4 0.1345 -13.3 0.1416 -8.7

-125 -193 1 14.7 0.8557 0.1048 0.0785 -25.1 0.1031 -1.6 0.0991 -5.4 0.1083 3.3

-100 -148 1 14.7 0.6490 0.0795 0.0647 -18.6 0.0798 0.4 0.0761 -4.3 0.0855 7.6

-75 -103 1 14.7 0.5033 0.0616 0.0545 -11.6 0.0629 2.0 0.0601 -2.5 0.0690 11.9

-50 -58 1 14.7 0.3968 0.0486 0.0465 -4.3 0.0502 3.3 0.0485 -0.2 0.0564 16.0

-25 -13 1 14.7 0.3224 0.0395 0.0401 1.5 0.0404 2.3 0.0397 0.5 0.0467 18.3

0 32 1 14.7 0.2656 0.0325 0.0349 7.3 0.0326 0.2 0.0328 0.8 0.0389 19.6

25 77 1 14.7 0.2217 0.0272 0.0306 12.7 0.0263 -3.1 0.0273 0.5 0.0325 19.7

50 122 1 14.7 0.1855 0.0227 0.0269 18.4 0.0211 -7.1 0.0229 0.8 0.0272 19.7

75 167 1 14.7 0.1555 0.0190 0.0238 25.0 0.0168 -11.8 0.0192 0.8 0.0229 20.2

100 212 1 14.7 0.1292 0.0158 0.0210 32.7 0.0132 -16.6 0.0162 2.4 0.0191 20.7

125 257 1 14.7 0.1070 0.0131 0.0186 41.9 0.0101 -22.9 0.0136 3.8 0.0159 21.3

150 302 1 14.7 0.0868 0.0106 0.0165 55.2 0.00745 -29.9 0.0114 7.2 0.0131 23.2

200 392 1 14.7 0.0558 0.0068 0.0130 90.2 0.00322 -52.9 0.00784 14.7 0.00864 26.4

250 482 1 14.7 0.0331 0.0041 0.0101 149.1 0.0000234 -99.4 0.00514 26.8 0.00519 28.0

300 572 1 14.7 0.0140 0.0017 0.00775 352.0 -0.00243 -241.7 0.00303 76.7 0.00249 45.2

N = 16 Avg. Trend, % = 43.1 -30.6 6.8 18.3

-150 -238 20 294 1.1246 0.1377 0.1259 -8.6 0.1461 6.1 0.1421 3.2 0.1491 8.2

-125 -193 20 294 0.7948 0.0973 0.0873 -10.3 0.0997 2.4 0.0966 -0.8 0.1038 6.6

-100 -148 20 294 0.5958 0.0730 0.0677 -7.2 0.0746 2.2 0.0721 -1.2 0.0792 8.5

-75 -103 20 294 0.4671 0.0572 0.0551 -3.7 0.0580 1.4 0.0563 -1.6 0.0630 10.1

-50 -58 20 294 0.3734 0.0457 0.0461 0.8 0.0460 0.6 0.0451 -1.4 0.0512 11.9

-25 -13 20 294 0.3013 0.0369 0.0393 6.5 0.0369 0.0 0.0368 -0.3 0.0423 14.6

0 32 20 294 0.2494 0.0305 0.0339 11.0 0.0297 -2.8 0.0304 -0.5 0.0352 15.2

25 77 20 294 0.2060 0.0252 0.0295 16.9 0.0239 -5.3 0.0253 0.3 0.0294 16.5

50 122 20 294 0.1709 0.0209 0.0258 23.3 0.0192 -8.3 0.0211 0.8 0.0246 17.5

75 167 20 294 0.1421 0.0174 0.0227 30.4 0.0152 -12.7 0.0177 1.7 0.0206 18.4

100 212 20 294 0.1173 0.0144 0.0200 39.2 0.0119 -17.2 0.0149 3.7 0.0172 19.7

125 257 20 294 0.0973 0.0119 0.0176 47.7 0.00901 -24.4 0.0125 4.9 0.0143 20.0

150 302 20 294 0.0776 0.0095 0.0156 64.1 0.00657 -30.9 0.0104 9.4 0.0118 24.2

200 392 20 294 0.0472 0.0058 0.0122 111.0 0.00262 -54.7 0.00707 22.3 0.00768 32.8

250 482 20 294 0.0256 0.0031 0.0094 199.8 -0.000389 -112.4 0.00452 44.2 0.00448 42.9

300 572 20 294 0.0096 0.0012 0.0071 503.8 -0.00271 -330.5 0.00253 115.2 0.00197 67.5

N = 16 Avg. Trend, % = 64.0 -36.6 12.5 20.9
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Table 4 (Cont.). Comparison of Predicted and Experimental Joule-Thomson Coefficients for Gaseous Nitrogen. 

 

-125 -193 33.5 492 0.7025 0.0860 0.0931 8.2 0.0927 7.7 0.0908 5.5 0.0953 10.8

-100 -148 33.5 492 0.5494 0.0673 0.0688 2.2 0.0693 3.0 0.0678 0.8 0.0730 8.5

-75 -103 33.5 492 0.4318 0.0529 0.0548 3.6 0.0539 1.9 0.0529 0.0 0.0581 9.9

-50 -58 33.5 492 0.3467 0.0425 0.0453 6.7 0.0428 0.8 0.0424 -0.2 0.0474 11.6

-25 -13 33.5 492 0.2854 0.0350 0.0383 9.6 0.0344 -1.6 0.0346 -1.0 0.0391 11.9

0 32 33.5 492 0.2377 0.0291 0.0329 13.0 0.0277 -4.9 0.0286 -1.8 0.0326 12.0

25 77 33.5 492 0.1961 0.0240 0.0285 18.7 0.0223 -7.2 0.0238 -0.9 0.0273 13.7

50 122 33.5 492 0.1621 0.0199 0.0249 25.4 0.0179 -9.8 0.0199 0.2 0.0229 15.3

75 167 33.5 492 0.1336 0.0164 0.0218 33.2 0.0141 -13.8 0.0167 2.1 0.0192 17.3

100 212 33.5 492 0.1100 0.0135 0.0192 42.5 0.01098 -18.5 0.0140 3.9 0.0160 18.8

125 257 33.5 492 0.0904 0.0111 0.0169 52.6 0.00829 -25.1 0.0117 5.7 0.0133 20.1

150 302 33.5 492 0.0734 0.0090 0.0149 65.7 0.00597 -33.6 0.00971 8.0 0.0109 21.2

200 392 33.5 492 0.0430 0.0053 0.0116 120.3 0.00221 -58.0 0.00654 24.2 0.00704 33.7

250 482 33.5 492 0.0230 0.0028 0.00888 215.2 -0.000667 -123.7 0.00410 45.5 0.00401 42.3

300 572 33.5 492 0.0050 0.00061 0.00669 992.4 -0.00290 -573.5 0.00219 257.6 0.00162 164.5

N=15 Avg. Trend, % = 107.3 -57.1 23.3 27.4

* Table 264, Smithsonian Physical Tables, 9th rev. ed., Washington, DC, 1954.

** % Dev. = 100*(JT-pred - JT-meas)/JT-meas
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Table 4 (Cont.). Comparison of Predicted and Experimental Joule-Thomson Coefficients for Gaseous Nitrogen. 

 

Predicted Predicted Predicted Predicted

Measured* Measured* JT Coeff. JT Coeff. JT Coeff. JT Coeff.

Temp. Temp. Press. Press. JT Coeff. JT Coeff. Orig. VDW Eqn. API Soave Redlich-Kwong Peng-Robinson

deg. C deg. F Atm Psia deg. C/Atm deg. F/Psia deg. F/Psia % Dev** deg. F/Psia % Dev** deg. F/Psia % Dev** deg. F/Psia % Dev**

-125 -193 60 882 0.4940 0.0605 0.0558 -7.8 0.0578 -4.5 0.0570 -5.8 0.0581 -4.0

-100 -148 60 882 0.4506 0.0552 0.0620 12.3 0.0550 -0.3 0.0547 -0.9 0.0568 2.9

-75 -103 60 882 0.3712 0.0455 0.0505 11.1 0.0448 -1.5 0.0447 -1.7 0.0476 4.7

-50 -58 60 882 0.3059 0.0375 0.0418 11.6 0.0363 -3.1 0.0365 -2.6 0.0396 5.7

-25 -13 60 882 0.2528 0.0310 0.0353 14.0 0.0294 -5.0 0.0301 -2.8 0.0331 6.9

0 32 60 882 0.2088 0.0256 0.0302 18.1 0.0238 -6.9 0.0250 -2.2 0.0278 8.7

25 77 60 882 0.1729 0.0212 0.0261 23.2 0.0193 -8.9 0.0208 -1.8 0.0234 10.5

50 122 60 882 0.1449 0.0177 0.0227 27.9 0.0154 -13.2 0.0174 -2.0 0.0197 11.0

75 167 60 882 0.1191 0.0146 0.0199 36.4 0.0122 -16.4 0.0146 0.1 0.0165 13.1

100 212 60 882 0.0975 0.0119 0.0174 45.7 0.00937 -21.5 0.0122 2.2 0.0138 15.6

125 257 60 882 0.0786 0.0096 0.0153 58.9 0.00696 -27.7 0.0102 6.0 0.0114 18.4

150 302 60 882 0.0628 0.0077 0.0135 75.5 0.00488 -36.6 0.00840 9.2 0.00933 21.3

200 392 60 882 0.0372 0.0046 0.0103 126.1 0.00146 -68.0 0.00552 21.1 0.00588 29.1

250 482 60 882 0.0160 0.0020 0.00785 300.6 -0.00118 -160.2 0.00330 68.4 0.00315 60.7

300 572 60 882 -0.0013 -0.00016 0.00580 3724.5 -0.00325 -1931.7 0.00155 1068.3 0.000972 707.0

N = 15 Avg. Trend, % = 298.5 -153.7 77.0 60.8

-125 -193 100 1470 0.1314 0.01609 0.00884 -45.1 0.0189 17.4 0.0173 7.5 0.0195 21.2

-100 -148 100 1470 0.2754 0.03373 0.02604 -22.8 0.0315 -6.6 0.0303 -10.2 0.0322 -4.5

-75 -103 100 1470 0.2682 0.03285 0.03272 -0.4 0.0309 -5.9 0.0305 -7.2 0.0323 -1.7

-50 -58 100 1470 0.2332 0.02856 0.03120 9.2 0.0268 -6.2 0.0270 -5.5 0.0289 1.2

-25 -13 100 1470 0.2001 0.02451 0.02785 13.6 0.0225 -8.2 0.0231 -5.7 0.0251 2.4

0 32 100 1470 0.1679 0.02056 0.02448 19.0 0.0186 -9.6 0.0196 -4.7 0.0215 4.5

25 77 100 1470 0.1400 0.01715 0.02147 25.2 0.0151 -11.9 0.0166 -3.2 0.0183 6.7

50 122 100 1470 0.1164 0.01426 0.01882 32.0 0.0121 -15.1 0.0139 -2.5 0.0155 8.7

75 167 100 1470 0.0941 0.01153 0.01652 43.3 0.00949 -17.7 0.0117 1.5 0.0131 13.7

100 212 100 1470 0.0768 0.00941 0.01450 54.1 0.00720 -23.5 0.00972 3.3 0.0109 15.9

125 257 100 1470 0.0621 0.00761 0.01271 67.1 0.00518 -31.9 0.00802 5.4 0.00896 17.8

150 302 100 1470 0.0482 0.00590 0.01113 88.5 0.00341 -42.2 0.00654 10.8 0.00724 22.6

200 392 100 1470 0.0262 0.00321 0.008449 163.3 0.000455 -85.8 0.00410 27.8 0.00434 35.2

250 482 100 1470 0.0071 0.00087 0.006265 620.4 -0.00188 -316.2 0.00217 149.5 0.00201 131.1

300 572 100 1470 -0.0075 -0.00092 0.004458 584.4 -0.00373 -305.6 0.000640 169.4 0.000112 112.0

N=15 Avg. Trend, % = 110.1 -57.9 22.4 25.8
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Table 4 (Cont.). Comparison of Predicted and Experimental Joule-Thomson Coefficients for Gaseous Nitrogen. 

 

-125 -193 140 2057 0.0498 0.00610 -0.00125 -120.5 0.00845 38.5 0.00720 18.0 0.00910 49.2

-100 -148 140 2057 0.1373 0.01682 0.007220 -57.1 0.0169 0.5 0.0153 -9.0 0.0176 4.7

-75 -103 140 2057 0.1735 0.02125 0.01474 -30.6 0.0199 -6.4 0.0189 -11.1 0.0209 -1.7

-50 -58 140 2057 0.1676 0.02053 0.01826 -11.0 0.0190 -7.4 0.0186 -9.4 0.0204 -0.6

-25 -13 140 2057 0.1506 0.01845 0.01864 1.1 0.0167 -9.5 0.0169 -8.4 0.0185 0.3

0 32 140 2057 0.1316 0.01612 0.01760 9.2 0.0141 -12.5 0.0148 -8.2 0.0163 1.1

25 77 140 2057 0.1105 0.01353 0.01607 18.7 0.0116 -14.3 0.0127 -6.2 0.0141 4.2

50 122 140 2057 0.0915 0.01121 0.01443 28.8 0.00931 -16.9 0.0107 -4.5 0.0121 8.0

75 167 140 2057 0.0740 0.00906 0.01283 41.6 0.00721 -20.5 0.00901 -0.6 0.0102 12.5

100 212 140 2057 0.0582 0.00713 0.01134 59.1 0.00533 -25.2 0.00746 4.7 0.00846 18.7

125 257 140 2057 0.0459 0.00562 0.009969 77.3 0.00365 -35.1 0.00608 8.1 0.00690 22.7

150 302 140 2057 0.0348 0.00426 0.008712 104.4 0.00214 -49.8 0.00486 14.0 0.00548 28.6

200 392 140 2057 0.0168 0.00206 0.006514 216.6 -0.000428 -120.8 0.00280 36.1 0.00304 47.7

250 482 140 2057 0.0009 0.00011 0.004674 4140.1 -0.00249 -2358.8 0.00114 934.2 0.00103 834.4

300 572 140 2057 -0.0129 -0.00158 0.003122 297.6 -0.00416 -163.3 -0.000193 87.8 -0.000634 59.9

N = 15 Avg. Trend, % = 318.3 -186.8 69.7 72.6

* Table 264, Smithsonian Physical Tables, 9th rev. ed., Washington, DC, 1954.

** % Dev. = 100*(JT-pred - JT-meas)/JT-meas
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Table 4 (Cont.). Comparison of Predicted and Experimental Joule-Thomson Coefficients. 

 

Predicted Predicted Predicted Predicted

Measured* Measured* JT Coeff. JT Coeff. JT Coeff. JT Coff.

Temp. Temp. Press. Press. JT Coeff. JT Coeff. Orig. VDW Eqn. API Soave Redlich-Kwong Peng-Robinson

deg. C deg. F Atm Psia deg. C/Atm deg. F/Psia deg. F/Psia % Dev** deg. F/Psia % Dev** deg. F/Psia % Dev** deg. F/Psia % Dev**

-125 -193 180 2645 0.0167 0.0020 -0.005678 -377.6 0.00385 88.2 0.00288 40.8 0.00451 120.5

-100 -148 180 2645 0.0765 0.0094 -0.0006752 -107.2 0.00935 -0.2 0.00782 -16.5 0.0101 7.8

-75 -103 180 2645 0.1026 0.0126 0.004486 -64.3 0.0125 -0.5 0.0112 -10.9 0.0134 6.6

-50 -58 180 2645 0.1120 0.0137 0.008362 -39.0 0.0130 -5.2 0.0122 -11.1 0.0142 3.5

-25 -13 180 2645 0.1101 0.0135 0.01039 -23.0 0.0120 -11.0 0.0117 -13.2 0.0135 0.1

0 32 180 2645 0.1015 0.0124 0.01097 -11.8 0.0104 -16.3 0.0106 -14.7 0.0122 -1.9

25 77 180 2645 0.0874 0.0107 0.01070 0.0 0.00868 -18.9 0.00930 -13.1 0.0108 0.9

50 122 180 2645 0.0732 0.0090 0.01001 11.6 0.00693 -22.7 0.00794 -11.4 0.00925 3.2

75 167 180 2645 0.0583 0.0071 0.009125 27.8 0.00527 -26.2 0.00665 -6.9 0.00780 9.2

100 212 180 2645 0.0462 0.0057 0.008174 44.5 0.00373 -34.1 0.00544 -3.9 0.00643 13.6

125 257 180 2645 0.0347 0.0043 0.007221 69.9 0.00231 -45.6 0.00434 2.1 0.00516 21.4

150 302 180 2645 0.0248 0.0030 0.006300 107.4 0.00103 -66.1 0.00334 10.0 0.00398 31.0

200 392 180 2645 0.0094 0.0012 0.004600 299.5 -0.00120 -204.2 0.00162 40.7 0.00191 65.9

250 482 180 2645 -0.0037 -0.0005 0.003108 712.2 -0.00304 -517.4 0.000204 131.4 0.000174 125.4

300 572 180 2645 -0.0160 -0.0020 0.001813 188.6 -0.00454 -129.0 -0.000957 50.1 -0.00129 33.5

N = 15 Avg. Trend, % = 55.9 -67.3 11.6 29.4

-125 -193 200 2939 0.0032 0.0004 -0.00708 -1906.4 0.00239 509.8 0.00154 292.9 0.00305 678.2

-100 -148 200 2939 0.0587 0.0072 -0.003034 -142.2 0.00694 -3.5 0.00549 -23.6 0.00771 7.2

-75 -103 200 2939 0.0800 0.0098 0.001247 -87.3 0.00990 1.0 0.00846 -13.7 0.0108 10.2

-50 -58 200 2939 0.0906 0.0111 0.004796 -56.8 0.0107 -3.6 0.00968 -12.8 0.0118 6.3

-25 -13 200 2939 0.0932 0.0114 0.007036 -38.4 0.0101 -11.5 0.00960 -15.9 0.0115 0.7

0 32 200 2939 0.0891 0.0109 0.008058 -26.2 0.00889 -18.5 0.00885 -18.9 0.0105 -3.8

25 77 200 2939 0.0779 0.0095 0.008240 -13.6 0.00741 -22.3 0.00782 -18.0 0.00932 -2.3

50 122 200 2939 0.0666 0.0082 0.007928 -2.8 0.00589 -27.8 0.00669 -18.0 0.00804 -1.4

75 167 200 2939 0.0543 0.0067 0.007351 10.5 0.00441 -33.7 0.00558 -16.1 0.00676 1.6

100 212 200 2939 0.0419 0.0051 0.006645 29.5 0.00301 -41.3 0.00453 -11.7 0.00554 7.9

125 257 200 2939 0.0326 0.0040 0.005890 47.5 0.00172 -56.9 0.00355 -11.1 0.00439 9.9

150 302 200 2939 0.0228 0.0028 0.005127 83.6 0.000527 -81.1 0.00265 -5.1 0.00332 18.9

200 392 200 2939 0.0070 0.0009 0.003666 327.6 -0.00156 -282.0 0.00107 24.8 0.00141 64.5

250 482 200 2939 -0.0058 -0.0007 0.002344 436.3 -0.00329 -368.5 -0.000232 68.3 -0.000210 71.5

300 572 200 2939 -0.0171 -0.0021 0.001174 155.6 -0.00472 -125.0 -0.00131 37.4 -0.00158 24.5

N = 15 Avg. Trend, % = -78.9 -37.7 17.2 59.6

* Table 264 Smithsonian Physical Tables, 9th rev. ed., Washington DC, 1954.

** % Dev. = 100*(JT-pred - JT-meas)/JT-meas
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Table 5. Summary of Overall Comparisons of the Experimental and Predicted  

Joule-Thomson Coefficients for Gaseous Nitrogen. 

 

Orig. VDW Eqn. API Soave Redlich-Kwong Peng-Robinson

No. of Pts. Temp. Range Pressure % Trend* % Trend* % Trend* % Trend*

Compared deg. F Psia in the JT Coeff. in the JT Coeff. in the JT Coeff. in the JT Coeff.

16 minus 238 to 572 14.7 43.1 -30.6 6.8 18.3

16 minus 238 to 572 294 64.0 -36.6 12.5 20.9

15 minus 193 to 572 492 107.3 -57.1 23.3 27.4

15 minus 193 to 572 882 298.5 -153.7 77.0 60.8

15 minus 193 to 572 1470 110.1 -57.9 22.4 25.8

15 minus 193 to 572 2057 318.3 -186.8 69.7 72.6

15 minus 193 to 572 2645 55.9 -67.3 11.6 29.4

15 minus 193 to 572 2939 -78.9 -37.7 17.2 59.6

122 113.8 -77.7 29.7 39.0

* % Trend = Sum (% Dev)/N   where % Dev = 100*(JT-pred. - JT-meas.)/JT-meas.

Data Source: "Smithsonian Physical Tables" Washington D.C. (1954).
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Table 6. Comparison of Predicted and Experimental Joule-Thomson Coefficients for Gaseous Carbon Dioxide 

 

Predicted Predicted Predicted Predicted

Measured* Measured* JT Coeff. JT Coeff. JT Coeff. JT Coeff.

Temp. Temp. Press. Press. JT Coeff. JT Coeff. Orig. VDW Eqn. API Soave Redlich-Kwong Peng-Robinson

deg. C deg. F Atm Psia deg. C/Atm deg. F/Psia deg. F/Psia % Dev ** deg. F/Psia % Dev ** deg. F/Psia % Dev ** deg. F/Psia % Dev **

-50 -58 1 14.7 2.4130 0.2955 0.1303 -55.9 0.2336 -20.9 0.2047 -30.7 0.2359 -20.2

0 32 1 14.7 1.2900 0.1580 0.0965 -38.9 0.1587 0.5 0.1382 -12.5 0.1626 2.9

50 122 1 14.7 0.8950 0.1096 0.07467 -31.9 0.1129 3.0 0.0991 -9.6 0.1175 7.2

100 212 1 14.7 0.6490 0.0795 0.0596 -25.0 0.0828 4.2 0.0741 -6.8 0.0877 10.4

125 257 1 14.7 0.5600 0.0686 0.0538 -21.5 0.0716 4.4 0.0649 -5.4 0.0765 11.6

150 302 1 14.7 0.4890 0.0599 0.0488 -18.5 0.0621 3.7 0.0572 -4.5 0.0670 11.9

200 392 1 14.7 0.3770 0.0462 0.0407 -11.8 0.0473 2.5 0.0452 -2.1 0.0521 12.9

250 482 1 14.7 0.3075 0.0377 0.0344 -8.6 0.0363 -3.6 0.0364 -3.3 0.0410 8.9

300 572 1 14.7 0.2650 0.0324 0.0295 -9.1 0.0280 -13.7 0.0298 -8.2 0.0326 0.5

N = 9 Avg. Trend, % = -24.6 -2.2 -9.2 5.1

0 32 20 294 1.4020 0.1717 0.1122 -34.6 0.1710 -0.4 0.1511 -12.0 0.1747 1.8

50 122 20 294 0.8950 0.1096 0.0815 -25.6 0.1144 4.4 0.1026 -6.4 0.1186 8.2

100 212 20 294 0.6375 0.0781 0.0629 -19.4 0.0817 4.7 0.0748 -4.2 0.0861 10.3

125 257 20 294 0.5450 0.0667 0.0561 -15.9 0.0700 4.9 0.0650 -2.6 0.0745 11.6

150 302 20 294 0.4695 0.0575 0.0504 -12.3 0.0604 5.1 0.0569 -1.0 0.0649 12.9

200 392 20 294 0.3575 0.0438 0.0414 -5.4 0.0457 4.4 0.0446 1.9 0.0501 14.4

250 482 20 294 0.2885 0.0353 0.0347 -1.8 0.0349 -1.2 0.0357 1.1 0.0393 11.2

300 572 20 294 0.2425 0.0297 0.0295 -0.7 0.0269 -9.4 0.0291 -2.0 0.0311 4.7

N = 8 Avg. Trend, % = -14.5 1.5 -3.2 9.4

50 122 60 882 0.8800 0.1078 0.1042 -3.3 0.1115 3.5 0.1091 1.2 0.1138 5.6

100 212 60 882 0.6080 0.0744 0.0707 -5.0 0.0766 2.9 0.0746 0.2 0.0797 7.1

125 257 60 882 0.5160 0.0632 0.0610 -3.5 0.0650 2.9 0.0637 0.8 0.0683 8.1

150 302 60 882 0.4430 0.0542 0.0535 -1.4 0.0557 2.7 0.0552 1.8 0.0592 9.1

200 392 60 882 0.3400 0.0416 0.0426 2.3 0.0418 0.4 0.0427 2.6 0.0454 9.0

250 482 60 882 0.2625 0.0321 0.0350 8.9 0.0318 -1.1 0.0339 5.5 0.0355 10.4

300 572 60 882 0.2080 0.0255 0.0293 15.0 0.0245 -3.8 0.0275 8.0 0.0281 10.3

N = 7 Avg. Trend, % = 1.9 1.1 2.9 8.5

50 122 73 1073.1 0.8225 0.1007 0.1149 14.1 0.1053 4.6 0.1080 7.2 0.1065 5.7

100 212 73 1073.1 0.5920 0.0725 0.0732 1.0 0.0738 1.8 0.0735 1.4 0.0765 5.5

125 257 73 1073.1 0.5068 0.0621 0.0624 0.6 0.0628 1.2 0.0627 1.0 0.0657 5.9

150 302 73 1073.1 0.4380 0.0536 0.0543 1.2 0.0539 0.5 0.0542 1.1 0.0570 6.3

200 392 73 1073.1 0.3325 0.0407 0.0427 4.9 0.0404 -0.8 0.0418 2.7 0.0437 7.3

250 482 73 1073.1 0.2565 0.0314 0.0349 11.1 0.0308 -1.9 0.0332 5.7 0.0342 8.9

300 572 73 1073.1 0.2002 0.0245 0.0291 18.7 0.0237 -3.3 0.0269 9.7 0.0271 10.5

N = 7 Avg. Trend, % = 7.4 0.3 4.1 7.2

* Table 266 "Smithsonian Physical Tables," 9th rev. ed., Washington, D.C. 1954.

** % Dev = 100*(JT-pred. - JT-meas.)/JT-meas.
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Table 6 (Cont.). Comparison of Predicted and Experimental Joule-Thomson Coefficients for Gaseous Carbon Dioxide 

 

Predicted Predicted Predicted Predicted

Measured* Measured* JT Coeff. JT Coeff. JT Coeff. JT Coeff.

Temp. Temp. Press. Press. JT Coeff. JT Coeff. Orig. VDW Eqn. API Soave Redlich-Kwong Peng-Robinson

deg. C deg. F Atm Psia deg. C/Atm deg. F/Psia deg. F/Psia % Dev ** deg. F/Psia % Dev ** deg. F/Psia % Dev ** deg. F/Psia % Dev **

50 122 100 1470 0.5570 0.0682 0.0567 -16.9 0.0659 -3.4 0.0646 -5.3 0.0658 -3.5

100 212 100 1470 0.5405 0.0662 0.0755 14.1 0.0661 -0.1 0.0686 3.7 0.0677 2.3

125 257 100 1470 0.4750 0.0582 0.0636 9.3 0.0572 -1.7 0.0591 1.6 0.0592 1.8

150 302 100 1470 0.4155 0.0509 0.0548 7.7 0.0494 -2.9 0.0513 0.8 0.0518 1.8

200 392 100 1470 0.3150 0.0386 0.0425 10.2 0.0374 -3.0 0.0397 2.9 0.0402 4.2

250 482 100 1470 0.2420 0.0296 0.0344 16.1 0.0286 -3.5 0.0315 6.3 0.0316 6.6

300 572 100 1470 0.1872 0.0229 0.0286 24.8 0.0220 -4.0 0.0255 11.2 0.0251 9.5

N = 7 Avg. Trend, % = 9.3 -2.7 3.0 3.2

50 122 140 2058 0.1720 0.0211 0.0155 -26.4 0.0243 15.4 0.0220 4.5 0.0246 16.8

100 212 140 2058 0.4320 0.0529 0.0530 0.2 0.0505 -4.5 0.0522 -1.3 0.0511 -3.4

125 257 140 2058 0.4130 0.0506 0.0548 8.4 0.0470 -7.1 0.0494 -2.3 0.0480 -5.1

150 302 140 2058 0.3760 0.0460 0.0502 9.0 0.0420 -8.8 0.0446 -3.1 0.0435 -5.5

200 392 140 2058 0.2890 0.0354 0.0402 13.6 0.0328 -7.3 0.0356 0.6 0.0349 -1.4

250 482 140 2058 0.2235 0.0274 0.0326 19.1 0.0254 -7.2 0.0286 4.5 0.0278 1.6

300 572 140 2058 0.1700 0.0208 0.0271 30.2 0.0197 -5.4 0.0233 11.9 0.0223 7.1

N = 7 Avg. Trend, % = 7.7 -3.6 2.1 1.4

50 122 180 2646 0.1025 0.0126 0.00536 -57.3 0.0143 13.9 0.0122 -2.8 0.0147 17.1

100 212 180 2646 0.3000 0.0367 0.0245 -33.3 0.0351 -4.5 0.0330 -10.2 0.0354 -3.6

125 257 180 2646 0.3230 0.0396 0.0335 -15.3 0.0364 -8.0 0.0367 -7.2 0.0370 -6.4

150 302 180 2646 0.3102 0.0380 0.0371 -2.3 0.0344 -9.4 0.0359 -5.5 0.0353 -7.1

200 392 180 2646 0.2600 0.0318 0.0345 8.4 0.0282 -11.4 0.0307 -3.6 0.0297 -6.7

250 482 180 2646 0.2045 0.0250 0.0293 17.0 0.0223 -10.9 0.0254 1.4 0.0243 -3.0

300 572 180 2646 0.1540 0.0189 0.0248 31.5 0.0175 -7.2 0.0210 11.4 0.0197 4.5

N = 7 Avg. Trend, % = -7.3 -5.4 -2.3 -0.7

50 122 200 2940 0.0930 0.0114 0.00257 -77.4 0.0116 1.9 0.00956 -16.1 0.0120 5.4

100 212 200 2940 0.2555 0.0313 0.0168 -46.3 0.0290 -7.3 0.0260 -16.9 0.0294 -6.0

125 257 200 2940 0.2915 0.0357 0.0246 -31.1 0.0316 -11.5 0.0307 -14.0 0.0321 -10.1

150 302 200 2940 0.2910 0.0356 0.0297 -16.6 0.0308 -13.6 0.0315 -11.6 0.0316 -11.3

200 392 200 2940 0.2455 0.0301 0.0307 2.1 0.0260 -13.5 0.0281 -6.5 0.0273 -9.2

250 482 200 2940 0.1975 0.0242 0.0272 12.5 0.0209 -13.6 0.0237 -2.0 0.0226 -6.5

300 572 200 2940 0.1505 0.0184 0.0234 27.0 0.0164 -11.0 0.0197 6.9 0.0185 0.4

N = 7 Avg. Trend, % = -18.6 -9.8 -8.6 -5.3

* Table 266 "Smithsonian Physical Tables," 9th rev. ed., Washington, D.C. 1954. ** % Dev = 100*(JT-pred - JT-meas)/JT-meas
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Table 7. Summary of Overall Comparisons of the Experimental and Predicted  

Joule-Thomson Coefficients for Gaseous Carbon Dioxide. 

 

Orig. VDW Eqn. API Soave Redlich-Kwong Peng-Robinson

No. of Pts. Temp. Range Pressure % Trend* % Trend* % Trend* % Trend*

Compared deg. F Psia in the JT Coeff. in the JT Coeff. in the JT Coeff. in the JT Coeff.

9 minus 58 to 572 14.7 -24.6 -2.2 -9.2 5.1

8 32 to 572 294 -14.5 1.5 -3.2 9.4

7 122 to 572 882 1.9 1.1 2.9 8.5

7 122 to 572 1073.1 7.4 0.3 4.1 7.2

7 122 to 572 1470 9.3 -2.7 3.0 3.2

7 122 to 572 2058 7.7 -3.6 2.1 1.4

7 122 to 572 2646 -7.3 -5.4 -2.3 0.7

7 122 to 572 2940 -18.6 -9.8 -8.6 -5.3

59 -5.7 -2.5 -1.7 3.9

* % Trend = Sum (% Dev)/N   where % Dev = 100*(JT-pred. - JT-meas.)/JT-meas.

Data Source: "Smithsonian Physical Tables" Washington D.C. (1954).
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Table 8. Comparison of Predicted and Experimental Joule-Thomson Coefficients for Liquid Carbon Dioxide. 

 

Predicted Predicted Predicted Predicted

Measured* Measured* JT Coeff. JT Coeff. JT Coeff. JT Coeff.

Temp. Temp. Press. Press. JT Coeff. JT Coeff. Orig. VDW Eqn. Abs API Soave Abs Redlich-Kwong Abs Peng-Robinson Abs

deg. C deg. F Atm Psia deg. C/Atm deg. F/Psia deg. F/Psia % Dev ** deg. F/Psia % Dev ** deg. F/Psia % Dev ** deg. F/Psia % Dev **

-75 -103 20 294 -0.0200 -0.0024 -0.00859 250.8 -0.00285 16.4 -0.0023 6.1 -0.00278 13.5

-50 -58 20 294 -0.0140 -0.0017 -0.00378 120.5 -0.00115 32.9 -0.00073 57.4 -0.00118 31.2

-75 -103 60 882 -0.0200 -0.0024 -0.00978 299.4 -0.00304 24.1 -0.00252 2.9 -0.00294 20.1

-50 -58 60 882 -0.0150 -0.0018 -0.00631 243.5 -0.00156 15.1 -0.00127 30.9 -0.00152 17.2

0 32 60 882 0.0370 0.0045 0.0122 169.3 0.00694 53.2 0.00825 82.1 0.00655 44.6

-75 -103 73 1073.1 -0.0232 -0.0028 -0.0101 255.5 -0.00310 9.1 -0.00259 8.8 -0.00298 4.9

-50 -58 73 1073.1 -0.0165 -0.0020 -0.00692 242.5 -0.00168 16.8 0.00142 170.3 -0.00162 19.8

0 32 73 1073.1 0.0310 0.0038 0.00772 103.4 0.00600 58.1 0.00682 79.7 0.00572 50.7

-75 -103 100 1470 -0.0228 -0.0028 -0.0107 283.3 -0.00321 15.0 -0.00271 2.9 -0.00308 10.3

-50 -58 100 1470 -0.0160 -0.0020 -0.00795 305.8 -0.00190 3.0 -0.0017 13.2 -0.00182 7.1

0 32 100 1470 0.0215 0.0026 0.00226 14.2 0.00447 69.8 0.00469 78.1 0.00436 65.6

-75 -103 140 2058 -0.0240 -0.0029 -0.0113 284.5 -0.00336 14.3 -0.00288 2.0 -0.00321 9.2

-50 -58 140 2058 -0.0183 -0.0022 -0.00910 306.1 -0.00220 1.8 -0.00205 8.5 -0.00208 7.2

0 32 140 2058 0.0115 0.0014 -0.00210 249.1 0.00287 103.8 0.00263 86.8 0.00291 106.7

-75 -103 180 2646 -0.0250 -0.0031 -0.0119 288.7 -0.00350 14.3 -0.00302 1.3 -0.00333 8.8

-50 -58 180 2646 -0.0228 -0.0028 -0.00997 257.1 -0.00245 12.2 -0.00234 16.2 -0.00230 17.6

0 32 180 2646 0.0085 0.0010 -0.00464 545.8 0.00173 66.2 0.00125 20.1 0.00185 77.7

-75 -103 200 2940 -0.0290 -0.0036 -0.0121 240.7 -0.00356 0.3 -0.00309 13.0 -0.00338 4.8

-50 -58 200 2940 -0.0248 -0.0030 -0.0103 239.2 -0.00257 15.4 -0.00247 18.7 -0.00240 21.0

0 32 200 2940 0.0045 0.0006 -0.00557 1110.9 0.00126 128.7 0.000717 30.1 0.00142 157.7

N = 20Abs Avg Dev, % (Overall) = 290.5 33.5 36.5 34.8

* Table 266 "Smithsonian Physical Tables," 9th rev. ed., Washington, D.C. 1954. ** Abs % Dev = 100*ABS((Pred - Meas)/Meas)
 


