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ISENTHALPIC THROTTLING (FREE EXPANSION) AND
THE JOULE-THOMSON COEFFICIENT

This paper is presented in four major sections. In Section | we
’ discuss the four basic operating regions in which isenthalpic
— WQQ —— | throttling or free expansion of a pure fluid can take place. In
‘ Sections 1l through IV, a fairly comprehensive study of the Joule-
Thomson coefficient is conducted. An attempt is made to develop

a generalized graphical correlation for the JT inversion curve for pure fluids within the
framework of the law of corresponding states.

The three-constant corresponding states equation of Miller (11) provides a very good
overall or average representation of the inversion loci for light non polar gases. In addition,
an assessment is made of the accuracy of several closed-cubic equations of state for
predicting the JT coefficients for nitrogen and carbon dioxide. The four equations tested
were:

1. van der Waals equation

2. Redlich-Kwong equation

3. API (modified) Soave equation

4. Peng-Robinson equation

Of the four equations tested, the Redlich-Kwong equation provided the best overall
predictions of the JT coefficients for gaseous nitrogen and for both gaseous and liquid
carbon dioxide. The overall statistical deviations or trends are summarized in Tables 5, 7
and 8.

Throughout this paper, eight numerical illustrations are given which depict typical
computations involving free isenthalpic expansion, the determination of the Boyle
temperature and inversion temperature(s) for nitrogen from virial coefficient data, and the
calculation of the inversion point and JT coefficients from a typical set of isenthalpic T vs.
P data for gaseous ethylene.
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ISENTHALPIC THROTTLING (FREE EXPANSION) AND
THE JOULE-THOMSON COEFFICIENT

L. Isenthalpic Throttling (Free Expansion)

Introduction The unrestricted expansion of a gas is known as free expansion. For the specific
conditions where no work is done, no heat is transferred, and there are essentially no kinetic or
potential energy effects, the total energy balance reduces to,

AH =0 (1)
For this specialized case, no change in the system enthalpy is realized. Free flow of a fluid
across a valve approximates this process very closely. Some industrial applications of an
expansion or throttling process would be in the cooling or liquefaction of gases.
Joule-Thomson Coefficient The Joule-Thomson (Lord Kelvin) coefficient is defined

precisely as the differential change in temperature with respect to a differential decrease in
pressure under isenthalpic (constant H) conditions. This coefficient is expressed as,

It is related to the P-V-T properties of a fluid by the exact relations,

7)
ﬂﬂz_i{v T (ﬂH S (VR B
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The directional change in the temperature when the pressure is decreased (dP < 0) across a valve
is dictated by the algebraic sign of the JT coefficient. In summary,

Sign of pyr Result in dT (for dP < 0)
+ dT <0, fluid cools upon expansion

- dT > 0, fluid warms upon expansion

0 dT =0, no temperature change (inversion point)



For the special case of an expanding ideal gas, Equation 3 reduces to,
Hyr =0 (4)

For an ideal gas no temperature change is realized in any case. However, this is not strictly true
if there is an appreciable change in kinetic energy across the valve or flow passage. For instance,
if an ideal gas is flowing from a large reservoir and expands immediately across a valve situated
in the exit pipe line, then the total energy balance written across the valve becomes,

u2

AH + A(KE) = AH to=0 (5)
9

where u is the fluid velocity prevailing at the valve exit.

In Sections 1l through IV a more comprehensive treatment of the JT coefficient will be given.
An attempt is made to develop a generalized inversion curve for fluids within the framework of
the Law of Corresponding States. In addition, an assessment is made as to how accurate several
cubic equations of state are for predicting JT coefficients for nitrogen and carbon dioxide.

Regions of Isenthalpic Throttling Figures 1 through 5 illustrate four basic operating regions
of special interest which are displayed on H versus T diagrams for the isenthalpic throttling

(AH = 0) of a pure fluid. The first case (Figure 1) represents the situation where a superheated
vapor is throttled from state 1 down to a lower pressure (state 2) such that the enthalpy lies above
the saturated vapor locus during the entire traverse. It should be pointed out here, that each end
point reached is presumed to be at an equilibrium state i.e. sufficient time has elapsed for the
final state of the system to reach equilibrium. If an equation of state or CS correlation is being
used to calculate T, a trial and error procedure is involved. The value of T, is varied until the
criterion AH =0 (H; = Hy) is satisfied. For this entire traverse, the sign of the Joule-Thomson
coefficient is positive i.e. the temperature continually decreases as the pressure decreases.

1. Superheated Vapor Conditions:

P<P ; Ta<Th

wr>0
also Py>P. and T; > T,

Figure 1. Region 1 of Isenthalpic Throttling (AH=0) for a Pure Fluid.

In the second case (Figure 2), the fluid is throttled from state 1 directly into the two-phase region
(state 2). The value of Hj lies below the saturated vapor locus at Py, T, In other words, P, is



the saturation (vapor) pressure of the fluid at T,. The determination of T, therefore does not
require an iterative calculation. The final state or quality x (wt. fraction vapor) of the fluid is
readily computed by a simple enthalpy balance, Equation 6 below,

H,=H,=xH;" +(1-x)h" (6)
As in case 1, a temperature decrease is also effected upon expansion, and the JT coefficient is
still positive.

2. Initial state is vapor; final state is in the 2-phase (V/L) region.

4

P<Py ; Ta<Th

wr>0
h>P 3 THioTe

—

4
\\‘ E

Figure 2. Region 2 of Isenthalpic Throttling (AH=0) for a Pure Fluid.

The third case illustrated on Figure 3 involves a high temperature vapor where the high pressure
lines intersect and then, at higher temperatures, lie above the ideal gas (P = 0) and lower pressure
lines. As the pressure is continually decreased at constant H from state 1, say P; = 2500 psia, to
lower and lower pressures P», the temperature increases. In this operating region, the sign of the
JT coefficient is negative. This behavior is readily observed for gaseous nitrogen above a
temperature of 570 deg. F.

3. High temperature vapor where high pressure lines (T; > Tc, P; > Pc) intersect and
then lie above the ideal gas and lower pressure lines.

1x
75 Ty >>Te
H 2. g #o got? 00 #5P B T,
o] M(O

c=cnucal pomi(i =T, ; P=P)

Figure 3. Region 3 of Isenthalpic Throttling (AH=0) for a Pure Fluid.



In the fourth and final case (Figure 4), we start out with a high pressure (compressed) liquid
(state 1) at a temperature generally well below the critical temperature. As the pressure is
lowered at constant H, the liquid is gradually decompressed until the saturated liquid locus is
reached. During this process, the temperature increases. At Point 2, on the saturated liquid
locus, the temperature will reach a maximum value T,™'. As the pressure is decreased further
from this point, the temperature drops continually, and the two phase region is entered. Point 3
would be a typical example. The fluid continues to flash more and more as the pressure and
temperature are further diminished at constant H (H; = H, = H3) and so on. At any point in the
two phase region, Equation 6 can, once again, be used to calculate the stream quality.

Li<T.; P>P,

" ¢ W/ PoPoP; ; T,™>T,
Tz“ > T3’

~ Hi=Hy=H;=...

b o
T

1 / %
s PP~

Figure 4. Region 4 of Isenthalpic Throttling (AH=0) for a Pure Fluid.

A qualitative plot of T versus P for this process, as illustrated in Figure 5, will display a point of
maximum temperature at T,, P, To the right of this point, the fluid exists as a compressed
liquid. To the left, it exists as a two-phase V/L fluid.

Figure 5. Qualitative plot of T versus P for region 4 of Isenthalpic Throttling (AH=0) for a Pure Fluid.



Two-Phase Region When Equation 6 is solved explicitly for the stream quality,X, it becomes,

V. H-ht
NORNLL il 7
F = HY —h ()

Each of the enthalpy terms in Equation 7 can readily be calculated using a set of Corresponding
States charts such as those of Lee and Kesler (1) or from an available equation of state. With the
aid of a corresponding states chart each of the enthalpy terms above would be computed from the
following expressions:

H°—H
H,= H°—RT.| 8
1 1 C( R-I-C ] ()
HO—HSV Ho_hSL
HZSV:H;—RTC[%] : h?*é’—%(#] (9a,b)
C C

H,° and H,° represent the reference state ideal gas enthalpies for the inlet and outlet streams
undergoing the isenthalpic process in question. The terms in brackets represent the isothermal
departure with pressure of the stream enthalpy from the ideal gas state. Below, we first describe
the Lee-Kesler CST method for calculating stream enthalpy departures, and then we address the
procedure used for computing ideal gas reference enthalpies.

Three-Parameter CS Correlation In a series of three papers Pitzer and Curl (2,3,4) showed
that the compressibility factor, the second virial coefficient and other thermodynamic property
departure functions could adequately be represented at constant Tr and Pr by a linear function of
the acentric factor, ®. They proposed that any of the above stated properties, e.g. the
compressibility factor Z, could be correlated by a functional relationship of the form,

Z2=2"+0z% (10)

where ZO9=1(T,.R);Z9=1,(T,,R) (l1ab)

r*’r ritr

Z s the compressibility factor for simple (spherical) fluids and Z® is the compressibility factor
contribution due to the departure from sphericity or simple fluid behavior. Z© and Z® are
presented as separate charts or tables. Generally speaking, the Curl-Pitzer correlation covers the
operating range:

T.=08to4.0and P.=01t09.0

Both the vapor and liquid regions are covered.



Nearly 20 years later Lee and Kesler (1) improved upon the Curl-Pitzer correlation for the
following regions of application:

1. the critical region

2. low-temperature liquids

3. wide-boiling mixtures

4. and extended the temperature and pressure limits to
T, from 0.3 to 4 and P, from 0 to 10.

Like Curl and Pitzer did, Lee-Kesler developed a graphical/tabular correlation for the
compressibility factor, enthalpy departure, entropy departure, isobaric heat capacity departure
and fugacity coefficient within the framework of three parameter CS theory.

The enthalpy departure function is expressed in the following format:
o_ o (0) o (r) o (0)
H-H _[H'-H[" o|(H-H)" (H°-H 12)
RT, RT, o, RT, RT,

0 o (0) o_ @
or H H = H H + @ H H (13)
RT RT, RT,

c

The authors provide similar type expressions for the entropy and isobaric heat capacity departure
functions. In Equation 12, the groupings in brackets designated by superscripts (0) and (r) were
correlated via a modified BWR equation of state. Superscript (0) refers to simple fluids and
superscript (r) to a reference fluid. Both of the departure functions for the three thermodynamic
properties plus the compressibility factor are calculated from a reduced form of the Benedict-
Webb-Rubin or BWR equation. Lee and Kesler performed a multi-property fit and arrived at
one set of BWR constants (12 total) for simple fluids and another set of 12 for the reference
fluid. n-octane with o = 0.3978 was chosen as the heavy reference fluid since it is the heaviest
hydrocarbon for which there are accurate PVT and enthalpy data existing over a wide range of
conditions.

The data used to determine the simple fluid constants for the modified BWR equation were
principally for Ar, Kr and methane (o = 0). The authors present separate tables and charts for
each of the thermodynamic property functions for T, from 0.3 to 4 and for P, from 0 to 10.
Figure 6 and Figure 7 shown here provide plots for the enthalpy departure functions designated
in Equation 13 as a function of T, and P,. They will be used in an illustration to be given later in
this section.
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Figure 6. Simple Fluid Term - Enthalpy Pressure Effect.

Vs

Wi

Vo

Tz = 0.4 :

Qb : : ~—q

0. é i

e

0.l

37

o2 a3 o4 9§ 0.6 070807 | 'R" 2 3 VA S A ';[

Figure 7. Real Fluid Term - Enthalpy Pressure Effect.



Ideal Gas Reference Enthalpy Generally speaking, it is desirable to evaluate or express
enthalpy relative to some base or reference level. Procedure 7A1.1 of the Data Book of the
American Petroleum Institute (5) provides a thermodynamically consistent set of equations for
this purpose. These expressions consist of polynomial fits in temperature and are as follows:

For enthalpy:  H°= A+BT+CT*+DT’+ET*+FT°® 14)
o dH° , \ .
For C,: Co= = B+2CT +3DT*+ 4ET°+5FT* (15)
dT
: o 32 4 s
For entropy: §°=BLNT +2CT + DT’ +_ET
S 4
+ZFT +G (16)

These three expressions are thermodynamically consistent with one another. The various units
employed in Equations 14-16 are as follows:

T = temperature in degrees Rankine

H° = ideal gas enthalpy at T in Btu/Lb

Cp’ = ideal gas isobaric heat capacity at T in Btu/Lb-deg. R

S° =ideal gas entropy at T and at some reference pressure in
Btu/Lb-deg. R

The constants A through G are derived coefficients. Procedure 7Al.1 of the API Data Book
offers two sets of base levels for enthalpy and entropy. They are:

1. H = 0 for the pure saturated liquid at -200 deg. F and
S° =1 for the ideal gas at 0 deg. R and 1 psia reference pressure.

2. H° = 0 for the ideal gas at 0 deg. R and S° = 0 for the ideal gas
at 0 deg. R and a reference pressure of 1 atm.

The coefficients B through F are the same for both datum sets. However, A and G are different
for any given component. An abridged list of coefficients for the second base level set is
provided in Table 1 for some of the more common hydrocarbons and inorganic gases. The
second base level is used in the illustrations to follow.



The Total Energy Balance Before proceeding any further here let us review the nature of the
total energy balance. For the general case of steady state flow of a fluid flowing through a
hydraulic network, the total energy balance can be written as,

u:-u? g
HZ—H1+2ZTCJ'+9—C(ZZ—21):Q—WS (17)

This equation relates the changes in enthalpy, kinetic and potential energies between states 1 and
2 of the flowing system to the net exchange of heat and mechanical shaft work between flowing

system and its surroundings. Below are given some special applications of Equation 17.

1. For the case of either a nozzle, venturi meter or orifice, a significant
change in fluid velocity is incurred because of a change in cross-
sectional area of the accompanying piping, without any shaft work or
heat being transferred.. For horizontal flow, we would then have,

22 2 2
H,—H,+ 21 _AH+L2 =% g (18)
29, 29,

2. For the case of a compressor or turbine situated in the network, the
change in kinetic energy is normally very small with the process being
almost perfectly reversible adiabatic. For horizontal flow, once again,

H,—H,=-W, (19)

3. In the case of a heat exchanger, the process is essentially conducted
isobarically with negligible kinetic and potential energy changes and
no shaft work being performed. The total energy balance then reduces
to,

H,—H,= AH=Q (20)

4. For an expansion or throttling valve, the fluid has a very small initial
velocity with any velocity attained being almost immediately dissipated
into internal energy after passage through the valve. Because of the
rapidity of the process, no shaft work or heat is transferred, and for a
horizontal configuration we would have,

AH=H,—H,=0 or H,=H, (21)

For steady state flow, fluid velocity changes due to changes in cross-sectional flow area or pipe
diameter and fluid density variation are accounted for via the continuity equation,

W =mass flowrate=u, A p,=u, A, p, (22)

where p is the fluid density or reciprocal of the fluid specific volume (p = 1/v).
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Illustration 1 An ideal gas flows through a valve where the pressure is reduced from 10 to 2
atm abs. The surrounding temperature and high pressure gas are at 25 deg. C. The gas velocity
is 10 ft/sec and is essentially the same on either side of the valve. What is AH through the valve
and the gas temperature at the valve exit ?

This expansion process occurs very rapidly. As a result, there is basically no heat transfer
between the system (gas) and surroundings. No work is done along with no change in kinetic
energy across the valve (u; = uy). Then, if we presume that the flow is completely horizontal, the
total energy balance reduces to,

AH =0

Since the flowing gas is a perfect gas with no change in enthalpy, AT = 0, and the downstream
temperature is 25 deg. C.

Illustration 2 A stream of ideal gas at 700 deg. R exits a large tank and immediately enters a
valve situated in the exit pipe line. In the process of flowing through the valve, the gas is
accelerated horizontally and adiabatically from rest to 1600 ft/sec.

a) Write the form of the total energy balance that applies in this case.

b) What is the temperature of the gas at the valve exit ?
Gas properties:  C, =7 Btu/Lbmole-deg. R , MW =29

Part a:

For this case, there a very significant change in kinetic energy across the valve with Q = W =0.
Therefore, the total energy balance reduces to Equation 8.89,

2 22
Au %2=% _o where u,=0
29, 29,

Part b:

(1600)°  Btu 0
(2)(32.16)(778) Lb

Then we have AH +

Solving for AH we get AH=H,-H, = —51.16%
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Or AH = —(51.16)(29) = —1483.6 Bt
Lbmole
. I Btu
Since the gas is ideal, AH =C, (T, -T,)=—-1483.6
Lbmole

Now the valve exit temperature can be readily computed,

~14836 _ 10 g

T,-700=

Or T, =488deg.R =28deg.F

Illustration 3 Ethylene gas (dense fluid) flowing in a pipeline at 60 deg. F and 1000 psia enters
an expansion valve where the pressure is suddenly reduced to 200 psia. It is required to estimate
the valve exit temperature and the state of the exit fluid. If it turns out that the exit fluid is in the
state of two phases (V+L), what would be the stream quality (wt % vapor present) ? For
ethylene, over the temperature range of — 100 deg. F to the critical, the vapor pressure is well
represented by the Antoine relation:

3861.566

LnP,=13.38425 - — =22
T +519.7205

with T in deg.F and R, in psia.

Two procedures will be employed and the results compared:

a) Use of the generalized Lee-Kesler CS charts for computing enthalpies
(Figures 6 and 7)

b) Use of the H-T diagram developed specifically for ethylene
based on the Peng-Robinson equation.

The following physical properties taken from the Data Book of the American Petroleum Institute
(API) will be required for Part a:

P.=729.8 psia ; T.=48.58deg.F (508.28deg.R) ; ©#=0.0868 ; MW =28.05

Part a: The first step consists of determining whether the exit condition 2 is in the two-phase
region or not. Define H; as the fluid enthalpy at the valve inlet and h,°" as the saturated liquid
enthalpy and H,"" the saturated vapor enthalpy, both at the valve outlet pressure. If h,°" < H; <
H,", then the exit phase condition is definitely two-phase.
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If Hy >H,°Y, then the stream is all vapor at the exit. The saturation temperature T, at the
specified valve exit pressure P, is calculated from the specified VP equation after it is rearranged
and solved explicitly for the temperature.

s 386LS66 o0
13.38425—LnP,
o= SOOLYOO 597505 38OLSOO 5997005
13.38425-Ln(200) 13.38425-5.29832

TS = —42.2 deg.F

The various required enthalpy values are now calculated from the Lee-Kesler CS charts
- Figures 6 and 7 and Equation 13.

At the valve inlet, 60 deg. F and 1000 psia,

1000 | 60+459.7

P=—"-137 : T, =
RL 7208 Rl 508.28

=1.02

Using Equation 14 and the appropriate coefficients for ethylene read from Table 1, the inlet ideal
gas enthalpy at 60 deg. F becomes H;° = 155.0 Btu/Lb based on the APl datum of H° =0 at 0
deg. R. From the Lee-Kesler charts we read,

Ho_p 1 Ho_p 1
{ } -33 ; { }3
RT. |, RT. |,

] (1.987)(508.28
(H°-H), = 28.05

)[3.30+(o.0868)(3.)]

(=)

1_

(36.0)(3.56) = 128.2 Btu/Lb

H, =155.0 —-128.2 = 26.8 Btu/ Lb
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Saturation enthalpies at outlet:

P - 200 _0274 TR2:—42.2+459.7 082
729.8 508.28

Also H,° = 120.5 Btu/Lb at — 42.2 deg. F.

(1.987)(508.28

28.05 )[0-48+(0-0868)(0)] —120.5-(36.)(0.48)

HY =120.5 —

H;Y =120.5-17.3=103.2 Btu/Lb

hi" =120.5 —(36.)(4.6+(0.0868)(5.)) = 120.5-181.2 = —60.7 Btu/ Lb

Here it is readily apparent that H; (26.8 Btu/Lb) lies between the values of h,*" = -60.7 Btu/Lb
and H,® = 103.2 Btu/Lb. Therefore, the final state of the system is two phase (V + L) at —42.2
deg. F and 200 psia. The exit stream quality can now be computed directly from Equation 7:

—h% 26.8 — (—60.7
X, :(lj _H-h ( ) _ 875 = 0.534 wt. fractionvapor
2

F), HY-h* 1032-(-607) 1639

Part b: Figure 8 and Figure 9 represent H-T diagrams for ethylene. They were developed by this
author using a BASIC program which employs the Peng-Robinson equation to compute enthalpy
departures. From Figure 8 we located the inlet condition of 60 deg. F and 1000 psia at H; = 1038
Btu/Lb. Now by following this value of enthalpy horizontally to the left to a pressure of 200
psia, we enter the two-phase region and wind up at a temperature of — 42 deg. F. At this
condition,

HyY =1104Btu/Lb ; h"=947Btu/Lb

And then, once again, from Equation 9 we can compute the exit stream quality based on the
enthalpy values read from the ethylene H-T chart,

1038947 _ 91.0

X, = - = 0.580
1104 - 947  157.0

The quality predicted here is slightly higher than that calculated from Lee-Kesler enthalpies.
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Figure 8. Enthalpy of Ethylene Based on the Peng-Robinson EOS.

Figure 9. Enthalpy of Ethylene Based on the Peng-Robinson EOS -
High Temperature Region.
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Illustration 4 An infinite supply of compressed liquid water at 250 deg. F and 6,000 psia is
expanded across a valve to lower and lower pressure levels(equilibrium states). After the water
is isenthalpically decompressed to such an extent that the condition at the valve exit is a saturated
liquid, then a further drop in pressure will produce flashing. Using the Keenan and Keyes steam
tables, we wish to establish the temperature-pressure profile for the fluid at the valve exit.

Keenan and Keyes (6), Steam Tables, John Wiley & Sons, 1969 (Table 4, Pages 104-107)
provide thermodynamic properties for compressed liquid water from 500 to 20,000 psia. At the
valve inlet condition of 6000 psia and 250 deg. F, we read h; = 231.19 Btu/Lb. Next a host of
lower pressures (valve exit) are selected and the temperatures determined such that hy = h, =
231.9 Btu/Lb. These operations were performed by reading values from Table 4 and using linear
interpolation. For example, at P, = 4000 psia, we read,

T,deg. F h,, Btu/Lb
250 226.93

300 277.15
Then by simple linear interpolation,

T,—-250 231.19-226.93 4.26
300—-250 277.15-226.93 50.22

Or T,=254.2 deg.F at 4000 psia

Similar calculations were performed at the pressure levels of 2000, 1000 and 500 psia to give,

P, psia T,,deq. F

2000 258.4

1000 260.4
500 261.4

As the downstream pressure is further diminished, the temperature continually increases to reach
a maximum value at the saturated liquid locus. This point was also determined by linear
interpolation of the data read from the Steam Tables. On Page 5 (Table 1of the steam tables) we
read:

Sat T, deg. F Sat P, psia h,, Btu/Lb
262 36.64 230.79

264 37.89 232.83



Then 1,202 _

16

P, —36.64

_231.19-230.79 _ 0.40

Solving for P and T :

At this point, a further decrease in the exit pressure will produce lower temperatures (saturation

conditions). For example, at 250 deg. F and 29.82 psia, we read:

h- =218.59Btu/Lb and H,'=1164.2Btu/Lb

The stream quality is determined from Equation 7:

 231.19-21859 126

X, = =
> 1164.2-21859 0456

= 0.0133 wt. fr.vapor

264-262 37.89-36.64 232.83-230.79 2.04

T,=262.4deg.F and P,=36.89 psia (saturated liquid)

The results of similar calculations at lower saturation temperatures and pressures are summarized

below:
Sat T,, deg. F Sat P,, psia
230 20.78
220 17.19
200 11.53
100 0.95

hZSL
198.32
188.22
168.07

68.05

Btu/Lb

H,5Y
1157.1
1153.5
1145.9
1105.0

X2

0.0343
0.0445
0.0645
0.1573

The above numerical results are plotted on Figure 10 as valve exit temperature versus exit

pressure and on Figure 11 as stream quality (wt. % vapor) versus exit P, both over the pressure

range of 1000 psia down to about 10 psia
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Figure 10. Effect of Isenthalpic Throttling of
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Figure 11. Steam Quality Versus Pressure
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The Throttling Calorimeter The throttling calorimeter, which is frequently used to determine
the quality of steam in a "wet" pipeline, is basically a constant enthalpy device. A typical
throttling calorimeter setup used in conjunction with a steam pipeline is illustrated below:

X - )Pressure gauge

Diagram 1. Throttling Calorimeter

Steam is bled from the main line through an expansion valve into a small cylinder open to the
atmosphere. By knowing the temperature of the steam in the cylinder (superheated at
atmospheric pressure) and the pressure in the main line, the quality of the steam in the line may
be evaluated by following a constant-enthalpy path from the final state back to the line pressure.
In essence, we would be using Equation 7 in the reverse manner. For this process the heat
balance equation yields the following expression for the steam quality in the line:

x=Hr=h 23)
AH,,
where x = weight fraction of vapor (steam quality)

H+t = total steam enthalpy obtained from the calorimeter
conditions

h. = saturated liquid enthalpy at the line pressure

AHy4, = latent heat of vaporization at the line pressure
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Illustration 5 A throttling calorimeter attached to a steam line reads 220 deg. F (superheated at
atmospheric pressure). The line pressure itself is 20 psig. What is the steam quality in the
pipeline?
The following enthalpies were read from the steam tables of Keenan, Keyes (6):

At the calorimeter conditions of T = 220 deg. F and P = 14.7 psia

Hr =1154.4 Btu/Lb

In the main line for saturated (wet) steam:

P =20+ 14.7 = 34.7 psia (Tsa = 259 deg. F)

h. = 228.0 Btu/Lb ; AHyap = 939.3 Btu/Lb

Then from Equation 23 we calculate,

_1154.4-228.0

= 0.986 wt. fraction vapor
939.3

This basically means that 1.4 wt. % of the "wet" steam in the line is liquid water.
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II. Nature and Measurement of the Joule-Thomson Coefficient

Introduction At this point we wish to focus once again on the nature and measurement of the
Joule-Thomson coefficient. The sign and magnitude of p,r determines whether a fluid cools or
warms when subjected to an isenthalpic expansion and the extent of the resulting temperature
change.

The Joule Experiment In 1843 James Prescott Joule (7) performed a preliminary experiment
which eventually led to the discovery of the Joule-Thomson isenthalpic flow effect. The

apparatus he employed is described below:

G
é
:* - % :pf& :
o
{3
Bom
7
7 3

Diagram 2. The Joules Apparatus.
Joule described his experiment as follows:

"I provided another copper receiver (E) which had a capacity of 134 cubic inches
... I had a piece D attached, in the center of which there was a bore 1/8 inch in
diameter, which could be closed perfectly by means of a proper stopcock.....
Having filled the receiver R with about 22 atmospheres of dry air and having
exhausted the receiver E by means of an air pump, | screwed them together and
put them into a tin can containing 16 1/2 Ib. of water. The water was first thor-
oughly stirred, and its temperature taken by the same delicate thermometer which
was made use of in the former experiments on mechanical equivalent of heat.
The stopcock was then opened by means of a proper key, and the air allowed to
pass from the full into the empty receiver until equilibrium was established
between the two. Lastly, the water was again stirred and the temperature care-
fully noted."

Following this experimental work, Joule presented a table of experimental data, showing that
there was no measurable temperature change, and arrived at the conclusion that "no change of
temperature occurs when air is allowed to expand in such a manner as not to develop mechanical
power i.e. so as to do no external work.
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The expansion described by Joule above, with air rushing from R into the evacuated vessel E, is
a typical irreversible process. Inequalities of temperature and pressure arise throughout the
system, but eventually a state of equilibrium is reached. Application of the First Law here
indicates no change in the internal energy of the gas since no work was done by or on it, and no
heat has been exchanged with the surrounding water bath - otherwise the temperature of the
water would have changed. Therefore dE = 0, and experimentally it was observed that dT = 0.
It would logically then be concluded that the internal energy must depend only on temperature
and not on volume. Mathematically, this conclusion can be expressed as follows:

2] o 2] ar
v ). ar ),
o )l

oV ). ov ).

Then ﬁ must=0 if ﬂ =0
ov ). A

The fallacy here is that Joule's experiment was not capable of detecting small effects since the
heat capacity of his water calorimeter (bath) was extremely large compared to that of the gas
used.

The Joule-Thomson Experiment William Thomson (Lord Kelvin) suggested a much better
procedure than the Joule experiment. Working with Joule, he carried out a series of experiments
between 1852 and 1862 employing the apparatus represented schematically below:

v
R

Diagram 3. The Joule-Thompson Apparatus.



21

The principle involves the throttling of the gas flow from a high pressure side A to a low
pressure side C by interposing a porous plug B. The pressure on the A-side is maintained
constant at P;, and that on the C-side is maintained constant at a lower value P,. This is made
possible by the action of the two pistons shown. The effect of the porous plug is to allow the gas
to pass slowly from A into C and thus promotes equilibrium. As a result, the temperature can be
measured directly and with a high degree of accuracy. The entire system is thermally insulated,
so that the process is an adiabatic one i.e. g = 0.

The volume at the left (side A) decreases by V; per mole of gas passing through the plug, and the
volume on the right (side C) increases by V, per mole. As a result, the work done on the gas by
the piston at the left is P1V1, and the work done by the gas on the piston on the right is P,Vo.
Therefore, the First Law for this case may be written as,

E2_E1=_W=_(P2V2_P1V1) (24)
or E,+RV,=E +RV, (25)
H,=H, (26)

Thus the enthalpy of the gas does not change in the expansion process. The numerical value of
the slope of an isenthalpic curve on a T-P diagram at any point condition is called the Joule-
Thomson or the Joule-Kelvin coefficient and is denoted by the symbol pr. Thus,

Hyr = [2_-::;14 (27)

In the system or JT experiment described above Equation 27 effectively defines the temperature
change per atmosphere difference in pressure measured at constant enthalpy.

With most gases with the exception of hydrogen and helium a cooling effect is obtained at room
temperature because the Joule-Thomson coefficient is positive. For hydrogen at room
temperature, the JT coefficient is negative. However, for hydrogen, there exists an inversion
temperature at around - 78 deg. C (where uyt = 0) below which the JT coefficient is positive and
hydrogen is cooled by the expansion. The inversion temperature of a gas is highly dependent
upon the pressure. The JT effect has very important industrial applications such as in the
liquefaction of air and other gases.
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The JT Inversion Curve The figure shown below shows a whole series of isenthalpic curves
and the inversion curve plotted on a temperature versus pressure diagram, specifically for
nitrogen (8).
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Figure 12. Isenthalpic / Inversion Curves for Nitrogen.

The series of individual plots at conditions of constant enthalpy are represented as solid curves.
The locus of all points at which the JT coefficient is zero i.e. the locus of the maxima of the
isenthalpic curves, is known as the inversion curve and is shown as a dotted closed curve. The
region inside the inversion curve where pyr, as defined by Equation 27, is positive is called the
region of cooling, whereas outside of the dotted locus, where ;r is negative, is the region of
heating.

If a vertical line is drawn at an arbitrary pressure, it will intersect the isenthalpic curves at a
number of points at which p;r may be obtained by measuring the slopes of the isenthalpics at
these points. At this specific pressure we then would have a set of values of p;r established at a
series of different temperatures. This process can obviously then be repeated at other designated
pressures.

Thermodynamic Relationships Involving pyr In order to be able to predict or calculate
Joule-Thomson coefficients, we generally need to relate it to the PVT properties of the fluid of
interest. Here we provide a derivation of the pertinent required general thermodynamic
relationships based on the First and Second Laws.

For a closed thermodynamic system of constant composition, which exchanges only heat and
work with its surroundings, there are two independent degrees of freedom. As a result, a given
thermodynamic property can be related directly to two other known intensive state variables or
properties.
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Based on the First and Second laws of thermodynamics we can readily derive the four
differential equations which relate the state properties internal energy E, enthalpy H, Helmholtz
free energy A and the Gibbs free energy F to the appropriate pairs of independent variables.
These equations are summarized below and apply to closed systems only:

dE=TdS-PdV (28)
and since H=E+PV
then dH=TdS+V dP (29)
Next, by definition A=E-TS
therefore dA=-SdT-PdV (30)
Also by definition F=H-TS= A+PV
and finally dF=-SdT+V dP (3D

The four Maxwell equations for closed systems are readily derived from Equations 28-31 above
using Green's theorem in a plane. The complete mathematical details of this theorem are not
presented here but only the highlights or results of its application to exact or perfect differential
equations.

First let us consider the general mathematical expression for an exact or perfect differential dZ in
terms of two independent variables x and y:

dZ=M dx+ N dy (32
When the dependent variable Z is integrated over an entire process cycle or region, we get,
[.dz=0 (33)

Another very important mathematical characteristic of a perfect differential is that,

oM ON
(a—yH&l (39

If this latter condition is applied specifically to Equation 28, the result is,

oT oP
W e
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Equation 35 is commonly referred to as the first Maxwell equation. In a similar fashion
Equation 34 can be applied to the three remaining differential equations 29, 30 and 31. All four
Maxwell equations for closed thermodynamic systems involving PV work only are summarized
below:

Differential Eqn. Maxwell Eqgn.
dE=TdS—PdV o) __[2P
oV ), oS ),
dH=TdS+VdP ar| v
oP), (oS ),
d A=—SdT —PdV 95 _|oP
ov ). \oT ),
dF=-SdT +VdP 95 |V
oP ). oT ),

Next we need to consider two very important rigorous relationships which give the isothermal
effect of volume on the internal energy and the isothermal effect of pressure on enthalpy. If we
take Equation 28 and differentiate it throughout with respect to volume at constant temperature,

the result is,
JE =T 9s -P (36)
ov ), oV ).

If we substitute the third Maxwell equation listed above into Equation 36, the result becomes the
first thermodynamic equation of state.

BRI
ov ) \aT),

Next a similar derivation is performed starting with Equation 29. In this case we differentiate
Equation 29 throughout with respect to pressure at fixed temperature.

[@ij:T[Q§J+V (38)
op).~ \op).
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Then the fourth Maxwell relation is substituted into the above expression to yield the second
thermodynamic equation of state.

(G_H] =V_T(5_V] @9)
oP ). oT ),

It is important to note here that the right hand sides of both Equations 37 and 39 are exclusively
functions of the properties P, V and T. This makes evaluation by an equation of state quite
convenient.

Let us consider the enthalpy to be a function of the two independent variables P and T.
And, since enthalpy H is a state thermodynamic property, we can write the exact differential
expansion for H in terms of P and T as follows,

dH=[ 22 a1 +| ) ap (o)
oT ), P |

By definition the temperature derivative in Equation 40 is the isobaric heat capacity Ce.

Therefore dH=c,dT +| 20 ap ()
P ).

For an isenthalpic expansion, dH = 0, and Equation 41 can be rearranged and then solved
explicitly for the Joule-Thomson coefficient,

0=C,dT +| 2| ap
oP ).

and then oar) __L1foH (42)
oP ),  C.\aP ).

where obviously pr = (0T/0P)n, the Joule-Thomson coefficient.
Now if we substitute the second thermodynamic equation of state (Eqn. 39) into Equation 42, we

arrive at the final desired expression for the JT coefficient expressed in terms of PVT properties
and the isobaric heat capacity.

(] 2]

Most closed equations of state, such as the Soave equation, are expressed as explicit functions of
the molar volume i.e. P = f(V,T), and the volumetric derivative above is quite inconvenient to
evaluate. Therefore this derivative must be transformed to an equivalent or more convenient
form using the chain rule of partial differentiation.
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For a function of the form f(P,V,T) = 0, where two of the variables are independent and one
dependent, the chain rule can be expressed as,

() (20) (2] -

[apj

Solving for v ; N __ T N
oT o o oP

ov ),

This latter identity is readily substituted into Equation 43 to give,

)
My :(GTJ __i V+T o . (44)

o), G| [op
oV )

Both of the pressure derivatives can be calculated from the appropriate equation of state of the
form P = f(V,T). The remaining property which needs to be evaluated here is the isobaric heat
capacity, Cp. Then we will have all of the terms or properties required to evaluate Equation 44
for HaT-

First we consider the internal energy E to be a function of the two independent variables T and V
and then write the exact differential expansion for E as,

de=| E| ar+|%E] av (45)
oT ), oV ).

By definition, the temperature derivative above is known as the isochoric or constant volume
heat capacity, Cy. Therefore,

OE
dE=C,dT {a_vl dv (46)

Then we substitute Equation 37 into Equation 46 to get,

oP
dE=C, dT + [T (a_Tl —P}dv (47)
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If Equation 34 (Maxwell Equation) is applied to the exact differential expression above, the
result becomes,

a[T (%) - p}

oC, ) _ oT ), v _1[2°P
ov ). oT oT? ),
This expression can readily be integrated between the limits of the ideal gas state and the real

fluid state to give the real fluid isochoric heat capacity relative to the ideal gas value at the same
temperature.

C,—Cy= TI( ] (48)

oT?

Without providing a detailed derivation, we simply provide the expression relating the real fluid
isobaric and isochoric heat capacities below,

oV
conlzmlE),

Using the chain rule as applied previously, we can readily substitute for the volume derivative
shown in Equation 49 to yield Equation 50,

- oT ),
ov ).
Once Cy is computed from Equation 48, Cp is then readily computed directly from Equation 50.

The ideal gas isochoric heat capacity is simply determined from the ideal gas isobaric capacity
via the relation,

C.-C,=- (50)

Co=CS-R (51)

Cp° is computed at system temperature from Equation 15 and the appropriate coefficients read
from Table 1. Thus, in order to compute JT coefficients from a volume explicit closed equation
of state (P = f(V,T)), the following pressure derivative functions need to be evaluated:

oP) . (2P} . (e
oT ), = \eT?), "~ \av L
In Section IV the appropriate expressions for these derivatives will be derived for several cubic-

in-volume closed equations of state. Then, JT coefficients can be predicted from these equations
of state and subsequently compared with the corresponding measured coefficients.




28

Illustration 6 A gas at 100 deg. F, with a fixed Cp value of 7.0 Btu/Lbmole-°R, has a Joule-
Thomson coefficient that obeys the relation,

45 =0.0032-0.0008 P

where P is in units of atmospheres and pyt is expressed in units of deg. R/atm. For this particular
gas let us calculate and plot as a function of pressure over the range 0 to 20 atm, the following:

1. the JT coefficient itself at 100 deg. F
2. the enthalpy relative to zero pressure, H - H°, in Btu/Lbmole
At what pressure does the JT inversion point occur ?

First we need to derive the appropriate expression for the enthalpy departure for this gas at 100
deg. F. This can readily be done by substituting the above pressure-dependent function for pr
into Equation 42, Thus,

= ——[ 211 _ 0,0032-0.0008P, deg.R/ Atm
C.\ oP ).

Upon integration of this equation between the limits of an ideal (P = 0) and the real gas state at P,

we get,
H P

[ dH = -, [(0.0032-0.0008P)dP

H° 0
P
H—H°=-C,[0.0032P - 0.0004P* |

= ~C,[0.0032P — 0.0004P |

If Cp is expressed in units of Btu/Lbmole-deg. R, then the enthalpy departure above will turn out
to be in units of Btu/Lbmole. Figure 13 and Figure 14 show the JT coefficient and enthalpy
departure respectively plotted versus pressure up to 20 atmospheres.
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Figure 13. JT Coeff. Versus Pressure. Figure 14. Enthalpy Departure vs. Pressure.
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The inversion pressure where p;r = 0 occurs at a value of 4 atm. Also at this point, the enthalpy
of the system reaches a minimum value or H - H° = - 0.0448 Btu/Lbmole. At P =8 atm, the
enthalpy departure from the ideal gas state returns to zero. And above 8 atm, the departure
becomes positive i.e. the real gas enthalpy exceeds that of the ideal gas value.

Illustration 7 In his textbook entitled "Chemical and Engineering Thermodynamics”, Sandler
(9) extracted some second virial coefficient data for nitrogen from the classical work of Dymond
and Smith (10). Sandler's tabulation is shown below and provides the second virial coefficient as
a function of temperature from 75 to 700 deg. K.

Temp. (°K) B (cc/gmole)

75 - 274
100 - 160
125 - 104
150 - 715
200 - 35.2
250 - 16.2
300 - 4.2
400 + 9.0
500 + 16.9
600 + 21.3
700 + 24.0

From both experimental studies and statistical mechanics it is well known that at moderate
pressures, the volumetric behavior of gases obey the open virial equation of state truncated after
the second virial coefficient, B. Here B is exclusively a function of temperature only. Using the
virial equation written as PV = RT + BP, where V is the molar volume, we are asked to
determine (estimate) the Boyle temperature (the temperature at which B = 0) and the inversion
temperature(s) for gaseous nitrogen from the above tabulation of B-values for nitrogen.

First we solve the truncated virial equation above for V and substitute the result directly into
Equation 43 to get the appropriate expression for pr.

V:ﬂ-i—B : 6V :B+d_B
. P

P oT d
and therefore yJT:—i V-T N :—i E+B _E_Td_B
Ce | 0T )Jo| Cel P P dT

1 [ dB
=—— |B-T—
Hyp CP dT}
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The above expression requires that we calculate the first temperature derivative of the second
virial coefficient from the basic data shown graphically as B vs.T in Figure 15. As a result, it
would be quite convenient to have a relatively simple analytic representation of the data. A
successful least-squares fit was achieved using a hyperbolic function of the form,

_A+B'T

B= (52)
1+CT
50 |
0 —
//
-50
o /
S -100 /
g .
& 150 I
8 -200 I
o 250 1
-300
0 200 400 600 800
Temp., deg. K

Figure 15. Second Virial Coefficient for Nitrogen.

The following regression constants were obtained for the 11 data points listed above by Sandler.
A=4134512 ; B'=-1.253687 ;
C =-0.02837002

The overall absolute average deviation and standard deviation produced by Equation 52 turn out
to be 4.1 and 6.6 percent respectively.

The Boyle temperature is defined by the exact mathematical limit:

Lim(v —)oo){V (%— ﬂ — Lim(V >»)B =0

If we apply this constraint to Equation 52, then,

A+B'T=0
or Tsz—ﬁ,:—w:329.8 deg.K
B —1.253687

which is an estimate of the Boyle temperature consistent with the virial coefficient data provided
us.
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At any inversion point, the JT coefficient assumes a value of zero. Therefore, we have,

yJT:—i B—Td—B =0 or B:TOI—B
C, dT dT

As a result, we need to differentiate Equation 52 to get dB/dT.

dB B  C(A+B'T)
dT 1+CT  (1+CT)

dB B+ B'CT-AC-B'CT B -AC

dT (1+CT)’ (1+CT)’
So then, for the JT coefficient to be zero we would have,

A+BT BT-ACT

1+CT (1+CT)

(A+B'T)(1+CT)=B'T —ACT

This equation is readily rearranged into a form which is a quadratic in temperature, the result

T2, 2 A

5 ' TBC"

Next the numerical values of A, B’ and C are substituted and the resulting equation solved for T

, 2(413.4512) 413.4512
T+ +
(—1.253687) (—1.253687)(—0.02837002)

or

T? —659.576T +11,624.54=0

Application of the general quadratic formula here yields the final result.

_ 659.576 + \/(659.576)2 —4(11,624.54)
B 2

J’_
T 659.576 ; 623332 115 deg.K or 18.1 deg.K

These values are the calculated (estimated) inversion point temperatures. The lower temperature

of 18 deg. K is highly suspect because it falls outside of the temperature range of the original B
versus T data.
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IIl. Generalized JT Inversion Curve in Corresponding States Format

Introduction It is possible to generate a generalized inversion curve for fluids within the
framework of the Law of Corresponding States. The simple van der Waals (VDW) equation of
state is capable of predicting inversion PVT conditions for a fluid. This equation can be inserted
into Equation 44 with the constraint that p;r = 0, and the appropriate interrelationships between
P,V and T can easily be derived and placed in a convenient corresponding states framework
involving reduced coordinate parameters (Tgr = T/T;, Pgr =P/Pc). Miller (11) has also
developed and recommended a three-constant equation for approximating the inversion curve
locus in reduced coordinate form.

Perry's Chemical Engineers' Handbook (12) tabulates approximate inversion-curve loci for
several light hydrocarbons and non hydrocarbon gases. These data were reduced to a
corresponding states framework and subsequently plotted and compared against the generalized
inversion curves predicted by the VDW and Miller equations. In addition, we observed that the
series of inversion curves for the non polar gas components appeared to follow a systematic
pattern. All of these comparisons and observations are discussed in detail below.

VDW Equation as a Basis If we begin with the rigorous relationship between the JT
coefficient and PVT properties, i.e. Equation 44, and impose the constraint that pr =0,

we can readily write,
(6P]
oT
Y.=0 (53)

p=— 2% (54)

we first develop expressions for the pressure derivative functions.

oP)y_ R . (2P} ___RT  2a
ot ), v-b " av ) (v-b) V?
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These derivatives are now substituted directly into Equation 53 to yield,

or — + =0

RT v 1|z
(V—b)2 V-b| V2
2

ar o 2aV-b)  2aWvob)

inv_Vs_Vz(V_b) Vzb

Next we take advantage of the fact that the critical constants for a van der Waals fluid can be
related to the constants a and b by using the critical point criteria that,

ov ) \av? )

The resulting expressions for the critical volume and temperature become,

T, - 8a
27bR

Vo=3b ; (56a,b)

However, the reduced volume and temperature are related to the operating volume and
temperature by the basic definitions:

Vg = VNC or Ve = VIVR

and Tr=T/Tc or Tc=T/Tg
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These two expressions for V¢ and T¢ are then substituted directly into Equations 56 a and b to
give,

8a

V=3V, s T

T, (57a,b)

Insertion of Equations 57 a and b into Equation 55 leads finally to the relationship between the
reduced inversion temperature and the reduced volume i.e. Equation 58,

8a _  2a(3bV,-b)’
27bR "™ 9b2VZb

which upon final simplification becomes,

_ 331y

TRInv - 4VR2

(58)
Now, in order to relate the inversion point to the reduced pressure a well, we need to return to the
van der Waals equation itself written in the reduced coordinate form.

Starting with the van der Waals equation written as,

[P+\%j(V—b)=RT

we need to substitute for P, V and T in terms of reduced parameters. Equations 57 a and b
provide the necessary substitutions for VV and T. The other relationship which relates P and Pr
based on the critical point criteria described above is,

P a
P.=—= 59
¢ P 27b° (59)

Now Equations 57 a,b and 59 are substituted directly into the van der Waals equation with the

result,
2_|p,+—2 _|13bV,—b]=R Sa_\r
27b? 9b2VR2 27RDb
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This expression is readily simplified as follows

P, 1
—+
27 9V

8
3V, -1]=—T
}[ =T,

P, + \%}[WR ~1]-8T,

R

and finally,

[PR +%]£VR —1j=§TR (60)
v 3)73

Next we substitute the expression for the inversion temperature, Eqn. 58, into the RHS of
Equation 60 to get the van der Waals Pg - Vg relationship for the inversion curve.

2(3V., -1)’
[PRJF\%j(VR _%j:%
R R

The expression is further simplified to yield a quadratic equation in Vg,

y2_18

9
— =V +—=0 61
IR (61)

Equation 61 is used in tandem with Equation 58 to generate a generalized inversion curve in
corresponding states framework based on the van der Waals equation of state.

1. Set or select a value for Pg.

2. Calculate the two roots Vr; and Vg, (hopefully both real) from Eqn. 61.

3. For each value of V from Step 2, calculate Tryinv and Trainy from Eqn. 58.

4. Plot both sets of Tg, Versus the selected value of Pg..
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The numerical tabulation given below is the result of carrying out the four steps above when
Equation 61 is solved using the quadratic formula i.e.

V. =

R 2

Eqgn. 58

Pr VR1 Vg2 Tr1 Tro
1 17.49 0.515 6.495 0.838
2 8.47 0.531 6.229 0.938
3 5.45 0.551 5.949 1.051
4 3.93 0.573 5.653 1.181
5 3.00 0.600 5.333 1.333
6 2.37 0.634 4,982 1.518
7 1.89 0.680 4581 1.752
8 1.50 0.750 4.083 2.083
9 1.00 1.00 3.000 3.000

It should be noted here that inversion curve terminates at a maximum reduced pressure of 9 (Tr
= 3), and only one inversion temperature exists at this point. Below Pr =9, an upper and lower
inversion temperature exists.

Miller Equation In his 1970 paper, Miller (11) utilized a host of experimental JT inversion
point data for the components CO,, N,, CO, CH,4, NHs. propane, Ar, and ethylene to develop a
three-constant corresponding states equation. The following expression was the result of a least
squares fit of the collected data:

18.54

P,=24.21 —( ] ~0.825T2 (62)

R

With this correlation, a maximum inversion reduced temperature of 5.0 and a minimum
inversion reduced temperature of 0.8 are produced. Th