
Isight Design Optimization Methodologies 
Dr. Alex Van der Velden, Director, SIMULIA

Dr. Pat Koch, Manager, SIMULIA



2 SIMULIA      To be published by ASM: www.asminternational.org  ASM Handbook Volume 22B Application of Metal Processing Simulations, 2010

CONTENTS
  3	 Introduction    

  5	 The Deterministic Single Objective Problem    

  7	 Single Objective Optimization Methodologies    

12	 The Deterministic Multi-Objective Problem    

13	 Multi-Objective Optimization Methodologies    

14	 Multi-Objective Optimization Study    

17	 The Non-deterministic, Stochastic Optimization Problem    

19	 Stochastic Optimization Studies    

21	 Closing    

22	 References    



3 SIMULIA      To be published by ASM: www.asminternational.org  ASM Handbook Volume 22B Application of Metal Processing Simulations, 2010

Introduction
Optimization finds application in every branch of engineering and science. The process of 
optimization involves choosing the best solution from a pool of potential candidate solutions 
such that the chosen solution is better than the rest in certain aspects. Design optimization 
is the process whereby a selected set of input design variables is varied automatically by an 
algorithm in order to achieve more desired outputs. These outputs typically represent the 
variation from a target, minimal cost, and/or maximal performance.

In order for design variables to be varied automatically, we need algorithms that search the design 
domain. For this purpose, we need to be able to compute the outputs of interest automatically. 
Even though the word “optimization” is used, only trying out all relevant combinations can 
guarantee that we, indeed, have found “the best” design parameters for an arbitrary complex 
space. In practice, this takes too much time. If we consider, for instance, a simple problem 
with ten possible discrete values for five parameters and a five-minute analysis time, we would 
need a year to analyze all combinations. 

As such, the practical value of a particular optimization algorithm is its ability to find a better 
solution—within a given “clock time”—than a solution obtained by a manual search method or 
another algorithm. This “clock time” includes the effort it takes to set up the simulation process 
and to configure the optimization methods. To minimize the set-up time, commercial software 
like Isight can be used (Ref. 1). The set-up of the simulation process varies from problem to 
problem; here, we will focus on the optimization methodologies.

The “no-free-lunch” theorem of Wolpert and Macready (Ref. 2) states: “…for any [optimization] 
algorithm, any elevated performance over one class of problems is exactly paid for in 
performance over another class.” 

This concept is shown in Figure 1. On the diagonal, we plot a set of arbitrary problems fi 
ordered by the minimum number of iterations nmin and required by a set of methods A, B, … ,Z 
to solve this particular problem. 

 

Figure 1. An illustration of the “no-free-lunch” theorem for different types of optimizers.  
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For instance, consider the problem of finding xi for Min[ f1 (xi) ]= constant. There exists a 
method A that finds the minimum value of f1 (xi) with a single-function evaluation. Method A, 
called the “lucky guess” method, simply tries a random number with a fixed seed. Its first guess 
happens to be the optimal value of this problem. Obviously, this method is not very efficient 
for any other problem. The efficient performance for Problem 1 goes at the expense of the 
efficiency to solve all other problems 2, ... ,n.  

The minimum value of f1 is also found by Method B, but this method is not as efficient as our 
“lucky guess” method. Method B is a genetic algorithm. In its first iteration, Method B first 
computes a number of random samples of xi with respect to f1 before deciding the next set of 
samples (second iteration) based on proximity to the lowest function values in the first iteration. 
Since Method B already requires several samples before the first iteration, Method B is not 
as efficient as Method A for Problem 1. However, it does pretty well on a variety of problems 
including 1, 2, 4, 5, 7, and 8. It is the most efficient method for Problem 8.

Method C is a gradient method and may need to evaluate the gradients of xi with respect to f1 

before completing the first iteration step. Because of that, it is obviously not as efficient as the 
“lucky guess” method for Problem 1. Even though it is the most efficient method for Problem 
4 (which happens to be a linear function), for most problems, Method B is more robust. The 
gradient method often gets stuck in local minima. Method C is not as robust as Method B 
because it only gets the best answer two times versus Method B’s nine times for the set of 
methods and problems we are considering, 

We also tried Method D. Method D samples the space with a design of experiments technique 
and shrinks the search space around the best point in the array for each iteration. It is able to 
solve quite a few problems, but it is inefficient and would therefore be considered dominated 
by other methods over the set of problems f1, f2… fn.

This meant that we needed to develop an environment that allowed the introduction of 
many algorithms specifically suited to solve certain classes of customer problems. The open 
component architecture of Isight (Refs. 1, 9) allows the development of these design drivers 
independently from the product release cycle. However, in many cases, customers do not have 
such specialized algorithms available and are looking for a commercial product to improve 
their designs.

For that purpose, we and our partners provide a set of best-of-class general-purpose and 
specialized-purpose algorithms that work out of the box. Our optimizers solve both deterministic 
and non-deterministic single- and multiple-objective functions. A deterministic function always 
returns the same result when called with a specific set of input values, while a non-deterministic 
(stochastic) function may return different results when they are called with a specific set of input 
values. In the following sections we will give a description of all of these classes of problems 
and the optimization methods that solve them.
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The Deterministic Single Objective Problem 
In the case of a single objective problem, we are maximizing or minimizing a single output and/
or constraining a set of outputs to stay within a certain range.

Minimize 	 f(x)
f(x)=w1 f1(x) +w2 f2(x)... +wm fm(x)

Subject to 	 gj(x) ≤ 0, 	 j = 1, 2, … ,J
hk(x) = 0, 	 k = 1, 2, ... ,K
xi 

(L) ≤ xi ≤ xi
(U),	 i = 1, 2, … ,N

A good example of a single objective material-processing application is data matching (a/k/a 
model fitting, parameter estimation), shown in Figure 2. Here, the objective is to minimize an 
error function between a parametric model and experimental data.

The selection of the right objective is the most critical aspect of optimization. In the case of 
Figure 2, the objective is a straightforward error minimization between model and experiment. 
The only question here is whether the selected parametric form does not “overfit” the data. 
To make a convincing argument that the model is valid in general, the same model should be 
fit to several sets of experimental data. The single objective error function could be averaged 
over the set.

Figure 2. The data-matching application. Composite conductivity should behave according 
to the McLachlan Equation. Fitting the parameters (design variables) of this equation gives 

a better fit than a linear function. (Ref. 3)

Apart from the selection of objectives, the second most important thing the user can do to 
improve the optimization process is to select an appropriate set of design variables. Often, 
variables can be coupled in such a way that the volume fraction of good solutions in the design 
space is maximized. This can be done according to the Buckingham PI theorem (Ref. 25) or 
other scaling methods.

Reducing the design space complexity will make it easier for the algorithm to find improvements. 
However, to find an improvement, we need at least as many active degrees of freedom to 
improve the design as there are active constraints. If not enough degrees of freedom are 
available, the design is effectively frozen in its current state. 
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A good example of systematic selection of variables was given by Kim et al (Ref. 30) for the 
multi-stage deep-drawing process of molybdenum sheet (Figure 3.). Since molybdenum has 
a low drawing ratio, it requires many drawing stages to be transformed into a cup shape. For 
each part of the drawing process, the authors investigated the proper set of design parameters 
considering process continuity (clearance, die corner radius, intake angle, etc). The purpose 
of this study is to find out the proper eight-stage drawing process that minimizes the maximum 
strain in the resulting cup shape.

Figure 3a. The simulated drawing process to produce a molybdenum cup (Ref. 30). The top 
drawings show the design variables for the (a) final target shape and (b) the intermediate 
stages. The bottom pictures show a representative presentation of the draw process for 

the initial design.   

Prior to executing the optimization, the authors did a thorough study of how the design variables 
interacted with each other. For instance, the authors discovered that the intake angle θ and 
the drawing radius Rd had an impact on the maximum stroke L for every stage. The maximum 
stroke is defined as the value of L at which the maximum strain in the cup exceeds the limiting 
material strain value. The reason for the importance of the intake angle was the fact that the 
frictional force between the flange and the die hindered the material flow into the punch-die 
gap, and the flange-die contact area decreases as the intake angle increases. Therefore, if 
the intake angle were not a design variable, it would significantly influence the outcome of any 
optimization effort.
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Figure 3b. The top graph shows the cross-sections of the optimal design for each of the 
drawing stages. The bottom table shows the reduction in maximum effective strain in the 

cup during the optimization process. 

Even after the critical design variable interactions have been found, it is non-trivial to find 
the optimal combination of the 24-design-variable problem. Most of the effects are coupled 
due to the nonlinearity of the geometry and the material response. The authors chose the 
adaptive simulated annealing optimizer (Ref. 31) to find a cup design with a 22% lower strain 
as compared to the initial process.

Single Objective Optimization Methodologies 
In this section, we will describe optimization algorithms that provide a good set of complementary 
approaches to solve a wide variety of single-objective mechanical engineering applications. 

For differentiable functions, gradient methods can be used. The constraints are handled 
directly without being converted into penalty functions. The gradient methods are very suitable 
for parallel execution because the gradients can be computed independently from each other. 
The process of gradient optimization can be easily illustrated with a Rosenbrock function with 
a local and a global minimum (Fig. 4).

Z = 100*(Y-X2)2 + (1-X) 2

Local Minimum [.71, .51]; Z = 0.0876,  	Global Minimum: [1,1] ; Z = 0

For this purpose we used the LSGRG (Ref. 3) gradient optimizer that we will describe later in 
this section. In our first attempt, we start from the left part of the design space [-1,1] and the 
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optimizer finds a solution z=0.033 close to the local optimum following the path of steepest 
descend [0.81, 0.66]. If the optimizer is started from the top right-hand corner of the design 
space [2,3], it does find a value of the objective z=1.2e-7 extremely close to the global 
minimum [0.99, 0.99], even though it is initially “side-tracked” in its search. Gradient methods, 
including very good ones like LSGRG, only find minima in the path of the steepest descend. 
The optimization is stopped when a convergence condition, such as the Kuhn-Tucker criterion, 
is satisfied:

The vector of first derivatives of the objective function •	 f (projected toward the feasible 
region if the problem is constrained) at the point x* is zero. 

The matrix of second derivatives of the objective function •	 f (projected toward the 
feasible region G in the constrained case) at the point x* is positive definite.

For most engineering problems (with multiple minima), the Kuhn-Tucker criterion can be 
satisfied without having found the global minimum. The implication is that the solution found 
the gradient optimizer is now dependent upon the starting point, and this is not very desirable. 
It is for this reason that we also have to consider other techniques which may be less efficient, 
but more reliable.

Figure 4. Gradient optimization exercise with the Rosenbrock function from 
 two starting points.

Nonlinear Programming by Quadratic Lagrangian (NLPQL) - Sequential Quadratic 
Programming (SQP) (Ref. 11)  This method builds a quadratic approximation to the Lagrange 
function and linear approximations to all output constraints at each iteration, starting with the 
identity matrix for the Hessian of the Lagrangian, and gradually updating it using the BFGS 
(Broydon-Fletcher-Goldfarb-Shanno) method. On each iteration, a quadratic programming 
problem is solved to find an improved design until the final convergence to the optimum 
design. 
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Modified Method of Feasible Directions (MMFD) (Ref. 12) This method exploits the local 
area around the initial design point, handles inequality and equality constraints directly, and 
rapidly obtains a local optimum design. MMFD is used best when starting from a feasible 
design point. It usually requires multiple iterations consisting of a search direction calculation 
(using gradients of each variable) and a one-dimensional search. MMFD follows the active 
constraints during the search until no further improvement can be made. It is well-suited for 
highly nonlinear design spaces, but not suited for discontinuous design spaces. The method 
operates on reals and the gradient evaluation can be executed in parallel.

Large-Scale Generalized Reduced Gradient (LSGRG) (Ref. 13) This method uses the 
generalized reduced gradient algorithm for solving constrained nonlinear optimization problems. 
The algorithm uses a search direction such that any active constraints remain precisely active 
for some small move in that direction. The generalized reduced gradient method is an extension 
of an earlier reduced gradient method that solved equality-constrained problems only.

The next group of optimization methods does not require gradient information, and can be 
used on non-differentiable functions. The search direction relies on the information obtained by 
sampling the design space. Constraints violations are added as penalties to the objectives.  

Hooke-Jeeves Direct Search (Ref. 15) The Hooke-Jeeves algorithm examines points near 
the current point by perturbing design variables—one axis at a time—until an improved point 
is found. It then follows the favorable direction until no more design improvement is possible. 
The size of variable perturbations is determined by the Relative Step Size. It is gradually 
reduced by applying the Step Size Reduction Factor until convergence is detected. It is not 
easily possible to parallelize this method, but it can be very efficient on moderately coupled 
problems. Hooke-Jeeves is a pattern-search method and not a gradient method. During the 
search it covers a wide range of the design space. The idea behind this is that the nature of 
the function is not known a priori so you have to do a wide exploration and not just go down 
the path of steepest descend. This means that if Hooke-Jeeves is used on a quadratic function 
like the one shown in Fig. 5, it is obviously less efficient than gradient methods. However, with 
some tweaking of the tuning parameters like step sizes and number of iterations, it does find 
the optimum and does so even if multiple local minima are present. The Hooke-Jeeves method 
does not have a convergence criterion and stops whenever a preset maximum number of runs 
is reached.

Figure 5. Hooke-Jeeves optimization exercise with a quadratic function y= (x1-5) 2 +(x1-6) 2  
starting from point [9, 2]
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Nealder & Mead Downhill Simplex (Ref. 14) This method samples the space across a sub-
region and moves from the worst point in the direction of the opposite face of the simplex 
toward better solutions. The simplex is a geometrical body with N+1 vertices represented by a 
triangle in two dimensions and a tetrahedron in three dimensions. The method calculates and 
compares the objective function at the vertices of a simplex in the variable space, selects the 
worst one, and moves this point through the opposite face of the simplex to a lower point. If 
this new vertex is better, the old one is deleted. If there is no improvement after a number of 
steps, the method “shrinks” the simplex by reducing the length of each side, thus trapping the 
optimum solution. It is not easily possible to parallelize this method, but it can be very efficient 
on moderately coupled problems.

Adaptive Simulated Annealing (ASA) (Ref. 31) This algorithm is very well-suited for solving 
highly nonlinear problems with short-running analysis codes, when finding the global optimum 
is more important than a quick improvement of the design. Each iteration in the SA perturbates 
the current solution by a random step size that is chosen based on a probability that depends 
upon the difference between corresponding function values and a global parameter T. The 
algorithm is inspired by the annealing process and T (temperature) starts out large and is 
reduced to very small values as the process advances. The parameter T is automatically 
adjusted. 

Multi-Island Genetic Algorithm (MIGA) (Ref. 33) Genetic algorithms work well because they 
incorporate randomness in their search. It gives the algorithm the ability to correct deterministic 
search bottlenecks that are caused by the reasoning in the previous two “space sampling” 
methods and the gradient methods. The MIGA algorithm divides the population into several 
islands, performs traditional genetic operations on each island separately, and then migrates 
individuals between the islands. It searches many designs and multiple locations of the design 
space. Genetic algorithms like MIGA tend to be less efficient than the two previous methods in 
this class, but they have the advantage that function evaluations can be executed in parallel. 

Hybrid algorithms combine the benefits of several algorithms, usually at some computational 
expense.

Multifunction Optimization System Tool (MOST) (Ref 43.) can be efficiently used both for 
continuous optimization problems and for integer or discrete design space optimization, where 
one or more design variables are restricted to an integer domain. MOST initially executes an 
SQP algorithm to obtain a continuous solution to the problem. At this stage, all integer variables 
are treated as continuous variables with a minimum step size of 1.0. If there are any integer (or 
discrete) variables, MOST will use the continuous solution as the starting point for its modified 
branch-and-bound algorithm. During this stage, integer variables are dropped one at a time. 
The reduced continuous optimization problem is solved for each of the dropped variables, 
fixing their values at integer levels above and below their previously found optimum values. 
Again, all remaining integer variables are treated as continuous variables with a minimum step 
size of 1.0. 

POINTER - Pointer Automatic Optimizer (Ref. 26) Pointer is an automatic optimization engine 
that controls a set of standard optimization techniques. It currently controls four optimization 
methods: an evolutionary algorithm (Ref. 28), the Nelder and Mead downhill simplex method, 
sequential quadratic programming (NPQL), a linear solver, and a TABU method (Ref. 27). This 
complementary set of algorithms was selected because each succeeds and fails for different 
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topography features. It has been found that a hybrid combination of these methods solves a 
broad range of design optimization problems. The Pointer Automatic Optimizer can control 
one algorithm at a time or all four at once. As the optimization is proceeding, the technique 
determines which algorithms are most successful as well as optimal internal control parameter 
settings (step sizes, numbers of iterations, number of restarts, etc.). This procedure is hidden 
from the user. The goal is to enable the non-optimization expert to successfully utilize these 
methods. 

The Pointer algorithm performance can be seen as an example of a robust method as illustrated 
in Figure 6. We compared all these optimizers against a standard benchmark test created by 
Dr. Sandgren (Ref. 6) to present a wide variety of single-objective optimization problems in 
many fields of mathematics and engineering. No attempt was made to use parallelization of 
hardware. 

Figure 4 shows the results of the test. In each case there was no expert intervention, and 
all algorithms were used in one setting considered suitable for the benchmark problems 
considered (ASA, NLPQL, MOST, LSGRG, IOSO). Although in a few cases Pointer was also 
the most efficient method, on average, Pointer was more than two times as expensive as 
the most efficient algorithm for the individual benchmark problem. In the case of Problem 
13, Pointer was the only algorithm to find a solution. This shows, again, that there is no free 
lunch.

Figure 6. The Pointer broadband optimizer using the ‘smooth topology setting’ on 
differentiable functions is compared to the most efficient method. Test problems are 

sorted by the minimum number of function call required by any method used the 
benchmark set.
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The Deterministic Multi-Objective Problem 
While the single-objective design formulation with an efficient algorithm is computationally 
the least expensive solution for a particular problem, most real-world problems often involve 
multiple conflicting objectives. Therefore, a significant amount of research has been performed 
towards the design of multi-objective optimization algorithms. The multi-objective optimization 
problem that such algorithms attempt to solve is formally stated as:

Minimize 	 (f1(x),  f2(x), ... , fM(x))
Subject to 	 gj(x) ≤ 0, 	 j = 1, 2, … , J

hk(x) = 0, 	 k = 1, 2, … , K
xi 

(L) ≤ xi ≤ xi
(U),	 i = 1, 2, … , N

In most scenarios, the outcome of a multi-objective optimization process is a set of non-
dominated Pareto solutions (Ref. 16). The usual definition of Pareto-domination that is used in 
the present context is as follows: 

A feasible solution a dominates another feasible solution b for an M-objective 
minimization problem, if following conditions are met:

1.  fi
a  ≤   fi

b for all i = 1, 2, … , M
2.  fi

a  <  fi
b for at least one i ∈ {1, M}.

The identified Pareto solutions define a Pareto front or M-dimensional Pareto surface. Plotting 
and visualizing the Pareto front is key to understanding the solution space and evaluating 
tradeoffs between the M objectives. The Pareto front can be a simple smooth curve, or a 
complex discontinuous set of curves/surfaces. Two such examples of Pareto fronts are shown 
in Figure 7.

  

Figure 7. Two example Pareto fronts depicting the tradeoff between objectives f1 and  f2 .  

Multi-objective problems can be solved by single-objective methods using a single weighted-
sum type objective. The minimum summed objective for each set of weights (w1 f1(x) +w2 f2(x)... 
+wm fm(x)) represents one particular optimal solution on the Pareto front. Even though this is 
the most efficient way of finding a multi-objective tradeoff, there are a number of drawbacks 
to this approach. First of all, the weighted sum creates a convex combination of objectives 
and optimal solutions in non-convex regions are not detected (Figure 8). Second, the proper 
weighting between objectives and constraints is not always clear up front.
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Figure 8. Using the weighted sum approach and true multi-objective algorithms  
to find the Pareto front. 

The method by Kim and de Weck (Ref. 5) addresses the problem of finding solutions in 
non-convex regions using weighted sums, but other methods are more widespread. These 
true multi-objective methods are easy to use and do well at capturing the Pareto front at the 
expense of more function calls. 

Multi-Objective Optimization Methodologies
Multi-objective optimization has become mainstream in recent years, and many algorithms to 
solve multi-objective optimization problems have been suggested. The use of multi-objective 
optimization in industry has been accelerated by the availability of faster processing units 
and the computational analysis models for various engineering problems and disciplines. 
Multi-objective optimization algorithms, especially those based on evolutionary principles, 
have seen wide acceptability because for most engineering problems, a quick computation of 
approximate solutions is often desirable. Evolutionary algorithms (EAs) are adaptive search 
techniques inspired by nature and their working principle is based on Darwin’s theory of 
survival-of-the-fittest (Refs. 17, 18). The adaptive nature of EAs can be exploited to design 
optimization algorithms by designing suitable variation operators and an appropriate fitness 
function. The Genetic algorithm (GA) (Ref. 19) is one of the evolutionary techniques that have 
been successfully used as an optimization tool. Typically, a GA works with a population (a set 
of solutions) instead of a single solution (individual). This property of a GA makes it an ideal 
candidate for solving multi-objective optimization problems where the outcome (in most cases) 
is a set of solutions, rather than a single solution. The population approach of a GA also makes 
it resilient to premature convergence, thereby making it a powerful tool for handling highly 
nonlinear and multi-modal functions.

We found that the following genetic algorithms provide a good set of complimentary approaches 
to solve multi-objective problems in mechanical engineering applications.

Non-dominated Sorting Algorithm (NSGA-II) (Ref. 20) In the Non-dominated Sorting 
Genetic Algorithm (NSGA-II), each objective parameter is treated separately. Standard genetic 
operation of mutation and crossover are performed on the designs. The selection process is 
based on two main mechanisms, “non-dominated sorting”, and “crowding distance sorting.” By 
the end of the optimization run, a Pareto set is constructed where each design has the "best" 
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combination of objective values and improving one objective is impossible without sacrificing 
one or more of the other objectives. NSGA-II is widely used and has become a de facto 
standard against which the performance of other algorithms is compared.

Neighborhood Cultivation Genetic Algorithm (NCGA) (Ref. 21) In NCGA, each objective 
parameter is treated separately. Standard genetic operation of mutation and crossover are 
performed on the designs. The crossover process is based on the “neighborhood cultivation” 
mechanism, where the crossover is performed mostly between individuals with values close 
to one of the objectives. By the end of the optimization run, a Pareto set is constructed where 
each design has the “best” combination of objective values, and improving one objective is 
impossible without sacrificing one or more of the other objectives.

Archive-based Micro Genetic Algorithm (AMGA) (Ref. 22) AMGA is an evolutionary 
optimization algorithm and relies on genetic variation operators for creating new solutions. 
The generation scheme deployed in this algorithm can be classified as generational because 
during a particular iteration (generation), only solutions created before that iteration take part 
in the selection process. The algorithm, however, generates a small number of new solutions 
(recommended value is two solutions per iteration) at every iteration and therefore it can also 
be classified as an almost steady-state genetic algorithm. The algorithm works with a small 
population size (recommended value is 4) and maintains an external archive of good solutions 
obtained. At every iteration, a small number of solutions are created using genetic variation 
operators. The algorithm is referred to as Archive-based Micro Genetic Algorithm (AMGA), 
owing to the fact that it works with a very small population size and uses an archive to maintain 
its search history. It is recommended to use a large size for the archive, and the best results are 
obtained if the size of the archive is the same as the number of function evaluations allowed 
(i.e., the algorithm stores its complete search history). The size of the archive determines the 
computational complexity of the algorithm; however, for computationally expensive optimization 
problems, the actual time taken by the algorithm is negligible. The parent population is updated 
using the archive and binary tournament selection is performed on the parent population (for 
creating the mating population). 

Multi-Objective Optimization Study 
Evaluating and comparing multi-objective optimization algorithms is more involved than 
evaluating and comparing single objective algorithms. Rather than simply comparing the 
objective value at a single solution point and the number of system evaluations required to 
achieve the solution objective value, evaluating the solution set provided by a multi-objective 
optimization algorithm requires comparison of Pareto sets for accuracy and completeness.

In recent studies, four unary performance indicators are commonly used to compare the 
ability of multi-objective optimization algorithms to characterize the Pareto front (i.e. they 
compare a single non-dominated set to a Pareto-optimal frontier). The performance indicators 
are Delineation, Distance, Diversity, and Hypervolume (Ref. 23). A brief description of each 
performance indicator is as follows:

Delineation Metric: It measures “how much of the true Pareto-optimal front is represented •	
by the obtained solution set.”

Distance Metric: It measures the average Euclidean distance between the true Pareto-•	
optimal front and the obtained solution set.
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Diversity Metric: It measures the uniformity of distribution and the spread of obtained •	
solution set.

Hypervolume Metric: It measures the fraction of search space not dominated by the •	
obtained solution set in comparison to the true Pareto-optimal set.

In order to use these performance indicators, the true Pareto-optimal front must be known. 
Smaller value for a performance indicator means a better solution set. Ideally, if the original 
Pareto-optimal front is used as the solution set, all the performance indicators should evaluate 
to zero. Since a finite number of points (1,000 points for the problems presented here) are used 
to represent the true Pareto-optimal frontier, a value of 0.01 or less for a performance indicator 
implies that the obtained solution set is virtually indistinguishable from the Pareto-optimal front. 
If the value of the performance indicator is 0.5 or more, it implies that an acceptable solution 
set was not obtained. All the objectives are normalized (the Pareto-optimal set is mapped to 
the range [0, 1]) before the performance indicators are computed. Only the non-dominated 
solutions belonging to rank 1 are considered for computing the performance indicators. 

Results from NSGA-II, NCGA, and AMGA are presented in Table 1 for five common multi-
objective optimization test problems, taken from (Ref. 24): ZDT1, ZDT2, ZDT3, ZDT4, ZDT6. 
Each problem has two objectives. Minimization for both of the objectives for all of the test 
problems is assumed. ZDT1-3 have 30 design variables, and ZDT4 and ZDT6 have 10 design 
variables.  

Even though these algorithms are quite robust, a search from a given starting point still produces 
a slightly different answer because of the randomness in the search procedure. To account for 
this in our comparison, we executed 15 simulation runs starting with different random seeds 
for each algorithm-problem pair (a total of 15 × 3 × 5 = 225 simulations are performed). The 
size of the initial population used for all of the algorithms is 100. The number of generations 
used is 40 for all except ZDT4, which used 100 generations, giving a total number of function 
evaluations of 10,000 for ZDT4 and 4000 for all other problems.

Table 1 presents the median value for each performance indicator for each algorithm, across 
the 15 executions of each algorithm, for each test problem. The best (lowest) metric values for 
each problem are highlighted in bold. It is evident from the simulation results that AMGA has 
the overall best performance, obtaining the best metric values for all problems and all metrics 
except for diversity for ZDT4, for which NSGA-II obtained the best value. AMGA is capable 
of reporting a large number of non-dominated solutions for the same number of function 
evaluations. The development of AMGA can also be perceived as an exercise in combining the 
best features of different algorithms and best practices into a unified optimization framework. 
Although the computational complexity of the algorithm is more than either NSGA-II or NCGA, 
the execution time is not affected drastically. Almost the entire execution time is consumed by 
the analysis routines, and therefore the algorithm can afford to perform expensive operations 
if such operations can result in reduced number of function evaluations. The two guiding 
principles that have shaped the design of the AMGA algorithm are focused on reducing the 
number of function evaluations for the same degree of convergence, and making the algorithm 
immune to changes in sizing or tuning parameters. Limited success has been achieved by 
AMGA in fulfilling these goals.
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 Problem Algorithm Delineation Distance Diversity Hypervolume

ZDT1
 

NSGA-II 0.055573 0.050177 0.130880 0.109433
NCGA 0.068537 0.063598 0.109231 0.107068
AMGA 0.033043 0.023070 0.071707 0.069749

ZDT2
 

NSGA-II 0.080988 0.070241 0.326157 0.257817
NCGA 0.149708 0.136145 0.502602 0.415069
AMGA 0.037432 0.029006 0.095623 0.135636

ZDT3
 

NSGA-II 0.038556 0.029505 0.143943 0.100310
NCGA 0.043921 0.028587 0.156448 0.127858
AMGA 0.020222 0.009450 0.088270 0.055998

ZDT4
 

NSGA-II 0.029920 0.014183 0.085797 0.059543
NCGA 0.958743 1.011684 1.884524 0.993992
AMGA 0.026019 0.010017 0.157624 0.047144

ZDT6
 

NSGA-II 0.136153 0.132502 0.388023 0.349802
NCGA 1.367150 1.249455 3.120534 1.000000
AMGA 0.099351 0.097869 0.279079 0.288113

Table 1. Median value for all multi-objective optimization performance metrics.

The results for problem ZDT3 are shown graphically in Figure 9. The Pareto frontier for ZDT3 is 
the second, discontinuous front shown in Figure 5. In this problem, AMGA gives performance 
metric values that are 40 – 80% better than the next best value. Note, however, that NCGA 
is designed to work with bit strings, whereas NSGA-II and AMGA are designed to work with 
real variables. All of the problems considered in this study involve real variables that may 
have impacted the performance of NCGA. For problems involving discrete variables, NCGA 
can produce better results. Also, the use of bit strings gives NCGA the capability to produce a 
more uniform distribution across the Pareto-optimal frontier. Again, the no-free-lunch theorem 
(Ref. 2) applies.

It should also be noted that the number of Pareto points output by AMGA has been deliberately 
limited to 20 for the purposes of a more fair comparison. If the number of points output by 
AMGA is not restricted, to exploit one of the advantages of AMGA, the value of performance 
parameters would be significantly better.

Figure 9. ZDT3 performance results for all three algorithms and all performance metrics.
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The Non-deterministic, Stochastic Optimization Problem
Real-world engineered products and processes do not behave in a deterministic manner. 
Most systems behave stochastically—involving chance or probability. Variation is inherent in 
material characteristics, loading conditions, simulation model accuracy, geometric properties, 
manufacturing precision, actual product usage, etc. Application of deterministic optimization 
strategies, without incorporating uncertainty and measuring its effects, leads to designs that 
cannot be called “optimal,” but instead are potentially high-risk solutions that can have a high 
probability of failing in use. Optimization algorithms tend to push a design towards one or more 
constraints until the constraints are active. With a design sitting on one or more constraint 
boundary, even slight uncertainties in the problem formulation or changes in the operating 
environment could produce failed, unsafe designs, and/or result in substantial performance 
degradation.  

Traditionally, many uncertainties are removed through assumptions, and others are handled 
through crude safety methods, which often lead to over-designed products and do not offer 
insight into the effects of individual uncertainties and the actual margin of safety of a design.

More recently, stochastic optimization methods—often called probabilistic optimization or robust 
optimization—have been developed to address uncertainty and randomness through statistical 
modeling and probabilistic analysis (Refs. 10, 34). These probabilistic approaches have been 
developed to convert deterministic problem formulations into stochastic formulations to model 
and assess the effects known uncertainties. Until recently, however, the computational expense 
of stochastic methods, in terms of the number of function evaluations necessary to accurately 
capture performance variation, has made the application of these methods impractical for all 
but academic investigations or very critical cases. With the steady increases in computing 
power, large scale parallel processing capabilities, and availability of probabilistic analysis 
and optimization tools and systems, however, the combination of these technologies can 
facilitate effective stochastic analysis and optimization for complex design problems, allowing 
the identification of designs that qualify as not only feasible, but as consistently feasible in the 
face of uncertainty.

A stochastic optimization problem can be formally stated as follows:

Minimize 	 fm(µym
(x),  σym

(x)),		  m = 1, 2, … , M
Subject to 	 gj(µyj

(x), σyj
(x)) ≤ 0, 		  j = 1, 2, … , J

hk(x) = 0, 			   k = 1, 2, … , K
xi 

(L) + nσxi
 ≤ xi ≤ xi

(U) - nσxi
,	 i = 1, 2, … , N

The stochastic optimization problem models both nominal, or mean, performance and 
performance variation through statistics and/or probabilities. For example, the constraints can 
be modeled as a mean value adjusted by a specified number of standard deviations:

				    µy – nσy ≥ Lower Limit
				    µy + nσy ≤ Upper Limit

Or as a probability of violating the specified limit:

g(x) ≤ 0	 becomes	 Pf = P(g(x) ≤ 0) ≤ PU
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The stochastic optimization problem is inherently a multi-objective problem: each performance 
measure has two objective components corresponding to nominal/mean performance and 
performance variation. Multi-objective optimization strategies can be used to assess effectively 
the tradeoffs between the performance measures and between the nominal performance 
and measured variation of performance. The stochastic optimization problem can also be 
formulated as a single objective problem, using the weighted sum approach as follows:

Where w1m
 and w2m

 are the weights and s1m
 and s2m

 are the scale factors for the “mean on 
target” and “minimize variation” objective components, respectively, for performance response 
m, Tm is the target for performance response m, and M is the number of performance responses 
included in the objective. For the case in which the mean performance is to be minimized or 
maximized, rather than directed toward a target, the objective formulation can be modified 
as follows, where the first term is positive when the response mean is to be minimized and 
negative when the response mean is to be maximized:

Calculation of the statistics and probabilities necessary to implement a stochastic optimization 
strategy requires the identification and characterization of random variables and the incorporation 
of a sampling strategy within the stochastic optimization search. Random variables are inputs 
to a simulation with known variation. They are described through probability distributions 
and associated properties. By sampling from these distributions following their prescribed 
properties, the effects of this input variation on performance can be assessed. Through this 
sampling, stochastic analysis is used to measure design quality (reliability and robustness). 
Many methods have been developed for stochastic sampling, including Monte Carlo methods 
(Refs. 35, 36), structural reliability analysis methods (Refs. 37-39), sensitivity-based methods, 
based on Taylor’s expansion (Refs. 40, 41) and design of experiments (Ref. 42). Examples of 
computed quality attributes are: mean, sigma level, defects per million, probability of success, 
and probability of failure.

Stochastic optimization is then used to improve design quality. Any of the authors’ multi- and 
single-objective optimization methods (Ref. 1) mentioned earlier in this paper can be used to 
optimize the attributes of design quality as measured by the stochastic analysis.

The concept of stochastic, robust optimization is illustrated in Figure 10. If the function in 
Figure 8 is to be minimized, the solution given by point 1 would be chosen if uncertainty and 
performance variation are not considered, as with deterministic optimization. Given uncertainty 
in the design parameter x, defined as a variation of ±∆x around the chosen value, the solution 
at point 1 leads to a large level of variation, ∆f1, of the performance function f(x). To the right 
of point 1 in the figure, there exists a more “flat” region of f(x), which can be shown to be 
more robust, or less sensitive to variation in the design parameter x. If point 2 is chosen, for 
the same design parameter variation, ±∆x, the variation of the performance function, ∆f2, is 
significantly less than that at point 1. The sacrifice in choosing point 2 is the increase in the 
median value of f(x), which is higher at point 2 than at point 1. This is the tradeoff that must 
be evaluated in searching for a robust solution as opposed to a solution with optimal mean 
performance. It can be seen in the figure that an even flatter region than that at point 2 exists 
further to the right of point 2 (direction of increasing x). Although the performance variation 
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may be even less in this region, the mean performance may not be acceptable. Both elements 
of desired mean performance and reduced performance variation must be incorporated in a 
robust optimization formulation.

 

Figure 10. Robust optimization concept

A very common way to express quality of a design is the number of sigmas (standard deviations) 
a design is away from failing to meet the specifications. Six sigmas correspond to 3 defects per 
million, a widely quoted (Ref. 44) quality goal in manufacturing processes.

Stochastic Optimization Studies
In Figure 11, the robust optimization of a steel mill is presented. In this case, we are interested 
in the operation of the mill under varying conditions (times, temperature profiles, cooling air 
velocities, etc.), so we minimized the deviation from the specification (material characteristics, 
dimensions, etc.) with constraints on equipment operation. In this particular case, robust 
optimization reduced the mean specification score by 1%, but the standard deviation of the 
specification score was reduced by an impressive 95%. This provided significant savings in 
scrap cost. 

Figure 11. Tool set point optimization of a seamless steel tube mill (Ref. 4).  
Note: Results are for illustration only.
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One quality engineering design application currently of high visibility in the automotive industry 
is vehicle structural design for crashworthiness. These design problems are not only particularly 
complex in terms of understanding the problem and defining design requirements and design 
alternatives, but also involve a very high degree of uncertainty and variability: velocity of impact, 
mass of vehicle, angle of impact, and mass/stiffness of barrier are just few of many uncertain 
parameters. A balance must be struck in designing for crashworthiness between designing 
the vehicle structure to absorb/manage the crash energy (through structure deformation) and 
maintaining passenger compartment integrity, all in the face of uncertainty and variability in 
materials, structural configuration, and crash scenario.

One specific crash scenario is investigated in Ref. 10—side impact—using the stochastic 
analysis and optimization tools available in Isight. A typical vehicle side impact model is shown 
in Figure 12. Including a finite element dummy model, the total number of elements in this 
model is about 90,000, and the total number of nodes is around 96,000. The initial lateral 
velocity of the side deformable barrier is 31 MPH. The CPU time for a RADIOSS simulation of 
the model is about 20 hours on a SGI Origin 2000. 

For side impact protection, the vehicle design should meet the requirements for the National 
Highway Traffic Safety Administration (NHTSA) side impact procedure specified in the Federal 
Motor Vehicle Safety Standards (FMVSS) or the European Enhanced Vehicle-Safety Committee 
(EEVC) side impact procedure. In this study, the EEVC side impact test configuration was 
used. The dummy performance is the main concern in side impact, which includes head injury 
criterion (HIC), abdomen load, pubic symphysis force (pelvic load), V*C’s (viscous criterion), 
and rib deflections (upper, middle, and lower). These dummy responses must at least meet 
EEVC requirements. Other concerns in side impact design are the velocity of the B-Pillar at 
middle point, and the velocity of the front door at B-Pillar.

Figure 12. Automotive crashworthiness robust optimization – side impact model (Ref. 10).

For side impact, increase of gauge design variables tends to produce better dummy 
performance. However, it also increases vehicle weight, which is undesirable. Therefore, 
a balance must be sought between weight reduction and safety concerns. The objective is 
to reduce the weight with imposed constraints on the dummy safety. Here, eleven design 
parameters are used for side impact optimization. Nine design variables include two materials 
of critical parts and seven thickness parameters. The material design variables are discrete, 
either mild steel (MS) or high-strength steel (HSS). All thickness and material design variables 
are also random variables, normally distributed with standard deviation of 3% of the mean for 
the thickness variables, and 0.6% for the material properties. The final two parameters, barrier 
height and hitting position, are pure random variables continuously varying from -30mm to 
30mm according to the physical test.
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A deterministic optimization was initially applied for this problem using the NLPQL sequential 
quadratic programming (SQP) algorithm. Starting from an infeasible baseline design, this 
optimization solution results in feasible design with a weight reduction of nearly 20%, but also 
results in three active constraints associated with rib deflection, pubic symphysis force, and 
door velocity. When a stochastic analysis is performed at this design solution, using Monte 
Carlo descriptive sampling with 2,000 points, reliability values of 40% are obtained (60% 
probability of failure). After applying stochastic optimization, the reliability is increased, but at 
the expense of the vehicle weight as shown in Figure 13. For this problem, when the number of 
standard deviations of performance maintained within the required limits (original optimization 
constraints) reaches around 3σ, the weight is nearly equal to that of the baseline design; no 
weight savings is achieved, but the quality level is increased. As the quality level is increased 
further, the weight is increased over the baseline.  

Figure 13. Performance versus Quality Tradeoff –Side Impact Problem (Ref. 10)

Closing
Optimization is a useful and effective simulation-based design tool for identifying one or more 
designs that best achieves a set of requirements or for improving an existing design. Optimization 
has been used to solve a wide range of industrial problems, and is being used more and more. 
One conclusion of these industrial applications of optimization is that no one optimization 
algorithm—or even class of optimization algorithms—is appropriate or even capable for solving 
a wide range of problems well. Again, there is no free lunch. Many optimization strategies 
have been developed to address different types of problems. These optimization strategies 
can be combined and applied to create new strategies, to allow both global and local search, 
continuous and discontinuous spaces, continuous and discrete variables, smooth and noisy 
topologies, etc., to become more robust towards solving a wider range of problems.

There is also always a tradeoff between efficiency and accuracy. Formulating and solving 
a single-objective problem is usually the most efficient approach, but may not give the best 
tradeoff solution or allow the problem to be explored sufficiently. Extending a problem to 
multiple objectives and truly evaluating the tradeoffs between the objectives requires increased 
computational effort. Incorporating uncertainty and searching for designs of higher quality, 
requiring additional sampling during a search strategy, adds  significantly more computational 
expense.  
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For complex simulation models requiring minutes or hours per analysis, optimization—and, 
especially, stochastic optimization—can quickly become impractical. However, additional 
simulation-based design enabling technologies can be combined to support the implementation 
of optimization to even highly complex problems. Two such current technologies are parallel 
processing and approximation methods. Many analyses during optimization and sampling for 
stochastic analysis are independent analyses known in advance: gradient runs for gradient-
based methods, a population in a genetic algorithm, Monte Carlo or DOE samples, etc. These 
analyses can be executed in parallel on multiprocessor machines and/or a network of machines. 
For the most computationally expensive analyses, requiring days for a single analysis, a set 
of sampled design points can be executed in parallel and used to construct surrogate models, 
or approximation models, to replace the high-fidelity code during optimization. Polynomial 
response surfaces and, more recently, radial basis functions or Kriging surrogate models have 
been employed for this purpose.
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