
ISO 21940-12 Example calculation of equivalent residual modal unbalances

D.1 Residual unbalance calculation

The principles of residual unbalance calculation are shown in the following example. A recommended procedure is outlined in <u>9.2.3</u>.

The rotor is a gas turbine rotor with four correction planes $P_{c,1}$ to $P_{c,4}$ (see Figure D.1). The balancing calculations are based on vibration measurements at the two bearings (transducers T_1 and T_2).

 $P_{c,1}, P_{c,2}, P_{c,3}, P_{c,4}$ correction planes T_1, T_2 transducers

Key

Figure D.1 — Example gas turbine rotor

ISO 21940-12 Example calculation of equivalent residual modal unbalances

The service speed of the rotor is 10 125 r/min.

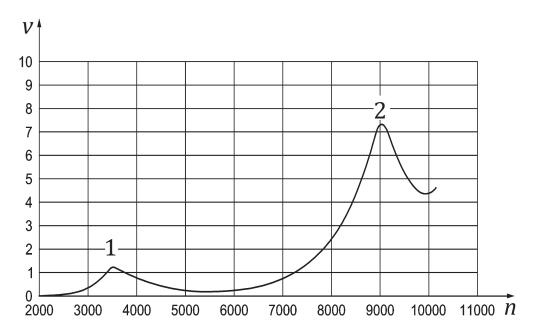
The rotor mass is 1 625 kg.

The permissible total unbalance for an equivalent rigid body according to balance quality grade G 2,5 is taken from ISO 21940-11 to be 2,37 g·mm/kg.

The total residual unbalance for an equivalent rigid body is therefore

2,37
$$\frac{g \cdot mm}{kg} \times 1.625 \text{ kg} = 3.850 \text{ g} \cdot mm$$
 (D.1)

The permissible equivalent first modal unbalance (60 % thereof, see 8.3.4.2) is 2 311 g·mm.


The permissible equivalent second modal unbalance (60 %) is 2 311 g·mm.

ISO 21940-12 Balancing speeds

D.2 Influence coefficients

The balancing speeds for this rotor are the following (see Figure D.2):

- 1 000 r/min (low speed);
- 3 400 r/min (just below rotor resonance 1);
- 9 000 r/min (just below rotor resonance 2).

ISO 21940-12 Influence coefficients

Measurement	Correction plane				Speed	
point	P _{c,1}	P _{c,2}	P _{c,3}	P _{c,4}	r/min	
Transducer 1	0,059 4/3° a	0,033 0/1°	0,009 12/333° a	0,004 90/233°	1 000	
Transducer 2	0,002 16/35° a	0,022 7/14°	0,033 4/11° a	0,042 5/9°	1 000	
Transducer 1	0,249/82°	0,343/94°	0,055/222°	0,360/265° a	2 400	
Transducer 2	0,087/107°	0,157/87°	0,102/34°	0,224/6° a	3 400	
Transducer 1	1,99/146°	2,29/285° a	1,56/293°	2,07/176°	0.000	
Transducer 2	1,92/353°	1,99/134° a	1,16/109°	0,595/281°	9 000	
^a Influence coefficients used for residual unbalance calculation.						

Table D.1 — Influence coefficients

ISO 21940-12 Final vibration readings and residual unbalance

Speed	Transducer		I lasit
r/min	T ₁	T ₂	Unit
1 000	0,01/237°	0,022/147°	mm/s
3 400	0,55/52°	0,22/125°	mm/s
9 000	2,35/305°	1,44/139°	mm/s

Table D.2 — Final vibration readings

Table D.3 — Residual unbalance at 1 000 r/min

Plane	Calculated	Permissible	
	g∙mm	g∙mm	
P _{c,1}	246	1 925	
P _{c,3}	671	1 925	

Final vibration readings and residual unbalance

Transducer	Calculated	Permissible
		g∙mm
T ₁	(0,55/0,36) 1 000 = 1 530 g⋅mm	2 311
T ₂	(0,22/0,224) 1 000 = 982 g⋅mm	2 311

Table D.4 — Residual unbalance at 3 400 r/min

Table D.5 — Residual unbalance at 9 000 r/min

Transducer	Calculated	Permissible
		g∙mm
T ₁	(2,35/2,29) 1 000 = 1 026 g⋅mm	2 311
T ₂	(1,44/1,99) 1 000 = 723 g·mm	2 311