
Systems and software engineering —
Software life cycle processes
Ingénierie des systèmes et du logiciel — Processus du cycle de vie du
logiciel

INTERNATIONAL
STANDARD

ISO/IEC/
IEEE

12207

Reference number
ISO/IEC/IEEE 12207:2017(E)

First edition
2017-11

© ISO/IEC 2017
© IEEE 2017

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

© ISO/IEC 2017 – All rights reserved
ii © IEEE 2017 – All rights reserved

ISO/IEC/IEEE 12207:2017(E)

COPYRIGHT PROTECTED DOCUMENT

© ISO/IEC 2017, Published in Switzerland
© IEEE 2017
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO or IEEE at the address below or ISO’s member body in the
country of the requester.

ISO copyright office Institute of Electrical and Electronics Engineers, Inc
Ch. de Blandonnet 8 • CP 401 3 Park Avenue, New York
CH-1214 Vernier, Geneva, Switzerland NY 10016-5997, USA
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org stds.ipr@ieee.org
www.iso.org www.ieee.org

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

iii	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

Contents Page

Foreword ... vi	

Introduction ... vii	

1 Scope .. 1	
1.1 Overview ... 1	
1.2 Purpose ... 1	
1.3 Field of application .. 1	
1.4 Limitations ... 2	

2 Normative references ... 2	

3 Terms, definitions, and abbreviated terms ... 2	
3.1 Terms and definitions .. 2	
3.2 Abbreviated terms .. 11	

4 Conformance ... 11	
4.1 Intended usage ... 11	
4.2 Full conformance ... 12	
4.2.1 Full conformance to outcomes .. 12	
4.2.2 Full conformance to tasks .. 12	
4.3 Tailored conformance ... 12	

5 Key concepts and application .. 13	
5.1 Introduction .. 13	
5.2 Software system concepts .. 13	
5.2.1 Software systems ... 13	
5.2.2 Software system structure ... 13	
5.2.3 Enabling systems ... 15	
5.2.4 Life cycle processes for the software system ... 16	
5.3 Organization and project concepts .. 16	
5.3.1 Organizations ... 16	
5.3.2 Organization and project-level adoption .. 17	
5.4 Life cycle concepts .. 17	
5.4.1 Software life cycle stages .. 17	
5.4.2 Life cycle model for the software system .. 17	
5.5 Process concepts ... 19	
5.5.1 Criteria for processes ... 19	
5.5.2 Description of processes ... 19	
5.5.3 General characteristics of processes .. 19	
5.5.4 Tailoring ... 19	
5.6 Process groups ... 19	
5.6.1 Introduction .. 19	
5.6.2 Agreement processes ... 21	
5.6.3 Organizational project-enabling processes .. 22	
5.6.4 Technical Management processes ... 22	
5.6.5 Technical processes ... 22	
5.7 Process application .. 22	
5.8 Process reference model .. 23	

6 Software life cycle processes ... 24	
6.1 Agreement processes ... 24	
6.1.1 Acquisition process .. 24	
6.1.2 Supply process ... 27	
6.2 Organizational Project-Enabling processes ... 28	
6.2.1 Life cycle model management process ... 29	
6.2.2 Infrastructure Management process .. 30	
6.2.3 Portfolio Management process ... 31	
6.2.4 Human Resource Management process ... 33	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

iv	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

6.2.5 Quality Management process ... 34	
6.2.6 Knowledge Management process ... 36	
6.3 Technical Management processes .. 37	
6.3.1 Project Planning process ... 38	
6.3.2 Project assessment and control process .. 40	
6.3.3 Decision Management process .. 43	
6.3.4 Risk Management process .. 44	
6.3.5 Configuration Management process .. 46	
6.3.6 Information Management process ... 50	
6.3.7 Measurement process .. 52	
6.3.8 Quality Assurance process .. 53	
6.4 Technical processes .. 55	
6.4.1 Business or Mission Analysis process ... 56	
6.4.2 Stakeholder Needs and Requirements Definition process .. 59	
6.4.3 System/Software requirements definition process ... 63	
6.4.4 Architecture Definition process .. 66	
6.4.5 Design Definition process ... 71	
6.4.6 System Analysis process .. 74	
6.4.7 Implementation process ... 75	
6.4.8 Integration process ... 79	
6.4.9 Verification process .. 82	
6.4.10 Transition process... 85	
6.4.11 Validation process ... 89	
6.4.12 Operation process ... 92	
6.4.13 Maintenance process .. 95	
6.4.14 Disposal process .. 99	

Annex A	(normative)		 Tailoring process ... 102	
A.1 Introduction ... 102	
A.2 Tailoring process .. 102	
A.2.1 Purpose .. 102	
A.2.2 Outcomes ... 102	
A.2.3 Activities and tasks .. 102	

Annex B	(informative)			Examples of process information items ... 104	

Annex C	(informative)			Process Reference Model for assessment purposes ... 107	
C.1 Introduction ... 107	
C.2 Conformance with ISO/IEC 33004 ... 107	
C.2.1 General ... 107	
C.2.2 Requirements for process reference models .. 107	
C.2.3 Process descriptions .. 108	
C.3 The process reference model ... 108	

Annex D	(informative)		Process integration and process constructs .. 109	
D.1 Introduction ... 109	
D.2 Process constructs and their usage .. 109	

Annex E	(informative)			Process views .. 111	
E.1 Introduction ... 111	
E.2 The process view concept .. 111	
E.3 Process viewpoint .. 111	
E.4 Process view for specialty engineering ... 112	
E.5 Process view for interface management ... 114	
E.6 Process view for software assurance (Information security) .. 116	

Annex F	(informative)		Software system architecture modelling .. 120	
F.1 Introduction ... 120	
F.2 Views, models and model kinds used in software system architecture ... 120	
F.2.1 Functional model .. 120	
F.2.2 Static model .. 121	
F.2.3 Data model .. 121	
F.2.4 Behavioral model .. 121	
F.2.5 Temporal model .. 121	
F.2.6 Structural model ... 121	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

v	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

F.2.7 Network model .. 121	
F.3 Other model considerations .. 121	

Annex G	(informative)		 Application of software life cycle processes to a system of systems 123	
G.1 Introduction .. 123	
G.2 SoS characteristics and types .. 123	
G.3 SE processes applied to systems of systems ... 124	
G.3.1 General ... 124	
G.3.2 Agreement processes ... 124	
G.3.3 Organizational project enabling processes .. 124	
G.3.4 Technical management processes ... 125	
G.3.5 Technical processes ... 125	

Annex H	(informative) Application of Agile ... 127	

Annex I	(informative) Process Mapping from ISO/IEC/IEEE 12207:2008 ... 129	

Bibliography ... 143	
	

List of Illustrations

Figure 1 —Software system and software system element relationship ... 14	

Figure 2 —Example of software system-of-interest structure ... 14	

Figure 3 —Software system-of-interest, its operational environment and enabling systems 15	

Figure 4 —Software life cycle processes ... 21	

Table B.1 — Sample information items by process ... 104	

Figure D.1 — ISO/IEC/IEEE 12207:2017 and ISO/IEC/IEEE 15288:2015 process constructs 110	

Table G.1 — System of Systems types .. 123	

Table I.1 — Comparison of processes in ISO/IEC/IEEE 12207:2017 and the previous edition 129	

Table I.2 — Comparison of process outcomes in ISO/IEC/IEEE 12207:2017 and software-related
outcomes in the previous edition .. 131	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

vi	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

Foreword

ISO	(the	International	Organization	for	Standardization)	and	IEC	(the	International	Electrotechnical	Commission)	
form	 the	 specialized	 system	 for	 worldwide	 standardization.	 National	 bodies	 that	 are	 members	 of	 ISO	 or	 IEC	
participate	 in	 the	 development	 of	 International	 Standards	 through	 technical	 committees	 established	 by	 the	
respective	 organization	 to	 deal	 with	 particular	 fields	 of	 technical	 activity.	 ISO	 and	 IEC	 technical	 committees	
collaborate	in	fields	of	mutual	interest.	Other	international	organizations,	governmental	and	non‐governmental,	in	
liaison	with	 ISO	 and	 IEC,	 also	 take	 part	 in	 the	work.	 In	 the	 field	 of	 information	 technology,	 ISO	 and	 IEC	 have	
established	a	joint	technical	committee,	ISO/IEC	JTC	1.	

IEEE	Standards	documents	are	developed	within	the	IEEE	Societies	and	the	Standards	Coordinating	Committees	
of	 the	 IEEE	 Standards	 Association	 (IEEE‐SA)	 Standards	 Board.	 The	 IEEE	 develops	 its	 standards	 through	 a	
consensus	development	process,	approved	by	the	American	National	Standards	 Institute,	which	brings	together	
volunteers	 representing	 varied	 viewpoints	 and	 interests	 to	 achieve	 the	 final	 product.	 Volunteers	 are	 not	
necessarily	members	of	 the	 Institute	 and	 serve	without	 compensation.	While	 the	 IEEE	administers	 the	process	
and	establishes	rules	to	promote	fairness	in	the	consensus	development	process,	the	IEEE	does	not	independently	
evaluate,	test,	or	verify	the	accuracy	of	any	of	the	information	contained	in	its	standards.	

The	procedures	used	to	develop	this	document	and	those	 intended	for	 its	 further	maintenance	are	described	 in	
the	 ISO/IEC	 Directives,	 Part	1.	 In	 particular,	 the	 different	 approval	 criteria	 needed	 for	 the	 different	 types	 of	
document	 should	 be	 noted.		 This	 document	 was	 drafted	 in	 accordance	 with	 the	 editorial	 rules	 of	 the	
ISO/IEC	Directives,	Part	2	(see	www.iso.org/directives).		

Attention	 is	 drawn	 to	 the	possibility	 that	 some	 of	 the	 elements	 of	 this	 document	may	 be	 the	 subject	 of	 patent	
rights.	ISO,	IEC,	and	IEEE	shall	not	be	held	responsible	for	identifying	any	or	all	such	patent	rights.		Details	of	any	
patent	rights	identified	during	the	development	of	the	document	will	be	in	the	Introduction	and/or	on	the	ISO	list	
of	patent	declarations	received	(see	www.iso.org/patents).		

Any	trade	name	used	in	this	document	is	information	given	for	the	convenience	of	users	and	does	not	constitute	
an	endorsement.	

For	an	explanation	on	the	meaning	of	ISO	specific	terms	and	expressions	related	to	conformity	assessment,	as	well	
as	information	about	ISO’s	adherence	to	the	World	Trade	Organization	(WTO)	principles	in	the	Technical	Barriers	
to	Trade	(TBT)	see	the	following	URL	www.iso.org/iso/foreword.html.	

This	document	was	prepared	by	Joint	Technical	Committee	ISO/IEC	JTC	1,	Information technology,	Subcommittee	
SC	7,	 Systems and software engineering,	 in	 cooperation	 with	 the	 IEEE	 Computer	 Society	 Systems	 and	 Software	
Engineering	 Standards	 Committee,	 under	 the	 Partner	 Standards	 Development	 Organization	 cooperation	
agreement	between	ISO	and	IEEE.	

This	 first	 edition	of	 ISO/IEC/IEEE	12207	cancels	and	replaces	 ISO/IEC	12207:2008	 (second	edition),	which	has	
been	technically	revised.	

Changes	in	this	revision	of	ISO/IEC/IEEE	12207	were	developed	in	conjunction	with	a	corresponding	revision	of	
ISO/IEC/IEEE	 15288:2015,	 Systems and software engineering – System life cycle processes.	 The	 purpose	 of	 these	
revisions	 is	 to	 accomplish	 the	 harmonization	 of	 the	 structures	 and	 contents	 of	 the	 two	 documents,	 while	
supporting	the	requirements	of	the	engineering	and	assessment	communities.	

This	document	was	developed	with	the	following	goals:	

— provide	a	common	terminology	between	the	revision	of	ISO/IEC/IEEE	15288	and	ISO/IEC/IEEE	12207;	

— where	 applicable,	 provide	 common	 process	 names	 and	 process	 structure	 between	 the	 revision	 of	
ISO/IEC/IEEE	15288	and	ISO/IEC/IEEE	12207;	and	

— enable	 the	 user	 community	 to	 evolve	 towards	 fully	 harmonized	 standards,	 while	 allowing	 backward	
compatibility.	

This	revision	is	intended	to	achieve	a	fully	harmonized	view	of	the	system	and	software	life	cycle	processes.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

http://www.iso.org/directives�
http://www.iso.org/patents�
http://www.iso.org/iso/foreword.html�

ISO/IEC/IEEE 12207:2017(E)

vii	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

Introduction

The	complexity	of	software	systems	has	increased	to	an	unprecedented	level.	This	has	led	to	new	opportunities,	
but	 also	 to	 increased	 challenges	 for	 the	 organizations	 that	 create	 and	 utilize	 systems.	 These	 challenges	 exist	
throughout	the	 life	cycle	of	a	system	and	at	all	 levels	of	architectural	detail.	This	document	provides	a	common	
process	framework	for	describing	the	life	cycle	of	systems	created	by	humans,	adopting	a	Software	Engineering	
approach.	Software	Engineering	is	an	interdisciplinary	approach	and	means	to	enable	the	realization	of	successful	
software	systems.	 It	 focuses	on	defining	stakeholder	needs	and	required	 functionality	early	 in	 the	development	
cycle,	documenting	requirements,	and	performing	design	synthesis	and	system	validation	while	considering	the	
complete	problem.	 It	 integrates	all	 the	disciplines	and	 specialty	groups	 into	a	 team	effort	 forming	a	 structured	
development	process	that	proceeds	from	concept	to	production	to	operation	and	maintenance.	It	considers	both	
the	business	and	the	technical	needs	of	all	stakeholders	with	the	goal	of	providing	a	quality	product	that	meets	the	
needs	 of	 users	 and	 other	 applicable	 stakeholders.	 This	 life	 cycle	 spans	 the	 conception	 of	 ideas	 through	 to	 the	
retirement	 of	 a	 system.	 It	 provides	 the	 processes	 for	 acquiring	 and	 supplying	 systems.	 It	 helps	 to	 improve	
communication	and	cooperation	among	the	parties	that	create,	utilize	and	manage	modern	software	systems	in	
order	 that	 they	 can	 work	 in	 an	 integrated,	 coherent	 fashion.	 In	 addition,	 this	 framework	 provides	 for	 the	
assessment	and	improvement	of	the	life	cycle	processes.	

The	processes	in	this	document	form	a	comprehensive	set	from	which	an	organization	can	construct	software	life	
cycle	models	appropriate	to	its	products	and	services.	An	organization,	depending	on	its	purpose,	can	select	and	
apply	an	appropriate	subset	to	fulfill	that	purpose.	

This	document	can	be	used	in	one	or	more	of	the	following	modes:	

a) By	 an	 organization	—	 to	 help	 establish	 an	 environment	 of	 desired	 processes.	 These	 processes	 can	 be	
supported	 by	 an	 infrastructure	 of	 methods,	 procedures,	 techniques,	 tools	 and	 trained	 personnel.	 The	
organization	 may	 then	 employ	 this	 environment	 to	 perform	 and	 manage	 its	 projects	 and	 progress	
software	 systems	 through	 their	 life	 cycle	 stages.	 In	 this	 mode,	 this	 document	 is	 used	 to	 assess	
conformance	of	a	declared,	established	environment	to	its	provisions.	

b) By	 a	 project	 —	 to	 help	 select,	 structure	 and	 employ	 the	 elements	 of	 an	 established	 environment	 to	
provide	products	and	services.	In	this	mode,	this	document	is	used	in	the	assessment	of	conformance	of	
the	project	to	the	declared	and	established	environment.	

c) By	an	acquirer	and	a	supplier	—	to	help	develop	an	agreement	concerning	processes	and	activities.	Via	
the	 agreement,	 the	 processes	 and	 activities	 in	 this	 document	 are	 selected,	 negotiated,	 agreed	 to	 and	
performed.	In	this	mode,	this	document	is	used	for	guidance	in	developing	the	agreement.	

d) By	 process	 assessors	—	 to	 serve	 as	 a	 process	 reference	model	 for	 use	 in	 the	 performance	 of	 process	
assessments	that	may	be	used	to	support	organizational	process	improvement.	

	

	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

INTERNATIONAL STANDARD ISO/IEC/IEEE 12207:2017(E)

1	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

Systems and software engineering — Software life cycle processes

1 Scope

1.1 Overview

This	document	establishes	a	common	framework	for	software	life	cycle	processes,	with	well‐defined	terminology,	
that	 can	 be	 referenced	 by	 the	 software	 industry.	 It	 contains	 processes,	 activities,	 and	 tasks	 that	 are	 applicable	
during	 the	acquisition,	 supply,	development,	 operation,	maintenance	or	disposal	of	 software	systems,	products,	
and	 services.	 These	 life	 cycle	 processes	 are	 accomplished	 through	 the	 involvement	 of	 stakeholders,	 with	 the	
ultimate	goal	of	achieving	customer	satisfaction.	

This	 document	 applies	 to	 the	 acquisition,	 supply,	 development,	 operation,	maintenance,	 and	disposal	 (whether	
performed	 internally	 or	 externally	 to	 an	 organization)	 of	 software	 systems,	 products	 and	 services,	 and	 the	
software	 portion	 of	 any	 system,	 Software	 includes	 the	 software	 portion	 of	 firmware.	 Those	 aspects	 of	 system	
definition	needed	to	provide	the	context	for	software	products	and	services	are	included.	

This	document	also	provides	processes	that	can	be	employed	for	defining,	controlling,	and	improving	software	life	
cycle	processes	within	an	organization	or	a	project.	

The	processes,	activities,	and	tasks	of	 this	document	can	also	be	applied	during	the	acquisition	of	a	system	that	
contains	 software,	 either	 alone	 or	 in	 conjunction	 with	 ISO/IEC/IEEE	 15288:2015,	 Systems and software
engineering—System life cycle processes.	

In	 the	 context	 of	 this	 document	 and	 ISO/IEC/IEEE	 15288,	 there	 is	 a	 continuum	of	 human‐made	 systems	 from	
those	 that	use	 little	or	no	software	 to	 those	 in	which	software	 is	 the	primary	 interest.	 It	 is	 rare	 to	encounter	a	
complex	system	without	software,	and	all	software	systems	require	physical	system	components	(hardware)	to	
operate,	 either	 as	 part	 of	 the	 software	 system‐of‐interest	 or	 as	 an	 enabling	 system	or	 infrastructure.	 Thus,	 the	
choice	 of	 whether	 to	 apply	 this	 document	 for	 the	 software	 life	 cycle	 processes,	 or	 ISO/IEC/IEEE	 15288:2015,	
Systems and software engineering—System life cycle processes,	 depends	 on	 the	 system‐of‐interest.	 Processes	 in	
both	 documents	 have	 the	 same	 process	 purpose	 and	 process	 outcomes,	 but	 differ	 in	 activities	 and	 tasks	 to	
perform	software	engineering	or	systems	engineering,	respectively.	

1.2 Purpose

The	purpose	of	this	document	is	to	provide	a	defined	set	of	processes	to	facilitate	communication	among	acquirers,	
suppliers	and	other	stakeholders	in	the	life	cycle	of	a	software	system.	

This	 document	 is	 written	 for	 acquirers,	 suppliers,	 developers,	 integrators,	 operators,	 maintainers,	 managers,	
quality	 assurance	managers,	 and	 users	 of	 software	 systems,	 products,	 and	 services.	 It	 can	 be	 used	 by	 a	 single	
organization	 in	a	self‐imposed	mode	or	 in	a	multi‐party	situation.	Parties	can	be	 from	the	same	organization	or	
from	different	organizations	and	the	situation	can	range	from	an	informal	agreement	to	a	formal	contract.	

The	 processes	 in	 this	 document	 can	 be	 used	 as	 a	 basis	 for	 establishing	 business	 environments,	 e.g.,	 methods,	
procedures,	techniques,	tools	and	trained	personnel.	Annex	A	provides	normative	direction	regarding	the	tailoring	
of	these	software	life	cycle	processes.	

1.3 Field of application

This	 document	 applies	 to	 the	 full	 life	 cycle	 of	 software	 systems,	 products,	 and	 services,	 including	 conception,	
development,	 production,	 utilization,	 support	 and	 retirement,	 and	 to	 their	 acquisition	 and	 supply,	 whether	
performed	 internally	or	 externally	 to	an	organization.	The	 life	 cycle	processes	of	 this	document	 can	be	applied	
concurrently,	iteratively	and	recursively	to	a	software	system	and	incrementally	to	its	elements.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

2	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

There	 is	 a	wide	 variety	 of	 software	 systems	 in	 terms	 of	 their	 purpose,	 domain	 of	 application,	 complexity,	 size,	
novelty,	adaptability,	quantities,	 locations,	 life	spans	and	evolution.	This	document	describes	 the	processes	 that	
comprise	 the	 life	 cycle	 of	man‐made	 software	 systems.	 It	 therefore	 applies	 to	 one‐of‐a‐kind	 software	 systems,	
software	systems	for	wide	commercial	or	public	distribution,	and	customized,	adaptable	software	systems.	It	also	
applies	 to	 a	 complete	 stand‐alone	 software	 system	and	 to	 software	 systems	 that	 are	 embedded	and	 integrated	
into	larger,	more	complex	and	complete	systems.	

This	document	provides	a	process	reference	model	characterized	in	terms	of	the	process	purpose	and	the	process	
outcomes	 that	 result	 from	the	successful	execution	of	 the	activity	 tasks.	Annex	B	 lists	examples	of	artifacts	and	
information	 items	 that	 may	 be	 associated	 with	 various	 processes.	 This	 document	 can	 therefore	 be	 used	 as	 a	
reference	 model	 to	 support	 process	 assessment	 as	 specified	 in	 ISO/IEC	 33002:2015.	 Annex	C	 provides	
information	regarding	the	use	of	the	software	life	cycle	processes	as	a	process	reference	model.	Annex	D	describes	
the	process	constructs	for	use	in	the	process	reference	model.	Annex	I	provides	the	correspondence	between	this	
document	and	ISO/IEC/IEEE	12207:2008	at	the	level	of	process	name	and	process	outcome.	

1.4 Limitations

This	 document	 does	 not	 prescribe	 a	 specific	 software	 life	 cycle	 model,	 development	 methodology,	 method,	
modelling	approach,	or	technique.	The	users	of	this	document	are	responsible	for	selecting	a	life	cycle	model	for	
the	project	and	mapping	the	processes,	activities,	and	tasks	in	this	document	into	that	model.	The	parties	are	also	
responsible	 for	selecting	and	applying	appropriate	methodologies,	methods,	models	and	techniques	suitable	 for	
the	project.	

This	document	does	not	establish	a	management	system	or	require	the	use	of	any	management	system	standard.	
However,	it	is	intended	to	be	compatible	with	the	quality	management	system	specified	by	ISO	9001,	the	service	
management	system	specified	by	ISO/IEC	20000‐1	(IEEE	Std	20000‐1),	and	the	information	security	management	
system	specified	by	ISO/IEC	27000.	

This	document	does	not	detail	information	items	in	terms	of	name,	format,	explicit	content	and	recording	media.	
ISO/IEC/IEEE	15289	addresses	the	content	for	life	cycle	process	information	items	(documentation).	

2 Normative references

There	are	no	normative	references	in	this	document.	

3 Terms, definitions, and abbreviated terms

3.1 Terms and definitions

For	the	purposes	of	this	document,	the	following	terms	and	definitions	apply.		

ISO	and	IEC	maintain	terminological	databases	for	use	in	standardization	at	the	following	addresses:	

— IEC	Electropedia:	available	at	http://www.electropedia.org		
— ISO	Online	browsing	platform:	available	at	http://www.iso.org/obp	
— IEEE	Standards	Dictionary	Online:	available	at	http://ieeexplore.ieee.org/xpls/dictionary.jsp		

Definitions	 for	 other	 terms	 typically	 can	 be	 found	 in	 ISO/IEC/IEEE	 24765,	 System and software engineering —	
Vocabulary,	available	at	<www.computer.org/sevocab>.	

3.1.1 	
acquirer
stakeholder	that	acquires	or	procures	a	product	or	service	from	a	supplier	

Note	1	to	entry:	 Other	 terms	 commonly	 used	 for	 an	 acquirer	 are	 buyer,	 customer,	 owner,	 purchaser	 or	
internal/organizational	sponsor.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

http://www.electropedia.org/�
http://www.iso.org/obp�
http://ieeexplore.ieee.org/xpls/dictionary.jsp�

ISO/IEC/IEEE 12207:2017(E)

3	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

3.1.2
acquisition
process	of	obtaining	a	system,	product	or	service	

3.1.3
activity
set	of	cohesive	tasks	of	a	process	

3.1.4
agile development
software	 development	 approach	 based	 on	 iterative	 development,	 frequent	 inspection	 and	 adaptation,	 and	
incremental	 deliveries,	 in	 which	 requirements	 and	 solutions	 evolve	 through	 collaboration	 in	 cross‐functional	
teams	and	through	continual	stakeholder	feedback

[SOURCE:	ISO/IEC/IEEE	26515:	2011]	

3.1.5
agreement
mutual	acknowledgement	of	terms	and	conditions	under	which	a	working	relationship	is	conducted	

EXAMPLE	 Contract,	memorandum	of	agreement.	

3.1.6
architecture
<system>	 fundamental	 concepts	 or	 properties	 of	 a	 system	 in	 its	 environment	 embodied	 in	 its	 elements,	
relationships,	and	in	the	principles	of	its	design	and	evolution	

[SOURCE:	ISO/IEC/IEEE	42010:2011]	

3.1.7
architecture framework
conventions,	principles	and	practices	for	the	description	of	architectures	established	within	a	specific	domain	of	
application	and/or	community	of	stakeholders	

EXAMPLE	1	 Generalised	Enterprise	Reference	Architecture	and	Methodologies	(GERAM)	[ISO	15704]	 is	an	architecture	
framework.	

EXAMPLE	2	 Reference	Model	of	Open	Distributed	Processing	(RM‐ODP) [ISO/IEC	10746]	is	an	architecture	framework.	

[SOURCE:	ISO/IEC/IEEE	42010:2011]	

3.1.8
architecture view
work	product	expressing	the	architecture	of	a	system	from	the	perspective	of	specific	system	concerns	

[SOURCE:	ISO/IEC/IEEE	42010:2011]	

3.1.9
architecture viewpoint
work	product	establishing	the	conventions	 for	 the	construction,	 interpretation	and	use	of	architecture	views	 to	
frame	specific	system	concerns	

[SOURCE:	ISO/IEC/IEEE	42010:2011]	

3.1.10
audit
independent	 examination	 of	 a	work	 product	 or	 set	 of	work	 products	 to	 assess	 compliance	with	 specifications,	
standards,	contractual	agreements,	or	other	criteria	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

http://www.iso.org/iso/en/CatalogueListPage.CatalogueList�

ISO/IEC/IEEE 12207:2017(E)

4	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

3.1.11
baseline
formally	approved	version	of	a	configuration	item,	regardless	of	media,	formally	designated	and	fixed	at	a	specific	
time	during	the	configuration	item’s	life	cycle	

[SOURCE:	IEEE	Std	828‐2012]	

3.1.12
business process
partially	ordered	set	of	enterprise	activities	that	can	be	executed	to	achieve	some	desired	end‐result	in	pursuit	of	
a	given	objective	of	an	organization	

3.1.13
concept of operations
verbal	 and/or	 graphic	 statement,	 in	 broad	 outline,	 of	 an	 organization’s	 assumptions	 or	 intent	 in	 regard	 to	 an	
operation	or	series	of	operations	

Note	1	to	entry:	 The	 concept	of	operations	 frequently	 is	 embodied	 in	 long‐range	 strategic	plans	 and	annual	 operational	
plans.	 In	 the	 latter	 case,	 the	 concept	 of	 operations	 in	 the	 plan	 covers	 a	 series	 of	 connected	 operations	 to	 be	 carried	 out	
simultaneously	or	 in	 succession.	The	 concept	 is	designed	 to	 give	 an	overall	 picture	of	 the	organization	operations.	 See	 also	
operational	concept	(3.1.28).	

Note	2	to	entry:	 It	 provides	 the	 basis	 for	 bounding	 the	 operating	 space,	 system	 capabilities,	 interfaces	 and	 operating	
environment.	

[SOURCE:	ANSI/AIAA	G‐043A‐2012e]	

3.1.14
concern
<system>	interest	in	a	system	relevant	to	one	or	more	of	its	stakeholders	

Note	1	to	entry:	 A	 concern	 pertains	 to	 any	 influence	 on	 a	 system	 in	 its	 environment,	 including	 developmental,	
technological,	business,	operational,	organizational,	political,	economic,	legal,	regulatory,	ecological	and	social	influences.	

[SOURCE:	ISO/IEC/IEEE	42010:2011]	

3.1.15
configuration item
item	or	aggregation	of	hardware,	software,	or	both,	that	is	designated	for	configuration	management	and	treated	
as	a	single	entity	in	the	configuration	management	process	

EXAMPLE	 Software,	 firmware,	 data,	 hardware,	 humans,	 processes	 (e.g.,	 processes	 for	 providing	 service	 to	 users),	
procedures	(e.g.,	operator	instructions	and	user	manuals),	facilities,	services,	materials,	and	naturally	occurring	entities	

3.1.16
customer
organization	or	person	that	receives	a	product	or	service	

EXAMPLE	 Consumer,	client,	user,	acquirer,	buyer,	or	purchaser.	

Note	1	to	entry:	 A	customer	can	be	internal	or	external	to	the	organization.	

3.1.17
design, verb
<process>	to	define	the	architecture,	system	elements,	interfaces,	and	other	characteristics	of	a	system	or	system	
element	

[SOURCE:	ISO/IEC/IEEE	24765:2010,	modified,	changed	‘components’	to	‘system	element’]	

3.1.18
design, noun
result	of	the	process	in	3.1.17	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

5	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

Note	1	to	entry:	 Information,	 including	 specification	 of	 system	 elements	 and	 their	 relationships,	 that	 is	 sufficiently	
complete	to	support	a	compliant	implementation	of	the	architecture	

Note	2	to	entry:	 Design	provides	 the	detailed	 implementation‐level	 physical	 structure,	 behavior,	 temporal	 relationships,	
and	other	attributes	of	system	elements.	

3.1.19
design characteristic
design	attributes	or	distinguishing	features	that	pertain	to	a	measurable	description	of	a	product	or	service	

3.1.20
enabling system
system	that	supports	a	system‐of‐interest	during	its	life	cycle	stages	but	does	not	necessarily	contribute	directly	to	
its	function	during	operation	

EXAMPLE	 A	configuration	management	system	used	to	control	software	elements	during	software	development.	

Note	1	to	entry:	 Each	enabling	system	has	a	life	cycle	of	its	own.	This	document	is	applicable	to	each	enabling	system	when,	
in	its	own	right,	it	is	treated	as	a	system‐of‐interest.	

3.1.21
environment
<system>	context	determining	the	setting	and	circumstances	of	all	influences	upon	a	system	

[SOURCE:	ISO/IEC/IEEE	42010:2011]	

3.1.22
facility
physical	means	or	equipment	for	facilitating	the	performance	of	an	action,	e.g.,	buildings,	instruments,	tools	

3.1.23
incident
anomalous	or	unexpected	event,	set	of	events,	condition,	or	situation	at	any	time	during	the	life	cycle	of	a	project,	
product,	service,	or	system	

3.1.24
information item
separately	identifiable	body	of	information	that	is	produced,	stored,	and	delivered	for	human	use	

[SOURCE:	ISO/IEC/IEEE	15289:2015]	

3.1.25
infrastructure
hardware	 and	 software	 environment	 to	 support	 computer	 system	 and	 software	 design,	 development,	 and	
modification	

3.1.26
life cycle
evolution	of	a	system,	product,	service,	project	or	other	human‐made	entity	from	conception	through	retirement	

3.1.27
life cycle model
framework	of	processes	and	activities	concerned	with	the	life	cycle,	which	can	be	organized	into	stages,	acting	as	a	
common	reference	for	communication	and	understanding	

3.1.28
operational concept
verbal	 and	graphic	 statement	of	 an	 organization’s	 assumptions	or	 intent	 in	 regard	 to	 an	 operation	or	 series	 of	
operations	of	a	system	or	a	related	set	of	systems	

Note	1	to	entry:	 The	operational	concept	is	designed	to	give	an	overall	picture	of	the	operations	using	one	or	more	specific	
systems,	or	set	of	related	systems,	in	the	organization’s	operational	environment	from	the	users’	and	operators’	perspective.	
See	also	concept	of	operations	(3.1.13).	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

6	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

[SOURCE:	ANSI/AIAA	G‐043A‐2012e]	

3.1.29
operator
individual	or	organization	that	performs	the	operations	of	a	system	

Note	1	to	entry:	 The	 role	 of	 operator	 and	 the	 role	 of	 user	 can	 be	 vested,	 simultaneously	 or	 sequentially,	 in	 the	 same	
individual	or	organization.	

Note	2	to	entry:	 An	individual	operator	combined	with	knowledge,	skills	and	procedures	can	be	considered	as	an	element	
of	the	system.	

Note	3	to	entry:	 An	 operator	 can	 perform	 operations	 on	 a	 system	 that	 is	 operated,	 or	within	 a	 system	 that	 is	 operated,	
depending	on	whether	or	not	operating	instructions	are	placed	within	the	system	boundary.	

3.1.30
organization	
group	of	people	and	facilities	with	an	arrangement	of	responsibilities,	authorities	and	relationships	

EXAMPLE	 company,	corporation,	firm,	enterprise,	institution,	charity,	sole	trader,	association,	or	parts	or	combination	
thereof.	

Note	1	to	entry:	 An	 identified	 part	 of	 an	 organization	 (even	 as	 small	 as	 a	 single	 individual)	 or	 an	 identified	 group	 of	
organizations	 can	be	 regarded	 as	 an	 organization	 if	 it	 has	 responsibilities,	 authorities	 and	 relationships.	A	 body	of	 persons	
organized	for	some	specific	purpose,	such	as	a	club,	union,	corporation,	or	society,	is	an	organization.	

3.1.31
party
organization	entering	into	an	agreement	

Note	1	to	entry:	 In	this	document,	the	agreeing	parties	are	called	the	acquirer	and	the	supplier.	

3.1.32
problem
difficulty,	 uncertainty,	 or	 otherwise	 realized	 and	 undesirable	 event,	 set	 of	 events,	 condition,	 or	 situation	 that	
requires	investigation	and	corrective	action	

3.1.33
process
set	of	interrelated	or	interacting	activities	that	transforms	inputs	into	outputs	

3.1.34
process outcome
observable	result	of	the	successful	achievement	of	the	process	purpose	

3.1.35
process purpose
high‐level	objective	of	performing	the	process	and	the	likely	outcomes	of	effective	implementation	of	the	process	

Note	1	to	entry:	 The	purpose	of	implementing	the	process	is	to	provide	benefits	to	the	stakeholders.	

3.1.36
product
result	of	a	process	

Note	1	to	entry:	 There	are	four	agreed	generic	product	categories:	hardware	(e.g.,	engine	mechanical	part);	software	(e.g.,	
computer	 program	 procedures,	 and	 possibly	 associated	 documentation	 and	 data);	 services	 (e.g.,	 transport);	 and	 processed	
materials	(e.g.,	 lubricant).	Hardware	and	processed	materials	are	generally	tangible	products,	while	software	or	services	are	
generally	intangible.	

3.1.37
project
endeavour	with	 defined	 start	 and	 finish	 criteria	 undertaken	 to	 create	 a	 product	 or	 service	 in	 accordance	with	
specified	resources	and	requirements

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

7	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

Note	1	to	entry:	 A	project	is	sometimes	viewed	as	a	unique	process	comprising	coordinated	and	controlled	activities	and	
composed	of	activities	from	the	Technical	Management	processes	and	Technical	processes	defined	in	this	document.	

3.1.38
<project> portfolio
collection	of	projects	that	addresses	the	strategic	objectives	of	the	organization	

3.1.39
qualification
process	of	demonstrating	whether	an	entity	is	capable	of	fulfilling	specified	requirements	

3.1.40
quality assurance
part	of	quality	management	focused	on	providing	confidence	that	quality	requirements	will	be	fulfilled	

[SOURCE:	ISO	9000:2015]	

3.1.41
quality characteristic
inherent	characteristic	of	a	product,	process	or	system	related	to	a	requirement	

Note	1	to	entry:	 Critical	 quality	 characteristics	 commonly	 include	 those	 related	 to	 health,	 safety,	 security	 assurance,	
reliability,	availability	and	supportability.	

3.1.42
quality management
coordinated	activities	to	direct	and	control	an	organization	with	regard	to	quality	

3.1.43
release
particular	version	of	a	configuration	item	that	is	made	available	for	a	specific	purpose	

EXAMPLE	 Test	release.	

3.1.44
requirement
statement	that	translates	or	expresses	a	need	and	its	associated	constraints	and	conditions	

[SOURCE:	ISO/IEC/IEEE	29148:2011,	modified,	NOTE	has	been	removed.]	

3.1.45
resource
asset	that	is	utilized	or	consumed	during	the	execution	of	a	process	

Note	1	to	entry:	 Resources	include	those	that	are	reusable,	renewable	or	consumable.	

EXAMPLE	 diverse	 entities	 such	as	 funding,	 personnel,	 facilities,	 capital	 equipment,	 tools,	 and	utilities	 such	as	power,	
water,	fuel	and	communication	infrastructures.	

3.1.46
retirement
withdrawal	of	 active	 support	by	 the	operation	and	maintenance	organization,	partial	or	 total	 replacement	by	a	
new	system,	or	installation	of	an	upgraded	system	

3.1.47
risk
effect	of	uncertainty	on	objectives	

Note	1	to	entry:	 An	effect	 is	a	deviation	 from	the	expected	—	positive	or	negative.	A	positive	effect	 is	also	known	as	an	
opportunity.	

Note	2	to	entry:	 Objectives	can	have	different	aspects	(such	as	financial,	health	and	safety,	and	environmental	goals)	and	
can	apply	at	different	levels	(such	as	strategic,	organization‐wide,	project,	product	and	process).	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

8	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

Note	3	to	entry:	 Risk	is	often	characterized	by	reference	to	potential	events	and	consequences,	or	a	combination	of	these.	

Note	4	to	entry:	 Risk	is	often	expressed	in	terms	of	a	combination	of	the	consequences	of	an	event	(including	changes	in	
circumstances)	and	the	associated	likelihood	of	occurrence.	

Note	5	to	entry:	 Uncertainty	is	the	state,	even	partial,	of	deficiency	of	information	related	to	understanding	or	knowledge	
of	an	event,	its	consequence,	or	likelihood.	

[SOURCE:	ISO	Guide	73:2009,	definition	1.1]	

3.1.48
safety
expectation	that	a	system	does	not,	under	defined	conditions,	lead	to	a	state	in	which	human	life,	health,	property,	
or	the	environment	is	endangered	

3.1.49
security
protection	 against	 intentional	 subversion	 or	 forced	 failure;	 a	 composite	 of	 four	 attributes	 –	 confidentiality,	
integrity,	availability,	and	accountability	–	plus	aspects	of	a	fifth,	usability,	all	of	which	have	the	related	 issue	of	
their	assurance	

[SOURCE:	NATO	AEP‐67]	

3.1.50
service
performance	of	activities,	work,	or	duties	

Note	1	to	entry:	 A	service	is	self‐contained,	coherent,	discrete,	and	can	be	composed	of	other	services.	

Note	2	to	entry:	 A	service	is	generally	an	intangible	product.	

3.1.51
software element
system	element	that	is	software	

3.1.52 	
software engineering
application	of	a	systematic,	disciplined,	quantifiable	approach	to	the	development,	operation,	and	maintenance	of	
software;	that	is,	the	application	of	engineering	to	software	

3.1.53
software item
source	code,	object	code,	control	code,	control	data,	or	a	collection	of	these	items	

Note	1	to	entry:	 A	 software	 item	 can	 be	 viewed	 as	 a	 system	 element	 of	 this	 document	 and	 of	 ISO/IEC	 15288:2015.	
Software	items	are	typically	configuration	items.	

3.1.54
software product
set	of	computer	programs,	procedures,	and	possibly	associated	documentation	and	data	

Note	1	to	entry:	 A	software	product	is	a	software	system	viewed	as	the	output	(product)	resulting	from	a	process.	

3.1.55
software system
system	for	which	software	is	of	primary	importance	to	the	stakeholders	

Note	1	to	entry:	 In	 the	 most	 general	 case,	 a	 software	 system	 is	 comprised	 of	 hardware,	 software,	 people,	 and	 manual	
procedures.	

Note	2	to	entry:	 In	a	software	system,	software	is	the	leading	driver	in	meeting	system	requirements.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

9	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

3.1.56
software system element
member	of	a	set	of	elements	that	constitute	a	software	system		

Note	1	to	entry:	 A	software	system	element	can	 include	one	or	more	software	units,	software	elements,	hardware	units,	
hardware	elements,	services,	and	other	system	elements	and	systems.		

Note	2	to	entry:	 A	software	system	element	can	be	viewed	as	a	system	element.	

3.1.57
software unit
atomic‐level	software	component	of	the	software	architecture	that	can	be	subjected	to	standalone	testing	

Note	1	to	entry:	 Some	software	units	are	separately	compilable	pieces	of	code.	

[SOURCE:	ISO	26262‐1:2011,	modified,	Note	1	to	entry	added.]	

3.1.58
stage
period	within	the	life	cycle	of	an	entity	that	relates	to	the	state	of	its	description	or	realization	

Note	1	to	entry:	 As	 used	 in	 this	 document,	 stages	 relate	 to	 major	 progress	 and	 achievement	 milestones	 of	 the	 entity	
through	its	life	cycle.	

Note	2	to	entry:	 Stages	often	overlap.	

3.1.59
stakeholder
individual	or	organization	having	a	right,	share,	claim,	or	interest	in	a	system	or	in	its	possession	of	characteristics	
that	meet	their	needs	and	expectations	

EXAMPLE	 End	 users,	 end	 user	 organizations,	 supporters,	 developers,	 producers,	 trainers,	 maintainers,	 disposers,	
acquirers,	supplier	organizations	and	regulatory	bodies.	

Note	1	to	entry:	 Some	stakeholders	can	have	interests	that	oppose	each	other	or	oppose	the	system.	

3.1.60
supplier
organization	 or	 an	 individual	 that	 enters	 into	 an	 agreement	 with	 the	 acquirer	 for	 the	 supply	 of	 a	 product	 or	
service	

Note	1	to	entry:		 Other	terms	commonly	used	for	supplier	are	contractor,	producer,	seller,	or	vendor.	

Note	2	to	entry:	 The	acquirer	and	the	supplier	sometimes	are	part	of	the	same	organization.	

3.1.61
system
combination	of	interacting	elements	organized	to	achieve	one	or	more	stated	purposes	

Note	1	to	entry:	 A	system	is	sometimes	considered	as	a	product	or	as	the	services	it	provides.	

Note	2	to	entry:	 In	practice,	the	interpretation	of	its	meaning	is	frequently	clarified	by	the	use	of	an	associative	noun,	e.g.,	
aircraft	 system	 or	 database	 management	 system.	 Alternatively,	 the	 word	 “system”	 is	 substituted	 simply	 by	 a	 context‐
dependent	synonym,	e.g.,	aircraft	or	database,	though	this	potentially	obscures	a	system	principles	perspective.	

Note	3	to	entry:	 A	 system	 can	 include	 the	 associated	 equipment,	 facilities,	 material,	 software,	 firmware,	 technical	
documentation,	 services	and	personnel	 required	 for	operations	and	 support	 to	 the	degree	necessary	 for	use	 in	 its	 intended	
environment.	

Note	4	to	entry:		 See	for	comparison:	enabling	system,	system‐of‐interest,	system	of	systems.	

3.1.62
system element
member	of	a	set	of	elements	that	constitute	a	system	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

10	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

EXAMPLE	 Hardware,	software,	data,	humans,	processes	(e.g.,	processes	for	providing	service	to	users),	procedures	(e.g.,	
operator	instructions),	facilities,	materials,	and	naturally	occurring	entities	or	any	combination.	

Note	1	to	entry:	 A	system	element	is	a	discrete	part	of	a	system	that	can	be	implemented	to	fulfill	specified	requirements.	

3.1.63
system-of-interest
SOI
system	whose	life	cycle	is	under	consideration	

3.1.64
system of systems
SoS
set	of	systems	that	integrate	or	interoperate	to	provide	a	unique	capability	that	none	of	the	constituent	systems	
can	accomplish	on	its	own	

Note	1	to	entry:	 Each	constituent	system	is	a	useful	system	by	itself,	having	its	own	management,	goals,	and	resources,	but	
coordinates	within	the	SoS	to	provide	the	unique	capability	of	the	SoS.	

3.1.65
systems engineering
interdisciplinary	 approach	 governing	 the	 total	 technical	 and	 managerial	 effort	 required	 to	 transform	 a	 set	 of	
stakeholder	needs,	expectations,	and	constraints	into	a	solution	and	to	support	that	solution	throughout	its	life.	

3.1.66
task
required,	 recommended,	 or	 permissible	 action,	 intended	 to	 contribute	 to	 the	 achievement	 of	 one	 or	 more	
outcomes	of	a	process	

3.1.67
technical management
application	of	technical	and	administrative	resources	to	plan,	organize	and	control	engineering	functions	

3.1.68
trade-off
decision‐making	actions	that	select	from	various	requirements	and	alternative	solutions	on	the	basis	of	net	benefit	
to	the	stakeholders	

3.1.69
traceability
degree	to	which	a	relationship	can	be	established	among	two	or	more	logical	entities,	especially	entities	having	a	
predecessor‐successor	or	master‐subordinate	relationship	to	one	another,	such	as	requirements,	system	elements,	
verifications,	or	tasks	

EXAMPLE	 Software	features	and	test	cases	are	typically	traced	to	software	requirements.	

3.1.70
user
individual	or	group	that	interacts	with	a	system	or	benefits	from	a	system	during	its	utilization	

Note	1	to	entry:	 The	 role	 of	 user	 and	 the	 role	 of	 operator	 are	 sometimes	 vested,	 simultaneously	 or	 sequentially,	 in	 the	
same	individual	or	organization.	

[SOURCE:	ISO/IEC	25010:2011,	modified,	Note	1	to	entry	added.]	

3.1.71
validation
confirmation,	 through	 the	provision	of	 objective	 evidence,	 that	 the	 requirements	 for	 a	 specific	 intended	use	 or	
application	have	been	fulfilled	

Note	1	to	entry:	 A	system	is	able	to	accomplish	its	intended	use,	goals	and	objectives	(i.e.,	meet	stakeholder	requirements)	
in	the	intended	operational	environment.	The	right	system	was	built.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

11	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

Note	2	to	entry:	 In	a	life	cycle	context,	validation	involves	the	set	of	activities	for	gaining	confidence	that	a	system	is	able	to	
accomplish	its	intended	use,	goals	and	objectives	in	an	environment	like	the	operational	environment.	

3.1.72
verification
confirmation,	through	the	provision	of	objective	evidence,	that	specified	requirements	have	been	fulfilled	

Note	1	to	entry:	 Verification	 is	 a	 set	 of	 activities	 that	 compares	 a	 system	 or	 system	 element	 against	 the	 required	
characteristics.	 This	 includes,	 but	 is	 not	 limited	 to	 specified	 requirements,	 design,	 descriptions,	 and	 the	 system	 itself.	 The	
system	was	built	right.	

[SOURCE:	ISO	9000:2015,	modified,	Note	1	to	entry	added.]	

3.2 Abbreviated terms	

CCB	 Configuration	Control	Board	

CM	 Configuration	Management	

COTS	 Commercial‐Off‐The‐Shelf	

FCA	 Functional	Configuration	Audit	

FOSS	 Free	and	Open	Source	Software	

GUI	 Graphical	User	Interface	

NDI	 Non‐Developmental	Items	

QA	 Quality	Assurance	

PCA	 Physical	Configuration	Audit	

PESTEL	 Political,	Economic,	Social,	Technological,	Environmental,	and	Legal	

PMI	 Project	Management	Institute	

PMP	 Project	Management	Plan	

PRM	 Process	Reference	Model	

SCM	 Software	Configuration	Management	

SDP	 Software	Development	Plan	

SEMP	 Systems	Engineering	Management	Plan	

SOI	 System‐of‐Interest	

SoS	 System	of	Systems	

SWOT	 Strengths,	Weaknesses,	Opportunities,	Threats	

WBS	 Work	Breakdown	Structure	

4 Conformance

4.1 Intended usage

The	requirements	in	this	document	are	contained	in	Clause	6	and	Annex	A.	This	document	provides	requirements	
for	a	number	of	processes	suitable	for	usage	during	the	life	cycle	of	a	software	system	or	product.	It	is	recognized	
that	 particular	 projects	 or	 organizations	may	 not	 need	 to	 use	 all	 of	 the	 processes	 provided	 by	 this	 document.	
Therefore,	implementation	of	this	document	typically	involves	selecting	and	declaring	a	set	of	processes	suitable	
to	 the	 organization	 or	 project.	 There	 are	 two	ways	 that	 an	 implementation	 can	 be	 claimed	 to	 conform	 to	 the	
provisions	of	this	document	—	full	conformance	and	tailored	conformance.	

There	are	two	criteria	for	claiming	full	conformance.	Achieving	either	criterion	suffices	for	conformance,	although	
the	chosen	criterion	(or	criteria)	shall	be	stated	in	the	claim.	Claiming	“full	conformance	to	tasks”	asserts	that	all	of	
the	requirements	of	the	activities	and	tasks	of	the	declared	set	of	processes	are	achieved.	Alternatively,	claiming	
“full	 conformance	 to	 outcomes”	 asserts	 that	 all	 of	 the	 required	 outcomes	 of	 the	 declared	 set	 of	 processes	 are	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

12	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

achieved.	Full	conformance	to	outcomes	permits	greater	freedom	in	the	implementation	of	conforming	processes	
and	can	be	useful	for	implementing	processes	to	be	used	in	the	context	of	an	innovative	life	cycle	model.	

NOTE	1	 Options	for	conformance	are	provided	for	needed	flexibility	in	the	application	of	this	document.	Each	process	has	a	
set	of	objectives	(phrased	as	“outcomes”)	and	a	set	of	activities	and	tasks	that	represent	one	way	to	achieve	the	objectives.	

NOTE	2	 Users	who	implement	the	activities	and	tasks	of	the	declared	set	of	processes	can	assert	full	conformance	to	tasks	
of	 the	selected	processes.	Some	users,	however,	might	have	 innovative	process	variants	 that	achieve	 the	objectives	 (i.e.,	 the	
outcomes)	 of	 the	declared	 set	 of	 processes	without	 implementing	 all	 of	 the	 activities	 and	 tasks.	 These	users	 can	 assert	 full	
conformance	to	 the	outcomes	of	 the	declared	set	of	processes.	The	two	criteria	—	conformance	to	 task	and	conformance	to	
outcome	—	are	necessarily	not	equivalent	since	specific	performance	of	activities	and	tasks	can	require,	in	some	cases,	a	higher	
level	of	capability	than	just	the	achievement	of	outcomes.	

NOTE	3	 When	 this	document	 is	used	 to	help	develop	an	agreement	between	an	acquirer	 and	a	 supplier,	 clauses	 of	 this	
document	can	be	selected	for	incorporation	in	the	agreement	with	or	without	modification.	In	this	case,	it	is	more	appropriate	
for	the	acquirer	and	supplier	to	claim	compliance	with	the	agreement	than	conformance	with	this	document.	

NOTE	4	 An	organization	(for	example,	national,	industrial	association,	company)	imposing	this	document,	as	a	condition	of	
trade,	can	specify	and	make	public	 the	minimum	set	of	 required	processes,	outcomes,	activities,	and	 tasks,	which	constitute	
suppliers’	compliance	with	the	conditions	of	trade.	

NOTE	5	 Requirements	of	this	document	are	marked	by	the	use	of	the	verb	“shall”.	Recommendations	are	marked	by	the	
use	of	 the	verb	 “should".	Permissions	are	marked	by	 the	use	of	 the	verb	 “may”.	However,	despite	 the	verb	 that	 is	used,	 the	
requirements	for	conformance	are	selected	as	described	previously.	

4.2 Full conformance

4.2.1 Full conformance to outcomes

A	claim	of	full	conformance	declares	the	set	of	processes	for	which	conformance	is	claimed.	Full	conformance	to	
outcomes	 is	 achieved	 by	 demonstrating	 that	 all	 of	 the	 outcomes	 of	 the	 declared	 set	 of	 processes	 have	 been	
achieved.	 In	 this	 situation,	 the	provisions	 for	 activities	 and	 tasks	 of	 the	declared	 set	 of	 processes	 are	 guidance	
rather	than	requirements,	regardless	of	the	verb	form	that	is	used	in	the	provision.	

One	 intended	use	 of	 this	 document	 is	 to	 facilitate	 process	 assessment	 and	 improvement.	 For	 this	 purpose,	 the	
objectives	of	each	process	are	written	in	the	form	of	‘outcomes’	compatible	with	the	provisions	of	ISO/IEC	33002.	
That	standard	provides	for	the	assessment	of	the	processes	of	this	document,	providing	a	basis	for	improvement.	
Users	intending	process	assessment	and	improvement	may	use	the	process	outcomes	written	in	this	document	as	
the	“process	reference	model”	required	by	ISO/IEC	33002.	

4.2.2 Full conformance to tasks

A	claim	of	full	conformance	declares	the	set	of	processes	for	which	conformance	is	claimed.	Full	conformance	to	
tasks	 is	achieved	by	demonstrating	that	all	of	 the	requirements	of	the	activities	and	tasks	of	the	declared	set	of	
processes	have	been	achieved.	In	this	situation,	the	provisions	for	the	outcomes	of	the	declared	set	of	processes	
are	guidance	rather	than	requirements,	regardless	of	the	verb	form	that	is	used	in	the	provision.

NOTE	 A	claim	of	full	conformance	to	tasks	can	be	appropriate	in	contractual	situations	where	an	acquirer	or	a	regulator	
requires	detailed	understanding	of	the	suppliers’	processes.	

4.3 Tailored conformance

When	this	document	is	used	as	a	basis	for	establishing	a	set	of	processes	that	do	not	qualify	for	full	conformance,	
the	clauses	of	this	document	are	selected	or	modified	in	accordance	with	the	tailoring	process	prescribed	in	Annex	
A.	The	tailored	text,	for	which	tailored	conformance	is	claimed,	is	declared.	Tailored	conformance	is	achieved	by	
demonstrating	that	the	outcomes,	activities,	and	tasks,	as	tailored,	have	been	achieved.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

13	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

5 Key concepts and application

5.1 Introduction

This	clause	is	included	to	highlight	and	to	help	explain	essential	concepts	on	which	this	document	is	based.	

NOTE	 Further	 elaboration	 of	 these	 concepts	 can	 be	 found	 in	 ISO/IEC	 TS	 24748‐1,	 ISO/IEC	 TR	 24748‐2,	 and	 ISO/IEC	
TR24748‐3	on	the	application	of	life	cycle	management.	

5.2 Software system concepts

5.2.1 Software systems

The	software	systems	considered	in	this	document	are	human‐made,	created	and	utilized	to	provide	products	or	
services	 in	 defined	 environments	 for	 the	 benefit	 of	 users	 and	 other	 stakeholders.	 These	 software	 systems	 can	
include	the	following	system	elements:	hardware,	software,	data,	humans,	processes	(e.g.,	processes	for	providing	
service	 to	 users),	 procedures	 (e.g.,	 operator	 instructions),	 facilities,	 services,	materials	 and	 naturally	 occurring	
entities.	As	viewed	by	the	user,	they	are	thought	of	as	products	or	services.	

This	document	applies	 to	 systems	 for	which	 software	 is	of	primary	 importance	 to	 the	 stakeholders.	 It	 is	based	
upon	the	general	principles	of	systems	engineering	and	software	engineering.	It	is	a	fundamental	premise	of	this	
document	 that	 software	 always	 exists	 in	 the	 context	 of	 a	 system.	 Since	 software	 does	 not	 operate	 without	
hardware,	 the	 processor	 upon	 which	 the	 software	 is	 executed	 can	 be	 considered	 as	 part	 of	 the	 system.	
Alternatively,	hardware	or	services	hosting	the	software	system	and	handling	communications	with	other	systems	
can	also	be	viewed	as	enabling	systems	or	external	systems	in	the	operating	environment.	

The	 perception	 and	 definition	 of	 a	 particular	 software	 system,	 its	 architecture,	 and	 its	 elements	 depend	 on	 a	
stakeholder’s	 interests	 and	 responsibilities.	 One	 stakeholder’s	 system‐of‐interest	 can	 be	 viewed	 as	 a	 system	
element	 in	 another	 stakeholder’s	 system‐of‐interest.	 Furthermore,	 a	 system‐of‐interest	 can	 be	 viewed	 as	 being	
part	of	the	environment	for	another	stakeholder’s	system‐of‐interest.		

The	following	are	key	points	regarding	the	characteristics	of	systems‐of‐interest:	

a) defined	boundaries	encapsulate	meaningful	needs	and	practical	solutions;	

b) there	is	a	hierarchical	or	other	relationship	between	system	elements;	

c) an	entity	at	any	level	in	the	system‐of‐interest	can	be	viewed	as	a	system;	

d) a	system	comprises	an	integrated,	defined	set	of	subordinate	system	elements;	

e) humans	can	be	viewed	as	both	users	external	to	a	system	and	as	system	elements	(i.e.,	operators)	within	a	
system;	and	

f) a	system	can	be	viewed	in	isolation	as	an	entity,	i.e.,	a	product;	or	as	a	collection	of	functions	capable	of	
interacting	with	its	surrounding	environment,	i.e.,	a	set	of	services.	

Whatever	 the	boundaries	 chosen	 to	define	 the	 system,	 the	 concepts	 in	 this	document	are	generic	 and	permit	a	
practitioner	to	correlate	or	adapt	individual	instances	of	life	cycles	to	its	system	principles.	

5.2.2 Software system structure

The	life	cycle	processes	in	this	document	are	described	in	relation	to	a	software	system	that	is	composed	of	a	set	
of	 interacting	 system	 elements	 (including	 software	 elements),	 each	 of	 which	 can	 be	 implemented	 to	 fulfill	 its	
respective	specified	requirements	(Figure	1).	Responsibility	 for	 the	 implementation	of	any	system	element	may	
therefore	be	delegated	to	another	party	through	an	agreement.	

	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

14	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

	

Figure 1 — Software system and software system element relationship

The	 relationship	 between	 the	 software	 system	 and	 its	 complete	 set	 of	 system	 elements	 can	 typically	 be	
represented	 showing	 relationships	 between	 the	 elements	 –	 often	 depicted	 as	 a	 hierarchy	 for	 the	 simplest	 of	
systems‐of‐interest.	 Decomposition	 is	 one	 approach	 to	 some	 software	 activities.	 Other	 approaches	 include	 the	
object‐oriented	approach,	where	the	system	elements	are	laid	out	in	a	flat	(non‐hierarchical)	description	such	as	
in	a	network	diagram.	For	more	complex	software	systems‐of‐interest,	a	prospective	system	element	may	need	to	
be	considered	as	a	system	(that	in	turn	is	comprised	of	system	elements)	before	a	complete	set	of	system	elements	
can	be	defined	with	confidence	(Figure	2).	In	this	manner,	the	appropriate	system	life	cycle	processes	are	applied	
recursively	 to	 a	 system‐of‐interest	 to	 resolve	 its	 structure	 to	 the	 point	where	 understandable	 and	manageable	
software	system	elements	can	be	implemented	(created,	adapted,	acquired,	or	reused).	

	

Figure 2 —Example of software system-of-interest structure

While	Figures	1	and	2	imply	a	hierarchical	relationship,	in	reality	there	are	an	increasing	number	of	systems	that,	
from	 one	 or	 more	 aspects,	 are	 not	 hierarchical,	 such	 as	 networks	 and	 other	 distributed	 systems.	 Annex	 G	
discusses	the	concept	of	a	system	of	systems	(SoS).	

Software
System-of-

Interest

Software
System

System

System
Element

System
Element

System
Element

System

Software
System

Software
System

Software
System

Software
Element

Software
Element

Software
Element

System
Element

System
Element

Software
Element

System Software
Element

System
Element

System
Element

Software
Element

System
Element

Software
Element

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

15	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

NOTE	 Decomposition	 is	 an	 activity	 fundamental	 to	 many	 software	 activities.	 Not	 all	 decompositions	 imply	 the	
designation	 of	 new	 software	 system	 elements	 and	 the	 corresponding	 recursive	 application	 of	 the	 activity.	 Designation	 of	 a	
decomposed	 construct	 as	 an	 element	 is	 necessary	 only	 when	 it	 is	 appropriate	 to	 apply	 distinct	 requirements,	 design,	 or	
implementation	activities	to	its	development.	One	example	of	an	appropriate	situation	is	when	the	element	is	to	be	developed	
by	a	distinct	organization.	Another	example	 is	when	management	determines	that	 it	 is	appropriate	to	distinctly	monitor	the	
status	of	the	development	or	customization	of	the	element.	

5.2.3 Enabling systems

Throughout	the	life	cycle	of	a	system‐of‐interest,	essential	services	are	required	from	systems	that	are	not	directly	
a	 part	 of	 the	 operational	 environment	 of	 the	 system‐of‐interest,	 e.g.,	 modelling	 system,	 training	 system,	
maintenance	system.	Each	of	these	systems	enables	a	part,	e.g.,	a	stage	of	the	life	cycle	of	the	system‐of‐interest	to	
be	 conducted.	 Termed	 “enabling	 systems”,	 they	 facilitate	 progression	 of	 the	 system‐of‐interest	 through	 its	 life	
cycle.	

The	relationship	between	the	services	delivered	to	the	operational	environment	by	the	system‐of‐interest	and	the	
services	delivered	by	the	enabling	systems	to	the	system‐of‐interest	is	shown	in	Figure	3.	Enabling	systems	can	be	
seen	 to	contribute	 indirectly	 to	 the	services	provided	by	 the	system‐of‐interest.	The	 interrelationships	between	
the	 system‐of‐interest	 and	 the	 enabling	 systems	 can	 be	 bidirectional	 or	 a	 one‐way	 relationship.	 In	 addition	 to	
interacting	with	 enabling	 systems,	 the	 system‐of‐interest	 can	 also	 interact	with	other	 systems	 in	 the	 operating	
environment,	shown	as	Systems	A,	B,	and	C.	Requirements	for	interfaces	with	enabling	systems	and	other	systems	
in	the	operational	environment	are	included	in	the	requirements	for	the	system‐of‐interest.	

	

Figure 3 —Software system-of-interest, its operational environment and enabling systems

During	a	stage	in	the	software	life	cycle,	the	relevant	enabling	systems	and	the	system‐of‐interest	are	considered	
together.	Since	 they	are	 interdependent,	 they	can	also	be	viewed	as	a	system.	When	a	suitable	enabling	system	
does	not	 already	exist,	 the	project	 that	 is	 responsible	 for	 the	 system‐of‐interest	 can	be	directly	 responsible	 for	

System B in
operational
environment

Software system A
in operational
environment

Enabling
software
system

X

Enabling
system

Y

Enabling
software
system

Z

Software system-
of-interest

Interaction with
systems comprising the
operational environment

Interaction
with enabling

systems

Software system C
in operational
environment

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

16	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

creating	 and	using	 the	 enabling	 system.	Creating	 the	 enabling	 system	 can	be	 viewed	 as	 a	 separate	 project	 and	
subsequently	as	another	system‐of‐interest.	

Further	elaboration	of	 these	concepts	can	be	 found	 in	 ISO/IEC/IEEE	24748	(all	parts)	on	the	application	of	 life	
cycle	processes.	

NOTE	 Enabling	systems	in	software	development	include	software	development	and	test	environments	for	target	platforms.	

5.2.4 Life cycle processes for the software system

In	 the	 software	 system,	 the	 requirements,	 architecture,	 and	 design	 processes	 at	 the	 system	 level	 result	 in	 an	
allocation	 of	 the	 system	 requirements	 to	 various	 elements.	 The	 software	 system‐of‐interest	 is	 implemented	
primarily	 by	 analyzing	 the	 software	 system	 requirements,	 architecture,	 and	 design	 and	 determining	 which	
functions	will	be	implemented	in	software	or	by	other	elements,	implementing	the	software	and	other	elements,	
and	integrating	the	elements	as	a	software	system.	Therefore,	a	software	product	or	service	can	be	treated	as	an	
element	of	a	software	system.	

In	some	cases,	the	architectural	definition	of	a	software	system	can	indicate	that	it	is	appropriate	to	consider	it	as	
comprising	 a	 set	 of	 distinct	 subordinate	 elements.	 In	 turn,	 each	 of	 the	 software	 elements	 can	 be	 treated	 as	 a	
distinct	 software	 system	 as	 described	 previously.	 In	 these	 cases,	 this	 document	may	 be	 applied	 recursively	 to	
procure	or	develop	the	subordinate	elements.	

This	 document	 has	 a	 strong	 relationship	 with	 ISO/IEC/IEEE	 15288:2015,	 Systems and Software Engineering--
System Life Cycle Processes, and	 is	more	applicable	 to	software	systems.	To	account	 for	 situations	 in	which	both	
ISO/IEC/IEEE	15288:2015	and	ISO/IEC/IEEE	12207:2017	are	applied	(e.g.,	a	development	of	a	system	containing	
software,	or	the	development	of	a	software	system	containing	hardware),	their	process	structures	are	harmonized	
to	 be	 identical.	 The	 processes	 of	 this	 document	 directly	 correspond	 to	 processes	 of	 ISO/IEC/IEEE	 15288	with	
specialization	for	software	products	and	services.	

In	 the	 case	where	 the	 system	non‐software	 elements	have	primary	 importance,	 an	 organization	may	decide	 to	
apply	ISO/IEC/IEEE	15288	to	perform	the	appropriate	life	cycle	processes,	activities	and	tasks.	For	each	software	
element	of	the	system,	the	organization	may	apply	this	document	to	create,	adapt,	acquire,	or	reuse	the	software	
elements.	

5.3 Organization and project concepts

5.3.1 Organizations

When	 an	 organization,	 as	 a	 whole	 or	 a	 part,	 enters	 into	 an	 agreement,	 it	 is	 sometimes	 called	 a	 “party”	 to	 the	
agreement.	Parties	can	be	from	the	same	organization	or	from	separate	organizations.	An	organization	can	be	as	
small	as	a	single	individual,	if	the	individual	is	assigned	responsibilities	and	authorities.	

In	 informal	 terms,	 the	organization	 that	 is	 responsible	 for	 executing	 a	process	 is	 sometimes	 referred	 to	by	 the	
name	 of	 that	 process.	 For	 example,	 the	 organization	 executing	 the	Acquisition	 process	 is	 sometimes	 called	 the	
“acquirer”.	Other	examples	include	supplier,	implementer,	maintainer,	and	operator.		

A	few	other	terms	are	applied	to	organizations	in	this	document:	“user”	can	be	the	organization	or	individuals	that	
directly	engage	with	or	benefit	 from	the	utilization	of	 the	product	or	service;	 “customer”	refers	 to	 the	user	and	
acquirer	collectively;	and	“stakeholder”	refers	to	an	individual	or	organization	with	an	interest	in	the	system.	

The	processes	and	organizations	are	only	related	functionally.	This	document	does	not	dictate	or	imply	a	structure	
for	 an	 organization,	 nor	 does	 it	 specify	 that	 particular	 processes	 are	 to	 be	 executed	 by	 particular	 parts	 of	 the	
organization.	 It	 is	 the	 responsibility	 of	 the	 organization	 that	 implements	 this	 document	 to	 define	 a	 suitable	
structure	for	the	organization	and	assign	appropriate	roles	for	the	execution	of	processes.	

The	processes	in	this	document	form	a	comprehensive	set	to	serve	various	organizations.	An	organization,	small	
or	 large,	 depending	 on	 its	 business	 purpose	 or	 its	 acquisition	 strategy,	 can	 select	 an	 appropriate	 set	 of	 the	
processes	(and	associated	activities	and	tasks)	to	fulfill	that	purpose.	An	organization	can	perform	one	process	or	
more	than	one	process.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

17	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

This	document	is	intended	to	be	applied	by	an	organization	internally	or	externally	by	two	or	more	organizations.	
When	applied	internally,	the	two	agreeing	parties	typically	act	under	the	terms	of	an	agreement	that	may	vary	in	
formality	under	different	circumstances.	When	applied	externally,	the	two	agreeing	parties	typically	act	under	the	
terms	of	a	contract.	This	document	uses	the	term	“agreement”	to	apply	to	either	situation.	

For	the	purpose	of	this	document,	any	project	is	assumed	to	be	conducted	within	the	context	of	an	organization.	
This	is	important,	because	a	project	is	dependent	upon	various	outcomes	produced	by	the	business	processes	of	
the	 organization,	 e.g.,	 employees	 to	 staff	 the	 project	 and	 facilities	 to	 house	 the	 project.	 For	 this	 purpose,	 this	
document	provides	a	set	of	“Organizational	Project‐Enabling”	processes.	These	processes	are	not	assumed	to	be	
adequate	 to	 operate	 a	 business;	 instead	 the	 processes,	 considered	 as	 a	 collection,	 are	 intended	 to	 state	 the	
minimum	set	of	dependencies	that	the	project	places	upon	the	organization.	

5.3.2 Organization and project-level adoption

Modern	businesses	strive	to	develop	a	robust	set	of	life	cycle	processes	that	are	applied	repeatedly	to	the	projects	
and	 services	 of	 the	 business.	 Therefore,	 this	 document	 is	 intended	 to	 be	 useful	 for	 adoption	 at	 either	 the	
organization	 level	 or	 at	 the	 project	 level.	 An	 organization	 can	 adopt	 the	 document	 and	 supplement	 it	 with	
appropriate	procedures,	practices,	tools	and	policies.	 In	turn,	a	project	of	the	organization	typically	conforms	to	
the	organization’s	processes	rather	than	conforming	directly	to	this	document.	

In	some	cases,	projects	may	be	executed	by	an	organization	that	does	not	have	an	appropriate	set	of	processes	
adopted	 at	 the	 organizational	 level.	 Such	 a	 project	 may	 apply	 the	 provisions	 of	 this	 document	 directly	 to	 the	
project.	

5.4 Life cycle concepts

5.4.1 Software life cycle stages

Life	cycles	vary	according	to	the	nature,	purpose,	use	and	prevailing	circumstances	of	the	software	system.	Using	
stages	 concurrently	 and	 in	different	orders	 can	 lead	 to	 life	 cycle	 forms	with	distinctly	 different	 characteristics.	
Each	stage	has	a	distinct	purpose	and	contribution	to	planning	and	executing	the	whole	life	cycle	of	the	software	
system.	Per	 ISO/IEC	TS	24748‐1,	 the	 typical	 system	 life	 cycle	 stages	 include	 concept,	development,	production,	
utilization,	support,	and	retirement.	Use	of	these	terms	to	define	stages	is	not	normative.	A	common	set	of	stages	
for	a	software	system	is	concept	exploration,	development,	sustainment,	and	retirement,	with	transitions	between	
stages	for	the	system	as	a	whole	and	for	its	elements.	

The	stages	represent	the	major	life	cycle	periods	associated	with	a	software	system	and	they	relate	to	the	state	of	
the	 software	 system	 description	 or	 the	 software	 system	 itself.	 The	 stages	 describe	 the	 major	 progress	 and	
achievement	milestones	of	the	software	system	through	its	life	cycle.	They	give	rise	to	the	primary	decision	gates	
of	 the	 life	 cycle.	 These	 decision	 gates	 are	 used	 by	 organizations	 to	 understand	 and	 manage	 the	 inherent	
uncertainties	 and	 risks	 associated	with	 costs,	 schedule	 and	 functionality	when	 creating	 or	 utilizing	 a	 software	
system.	Using	stages	thus	provides	organizations	with	a	framework	within	which	organization	management	has	
high‐level	 visibility	 and	 control	 of	 project	 and	 technical	 processes.	 Organizations	 define	 and	 employ	 stages	
differently	to	satisfy	contrasting	business	and	risk	mitigation	strategies.	

The	life	cycle	processes	defined	in	this	document	are	not	aligned	to	any	specific	stage	in	a	software	life	cycle.	All	of	
the	life	cycle	processes	involve	planning,	performance,	and	evaluation	activities	that	should	be	considered	for	use	
at	every	stage.	

Further	elaboration	of	these	concepts	can	be	 found	in	ISO/IEC/IEEE	24748	(all	parts),	on	the	application	of	 life	
cycle	management.	

5.4.2 Life cycle model for the software system

Every	 software	 system	 has	 a	 life	 cycle.	 A	 life	 cycle	 can	 be	 described	 using	 an	 abstract	 functional	 model	 that	
represents	the	conceptualization	of	a	need	for	the	system,	its	realization,	utilization,	evolution	and	disposal.	

A	software	system	progresses	through	its	life	cycle	as	the	result	of	actions,	performed	and	managed	by	people	in	
organizations,	 using	processes	 for	 execution	 of	 these	 actions.	 The	detail	 in	 the	 life	 cycle	model	 is	 expressed	 in	
terms	of	these	processes,	their	outcomes,	relationships	and	sequence.		

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

18	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

This	document	does	not	prescribe	any	particular	life	cycle	model.	Instead	it	defines	a	set	of	processes,	termed	life	
cycle	 processes,	 which	 can	 be	 used	 in	 the	 definition	 of	 the	 system’s	 life	 cycle.	 Also,	 this	 document	 does	 not	
prescribe	 any	 particular	 sequence	 of	 processes	 within	 the	 life	 cycle	 model.	 The	 sequence	 of	 the	 processes	 is	
determined	 by	 project	 objectives	 and	 by	 selection	 of	 the	 life	 cycle	 model.	 Often,	 the	 development	 stage	 is	
subdivided	more	finely	and	in	different	ways.	

One	oft‐cited	set	of	software	development	stages	are	elicitation,	requirements,	design,	construction,	and	testing‐
the	 predictive	 or	 “waterfall”	 model.	 If	 the	 stages	 are	 considered	 as	 sequential,	 then	 each	 stage	 is	 required	 to	
produce	correct	results	before	proceeding	to	the	next	stage.	In	practice,	this	is	extremely	difficult	to	achieve	unless	
the	requirements	are	known	well	and	the	initial	cost	estimates	are	accurate.	In	performing	a	waterfall,	one	risks	
performing	extensive	rework	that	does	not	properly	fall	within	any	of	the	planned	stages,	hence	probably	does	not	
fall	within	any	budget.	

NOTE	1	 Winston	 Royce,	 commonly	 recognized	 as	 an	 early	 analyst	 of	 life	 cycle	 process	models,	 described	 the	 need	 for	
rework	stages	rather	than	the	“waterfall”	(a	term	that	he	did	not	use).	Unfortunately,	the	rework	stages	were	dropped	from	the	
“waterfall”	model	as	it	was	popularly	understood.	

To	deal	with	the	issues	of	incompletely	known	requirements	and	inaccurate	estimates,	a	number	of	other	types	of	
models	have	been	proposed:	 incremental,	 spiral,	 iterative,	 and	 evolutionary	 (adaptive).	These	 life	 cycle	models	
can	 incorporate	agile	 techniques	and	methods.	These	models	can	 typically	 involve	repeated	performance	of	 the	
life	cycle	processes	and	stages	during	the	life	cycle,	e.g.,	for	different	increments	of	the	software	product,	for	more	
precise	handling	of	exceptions	to	common	functions,	or	for	requirements	that	were	not	fully	defined	at	the	outset.	
These	models	 can	 be	 applied	 across	 stages,	 such	 as	 development	 and	 utilization	 or	 deployment.	 Use	 of	 these	
models	can	affect	software	release	strategies	and	acquisition	strategies	for	software	services.		

EXAMPLE	 	Software	elements	can	be	developed	incrementally,	and	then	held	for	block	operational	release	at	a	convenient	
time	in	the	organization’s	business	cycle.	

The	“incremental	development”	model	includes	initial	planning,	initial	requirements	analysis,	initial	architectural	
definition,	 and	 initial	 validation,	 but	 allocates	 design,	 implementation,	 verification	 (and	 sometimes	 delivery)	
activities	 to	 a	 series	 of	 stages,	 each	 of	 which	 provides	 a	 portion	 of	 the	 intended	 functionality.	 The	 approach	
provides	for	some	flexibility	to	respond	to	inaccurate	cost	or	schedule	estimates	by	moving	functionality	to	later	
increments.	

The	“spiral”	variation	on	incremental	developmental	proposes	ordering	the	development	of	functionality	based	on	
risk,	with	 the	 riskiest	problems	considered	 in	 the	early	 increments.	This	provides	 some	protection	against	cost	
surprises	occurring	late	in	the	development	cycle.	

The	“iterative	development”	model	performs	initial	planning	and	then	consists	of	a	cyclic	process	of	prototyping,	
testing,	analyzing	and	refining	the	requirements	and	the	solution.	“Iterative”	models	repeatedly	perform	the	life	
cycle	 processes	 to	 deliver	 prioritized	 system	 functions	 sooner,	 with	 refined	 or	more	 complex	 elements	 of	 the	
system	coming	in	later	iterations.	

The	“evolutionary	model”	 is	 intended	to	deal	with	incomplete	knowledge	of	requirements.	 It	provides	for	 initial	
planning	and	initial	architecture	definition,	but	allocates	requirements	analysis,	design,	construction,	verification,	
validation	and	delivery	to	a	series	of	stages.	Delivered	capabilities	that	do	not	meet	user	needs	can	be	reworked	in	
subsequent	stages	of	the	evolution.	

“Agile”	methods	actually	can	be	applied	within	a	variety	of	models.	While	Agile	methods	are	common	in	executing	
an	evolutionary	 lifecycle	model,	 they	can	be	used	 in	other	 lifecycle	models	at	various	stages.	What	the	methods	
have	 in	common	is	an	emphasis	on	continuous	 inspection	and	collaboration	 in	the	rapid	production	of	working	
software	in	an	environment	where	changes,	 including	changes	to	requirements,	are	expected.	Annex	H	provides	
information	on	the	application	of	this	document	in	an	agile	context.	

NOTE	2		 Selecting	the	name	of	a	type	of	model	does	not	satisfy	the	requirement	to	define	a	model	comprised	of	stages,	with	
defined	purpose	and	outcomes	accomplished	via	the	processes	of	this	document.	

NOTE	3	 ISO/IEC	TS	24748‐1,	 ISO/IEC	TR	24748‐2,	 ISO/IEC	TR	24748‐3,	 and	 ISO/IEC/IEEE	24748‐4	provide	 additional	
detail	regarding	life	cycle	models	and	stages.	The	models	described	in	this	clause	apply	not	only	to	software	systems	but	also	to	
other	systems	as	described	in	ISO/IEC/IEEE	15288:2015.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

19	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

5.5 Process concepts

5.5.1 Criteria for processes

The	determination	of	the	life	cycle	processes	in	this	document	is	based	upon	three	basic	principles:	

1) Each	life	cycle	process	has	strong	relationships	among	its	outcomes,	activities	and	tasks.	

2) The	dependencies	among	the	processes	are	reduced	to	the	greatest	feasible	extent.	

3) A	process	is	capable	of	execution	by	a	single	organization	in	the	life	cycle.	

5.5.2 Description of processes

Each	process	of	this	document	is	described	in	terms	of	the	following	attributes:	

a) The	title	conveys	the	scope	of	the	process	as	a	whole.	

b) The	purpose	describes	the	goals	of	performing	the	process.	

c) The	outcomes	express	the	observable	results	expected	from	the	successful	performance	of	the	process.	

d) The	activities	are	sets	of	cohesive	tasks	of	a	process.	

e) The	 tasks	 are	 requirements,	 recommendations,	 or	 permissible	 actions	 intended	 to	 support	 the	
achievement	of	the	outcomes.	

The	processes	 and	process	 groups	 in	 this	document	 are	 identical	 in	 their	purpose	 and	outcomes	with	 those	 in	
ISO/IEC/IEEE	15288:2015,	System and software engineering – System life cycle processes,	with	one	exception:	 the	
System/Software	Requirements	Definition	process	of	 this	document	 is	 renamed	 from	the	System	Requirements	
Definition	 process	 of	 ISO/IEC/IEEE	 15288:2015.	 To	 emphasize	 this	 harmonization	 of	 systems	 and	 software	
system	processes,	the	process	purposes	and	outcomes	are	presented	in	boxes	in	Clause	6.		

Software‐specific	activities,	tasks,	and	work	products	are	applied	to	achieve	the	outcomes	of	the	processes	in	this	
document.	Annex	E	provides	additional	process	views.		

Additional	detail	regarding	this	form	of	process	description	can	be	found	in	ISO/IEC	TR	24774.	

5.5.3 General characteristics of processes

In	addition	to	the	basic	attributes	described	in	the	previous	subclause,	processes	may	be	characterized	by	other	
attributes	common	to	all	processes.	ISO/IEC	33020:2015	identifies	common	process	attributes	that	characterize	
six	 levels	 of	 achievement	within	 a	measurement	 framework	 for	process	 capability.	Annex	C	 includes	 the	 list	of	
process	attributes	that	contribute	to	the	achievement	of	higher	levels	of	process	capability	as	defined	in	ISO/IEC	
33020:2015.	

5.5.4 Tailoring

Annex	 A,	 which	 is	 normative,	 defines	 the	 basic	 activities	 needed	 to	 perform	 tailoring.	 Note	 that	 tailoring	may	
diminish	the	perceived	value	of	a	claim	of	conformance	to	this	document.	This	 is	because	it	 is	difficult	 for	other	
organizations	to	understand	the	extent	to	which	tailoring	may	have	deleted	desirable	provisions.	An	organization	
asserting	 a	 single‐party	 claim	 of	 conformance	 to	 this	 document	 may	 find	 it	 advantageous	 to	 claim	 full	
conformance	to	a	smaller	list	of	processes	rather	than	tailored	conformance	to	a	larger	list	of	processes.	

5.6 Process groups

5.6.1 Introduction

This	document	 groups	 the	 activities	 that	 can	be	performed	during	 the	 life	 cycle	of	 a	 software	 system	 into	 four	
process	 groups.	 Each	 of	 the	 life	 cycle	 processes	 within	 those	 groups	 is	 described	 in	 terms	 of	 its	 purpose	 and	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

20	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

desired	outcomes	with	a	set	of	related	activities	and	tasks	that	can	be	performed	to	achieve	those	outcomes.	The	
four	process	groups	and	the	processes	included	in	each	group	are	depicted	in	Figure	4	as	follows:	

a) Agreement	processes;	

b) Organizational	Project‐Enabling	Processes;	

c) Technical	Management	Processes;	and	

d) Technical	Processes.	

The	 processes	 described	 in	 this	 document	 are	 not	 intended	 to	 preclude	 or	 discourage	 the	 use	 of	 additional	
processes	 that	organizations	 find	useful.	The	order	of	 the	subclauses	 in	which	 the	processes	are	defined	 in	 this	
document	does	not	determine	the	order	in	which	the	processes	are	performed	during	the	system	life	cycle	or	any	
of	its	stages.	A	description	of	each	process	group	is	provided	in	the	four	subclauses	that	follow.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

21	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

	

Figure 4 —Software life cycle processes

5.6.2 Agreement processes

Organizations	 are	 producers	 and	 users	 of	 software	 systems.	 One	 organization	 (acting	 as	 an	 acquirer)	 can	 task	
another	(acting	as	a	supplier)	for	products	or	services.	This	is	achieved	using	agreements.	Agreements	allow	both	
acquirers	and	suppliers	to	realize	value	and	support	business	strategies	for	their	organizations.	

The	Agreement	processes	are	organizational	processes	that	apply	outside	of	the	span	of	a	project’s	life,	as	well	as	
for	a	project’s	lifespan.	Generally,	organizations	act	simultaneously	or	successively	as	both	acquirers	and	suppliers	
of	software	systems.	The	Agreement	processes	can	be	used	with	less	formality	when	the	acquirer	and	the	supplier	
are	 in	 the	 same	 organization.	 Similarly,	 they	 can	 be	 used	 within	 the	 organization	 to	 agree	 on	 the	 respective	

Information Management
Process

(Clause 6.3.2)

Project

Processes

Human Resource

Project Portfolio

Infrastructure

(Clause 6.2.1)

Project - Enabling

Software Life Cycle Processes

Information Management
Process

(Clause 6.3.2)

Project

Processes

Project Portfolio

(Clause 6.2.3)

Infrastructure

Life Cycle Model

Technical Processes

Measurement Process (6.3.7)

Information Management Process
(6.3.6)

Configuration Management
Process (6.3.5)

Risk Management Process (6.3.4)

Decision Management Process
(6.3.3)

Project Assessment and Control
Process (6.3.2)

Project Planning Process (6.3.1)

Technical Management
Processes

Quality Management Process
(6.2.5)

Human Resource Management
Process (6.2.4)

Portfolio Management Process
(6.2.3)

Life Cycle Model Management
Process (6.2.1)

Infrastructure Management
Process (6.2.2)

Organizational
Project-Enabling

Processes

Supply Process (6.1.2)

Agreement Processes

Knowledge Management Process
(6.2.6)

Quality Assurance Process (6.3.8)

Architecture Definition Process
(6.4.4)

Design Definition Process (6.4.5)

Stakeholder Needs and
Requirements Definition Process

(6.4.2)

Maintenance Process (6.4.13)

Operation Process (6.4.12)

Validation Process (6.4.11)

Transition Process (6.4.10)

Verification Process (6.4.9)

Integration Process (6.4.8)

Implementation Process (6.4.7)

System Analysis Process (6.4.6)

Disposal Process (6.4.14)

Business or Mission Analysis
Process (6.4.1)

Acquisition Process (6.1.1)

Systems/Software Requirements
Definition Process (6.4.3)

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

22	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

responsibilities	 of	 organization,	 project	 and	 technical	 functions.	 Figure	4	 lists	 the	 processes	 contained	 in	 this	
process	group.

5.6.3 Organizational project-enabling processes

The	Organizational	Project‐Enabling	processes	are	concerned	with	providing	the	resources	to	enable	the	project	
to	 meet	 the	 needs	 and	 expectations	 of	 the	 organization’s	 stakeholders.	 The	 Organizational	 Project‐Enabling	
processes	are	typically	concerned	at	a	strategic	level	with	the	management	and	improvement	of	the	organization’s	
business	or	undertaking,	with	the	provision	and	deployment	of	resources	and	assets,	and	with	its	management	of	
risks	in	competitive	or	uncertain	situations.	The	Organizational	Project‐Enabling	processes	apply	outside	the	span	
of	a	project’s	life,	as	well	as	during	a	project’s	lifespan.	

The	Organizational	Project‐Enabling	processes	 establish	 the	 environment	 in	which	projects	 are	 conducted.	The	
organization	 establishes	 the	 processes	 and	 life	 cycle	 models	 to	 be	 used	 by	 projects;	 establishes,	 redirects,	 or	
cancels	projects;	provides	resources	required,	 including	human	and	financial;	and	sets	and	monitors	the	quality	
measures	 for	 software	 systems	and	other	deliverables	 that	 are	developed	by	projects	 for	 internal	 and	external	
customers.	

The	Organizational	Project‐Enabling	processes	create	a	strong	business	image	for	many	organizations	and	imply	
commercial	and	profit‐making	motives.	Nevertheless,	 the	Organizational	Project‐Enabling	processes	are	equally	
relevant	to	non‐profit	organizations,	since	they	are	also	accountable	to	stakeholders,	are	responsible	for	resources,	
and	encounter	risk	in	their	undertakings.	This	document	can	be	applied	to	non‐profit	organizations	as	well	as	to	
profit‐making	organizations.	Figure	4	lists	the	processes	contained	in	this	process	group.	

5.6.4 Technical Management processes

The	 Technical	 Management	 processes	 are	 concerned	 with	 managing	 the	 resources	 and	 assets	 allocated	 by	
organization	 management	 and	 with	 applying	 them	 to	 fulfill	 the	 agreements	 into	 which	 the	 organization	 or	
organizations	enter.	The	Technical	Management	processes	relate	to	the	technical	effort	of	projects,	in	particular	to	
planning	in	terms	of	cost,	timescales	and	achievements,	to	the	checking	of	actions	to	help	ensure	that	they	comply	
with	 plans	 and	 performance	 criteria	 and	 to	 the	 identification	 and	 selection	 of	 corrective	 actions	 that	 recover	
shortfalls	in	progress	and	achievement.	These	processes	are	used	to	establish	and	perform	technical	plans	for	the	
project,	 manage	 information	 across	 the	 technical	 team,	 assess	 technical	 progress	 against	 the	 plans	 for	 the	
software	system,	products,	or	services,	control	technical	tasks	through	to	completion,	and	aid	in	decision‐making.	

NOTE	1	 Technical	management	is	‘the	application	of	technical	and	administrative	resources	to	plan,	organize	and	control	
engineering	functions’.	(ISO/IEC/IEEE	24765:2010)	

Typically,	 several	 projects	 will	 co‐exist	 in	 any	 one	 organization.	 The	 Technical	 Management	 processes	 can	 be	
employed	at	a	corporate	level	to	meet	internal	needs.	Figure	4	lists	the	processes	contained	in	this	process	group.	

NOTE	2	 Technical	Management	processes	are	applied	during	the	performance	of	each	Technical	process.	

5.6.5 Technical processes

The	 Technical	 processes	 are	 concerned	 with	 technical	 actions	 throughout	 the	 life	 cycle.	 Technical	 processes	
transform	the	needs	of	stakeholders	into	a	product	or	service.	By	applying	that	product	or	operating	that	service,	
technical	processes,	provide	sustainable	performance,	when	and	where	needed	in	order	to	meet	the	stakeholder	
requirements	and	achieve	customer	satisfaction.	The	Technical	processes	are	applied	in	order	to	create	and	use	a	
software	system,	whether	it	is	in	the	form	of	a	model	or	is	an	operational	product.	The	Technical	processes	apply	
at	 any	 level	 in	 a	 hierarchy	 of	 software	 system	 structure	 and	 at	 any	 stage	 in	 the	 life	 cycle.	 Figure	4	 lists	 the	
processes	contained	in	this	process	group.	

5.7 Process application

The	life	cycle	processes	defined	in	this	document	can	be	used	by	any	organization	when	acquiring,	using,	creating,	
or	supplying	a	software	system.	They	can	be	applied	at	any	level	in	a	system’s	hierarchy	and	at	any	stage	in	the	life	
cycle.	

The	functions	these	processes	perform	are	defined	in	terms	of	specific	purposes,	outcomes	and	the	set	of	activities	
and	tasks	that	constitute	the	process.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

23	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

Each	life	cycle	process	in	Figure	4	can	be	invoked,	as	required,	at	any	time	throughout	the	life	cycle.	The	order	that	
the	 processes	 are	 presented	 in	 this	 document	 does	 not	 imply	 any	 prescriptive	 order	 in	 their	 use.	 However,	
sequential	relationships	are	introduced	by	the	definition	of	a	life	cycle	model.	The	detailed	purpose	and	timing	of	
use	 of	 these	 processes	 throughout	 the	 life	 cycle	 are	 influenced	 by	 multiple	 factors,	 including	 social,	 trading,	
organizational	 and	 technical	 considerations,	 each	 of	 which	 can	 vary	 during	 the	 life	 of	 a	 software	 system.	 An	
individual	software	 life	cycle	 is	 thus	created	through	a	selection	and	application	of	processes	that	will	normally	
possess	concurrent,	iterative,	recursive	and	time‐dependent	characteristics.	

Concurrent	 use	 of	 processes	 can	 exist	 within	 a	 project	 (e.g.,	 when	 design	 actions	 and	 preparatory	 actions	 for	
building	a	software	system	are	performed	at	the	same	time),	and	between	projects	(e.g.,	when	system	elements	
are	designed	at	the	same	time	under	different	project	responsibilities).	

When	the	application	of	the	same	process	or	set	of	processes	is	repeated	on	the	same	system,	the	application	is	
referred	 to	 as	 iterative.	 The	 iterative	 use	 of	 processes	 is	 important	 for	 the	 progressive	 refinement	 of	 process	
outputs,	 e.g.,	 the	 interaction	 between	 successive	 verification	 actions	 and	 integration	 actions	 can	 incrementally	
build	 confidence	 in	 the	 conformance	 of	 the	 product.	 Iteration	 is	 not	 only	 appropriate	 but	 also	 expected.	 New	
information	 is	 created	by	 the	 application	of	 a	process	 or	 set	 of	 processes.	 Typically,	 this	 information	 takes	 the	
form	 of	 questions	 with	 respect	 to	 requirements,	 analyzed	 risks	 or	 opportunities.	 Such	 questions	 should	 be	
resolved	before	completing	the	activities	of	a	process	or	set	of	processes.	

The	recursive	use	of	processes,	 i.e.,	 the	repeated	application	of	 the	same	process	or	set	of	processes	applied	 to	
successive	levels	of	system	elements	 in	a	system’s	structure,	 is	a	key	aspect	of	the	application	of	this	document.	
The	outputs	of	processes	at	any	level,	whether	information,	artifacts	or	services,	are	inputs	to	the	processes	used	
at	the	level	below	(e.g.,	during	top	down	design)	or	at	the	level	above	(e.g.,	during	software	system	realization).	
The	outcomes	from	one	application	are	used	as	inputs	to	the	next	lower	(or	higher)	system	in	the	system	structure	
to	arrive	at	a	more	detailed	or	mature	set	of	outcomes.	Such	an	approach	adds	value	to	successive	systems	in	the	
system	structure.	

The	 changing	 nature	 of	 the	 influences	 on	 the	 software	 system	 (e.g.,	 operational	 environment	 changes,	 new	
opportunities	 for	 system	 element	 implementation,	 modified	 structure	 and	 responsibilities	 in	 organizations)	
requires	continual	review	of	the	selection	and	timing	of	process	use.	Process	use	in	the	life	cycle	can	be	dynamic,	
responding	 to	 the	 many	 external	 influences	 on	 the	 software	 system.	 The	 life	 cycle	 approach	 also	 allows	 for	
incorporating	the	changes	in	the	next	stage.	The	life	cycle	stages	assist	the	planning,	execution	and	management	of	
life	cycle	processes	in	the	face	of	this	complexity	in	life	cycles	by	providing	comprehensible	and	recognizable	high‐
level	purpose	and	structure.	The	set	of	processes	within	a	 life	cycle	stage	are	applied	with	 the	common	goal	of	
satisfying	the	exit	criteria	for	that	stage	or	the	entry	criteria	of	the	formal	progress	reviews	within	that	stage.	

The	discussion	in	this	section	on	iterative	and	recursive	use	of	software	life	cycle	processes	is	not	meant	to	imply	
any	specific	hierarchical,	vertical,	or	horizontal	structure	for	the	system‐of‐interest,	enabling	system,	organization,	
or	project.	

Where	justified	by	product	quality	risks,	detailed	descriptions	of	process	instances	in	the	context	of	the	specific	
product	may	also	be	created.	Instantiation	of	processes	involves	identifying	specific	success	criteria	for	a	process	
instance,	 derived	 from	 the	 product	 requirements,	 and	 identifying	 the	 specific	 activities	 and	 tasks	 needed	 to	
achieve	 the	success	criteria,	derived	 from	the	activities	and	 tasks	 identified	 in	 this	document.	Creating	detailed	
descriptions	 of	 process	 instances	 enables	 better	management	 of	 product	 quality	 risks	 by	 establishing	 the	 link	
between	the	process	and	the	specific	product	requirements.	

Further	elaboration	of	 these	concepts	can	be	 found	 in	 ISO/IEC/IEEE	24748	(all	parts)	on	the	application	of	 life	
cycle	processes.	

5.8 Process reference model

Annex	 C	 defines	 a	 process	 reference	 model	 (PRM)	 at	 a	 level	 of	 abstraction	 higher	 than	 that	 of	 the	 detailed	
requirements	contained	 in	Clause	6.	The	PRM	 is	applicable	 to	an	organization	 that	 is	assessing	 its	processes	 in	
order	to	determine	the	capability	of	these	processes.	The	purpose	and	outcomes	are	a	statement	of	the	goals	of	the	
performance	of	each	process.	This	statement	of	goals	permits	assessment	of	the	effectiveness	of	the	processes	in	
ways	other	than	simple	conformity	assessment.	

NOTE	 In	 this	 document,	 the	 term	 “process	 reference	 model”	 is	 used	 with	 the	 same	 meaning	 as	 ISO/IEC	 33001:2015:	
“model	comprising	definitions	of	processes	 in	a	domain	of	application	described	in	terms	of	process	purpose	and	outcomes,	
together	with	an	architecture	describing	the	relationships	between	the	processes”.		

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

24	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

6 Software life cycle processes

6.1 Agreement processes

This	 subclause	 specifies	 the	 requirements	 for	 the	 establishment	 of	 agreements	 with	 organizational	 entities	
external	and	internal	to	the	organization.	

The	Agreement	processes	consist	of	the	following:	

a) Acquisition	process	–	used	by	organizations	for	acquiring	products	or	services;	and	

b) Supply	process	–	used	by	organizations	for	supplying	products	or	services.	

These	 processes	 define	 the	 activities	 necessary	 to	 establish	 an	 agreement	 between	 two	 organizations.	 If	 the	
Acquisition	process	 is	 invoked,	 it	provides	the	means	for	conducting	business	with	a	supplier.	This	may	 include	
products	that	are	supplied	for	use	as	an	operational	software	system,	services	in	support	of	operational	activities,	
software	 elements	 of	 a	 system,	 or	 elements	 of	 a	 software	 system	 being	 provided	 by	 a	 supplier.	 If	 the	 Supply	
process	 is	 invoked,	 it	 provides	 the	means	 for	 an	 agreement	 in	which	 the	 result	 is	 a	 product	 or	 service	 that	 is	
provided	to	the	acquirer.	

NOTE	 Security	 is	an	 increasing	concern	 in	systems	and	software	engineering.	See	 ISO/IEC	27036,	Security techniques -
Information security for supplier relationships,	 for	 requirements	 and	 guidance	 for	 suppliers	 and	 acquirers	 on	 how	 to	 secure	
information	in	supplier	relationships.	Specific	aspects	of	information	security	supplier	relationships	are	addressed	in	ISO/IEC	
27036‐3:2013	and	ISO/IEC	27036‐4	(in	development).	

6.1.1 Acquisition process

6.1.1.1 Purpose

The	 purpose	 of	 the	 Acquisition	 process	 is	 to	 obtain	 a	 product	 or	 service	 in	 accordance	 with	 the	 acquirer’s	
requirements.	

NOTE	 As	part	of	this	process,	the	agreement	is	modified	when	a	change	request	affecting	the	terms	of	the	agreement	is	
agreed	to	by	both	the	acquirer	and	supplier.	

6.1.1.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	Acquisition	process:

a) A	request	for	supply	is	prepared.	
	

b) One	or	more	suppliers	are	selected.	
	

c) An	agreement	is	established	between	the	acquirer	and	supplier.	
	

d) A	product	or	service	complying	with	the	agreement	is	accepted.	
	

e) Acquirer	obligations	defined	in	the	agreement	are	satisfied.

6.1.1.3 Activities and tasks

The	acquirer	shall	implement	the	following	activities	and	tasks	in	accordance	with	applicable	organization	policies	
and	procedures	with	respect	to	the	Acquisition	process.	

NOTE	1	 The	activities	and	resulting	agreement	 from	this	process	often	apply	 to	suppliers	 in	 the	supply	chain,	 including	
subcontracted	suppliers.	

NOTE	2	 IEEE	Std	1062‐2015,	IEEE Recommended Practice for Software Acquisition,	contains	detailed	activities	for	software	
acquisition	 alternatives,	 including	 custom‐developed,	 off‐the‐shelf,	 and	 software	 as	 a	 service.	 IEEE	 Std	 1062‐2015	 also	
provides	 software	 acquisition	 guidance	 for	 technical	 data	 rights	 and	 intellectual	 property	 considerations,	 for	 consideration	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

25	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

when	safety	assurance	or	information	security	requirements	are	of	concern,	and	checklists	of	relevant	issues	for	organizational	
consideration	when	establishing	software	acquisition	processes.	

a) Prepare for the acquisition. This	activity	consists	of	the	following	tasks:	

1) Define	a	strategy	for	how	the	acquisition	will	be	conducted.	

NOTE	1	 	 This	strategy	describes	or	references	the	life	cycle	model,	risks	and	issues	mitigation,	a	schedule	of	milestones,	
and	 selection	 criteria	 if	 the	 supplier	 is	 external	 to	 the	 acquiring	 organization.	 It	 also	 includes	 key	 drivers	 and	
characteristics	of	the	acquisition,	such	as	responsibilities	and	liabilities;	specific	models,	methods,	or	processes;	level	of	
criticality;	formality;	and	priority	of	relevant	trade	factors.	

NOTE	2	 	 The	Decision	Management	process	and	System	Analysis	process	are	often	used	 to	 support	 trade‐offs	 for	 the	
acquisition	strategy.	Examples	include:	determining	a	make	or	buy	decision,	as	well	as	the	suitability	of	specific	COTS	or	
modified	OTS	solutions	and	supplier	evaluation.		

NOTE	3	 	 If	 the	 strategy	 calls	 for	 acquisition	 of	 specific	 commercial‐off‐the‐shelf	 software	 or	 open	 source	 software,	
acquisition	can	be	 limited	to	 identifying	the	supplier,	accepting	or	negotiating	the	conditions	 in	a	pre‐defined	license	or	
lease	or	maintenance	agreement,	determining	rights	to	intellectual	property	and	data	rights	in	the	software	system,	and	
agreeing	on	the	price.	

NOTE	4	 	 A	factor	to	consider	in	agreements	between	suppliers	is	data	rights	and	lateral	access	to	constituent	data	and	
intellectual	 property.	 As	 an	 example,	 suppliers	 for	 one	 system	 component	may	 need	 to	 collaborate	with	 suppliers	 for	
another	component	and	share	source	code.	Agreements	can	enable	this	collaboration.	

2) Prepare	a	request	for	the	supply	of	a	product	or	service	that	includes	the	requirements.	

NOTE	1	 	 If	 a	 supplier	 is	 external	 to	 the	 organization,	 then	 the	 request	 includes	 the	 business	 practices	 with	which	 a	
supplier	is	expected	to	comply	and	the	criteria	for	selecting	a	supplier.	

NOTE	2	 	 A	definition	of	requirements	is	provided	to	one	or	more	suppliers.	The	requirements	are	the	stakeholder	or	the	
system/software	 requirements,	 depending	 on	 the	 type	 of	 acquisition	 approach,	 and	using	 the	 associated	 requirements	
definition	process.	

NOTE	3	 	 The	acquirer	develops	the	requirements	by	itself	or	retains	a	supplier	to	develop	them.	If	the	acquirer	retains	a	
supplier	to	develop	requirements,	the	acquirer	retains	approval	authority	for	the	requirements	developed	by	the	supplier.	

b) Advertise the acquisition and select the supplier.	This	activity	consists	of	the	following	tasks:	

1) Communicate	the	request	for	the	supply	of	a	product	or	service	to	potential	suppliers;	and	

2) Select	one	or	more	suppliers.	

NOTE	 To	 obtain	 competitive	 solicitations,	 proposals	 to	 supply	 are	 evaluated	 and	 compared	 against	 the	 selection	
criteria	and	ranked.	The	justification	for	rating	each	proposal	is	declared	and	suppliers	commonly	are	informed	why	they	
were	or	were	not	selected.	

c) Establish and maintain an agreement.	This	activity	consists	of	the	following	tasks:	

NOTE	 Project	cost,	schedule,	and	performance	are	monitored	through	the	Project	Assessment	and	Control	process.	Any	
identified	issues	that	require	agreement	modifications	are	referred	to	this	activity.	Any	proposals	for	changes	to	system	
elements	 or	 information	 are	 controlled	 through	 the	 Change	 Management	 activity	 of	 the	 Configuration	 Management	
process.		

1) Develop	an	agreement	with	the	supplier	that	includes	acceptance	criteria.	

NOTE	1	 	 This	agreement	ranges	in	formality	from	a	written	contract	to	a	verbal	agreement.	Appropriate	to	the	level	of	
formality,	 the	 agreement	 establishes	 requirements,	 development	 and	 delivery	 milestones,	 verification,	 validation	 and	
acceptance	 conditions,	 exception‐handling	 procedures,	 agreement	 change	 management	 procedures,	 and	 payment	
schedules,	so	that	both	parties	of	the	agreement	understand	the	basis	for	executing	the	agreement.	Other	provisions	for	
agreements	 include	 rights	 and	 restrictions	 associated	 with	 technical	 data	 and	 intellectual	 property,	 acceptance	 test	
preparation	 and	 test	 environment	 details;	 and	 the	 extent	 of	 supplier	 involvement.	 The	 agreement	 identifies	 process	
requirements	that	need	to	be	imposed	on	participating	subcontractors,	such	as	configuration	management	requirements,	
reporting	of	risks,	and	reporting	of	measures	and	measurement	analysis.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

26	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

NOTE	2	 Acceptance	criteria,	such	as	acceptance	testing,	relate	to	how	the	product	or	service	will	satisfy	its	intended	use	
in	its	operational	environment.	Acceptance	testing	can	be	performed	using	the	Validation	process.	Exceptions	that	arise	
during	the	conduct	of	the	agreement	or	with	the	delivered	product	or	service	are	resolved	according	to	the	procedures	
established	in	the	agreement.	

2) Identify	necessary	changes	to	the	agreement.	

NOTE	 	 In	requesting	a	change	to	the	agreement,	 the	acquirer	or	the	supplier	details	 its	specifications,	rationale,	and	
background.	

3) Evaluate	impact	of	changes	on	the	agreement.	

NOTE		 Any	change	is	investigated	for	impacts	to	project	plans,	schedule,	cost,	technical	capability,	and	quality.	A	change	
can	 be	 handled	 within	 the	 existing	 agreement,	 can	 require	 a	 modification	 to	 the	 agreement,	 or	 can	 require	 a	 new	
agreement.	

4) Negotiate	the	agreement	with	the	supplier.	

NOTE	 	 Agreement	 terms	 are	 negotiated	 between	 the	 acquirer	 and	 supplier.	 Negotiation	 occurs	 for	 the	 initial	
agreement,	and	as	required	for	any	changes.	Changed	agreements	are	based	on	the	required	change	and	identified	impacts.	
Details	 are	 discussed	 and	 changed	 during	 negotiation,	 after	 which	 the	 acquirer	 and	 supplier	 accept	 the	 terms	 of	 an	
agreement	and	the	agreement	commences.	For	a	written	contract,	this	occurs	when	the	contract	is	signed	or	as	specified	
in	the	agreement.	

5) Update	the	agreement	with	the	supplier,	as	necessary.	

NOTE	1	 	 The	 result	 of	 the	 agreement	 modification	 is	 incorporated	 into	 the	 project	 plans	 and	 communicated	 to	 all	
affected	parties.	

NOTE	2	 	 Agreements	 can	 specify	 the	 conditions	 under	which	 the	 agreement	will	 be	 terminated	 by	 either	 party,	 e.g.,	
unexpected	changes	in	strategy	or	available	funding,	or	lack	of	satisfactory	progress.	

d) Monitor the agreement. This	activity	consists	of	the	following	tasks:	

1) Assess	the	execution	of	the	agreement.	

NOTE	1	 	 This	 includes	confirmation	that	all	parties	are	meeting	their	responsibilities	according	to	the	agreement.	The	
Project	 Assessment	 and	 Control	 process	 is	 used	 to	 evaluate	 projected	 cost,	 schedule,	 performance,	 and	 the	 impact	 of	
undesirable	outcomes	on	the	organization.	This	information	is	combined	with	other	assessments	of	the	execution	of	the	
terms	of	the	agreement.	If	execution	of	the	agreement	does	not	result	in	an	acceptable	product	or	service,	the	acquirer	or	
supplier	can	terminate	the	agreement	as	allowed	in	its	terms.	

NOTE	2	 	 Acceptance	testing	can	be	performed	using	the	Validation	process.	Exceptions	that	arise	during	the	conduct	of	
the	 agreement	 or	 with	 the	 delivered	 product	 or	 service	 are	 resolved	 according	 to	 the	 procedures	 established	 in	 the	
agreement.	

2) Provide	data	needed	by	the	supplier	and	resolve	issues	in	a	timely	manner.	

e) Accept the product or service. This	activity	consists	of	the	following	tasks:	

1) Confirm	that	the	delivered	product	or	service	complies	with	the	agreement.	

NOTE	 If	 the	 agreed	 requirements	 are	 satisfied	 and	 the	 acceptance	 criteria	 are	 met,	 the	 supplier	 has	 fulfilled	 its	
obligation.	Unaddressed	exceptions,	e.g.,	disputes	over	conduct	of	acceptance	testing	or	product	suitability	 for	 intended	
use,	are	a	matter	for	agreement	provisions	relating	to	disputes,	arbitration	or	applicable	law	and	regulation.		

2) Provide	payment	or	other	agreed	consideration.	

3) Accept	the	product	or	service	from	the	supplier,	or	other	party,	as	directed	by	the	agreement.	

4) Close	the	agreement.	

NOTE	 The	project	is	closed	by	the	Portfolio	Management	process.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

27	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

6.1.2 Supply process

6.1.2.1 Purpose

The	 purpose	 of	 the	 Supply	 process	 is	 to	 provide	 an	 acquirer	 with	 a	 product	 or	 service	 that	 meets	 agreed	
requirements.	

NOTE	 As	part	of	 this	process,	 the	agreement	 is	modified	when	a	 change	request	affecting	 the	 terms	of	 the	agreement	 is	
agreed	to	by	both	the	acquirer	and	supplier.	

6.1.2.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	Supply	process:

a) An	acquirer	for	a	product	or	service	is	identified.	
	

b) A	response	to	the	acquirer’s	request	is	produced.	
	

c) An	agreement	is	established	between	the	acquirer	and	supplier.	
	

d) A	product	or	service	is	provided.	
	

e) Supplier	obligations	defined	in	the	agreement	are	satisfied.	
	

f) Responsibility	for	the	acquired	product	or	service,	as	directed	by	the	agreement,	is	transferred.

6.1.2.3 Activities and tasks

The	supplier	shall	implement	the	following	activities	and	tasks	in	accordance	with	applicable	organization	policies	
and	procedures	with	respect	to	the	Supply	process.	

a) Prepare for the supply.	This	activity	consists	of	the	following	tasks:	

1) Determine	the	existence	and	identity	of	an	acquirer	who	has	a	need	for	a	product	or	service.	

NOTE	 This	is	often	generated	through	the	Business	or	Mission	Analysis	process.	For	a	product	or	service	developed	
for	consumers,	an	agent,	e.g.,	a	marketing	function	within	the	supplier	organization,	often	represents	the	acquirer.	

2) Define	a	supply	strategy.	

NOTE	 This	 strategy	 describes	 or	 references	 the	 life	 cycle	 model,	 risks	 and	 issues	 mitigation,	 and	 a	 schedule	 of	
milestones.	 It	 also	 includes	 key	 drivers	 and	 characteristics	 of	 the	 acquisition,	 such	 as	 responsibilities	 and	 liabilities;	
specific	models,	methods,	or	processes;	level	of	criticality;	formality;	and	priority	of	relevant	trade	factors.	

b) Respond to a request for supply of products or services.	This	activity	consists	of	the	following	tasks:	

1) Evaluate	a	request	for	the	supply	of	a	product	or	service)	to	determine	feasibility	and	how	to	respond.	

2) Prepare	a	response	that	satisfies	the	solicitation.	

c) Establish and maintain an agreement.	This	activity	consists	of	the	following	tasks:	

1) Negotiate	an	agreement	with	the	acquirer	that	includes	acceptance	criteria.	

NOTE	 This	agreement	ranges	in	formality	from	a	written	contract	to	a	verbal	agreement.	The	Supplier	confirms	that	
the	requirements,	delivery	milestones,	and	acceptance	conditions	are	achievable,	that	exception	handling	and	agreement	
change	management	procedures	and	payment	schedules	are	acceptable,	and	that	they	establish	a	basis	for	executing	the	
agreement	without	unnecessary	risks.	Issues	are	discussed	and	resolved	during	negotiation,	after	which	the	acquirer	and	
supplier	accept	the	terms	of	an	agreement	and	the	agreement	commences.	For	a	contract,	this	occurs	when	the	contract	is	
signed.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

28	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

2) Identify	necessary	changes	to	the	agreement.	

NOTE	 In	 requesting	 a	 change	 to	 the	 agreement,	 the	 acquirer	 or	 the	 supplier	 details	 its	 specifications,	 rationale,	 and	
background.	

3) Evaluate	impact	of	changes	on	the	agreement.	

NOTE		 Any	change	is	investigated	for	impacts	to	project	plans,	schedule,	cost,	technical	capability,	or	quality.	A	change	
can	 be	 handled	 within	 the	 existing	 agreement,	 can	 require	 a	 modification	 to	 the	 agreement,	 or	 can	 require	 a	 new	
agreement.	

4) Negotiate	the	agreement	with	the	acquirer,	as	necessary.	

NOTE	 Changes	to	agreement	terms	are	negotiated	between	the	supplier	and	acquirer.	This	 includes	changes	due	to	
changing	 market	 context.	 Negotiation	 occurs	 for	 the	 initial	 agreement,	 and	 as	 required	 for	 any	 changes.	 Changed	
agreements	are	based	on	the	required	change	and	identified	impacts.		

5) Update	the	agreement	with	the	acquirer,	as	necessary.	

NOTE	 The	result	of	the	agreement	modification	is	incorporated	into	the	project	plans	and	communicated	to	all	affected	
parties.		

d) Execute the agreement. This	activity	consists	of	the	following	tasks:	

1) Execute	the	agreement	according	to	the	established	project	plans.	

NOTE	 A	supplier	sometimes	adopts,	or	agrees	to	use,	acquirer	processes.	

2) Assess	the	execution	of	the	agreement.	

NOTE	 This	 includes	 confirmation	 that	 all	 parties	 are	meeting	 their	 responsibilities	 according	 to	 the	 agreement.	 The	
Project	 Assessment	 and	 Control	 process	 is	 used	 to	 evaluate	 projected	 cost,	 schedule,	 performance,	 and	 the	 impact	 of	
undesirable	outcomes	on	the	organization.	The	change	management	activity	of	the	Configuration	Management	process	is	
used	to	control	changes	to	the	system	elements.	This	information	is	combined	with	other	assessments	of	the	execution	of	
the	terms	of	the	agreement.	If	execution	of	the	agreement	does	not	result	in	an	acceptable	product	or	service,	the	acquirer	
or	supplier	can	terminate	the	agreement	as	allowed	in	its	terms.	

e) Deliver and support the product or service. This	activity	consists	of	the	following	tasks:	

1) Deliver	the	product	or	service	in	accordance	with	the	agreement	criteria.	

NOTE	 As	stated	in	the	agreement,	acceptance	criteria,	such	as	acceptance	testing,	relate	to	how	the	product	or	service	
will	 satisfy	 its	 intended	 use	 in	 its	 operational	 environment.	 Unaddressed	 exceptions,	 e.g.,	 disputes	 over	 conduct	 of	
acceptance	 testing	 or	 product	 suitability	 for	 intended	 use,	 are	 a	matter	 for	 agreement	 provisions	 relating	 to	 disputes,	
arbitration	or	applicable	law	and	regulation.	

2) Provide	assistance	to	the	acquirer	in	support	of	the	delivered	product	or	service,	per	the	agreement.	

3) Accept	and	acknowledge	payment	or	other	agreed	consideration.	

4) Transfer	the	product	or	service	to	the	acquirer,	or	other	party,	as	directed	by	the	agreement.	

5) Close	the	agreement.	

NOTE	1	 	 The	project	is	closed	by	the	Portfolio	Management	process.	

NOTE	2	 	 Agreements	 can	 specify	 the	 conditions	 under	which	 the	 agreement	will	 be	 terminated	 by	 either	 party,	 e.g.,	
unexpected	changes	in	strategy	or	available	funding,	or	lack	of	satisfactory	progress.	

6.2 Organizational Project-Enabling processes

The	 Organizational	 Project‐Enabling	 processes	 help	 ensure	 the	 organization’s	 capability	 to	 acquire	 and	 supply	
products	or	 services	 through	 the	 initiation,	 support	and	control	of	projects.	These	processes	provide	 resources	
and	infrastructure	necessary	to	support	projects	and	help	ensure	the	satisfaction	of	organizational	objectives	and	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

29	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

established	 agreements.	 They	 are	 not	 intended	 to	 be	 a	 comprehensive	 set	 of	 business	 processes	 that	 enable	
strategic	management	of	the	organization’s	business.	

The	Organizational	Project‐Enabling	Processes	consist	of	the	following:	

a) Life	Cycle	Model	Management	process;	

b) Infrastructure	Management	process;	

c) Portfolio	Management	process;	

d) Human	Resource	Management	process;	

e) Quality	Management	process;	and	

f) Knowledge	Management	process.	

6.2.1 Life cycle model management process

6.2.1.1 Purpose

The	purpose	of	the	Life	Cycle	Model	Management	process	is	to	define,	maintain,	and	assure	availability	of	policies,	
life	cycle	processes,	life	cycle	models,	and	procedures	for	use	by	the	organization	with	respect	to	the	scope	of	this	
document.	

This	 process	 provides	 life	 cycle	 policies,	 processes,	 models,	 and	 procedures	 that	 are	 consistent	 with	 the	
organization’s	objectives,	that	are	defined,	adapted,	improved	and	maintained	to	support	individual	project	needs	
within	the	context	of	the	organization,	and	that	are	capable	of	being	applied	using	effective,	proven	methods	and	
tools.	

6.2.1.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	Life	Cycle	Model	Management	process:	

a) Organizational	policies	and	procedures	for	the	management	and	deployment	of	life	cycle	models	and					
processes	are	established.	
	

b) Responsibility,	accountability,	and	authority	within	life	cycle	policies,	processes,	models,	and	procedures	
are	defined.	
	

c) Life	cycle	models	and	processes	for	use	by	the	organization	are	assessed.	
	

d) Prioritized	process,	model,	and	procedure	improvements	are	implemented.	

	
6.2.1.3 Activities and tasks

The	organization	 shall	 implement	 the	 following	 activities	 and	 tasks	 in	 accordance	with	 applicable	 organization	
policies	and	procedures	with	respect	to	the	Life	Cycle	Model	Management	process.	

a) Establish the process. This	activity	consists	of	the	following	tasks:	

NOTE								The	 detail	 of	 the	 life	 cycle	 implementation	 within	 a	 project	 is	 dependent	 upon	 the	 complexity	 of	 the	 work,	 the	
methods	used,	and	the	skills	and	training	of	personnel	involved	in	performing	the	work.	A	project	tailors	policies,	processes,	
models,	 and	 procedures	 according	 to	 its	 requirements	 and	 needs,	 while	 maintaining	 alignment	 with	 regulations	 and	
organizational	policies.	Annex	A	contains	information	on	tailoring.	

1) Establish	 policies	 and	 procedures	 for	 process	 management	 and	 deployment	 that	 are	 consistent	 with	
organizational	strategies.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

30	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

2) Establish	the	processes	that	implement	the	requirements	of	this	document	and	that	are	consistent	with	
organizational	strategies.	

3) Define	 the	 roles,	 responsibilities,	 accountabilities,	 and	 authorities	 to	 facilitate	 implementation	 of	
processes	and	the	strategic	management	of	life	cycles.	

4) Define	business	criteria	that	control	progression	through	the	life	cycle.	

	 NOTE	 The	decision‐making	criteria	regarding	entering	and	exiting	each	life	cycle	stage	and	key	milestones	are	
established.	These	are	sometimes	expressed	in	terms	of	business	achievement.	

5) Establish	 standard	 life	 cycle	models	 for	 the	 organization	 that	 are	 comprised	 of	 stages	 and	 define	 the	
purpose	and	outcomes	for	each	stage.	

	 NOTE	 The	 life	 cycle	model	 comprises	 one	 or	more	 stage	models,	 as	 needed.	 It	 is	 assembled	 as	 a	 sequence	 of	
stages	that	can	overlap	or	iterate,	as	appropriate	for	the	system‐of‐interest’s	scope,	magnitude,	complexity,	changing	
needs	and	opportunities.	Stages	are	illustrated	in	ISO/IEC	TS	24748‐1	using	a	commonly	encountered	example	of	life	
cycle	stages.	Specific	examples	for	systems	and	software	are	provided	in	ISO/IEC	TR	24748‐2	and	ISO/IEC	TR	24748‐
3.	The	 life	cycle	processes	and	activities	are	selected,	 tailored	as	appropriate	and	employed	 in	a	stage	to	 fulfill	 the	
purpose	and	outcomes	of	that	stage.	

b) Assess the process. This	activity	consists	of	the	following	tasks:	

NOTE									ISO/IEC	33002:2015	provides	a	more	detailed	set	of	process	assessment	activities	and	tasks	that	can	be	aligned	with	
the	tasks	shown	below.	

1) Monitor	process	execution	across	the	organization.	

	 NOTE	 This	includes	monitoring	performance,	analyzing	process	measures,	and	reviewing	trends	with	respect	to	
compliance	with	regulations,	organizational	policies,	business	criteria,	and	feedback	from	the	projects	regarding	the	
effectiveness	and	efficiency	of	the	processes.	

2) Conduct	periodic	reviews	of	the	life	cycle	models	used	by	the	projects.	

	 NOTE	 This	 includes	 confirming	 the	 continuing	 suitability,	 adequacy	 and	 effectiveness	 of	 the	 life	 cycle	models	
used	by	the	projects	and	making	improvements	as	appropriate.	This	includes	the	stages,	processes	and	achievement	
criteria	that	control	progression	through	the	life	cycle.	

3) Identify	improvement	opportunities	from	assessment	results.	

NOTE		 Improvements	can	affect	the	stages,	processes,	and	achievement	criteria	that	control	progression	through	
the	life	cycle.	

c) Improve the process. This	activity	consists	of	the	following	tasks:	

1) Prioritize	and	plan	improvement	opportunities.	

2) Implement	improvement	opportunities	and	inform	relevant	stakeholders.	

	 NOTE	 Process	Improvement	includes	improvements	to	any	of	the	processes	in	the	organization.	Lessons	learned	
are	captured	and	available.	

6.2.2 Infrastructure Management process

6.2.2.1 Purpose

The	purpose	of	the	Infrastructure	Management	process	is	to	provide	the	infrastructure	and	services	to	projects	to	
support	organization	and	project	objectives	throughout	the	life	cycle.	

This	process	defines,	provides	and	maintains	the	facilities,	tools,	and	communications	and	information	technology	
assets	needed	for	the	organization’s	business	with	respect	to	the	scope	of	this	document.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

31	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

6.2.2.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	Infrastructure	Management	process:	

a) The	requirements	for	infrastructure	are	defined.	
	

b) The	infrastructure	elements	are	identified	and	specified.	
	
c) Infrastructure	elements	are	developed	or	acquired.	
	
d) The	infrastructure	is	available.

6.2.2.3 Activities and tasks

The	organization	 shall	 implement	 the	 following	 activities	 and	 tasks	 in	 accordance	with	 applicable	 organization	
policies	and	procedures	with	respect	to	the	Infrastructure	Management	process.	

a) Establish the infrastructure. This	activity	consists	of	the	following	tasks:	

1) Define	project	infrastructure	requirements.	

NOTE	1	 	 Infrastructure	 element	 examples	 include	 facilities,	 tools,	 hardware,	 software,	 services,	 and	 standards.	 In	
addition	 to	 the	 general	 infrastructure	 resources	 common	 to	 an	 organization	 to	 support	 its	 business	 processes,	 an	
organization	 can	 also	 provide	 projects	 with	 unique	 or	 shared	 enabling	 systems	 to	 support	 the	 project’s	 technical	
processes.	

NOTE	2	 	 The	infrastructure	resource	needs	for	the	project	are	considered	in	context	with	other	projects	and	resources	
within	 the	organization,	as	well	as	within	 the	policies	and	strategic	plans	of	 the	organization.	Business	constraints	and	
timelines	that	influence	and	control	provision	of	infrastructure	resources	and	services	for	the	project	are	also	evaluated.	
Project	plans	and	future	business	needs	contribute	to	the	understanding	of	the	resource	infrastructure	that	 is	required.	
Physical	 factors	 (e.g.,	 facilities),	 logistics	 needs,	 and	 human	 factors	 (including	 health	 and	 safety	 aspects)	 are	 also	
considered.	

NOTE	3	 	 ISO/IEC	 27036,	 Information security for supplier relationships,	 provides	 guidance	 for	 addressing	 security	 of	
outsourced	infrastructure.	

2) Identify,	 obtain	 and	 provide	 infrastructure	 resources	 and	 services	 that	 are	 needed	 to	 implement	 and	
support	projects.	

NOTE	 An	 inventory	 asset	 registry	 is	 often	 established	 to	 track	 infrastructure	 elements	 and	 support	 reuse	 of	
infrastructure	assets.	

b) Maintain the infrastructure. This	activity	consists	of	the	following	tasks:	

1) Evaluate	the	degree	to	which	delivered	infrastructure	resources	satisfy	project	needs.	

2) Identify	 and	 provide	 improvements	 or	 changes	 to	 the	 infrastructure	 resources	 as	 the	 project	
requirements	change.	

6.2.3 Portfolio Management process

6.2.3.1 Purpose

The	 purpose	 of	 the	 Portfolio	 Management	 process	 is	 to	 initiate	 and	 sustain	 necessary,	 sufficient	 and	 suitable	
projects	in	order	to	meet	the	strategic	objectives	of	the	organization.	

This	 process	 commits	 the	 investment	 of	 adequate	 organization	 funding	 and	 resources,	 and	 sanctions	 the	
authorities	needed	 to	 establish	 selected	projects.	 It	 performs	continued	assessment	of	projects	 to	 confirm	 they	
justify,	or	can	be	redirected	to	justify,	continued	investment.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

32	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

For	software	systems,	portfolio	management	also	commonly	refers	to	the	management	of	a	product	line	(portfolio	
of	 assets,	 products,	 and	 enabling	 systems,	 or	 service	 catalogue)	 to	meet	 organizational	 or	 customer	 needs	 and	
objectives	and	support	changes	in	technology.	Management	of	assets	is	achieved	through	management	of	projects.	

6.2.3.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	Portfolio	Management	process:

a)	 Business	venture	opportunities,	investments	or	necessities	are	qualified	and	prioritized.	

b)	 Projects	are	identified.	

c)	 Resources	and	budgets	for	each	project	are	allocated.	

d)	 Project	management	responsibilities,	accountability,	and	authorities	are	defined.	

e)	 Projects	meeting	agreement	and	stakeholder	requirements	are	sustained.	

f)	 Projects	not	meeting	agreement	or	satisfying	stakeholder	requirements	are	redirected	or	terminated.	

g)	 Projects	that	have	completed	agreements	and	satisfied	stakeholder	requirements	are	closed.

6.2.3.3 Activities and tasks

The	organization	 shall	 implement	 the	 following	 activities	 and	 tasks	 in	 accordance	with	 applicable	 organization	
policies	and	procedures	with	respect	to	the	Portfolio	Management	process.	

a) Define and authorize projects. This	activity	consists	of	the	following	tasks:	

1) Identify	potential	new	or	modified	capabilities	or	missions.	

NOTE	 The	organization	business	strategy,	concept	of	operations,	or	gap	analysis	or	opportunity	analysis	 is	 reviewed	
for	current	gaps,	problems,	or	opportunities.	A	new	capability	or	enterprise	need	is	usually	determined	in	the	Business	or	
Mission	Analysis	process,	 further	defined	 in	 the	Stakeholder	Needs	and	Requirements	Definition	process,	and	managed	
through	this	process.	

2) Prioritize,	select	and	establish	new	business	opportunities,	ventures	or	undertakings.	

NOTE	 These	 are	 usually	 consistent	 with	 the	 business	 strategy	 and	 action	 plans	 of	 the	 organization.	 The	 potential	
projects	are	prioritized,	and	thresholds	established,	to	determine	which	projects	will	be	executed.	The	characteristics	of	
identified	 projects	 are	 often	 determined,	 including	 stakeholder	 value,	 risks	 and	 barriers	 to	 success,	 dependencies	 and	
inter‐relationships,	 constraints,	 resource	 needs	 and	 mutual	 contention	 for	 resources.	 Each	 potential	 project	 is	 then	
assessed	with	respect	to	likelihood	of	success	and	cost‐benefit.	The	Decision	Management	and	System	Analysis	processes	
provide	details	on	performing	an	analysis	of	alternatives.	

3) Define	projects,	accountabilities	and	authorities.	

4) Identify	the	expected	goals,	objectives,	and	outcomes	of	each	project.	

5) Identify	and	allocate	resources	for	the	achievement	of	project	goals	and	objectives.	

6) Identify	multi‐project	interfaces	and	dependencies	to	be	managed	or	supported	by	each	project.	

NOTE	1	 	 This	 includes	 the	 use	 or	 reuse	 of	 enabling	 systems	 used	 by	more	 than	 one	 project	 and	 the	 use	 or	 reuse	 of	
common	system	elements,	including	software	elements,	by	more	than	one	project.	

NOTE	2		 	 Understanding	 each	 project	 in	 the	 context	 of	 the	 enterprise	 architecture	 helps	 to	 ensure	 interfaces	 and	
constraints	are	identified.	

7) Specify	 the	 project	 reporting	 requirements	 and	 review	 milestones	 that	 govern	 the	 execution	 of	 each	
project.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

33	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

8) Authorize	each	project	to	commence	execution	of	project	plans.	

NOTE		 Refer	to	the	Project	Planning	process	 for	additional	 information	on	developing	project	plans.	Project	plans	are	
most	useful	when	developed	and	approved	early	in	the	project	life	cycle.	

b) Evaluate the portfolio of projects. This	activity	consists	of	the	following	tasks:	

1) Evaluate	projects	to	confirm	ongoing	viability.	

NOTE	 Viability	includes	the	following	criteria:	

i) The	project	is	making	progress	towards	achieving	established	goals	and	objectives.	

ii) The	project	is	complying	with	project	directives.	

iii) The	project	is	being	conducted	according	to	approved	project	life	cycle	policies,	processes,	and	procedures.	

iv) The	project	 remains	viable,	 as	 indicated	by,	 for	example,	 continuing	need	 for	 the	 service,	practicable	product	
implementation,	and	acceptable	investment	benefits.	

2) Act	 to	 continue	 or	 redirect	 projects	 that	 are	 satisfactorily	 progressing	 or	 can	 be	 expected	 to	 progress	
satisfactorily	by	appropriate	redirection.	

c) Terminate projects. This	activity	consists	of	the	following	tasks:	

1) Where	 agreements	 permit,	 act	 to	 cancel	 or	 suspend	 projects	 whose	 disadvantages	 or	 risks	 to	 the	
organization	outweigh	the	benefits	of	continued	investments.	

NOTE	 Capture	 of	 lessons	 learned	 from	 canceled	 or	 failing	 projects	 can	 be	 especially	 useful	 for	 organizational	
improvement	or	use	on	other	projects.	

2) After	completion	of	the	agreement	for	products	and	services,	act	to	close	the	projects.	

NOTE	 Closure	is	accomplished	in	accordance	with	organizational	policies	and	procedures,	and	the	agreement.	

6.2.4 Human Resource Management process

6.2.4.1 Purpose

The	purpose	of	the	Human	Resource	Management	process	is	to	provide	the	organization	with	necessary	human	
resources	and	to	maintain	their	competencies,	consistent	with	business	needs.	

This	process	provides	a	supply	of	skilled	and	experienced	personnel	qualified	to	perform	life	cycle	processes	to	
achieve	organization,	project,	and	stakeholder	objectives.	

6.2.4.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	Human	Resource	Management	process:	

a)		 Skills	required	by	projects	are	identified.	

b)	 	Necessary	human	resources	are	provided	to	projects.	

c)	 	Skills	of	personnel	are	developed,	maintained	or	enhanced.	

d)		 Conflicts	in	multi‐project	resource	demands	are	resolved.

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

34	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

6.2.4.3 Activities and tasks

The	organization	 shall	 implement	 the	 following	 activities	 and	 tasks	 in	 accordance	with	 applicable	 organization	
policies	and	procedures	with	respect	to	the	Human	Resource	Management	process:	

a) Identify skills. This	activity	consists	of	the	following	tasks:	

1) Identify	skill	needs	based	on	current	and	expected	projects.	

2) Identify	and	record	skills	of	personnel.	

b) Develop skills. This	activity	consists	of	the	following	tasks:	

1) Establish	skills	development	strategy.	

NOTE	 This	 plan	 includes	 types	 and	 levels	 of	 training,	 categories	 of	 personnel,	 schedules,	 personnel	 resource	
requirements,	and	training	needs.	

2) Obtain	or	develop	training,	education	or	mentoring	resources.	

NOTE	 These	resources	 include	training	materials	that	are	developed	by	the	organization	or	external	parties,	 training	
courses	that	are	available	from	external	suppliers,	computer	based	instruction.	

3) Provide	planned	skill	development.	

4) Maintain	records	of	skill	development.	

c) Acquire and provide skills. This	activity	consists	of	the	following	tasks:	

NOTE	 This	includes	the	recruitment	and	retention	of	personnel	with	experience	levels	and	skills	necessary	to	properly	
staff	projects;	staff	assessment	and	review,	e.g.,	 their	proficiency,	motivation,	ability	 to	work	 in	a	 team	environment,	as	
well	as	the	need	to	be	retrained,	reassigned	or	reallocated.	

1) Obtain	qualified	personnel	when	skill	deficits	are	identified.	

NOTE	 This	includes	using	outsourced	resources.	

2) Maintain	and	manage	the	pool	of	skilled	personnel	necessary	to	staff	ongoing	projects.	

3) Make	project	assignments	based	on	project	and	staff‐development	needs.	

4) Motivate	personnel,	e.g.,	through	career	development	and	reward	mechanisms.	

5) Control	multi‐project	management	interfaces	to	resolve	personnel	conflicts.	

NOTE	 This	 includes	 conflicts	 of	 capacity	 in	 organizational	 infrastructure	 and	 supporting	 services	 and	 personnel	
resources	among	ongoing	projects;	or	from	project	personnel	being	over‐committed.	

6.2.5 Quality Management process

6.2.5.1 Purpose

The	purpose	of	the	Quality	Management	process	is	to	assure	that	products,	services	and	implementations	of	the	
quality	management	process	meet	organizational	and	project	quality	objectives	and	achieve	customer	satisfaction.	

6.2.5.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	Quality	Management	process:

a) Organizational	 quality	 management	 policies,	 objectives,	 and	 procedures	 are	 defined	 and	
implemented.	
	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

35	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

b) Quality	evaluation	criteria	and	methods	are	established.
	
c) Resources	 and	 information	 are	 provided	 to	 projects	 to	 support	 the	 operation	 and	 monitoring	 of	

project	quality	assurance	activities.	
	
d) Quality	assurance	evaluation	results	are	gathered	and	analyzed.	
	
e) Quality	management	policies	and	procedures	are	 improved	based	upon	project	 and	organizational	

results.

6.2.5.3 Activities and tasks

The	organization	 shall	 implement	 the	 following	 activities	 and	 tasks	 in	 accordance	with	 applicable	 organization	
policies	and	procedures	with	respect	to	the	Quality	Management	process.	

NOTE	 Refer	to	ISO	9001:2015	for	information	and	requirements	to	establish	a	Quality	Management	System.		

a) Plan quality management. This	activity	consists	of	the	following	tasks:	

1) Establish	quality	management	policies,	objectives,	and	procedures.	

NOTE	1	 	 ISO	9004:2009	contains	guidelines	for	performance	improvements.	

NOTE	2	 	 The	policies,	objectives,	and	procedures	are	based	on	the	business	strategy	for	customer	satisfaction	and	risk	
management	considerations.	

2) Define	responsibilities	and	authority	for	implementation	of	quality	management.	

NOTE	 Resources	for	quality	management	are	often	assigned	from	distinct	organizations	for	independence	from	project	
management.	

3) Define	quality	evaluation	criteria	and	methods.	

4) Provide	resources	and	information	for	quality	management.	

b) Evaluate quality management. This	activity	consists	of	the	following	tasks:	

1) Gather	and	analyze	quality	assurance	evaluation	results,	in	accordance	with	the	defined	criteria.	

2) Assess	customer	satisfaction.	

NOTE	 ISO	 10004:2012	 contains	 guidelines	 for	 monitoring	 and	 measuring	 customer	 satisfaction.	 The	 quality	 of	 the	
software	system	is	also	demonstrated	by	user	satisfaction.	

3) Conduct	 periodic	 reviews	 of	 project	 Quality	 Assurance	 activities	 for	 compliance	 with	 the	 Quality	
Management	policies,	objectives,	and	procedures.	

NOTE	 Quality	 evaluation	 criteria	 and	 methods	 are	 established.	 Quality	 assessments	 address	 compliance	 with	 the	
project	procedures	and	product	conformance	with	quality	characteristics.	

4) Monitor	the	status	of	quality	improvements	on	processes,	products,	and	services.	

c) Perform corrective and preventive action.	This	activity	consists	of	the	following	tasks:	

1) Plan	corrective	actions	when	quality	management	objectives	are	not	achieved.	

2) Plan	 preventive	 actions	when	 there	 is	 a	 sufficient	 risk	 that	 quality	management	 objectives	will	 not	 be	
achieved.	

3) Monitor	corrective	and	preventive	actions	to	completion	and	inform	relevant	stakeholders.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

36	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

NOTE	1	 	 Implementation	of	corrective	and	preventive	action	is	performed	in	other	relevant	processes,	such	as	Life	Cycle	
Model	Management	or	Project	Assessment	and	Control.	

NOTE	2	 	 ISO	9001:2015,	0.3.3	and	Annex	A.4	describe	preventive	action	to	eliminate	potential	nonconformities	as	part	
of	risk‐based	thinking.	

6.2.6 Knowledge Management process

6.2.6.1 Purpose

The	 purpose	 of	 the	 Knowledge	 Management	 process	 is	 to	 create	 the	 capability	 and	 assets	 that	 enable	 the	
organization	to	exploit	opportunities	to	re‐apply	existing	knowledge.	

This	encompasses	knowledge,	skills,	and	knowledge	assets,	including	system	elements.	

NOTE	 The	re‐application	of	existing	knowledge	is	known	as	knowledge	reuse	and	includes	the	reuse	of	knowledge	about	
or	from	software	elements.	

6.2.6.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	Knowledge	Management	process:

a) A	taxonomy	for	the	application	of	knowledge	assets	is	identified.	
	

b) The	organizational	knowledge,	skills,	and	knowledge	assets	are	developed	or	acquired.	
	

c) The	organizational	knowledge,	skills,	and	knowledge	assets	are	available.	
	

d) Knowledge	management	usage	data	is	gathered	and	analyzed.

6.2.6.3 Activities and tasks

The	organization	 shall	 implement	 the	 following	 activities	 and	 tasks	 in	 accordance	with	 applicable	 organization	
policies	and	procedures	with	respect	to	the	Knowledge	Management	process:	

a) Plan knowledge management. This	activity	consists	of	the	following	tasks:	

1) Define	the	knowledge	management	strategy.	

NOTE	1	 	 This	knowledge	management	strategy	generally	includes:	

i) Identifying	domains	and	their	potential	for	the	reapplication	of	knowledge.	

ii) Plans	for	obtaining	and	maintaining	knowledge,	skills,	and	knowledge	assets	for	their	useful	life.	

iii) Characterization	 of	 the	 types	 of	 knowledge,	 skills,	 and	 knowledge	 assets	 to	 be	 collected	 and	
maintained.	

iv) Criteria	for	accepting,	qualifying,	and	retiring	knowledge,	skills,	and	knowledge	assets.	

v) Procedures	for	controlling	changes	to	the	knowledge,	skills,	and	knowledge	assets.	

vi) Plans,	mechanisms,	 and	procedures	 for	 protection,	 control,	 and	 access	 to	 classified	 or	 sensitive	
data	and	information.	

vii) Mechanisms	for	storage	and	retrieval.	

NOTE	2	 	 Knowledge	management	 includes	 knowledge	 shared	 both	 internally	within	 the	 organization	 and	 knowledge	
that	 is	 shared	 outside	 the	 organization	 with	 designated	 stakeholders,	 acquirers,	 and	 business	 partners,	 subject	 to	
intellectual	property	and	non‐disclosure	agreements.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

37	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

2) Identify	the	knowledge,	skills,	and	knowledge	assets	to	be	managed.	

3) Identify	projects	that	can	benefit	from	the	application	of	the	knowledge,	skills,	and	knowledge	assets.	

b) Share knowledge and skills throughout the organization.	This	activity	consists	of	the	following	tasks:	

1) Establish	 and	 maintain	 a	 classification	 for	 capturing	 and	 sharing	 knowledge	 and	 skills	 across	 the	
organization.	

NOTE	 This	classification	can	include	expert,	common,	and	domain	knowledge	and	skills,	as	well	as	lessons	learned	from	
other	tasks.	

2) Capture	or	acquire	knowledge	and	skills.	

3) Share	knowledge	and	skills	across	the	organization.	

c) Share knowledge assets throughout the organization.	This	activity	consists	of	the	following	tasks:	

1) Establish	a	taxonomy	to	organize	knowledge	assets.	

NOTE	1	 	 The	taxonomy	includes	the	following:	

i) Definition	of	the	boundaries	of	domains	and	their	relationships	to	others.	

ii) Domain	 models	 capturing	 essential	 common	 and	 different	 features,	 capabilities,	 concepts,	 and	
functions.	

iii) An	 architecture	 for	 a	 family	 of	 systems	within	 the	 domain,	 including	 their	 common	 and	 different	
features.	

NOTE	2	 	 See	 ISO/IEC	 26550	 for	 more	 information	 on	 product	 line	 models.	 Refer	 to	 ISO/IEC/IEEE	 42010:2011	 for	
requirements	on	architecture	frameworks,	viewpoints,	model	kinds,	views	and	models.	

2) Develop	or	acquire	knowledge	assets.	

NOTE	 	 Knowledge	 assets	 include	 system	 elements	 or	 their	 representations	 (e.g.,	 reusable	 code	 libraries,	 reference	
architectures)	architecture	or	design	elements	(e.g.,	architecture	or	design	patterns),	processes,	criteria,	or	other	technical	
information	(e.g.,	training	materials)	related	to	domain	knowledge,	and	lessons	learned.	

3) Share	knowledge	assets	across	the	organization.	

NOTE	 Automated	search	capabilities	improve	access	to	knowledge	assets.	

d) Manage knowledge, skills, and knowledge assets.	This	activity	consists	of	the	following	tasks:	

1) Maintain	knowledge,	skills,	and	knowledge	assets.	

2) Monitor	and	record	the	reuse	of	knowledge,	skills,	and	knowledge	assets.	

3) Periodically	reassess	the	currency	of	technology	and	market	needs	for	the	knowledge	assets.	

NOTE	 Assess	the	business	benefits	which	the	organization	gained	through	the	use	of	knowledge	management	practices.	

6.3 Technical Management processes

The	Technical	Management	processes	are	used	to	establish	and	evolve	plans,	to	execute	the	plans,	to	assess	actual	
achievement	and	progress	against	the	plans,	and	to	control	execution	through	to	fulfillment.	Individual	Technical	
Management	processes	may	be	invoked	at	any	time	in	the	life	cycle	and	at	any	level	in	a	hierarchy	of	projects,	as	
required	by	plans	or	unforeseen	events.	The	Technical	Management	processes	are	applied	with	a	level	of	rigor	and	
formality	that	depends	on	the	risk	and	complexity	of	the	project.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

38	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

The	scope	of	a	technical	management	process	is	the	technical	management	of	a	project	or	its	products,	to	include	
the	software	product	or	system‐of‐interest.	

NOTE	 This	set	of	Technical	Management	processes	is	performed	so	that	software	system‐specific	technical	processes	can	
be	 conducted	 effectively.	 They	 do	 not	 comprise	 a	 management	 system	 or	 a	 comprehensive	 set	 of	 processes	 for	 project	
management,	as	that	is	not	the	scope	of	this	document.	

The	Technical	Management	processes	consist	of	the	following:	

a) Project	Planning	process;	

b) Project	Assessment	and	Control	process;	

c) Decision	Management	process;	

d) Risk	Management	process;	

e) Configuration	Management	process;	

f) Information	Management	process;	

g) Measurement	process;	and	

h) Quality	Assurance	process.	

Project	 Planning	 and	 Project	 Assessment	 and	 Control	 processes	 are	 key	 to	 all	 management	 practices.	 These	
processes	establish	the	general	approach	for	managing	a	project	or	a	process.	The	other	processes	in	this	group	
provide	a	specific	 focused	set	of	 tasks	for	achieving	a	specialized	management	objective.	They	are	all	evident	 in	
the	management	of	any	undertaking,	ranging	from	a	complete	organization	down	to	a	single	life	cycle	process	and	
its	 tasks.	 In	 this	 document,	 the	 project	 has	 been	 chosen	 as	 the	 context	 for	 describing	 processes.	 The	 same	
processes	can	also	be	applied	in	the	performance	of	services.	

6.3.1 Project Planning process

6.3.1.1 Purpose

The	purpose	of	the	Project	Planning	process	is	to	produce	and	coordinate	effective	and	workable	plans.	

This	process	determines	the	scope	of	the	project	management	and	technical	activities,	identifies	process	outputs,	
tasks	 and	 deliverables,	 establishes	 schedules	 for	 task	 conduct,	 including	 achievement	 criteria,	 and	 required	
resources	 to	 accomplish	 tasks.	 This	 is	 an	 ongoing	 process	 that	 continues	 throughout	 a	 project,	 with	 regular	
revisions	to	plans.	

NOTE	 The	 strategies	defined	 in	each	of	 the	other	processes	provide	 inputs	and	are	 integrated	 in	 the	Project	Planning	
process.	The	Project	Assessment	and	Control	process	is	used	to	assess	whether	the	plans	are	integrated,	aligned,	and	feasible.	

6.3.1.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	Project	Planning	process:

a) Objectives	and	plans	are	defined.	
	

b) Roles,	responsibilities,	accountabilities,	and	authorities	are	defined.	
	
	

c) Resources	and	services	necessary	to	achieve	the	objectives	are	formally	requested	and	committed.	
	

d) Plans	for	the	execution	of	the	project	are	activated.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

39	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

6.3.1.3 Activities and tasks

The	project	shall	implement	the	following	activities	and	tasks	in	accordance	with	applicable	organization	policies	
and	procedures	with	respect	to	the	Project	Planning	process.	

a) Define the project.	This	activity	consists	of	the	following	tasks:	

1) Identify	the	project	objectives	and	constraints.	

NOTE	1	 	 Objectives	and	constraints	 include	performance	and	other	quality	aspects,	 cost,	 time	and	customer	and	user	
satisfaction.	Each	objective	is	 identified	with	a	level	of	detail	that	permits	selection,	tailoring	and	implementation	of	the	
appropriate	processes	and	activities.	

NOTE	2	 	 ISO/IEC	 15026 Systems and software assurance, ISO/IEC	 27001	 Information Security Management System	 and	
ISO/IEC	27036,	Information Security for Supplier Relationships,	provide	additional	guidance	on	objectives	and	constraints	
related	to	assurance	and	security.	

2) Define	the	project	scope	as	established	in	the	agreement.	

NOTE	 This	 includes	 the	 relevant	 activities	 required	 to	 satisfy	 business	 decision	 criteria	 and	 complete	 the	 project	
successfully.	A	project	can	have	responsibility	for	one	or	more	stages	in	the	complete	software	system	life	cycle.	Project	
Planning	includes	defining	appropriate	actions	for	maintaining	project	plans,	performing	assessments	and	controlling	the	
project.	

3) Define	and	maintain	a	life	cycle	model	that	is	comprised	of	stages	using	the	defined	life	cycle	models	of	
the	organization.	

NOTE		 ISO/IEC	 TS	 24748‐1	 provides	 detailed	 information	 regarding	 life	 cycle	 stages	 and	 the	 definition	 of	 an	
appropriate	life	cycle	model.	It	defines	a	general	set	of	exemplar	system	life	cycle	stages,	including	Concept,	Development,	
Production,	 Utilization,	 Support	 and	 Retirement.	 It	 also	 identifies	 a	 generic	 exemplar	 set	 of	 software	 life	 cycle	 stages,	
including	 Needs	 determination,	 Concept	 exploration	 and	 definition,	 Demonstration	 and	 evaluation,	
Engineering/development,	 Production/manufacturing,	 Deployment/sales,	 Operations,	 Maintenance	 and	 support,	 and	
Retirement.	

4) Establish	 a	 work	 breakdown	 structure	 (WBS)	 based	 on	 the	 deliverable	 products	 or	 the	 evolving	
architecture	of	the	software	system.	

NOTE	1	 	 Each	element	of	the	software	system	architecture,	and	appropriate	processes	and	activities,	are	described	with	
a	 level	of	detail	 that	 is	consistent	with	 identified	risks.	Related	 tasks	 in	 the	work	breakdown	structure	are	grouped	 for	
performance.	 Project	 tasks	 identify	 work	 items	 being	 developed	 or	 produced.	 The	 Practice	 Management	 Standard	 for	
Work	Breakdown	Structures	of	the	Project	Management	Institute	(PMI)	contains	additional	details	on	WBSs.	

NOTE	2	 	 For	projects	with	agile	or	 iterative	methods,	a	WBS	element	 can	correspond	 to	 the	primary	 features,	 from	a	
user	perspective,	to	be	produced	during	iterations.		

5) Define	and	maintain	the	processes	that	will	be	applied	on	the	project.	

NOTE	1	 	 These	 processes	 are	 based	 on	 the	 defined	 processes	 of	 the	 organization	 (see	 Life	 Cycle	Model	Management	
process).	Annex	A	contains	information	on	tailoring	that	can	be	used	to	address	project‐specific	needs.	The	definition	of	
the	 processes	 includes	 the	 entry	 and	 exit	 criteria,	 inputs,	 process	 sequence	 constraints	 (predecessor/successor	
relationships),	process	concurrency	requirements	(what	processes	and	 tasks	are	 to	be	worked	concurrently	with	other	
process	 area	 tasks	 or	 activities),	 Measures	 of	 Effectiveness/Measures	 of	 Performance	 attributes,	 and	 scope	 and	 cost	
parameters	(for	critically	important	cost	estimation).	

NOTE	2	 	 Identifying	 interfaces	 with	 other	 projects	 or	 organizational	 units	 is	 addressed	 through	 the	 Portfolio	
Management	process.	

b) Plan project and technical management. This	activity	consists	of	the	following	tasks:	

1) Define	 and	 maintain	 a	 project	 schedule	 based	 on	 management	 and	 technical	 objectives	 and	 work	
estimates.	

NOTE	 This	 includes	 definition	 of	 the	 duration,	 relationship,	 dependencies	 and	 sequence	 of	 activities,	 achievement	
milestones,	resources	employed	and	the	reviews	and	schedule	reserves	for	risk	management	necessary	to	achieve	timely	
completion	of	the	project.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

40	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

2) Define	achievement	criteria	for	the	life	cycle	stage	decision	gates,	delivery	dates	and	major	dependencies	
on	external	inputs	or	outputs.	

NOTE	 The	time	intervals	between	internal	reviews	are	defined	in	accordance	with	organizational	policy	on	issues	such	
as	business	and	system	criticality,	schedule	and	technical	risks.	

3) Define	the	costs	and	plan	a	budget.	

NOTE	 Budgeted	 costs	 are	 based	 on	 the	 schedule,	 software	 size	 and	 complexity	 estimates,	 labor	 estimates,	
infrastructure	 costs,	 procurement	 items,	 acquired	 service	 and	 enabling	 system	 estimates,	 and	 budget	 reserves	 for	 risk	
management.	

4) Define	roles,	responsibilities,	accountabilities,	and	authorities.	

NOTE	 This	includes	defining	the	project	organization,	staff	acquisitions,	and	the	development	of	staff	skills.	Authorities	
include,	as	appropriate,	the	legally	responsible	roles	and	individuals,	e.g.,	design	authorization,	safety	authorization,	and	
those	responsible	for	applicable	certifications	or	accreditations.	

5) Define	the	infrastructure	and	services	required.	

NOTE	 This	 includes	 defining	 the	 capacity	 needed,	 its	 availability	 and	 its	 allocation	 to	 project	 tasks.	 Infrastructure	
includes	 facilities,	 services,	 tools,	 communications,	 and	 information	 technology	 assets.	 The	 requirements	 for	 enabling	
systems	and	services	for	each	life	cycle	stage	are	also	specified.	

6) Plan	the	acquisition	of	materials	and	enabling	systems	and	services	supplied	from	outside	the	project.	

NOTE	1	 	 This	 includes,	as	necessary,	plans	 for	 solicitation,	 supplier	 selection,	acceptance,	 contract	administration	and	
contract	closure.	The	agreement	processes	are	used	for	the	planned	acquisitions.	

NOTE	2	 	 ISO/IEC	 27036,	 Information security for supplier relationships,	 provides	 guidance	 for	 acquisition	 of	
infrastructure	and	services.	

7) Generate	and	communicate	a	plan	for	project	and	technical	management	and	execution,	including	reviews.	

NOTE	1	 	 Technical	 planning	 for	 the	 software	 system	 is	 often	 captured	 in	 a	 Systems	 Engineering	 Management	 Plan	
(SEMP)	 or	 a	 Software	 Engineering	 Management	 Plan	 or	 a	 Software	 Development	 Plan	 (SDP).	 ISO/IEC/IEEE	 24748‐5	
provides	more	detail	on	software	engineering	technical	management	planning	and	includes	an	annotated	outline	for	an	
SDP.	Planning	for	the	project	is	often	captured	in	a	Project	Management	Plan.	ISO/IEC/IEEE	16326	provides	more	detail	
on	project	planning.	

NOTE	2	 	 The	 strategy	 activities	 and	 tasks	 from	 each	 of	 the	 other	 processes	 provide	 inputs	 and	 are	 integrated	 in	 the	
Project	Planning	process.	The	Project	Assessment	and	Control	process	is	used	to	help	ensure	that	the	plans	are	integrated,	
aligned,	and	feasible.	

c) Activate the project. This	activity	consists	of	the	following	tasks:	

1) Obtain	approval	to	start	the	project.	

NOTE	 Approval	to	start	(authorization	to	proceed)	is	provided	through	the	Portfolio	Management	process.	

2) Submit	requests	and	obtain	commitments	for	necessary	resources	to	perform	the	project.	

NOTE	 This	includes	access	to	enabling	systems	or	services.	

3) Implement	project	plans.	

6.3.2 Project assessment and control process

6.3.2.1 Purpose

The	 purpose	 of	 the	 Project	 Assessment	 and	 Control	 process	 is	 to	 assess	 if	 the	 plans	 are	 aligned	 and	 feasible;	
determine	the	status	of	the	project,	technical	and	process	performance;	and	direct	execution	to	help	ensure	that	
the	performance	is	according	to	plans	and	schedules,	within	projected	budgets,	to	satisfy	technical	objectives.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

41	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

This	 process	 evaluates,	 periodically	 and	at	major	 events,	 the	progress	 and	achievements	 against	 requirements,	
plans	and	overall	business	objectives.	Information	is	provided	for	management	action	when	significant	variances	
are	 detected.	 This	 process	 also	 includes	 redirecting	 the	 project	 activities	 and	 tasks,	 as	 appropriate,	 to	 correct	
identified	 deviations	 and	 variations	 from	 other	 technical	management	 or	 technical	 processes.	 Redirection	may	
include	re‐planning	as	appropriate.	

6.3.2.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	Project	Assessment	and	Control	process:	

a) Performance	measures	or	assessment	results	are	available.	
	

b) Adequacy	of	roles,	responsibilities,	accountabilities,	and	authorities	is	assessed.	
	

c) Adequacy	of	resources	is	assessed.	
	

d) Technical	progress	reviews	are	performed.	
	

e) Deviations	in	project	performance	from	plans	are	investigated	and	analyzed.	
	

f) Affected	stakeholders	are	informed	of	project	status.	
	

g) Corrective	action	is	defined	and	directed,	when	project	achievement	is	not	meeting	targets.	
	

h) Project	replanning	is	initiated,	as	necessary.	
	

i) Project	action	to	progress	(or	not)	from	one	scheduled	milestone	or	event	to	the	next	is	authorized.	
	

j) Project	objectives	are	achieved.

6.3.2.3 Activities and tasks

The	project	shall	implement	the	following	activities	and	tasks	in	accordance	with	applicable	organization	policies	
and	procedures	with	respect	to	the	Project	Assessment	and	Control	process.	

a) Plan for project assessment and control.	This	activity	consists	of	the	following	task:	

1) Define	the	project	assessment	and	control	strategy.	

NOTE	 The	 strategy	 identifies	 the	 expected	 Project	 Assessment	 and	 Control	 activities,	 including	 planned	 assessment	
methods	and	timeframes,	and	necessary	management	and	technical	reviews.	

b) Assess the project. This	activity	consists	of	the	following	tasks:	

1) Assess	alignment	of	project	objectives	and	plans	with	the	project	context.	

2) Assess	management	and	technical	plans	against	objectives	to	determine	adequacy	and	feasibility.	

3) Assess	 project	 and	 technical	 status	 against	 appropriate	 plans	 to	 determine	 actual	 and	 projected	 cost,	
schedule,	and	performance	variances.	

4) Assess	the	adequacy	of	roles,	responsibilities,	accountabilities,	and	authorities.	

NOTE	 This	 includes	assessment	of	 the	adequacy	of	personnel	competencies	 to	perform	project	roles	and	accomplish	
project	tasks.	Objective	measures	are	used	wherever	possible,	e.g.,	efficiency	of	resource	use,	project	achievement.	

5) Assess	the	adequacy	and	availability	of	resources.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

42	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

NOTE	 Resources	 include	 infrastructure,	 personnel,	 funding,	 time,	 or	 other	 pertinent	 items.	 This	 task	 includes	
evaluating	 the	 reuse	 of	 existing	 processes	 and	 infrastructure	 resources,	 and	 confirming	 that	 intra‐organizational	
commitments	are	satisfied.	

6) Assess	progress	using	measured	achievement	and	milestone	completion.	

NOTE	 This	includes	collecting	and	evaluating	data	for	labor,	material,	service	costs,	and	technical	performance,	as	well	
as	other	technical	data	about	objectives,	such	as	affordability.	These	are	compared	against	measures	of	achievement.	This	
includes	 conducting	 effectiveness	 assessments	 to	 determine	 the	 adequacy	 of	 the	 evolving	 software	 system	 against	
requirements.	It	also	includes	the	readiness	of	enabling	systems	to	deliver	their	services	when	needed.	

7) Conduct	required	management	and	technical	reviews,	audits	and	inspections.	

NOTE	 These	are	formal	or	informal,	and	are	conducted	to	determine	readiness	to	proceed	to	the	next	stage	of	the	life	
cycle	or	project	milestone,	to	help	ensure	that	project	and	technical	objectives	are	being	met,	or	to	obtain	feedback	from	
stakeholders.	

8) Monitor	critical	processes	and	new	technologies.	

NOTE	 This	includes	identifying	and	evaluating	technology	maturity	and	feasibility	of	technology	insertion.	Technology	
maturity	 is	 the	 readiness	 of	 a	 technology	 for	 operational	 use,	 and	 is	 often	measured	 on	 a	 scale	 from	 low	 (exists	 as	 a	
concept	only)	to	high	(proven	in	operational	use).	

9) Analyze	measurement	results	and	make	recommendations.	

NOTE	 Measurement	results	are	analyzed	to	identify	deviations,	variations	or	undesirable	trends	from	planned	values	
that	 include	potential	 concerns,	 and	 to	make	 appropriate	 recommendations	 for	 corrections	 or	preventive	 actions.	 This	
includes,	where	appropriate,	statistical	analysis	of	measures	that	indicates	trends,	e.g.,	fault	density	to	indicate	quality	of	
outputs,	distribution	of	measured	parameters	that	indicate	process	repeatability.	

10) Record	and	provide	status	and	findings	from	assessment	tasks.	

NOTE	 These	are	generally	designated	in	the	agreement,	policies	and	procedures.	

11) Monitor	process	execution	within	the	project.	

NOTE	 This	 includes	 the	 analysis	 of	 process	measures	 and	 review	 of	 trends	 with	 respect	 to	 project	 objectives.	 Any	
improvement	actions	identified	can	be	handled	through	the	Quality	Assurance	process,	the	Quality	Management	process,	
or	the	Life	Cycle	Model	Management	process.	

c) Control the project. This	activity	consists	of	the	following	tasks:	

1) Initiate	necessary	actions	needed	to	address	identified	issues.	

NOTE	1	 	 This	 task	 occurs	 when	 project	 or	 technical	 achievement	 is	 not	 meeting	 planned	 targets.	 This	 includes	
preventive,	corrective,	and	problem	resolution	actions.	Actions	generally	require	replanning	or	reassignment	of	personnel,	
tools	 and	 infrastructure	 assets	 when	 inadequacy	 or	 unavailability	 has	 been	 detected,	 or	 when	 project	 or	 technical	
achievement	 exceeds	 targets	 or	 plan.	 They	 often	 impact	 the	 cost,	 schedule,	 or	 technical	 scope	 or	 definition.	 Actions	
sometimes	require	changes	to	the	implementation	and	execution	of	the	life	cycle	processes.	

NOTE	2	 	 Actions	are	recorded	and	reviewed	to	confirm	their	adequacy	and	timeliness.	

2) Initiate	necessary	project	replanning.	

NOTE	1	 	 Project	 replanning	 is	 initiated	 when	 project	 objectives	 or	 constraints	 have	 changed,	 or	 when	 planning	
assumptions	are	shown	to	be	invalid.	

NOTE	2	 	 Any	change	that	requires	a	change	to	the	agreement	between	acquirer	and	supplier	invokes	the	Acquisition	and	
Supply	processes.	

3) Initiate	change	actions	when	there	is	a	contractual	change	to	cost,	time	or	quality	due	to	the	impact	of	an	
acquirer	or	supplier	request.	

NOTE	 This	 includes	 consideration	 of	modified	 terms	 and	 conditions	 for	 supply	 or	 initiating	 new	 supplier	 selection,	
which	invokes	the	Acquisition	and	Supply	processes.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

43	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

4) Authorize	the	project	to	proceed	toward	the	next	milestone	or	event,	if	justified.	

NOTE	 The	Project	Assessment	and	Control	process	is	used	to	reach	agreement	on	milestone	completion.	

6.3.3 Decision Management process

6.3.3.1 Purpose

The	purpose	of	the	Decision	Management	process	is	to	provide	a	structured,	analytical	framework	for	objectively	
identifying,	characterizing	and	evaluating	a	set	of	alternatives	for	a	decision	at	any	point	in	the	life	cycle	and	select	
the	most	beneficial	course	of	action.	

This	 process	 is	 used	 to	 resolve	 technical	 or	 project	 issues	 and	 respond	 to	 requests	 for	 decisions	 encountered	
during	the	software	life	cycle,	in	order	to	identify	the	alternative(s)	that	provides	the	preferred	outcomes	for	the	
situation.	 The	 methods	 most	 frequently	 used	 for	 Decision	 Management	 are	 the	 trade	 study	 and	 engineering	
analysis.	 Each	 of	 the	 alternatives	 is	 assessed	 against	 the	 decision	 criteria	 (e.g.,	 cost	 impact,	 schedule	 impact,	
programmatic	 constraints,	 regulatory	 implications,	 technical	 performance	 characteristics,	 critical	 quality	
characteristics,	and	risk).	Results	of	 these	comparisons	are	 ranked,	via	a	suitable	 selection	model,	 and	are	 then	
used	 to	 decide	 on	 an	 optimal	 solution.	 Key	 study	 data	 (e.g.,	 assumptions	 and	 decision	 rationale)	 are	 typically	
maintained	to	inform	decision‐makers	and	support	future	decision‐making.	

NOTE	 When	it	is	necessary	to	perform	a	detailed	assessment	of	a	parameter	for	one	of	the	criteria,	the	System	Analysis	
process	can	be	employed	to	perform	the	assessment.	

6.3.3.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	Decision	Management	process:

a) Decisions	requiring	alternative	analysis	are	identified.	
	

b) Alternative	courses	of	action	are	identified	and	evaluated.	
	

c) A	preferred	course	of	action	is	selected.	
	

d) The	resolution,	decision	rationale	and	assumptions	are	identified.

6.3.3.3 Activities and tasks

The	project	shall	implement	the	following	activities	and	tasks	in	accordance	with	applicable	organization	policies	
and	procedures	with	respect	to	the	Decision	Management	process.	

a) Prepare for decisions.	This	activity	consists	of	the	following	tasks:	

1) Define	a	decision	management	strategy.	

NOTE	 A	 decision	 management	 strategy	 includes	 the	 identification	 of	 roles,	 responsibilities,	 accountabilities,	 and	
authorities.	 The	 strategy	 considers	 the	 need	 for	 obtaining	 information	 input	 and	 for	 returning	 a	 timely	 decision.	 It	
includes	 the	 identification	 of	 decision	 categories	 and	 a	 prioritization	 scheme.	 Decisions	 often	 arise	 as	 a	 result	 of	 an	
effectiveness	assessment,	 a	 technical	 trade‐off,	 a	problem	needing	 to	be	 solved,	 an	action	needed	as	a	 response	 to	 risk	
exceeding	the	acceptable	threshold,	or	a	new	opportunity	or	approval	for	project	progression	to	the	next	life	cycle	stage.	
Organization	or	project	guidelines	determine	the	degree	of	rigor	and	formality	to	apply	to	the	decision	analysis.	

2) Identify	the	circumstances	and	need	for	a	decision.	

NOTE	 Problems	or	opportunities	 and	 the	 alternative	 courses	of	 action	 that	will	 resolve	 their	 outcome	are	 recorded,	
categorized	and	reported.	

3) Involve	relevant	stakeholders	in	the	decision‐making	in	order	to	draw	on	experience	and	knowledge.	

NOTE	 It	is	good	practice	to	identify	the	subject	matter	expertise	needed	for	the	analysis	and	the	decision.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

44	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

b) Analyze the decision information. This	activity	consists	of	the	following	tasks:	

1) Select	and	declare	the	decision	management	strategy	for	each	decision.	

NOTE	 The	degree	of	rigor	required	to	resolve	these	problems	or	opportunities	is	determined,	as	well	as	the	data	and	
system	analysis	needed	for	evaluating	the	alternatives.	Define	the	timeframe	to	reach	a	decision.	

2) Determine	desired	outcomes	and	measurable	selection	criteria.	

NOTE	 The	 desired	 value	 for	 quantifiable	 criteria	 and	 the	 threshold	 value(s)	 beyond	 which	 the	 attribute	 will	 be	
unsatisfactory	are	determined,	as	well	as	weighting	factors	for	the	criteria.	

3) Identify	the	trade	space	and	alternatives.	

NOTE	 If	 a	 large	number	of	 alternatives	 exist,	 they	 are	qualitatively	 screened	 to	 reduce	 alternatives	 to	 a	manageable	
number	for	further	detailed	systems	analysis.	This	screening	is	often	based	on	qualitative	assessments	of	such	factors	as	
risk,	cost,	schedule,	and	regulatory	impacts.	

4) Evaluate	each	alternative	against	the	criteria.	

NOTE	 The	System	Analysis	process	 is	used,	as	necessary,	 to	quantify	specific	criteria	 for	each	trade	alternative	to	be	
evaluated.	 This	 includes	 new	 design	 parameters,	 different	 architecture	 characteristics,	 and	 range	 of	 values	 for	 critical	
quality	 characteristics.	 The	 System	 Analysis	 process	 assesses	 the	 range	 of	 parameter	 variations	 in	 order	 to	 obtain	 a	
sensitivity	analysis	 for	each	of	 the	trade	alternatives	evaluated.	These	results	are	used	to	establish	the	 feasibility	of	 the	
various	trade	alternatives.	

c) Make and manage decisions. This	activity	consists	of	the	following	tasks:	

1) Determine	preferred	alternative	for	each	decision.	

NOTE	 Alternatives	are	evaluated	quantitatively,	using	the	selection	criteria.	The	selected	alternative	generally	provides	
an	optimization	of,	or	improvement	in,	an	identified	decision.	

2) Record	the	resolution,	decision	rationale,	and	assumptions.	

3) Record,	track,	evaluate	and	report	decisions.	

NOTE	1		 This	 includes	 records	 of	 problems	 and	 opportunities	 and	 their	 disposition,	 as	 stipulated	 in	 agreements	 or	
organizational	procedures	and	in	a	manner	that	permits	auditing	and	learning	from	experience.	

NOTE	2	 	 This	allows	the	organization	to	confirm	that	problems	have	been	effectively	resolved,	that	adverse	trends	have	
been	reversed,	and	that	advantage	has	been	taken	of	opportunities.	

6.3.4 Risk Management process

6.3.4.1 Purpose

The	purpose	of	the	Risk	Management	process	is	to	identify,	analyze,	treat	and	monitor	the	risks	continually.	

The	Risk	Management	process	is	a	continual	process	for	systematically	addressing	risk	throughout	the	life	cycle	of	
a	 system	product	or	 service.	 It	 can	be	 applied	 to	 risks	 related	 to	 the	 acquisition,	 development,	maintenance	or	
operation	of	a	system.	

NOTE	 Risk	is	defined	in	ISO	Guide	73:2009	as	“The	effect	of	uncertainty	on	objectives”.	This	has	an	attached	Note	1,	“An	
effect	is	a	deviation	from	the	expected	—	positive	and/or	negative”.	A	positive	risk	is	commonly	known	as	an	opportunity,	and	
can	be	addressed	within	the	Risk	Management	process.	

6.3.4.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	Risk	Management	process:

a)	 Risks	are	identified.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

45	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

b)	 Risks	are	analyzed.	

c)	 Risk	treatment	options	are	identified,	prioritized,	and	selected.	

d)	 Appropriate	treatment	is	implemented.	

e)	 Risks	are	evaluated	to	assess	changes	in	status	and	progress	in	treatment.

6.3.4.3 Activities and tasks

The	project	shall	implement	the	following	activities	and	tasks	in	accordance	with	applicable	organization	policies	
and	procedures	with	respect	to	the	Risk	Management	process.	

NOTE	 ISO/IEC/IEEE	16085	provides	a	more	detailed	set	of	risk	management	activities	and	tasks. This	risk	management	
process	 is	 aligned	 with	 ISO	 31000:2009 Risk management — Principles and Guidelines,	 and	 ISO	 Guide	 73:2009,	 Risk
management — Vocabulary. ISO	9001:2015	describes	planning	for	risks	and	opportunities	in	6.1.	

a) Plan risk management. This	activity	consists	of	the	following	tasks:	

1) Define	the	risk	management	strategy.	

NOTE	 This	includes	the	risk	management	process	of	supply	chain	suppliers	and	describes	how	risks	from	suppliers	will	
be	raised	to	the	next	level(s)	for	incorporation	in	the	project	risk	process.	

2) Define	and	record	the	context	of	the	Risk	Management	process.	

NOTE	1	 	 This	 includes	 a	 description	 of	 stakeholders’	 perspectives,	 risk	 categories,	 and	 a	 description	 (perhaps	 by	
reference)	 of	 the	 technical	 and	 managerial	 objectives,	 assumptions	 and	 constraints.	 The	 risk	 categories	 include	 the	
relevant	technical	areas	of	the	software	system	and	facilitate	identification	of	risks	across	the	product	life	cycle.	As	noted	
in	 ISO	31000,	 the	aim	of	 this	 step	 is	 to	generate	a	comprehensive	 list	of	 risks	based	on	 those	events	 that	might	create,	
enhance,	prevent,	degrade,	accelerate,	or	delay	the	achievement	of	objectives.	

NOTE	2	 	 Opportunities,	which	are	one	type	of	risk,	provide	potential	benefits	for	the	software	system	or	project.	Each	of	
the	opportunities	pursued	has	associated	risks	that	detract	from	the	expected	benefit.	This	includes	the	risks	associated	
with	not	pursuing	an	opportunity,	as	well	as	the	risk	of	not	achieving	the	effects	of	the	opportunity.	

b) Manage the risk profile. This	activity	consists	of	the	following	tasks:	

1) Define	and	record	the	risk	thresholds	and	conditions	under	which	a	level	of	risk	may	be	accepted.	

2) Establish	and	maintain	a	risk	profile.	

NOTE	 The	 risk	profile	 records:	 the	 risk	management	 context;	 a	 record	of	 each	 risk’s	 state	 including	 its	 likelihood	of	
occurrence,	 consequences,	 and	 risk	 thresholds;	 the	 priority	 of	 each	 risk	 based	 on	 risk	 criteria	 supplied	 by	 the	
stakeholders;	and	the	risk	action	requests	along	with	the	status	of	their	treatment.	The	risk	profile	is	updated	when	there	
are	changes	in	an	individual	risk’s	state.	The	priority	in	the	risk	profile	is	used	to	determine	the	application	of	resources	
for	treatment.	

3) Periodically	provide	the	relevant	risk	profile	to	stakeholders	based	upon	their	needs.	

c) Analyze risks. This	activity	consists	of	the	following	tasks:	

1) Identify	risks	in	the	categories	described	in	the	risk	management	context.	

NOTE		 Risks	 are	 commonly	 identified	 through	 various	 analyzes,	 such	 as	 safety,	 reliability,	 security,	 and	performance	
analyzes;	technology,	architecture,	and	readiness	assessments;	and	trade	studies.	These	risks	are	often	identified	early	in	
the	life	cycle	and	continue	into	the	utilization,	support,	and	retirement	of	the	software	system.	Additionally,	risks	are	often	
identified	through	the	analysis	of	measurements	of	the	evolving	software	system.	

2) Estimate	the	likelihood	of	occurrence	and	consequences	of	each	identified	risk.	

NOTE	 Consequences	of	a	risk	typically	involve	technical,	schedule,	cost,	or	quality	impacts.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

46	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

3) Evaluate	each	risk	against	its	risk	thresholds.	

4) For	each	risk	that	does	not	meet	its	risk	threshold,	define	and	record	recommended	treatment	strategies	
and	measures.	

NOTE	 Risk	 treatment	 strategies	 include,	 but	 are	 not	 limited	 to,	 eliminating	 the	 risk,	 reducing	 its	 likelihood	 of	
occurrence	or	severity	of	consequence,	or	accepting	the	risk.	Treatments	also	include	taking	or	increasing	risk	in	order	to	
pursue	an	opportunity.	Measures	provide	information	about	the	effectiveness	of	the	treatment	alternatives.	

d) Treat risks. This	activity	consists	of	the	following	tasks:	

1) Identify	recommended	alternatives	for	risk	treatment.	

2) Implement	 risk	 treatment	 alternatives	 for	 which	 the	 stakeholders	 determine	 that	 actions	 should	 be	
taken	to	make	a	risk	acceptable.	

3) When	 the	 stakeholders	 accept	 a	 risk	 that	 does	 not	meet	 its	 threshold,	 consider	 it	 a	 high	 priority	 and	
monitor	 it	 continually	 to	determine	 if	 future	 risk	 treatment	actions	are	necessary	or	 if	 its	priority	has	
changed.	

4) Once	a	risk	treatment	is	selected,	coordinate	management	action.	

NOTE	 The	Project	Assessment	and	Control	process	can	be	applied.	

e) Monitor risks. This	activity	consists	of	the	following	tasks:	

1) Continually	monitor	risks	and	the	risk	management	context	for	changes	and	evaluate	the	risks	when	their	
state	has	changed.	

2) Implement	and	monitor	measures	to	evaluate	the	effectiveness	of	risk	treatments.	

3) Continually	monitor	for	the	emergence	of	new	risks	and	sources	throughout	the	life	cycle.	

6.3.5 Configuration Management process

6.3.5.1 Purpose

The	purpose	of	Configuration	Management	is	to	manage	and	control	system	elements	and	configurations	over	the	
life	 cycle.	 Configuration	 Management	 (CM)	 also	 manages	 consistency	 between	 a	 product	 and	 its	 associated	
configuration	definition.	

Software	configuration	management	(SCM)	applies	to	both	the	software	system	and	its	interfaces.	The	purpose	of	
interface	management	is	to	agree	with	interface	partners	on	the	exchange	of	data	through	communications	among	
software	systems	and	services.	Annex	E	(see	E.5)	provides	an	example	of	an	Interface	Management	Process	View.	

Software	configurations	are	changed	through	the	controlled	release	of	a	new	version.	The	purpose	of	a	release	is	
to	authorize	and	effect	 the	availability	of	a	 software	 feature,	 function,	or	 system	 for	a	 specific	purpose,	with	or	
without	restrictions	to	a	subset	of	users.	

6.3.5.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	Configuration	Management	process:

a)	 Items	requiring	configuration	management	are	identified	and	managed.	

b)	 Configuration	baselines	are	established.	

c)	 Changes	to	items	under	configuration	management	are	controlled.	

d)	 Configuration	status	information	is	available.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

47	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

e)	 Required	configuration	audits	are	completed.

f)	 System	releases	and	deliveries	are	controlled	and	approved.

6.3.5.3 Activities and tasks

The	project	shall	implement	the	following	activities	and	tasks	in	accordance	with	applicable	organization	policies	
and	procedures	with	respect	to	the	Configuration	Management	process.	

NOTE	 ISO/IEC/IEEE	19770	provides	procedures	and	requirements	for	an	IT	asset	management	system.	

a) Plan configuration management. This	activity	consists	of	the	following	tasks:	

1) Define	a	configuration	management	strategy,	including	approaches	for	the	following:	

i) Governance	 of	 CM,	 including	 roles,	 responsibilities,	 accountabilities,	 and	 authorities,	 and	 use	 of	
configuration	control	(change	control)	boards;	and	

ii) Consideration	of	the	level	of	risk	and	impact	in	approval	of	configuration	baselines	and	regular	and	
emergency	change	requests.	

NOTE	 Regularly	scheduled	changes	to	apply	software	patches	using	approved	procedures	or	check‐in	and	check‐out	of	
unit‐tested	software	elements	under	development	are	typically	performed	automatically,	or	reviewed	and	approved	daily	
as	a	matter	of	routine.	In	comparison,	significant	changes	to	the	software	system	design	with	major	impact	on	project	cost	
and	 schedule	 can	 involve	 extensive	 analyzes,	 consultations	 with	 suppliers,	 stakeholder	 reviews,	 and	 approvals	 at	 the	
highest	levels	of	the	organization.	

iii) Coordination	of	CM	across	the	set	of	acquirer,	supplier,	and	supply	chain	organizations	for	the	life	of	
the	software	system,	or	the	extent	of	the	agreement	or	project,	as	appropriate.	

iv) Control	of	access	and	changes	to	and	disposition	of	configuration	items.	

v) The	necessary	baselines	to	be	established,	including	criteria	or	events	for	commencing	configuration	
control	and	maintaining	baselines	of	evolving	configurations.	

vi) Control	of	software	licenses,	data	rights,	and	other	intellectual	property	assets.	

vii) Frequency,	priorities,	and	content	of	software	versions	and	releases.	

viii) The	 audit	 strategy	 and	 the	 responsibilities	 for	 validating	 continuous	 integrity	 and	 security	 of	 the	
configuration	definition	information.	

ix) Change	 management,	 including	 preparing	 stakeholders	 and	 especially	 users	 for	 changes	 in	
operational	software	systems	and	services.	

NOTE	1	 	 For	complex	software	systems,	trade‐off	studies	are	performed,	e.g.,	to	select	an	appropriate	automated	tool	to	
support	SCM	needs	and	scope	as	identified	in	the	strategy.	

NOTE	2	 	 Additional	guidance	regarding	configuration	management	activities	can	be	found	in	ISO	10007,	IEEE	Std	828,	
and	SAE	ANSI/EIA‐649‐B.	

NOTE	3	 	 The	 SWEBOK,	 Guide	 to	 the	 Software	 Engineering	 Body	 of	 Knowledge,	 provides	 detailed	 discussion	 on	 SCM.	
This	knowledge	area	addresses	SCM	in	the	context	of	a	system,	SCM	project	and	process	planning,	SCM	plan	and	outline,	
tool	 selection,	 subcontractor	 control,	 surveillance	 and	 other	 audits,	 software	 configuration	 items	 and	 relationships,	
software	libraries,	and	Configuration	Management	process	activities.	

NOTE	4	 	 The	SCM	strategy	is	commonly	documented	in	a	plan,	e.g.,	a	configuration	management	plan,	or	sometimes	in	a	
project’s	 SEMP,	 SDP,	 or	 Project	 Management	 Plan	 (PMP).	 The	 strategy	 planning	 for	 Configuration	 Management	 is	
coordinated	 through	 the	Project	Planning	process.	 In	 establishing	points	 to	 establish	baselines	 and	 conduct	 audits,	 CM	
planning	 is	 aligned	with	 the	 software	 life	 cycle.	 The	 frequency	 of	 recurring	 SCM	 activities	 aligns	with	 the	 iteration	 of	
technical	 processes	 and	 stages.	 SCM	 planning	 typically	 includes	 deciding	 when	 to	 review	 Configuration	 Management	
planning,	what	conditions	require	updating	the	CM	plan,	and	who	is	authorized	to	change	the	CM	plans	and	items	held	in	
configuration	control.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

48	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

2) Define	the	storage,	archive	and	retrieval	procedures	for	configuration	items,	CM	artifacts,	and	records.	

NOTE	 The	 locations	 and	 conditions	 of	 storage	 for	 software	 system	 configuration	 items,	 such	 as	 source	 code	 and	
executable	software,	are	established	in	accordance	with	designated	levels	of	integrity,	security	and	safety.	

b) Perform configuration identification.	This	activity	consists	of	the	following	tasks:	

1) Select	 the	 software	 system	 elements	 to	 be	 uniquely	 identified	 as	 configuration	 items	 subject	 to	
configuration	control.	

EXAMPLE						Configuration	 items	 subject	 to	 configuration	 control	 in	 software	 systems	 usually	 include	 system/software	
requirements	specifications,	interface	specifications;	product	and	system	elements	(e.g.,	software	objects,	hardware,	and	
services)	 while	 under	 development,	 baseline	 configurations	 or	 software	 versions	 established	 for	 transition	 between	
stages	 and	 as	 released	 for	 operational	 use;	master	 (“gold”)	 copies	 of	 source	 code	 or	 executable	 software	 for	 different	
platforms	 or	 versions;	 site‐specific	 configurations	 in	 operational	 use;	 and	 information	 items,	 such	 as	 agreements,	
architecture	models,	service	descriptions	and	operational	procedures;	and	items	in	enabling	systems.	

NOTE	1	 	 Unique	identification	can	be	applied	to	software	components,	versions,	or	to	individually	licensed	copies.	The	
identifiers	 are	 in	 accordance	 with	 relevant	 standards	 and	 product	 sector	 conventions,	 such	 that	 the	 items	 under	
configuration	 control	 are	 unambiguously	 traceable	 to	 their	 supplier	 and	 to	 their	 specifications	 or	 equivalent	 recorded	
descriptions.	Information	items	are	often	identified	and	managed	separately	from	other	configuration	items.	

NOTE	2	 	 Software	 configuration	 identifiers	 facilitate	 traceability	 when	 more	 than	 one	 developer	 or	 maintenance	
programmer	is	working	on	the	same	software	function,	so	that	various	branches	of	code	can	be	successfully	reassembled	
and	tested.	

NOTE	3	 	 The	ISO/IEC	19770	standard	(multiple	parts)	provides	an	IT	Asset	management	system	for	tracking	software	
licenses.	

2) Identify	the	attributes	of	configuration	items.	

NOTE	1	 	 Attributes	refers	to	item	status,	or	physical	or	logical	features	useful	for	managing	or	maintaining	the	software	
system.	Appropriate	attributes	can	differ	for	hardware	and	software	configuration	items.	

NOTE	2	 	 Configuration	 attributes	 and	 identifiers	 can	 reflect	 a	 decomposition	 of	 the	 software	 system,	 so	 that	
configuration	items	are	tracked	at	the	level	at	which	change	needs	to	be	controlled.	

EXAMPLE						Software	 from	 external	 suppliers	 can	 be	 tracked	 by	 its	 license	 and	 maintenance	 agreement,	 which	 can	
involve	tracking	to	the	location,	number	or	size	of	systems	where	it	 is	used	or	the	number	of	concurrent	users	allowed.	
Software	versions	can	be	traced	to	the	stakeholder	requirements	which	they	implement.	

3) Define	baselines	through	the	life	cycle.	

NOTE	1	 	 Baselines	capture	the	evolving	configuration	states	of	software	system	elements	at	designated	times	or	under	
defined	circumstances.	The	content	for	the	baselines	is	developed	through	the	technical	processes,	but	is	formalized	at	a	
point	in	time	through	the	Configuration	Management	process.	Baselines	form	the	basis	for	subsequent	changes.	Selected	
baselines	typically	become	formalized	between	acquirer	and	supplier,	depending	on	the	practices	of	the	industry	and	the	
contractual	involvement	of	the	acquirer	in	the	configuration	management	process.	There	are	generally	three	major	types	
of	baselines	at	 the	system	 level:	 functional	baseline,	allocated	baseline,	and	product	baseline.	These	vary	by	domain	or	
local	strategy.	

NOTE	2	 	 Software	systems	development	often	entails	establishing	multiple	developmental	baselines	to	address	evolving	
software	 configuration	needs	at	key	points	 in	 the	 life	 cycle,	 e.g.,	 to	allow	 for	 simultaneous	 control	of	 software	versions	
during	software	design,	prototype,	integration,	and	test	releases.	This	can	involve	distributed	configuration	management	
responsibilities	and	access	limitations	for	archives,	e.g.,	software	development	or	test	libraries	and	a	master	configuration	
support	library.	

4) Obtain	acquirer	and	supplier	agreement	to	establish	a	baseline.	

NOTE	 The	Project	Assessment	and	Control	process	is	used	to	reach	agreement.	When	software	is	being	developed	for	
commercial	or	internal	use,	the	acquirer	or	project	sponsor	can	be	the	authority	to	approve	a	baseline.	

c) Perform configuration change management	This	activity	consists	of	the	following	tasks:	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

49	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

NOTE	 Configuration	change	management	establishes	procedures	and	methods	for	managing	change	to	a	baseline	once	
it	 is	established.	This	 is	sometimes	referred	 to	as	configuration	control.	The	term	 ‘change	management’	 is	also	used	for	
managing	change	to	organizational	procedures	and	business	workflow.	

1) Identify	and	record	Requests	for	Change	and	Requests	for	Variance.	

NOTE	 A	request	for	variance	is	often	referred	to	as	a	deviation,	waiver,	or	concession.	

2) Coordinate,	evaluate,	and	disposition	Requests	for	Change	and	Requests	for	Variance.	

NOTE	1	 	 Evaluation	commonly	includes	analysis	of	rationale	and	need	versus	impact	on	the	software	and	interoperating	
systems,	 considering	 risks	 and	 opportunities,	 quality,	 users,	 schedule,	 and	 cost.	 A	 decision	 is	 made	 on	 whether	 to	
implement	or	deny	the	change	request.	

NOTE	2	 	 Requests	for	Change	and	Requests	for	Variance	are	often	under	the	formal	control	of	a	Configuration	Control	
Board	(CCB).	

3) Track	and	manage	approved	changes	to	the	baseline,	Requests	for	Change	and	Requests	for	Variance.	

NOTE	1	 	 This	task	involves	prioritization,	tracking,	scheduling,	and	closing	changes.	Changes	are	then	made	through	the	
Technical	Processes.	These	 changes	are	verified	or	validated	 through	 the	Verification	and	Validation	processes,	 to	help	
ensure	that	the	approved	changes	have	been	correctly	applied.	

NOTE	2	 	 Changes	and	rationales	are	typically	recorded	when	approved	and	when	completed.	

d) Perform release control.	This	activity	consists	of	the	following	tasks:	

1) Identify	and	record	release	requests,	identifying	the	software	system	elements	in	a	release.	

NOTE	1	 	 The	 life	 cycle	 model	 helps	 determine	 the	 frequency	 of	 iterative	 or	 incremental	 software	 releases.	 The	
Integration	process	is	used	to	select	and	configure	a	release	package,	software	version,	update	or	patch.	These	changes	are	
verified	or	validated	through	the	Verification	or	Validation	processes.	Changes	are	made	through	the	Technical	processes,	
particularly	Transition.	

EXAMPLE	 	Releases	for	a	software	test,	for	software	or	system	qualification	or	other	formal	tests,	or	for	trial	(beta)	or	
operational	use.	

2) Approve	software	system	releases	and	deliveries.	

NOTE	1	 	 Releases	 often	 involve	 prioritization,	 tracking,	 scheduling,	 and	 closing	 changes.	 Approval	 of	 a	 release	 for	
operational	 use	 can	 include	 acceptance	 of	 the	 verified	 and	 validated	 changes.	 Criteria	 for	 approval	 of	 a	 release	 often	
includes	rollback	plans	or	contingency	plans	in	the	event	of	an	unsuccessful	release.	

NOTE	2	 	 For	 software	 systems,	 automated	 version	 control	 tools	 can	 help	 ensure	 that	 only	 the	 correct	 source	 code	
versions	are	accessed,	updated,	tested	and	documented	for	approved	changes	by	appropriate	personnel,	and	released.	

3) Track	 and	 manage	 distribution	 of	 software	 system	 releases	 to	 specified	 environments	 or	 software	
deliveries.	

NOTE	 Master	copies	or	copies	of	 incremental	changes	to	released	software	versions	can	be	maintained	for	the	 life	of	
the	system	or	project	in	a	controlled	environment.	Software	suppliers	often	track	delivered	copies	of	licensed	software	to	
the	acquirer	in	order	to	provide	agreed	software	maintenance.	The	software	system	release	is	stored	and	distributed	in	
accordance	with	agreement	and	with	the	policies	of	the	organizations	involved.	

e) Perform configuration status accounting.	This	activity	consists	of	the	following	tasks:	

1) Develop	and	maintain	the	CM	status	information	for	software	system	elements,	baselines,	and	releases.	

NOTE	1	 	 Configuration	 status	 accounting	 provides	 the	 data	 on	 the	 status	 of	 controlled	 products	 needed	 to	 make	
decisions	 regarding	 system	 elements	 throughout	 the	 product	 life	 cycle.	 For	 example,	 software	 status	 can	 include	 past,	
current,	and	planned	progression	through	stages	in	the	life	cycle	for	software	functions	and	completion	of	verification	and	
validation	activities	for	software	elements.	Configuration	status	information	permits	forward	and	backward	traceability	to	
other	configuration	states.	Configuration	status	records	are	maintained	through	the	software	or	project	life	cycle	and	then	
archived	according	to	agreements,	relevant	legislation	or	organizational	practice.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

50	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

NOTE	2	 The	 recording,	 retrieval	 and	 consolidation	 of	 the	 current	 configuration	 status	 and	 the	 status	 of	 previous	
configurations	to	confirm	information	correctness,	timeliness,	integrity	and	security	is	managed.	Audits	are	performed	to	
verify	conformance	of	a	baseline	to	an	architecture	view,	interface	control	documents,	software	license	agreements,	and	
other	agreement	requirements.	

2) Capture,	store	and	report	configuration	management	data.	

f) Perform configuration evaluation.	This	activity	consists	of	the	following	tasks:	

1) Identify	the	need	for	CM	audits,	and	schedule	the	events.	

2) Verify	 the	 product	 configuration	 meets	 the	 configuration	 requirements	 by	 comparing	 requirements,	
constraints,	 and	 waivers	 (variances)	 with	 results	 of	 formal	 verification	 activities,	 which	 can	 involve	
sampling	methods.	

3) Monitor	the	incorporation	of	approved	configuration	changes.	

4) Assess	 whether	 the	 software	 system	meets	 functional	 and	 performance	 capabilities	 identified	 for	 the	
baseline.	

NOTE	 This	 is	 sometimes	 called	 a	 functional	 configuration	 audit	 (FCA),	which	 assures	 that	 the	product	 configuration	
meets	specified	requirements.	

5) Assess	 whether	 the	 operational	 software	 system	 elements	 conform	 to	 the	 approved	 configuration	
information.	

NOTE		 This	is	sometimes	called	a	physical	configuration	audit	(PCA).	For	software	items,	criteria	for	the	PCA	can	include	
whether	specified	configuration	items	are	installed	on	designated	systems	according	to	software	license	or	agreement.	

6) Record	the	CM	audit	results	and	disposition	action	items.	

6.3.6 Information Management process

6.3.6.1 Purpose

The	purpose	of	the	Information	Management	process	 is	 to	generate,	obtain,	confirm,	transform,	retain,	retrieve,	
disseminate	and	dispose	of	information,	to	designated	stakeholders.	

Information	management	plans,	 executes,	 and	 controls	 the	provision	of	 information	 to	designated	 stakeholders	
that	is	unambiguous,	complete,	verifiable,	consistent,	modifiable,	traceable,	and	presentable.	Information	includes	
technical,	project,	organizational,	agreement,	and	user	information.	Information	is	often	derived	from	data	records	
of	the	organization,	system,	process,	or	project.	

NOTE	 Managed	information	has	these	quality	characteristics:	unambiguous,	complete,	verifiable,	consistent,	modifiable,	
traceable,	and	presentable.	

6.3.6.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	Information	Management	process:

a)	 Information	to	be	managed	is	identified.	

b)	 Information	representations	are	defined.	

c)	 Information	is	obtained,	developed,	transformed,	stored,	validated,	presented,	and	disposed	of.	

d)	 The	status	of	information	is	identified.	

e)	 Information	is	available	to	designated	stakeholders.

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

51	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

6.3.6.3 Activities and tasks

The	project	shall	implement	the	following	activities	and	tasks	in	accordance	with	applicable	organization	policies	
and	procedures	with	respect	to	the	Information	Management	process.	

NOTE	 ISO/IEC/IEEE	 15289	 summarizes	 requirements	 for	 the	 content	 of	 life	 cycle	 process	 information	 items	
(documentation)	and	provides	guidance	on	their	development.	

a) Prepare for information management.	This	activity	consists	of	the	following	tasks:	

1) Define	the	strategy	for	information	management.	

NOTE	 Information	about	the	same	topic	can	be	developed	in	different	ways	at	different	points	in	the	life	cycle	and	for	
different	audiences.	

2) Define	the	items	of	information	that	will	be	managed.	

NOTE	 This	includes	the	information	that	will	be	managed	during	the	software	life	cycle	and	possibly	maintained	for	a	
defined	period	beyond.	This	is	done	according	to	organizational	policy,	agreements,	or	legislation.	

3) Designate	authorities	and	responsibilities	for	information	management.	

NOTE	 Due	 regard	 is	 paid	 to	 information	 and	 data	 legislation,	 security	 and	 privacy,	 e.g.,	 ownership,	 agreement	
restrictions,	 rights	 of	 access	 to	 data	 and	 ownership	 of	 data,	 intellectual	 property	 and	 patents.	 Where	 restrictions	 or	
constraints	apply,	 information	is	 identified	accordingly.	Staff	members	with	knowledge	of	such	items	of	information	are	
informed	of	their	obligations	and	responsibilities.	

4) Define	the	content,	formats	and	structure	of	information	items.	

NOTE	 The	 information	originates	and	 terminates	 in	many	 forms	 (e.g.,	 audiovisual,	 textual,	 graphical,	numerical)	and	
mediums	 (e.g.,	 electronic,	 printed,	magnetic,	 optical).	 Organization	 constraints,	 e.g.,	 infrastructure,	 inter‐organizational	
communications,	 and	 distributed	 project	 workings,	 are	 taken	 into	 account.	 Relevant	 information	 item	 standards	 and	
conventions	are	used	according	to	policy,	agreements	and	legislation	constraints.	

5) Define	information	maintenance	actions.	

NOTE	 Information	maintenance	includes	status	reviews	of	stored	information	for	integrity,	validity	and	availability.	It	
also	 includes	 any	 needs	 for	 replication	 or	 transformation	 to	 an	 alternative	 medium,	 as	 necessary,	 either	 to	 retain	
infrastructure	 as	 technology	 changes	 so	 that	 archived	 media	 can	 be	 read	 or	 to	 migrate	 archived	 media	 to	 newer	
technology.	

b) Perform information management.	This	activity	consists	of	the	following	tasks:	

1) Obtain,	develop,	or	transform	the	identified	items	of	information.	

NOTE	 This	includes	collecting	the	data,	information,	or	information	items	from	appropriate	sources	(e.g.,	resulting	from	
any	 life	 cycle	process),	 and	writing,	 illustrating,	or	 transforming	 it	 into	usable	 information	 for	 stakeholders.	 It	 includes	
reviewing,	validating,	and	editing	information	per	information	standards.	

2) Maintain	information	items	and	their	storage	records,	and	record	the	status	of	information.	

NOTE	1	 	 Information	items	are	maintained	according	to	their	integrity,	security	and	privacy	requirements.	The	status	of	
information	 items	 is	maintained,	(e.g.,	version	description,	date	of	 issue	or	validity	date,	record	of	distribution,	security	
classification).	Legible	information	is	stored	and	retained	in	such	a	way	that	it	is	readily	retrievable.	

NOTE	2	 	 The	 source	 data	 and	 tools	 used	 to	 transform	 information,	 along	with	 the	 resulting	 documentation	 is	 placed	
under	 configuration	 control	 in	 accordance	with	 the	 Configuration	Management	 process.	 ISO/IEC/IEEE	 26531	provides	
requirements	for	content	management	systems	useful	for	life	cycle	information	and	documentation.	

3) Publish,	distribute	or	provide	access	to	information	and	information	items	to	designated	stakeholders.	

NOTE	 Information	is	provided	to	designated	stakeholders	in	an	appropriate	form,	as	required	by	agreed	schedules	or	
defined	 circumstances.	 Information	 items	 include	 documentation	 used	 for	 certification,	 accreditation,	 license	 or	
assessment	ratings,	as	required.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

52	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

4) Archive	designated	information.	

NOTE	 Archiving	is	done	in	accordance	with	the	audit,	knowledge	retention,	and	project	closure	purposes.	The	media,	
location	and	protection	of	the	information	are	selected	in	accordance	with	the	specified	storage	and	retrieval	periods,	and	
with	organization	policy,	agreements	and	legislation.	Arrangements	are	put	in	place	to	retain	necessary	information	items	
after	project	closure.	

5) Dispose	of	unwanted,	invalid	or	unvalidated	information.	

NOTE	 This	is	done	according	to	organization	policy,	and	security	and	privacy	requirements.	

6.3.7 Measurement process

6.3.7.1 Purpose

The	 purpose	 of	 the	 Measurement	 process	 is	 to	 collect,	 analyze,	 and	 report	 objective	 data	 and	 information	 to	
support	effective	management	and	demonstrate	the	quality	of	the	products,	services,	and	processes.	

NOTE	 Measures	have	these	quality	characteristics:	verifiable,	meaningful,	actionable,	timely,	and	cost‐effective.	

6.3.7.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	Measurement	process:

a)	 Information	needs	are	identified.	

b)	 An	appropriate	set	of	measures,	based	on	the	information	needs,	is	identified	or	developed.	

c)	 Required	data	is	collected,	verified,	and	stored.	

d)	 The	data	is	analyzed	and	the	results	interpreted.	

e)	 Information	items	provide	objective	information	that	supports	decisions.

6.3.7.3 Activities and tasks

The	project	shall	implement	the	following	activities	and	tasks	in	accordance	with	applicable	organization	policies	
and	procedures	with	respect	to	the	Measurement	process.	

NOTE	1	 ISO/IEC	 15939	 provides	 a	 more	 detailed	 set	 of	 measurement	 activities	 and	 tasks	 that	 are	 aligned	 with	 the	
activities	and	tasks	in	this	document.	

NOTE	2	 ISO	9001:2015	specifies	Quality	Management	System	requirements	for	measurement	and	monitoring.		

a) Prepare for measurement. This	activity	consists	of	the	following	tasks:	

1) Define	the	measurement	strategy.	

2) Describe	the	characteristics	of	the	organization	that	are	relevant	to	measurement,	such	as	business	and	
technical	objectives.	

3) Identify	and	prioritize	the	information	needs.	

NOTE	 The	information	needs	are	based	on	the	organization’s	business	objectives,	the	project	objectives,	identified	risks,	
and	other	items	related	to	project	decisions.	Measurements	can	relate	to	projects,	processes,	products,	or	decisions.	

4) Select	and	specify	measures	that	satisfy	the	information	needs.	

NOTE	 Measures	are	defined	that	are	verifiable	and	cost‐effective.	

5) Define	data	collection,	analysis,	access,	and	reporting	procedures.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

53	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

6) Define	criteria	for	evaluating	the	information	items	and	the	Measurement	process.

7) Identify	and	plan	for	the	necessary	enabling	systems	or	services	to	be	used.

b) Perform measurement. This	activity	consists	of	the	following	tasks:

1) Integrate	manual	or	automated	procedures	for	data	generation,	collection,	analysis	and	reporting	into	the
relevant	processes.

NOTE	 This	task	can	involve	change	impacts	to	other	life	cycle	processes	to	accomplish	procedural	integration.	

2) Collect,	store,	and	verify	data.

3) Analyze	data	and	develop	information	items.

4) Record	results	and	inform	the	measurement	users.

NOTE	 The	measurement	analysis	results	are	reported	to	relevant	stakeholders	 in	a	timely,	usable	 fashion	to	support	
decision	making	and	assist	 in	corrective	actions,	risk	management,	and	 improvements.	Results	are	reported	to	decision	
process	 participants,	 technical	 and	 management	 review	 participants,	 and	 product	 and	 process	 improvement	 process 	
owners.	

6.3.8 Quality Assurance process

6.3.8.1 Purpose

The	 purpose	 of	 the	 Quality	 Assurance	 process	 is	 to	 help	 ensure	 the	 effective	 application	 of	 the	 organization’s	
Quality	Management	process	to	the	project.	

Quality	Assurance	focuses	on	providing	confidence	that	quality	requirements	will	be	fulfilled.	Proactive	analysis	of	
the	project	life	cycle	processes	and	outputs	is	performed	to	assure	that	the	product	being	produced	will	be	of	the	
desired	quality	and	that	organization	and	project	policies	and	procedures	are	followed.	

6.3.8.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	Quality	Assurance	process:

a) Project	quality	assurance	procedures	are	defined	and	implemented.

b) Criteria	and	methods	for	quality	assurance	evaluations	are	defined.

c) Evaluations	 of	 the	 project’s	 products,	 services,	 and	 processes	 are	 performed,	 consistent	 with	 quality
management	policies,	procedures,	and	requirements.

d) Results	of	evaluations	are	provided	to	relevant	stakeholders.

e) Incidents	are	resolved.

f) Prioritized	problems	are	treated

NOTE	 Outcomes	a)	through	d)	align	with	the	outcomes	of	the	Quality	Management	process	activities	and	tasks.	

6.3.8.3 Activities and tasks

The	project	shall	implement	the	following	activities	and	tasks	in	accordance	with	applicable	organization	policies	
and	procedures	with	respect	to	the	Quality	Assurance	process.	

NOTE	 IEEE	Std	730‐2014,	Software Quality Assurance Processes,	provides	additional	detail.	

a) Prepare for quality assurance. This	activity	consists	of	the	following	tasks:

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

54	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

1) Define	 a	 Quality	 Assurance	 strategy.	 The	 strategy	 is	 consistent	 with	 the	 organizational	 Quality	
Management	policies	and	objectives	and	includes:	

i) Priorities	 for	 applying	Quality	 Assurance	 resources	 to	 processes	 and	 tasks	 that	 have	 the	most	
significant	impact	on	the	quality	of	the	delivered	products	and	services;	

ii) Defined	roles,	responsibilities,	accountabilities,	and	authorities;	

iii) Evaluation	 criteria	 and	 methods	 for	 processes,	 products,	 and	 services,	 including	 criteria	 for	
product	or	service	acceptance;	

iv) Activities	appropriate	to	each	supplier	(including	subcontractors);	

v) Required	 verification,	 validation,	 monitoring,	 measurement,	 review,	 inspection,	 audit,	 and	 test	
activities	specific	to	the	products	or	services;	and	

vi) Problem	resolution	and	process	and	product	improvement	activities.	

NOTE		 In	software	projects,	activities	and	tasks	that	have	significant	impact	on	product	quality	include	obtaining	
agreement	 on	 new	 and	 changed	 requirements,	 performance	 of	 peer	 reviews	 and	 unit	 testing,	 analysis	 of	 problem	
reports	and	feedback	from	users;	validating	completion	of	corrective	actions	assigned	at	project	milestone	reviews,	
and	root	cause	analysis	of	defects.	

2) Establish	independence	of	quality	assurance	from	other	life	cycle	processes.	

	 NOTE		 Resources	 for	 quality	 assurance	 are	 often	 assigned	 from	 distinct	 organizations	 for	 independence	 from	
project	management.	

b) Perform product or service evaluations. This	activity	consists	of	the	following	tasks:

1) Evaluate	 products	 and	 services	 for	 conformance	 to	 established	 criteria,	 contracts,	 standards,	 and	
regulations.	

NOTE	 This	 task	 includes	 verifying	 if	 criteria	 for	 product	 or	 service	 acceptance	 are	 reflected	 in	 verification	 and	
validation	 activities.	 Derived	 system/software	 quality	 requirements	 are	 usually	 associated	with	 quality	 characteristics	
during	 requirements	 definition	 processes.	 ISO/IEC	 25010	 and	 ISO/IEC	 25030	 provide	 additional	 information	 on	
system/software	quality	characteristics.	

2) Monitor	 that	 verification	 and	 validation	 of	 the	 outputs	 of	 the	 life	 cycle	 processes	 are	 performed	 to	
determine	conformance	to	specified	requirements.	

c) Perform process evaluations.	This	activity	consists	of	the	following	tasks:	

1) Evaluate	project	life	cycle	processes	for	conformance.	

2) Evaluate	tools	and	environments	that	support	or	automate	the	process	for	conformance.	

3) Evaluate	supplier	processes	for	conformance	to	process	requirements.	

NOTE	 Consider	items	such	as	a	collaborative	software	development	environment,	process	measures	that	suppliers	are	
required	 to	provide,	 or	 a	 risk	process	 that	 suppliers	 are	 required	 to	use.	This	 includes	 surveillance	 reviews	of	process	
implementation	through	the	supply	chain.	

d) Manage QA records and reports.	This	activity	consists	of	the	following	tasks:	

1) Create	records	and	reports	related	to	quality	assurance	activities.	

NOTE	 Create	 records	and	reports	 in	accordance	with	organizational,	 regulatory,	and	project	 requirements,	using	 the	
information	management	process.	

2) Maintain,	store,	and	distribute	records	and	reports.	

3) Identify	incidents	and	problems	associated	with	product,	service,	and	process	evaluations.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

55	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

NOTE	 This	includes	the	capture	of	lessons	learned.	Responsibilities	for	resolution	are	identified.	

e) Treat incidents and problems. This	activity	consists	of	the	following	tasks:

NOTE	1		 	 In	 the	 terminology	 of	 quality	management,	 problems	 are	 often	described	 as	 “non‐conformities”	when,	 if	 left
untreated,	they	can	cause	the	project	to	fail	to	meet	its	requirements.	

NOTE	2	 	 For	 additional	 information	 and	 examples	 of	 problem	 categories	 and	 priority	 classifications,	 see	 ISO/IEC	 TS
24748‐1:2016,	Annex	C.	

1) Record,	analyze	and	classify	incidents.

2) Identify	selected	incidents	to	associate	with	known	errors	or	problems.

3) Record,	analyze	and	classify	problems.

NOTE	 Analysis	results	include	potential	treatment	options.	

4) Identify	root	causes	and	treatment	of	problems	where	feasible.

5) Prioritize	treatment	of	problems	(problem	resolution)	and	track	corrective	actions.

NOTE	 Implementation	is	done	in	the	Technical	processes	after	initiation	by	the	Project	Assessment	and	Control	process.	
Organizational	procedures	for	problem	escalation	can	help	focus	resources	on	lagging	problem	resolutions.	

6) Analyze	trends	in	incidents	and	problems.

7) Identify	improvements	in	processes	and	products	that	may	prevent	future	incidents	and	problems.

NOTE	 The	 Risk	 Management	 process	 is	 used	 to	 treat	 risks	 and	 opportunities.	 The	 Life	 Cycle	 Model	 Management	
process	is	used	to	improve	the	organization’s	processes.	

8) Inform	designated	stakeholders	of	the	status	of	incidents	and	problems.

9) Track	incidents	and	problems	to	closure.

6.4 Technical processes

The	Technical	processes	are	used	to	define	the	requirements	for	a	software	system,	to	transform	the	requirements	
into	an	effective	product,	to	permit	consistent	reproduction	of	the	product	where	necessary,	to	use	the	product	to	
provide	the	required	services,	to	sustain	the	provision	of	those	services,	and	to	dispose	of	the	product	when	it	is	
retired	from	service.	

The	 Technical	 processes	 define	 the	 activities	 that	 enable	 organization	 and	 project	 functions	 to	 optimize	 the	
benefits	 and	 reduce	 the	 risks	 that	 arise	 from	 technical	 decisions	 and	 actions.	 These	 activities	 enable	 software	
systems	 and	 services	 to	 possess	 the	 timeliness	 and	 availability,	 cost	 effectiveness,	 functionality,	 reliability,	
maintainability,	 producibility,	 usability,	 and	 other	 qualities	 required	 by	 acquiring	 and	 supplying	 organizations.	
They	 also	 enable	 products	 and	 services	 to	 conform	 to	 the	 expectations	 or	 legislated	 requirements	 of	 society,	
including	health,	safety,	security,	and	environmental	factors.	

The	Technical	processes	consist	of	the	following:	

a) Business	or	Mission	Analysis	process;

b) Stakeholder	Needs	and	Requirements	Definition	process;

c) System/Software	Requirements	Definition	process;

d) Architecture	Definition	process;

e) Design	Definition	process;

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

56	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

f) System	Analysis	process;	

g) Implementation	process;	

h) Integration	process;	

i) Verification	process;	

j) Transition	process;	

k) Validation	process;	

l) Operation	process;	

m) Maintenance	process;	and	

n) Disposal	process.	

NOTE	1		 For	software	systems,	these	processes	can	be	recursively	applied	at	more	inclusive	or	more	detailed	levels	for	
software	system	definition	and	realization.	

NOTE	2		 For	 software	 systems,	 these	 processes	 are	 often	 performed	 concurrently,	 iterating	 between	 one	 another	 to	
establish	 a	 solution	 that	 has	 satisfactory	 trade‐offs	 with	 respect	 to	 requirements,	 critical	 performance	 measures,	 and	
critical	quality	characteristics.	At	any	level	of	abstraction,	requirements	and	models	are	made	consistent	via	iterations	of	
applicable	 technical	 processes.	 When	 requirements	 and	 models	 are	 not	 directly	 capable	 of	 being	 implemented,	 the	
technical	processes	are	applied	recursively	at	a	more	detailed	level	or	through	different	system	views.	

NOTE	3		 The	concept	of	 life	cycle	stages	and	the	application	of	 these	processes	 in	any	stage	are	described	 in	detail	 in	
ISO/IEC	TS	24748‐1.	It	has	a	complete	set	of	example	stages	and	stage	outcomes	for	the	enactment	of	technical	processes	
within	a	software	life	cycle.	

NOTE	4		 Interface	management	is	a	set	of	activities	that	cut	across	software	engineering	processes.	These	cross‐cutting	
activities	of	the	Technical	and	Technical	Management	processes	apply	and	track	as	a	specific	view	of	the	processes	and	
software	system.	See	Annex	E	(E.5)	for	an	example	of	an	Interface	Management	process	view.	

NOTE	5		 ISO/IEC	 27002	 Code of practice for information security controls	 and	 ISO/IEC	 27034	 Application security,	
provide	guidance	for	applying	security	concerns	in	the	Technical	processes	for	software	systems.	See	Annex	E	(E.6)	for	a	
sample	Software	Assurance	Process	View.	

6.4.1 Business or Mission Analysis process

6.4.1.1 Purpose

The	 purpose	 of	 the	 Business	 or	 Mission	 Analysis	 process	 is	 to	 define	 the	 business	 or	 mission	 problem	 or	
opportunity,	 characterize	 the	 solution	 space,	 and	 determine	 potential	 solution	 class(es)	 that	 could	 address	 a	
problem	or	take	advantage	of	an	opportunity.	

NOTE	1	 Business	 and	 Mission	 Analysis	 is	 related	 to	 the	 organization	 encompassing	 stakeholders	 concerned	 by	 the	
activities	of	the	software	life	cycle.	This	process	interacts	with	the	organization’s	strategy,	which	is	generally	outside	the	scope	
of	ISO/IEC/IEEE	12207.	The	results	of	the	organization’s	strategic	analysis	include	the	organizational	Concept	of	Operations,	
strategic	 goals	 and	 plans,	 new	market	 or	mission	 elements,	 and	 identified	 problems	 and	 opportunities.	 The	 organization's	
strategy	 establishes	 the	 context	within	which	 the	business	or	mission	analysis	 is	 performed.	The	organizational	Concept	of	
Operations	relates	to	the	leadership’s	intended	way	of	operating	the	organization.	It	describes	the	organization’s	assumptions	
and	how	 it	 intends	 to	 use,	 acquire,	 or	 supply	 the	 system	 to	 be	 developed,	 existing	 systems,	 and	 possible	 future	 systems	 in	
support	 of	 an	 overall	 operation	 or	 series	 of	 operations	 of	 the	 business.	 In	 the	 case	 that	 the	 organization	 is	 the	 system‐of‐
interest,	the	organization’s	strategy	is	part	of	the	system	definition.	

NOTE	2	 This	 process	 has	 application	 through	 the	 life	 of	 the	 software	 system	 solution	 and	 can	 be	 revisited	 if	 there	 are	
changes	in	the	environment,	needs,	or	other	drivers.	

NOTE	3	 In	some	domains,	Business	or	Mission	Analysis	relates	to	the	concept	of	identifying	and	analyzing	capabilities	that	
are	needed	or	desired	by	the	organization.	This	process	focuses	on	the	necessary	capabilities	and	interacts	with	the	Portfolio	
Management	process	for	identifying	the	trade	space	that	can	address	the	capability.	The	identified	problems	or	opportunities	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

57	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

are	often	translated	into	target	capabilities.	As	applicable	within	a	given	domain,	the	problem	or	opportunity	space	includes	
the	target	capabilities.	

6.4.1.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	Business	or	Mission	Analysis	process:	

a) The	problem	or	opportunity	space	is	defined.	
	

b) The	solution	space	is	characterized.	
	
c) Preliminary	operational	concepts	and	other	concepts	in	the	life	cycle	stages	are	defined.	
	
d) Candidate	alternative	solution	classes	are	identified	and	analyzed.	
	
e) The	preferred	candidate	alternative	solution	class(es)	are	selected.	
	
f) Any	enabling	systems	or	services	needed	for	business	or	mission	analysis	are	available.	
	
g) Traceability	 of	 business	 or	 mission	 problems	 and	 opportunities	 and	 the	 preferred	 alternative	

solution	classes	is	established.	

6.4.1.3 Activities and tasks

The	project	shall	implement	the	following	activities	and	tasks	in	accordance	with	applicable	organization	policies	
and	procedures	with	respect	to	the	Business	or	Mission	Analysis	process.	

a) Prepare for Business or Mission Analysis. This	activity	consists	of	the	following	tasks:	

1) Review	 identified	 problems	 and	 opportunities	 in	 the	 organization	 strategy	 with	 respect	 to	 desired	
organization	goals	or	objectives.	

NOTE	 This	includes	problems	or	opportunities	with	respect	to	the	organization	business	or	mission,	vision,	Concept	of	
Operations,	and	other	organization	strategic	goals	and	objectives.	This	includes	identified	deficiencies	or	gaps	in	existing	
capabilities,	systems,	products,	or	services.	

2) Define	the	business	or	mission	analysis	strategy.	

NOTE	 This	includes	the	approach	to	be	used	to	identify	and	define	the	problem	space,	characterize	the	solution	space	
and	select	a	solution	class.	

3) Identify	and	plan	for	the	necessary	enabling	systems	or	services	needed	to	support	business	or	mission	
analysis.	

NOTE	 This	includes	identification	of	requirements	and	interfaces	for	enabling	systems.	Enabling	systems	for	business	
or	mission	analysis	include	the	business	systems	and	repositories	of	the	organization	or	other	accessible	entities.	

4) Obtain	or	acquire	access	to	the	enabling	systems	or	services	to	be	used.	

NOTE	 The	Validation	process	is	used	to	objectively	confirm	that	the	enabling	system	achieves	its	 intended	use	for	its	
enabling	functions.	

b) Define the problem or opportunity space.	This	activity	consists	of	the	following	tasks:	

1) Analyze	customer	complaints,	problems	and	opportunities	in	the	context	of	relevant	trade‐space	factors.	

NOTE	1	 	 This	 analysis	 is	 focused	 on	 understanding	 the	 scope,	 basis,	 or	 drivers	 of	 the	 problems	 or	 opportunities,	 as	
opposed	to	the	synthesis	that	is	the	focus	of	system	analysis	and	decision	management	needed	for	trade	studies.	The	focus	
here	includes	changes	in	mission	requirements,	business	opportunities,	capabilities,	performance	improvement,	or	lack	of	
existing	 systems,	 security	 and	 safety	 improvement,	 factors	 such	 as	 cost	 and	 effectiveness,	 regulation	 changes,	 user	
dissatisfaction,	and	PESTEL	factors	(Political,	Economic,	Social,	Technological,	Environmental,	and	Legal).	Relevant	factors	
can	be	identified	through	external,	internal,	or	SWOT	(Strengths,	Weaknesses,	Opportunities	and	Threats)	analysis.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

58	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

NOTE	2	 	 The	outputs	of	the	analysis	are	considered	as	part	of	the	portfolio	management	decisions.	

2) Define	the	mission,	business,	or	operational	problem	or	opportunity.	

NOTE	 This	 definition	 includes	 the	 context	 and	 any	 key	 parameters,	 without	 regard	 to	 a	 specific	 solution,	 since	 the	
solution	can	be	an	operational	change,	a	change	to	an	existing	product	or	service,	or	a	new	system.	

c) Characterize the solution space.	This	activity	consists	of	the	following	tasks:	

1) Define	preliminary	operational	concepts	and	other	concepts	in	life	cycle	stages.	

NOTE	1	 	 This	 involves	 the	 identification	 of	 major	 stakeholder	 groups,	 such	 as	 customers,	 users,	 administrations,	
regulators,	and	system	owners,	that	are	defined	in	the	Stakeholder	Needs	and	Requirements	Definition	process.	

NOTE	2	 	 Preliminary	 life	 cycle	 concepts	 include	 preliminary	 acquisition	 concepts,	 preliminary	 deployment	 concepts,	
preliminary	 operational	 concepts,	 preliminary	 support	 concepts,	 and	 preliminary	 retirement	 concepts.	 Operational	
concepts	 include	 high	 level	 operational	 modes	 or	 states,	 operational	 scenarios,	 potential	 use	 cases,	 or	 usage	 within	 a	
proposed	business	strategy.	These	concepts	enable	feasibility	analysis	and	evaluation	of	alternatives.	These	concepts	are	
further	refined	within	the	Stakeholder	Needs	and	Requirements	Definition	process.	

NOTE	3	 	 The	operating	environment	can	have	known	vulnerabilities	associated	with	specific	security	threats	and	safety	
hazards.	These	vulnerabilities	need	to	be	understood	in	association	with	the	product	under	development.	The	system	and	
human	interfaces	are	an	element	of	the	system	assurance	context	and	related	vulnerabilities	are	examined	in	the	context	
of	mission‐critical	threats.	

2) Identify	candidate	alternative	solution	classes	that	span	the	potential	solution	space.	

NOTE	 These	 classes	 can	 range	 from	 simple	 operational	 changes	 to	 various	 software	 system	 developments	 or	
modifications.	This	solution	space	can	include	the	identification	of	existing	assets,	systems,	and	software	products	suitable	
for	 reuse,	 and	 changes	 in	 services	 that	 can	 address	 the	need	 for	 operational	 or	 functional	modifications.	 This	 includes	
deducing	 what	 potential	 expected	 services	 will	 be	 needed.	 The	 solution	 space	 characterization	 often	 invokes	 the	
Architecture	Definition	process	 for	a	user	architecture	viewpoint,	 resulting	 in	architecture	views	 (e.g.,	 capability	views,	
program	views	and	operational	views)	as	proposed	by	ISO/IEC/IEEE	42010.	

d) Evaluate alternative solution classes.	This	activity	consists	of	the	following	tasks:	

1) Assess	each	alternative	solution	class.	

NOTE	1	 	 Each	 alternative	 solution	 class	 is	 assessed	 against	 defined	 criteria	 that	 are	 established	 based	 on	 the	
organization’s	 strategy.	 Feasibility	 of	 the	 solution	 class	 is	 one	 key	decision	 criteria.	 The	Portfolio	Management	process	
provides	some	criteria	to	be	considered.	

NOTE	2	 	 The	System	Analysis	process	 is	used	 to	assess	 the	value	of	 each	criterion	 for	each	alternative	 solution	class.	
Structured	 affordability	 trade‐offs	 are	 recommended.	 Including	 cost	 as	 a	 criterion	will	 aid	 affordability	 decisions.	 The	
assessment	of	alternatives	can	include	modeling,	simulation,	analytical	techniques,	or	expert	judgment	to	understand	the	
risks,	feasibility	and	value	of	the	alternative	candidate	solution	classes.	

2) Select	the	preferred	alternative	solution	class(es).	

NOTE	 The	Decision	Management	process	is	used	to	evaluate	alternatives	and	to	guide	selection.	Selected	alternatives	
are	validated	in	the	context	of	the	organization’s	strategy.	Feedback	on	risks,	feasibility,	market	factors,	and	alternatives	is	
provided	for	use	in	updating	the	organization’s	strategy.	

e) Manage the business or mission analysis.	This	activity	consists	of	the	following	tasks:	

1) Maintain	traceability	of	business	or	mission	analysis.	

NOTE	 Through	the	life	cycle,	bidirectional	traceability	is	maintained	between	the	business	and	mission	problems	and	
opportunities	 and	 the	 preferred	 alternative	 solution	 classes	 with	 the	 organizational	 strategy,	 stakeholder	 needs	 and	
requirements,	and	system	analysis	results	supporting	decisions.	

2) Provide	key	artifacts	and	information	items	that	have	been	selected	for	baselines.	

NOTE	 The	Configuration	Management	process	is	used	to	establish	and	maintain	configuration	items	and	baselines.	This	
process	identifies	candidates	for	the	baseline,	and	the	Information	Management	process	controls	the	information	items.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

59	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

6.4.2 Stakeholder Needs and Requirements Definition process

6.4.2.1 Purpose

The	 purpose	 of	 the	 Stakeholder	 Needs	 and	 Requirements	 Definition	 process	 is	 to	 define	 the	 stakeholder	
requirements	for	a	system	that	can	provide	the	capabilities	needed	by	users	and	other	stakeholders	in	a	defined	
environment.	

It	 identifies	 stakeholders,	 or	 stakeholder	 classes,	 involved	 with	 the	 system	 throughout	 its	 life	 cycle,	 and	 their	
needs.	 It	analyzes	and	transforms	 these	needs	 into	a	common	set	of	 stakeholder	requirements	 that	express	 the	
intended	 interaction	 the	 system	will	 have	with	 its	 operational	 environment	 and	 that	 are	 the	 reference	 against	
which	 each	 resulting	operational	 capability	 is	 validated.	The	 stakeholder	 requirements	 are	defined	 considering	
the	context	of	the	system‐of‐interest	with	the	interoperating	systems	and	enabling	systems.	

NOTE	 The	SWEBOK, Guide to the Software Engineering Body of Knowledge,	 Software	Requirements	knowledge	
area	discusses	software	requirements	fundamentals	(e.g.,	definition,	types,	properties,	quality	characteristics)	and	
other	 topics,	 such	 as	 stakeholders,	 requirements	 elicitation,	 analysis,	 and	management	 that	 provide	 additional	
guidance	for	software	systems.	

6.4.2.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	Stakeholder	Needs	and	Requirements	Definition	process:

a) Stakeholders	of	the	system	are	identified.	
	

b) Required	 characteristics	 and	 context	 of	 use	 of	 capabilities	 and	 concepts	 in	 the	 life	 cycle	 stages,	
including	operational	concepts,	are	defined.	

	
c) Constraints	on	a	system	are	identified.	
	
d) Stakeholder	needs	are	defined.	
	
e) Stakeholder	needs	are	prioritized	and	transformed	into	clearly	defined	stakeholder	requirements.	
	
f) Critical	performance	measures	are	defined.	
	
g) Stakeholder	 agreement	 that	 their	 needs	 and	 expectations	 are	 reflected	 adequately	 in	 the	

requirements	is	achieved.	
	
h) Any	enabling	systems	or	services	needed	for	stakeholder	needs	and	requirements	are	available.	
	
i) Traceability	of	stakeholder	requirements	to	stakeholders	and	their	needs	is	established.

6.4.2.3 Activities and tasks

The	project	shall	implement	the	following	activities	and	tasks	in	accordance	with	applicable	organization	policies	
and	procedures	with	respect	to	the	Stakeholder	Needs	and	Requirements	Definition	process.	

a) Prepare for Stakeholder Needs and Requirements Definition.	This	activity	consists	of	the	following	tasks:	

1) Identify	the	stakeholders	who	have	an	interest	in	the	software	system	throughout	its	life	cycle.	

NOTE	 This	 includes	 individuals	 and	 classes	 of	 stakeholders	 who	 are	 users,	 operators,	 supporters,	 developers,	
producers,	 trainers,	 maintainers,	 disposers,	 acquirer	 and	 supplier	 organizations,	 parties	 responsible	 for	 external	
interfacing	 entities,	 regulatory	 bodies,	 and	 others	 who	 have	 a	 legitimate	 interest	 in	 the	 system.	 Where	 direct	
communication	 is	 not	 practicable	 (e.g.,	 for	 consumer	 products	 and	 services),	 representatives	 or	 designated	 proxy	
stakeholders	are	selected.	

2) Define	the	stakeholder	needs	and	requirements	definition	strategy.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

60	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

NOTE		 Some	 stakeholders	 have	 interests	 that	 oppose	 the	 acquirer’s	 interests	 (e.g.,	 market	 competitors,	 hackers,	
terrorists)	 or	 oppose	 each	 other.	When	 the	 stakeholder	 interests	 oppose	 each	 other,	 but	 do	 not	 oppose	 the	 software	
system,	this	process	is	intended	to	gain	consensus	among	the	stakeholder	classes	to	establish	a	common	set	of	acceptable	
requirements.	The	intent	or	desires	of	those	that	oppose	the	acquirers,	or	detractors	of	the	system,	are	addressed	through	
the	Risk	Management	process,	threat	analyzes	of	the	System	Analysis	process,	or	the	system/software	requirements	for	
security,	adaptability,	or	resilience.	In	this	case,	the	stakeholder	needs	are	not	satisfied,	but	rather	addressed	in	a	manner	
to	help	ensure	system	assurance	and	integrity	if	actions	from	the	detractors	are	encountered.	

3) Identify	and	plan	for	the	necessary	enabling	systems	or	services	needed	to	support	stakeholder	needs	and	
requirements	definition.	

NOTE	 This	 includes	 identification	 of	 requirements	 and	 interfaces	 for	 the	 enabling	 systems.	 Enabling	 systems	 for	
stakeholder	needs	and	requirements	definition	include	tools	for	facilitation	and	requirements	management.	

4) Obtain	or	acquire	access	to	the	enabling	systems	or	services	to	be	used.	

NOTE	 The	Validation	process	is	used	to	objectively	confirm	that	the	enabling	system	achieves	its	 intended	use	for	its	
enabling	functions.	

b) Define stakeholder needs.	This	activity	consists	of	the	following	tasks:	

1) Define	context	of	use	within	the	concept	of	operations	and	the	preliminary	life	cycle	concepts.	

NOTE		 Context	 of	 use	 is	 often	 captured	 using	 a	 Context	 of	 Use	 Description	 [ISO/IEC	 25063].	 Preliminary	 life	 cycle	
concepts	are	developed	by	the	Business	or	Mission	Analysis	process.	

2) Identify	stakeholder	needs.	

NOTE	1	 	 Identification	of	stakeholder	needs	includes	elicitation	of	needs	directly	from	the	stakeholders,	identification	of	
implicit	stakeholder	needs	based	on	domain	knowledge	and	context	understanding,	and	documented	gaps	from	previous	
activities.	Needs	often	include	measures	of	effectiveness.	Functional	analysis	is	often	used	to	aid	the	elicitation	of	needs.	
Also	quality	characteristics	of	the	quality	model	in	ISO/IEC	25010	and	quality	model	application	to	requirements	analysis	
in	 ISO/IEC	25030	are	useful	 to	elicit	and	 identify	quality	requirements	of	non‐functional	requirements,	which	are	often	
implicit	stakeholder	needs.	

NOTE	2	 	 The	 SWEBOK, Guide to the Software Engineering Body of Knowledge,	 Software	 Requirements	 knowledge	 area	
discusses	some	additional	techniques	for	eliciting	and	clarifying	software	requirements,	such	as,	prototyping,	observation,	
user	stories	to	determine	required	functionality,	data	mining,	and	analyzing	competitors’	products.	

NOTE	3	 	 Stakeholder	 needs	 describe	 the	 needs,	 wants,	 desires,	 expectations	 and	 perceived	 constraints	 of	 identified	
stakeholders.	 Understanding	 stakeholder	 needs	 for	 the	minimum	 security	 and	 privacy	 requirements	 necessary	 for	 the	
operational	environment	minimizes	the	potential	for	disruption	in	plans,	schedules,	and	performance.	If	significant	issues	
are	likely	to	arise	relating	to	users	and	other	stakeholders	and	their	involvement	in	or	interaction	with	a	software	system,	
recommendations	for	identifying	and	treating	human‐system	issues	can	be	found	in	ISO	TS	18152.	

3) Prioritize	and	down‐select	needs.	

NOTE	 The	Decision	Management	 process	 is	 typically	 used	 to	 support	 prioritization.	 The	 System	Analysis	 process	 is	
used	to	analyze	needs	for	feasibility	or	other	factors.	

4) Define	the	stakeholder	needs	and	rationale.	

NOTE	 Needs	 concentrate	 on	 system	 purpose	 and	 behavior,	 and	 are	 described	 in	 the	 context	 of	 the	 operational	
environment	and	conditions.	It	is	useful	to	trace	needs	to	their	sources	and	rationale.	

c) Develop the operational concept and other life cycle concepts.	 This	 activity	 consists	 of	 the	 following	
tasks:	

NOTE	 Other	 life	 cycle	 concepts	 can	 include	 acquisition	 concepts,	 deployment	 concepts,	 support	 concepts,	 security	
concepts,	 and	 retirement	 concepts.	 In	 this	 activity,	 the	 preliminary	 life	 cycle	 concepts	 defined	 within	 the	 Business	 or	
Mission	Analysis	process	are	further	developed	in	the	context	of	specific	stakeholder	needs,	as	associated	scenarios	and	
interactions	are	defined.	See	 ISO/IEC/IEEE	29148:2011	Clauses	5	and	6	 for	more	 information	on	operational	 concepts,	
and	ISO/IEC/IEEE	29148:2011	Annex	A	for	an	annotated	outline	of	a	System	Operational	Concept.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

61	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

1) Define	 a	 representative	 set	 of	 scenarios	 to	 identify	 the	 required	 capabilities	 that	 correspond	 to	
anticipated	operational	and	other	life	cycle	concepts.	

NOTE	1	 	 Scenarios	 are	 used	 to	 analyze	 the	 operation	 of	 the	 system	 in	 its	 intended	 environment	 in	 order	 to	 identify	
additional	needs	or	requirements	that	perhaps	have	not	been	explicitly	 identified	by	any	of	the	stakeholders,	e.g.,	 legal,	
regulatory	and	social	obligations	The	context	of	use	of	the	system	is	identified	and	analyzed,	including	the	activities	that	
users	 perform	 to	 achieve	 system	 objectives,	 the	 relevant	 characteristics	 of	 the	 users	 (e.g.,	 expected	 training	 and	
knowledge,	 frequency	 of	 system	 use,	 responsibilities,	 accessibility	 concerns),	 the	 physical	 environment	 (e.g.,	 available	
light,	 temperature)	 and	 any	 equipment	 to	 be	 used	 (e.g.,	 protective	 or	 communication	 equipment).	 The	 social	 and	
organizational	influences	on	users	that	affect	system	use	or	constrain	its	design	are	analyzed	when	applicable.	Scenarios	
centered	 on	 attackers,	 their	 environments,	 tools,	 techniques,	 and	 capabilities	 are	 key	 considerations	 for	 operational	
concept	 development.	 Scenarios	 are	 prioritized	 in	 order	 to	 reflect	 the	weighted	 importance	 of	 the	 various	 operational	
needs.	

NOTE	2	 	 These	 scenarios	 often	 motivate	 updates	 to	 the	 operational	 or	 other	 life	 cycle	 concepts.	 Abuse	 and	 failure	
scenarios	highlight	the	need	for	additional	 functional	requirements	(or	more	specific	derived	requirements)	to	mitigate	
risks	that	are	identified	in	the	abuse	or	failure	scenarios.	

2) Identify	the	factors	affecting	interactions	between	users	and	the	system.	

i) Anticipated	physical,	mental,	and	learned	capabilities	of	the	users;	

ii) Workplace,	environment	and	facilities,	including	other	equipment	in	the	context	of	use;	

iii) Normal,	unusual,	and	emergency	conditions;	and	

iv) Operator	and	user	recruitment,	training	and	culture.	

NOTE	1	 	 Usability	requirements	take	into	account	human	capabilities	and	skills	limitations.	Where	possible,	applicable	
standards,	e.g.,	ISO	9241,	and	accepted	professional	practices	are	used.	

NOTE	2	 	 If	usability	is	important,	usability	requirements	are	planned,	specified,	and	implemented	through	the	life	cycle	
processes.	Refer	 to	 ISO	TS	18152	for	 information	on	human‐system	issues	and	ISO/IEC	25060:2010	for	 information	on	
usability.	

d) Transform stakeholder needs into stakeholder requirements.	 This	 activity	 consists	 of	 the	 following	
tasks:	

1) Identify	the	constraints	on	a	system	solution.	

NOTE		 These	 constraints	 can	 result	 from	 1)	 instances	 or	 areas	 of	 stakeholder‐defined	 solution;	 2)	 implementation	
decisions	made	at	higher	levels	of	system	hierarchical	structure;	3)	required	use	of	defined	enabling,	legacy,	or	interfacing	
systems,	system	elements,	resources,	and	staff;	or	4)	stakeholder‐defined	affordability	objectives.	Include	those	that	are	
unavoidable	consequences	of	existing	agreements,	management	decisions	and	technical	decisions.	

2) Identify	the	stakeholder	requirements	and	functions	that	relate	to	critical	quality	characteristics,	such	as	
assurance,	safety,	security,	environment,	or	health.	

NOTE	1	 	 See	ISO/IEC/IEEE	15026	for	additional	information	on	system	and	software	assurance.	

NOTE	2	 	 Identifying	safety	risks	 facilitates	 the	 identification	of	safety	requirements	and	functions.	Safety	risks	 include	
those	 associated	 with	 methods	 of	 operations	 and	 support,	 health	 and	 safety,	 threats	 to	 property	 and	 environmental	
influences.	Use	applicable	standards,	and	accepted	professional	practices.	For	example,	IEC	61508:2010,	Functional safety
of electrical/electronic/programmable electronic safety-related systems,	provides	detailed	requirements.	

NOTE	3	 	 Identifying	 security	 risks	 facilitates	 the	 identification	 of	 additional	 security	 requirements	 and	 functions.	 If	
warranted,	 include	 applicable	 areas	 of	 system	 security,	 such	 as	 physical,	 procedural,	 communications,	 computers,	
programs,	 data	 and	 emissions.	 This	 includes	 access	 and	 damage	 to	 protected	 personnel,	 properties	 and	 information,	
compromise	of	sensitive	information,	and	denial	of	approved	access	to	property	and	information.	This	also	includes	the	
required	 security	 functions,	 such	 as	 mitigation	 and	 containment,	 referencing	 applicable	 standards	 and	 accepted	
professional	practices	where	mandatory	or	relevant.	See	Annex	E	(E.6)	for	a	life	cycle	software	assurance	view.	

NOTE	4	 	 See	ISO/IEC	25030	for	further	information	regarding	quality	characteristics	from	a	quality	in	use	perspective.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

62	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

3) Define	stakeholder	requirements,	consistent	with	life	cycle	concepts,	scenarios,	interactions,	constraints,	
and	critical	quality	characteristics.	

NOTE	1	 	 See	ISO/IEC/IEEE	29148:2011	Clauses	5	and	6	for	more	information	on	stakeholder	requirements,	and	Clauses	
8	and	9	for	a	description	of	and	an	annotated	outline	for	a	Stakeholder	Requirements	Specification.	

NOTE	2	 	 The	stakeholder	requirements	are	reviewed	at	key	decision	times	in	the	life	cycle	to	help	ensure	that	account	is	
taken	of	changes	in	needs.	

NOTE	3	 	 The	stakeholder	requirements	are	recorded	in	a	form	suitable	for	requirements	management	through	the	life	
cycle.	 These	 records	 establish	 the	 stakeholder	 requirements	 baseline,	 and	 retain	 changes	 of	 need	 and	 their	 origin	
throughout	 the	 software	 life	 cycle.	 These	 records	 are	 the	 basis	 for	 traceability	 to	 decisions	 made	 by	 the	 Business	 or	
Mission	Analysis	process	as	well	as	stakeholder	needs,	system	requirements,	and	subsequent	software	system	elements.	

NOTE	4		 	 The	stakeholder	requirements	are	the	basis	of	the	validation	criteria	for	the	software	system	and	its	elements.	

e) Analyze stakeholder requirements. This	activity	consists	of	the	following	tasks:	

1) Analyze	the	complete	set	of	stakeholder	requirements.	

NOTE	1	 	 Stakeholder	requirements	are	analyzed	for	characteristics	of	individual	requirements,	as	well	as	characteristics	
of	the	set	of	requirements.	Potential	analysis	characteristics	include	that	the	requirements	are	necessary,	implementation‐
free,	unambiguous,	 consistent,	 complete,	 singular,	 feasible,	 traceable,	 verifiable,	 affordable,	 and	bounded.	 ISO/IEC/IEEE	
29148	provides	additional	information	on	characteristics	of	requirements.	

NOTE	2	 	 The	 System	 Analysis	 process	 is	 used	 to	 assess	 feasibility	 and	 affordability.	 The	 Verification	 and	 Validation	
processes	are	used	in	the	review	of	stakeholder	requirements.	

2) Define	critical	performance	measures	that	enable	the	assessment	of	technical	achievement.	

NOTE	 This	includes	defining	technical	and	quality	measures	and	critical	performance	parameters	associated	with	each	
effectiveness	measure	 identified	 in	 the	stakeholder	 requirements.	The	critical	performance	measures	 (e.g.,	measures	of	
effectiveness	and	measures	of	suitability)	are	defined,	analyzed	and	reviewed	to	help	ensure	stakeholder	 requirements	
are	 met	 and	 to	 help	 ensure	 identification	 of	 project	 cost,	 schedule	 or	 performance	 risk	 associated	 with	 any	 non‐
compliance.	ISO/IEC	15939	provides	a	process	to	identify,	define	and	use	appropriate	measures.	INCOSE	TP‐2003‐020‐01,	
Technical Measurement,	 provides	 information	 on	 the	 selection,	 definition	 and	 implementation	 of	 critical	 performance	
measures.	The	ISO/IEC	25000	series	of	standards	provides	relevant	quality	measures.	

3) Feed	 back	 the	 analyzed	 requirements	 to	 applicable	 stakeholders	 to	 validate	 that	 their	 needs	 and	
expectations	have	been	adequately	captured	and	expressed.	

4) Resolve	stakeholder	requirements	issues.	

NOTE	 This	 includes	 requirements	 that	 violate	 the	 characteristics	 for	 individual	 requirements	 or	 the	 set	 of	
requirements	as	defined	in	ISO/IEC/IEEE	29148.	

f) Manage the stakeholder needs and requirements definition.	This	activity	consists	of	the	following	tasks:	

1) Obtain	explicit	agreement	with	designated	stakeholders	on	the	stakeholder	requirements.	

NOTE	 This	includes	confirming	that	stakeholder	requirements	are	expressed	correctly,	comprehensible	to	originators,	
and	that	the	resolution	of	conflict	in	the	requirements	has	not	corrupted	or	compromised	stakeholder	intentions.	

2) Maintain	traceability	of	stakeholder	needs	and	requirements.	

NOTE		 Through	the	life	cycle,	bidirectional	traceability	is	maintained	between	the	stakeholder	needs	and	requirements,	
organizational	 strategy,	 and	business	and	mission	problems	and	opportunities.	 Stakeholder	 requirements	are	 traced	 to	
the	 system/software	 requirements	 during	 the	 System/Software	 Requirements	 Definition	 process.	 Traceability	 is	 often	
maintained	using	an	appropriate	data	repository.	

3) Provide	key	artifacts	and	information	items	that	have	been	selected	for	baselines.	

NOTE		 The	Configuration	Management	process	is	used	to	establish	and	maintain	configuration	items	and	baselines.	This	
process	 identifies	candidates	for	the	baseline,	and	the	Information	Management	process	controls	the	 information	items.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

63	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

For	this	process,	the	stakeholder	needs,	stakeholder	requirements,	and	operational	concept	are	typical	information	items	
that	are	baselined.	

6.4.3 System/Software requirements definition process

6.4.3.1 Purpose

The	 purpose	 of	 the	 System/Software	 Requirements	 Definition	 process	 is	 to	 transform	 the	 stakeholder,	 user‐
oriented	view	of	desired	capabilities	 into	a	 technical	view	of	a	solution	that	meets	 the	operational	needs	of	 the	
user.	

This	process	creates	a	set	of	measurable	system	requirements	that	specify,	from	the	supplier’s	perspective,	what	
characteristics,	 attributes,	 and	 functional	 and	 performance	 requirements	 the	 system	 is	 to	 possess,	 in	 order	 to	
satisfy	 stakeholder	 requirements.	 As	 far	 as	 constraints	 permit,	 the	 requirements	 should	 not	 imply	 any	 specific	
implementation.	

NOTE	1	 From	a	high‐level	view	of	the	software	system,	this	process	can	be	used	to	define	the	overall	requirements	of	the	
system.	As	the	software	system	is	decomposed	into	elements,	each	element,	in	turn,	is	treated	as	a	system,	function,	or	set	of	
functions	and	this	process	can	be	used	to	further	specify	requirements.	Requirements	analyzes	and	tools	support	traceability	
of	requirements	between	the	software	system	and	its	elements.	

NOTE	2	 The	 SWEBOK, Guide to the Software Engineering Body of Knowledge,	 Software	 Requirements	 knowledge	 area	
discusses	 software	 requirements	definition,	 analysis,	modelling,	 specification,	 validation,	management	 and	other	 topics	 that	
provide	additional	guidance	for	software	systems.	

NOTE	3	 The	wording	of	 the	outcomes	of	 the	System/Software	Requirements	Definition	process	differs	 slightly	 from	the	
outcomes	in	the	System	Requirements	Definition	process	of	ISO/IEC/IEEE	15288:2015.	Use	of	the	wording	“system/software	
requirements”	emphasize	the	applicability	of	this	document	to	software	systems,	having	software	requirements	and	systems	
requirements. This	is	intended	to	assist	users	who	define	systems	requirements	and	software	requirements	hierarchically	or	in	
different	stages.	

6.4.3.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	System/Software	Requirements	Definition	process:

a) The	system	or	element	description,	including	interfaces,	functions	and	boundaries,	for	a	system	solution	
is	defined.	
	

b) System/software	 requirements	 (functional,	 performance,	 process,	 non‐functional,	 and	 interface)	 and	
design	constraints	are	defined.	
	

c) Critical	performance	measures	are	defined.	
	

d) The	system/software	requirements	are	analyzed.	
	

e) Any	enabling	systems	or	services	needed	for	system/software	requirements	definition	are	available.	
	

f) Traceability	of	system/software	requirements	to	stakeholder	requirements	is	developed.	

6.4.3.3 Activities and tasks

The	project	shall	implement	the	following	activities	and	tasks	in	accordance	with	applicable	organization	policies	
and	procedures	with	respect	to	the	System/Software	Requirements	Definition	process.	

a) Prepare for System/Software Requirements Definition.	This	activity	consists	of	the	following	tasks:	

1) Define	the	functional	boundary	of	the	software	system	or	element	in	terms	of	the	behavior	and	properties	
provided.	

NOTE	 The	functional	boundary	definition	is	partly	based	on	the	context	of	use	and	operational	scenarios	defined	in	the	
frame	of	the	Stakeholder	Needs	and	Requirements	Definition	process.	This	includes	the	software	system’s	stimuli	(input)	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

64	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

and	its	responses	to	users	and	external	systems,	and	an	analysis	and	description	of	the	required	interactions	between	the	
software	 system	 and	 its	 operational	 environment	 in	 terms	 of	 interface	 properties	 and	 constraints,	 such	 as	 procedural	
flows,	 calling	 orders,	 data	 formats	 and	 flows,	 throughput,	 and	 timing.	 This	 establishes	 the	 expected	 software	 system	
behavior,	 expressed	 in	 quantitative	 terms,	 at	 its	 boundary.	 For	 software,	 boundaries	 are	 commonly	 expressed	 in	
Application	 Program	 Interfaces	 (API)	 and	 a	 graphical	 user	 interface	 (GUI)	 or	 interface	 files	 or	 services,	 including	 data	
formats.	Annex	E	(E.5)	provides	an	interface	management	view	of	the	life	cycle	processes.	

2) Define	the	system/software	requirements	definition	strategy.	

NOTE		 This	 includes	 the	 approach	 to	 be	used	 to	 identify	 and	define,	 and	manage	 the	 system/software	 requirements	
with	the	selected	life	cycle	model,	e.g.,	evolutionary,	incremental	or	iterative.	Many	factors	can	influence	the	strategy,	e.g.,	
complexity	 of	 the	 software	 system	 and	 information	 and	 functions	 to	 be	managed;	 need	 for	 ready	 access	 and	 common	
understanding	by	multiple	 team	members;	degree	of	collaborative	 involvement	by	 the	acquirer	or	user	representatives	
throughout	the	development	stage;	whether	the	project	involves	a	new	development,	a	modification,	re‐use	or	integration	
of	 existing	 systems;	 and	 process	 documentation	 requirements	 including	 period	 of	 retention.	 The	 life	 cycle	 model	 will	
influence	 when	 and	 how	 often	 the	 system/software	 requirements	 definition	 will	 be	 done.	 Annex	 H	 describes	 the	
progressive	development	of	requirements	in	projects	using	agile	methods.	

3) Identify	 and	 plan	 for	 the	 necessary	 enabling	 systems	 or	 services	 needed	 to	 support	 system/software	
requirements	definition.	

NOTE	 This	 includes	 identification	 of	 requirements	 and	 interfaces	 for	 the	 enabling	 systems.	 Enabling	 systems	 for	
requirements	 definition	 include	 tools	 for	 facilitation	 and	 requirements	management.	 Tools	 for	 software	 requirements	
management	which	are	integrated	with	software	development,	test,	and	CM	can	simplify	tracking	and	expedite	software	
construction.	Plans	for	enabling	systems	and	description	of	modeling	techniques	used	in	support	of	the	System/Software	
Requirements	Definition	process	can	be	incorporated	into	an	SDP.	

4) Obtain	or	acquire	access	to	the	enabling	systems	or	services	to	be	used.	

NOTE		 The	Validation	process	is	used	to	objectively	confirm	that	the	enabling	system	achieves	its	intended	use	for	its	
enabling	functions.	

b) Define system/software requirements.	This	activity	consists	of	the	following	tasks:	

1) Define	each	function	that	the	software	system	or	element	is	required	to	perform.	

NOTE	1	 	 Software	functions	can	be	described	in	use	cases,	user	stories,	or	scenarios,	and	involve	the	transformation	of	
data	 and	 information	 to	 achieve	 user	 needs	 (stakeholder	 requirements).	 In	 some	 cases,	 functions	 are	 derived	 from	
analysis	of	critical	quality	characteristics,	such	as	performance,	security	or	availability	(e.g.,	system	diagnosing	function	or	
highly	frequent	data	backup	function	for	reliability).	

NOTE	2		 	 Enabling	 functions	 that	 are	 required	 to	 support	 the	 system‐of‐interest	 in	 achieving	 its	 functionality	 are	 also	
identified	and	defined	concurrently	with	the	function	of	the	system‐of‐interest.	This	is	necessary	to	help	ensure	that	the	
enabling	functions	in	the	system	environment	are	identified	and	accounted	for.	

2) Identify	required	states	or	modes	of	operation	of	the	software	system.	

NOTE	1	 	 States	 or	 modes	 of	 operation	 can	 be	 modeled	 and	 represented	 in	 multiple	 modeling	 techniques	 and	
perspectives	to	give	a	sufficiently	complete	description	of	the	desired	system	or	element	requirements.	

NOTE	2	 	 Conditions	 for	 performance	 of	 functions	 often	 involve	 interoperability	 across	 functions	 or	 elements.	 For	
example,	some	software	requirements	(e.g.,	a	performance	timing	limit)	can	be	allocated	across	multiple	software	system	
elements,	affecting	treatment	of	the	requirement	in	a	test	case	or	regression	test.	

3) Define	necessary	implementation	constraints.	

NOTE	 For	software	elements,	this	includes	the	implementation	decisions	that	are	allocated	from	architecture	definition	
at	higher	levels	in	the	software	system,	introduced	by	stakeholder	requirements,	or	solution	limitations.	Implementation	
constraints	 include	 the	 conditions	 under	which	 the	 system	 is	 to	 be	 capable	 of	 performing	 the	 function,	 the	 conditions	
under	which	the	system	is	to	commence	performing	that	function	(input)	and	the	conditions	under	which	the	system	is	to	
cease	performing	that	function	(output).	

4) Identify	 requirements	 that	 relate	 to	 risks,	 criticality	 of	 the	 software	 system,	 or	 critical	 quality	
characteristics.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

65	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

NOTE	1	 	 Non‐functional	requirements	and	critical	quality	characteristics	 in	software	systems	commonly	include	those	
related	to	health,	safety,	security	and	software	assurance,	reliability,	availability	and	supportability	(maintainability),	and	
time	 constraints	 for	 throughput	 and	 performance.	 The	 System	Analysis	 process	 can	 be	 used	 to	 determine	 appropriate	
values	for	performance	requirements,	considering	the	anticipated	cost	of	achieving	them	and	their	 impact	on	operation	
and	use	of	the	system.	

NOTE	2	 	 Analysis	and	definition	of	safety	considerations	 include	 those	requirements	relating	to	methods	of	operation	
and	maintenance,	environmental	 influences,	and	risk	of	personnel	injury.	 It	also	 includes	expressing	each	safety‐related	
function	and	its	associated	integrity,	in	terms	of	the	necessary	risk	reduction	and	allocation	to	designated	safety‐related	
systems.	Applicable	standards	are	used	concerning	functional	safety,	e.g.,	 IEC	61508,	and	environmental	protection,	e.g.,	
ISO	 14001.	 Analysis	 includes	 security	 considerations,	 e.g.,	 those	 related	 to	 compromise	 and	 protection	 of	 sensitive	
information,	 data	 and	 material.	 The	 security‐related	 risks	 are	 defined,	 including	 administrative,	 personnel,	 physical,	
computer,	 communication,	 network,	 emission	 and	 environment	 factors	 using,	 as	 appropriate,	 applicable	 security	
standards.	Refer	to	ISO/IEC/IEEE	15026‐4	for	system	and	software	assurance	guidance.	ISO/IEC	27036	provides	guidance	
for	 information	 security	 requirements	 for	 the	 outsourcing	 of	 products	 and	 services.	 ISO	 25030	 provides	 guidance	 for	
external	 system	 quality	 factors	 and	 characteristics.	 Annex	E	 (E.6)	 provides	 a	 software	 assurance	 view	 of	 the	 life	 cycle	
processes.	

NOTE	3	 	 For	software	systems	intended	for	human	interaction,	human‐factors	engineering	(ergonomics)	specifications	
are	considered.	For	systems	that	have	usability	requirements,	recommendations	for	obtaining	a	desired	level	of	usability	
can	be	found	in	ISO/FDIS	9241‐220,	Ergonomics of human-system interaction — Part 220: Processes for enabling, executing
and assessing human-centred design within organizations.	

5) Define	system/software	requirements	and	requirements	attributes,	including	the	following:	

i) Data	elements,	data	structures	and	formats,	and	database	or	data	retention	requirements;	

ii) User	interfaces	and	user	documentation	(information	for	users)	and	user	training;	

iii) Interfaces	with	other	systems	and	services;	

iv) Functions	 and	 non‐functional	 characteristics,	 including	 critical	 quality	 characteristics	 and	 cost	
targets;	

v) Transition	 of	 operational	 processes	 and	 data	 from	 existing	 automated	 and	 manual	 systems,	
migration	approach	and	schedule,	software	installation	and	acceptance	of	the	product;	and	

vi) Requirement	attributes,	such	as	rationale;	priority;	traceability	to	software	system	elements,	test	
cases,	 and	 information	 items;	 methods	 of	 verification;	 inclusion	 in	 approved	 baselines;	 and	
evaluated	risk.	

NOTE	1	 	 Requirements	 definition	 involves	 iterative	 and	 recursive	 steps	 in	 parallel	 with	 other	 life	 cycle	 processes.	
Depending	on	 the	 life	cycle	model	 that	 is	being	employed,	 it	 is	useful	 to	compare	 the	resources	 to	be	spent	 in	assuring	
initial	 correctness	 of	 requirements	 versus	 the	 resource	 needed	 to	 evolve	 requirements	 based	 on	 verification	 and	
validation	results.	

NOTE	2	 	 The	system/software	requirements	and	attributes	are	recorded	with	a	level	of	detail	and	in	a	form	suitable	for	
requirements	management	through	the	life	cycle.	See	ISO/IEC/IEEE	29148:2011	Clauses	5	and	6	for	more	information	on	
requirements,	and	Clauses	8	and	9	for	a	description	of	and	an	annotated	outline	for	a	System	Requirements	Specification	
and	a	Software	Requirements	Specification.	

c) Analyze system/software requirements. This	activity	consists	of	the	following	tasks:	

1) Analyze	the	complete	set	of	system/software	requirements.	

NOTE	1	 	 Requirements	are	analyzed	for	characteristics	of	individual	requirements,	as	well	as	characteristics	of	the	set	of	
requirements.	 Potential	 analysis	 characteristics	 include	 that	 the	 requirements	 are	 necessary,	 implementation‐free,	
unambiguous,	 consistent,	 complete,	 singular,	 feasible,	 traceable,	 verifiable,	 affordable,	 and	 bounded.	 The	 Verification	
process	is	used	to	determine	if	requirements	meet	the	attributes	and	characteristics	of	good	requirements.	In	some	cases,	
the	 technical	and	economic	 feasibility	of	validating	and	verifying	alternative	 formulations	of	 requirements	 is	evaluated.	
ISO/IEC/IEEE	29148	provides	additional	information	on	characteristics	of	requirements.	

NOTE	2	 	 The	System	Analysis	process	 can	be	used	 to	 assess	 feasibility,	 affordability,	 balance	 and	other	 requirements	
characteristics.	 The	 System	 Analysis	 process	 is	 used	 to	 determine	 appropriate	 values	 for	 requirement	 parameters,	
considering	the	estimated	cost,	schedule,	and	technical	performance	of	the	software	system.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

66	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

NOTE	3	 	 Anticipating	that	some	requirements	can	be	achieved	incrementally	or	even	deferred	or	waived,	requirements	
can	be	prioritized.	

2) Define	critical	performance	measures	that	enable	the	assessment	of	technical	achievement.	

NOTE	 This	includes	defining	technical	and	quality	measures	and	critical	performance	parameters	associated	with	each	
effectiveness	measure	 identified	 in	 the	software	system	element	requirements.	The	critical	performance	measures	(e.g.,	
measures	 of	 performance	 and	 technical	 performance	 measures)	 are	 analyzed	 and	 reviewed	 to	 help	 ensure	
system/software	 requirements	 are	met	 and	 to	 help	 ensure	 identification	 of	 project	 cost,	 schedule	 or	 performance	 risk	
associated	with	any	non‐compliance.	ISO/IEC	15939	provides	a	process	to	identify,	define	and	use	appropriate	measures.	
INCOSE	TP‐2003‐020‐01,	Technical Measurement,	provides	information	on	the	selection,	definition	and	implementation	of	
critical	performance	measures.	The	ISO/IEC	25000	series	of	standards	provides	relevant	quality	measures.	

3) Feed	back	the	analyzed	requirements	to	applicable	stakeholders	for	review.	

NOTE	 Feedback	 helps	 validate	 that	 the	 specified	 requirements	 have	 been	 adequately	 captured	 and	 expressed.	
Confirmation	is	made	that	they	are	a	necessary	and	sufficient	response	to	stakeholder	requirements	and	a	necessary	and	
sufficient	input	to	other	processes,	in	particular	software	architecture,	design,	and	verification.	The	Validation	process	is	
used	to	determine	if	the	system/software	requirements	address	the	users’	needs.	

4) Identify	 and	 resolve	 issues,	 deficiencies,	 conflicts,	 and	 weaknesses	 within	 the	 complete	 set	 of	
requirements.	

NOTE	 This	 includes	 requirements	 that	 are	 not	 verifiable,	 ambiguous,	 violate	 the	 characteristics	 for	 individual	
requirements,	or	are	inconsistent	with	others	in	the	set	of	requirements.	Resolution	of	 issues	with	requirements	can	be	
iterative	within	certain	life	cycle	models.	

d) Manage system/software requirements. This	activity	consists	of	the	following	tasks:	

NOTE	 Maintaining	system/software	requirements	 includes	defining,	recording,	and	controlling	the	baseline,	 typically	
under	formal	configuration	management,	along	with	managing	changes	resulting	from	the	application	of	other	life	cycle	
processes	such	as	architecture	or	design.	

1) Obtain	explicit	agreement	on	the	system/software	requirements.	

NOTE	 This	 includes	 confirming	 that	 system/software	 requirements	 are	 expressed	 correctly,	 comprehensible	 to	
originators	 and	 implementers,	 and	 that	 the	 resolution	 of	 conflict	 in	 the	 requirements	 is	 consistent	 with	 stakeholder	
decisions.	

2) Maintain	traceability	of	the	system/software	requirements.	

NOTE	 Through	the	 life	cycle,	bidirectional	traceability	 is	maintained	between	the	system/software	requirements	and	
the	 stakeholder	 requirements,	 architectural	 entities,	 interface	 definitions,	 analysis	 results,	 verification	 methods	 or	
techniques,	 and	 allocated,	 decomposed,	 and	 derived	 requirements.	 Traceability	 allows	 verification	 that	 achievable	
stakeholder	 requirements	 are	 met	 by	 one	 or	 more	 system	 or	 element	 requirements,	 and	 such	 requirements	 meet	 or	
contribute	 to	 meeting	 at	 least	 one	 stakeholder	 requirement.	 Traceability	 is	 often	 facilitated	 by	 an	 appropriate	 data	
repository	or	integrated	development	and	test	infrastructure.	

3) Provide	key	artifacts	and	information	items	that	have	been	selected	for	baselines.	

NOTE		 The	Configuration	Management	process	is	used	to	establish	and	maintain	configuration	items	and	baselines.	This	
process	 identifies	candidates	for	the	baseline,	and	the	Information	Management	process	controls	the	 information	items,	
such	 as	 requirements	 specifications.	 For	 this	 process,	 the	 system/software	 requirements	 are	 typical	 artifacts	 that	 are	
baselined.	

6.4.4 Architecture Definition process

6.4.4.1 Purpose

The	purpose	of	the	Architecture	Definition	process	is	to	generate	system	architecture	alternatives,	to	select	one	or	
more	alternative(s)	that	frame	stakeholder	concerns	and	meet	system	requirements,	and	to	express	this	in	a	set	of	
consistent	views.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

67	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

Iteration	of	the	Architecture	Definition	process	with	the	Business	or	Mission	Analysis	process,	System/Software	
Requirements	Definition	process,	Design	Definition	process,	and	Stakeholder	Needs	and	Requirements	Definition	
process	 is	 often	 employed	 so	 that	 there	 is	 a	 negotiated	 understanding	 of	 the	 problem	 to	 be	 solved	 and	 a	
satisfactory	solution	is	identified.	The	results	of	the	Architecture	Definition	process	are	widely	used	across	the	life	
cycle	 processes.	 Architecture	 definition	may	 be	 applied	 at	many	 levels	 of	 abstraction,	 highlighting	 the	 relevant	
detail	that	is	necessary	for	the	decisions	at	that	level.	

NOTE	1		 System	 architecture	 deals	 with	 fundamental	 principles,	 concepts,	 properties,	 and	 characteristics	 and	 their	
incorporation	into	the	system‐of‐interest.	Architecture	definition	has	more	uses	than	as	merely	a	driver	or	part	of	design.	Refer	
to	ISO/IEC/IEEE	42010:2011	for	more	information	about	architecture	description	and	the	uses	and	nature	of	architecture.	

NOTE	2	 The	 Architecture	 Definition	 process	 supports	 identification	 of	 stakeholders	 and	 their	 concerns.	 As	 the	 process	
unfolds,	 insights	are	gained	 into	 the	relation	between	the	requirements	specified	 for	 the	software	system	and	the	emergent	
properties	 and	 behaviors	 of	 the	 system	 that	 arise	 from	 the	 interactions	 and	 relations	 between	 the	 system	 elements.	 An	
effective	architecture	 is	as	design‐agnostic	as	possible	to	allow	for	maximum	flexibility	 in	the	design	trade	space.	Even	for	a	
single‐product	software	system,	the	design	of	the	product	will	likely	change	over	time	while	the	architecture	remains	constant.	
An	effective	architecture	also	highlights	and	supports	trade‐offs	for	the	Design	Definition	process	and	possibly	other	processes,	
such	as	Portfolio	Management,	Project	Planning,	System/Software	Requirements	Definition,	and	Verification.	

NOTE	3	 Architecture	 Definition	 can	 apply	 to	 a	 product	 line	 rather	 than	 a	 single	 software	 system.	 A	 product	 line	
architecture	 describes	 the	 structural	 properties	 for	 building	 a	 group	 of	 related	 systems	 with	 common	 components	 and	
interrelationships.	In	product	line	architectures,	the	architecture	necessarily	spans	several	designs.	The	architecture	serves	to	
make	 the	 product	 line	 cohesive	 and	 helps	 ensure	 compatibility	 and	 interoperability	 across	 the	 product	 line.	 ISO/IEC	
26550:2013	describes	establishing	a	domain	architecture	for	a	product	line.	

NOTE	4	 The	SWEBOK (Guide to the Software Engineering Body of Knowledge)	Software	Requirements,	Software	Design	and	
Software	Engineering	Models	and	Methods	knowledge	areas	discuss	key	aspects	of	software	architecture	in	relationship	to	the	
system,	as	well	as	with	respect	to	iteration	with	design.	

6.4.4.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	Architecture	Definition	process:	

a) Identified	stakeholder	concerns	are	addressed	by	the	architecture.	
	

b) Architecture	viewpoints	are	developed.	
	

c) Context,	boundaries,	and	external	interfaces	of	the	system	are	defined.	
	

d) Architecture	views	and	models	of	the	system	are	developed.	
	

e) Concepts,	 properties,	 characteristics,	 behaviors,	 functions,	 or	 constraints	 that	 are	 significant	 to	
architecture	decisions	of	the	system	are	allocated	to	architectural	entities.	
	

f) System	elements	and	their	interfaces	are	identified.	
	

g) Architecture	candidates	are	assessed.	
	

h) An	architectural	basis	for	processes	throughout	the	life	cycle	is	achieved.	
	

i) Alignment	of	the	architecture	with	requirements	and	design	characteristics	is	achieved.	
	

j) Any	enabling	systems	or	services	needed	for	architecture	definition	are	available.	
	

k) Traceability	of	architecture	elements	to	stakeholder	and	system/software	requirements	is	developed.

6.4.4.3 Activities and tasks

The	project	shall	implement	the	following	activities	and	tasks	in	accordance	with	applicable	organization	policies	
and	procedures	with	respect	to	the	Architecture	Definition	process.	

a) Prepare for architecture definition.	This	activity	consists	of	the	following	tasks:	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

68	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

1) Review	pertinent	information	and	identify	key	drivers	of	the	architecture.	

NOTE	1	 	 Key	drivers	are	identified	by	reviewing:	(a)	market	studies,	industry	projections,	competitor	product	plans,	and	
scientific	 findings;	 (b)	 organizational	 strategies,	 organizational‐level	 concept	 of	 operations,	 organizational	 policies	 and	
directives,	regulatory	and	legal	constraints,	and	stakeholder	requirements;	(c)	mission	or	business	concept	of	operations,	
system‐of‐interest	 and	 related	 system	 operational	 concept,	 operational	 environment,	 technology	 roadmaps,	 and	
system/software	 requirements,	 and	 (d)	other	 factors	 that	 impact	 the	 suitability	of	 the	 software	 system	 through	 its	 life	
cycle.	 This	 analysis	 of	 key	 drivers	 typically	 builds	 from	 the	 Business	 or	 Mission	 Analysis,	 Stakeholder	 Requirements	
Definition,	and	System/software	Requirements	Definition	processes.	

NOTE	2	 	 	Key	 drivers	 of	 the	 architecture	 can	 include	 architecture	 styles	 and	 patterns,	 elements,	 principles	 such	 as	
replaceable	components,	feasibility	of	implementation	and	integration;	availability	of	COTS	and	open	source	components;	
data	sources	for	data‐intensive	systems;	and	performance	implications.	The	effect	of	choosing	various	design	elements	can	
be	lessened	if	the	software	system	is	properly	architected.	

2) Identify	stakeholder	concerns.	

NOTE	1	 	 Stakeholders	 are	 initially	 identified	 in	 the	 Stakeholder	 Needs	 and	 Requirements	 process.	 Additional	
stakeholders	 are	 usually	 identified	 during	 the	 Architecture	 Definition	 process.	 Stakeholder	 concerns	 related	 to	
architecture	 include	 system	 integrity	 concerns	 that	 the	 software	 system	 will	 be	 compromised	 intentionally	 or	
unintentionally	via	a	threat	agent	or	cause	accidents	as	a	safety	hazard.	Stakeholder.	expectations	or	constraints	are	often	
associated	 with	 the	 system’s	 life	 cycle	 stages,	 such	 as	 utilization	 (e.g.,	 availability,	 security,	 effectiveness,	 usability,	
interoperability	with	existing	systems,	availability	or	risks	to	data	in	the	system),	support	(e.g.,	the	supportability	of	the	
system	over	its	projected	life‐span,	obsolescence	management),	evolution	of	the	software	system	and	its	environment	(e.g.,	
adaptability,	 scalability,	 survivability),	 production	 (e.g.,	 distribution,	 testability),	 and	 retirement	 (e.g.,	 sensitive	 data	
eradication	or	retention).	

NOTE	2	 	 Concerns	affecting	software	system	architecture	include	data	sources	and	performance	implications	for	data‐
intensive	 systems,	 and	 constraints	 on	 the	 use	 of	 outsourced,	 existing,	 newly	 developed,	 proprietary,	 commercially	
available,	or	open	source	software	elements,	 including	software	licensing.	While	software	architecture	 is	 ideally	design‐
agnostic,	 the	 feasibility	of	 implementing	the	architecture	 in	an	affordable	software	system	is	a	significant	constraint	 for	
most	systems.	

3) Define	the	Architecture	Definition	roadmap,	approach,	and	strategy.	

NOTE	 This	includes	the	identification	of	opportunities	to	communicate	with	designated	stakeholders,	the	definition	of	
architecture	 review	 activities,	 evaluation	 approach	 and	 criteria,	 measurement	 approach,	 and	 measurement	 methods	
(refer	to	the	Measurement	process).	The	roadmap	shows	how	the	architecture	will	evolve	to	an	envisioned	end	state	and	
often	has	a	longer	timeframe	than	for	the	current	system‐of‐interest.	The	approach	is	the	manner	in	which	the	work	will	
be	accomplished,	such	as	how	to	engage	with	stakeholders,	how	to	vet	the	results,	or	where	to	do	the	work.	The	strategy	
deals	with	the	systematic	plan	of	action	for	implementing	the	approach	consistent	with	the	roadmap.	

4) Define	architecture	evaluation	criteria	based	on	stakeholder	concerns	and	key	requirements.	

5) Identify	 and	 plan	 for	 the	 necessary	 enabling	 systems	 or	 services	 needed	 to	 support	 the	 Architecture	
Definition	process.	

NOTE	 This	 includes	 identification	 of	 requirements	 and	 interfaces	 for	 the	 enabling	 systems	 and	 services.	 Enabling	
systems	 for	 architecture	 definition	 can	 include	 tools	 for	 collaboration	 and	 architecture	 development,	 and	 architecture	
reuse	repositories	for	artifacts	such	as	architecture	patterns,	models,	and	reference	architectures.	

6) Obtain	or	acquire	access	to	the	enabling	systems	or	services	to	be	used.	

NOTE	 The	Validation	process	is	used	to	objectively	confirm	that	the	enabling	system	achieves	its	 intended	use	for	its	
enabling	functions.	The	Infrastructure	Management	process	supports	reuse	of	enabling	systems.	

b) Develop architecture viewpoints.	This	activity	consists	of	the	following	tasks:	

1) Select,	adapt,	or	develop	viewpoints	and	model	kinds	based	on	stakeholder	concerns.	

2) Establish	or	identify	potential	architecture	framework(s)	to	be	used	in	developing	models	and	views.	

NOTE		 Some	architecture	 frameworks	 identify	stakeholders	and	their	concerns,	and	relevant	viewpoints	 that	address	
those	concerns,	while	other	architecture	frameworks	are	more	general	in	their	guidance.	Viewpoints	specify	the	kinds	of	
models	to	be	used	and	how	the	resulting	models	can	be	used	to	generate	architecture	views.	Refer	to	ISO/IEC/IEEE	42010	
for	more	information	on	architecture	framework	and	architecture	description	practices.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

69	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

3) Capture	rationale	for	selection	of	framework(s),	viewpoints	and	model	kinds.	

4) Select	or	develop	supporting	modelling	techniques	and	tools.	

NOTE	 Both	the	SWEBOK	and	ISO/IEC	TR	24748‐3	describe	modeling	techniques	that	support	Architecture	Definition	
and	Design	Definition	of	software	elements.	

c) Develop models and views of candidate architectures.	This	activity	consists	of	the	following	tasks:	

1) Define	the	software	system	context	and	boundaries	in	terms	of	interfaces	and	interactions	with	external	
entities.	

NOTE	 This	 task	 is	 mainly	 based	 on	 the	 outcomes	 of	 the	 Business	 or	 Mission	 Analysis	 process,	 and	 is	 performed	
concurrently	 with	 the	 Stakeholder	 Needs	 and	 Requirements	 Definition	 process.	 It	 consists	 of	 identifying	 the	 entities	
external	 to	 the	 software	 system	 (i.e.,	 existing	 and	projected	 systems,	 products,	 and	 services	 that	 constitute	 the	 system	
context)	 and	defining	 the	boundaries	 of	 the	 software	 system	 (i.e.,	 interactions	with	 these	 external	 entities	 through	 the	
interfaces	 that	 cross	 the	 boundaries).	 The	 external	 entities	 include	 the	 necessary	 enabling	 systems.	 The	 Architecture	
Definition	process	defines	interfaces	to	the	extent	needed	to	support	essential	architectural	decisions	and	understanding.	
These	interface	definitions	are	then	refined	by	the	Design	Definition	process.	

2) Identify	architectural	entities	and	relationships	between	entities	that	address	key	stakeholder	concerns	
and	critical	software	system	requirements.	

NOTE	 Architecture	 is	 not	 necessarily	 concerned	with	 all	 requirements,	 but	 rather	 only	with	 those	 system/software	
requirements	 that	 drive	 the	 architecture.	 On	 the	 other	 hand,	 the	 Design	 Definition	 process	 addresses	 and	 takes	 into	
account	all	the	requirements.	Sometimes,	through	the	Architecture	Definition	process	there	will	be	requirements	that	are	
deemed	 to	 be	 inappropriate,	 unaffordable,	 or	 unsuitable.	 These	 are	 requirements	 issues	 that	 are	 resolved	 through	
iteration	of	the	System/Software	Requirements	Definition	process.	It	is	also	important	that	the	architecture	addresses	key	
stakeholder	concerns	since	not	all	of	these	will	be	captured	in	requirements.	

3) Allocate	concepts,	properties,	characteristics,	behaviors,	functions,	or	constraints	that	are	significant	to	
architecture	decisions	of	the	software	system	to	architectural	entities.	

NOTE	 The	items	being	allocated	can	be	physical,	logical,	or	conceptual.	

4) Select,	adapt,	or	develop	models	of	the	candidate	architectures	of	the	software	system.	

NOTE	 It	 is	 common	 to	 use	 models	 in	 architecture	 definition.	 The	 models	 used	 are	 those	 that	 best	 address	 key	
stakeholder	 concerns.	Refer	 to	 ISO/IEC/IEEE	42010	 for	how	 this	 can	be	done.	Historically,	 it	 has	been	common	 to	use	
logical	and	physical	models	in	architecture	definition.	Information	on	logical	and	other	models	is	provided	in	Annex	F.	

5) Compose	 views	 from	 the	 models	 in	 accordance	 with	 identified	 viewpoints	 to	 express	 how	 the	
architecture	addresses	stakeholder	concerns	and	meets	stakeholder	and	system/software	requirements.	

6) Harmonize	the	architecture	models	and	views	with	each	other.	

NOTE	 Correspondence	 rules	 from	 frameworks	 are	 one	way	 to	 establish	harmony	between	 views.	 See	 ISO/IEC/IEEE	
42010.	

d) Relate the architecture to design.	This	activity	consists	of	the	following	tasks:	

1) Identify	 software	 system	 elements	 that	 relate	 to	 architectural	 entities	 and	 the	 nature	 of	 these	
relationships.	

NOTE	 Sometimes	 the	 software	 system	elements	 are	 initially	 notional	 until	Design	Definition	has	 occurred	 since	 this	
depends	on	the	actual	design(s)	to	be	done.	Sometimes	a	“reference	architecture”	is	created	using	these	notional	system	
elements	as	a	means	to	convey	architectural	intent	and	to	check	for	design	feasibility.	

2) Define	the	interfaces	and	interactions	among	the	software	system	elements	and	external	entities.	

NOTE	 This	 is	defined	at	 level	of	detail	necessary	 to	convey	 the	architectural	 intent	and	can	be	 further	refined	 in	 the	
Design	Definition	process.	

3) Partition,	align	and	allocate	requirements	to	architectural	entities	and	system	elements.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

70	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

4) Map	software	system	elements	and	architectural	entities	to	design	characteristics.	

5) Define	principles	for	the	software	system	design	and	evolution.	

EXAMPLE	 Principles	 can	 include	 interoperability,	 use	 of	 selected	 design	 patterns,	 ease	 of	 replacing	 and	 upgrading	
system	elements,	or	security	levels.	

e) Assess architecture candidates.	This	activity	consists	of	the	following	tasks:	

1) Assess	each	candidate	architecture	against	constraints	and	requirements.	

2) Assess	each	candidate	architecture	against	stakeholder	concerns	using	evaluation	criteria.	

NOTE	 The	System	Analysis	process	and	the	Risk	Management	process	can	be	used	to	support	this	task.	

3) Select	the	preferred	architecture(s)	and	capture	key	decisions	and	rationale.	

NOTE		 The	Decision	Management	process	can	be	used	to	support	this	task.	

4) Establish	the	architecture	baseline	of	the	selected	architecture.	

NOTE	 The	architecture	baseline	is	composed	of	models,	views	and	other	relevant	architecture	descriptions.	

f) Manage the selected architecture.	This	activity	consists	of	the	following	tasks:	

1) Formalize	 the	 architecture	 governance	 approach	 and	 specify	 governance‐related	 roles	 and	
responsibilities,	accountabilities,	and	authorities	related	to	design,	quality,	security,	and	safety.	

2) Obtain	explicit	acceptance	of	the	architecture	by	stakeholders.	

NOTE		 The	 Validation	 process	 is	 used	 to	 confirm	 that	 the	 architecture	 models	 and	 views	 reflect	 stakeholder	
requirements,	 that	 stakeholder	 concerns	 are	 addressed,	 and	 to	 help	 ensure	 that	 future	 iterations	 of	 software	 system	
architecture	better	address	stakeholder	concerns.	

3) Maintain	 concordance	 and	 completeness	 of	 the	 architectural	 entities	 and	 their	 architectural	
characteristics.	

NOTE	 The	entities	to	be	checked	are	not	only	technical.	These	are	also,	for	example,	legal,	economical,	organizational	
and	operational	entities	that	are	normally	part	of	stakeholder	requirements	and	concerns.	

4) Organize,	 assess	 and	 control	 evolution	 of	 the	 architecture	models	 and	 views	 to	 help	 ensure	 that	 the	
architectural	intent	is	met	and	the	architectural	vision	and	key	concepts	are	correctly	implemented.	

5) Maintain	the	architecture	definition	and	evaluation	strategy.	

NOTE	 This	 includes	 updating	 the	 architecture	 based	 upon	 technological	 (e.g.,	 obsolescence),	 implementation,	 or	
operational	experience.	This	includes	the	management	of	external	and	internal	interfaces	that	are	defined	at	this	level	of	
software	system	decomposition.	

6) Maintain	traceability	of	the	architecture.	

NOTE	 Throughout	the	life	cycle,	traceability	is	often	maintained	among	the	architectural	entities	or	elements	(models,	
views,	 and	 viewpoints),	 the	 requirements	 (including	 allocated,	 decomposed,	 and	 derived)	 and	 stakeholder	 concerns,	
software	system	design,	interface	definitions,	analysis	results,	and	verification	methods	or	techniques.	

7) Provide	key	artifacts	and	information	items	that	have	been	selected	for	baselines.	

NOTE	 The	Configuration	Management	process	is	used	to	establish	and	maintain	configuration	items	and	baselines.	This	
process	identifies	candidates	for	the	baseline.	The	Information	Management	process	controls	the	information	items,	such	
as	architecture	descriptions	(architecture	models,	architecture	views,	evaluations,	and	traceability).	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

71	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

6.4.5 Design Definition process

6.4.5.1 Purpose

The	 purpose	 of	 the	 Design	 Definition	 process	 is	 to	 provide	 sufficient	 detailed	 data	 and	 information	 about	 the	
system	and	its	elements	to	enable	the	implementation	consistent	with	architectural	entities	as	defined	in	models	
and	views	of	the	system	architecture.	

For	 software	 systems,	 design	 activities	 typically	 iterate	 with	 activities	 in	 System/Software	 Requirements	
Definition	 and	 Architecture	 Definition.	 Design	 definition	 is	 typically	 applied	 iteratively	 and	 incrementally	 to	
develop	a	detailed	design,	 including	software	elements,	 interfaces,	databases,	and	user	documentation.	Software	
design	 is	 usually	 concurrent	 with	 software	 implementation,	 integration,	 verification,	 and	 validation.	 Annex	 H	
discusses	 software	 design	 using	 agile	methods.	 During	 design	 and	 implementation,	 further	 process	 application	
refines	allocation	of	evolving	requirements	among	software	elements.	

NOTE	1	 The	Design	Definition	process	is	driven	by	requirements	that	have	been	vetted	through	the	architecture	and	more	
detailed	 analyzes	 of	 feasibility.	 Architecture	 focuses	 on	 suitability,	 viability,	 and	 desirability,	 whereas	 design	 focuses	 on	
compatibility	 with	 technologies	 and	 other	 design	 elements	 and	 feasibility	 of	 implementation	 and	 integration.	 An	 effective	
architecture	is	as	design‐agnostic	as	possible	to	allow	for	maximum	flexibility	in	the	design	trade	space.	

NOTE	2	 This	 process	 provides	 feedback	 to	 the	 software	 system	 architecture	 to	 consolidate	 or	 confirm	 the	 allocation,	
partitioning	and	alignment	of	architectural	entities.	

6.4.5.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	Design	Definition	process:

a)	 Design	characteristics	of	each	system	element	are	defined.	

b)	 System/software	requirements	are	allocated	to	system	elements.	

c)	 Design	enablers	necessary	for	design	definition	are	selected	or	defined.	

d)	 Interfaces	between	system	elements	composing	the	system	are	defined	or	refined.	

e)	 Design	alternatives	for	system	elements	are	assessed.	

f)	 Design	artifacts	are	developed.	

g)	 Any	enabling	systems	or	services	needed	for	design	definition	are	available.	

h)	 Traceability	 of	 the	 design	 characteristics	 to	 the	 architectural	 entities	 of	 the	 system	 architecture	 is	
established.

NOTE		 Design	definition	considers	applicable	technologies	and	their	contribution	to	the	system	solution.	Design	provides	
the	 ‘implement‐to’	 level	 of	 the	 definition,	 such	 as	 drawings,	 state	 diagrams,	 stories,	 and	 detailed	 design	 descriptions.	 For	
software	elements,	this	process	can	result	 in	a	detailed	design	description	that	can	be	verified	against	requirements	and	the	
software	 architecture.	 Even	 if	 the	 software	 design	 is	 not	 fully	 specified	 in	 a	 formal	 description,	 it	 is	 sufficiently	 detailed	 to	
permit	software	implementation	(construction)	and	test	planning.	

6.4.5.3 Activities and tasks

The	project	shall	implement	the	following	activities	and	tasks	in	accordance	with	applicable	organization	policies	
and	procedures	with	respect	to	the	Design	Definition	process.	

NOTE	 The	 SWEBOK,	 Guide to the Software Engineering Body of Knowledge,	 provides	 detailed	 discussion	 on	 software	
design.	This	knowledge	area	addresses	fundamentals,	key	issues,	design	strategies	and	methods,	and	design	notations.	

a) Prepare for software system design definition. This	activity	consists	of	the	following	tasks:	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

72	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

1) Define	the	design	definition	strategy,	consistent	with	the	selected	life	cycle	model	and	anticipated	design	
artifacts.	

NOTE						The	software	design	strategy	can	include	initial	or	incremental	decomposition	into	system	elements;	creation	of	
various	 views	 of	 automated	 procedures,	 data	 structures	 and	 control	 systems;	 selection	 of	 design	 patterns,	 or	
progressively	more	detailed	definition	of	objects	and	their	relationships.	

2) Select	and	prioritize	design	principles	and	design	characteristics.	

NOTE								Design	principles	include	controlling	ideas	such	as	abstraction,	modularization	and	encapsulation,	separation	of	
interface	and	implementation,	concurrency,	and	persistence	of	data.	Security	considerations	include	the	principle	of	least	
privilege,	 layered	defenses,	 restricted	 access	 to	 system	 services,	 and	other	 considerations	 to	minimize	 and	defend	 the	
system	attack	surface.	Design	characteristics	 include,	for	example,	availability,	 fault	tolerance	and	resilience,	scalability,	
usability,	capacity	and	performance,	testability,	portability,	and	affordability.	

3) Identify	and	plan	for	the	necessary	enabling	systems	or	services	needed	to	support	design	definition.	

NOTE						This	includes	identification	of	requirements	and	interfaces	for	the	enabling	systems.	Enabling	systems	for	design	
definition	 include	 selection	 of	 software	 and	 system	platforms,	 programming	 languages,	 design	 notations	 and	 tools	 for	
collaboration	and	design	development,	design	reuse	repositories	(for	product	lines,	design	patterns,	and	design	artifacts),	
and	design	standards.	

4) Obtain	or	acquire	access	to	the	enabling	systems	or	services	to	be	used.	

NOTE						The	Validation	process	is	used	to	objectively	confirm	that	the	enabling	system	achieves	its	intended	use	for	its	
enabling	functions.	

b) Establish designs related to each software system element.	This	activity	consists	of	the	following	tasks:	

1) Transform	architectural	and	design	characteristics	into	the	design	of	software	system	elements.	

NOTE	 Characteristics	 apply	 to	 physical	 and	 logical	 system	 elements,	 such	 as	 database	 structures,	 provisions	 for	
memory	and	storage,	software	processes	and	controls,	external	interfaces	such	as	user	interfaces,	or	services.	ISO	9241‐
210	provides	human	centred	design/ergonomic	design	guidelines.	

2) Define	and	prepare	or	obtain	the	necessary	design	enablers.	

NOTE	 Design	 enablers	 include	 models,	 equations,	 algorithms,	 calculations,	 formal	 expressions	 and	 values	 of	
parameters,	patterns,	and	heuristics,	which	are	associated	with	design	characteristics	using	adequate	representation	such	
as	 drawings,	 logical	 diagrams,	 flowcharts,	 coding	 conventions,	 logic	 patterns,	 information	models,	 business	 rules,	 user	
profiles,	 scenarios,	 use	 cases	 or	 user	 stories,	 and	 tables	 of	metrics	 and	 their	 values,	 e.g.,	 function	 points	 or	 user	 story	
points.	

3) Examine	design	alternatives	and	feasibility	of	implementation.		

NOTE	1	 	 	For	 the	 software	 system	 and	 software	 elements,	 typically	 reuse,	 adaptation,	 outsourced	 service,	 or	 new	
development	are	examined.	

NOTE	2	 	 Assess	 the	 feasibility	 of	 realizing	 design	 characteristics.	 If	 warranted	 by	 assessment	 results,	 examine	 other	
alternative	 design	 options	 or	 perform	 trade‐offs	 in	 the	 architecture	 or	 requirements	 when	 design	 characteristics	 are	
impractical	to	implement.	

4) Refine	or	define	the	interfaces	among	the	software	system	elements	and	with	external	entities.	

NOTE	 Interfaces	 are	 identified	 and	 defined	 in	 the	 Architecture	 Definition	 process	 (see	 6.4.4)	 to	 the	 level	 or	 extent	
needed	 for	 the	 architecture	 intent	 and	understanding.	These	are	 refined	 in	 the	Design	Definition	process	based	on	 the	
design	 characteristics,	 interfaces,	 and	 interactions	 of	 software	 elements	 with	 other	 elements	 composing	 the	 software	
system	and	with	external	entities.	Additional	interfaces	are	sometimes	identified	and	defined	that	were	not	addressed	in	
the	architecture	definition.	

5) Establish	the	design	artifacts.	

NOTE	 This	 task	 formalizes	 the	 design	 characteristics	 of	 the	 software	 system	 elements	 through	 dedicated	 artifacts,	
depending	on	the	implementation	technology.	Examples	of	artifacts	include	prototypes,	data	models,	pseudocode,	entity‐
relationship	 diagrams,	 use	 cases,	 user	 role	 and	 privilege	 matrixes,	 interface	 specifications,	 service	 descriptions,	 and	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

73	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

procedures.	Design	artifacts	 are	developed,	 obtained,	 or	modified	 for	 selected	alternatives.	The	data	 is	 associated	with	
detailed	acceptable	margins	for	implementation	(if	relevant	at	this	process	or	task	iteration).	

c) Assess alternatives for obtaining software system elements. This	activity	consists	of	the	following	tasks:	

1) Determine	technologies	required	for	each	element	composing	the	software	system.	

NOTE	 Several	technologies	are	sometimes	used	for	a	given	software	system	element,	e.g.,	internet	presence,	embedded	
systems,	adaptation	of	open	source	software,	human	operator	roles.	

2) Identify	candidate	alternatives	for	the	software	system	elements.	

NOTE	 Alternatives	 include	newly	designed	and	constructed	items;	adaptations	of	existing	product	 lines,	components,	
objects,	or	services;	or	acquisition	or	reuse	of	Non‐Developed	Items	(NDI).	NDI	include	COTS	(Commercial‐Off‐The‐Shelf)	
or	FOSS	(Free	and	Open	Source	Software)	packages	or	elements,	reuse	of	a	previous	design,	or	existing	assets,	including	
acquirer	provided	items.	

3) Assess	 each	 candidate	 alternative	 against	 criteria	 developed	 from	 expected	 design	 characteristics	 and	
element	requirements	to	determine	suitability	for	the	intended	application.	

NOTE	 A	make‐or‐buy	decision	and	resulting	 implementation	and	 integration	approach	 typically	 involve	 trade‐offs	of	
the	 design	 criteria,	 including	 cost.	 Design	 choices	 commonly	 consider	 enabling	 systems	 required	 to	 test	 the	 candidate	
alternative	(test‐driven	design	and	development)	and	sustainability	over	the	system	life,	including	maintenance	costs.	The	
Maintenance	process	can	be	used	to	determine	the	suitability	of	the	design	for	long‐term	maintenance	and	sustainability.	

4) Choose	the	preferred	alternatives	among	candidate	design	solutions	for	the	software	system	elements.	

NOTE		 The	 System	Analysis	 process	 can	be	used	 for	 analyzes	 and	 assessments	 to	 support	 the	Decision	Management	
process	in	performing	the	selection.	Design	reviews	are	conducted	using	the	Validation	process.	

d) Manage the design. This	activity	consists	of	the	following	tasks:	

1) Capture	the	design	and	rationale.	

NOTE		 Commonly	captured	information	includes	the	software	system	elements	and	affiliated	requirements	and	design	
data,	e.g.,	for	software	elements,	internal	and	external	interfaces,	data	structures,	implementation	and	test	requirements,	
unit	aggregation	data	for	integration,	and	test	cases.	Rationale	typically	includes	information	about	major	implementation	
options	and	enablers.	The	resultant	design	is	controlled	in	accordance	with	the	strategy.	

2) Establish	traceability	between	the	detailed	design	elements,	the	system/software	requirements,	and	the	
architectural	entities	of	the	software	system	architecture.	

NOTE	1	 	 This	 task	 facilitates	providing	 feedback	to	the	Architecture	Definition	process	 for	potential	modifications,	 for	
example,	 to	 modify	 the	 allocation	 of	 software	 system	 elements	 in	 order	 to	 obtain	 the	 expected	 architectural	
characteristics;	or	possibly	to	modify	the	expected	architectural	characteristic	due	to	factors	discovered	during	the	design	
process,	or	to	make	stakeholders	aware	of	the	potential	impacts.	

NOTE	2		 	 Through	the	life	cycle,	bidirectional	traceability	is	maintained	between	the	design	and	the	verification	methods	
or	 techniques,	 and	 software	 system	 element	 requirements.	 Allocations	 and	 design	 properties	 are	 assigned	 to	 software	
elements,	software	units	and	affiliated	artifacts,	at	a	detailed	enough	level	to	permit	software	testing	and	implementation,	
including	construction.	

3) Determine	the	status	of	the	software	system	and	element	design.	

NOTE	1	 	 The	Measurement	process	 is	used	 to	establish	measures	 for	 the	completeness	and	quality	of	 the	design	as	 it	
progresses.	 The	 Verification	 and	 Validation	 processes	 are	 invoked	 to	 verify	 and	 validate	 the	 detailed	 design	 and	
implementation	

NOTE	2	 	 This	includes	periodic	assessment	of	the	design	characteristics	in	case	of	evolution	of	the	software	system	and	
of	 its	 architecture,	 as	well	 as	 forecasting	potential	 obsolescence	of	 components	 and	 technologies,	 their	 replacement	by	
others	 over	 time	 in	 the	 life	 cycle	 of	 the	 software	 system,	 and	 the	 consequences	 for	 the	 design	 definition.	 The	 Risk	
Management	process	is	typically	applied	to	evaluate	risks	in	the	design	strategy,	initial	design,	and	the	evolving	design.	

4) Provide	key	artifacts	and	information	items	that	have	been	selected	for	baselines.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

74	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

NOTE	 The	Configuration	Management	process	is	used	to	establish	and	maintain	configuration	items	and	baselines	for	
artifacts	 such	 as	 design	models.	 This	 process	 identifies	 candidates	 for	 the	 baseline,	 and	 the	 Information	Management	
process	controls	the	information	items,	such	as	design	descriptions	and	specifications.	

6.4.6 System Analysis process

6.4.6.1 Purpose

The	purpose	of	the	System	Analysis	process	 is	to	provide	a	rigorous	basis	of	data	and	information	for	technical	
understanding	to	aid	decision‐making	across	the	life	cycle.	

The	 System	Analysis	 process	 applies	 to	 the	development	 of	 inputs	needed	 for	 any	 technical	 assessment.	 It	 can	
provide	confidence	in	the	utility	and	integrity	of	system	requirements,	architecture,	and	design.	System	analysis	
covers	 a	 wide	 range	 of	 differing	 analytic	 functions,	 levels	 of	 complexity,	 and	 levels	 of	 rigor.	 It	 includes	
mathematical	 analysis,	 modelling,	 simulation,	 experimentation,	 and	 other	 techniques	 to	 analyze	 technical	
performance,	 system	 behavior,	 feasibility,	 affordability,	 critical	 quality	 characteristics,	 technical	 risks,	 life	 cycle	
costs,	and	to	perform	sensitivity	analysis	of	the	potential	range	of	values	for	parameters	across	all	life	cycle	stages.	
It	 is	 used	 for	 a	wide	 range	 of	 analytical	 needs	 concerning	 operational	 concepts,	 determination	 of	 requirement	
values,	 resolution	 of	 requirements	 conflicts,	 assessment	 of	 alternative	 architectures	 or	 system	 elements,	 and	
evaluation	of	engineering	strategies	(integration,	verification,	validation,	and	maintenance).	Formality	and	rigor	of	
the	 analysis	will	 depend	 on	 the	 criticality	 of	 the	 information	 need	 or	work	 product	 supported,	 the	 amount	 of	
information/data	available,	the	size	of	the	project,	and	the	schedule	for	the	results.	

NOTE	 The	System	Analysis	process	can	be	employed	for	the	entire	software	system	or	any	element.	This	process	is	often	
used	in	conjunction	with	the	Decision	Management	process.	

6.4.6.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	System	Analysis	process:

a)	 System	analyzes	needed	are	identified.	

b)	 System	analysis	assumptions	and	results	are	validated.	

c)	 System	analysis	results	are	provided	for	decisions.	

d)	 Any	enabling	systems	or	services	needed	for	system	analysis	are	available.	

e)	 Traceability	of	the	system	analysis	results	is	established.

6.4.6.3 Activities and tasks

The	project	shall	implement	the	following	activities	and	tasks	in	accordance	with	applicable	organization	policies	
and	procedures	with	respect	to	the	System	Analysis	process.	

a) Define the system analysis strategy and prepare for system analysis.	 This	 activity	 consists	 of	 the	
following	tasks:	

1) Identify	the	problem	or	question	that	requires	analysis.	

NOTE	 This	 includes	 technical,	 functional,	 and	 non‐functional	 objectives	 of	 the	 analysis.	 Non‐functional	 objectives	
include	 critical	 quality	 characteristics,	 various	 properties,	 technology	 maturity,	 and	 technical	 risks.	 The	 problem	
statement	 or	 question	 to	 be	 answered	 by	 the	 analysis	 is	 essential	 to	 establish	 the	 objectives	 of	 the	 analysis	 and	 the	
expectations	and	utility	of	the	results.	

2) Identify	the	stakeholders	of	the	analysis.	

3) Define	the	scope,	objectives,	and	level	of	fidelity	of	the	analysis.	

NOTE	 The	necessary	level	of	fidelity	(accuracy	or	precision)	is	a	factor	in	determining	the	appropriate	level	of	rigor.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

75	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

4) Select	the	methods	to	support	the	analysis.	

NOTE	 The	 methods	 are	 chosen	 based	 on	 time,	 cost,	 fidelity,	 technical	 drivers,	 and	 criticality	 of	 analysis.	 Analysis	
methods	have	a	wide	range	of	levels	of	rigor	and	include	expert	judgment,	worksheet	computations,	parametric	estimates	
and	calculations,	historical	data	and	trend	analysis,	engineering	models,	simulation,	visualization,	and	prototyping.	Due	to	
cost	and	schedule	constraints,	most	projects	typically	perform	system	analysis	only	for	critical	characteristics.	

5) Identify	and	plan	for	the	necessary	enabling	systems	or	services	needed	to	support	the	analysis.	

NOTE	 This	 task	 includes	 identification	of	 requirements	and	 interfaces	 for	 the	enabling	systems.	The	system	analysis	
enabling	systems	include	the	tools,	relevant	models,	and	potential	data	repositories	needed	to	support	the	analysis.	The	
methods	 chosen	 will	 be	 a	 major	 factor	 in	 determining	 what	 tools	 are	 appropriate	 to	 support	 the	 analysis.	 This	 also	
includes	determining	the	availability	of	reusable	or	other	relevant	models	and	data,	or	resources.	

6) Obtain	or	acquire	access	to	the	enabling	systems	or	services	to	be	used.	

NOTE	 The	 Infrastructure	 Management	 process	 enables	 the	 provision	 of	 systems	 analysis	 services.	 The	 Validation	
process	is	used	to	objectively	confirm	that	the	enabling	system	achieves	its	intended	use	for	its	enabling	functions.	

7) Collect	the	data	and	inputs	needed	for	the	analysis.	

b) Perform system analysis.	This	activity	consists	of	the	following	tasks:	

1) Identify	and	validate	contexts	and	assumptions.	

2) Apply	the	selected	analysis	methods	to	perform	the	required	analysis.	

3) Review	the	analysis	results	for	quality	and	validity.	

NOTE	 The	results	are	coordinated	with	associated	analyzes	that	have	been	previously	completed.	

4) Establish	conclusions	and	recommendations.	

NOTE	 The	appropriate	subject	matter	experts	and	stakeholders	are	identified	and	engaged	in	this	task.	

5) Record	the	results	of	the	system	analysis,	

c) Manage the system analysis.	This	activity	consists	of	the	following	tasks:	

1) Maintain	traceability	of	the	analysis	results.	

NOTE		 Through	 the	 life	 cycle,	 bidirectional	 traceability	 is	maintained	 between	 the	 analysis	 results	 and	 any	 software	
system	 item	 for	which	 the	 analysis	 is	 supporting	 a	 decision	 or	 providing	 rationale	 (e.g.,	 system/software	 requirement	
values,	architecture	alternatives).	This	is	often	facilitated	by	an	appropriate	data	repository.	

2) Provide	key	artifacts	and	information	items	that	have	been	selected	for	baselines.	

NOTE		 The	Configuration	Management	process	is	used	to	establish	and	maintain	configuration	items	and	baselines.	This	
process	 identifies	candidates	for	the	baseline,	and	the	Information	Management	process	controls	the	 information	items.	
For	this	process,	the	analysis	results	or	reports	are	typical	information	items	that	are	managed.	

6.4.7 Implementation process

6.4.7.1 Purpose

The	purpose	of	the	Implementation	process	is	to	realize	a	specified	system	element.	

This	 process	 transforms	 requirements,	 architecture,	 and	 design,	 including	 interfaces,	 into	 actions	 that	 create	 a	
system	element	according	to	the	practices	of	the	selected	implementation	technology,	using	appropriate	technical	
specialties	or	disciplines.	This	process	 results	 in	a	 system	element	 that	 satisfies	 specified	 system	 requirements	
(including	allocated	and	derived	requirements),	architecture,	and	design.	

For	software	systems,	the	purpose	of	the	Implementation	process	is	to	realize	a	software	system	element.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

76	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

Software	 system	 elements	 can	 include	 hardware,	 software,	 and	 services.	 For	 software	 implementation,	 this	
process	transforms	specified	designs,	behavior,	interfaces	and	implementation	constraints	into	actions	that	create	
a	 software	 system	 element	 implemented	 as	 a	 software	 product	 or	 service,	 also	 known	 as	 a	 “software	 item”.	
Software	implementation	results	in	a	software	element	that	satisfies	specified	requirements	through	verification	
and	 stakeholder	 requirements	 through	 validation.	 Software	 implementation	 includes	 various	 combinations	 of	
construction	 (coding	 of	 newly	 built	 software	 elements),	 acquisition	 of	 new	 software	 packages	 (e.g.,	 from	 open	
source	or	a	commercial	or	organizational	source)	or	re‐use	of	existing	elements	(with	or	without	modification).	

Software	implementation	commonly	involves	use	of	the	Agreement	processes	to	obtain	non‐developmental	items	
(NDI),	 such	 as	 hardware	 and	 operating	 systems	 (the	 platform)	 or	 enabling	 systems	 and	 services.	 Software	
implementation	 is	 usually	 performed	 concurrently	 with	 software	 integration.	 Implementation	 is	 typically	
performed	along	with	all	of	the	Technical	Management	processes	and	many	of	the	Technical	processes,	especially:	

a) The	Verification	process,	which	provides	objective	evidence	that	the	software	implementation	fulfills	its	
specified	 requirements	 and	 identifies	 anomalies	 (errors,	 defects,	 faults)	 in	 implementation‐related	
information	 items,	 (e.g.,	 system/software	 requirements,	 architecture,	 design,	 or	 other	 descriptions),	
processes,	software	elements,	items,	units;	

b) The	 Validation	 process,	 which	 confirms	 that	 the	 implementation	 fulfils	 requirements	 for	 a	 specific	
intended	use	of	a	software	work	product.	

6.4.7.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	Implementation	process:

a)	 Implementation	constraints	that	influence	the	requirements,	architecture,	or	design	are	identified.	

b)	 A	system	element	is	realized.	

c)	 A	system	element	is	packaged	or	stored.	

d)	 Any	enabling	systems	or	services	needed	for	implementation	are	available.	

e)	 Traceability	is	established.

6.4.7.3 Activities and tasks

The	project	shall	implement	the	following	activities	and	tasks	in	accordance	with	applicable	organization	policies	
and	procedures	with	respect	to	the	Implementation	process.	

a) Prepare for implementation.	This	activity	consists	of	the	following	tasks:	

1) Define	an	implementation	strategy,	with	consideration	of	the	following:	

i) development	 policies	 and	 standards,	 including	 standards	 that	 govern	 applicable	 safety,	 security,	
privacy	 and	 environmental	 practices;	 programming	 or	 coding	 standards;	 unit	 test	 policies;	 and	
language‐specific	standards	for	implementing	security	features;	

ii) For	reused	or	adapted	software,	methods	to	determine	the	level,	source,	and	suitability	of	the	reused	
system	elements	and	security	of	the	supply	chain;	

iii) procedures	and	methods	for	software	development	(construction)	and	development	of	unit	tests;	and	
the	use	of	peer	reviews,	unit	tests,	and	walkthroughs	during	implementation;	

iv) use	of	CM	control	during	software	construction;	

v) change	management	considerations	for	manual	processes;	

vi) implementation	 priorities	 to	 support	 data	 and	 software	 migration	 and	 transition,	 along	 with	
retirement	of	legacy	systems;	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

77	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

vii) creation	 of	 manual	 or	 automated	 test	 procedures	 to	 verify	 that	 a	 software	 unit	 meets	 its	
requirements	before	creation	of	the	software	unit	(test‐driven	development);	and	

viii) comprehensive	 or	 specialized	 life	 cycle	 development	 and	 support	 environments	 for	 realizing	 and	
managing	 requirements,	models	 and	prototypes,	deliverable	 system	or	 software	elements,	 and	 test	
specifications	and	test	cases.	

NOTE		 The	implementation	strategy	is	commonly	recorded	in	a	project’s	SDP	or	SEMP,	or	sometimes	in	a	PMP.	

2) Identify	 constraints	 from	 the	 implementation	 strategy	 and	 implementation	 technology	 on	 the	
system/software	 requirements,	 architecture	 characteristics,	 design	 characteristics,	 or	 implementation	
techniques.	

NOTE	1	 	 Constraints	 include	 current	 or	 anticipated	 limitations	 of	 the	 chosen	 implementation	 technology	 (e.g.,	 for	
software,	 the	 operating	 system,	 database	 management	 system,	 web	 services),	 acquirer	 furnished	materials	 or	 system	
elements	for	adaptation,	and	limitations	resulting	from	the	use	of	required	implementation‐enabling	systems.	

NOTE	2	 	 The	 implementation	 strategy	 for	 software	 typically	 identifies	 and	 allocates	 ‘implement‐to’	 criteria,	 e.g.,	
software	architecture	and	design	characteristics,	 system/software	requirements	 including	software	assurance,	usability	
considerations,	 configuration	 management,	 traceability,	 or	 other	 conditions	 to	 be	 satisfied.	 These	 criteria	 can	 clarify	
appropriate	unit	aggregation	levels,	specifications,	and	constraints.	

3) Identify	 and	plan	 for	 the	 necessary	 and	distinct	 software	 environments,	 including	 enabling	 systems	 or	
services	needed	to	support	development	and	testing.	

NOTE	 Implementation	 of	 software	 commonly	 uses	 distinct	 environments	 that	 are	 separated	 under	 configuration	
control	from	the	operational	(production)	environment.	Common	Implementation	process,	enabling	systems,	and	services	
include	 comprehensive	 or	 specialized	 life	 cycle	 development	 and	 support	 environments	 for	 realizing	 and	 managing	
requirements,	 models	 and	 prototypes,	 deliverable	 elements,	 and	 test	 environments,	 specifications	 and	 test	 cases;	
simulators	for	external	systems,	training	systems;	and	content	management	systems	for	user	documentation.	

4) Obtain	or	acquire	access	to	the	software	environments	and	other	enabling	systems	or	services.	

NOTE	 The	Validation	process	is	used	to	objectively	confirm	that	the	integration	enabling	system	achieves	its	intended	
use	for	its	enabling	functions.	

b) Perform implementation. This	activity	consists	of	the	following	tasks:	

NOTE		 Throughout	 the	 Implementation	 process	 the	 Verification	 process	 is	 used	 to	 objectively	 confirm	 the	 system	
elements	conform	to	requirements.	The	Validation	process	is	used	to	objectively	confirm	the	element	is	suitable	to	be	used	
in	its	intended	operational	environment	according	to	stakeholder	requirements.	

1) Realize	or	adapt	 software	elements,	 according	 to	 the	strategy,	 constraints,	and	defined	 implementation	
procedures.	

NOTE	1	 	 Software	 elements	 are	 acquired,	 identified	 for	 reuse	 from	organizational	 assets,	 or	developed	 (constructed).	
Software	 elements	 that	 are	 acquired	 can	 range	 from	 a	 simple	 product	 purchase	 in	 accordance	with	 organizational	 or	
project	purchasing	rules	to	a	complex	acquisition	of	a	software	system	that	involves	the	Acquisition	and	Supply	processes.	
Adaptation	 includes	configuration	of	 software	elements	 that	are	 reused	or	modified.	Construction	can	 involve	software	
coding,	adaptive	reuse	and	integration	of	existing	units,	refactoring,	database	development,	and	construction	of	manual	or	
automated	test	procedures	for	each	unit.	

NOTE	2	 	 For	software	elements	that	are	developed,	at	the	lowest	level	of	implementation	executable	software	units	are	
constructed	 (often	 with	 associated	 data	 structures,	 application	 programming	 interfaces,	 service	 descriptions,	 user	
documentation,	test	cases,	or	other	elements),	controlled,	made	available	to	authorized	roles,	and	stored	according	to	the	
CM	procedures	for	development	artifacts.	

NOTE	3	 	 The	SWEBOK, Guide to the Software Engineering Body of Knowledge	 provides	 detailed	 discussion	 on	 Software	
Construction.	 This	 knowledge	 area	 addresses	 fundamentals,	management,	measurement,	 practical	 considerations	 (e.g.,	
construction	design,	languages,	testing,	reuse	and	integration),	construction	technologies	(e.g.,	object	oriented,	error	and	
exception	handling,	executable	models,	distributed	software),	and	tools	and	environments.	

2) Realize	or	adapt	hardware	elements	of	software	systems.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

78	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

NOTE	 Hardware	 elements	 are	 acquired	 or	 fabricated	 using	 applicable	 techniques	 relevant	 to	 the	 physical	
implementation	 technology	 and	materials	 selected.	As	 appropriate,	 hardware	 elements	 are	 verified	 for	 conformance	 to	
specified	system	requirements	and	critical	quality	characteristics.	In	the	case	of	repeated	system	element	implementation	
(e.g.,	 mass	 production,	 replacement	 system	 elements)	 the	 implementation	 procedures	 and	 fabrication	 processes	 are	
defined	and	can	be	automated	to	achieve	consistent	and	repeatable	producibility.	Some	common	hardware	elements	 in	
software	 systems	 include	 integrations	 of	 acquired	 COTS	 systems,	 special	 modifications,	 e.g.,	 for	 test	 or	 operational	
environments,	and	hardware	controls	with	embedded	software.	

3) Realize	or	adapt	service	elements	of	software	systems.	

NOTE		 Service	 elements	 include	 a	 set	 of	 services	 to	 be	 provided.	 ISO/IEC	 20000	 (IEEE	 Std	 20000)	 applies	 to	
management	of	 system	elements	 realized	 in	 services,	 including	 strategy,	design,	 and	 transition.	As	appropriate,	 service	
elements	are	verified	for	conformance	to	the	system	requirements	and	service	criteria.	For	example,	operational	resource	
elements	are	verified	for	conformance	to	the	system	requirements	and	operational	concept.	Service	elements	can	include	
network	 communications,	 training,	 software	 packaging	 and	 distribution	 services,	 software	 customization	 services	 for	
customer‐specific	needs,	operational	and	security	monitoring,	and	user	assistance.	

4) Evaluate	software	unit	and	affiliated	data	or	other	information	according	to	the	implementation	strategy	
and	criteria.	

NOTE	1	 	 Criteria	for	evaluation	commonly	include	satisfaction	of	unit	requirements	and	test	criteria,	unit	test	coverage,	
traceability	 requirements,	 consistency	 with	 software	 element	 requirements	 or	 design,	 internal	 unit	 requirement	
consistency,	 and	 feasibility	 for	 further	 process	 activity,	 e.g.,	 integration,	 verification,	 validation,	 operations	 and	
maintenance.	

NOTE	2	 	 Use	the	Manage results of implementation	activity	to	record	construction	and	address	anomalies.	

5) Package	and	store	the	software	system	element.	

NOTE	 Contain	 the	 software	 system	 element	 in	 order	 to	 achieve	 continuance	 of	 its	 characteristics.	 Conveyance	 and	
storage,	 and	 their	 durations,	 can	 influence	 the	 specified	 containment.	 For	 software,	 a	master	 copy	of	 the	 implemented	
software	(electronic	or	on	physical	media)	is	stored	in	a	controlled	location	and	made	available	to	authorized	roles	(e.g.,	
for	 use	 in	 the	 Integration	 and	 Transition	 processes).	 Configuration	 and	 product	 information	 is	 captured	 by	 the	
Configuration	Management	and	Information	Management	processes	when	the	element	is	stored.	

6) Record	objective	evidence	that	the	software	system	element	meets	requirements.	

NOTE	 Evidence	 is	 provided	 in	 accordance	 with	 supply	 agreements,	 legislation	 and	 organization	 policy.	 Evidence	
includes	element	modifications	made	due	to	processing	changes	or	non‐conformances	found	during	the	Verification	and	
Validation	processes.	The	objective	evidence	 is	part	of	 the	element’s	as‐implemented	configuration	baseline	established	
through	 the	 Configuration	 Management	 process	 and	 includes	 the	 results	 of	 unit	 testing,	 analysis,	 inspections,	 walk‐
through	events,	demonstrations,	product	or	technical	reviews,	or	other	verification	exercises.	

c) Manage results of implementation. This	activity	consists	of	the	following	tasks:	

1) Record	implementation	results	and	anomalies	encountered.	

NOTE	 This	includes	anomalies	due	to	the	implementation	strategy,	the	implementation	enabling	systems,	or	incorrect	
software	system	definition.	The	Project	Assessment	and	Control	and	Quality	Assurance	processes	are	used	to	analyze	the	
data	to	identify	the	root	cause,	enable	corrective	or	improvement	actions,	and	to	record	lessons	learned.	

2) Maintain	traceability	of	the	implemented	software	system	elements.	

NOTE	1	 	 To	 support	 traceability	 throughout	 the	 life	 cycle	 during	 operations	 and	 maintenance,	 sources	 of	 software	
licenses	 and	 other	 system	 assets	 in	 the	 supply	 chain	 are	 recorded.	 The	 information	 management	 and	 configuration	
management	processes	 are	used	 to	maintain	 license	and	maintenance	 support	 terms	 for	a	 software	application	and	 its	
required	infrastructure	(host	system).	The	ISO/IEC	19770	standards	provide	requirements	for	an	IT	asset	management	
system.	

NOTE	2	 	 Bidirectional	 traceability	 is	 maintained	 between	 the	 implemented	 elements	 and	 the	 software	 system	
architecture;	 design,	 and	 related	 requirements,	 including	 interface	 requirements	 and	definitions	 that	 are	necessary	 for	
implementation;	and	validation	and	verification	plans,	procedures,	and	results.	

3) Provide	key	artifacts	and	information	items	that	have	been	selected	for	baselines.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

79	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

NOTE	 The	Configuration	Management	process	is	used	to	establish	and	maintain	configuration	items	and	baselines.	This	
process	 identifies	candidates	for	the	baseline,	and	the	Information	Management	process	controls	the	 information	items.	
For	 this	 process,	 the	 software	 system	 elements	 (e.g.,	 source	 code),	 software	 packages,	 and	 unit	 test	 results	 are	 typical	
artifacts	that	are	baselined.	

6.4.8 Integration process

6.4.8.1 Purpose

The	purpose	of	the	Integration	process	is	to	synthesize	a	set	of	system	elements	into	a	realized	system	(product	or	
service)	that	satisfies	system/software	requirements,	architecture,	and	design.	

This	 process	 assembles	 the	 implemented	 system	 elements.	 Interfaces	 are	 identified	 and	 activated	 to	 enable	
interoperation	of	the	system	elements	as	intended.	This	process	integrates	the	enabling	systems	with	the	system‐
of‐interest	to	facilitate	interoperation.	

Software	system	integration	iteratively	combines	implemented	software	system	elements	to	form	complete	or	partial	system	
configurations	in	order	to	build	a	product	or	service.	Software	integration	is	typically	performed	daily	or	continuously	during	
development	 and	 maintenance	 stages,	 using	 automated	 tools.	 Continuous	 integration	 involves	 frequent	 inclusion	 or	
replacement	and	archiving	of	items	in	software	libraries	under	CM	control.	

NOTE		 Interfaces	 are	 defined	 by	 the	 Architecture	 Definition	 and	 Design	 Definition	 processes.	 The	 Integration	 process	
coordinates	with	these	other	processes	to	check	that	 the	 interface	definitions,	as	 implemented	and	 integrated,	are	adequate	
and	that	they	take	into	account	the	integration	needs.	

6.4.8.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	Integration	process:

a) Integration	constraints	that	influence	system	requirements,	architecture,	or	design,	 including	interfaces,	
are	identified.	
	

b) Approach	and	checkpoints	for	the	correct	operation	of	the	assembled	interfaces	and	system	functions	are	
defined.	
	

c) Any	enabling	systems	or	services	needed	for	integration	are	available.	
	

d) A	system	composed	of	implemented	system	elements	is	integrated.	
	

e) The	interfaces	between	the	implemented	system	elements	that	compose	the	system	are	checked.	
	

f) The	interfaces	between	the	system	and	the	external	environment	are	checked.	
	

g) Integration	results	and	anomalies	are	identified.
	

h) Traceability	of	the	integrated	system	elements	is	established.

6.4.8.3 Activities and tasks

The	project	shall	implement	the	following	activities	and	tasks	in	accordance	with	applicable	organization	policies	
and	procedures	with	respect	to	the	Integration	process.	

a) Prepare for integration. This	activity	consists	of	the	following	tasks:	

1) Define	the	integration	strategy.	

NOTE	1	 	 Integration	 builds	 sequences	 of	 progressively	 more	 complete	 software	 system	 element	 or	 software	 item	
configurations.	It	is	dependent	on	applicable	software	system	element	availability	and	is	consistent	with	a	fault	isolation	
and	 diagnosis	 strategy.	 Successive	 applications	 of	 the	 Integration	 process	 and	 the	 Verification	 process,	 and	 when	
appropriate	 the	 Validation	 process,	 are	 repeated	 for	 elements	 in	 the	 system	 structure	 until	 the	 system‐of‐interest	 has	
been	 realized.	 Simulators	 or	 prototypes	 are	 typically	 utilized	 for	 system	 elements	 that	 are	 not	 yet	 implemented,	 e.g.,	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

80	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

receiving	data	from	interfacing	systems.	Integrating	the	implemented	software	system	elements	is	based	on	the	priorities	
of	the	related	requirements	and	architecture	definition,	typically	focusing	on	the	interfaces,	while	minimizing	integration	
time,	 cost,	 and	 risks.	 Software	 system	 integration	 commonly	 maintains	 version	 control	 through	 the	 Configuration	
Management	process	for	selection	of	configuration	items	to	be	integrated.	

NOTE	2	 	 For	 software	 integration,	 the	 integration	 strategy	 typically	 is	 consistent	with	 a	 regression	 strategy	which	 is	
applied	for	re‐verifying	software	elements	when	related	software	units	(and	potentially	associated	requirements,	design	
and	user	documentation)	are	changed.	

NOTE	3	 	 Defining	a	strategy	for	software	unit	and	element	integration	commonly	accompanies	defining	the	strategy	for	
other	processes	that	occur	concurrently,	such	as:	

i) The	 Implementation	 process	 to	 help	 ensure	 timely	 coordination	 of	 Implementation	 and	 Integration	 process	
tasks	and	enabling	systems,	e.g.,	combined	software	development	and	test	environments	to	support	automated	
or	continuous	implementation	and	integration	of	software	units	and	elements.	

ii) The	 Verification	 process	 to	 provide	 objective	 evidence	 that	 the	 integrated	 software	 fulfils	 its	 specified	
requirements	and	 to	 identify	anomalies	 (errors,	defects,	 faults)	 in	 integration‐related	 information	 items,	 (e.g.,	
system/software	requirements,	architecture,	design,	test,	or	other	descriptions),	processes,	software	elements,	
items,	units.	

iii) The	Validation	 process	 to	 confirm	 that	 a	work	 product	 fulfils	 requirements	 for	 a	 specific	 intended	 use	 of	 an	
integrated	software	function.	

iv) The	Quality	Assurance	process	to	support	integration	process	and	work	product	audits	and	inspections	and	to	
address	problem,	non‐conformance,	or	incident	reporting	and	handling.	

NOTE	4	 		 The	integration	strategy	is	commonly	recorded	in	a	plan,	e.g.,	an	integration	plan,	or	a	project’s	SDP	or	SEMP.	

2) Identify	and	define	criteria	for	integration	and	points	at	which	the	correct	operation	and	integrity	of	the	
interfaces	and	the	selected	software	system	functions	will	be	verified.	

NOTE	1	 	 Detailed	verification	of	the	interfaces	is	performed	using	the	Verification	process.	Software	integration	typically	
involves	 combining	 software	 elements,	 resulting	 in	 a	 set	 of	 integrated	 software	 elements,	 that	 is	 consistent	 with	 the	
software	design,	and	that	satisfies	 the	 functional	and	non‐functional	system/software	requirements	on	an	equivalent	of	
the	operational	environment.	

NOTE	2	 	 For	projects	 involving	multiple	suppliers	or	development	teams,	the	availability	of	software	system	elements	
for	integration	is	typically	part	of	the	project	schedule	with	milestones	under	the	Project	Assessment	and	Control	process.	
Integration	 proceeds	 as	 the	 software	 is	 verified	 in	 its	 functionality,	 performance,	 and	 suitability	 for	 site‐specific	 or	
platform‐specific	environments.	At	major	integration	points,	e.g.,	completion	of	a	stage,	element,	or	version,	check	points	
for	reviews	and	validation	with	stakeholders	are	typically	held.	The	frequency	of	these	reviews	is	related	to	the	selected	
life	cycle	model	and	development	method.	

3) Identify	and	plan	for	the	necessary	enabling	systems	or	services	needed	to	support	integration.	

NOTE	 This	 includes	 identification	 of	 requirements	 and	 interfaces	 for	 the	 enabling	 systems.	 Enabling	 systems	 for	
integration	 commonly	 include	 integration	 facilities,	 specialized	 equipment,	 training	 systems,	 discrepancy	 reporting	
systems,	 simulators,	 measurement	 devices,	 and	 environmental	 security.	 For	 software,	 this	 can	 involve	 regression	 test	
suites	and	CM	systems	for	the	integrated	testing	of	software	systems,	incident	and	problem	reporting	systems,	simulators	
representing	 external	 systems	 or	 undeveloped	 elements,	 and	 software	 library	 management	 systems	 for	 development	
operations.	 Changes	 or	 specializations	 needed	 for	 the	 enabling	 systems	 to	 support	 the	 integration	 tasks	 need	 to	 be	
identified	and	defined.	Typically,	the	enabling	systems	or	services	used	for	integration	during	development	stages	can	also	
help	support	system	element	integration	as	the	software	system	and	enabling	environments	evolve	to	operational	status.	
This	 “DevOps”	 approach	 supports	 iterative	 software	 system	 implementation,	 integration,	 verification,	 transition,	
validation,	operation	and	maintenance	processes.	

4) Obtain	or	acquire	access	to	the	enabling	systems	or	services	to	be	used	to	support	integration.	

NOTE		 The	Validation	process	is	used	to	objectively	confirm	that	an	integration	enabling	system	achieves	its	intended	
use	for	its	enabling	functions.	

5) Identify	constraints	for	integration	to	be	incorporated	in	the	system/software	requirements,	architecture	
or	design.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

81	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

NOTE	 This	 includes	 requirements	 such	 as	 accessibility,	 supply	 chain	 security,	 safety	 for	 integrators,	 required	
interconnections	for	sets	of	implemented	software	system	elements	and	for	enablers,	and	interface	constraints.	

b) Perform integration.	 Successively	 integrate	 software	 system	 element	 configurations	 until	 the	 complete	
system	is	synthesized.	This	activity	consists	of	the	following	tasks:	

1) Obtain	implemented	software	system	elements	in	accordance	with	agreed	schedules.	

NOTE	 The	 implemented	software	system	elements	are	provided	from	the	developers	or	received	 from	suppliers,	 the	
acquirer,	or	other	resources	and	typically	placed	under	CM	control.	The	elements	are	handled	in	accordance	with	relevant	
health,	safety,	security	and	privacy	considerations.	

2) Integrate	the	implemented	elements.	

NOTE	1	 	 This	task	is	performed	to	achieve	software	system	element	configuration	(complete	or	partial)	connecting	the	
implemented	 elements	 as	 prescribed	 in	 the	 integration	 strategy,	 using	 the	 defined	 procedures,	 interface	 control	
descriptions,	and	the	related	integration	enabling	systems.	

NOTE	2	 	 In	terms	of	software,	integrating	the	implemented	elements	can	involve	linking	together	pieces	of	object	code	
or	simply	bringing	together	the	implemented	elements	that	are	part	of	the	software	configuration	in	a	methodical	piece	by	
piece	 approach.	 Software	 elements	 are	 typically	 compiled	 into	 a	 “build”	 so	 that	 branched	 units	 are	 properly	 linked	 or	
merged	 in	 the	 assembled	 element.	 Firmware	 elements	 are	 fabricated,	 often	 as	 prototypes,	 and	 installed	 in	 hardware	
elements.	If	software	functions	are	not	yet	available	for	integration,	emulated	functionality	(stubs	or	scaffolding)	can	be	
used	 to	 temporarily	 support	 integration	 of	 software	 elements	 or	 represent	 input	 from	 external	 interfaces.	 Successful	
aggregations	result	 in	an	integrated	software	element,	 that	 is	stored	and	available	for	further	processing,	 i.e.,	additional	
software	system	element	integration,	verification,	or	validation.	

NOTE	3	 	 Anti‐counterfeit,	 anti‐tamper,	 system	 and	 software	 assurance	 and	 interoperability	 concerns	 can	 arise	 when	
performing	 integration	 and	 identifying	 and	 defining	 checkpoints.	 Integration	 and	 Verification	 processes	 often	 use	
fictitious	 data	 for	 security	 or	 privacy	 considerations.	 ISO/IEC/IEEE	 15026	 and	 the	 ISO/IEC	 27000	 series	 include	
information	on	assurance,	integrity,	and	security	considerations	affecting	integration.	

3) Check	that	the	integrated	software	interfaces	or	functions	run	from	initiation	to	an	expected	termination	
within	an	expected	range	of	data	values.	

NOTE	 As	part	of	the	acceptance	of	the	implemented	software	system	elements,	selected	elements	are	checked	to	help	
ensure	 they	meet	 acceptance	 criteria	 as	 specified	 in	 the	 integration	 strategy	 and	 applicable	 agreements.	 Checking	 can	
include	conformance	to	the	agreed	configuration,	compatibility	of	interfaces,	and	the	presence	of	mandatory	information	
items.	The	Project	Assessment	and	Control	process	can	be	used	in	accordance	with	the	integration	strategy	to	plan	and	
conduct	 technical	 reviews	 of	 the	 integrated	 software	 system	 elements,	 e.g.,	 a	 test	 readiness	 review	 to	 help	 ensure	 the	
integrated	element	or	system	with	its	affiliated	data	and	information	items	is	ready	for	qualification	testing.	

c) Manage results of integration.	This	activity	consists	of	the	following	tasks:	

1) Record	integration	results	and	anomalies	encountered.	

NOTE	 This	 includes	 anomalies	 due	 to	 the	 integration	 strategy,	 the	 integration	 enabling	 systems,	 execution	 of	 the	
integration	or	incorrect	system	or	element	definition.	Where	inconsistencies	exist	at	the	interface	between	the	system,	its	
specified	operational	environment	and	systems	that	enable	the	utilization	stage,	the	deviations	lead	to	corrective	actions.	
Anomaly	resolution	typically	involves	the	Technical	Processes,	often	repetitive	application	of	the	Implementation	process.	
The	Quality	Assurance	and	Project	Assessment	and	Control	process	are	used	to	analyze	the	data	to	identify	the	root	cause,	
enable	corrective	or	improvement	actions,	and	to	record	lessons	learned.	

2) Maintain	traceability	of	the	integrated	software	system	elements.	

NOTE	 Bidirectional	 traceability	 is	 maintained	 between	 the	 integrated	 system	 elements	 and	 the	 software	 system	
architecture,	design,	and	system	or	element	 requirements,	 such	as	use	 cases,	and	 including	 interface	requirements	and	
definitions	 that	 are	 necessary	 for	 integration.	 Integrated	 software	 elements	 and	 their	 components	 are	 identified	 by	
version.	Versions	of	integrated	software	elements	are	commonly	traceable	to	implemented	units,	test	procedures,	and	test	
cases.	

3) Provide	key	artifacts	and	information	items	that	have	been	selected	for	baselines.	

NOTE	 The	Configuration	Management	process	is	used	to	establish	and	maintain	configuration	items	and	baselines.	The	
Integration	 process	 identifies	 candidates	 for	 the	 baseline,	 and	 the	 Information	 Management	 process	 controls	 the	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

82	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

information	items.	For	this	process,	the	test	cases,	regression	tests,	and	automated	test	scripts	are	typical	artifacts	that	are	
baselined.	The	integration	strategy	is	a	typical	information	item	that	is	baselined.	

6.4.9 Verification process

6.4.9.1 Purpose

The	purpose	of	the	Verification	process	is	to	provide	objective	evidence	that	a	system	or	system	element	fulfils	its	
specified	requirements	and	characteristics.	

The	 Verification	 process	 identifies	 the	 anomalies	 (errors,	 defects,	 or	 faults)	 in	 any	 information	 item	 (e.g.,	
system/software	requirements	or	architecture	description),	implemented	system	elements,	or	life	cycle	processes	
using	appropriate	methods,	 techniques,	 standards	or	 rules.	This	process	provides	 the	necessary	 information	 to	
determine	resolution	of	identified	anomalies.	

Verification	 can	 be	 performed	 across	 all	 technical	 processes.	 The	 Verification	 process	 is	 typically	 used	 at	 key	
points	 in	 a	 software	 system’s	 life	 cycle	 to	 demonstrate	 that	 the	 requirements	 (including	 functional	 and	 non‐
functional	requirements)	have	been	met,	or	that	process	outcomes	have	been	achieved	or	process	activities	have	
been	 performed.	 Different	 domains	 and	 engineering	 or	 development	 communities	 can	 identify	 the	milestones,	
verification	strategies	and	criteria	differently.	

For	software	systems,	the	Verification	process	is	typically	instantiated	for	the	following	purposes:	

a) To	confirm	that	a	software	work	product	or	service	properly	reflects	 the	specified	requirements	 (often	
called	software	verification);	

b) To	confirm	 that	 the	 integrated	 software	product	meets	 its	defined	 requirements	 (often	 called	 software	
qualification	testing);	and	

c) To	confirm	that	the	 implementation	of	each	system/software	requirement	 is	 tested	 for	compliance	and	
that	the	software	system	is	ready	for	delivery	(often	called	system	qualification	testing).	

NOTE	1		 The	Verification	process	determines	 that	 the	 “product	 is	built	 right”.	The	Validation	process	determines	 that	
the	“right	product	is	built”.	

NOTE	2		 ISO/IEC/IEEE	29119	Systems and software engineering — Software testing	(in	multiple	parts)	provides	detailed	
processes	and	techniques	for	verification	performed	through	testing.	 IEEE	Std	1012‐2012,	 IEEE Standard for System and
Software Verification and Validation,	 provides	 additional	details	 about	 these	processes	 for	 systems,	 software,	 hardware,	
and	interfaces	being	developed,	maintained,	or	reused.	

NOTE	3		 The	SWEBOK, Guide to the Software Engineering Body of Knowledge,	 provides	detailed	discussion	on	Software	
Testing.	 This	 knowledge	 area	 addresses	 fundamentals,	 terminology,	 issues,	 techniques,	 application,	 process	 planning,	
measures,	tools,	practical	considerations,	and	references.	The	guide	also	discusses	Software	Verification	and	Validation	in	
terms	of	Software	Quality	Management	processes,	and	identifies	methods	and	techniques	that	support	both	Verification	
and	 Validation.	 The	 SWEBOK	 also	 addresses	 topics	 such	 as	 software	 construction	 for	 verification	 and	 software	
engineering	models	and	methods	support.	

6.4.9.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	Verification	process:

a)	 Constraints	of	verification	that	influence	the	requirements,	architecture,	or	design	are	identified.	

b)	 Any	enabling	systems	or	services	needed	for	verification	are	available.	

c)	 The	system	or	system	element	is	verified.	

d)	 Data	providing	information	for	corrective	actions	is	reported.	

e)	 Objective	evidence	that	the	realized	system	fulfills	the	requirements,	architecture	and	design	is	provided.

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

83	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

f)	 Verification	results	and	anomalies	are	identified.

g)	 Traceability	of	the	verified	system	elements	is	established.

6.4.9.3 Activities and tasks

The	project	shall	implement	the	following	activities	and	tasks	in	accordance	with	applicable	organization	policies	
and	procedures	with	respect	to	the	Verification	process.	

a) Prepare for verification. This	activity	consists	of	the	following	tasks:	

1) Define	the	verification	strategy,	which	includes	the	following:	

NOTE	1	 	 A	verification	strategy	generally	focuses	on	minimizing	cost,	schedule,	or	risk,	providing	a	balanced	approach	
for	confirming	that	the	software	system	or	element	has	been	“built	right”.	

NOTE	2	 	 The	verification	strategy	and	schedule	account	for	dynamic	changes	when	anomalous	results	(events,	incidents,	
or	problems)	occur.	According	 to	 the	progress	of	 the	project,	planned	verification	actions	are	 redefined	or	 rescheduled	
when	unexpected	events	or	system	evolutions	occur.	

NOTE	3	 	 The	verification	strategy	can	be	documented	in	a	plan,	e.g.,	a	verification	plan,	or	a	project’s	SDP	or	SEMP.	

i) Identify	the	verification	scope,	including	the	software	system,	element,	or	artifact,	the	properties	
to	be	verified,	and	the	expected	results.	

	 NOTE	 				Overall	 verification	 scope	 includes	 the	 software	 system‐of‐interest	 or	 system	 elements,	 including	
interfaces.	For	each	verification	action,	the	scope	identifies	the	software	system,	element,	or	artifact	to	be	verified	
(e.g.,	 the	actual	system,	or	a	model,	a	mock‐up,	a	prototype,	code,	a	procedure,	a	plan	or	other	document)	and	the	
expected	results,	such	as	conformance,	or	performance,	fault	tolerance,	and	recovery	after	service	interruption.	The	
properties	to	be	verified	can	include	requirements,	architecture	and	design	characteristics,	integration,	and	accuracy	
of	documentation.	Design	characteristics	can	include	security	implications	of	the	design	in	the	context	of	the	planned	
operational	environment	and	the	achievement	of	critical	quality	characteristics	as	stated	in	the	requirements.	

ii) Identify	the	constraints	that	potentially	limit	the	feasibility	of	verification	actions.	

	 NOTE	 			Constraints	 include	 technical	 feasibility,	 cost,	 time,	 availability	 of	 verification	 enablers	 or	 qualified	
personnel,	contractual	constraints,	and	characteristics	such	as	criticality	of	the	mission.	Such	constraints	often	factor	
into	 verification	 strategy	 determination,	 e.g.,	 whether	 an	 organizationally	 independent	 verification	 effort	 is	
necessary	or	justified.	

iii) Identify	verification	priorities.	

NOTE					In	 software	 systems,	 verification	of	 every	 possible	 scenario	 (100%	 code	 coverage)	 is	 typically	 infeasible.	
The	verification	strategy	typically	includes	trading	off	what	will	be	verified	(scope)	against	the	constraints	or	limits,	
and	deducing	what	verification	actions	to	perform	and	how	many	iterations	of	verification	actions	and	rework	are	
needed	 to	 reduce	 risk.	 A	model‐based	 testing	 approach	 can	 enable	 the	 generation	 and	management	 of	 multiple	
scenarios.	Potential	verification	actions	that	are	candidates	for	deletion	are	evaluated	for	the	risks	their	withdrawal	
imposes.	

2) Identify	 constraints	 from	 the	 verification	 strategy	 to	 be	 incorporated	 in	 the	 system/software	
requirements,	architecture,	or	design.	

NOTE	 This	 includes	 practical	 limitations	 of	 accuracy,	 uncertainty,	 repeatability	 that	 are	 imposed	 by	 the	 verification	
enablers,	 the	 associated	 measurement	 methods,	 the	 need	 for	 software	 system	 integration,	 and	 the	 availability,	
accessibility	and	interconnection	with	enablers.	

3) Define	the	purpose,	conditions	and	conformance	criteria	for	each	verification	action.	

4) Select	appropriate	verification	methods	or	techniques	and	associated	criteria	for	verification	actions,	such	
as	inspection,	analysis,	demonstration,	or	testing.	

NOTE	1	 				The	selection	of	verification	methods	or	techniques	is	made	according	to	the	type	of	system,	the	purpose	of	the	
verification,	the	objectives	of	the	project,	and	the	acceptable	risks.	Verification	methods	or	techniques	include	inspection	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

84	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

(including	 code	walkthroughs	 and	peer	 review),	 analysis	 (including	modelling	 and	 simulation,	 and	 analogy/similarity),	
demonstration,	and	dynamic	and	static	testing.	

NOTE	2	 				The	selected	verification	approach,	methods,	and	techniques	can	be	coordinated	with	relevant	stakeholders	to	
help	ensure	the	verification	approach	is	acceptable.	

5) Identify	and	plan	for	the	necessary	enabling	systems	or	services	needed	to	support	verification.	

NOTE	 Verification	 enabling	 systems	 include	 verification	 facilities,	 qualified	 personnel,	 equipment,	 simulators,	 test	
automation	tools,	and	incident	and	problem	management	systems.	Software	system	verification	is	typically	performed	in	
distinct	controlled	environments	that	do	not	interfere	with	operational	software	or	ongoing	development.	If	the	enabling	
systems	for	verification	differ	in	capability	from	the	planned	operational	environment,	the	Measurement	process	can	be	
used	to	calibrate	the	performance	of	the	verification	enabling	systems	and	suitability	for	the	verification	action.	

6) Obtain	or	acquire	access	to	the	enabling	systems	or	services	to	be	used	to	support	verification.	

NOTE	 The	 acquisition	 of	 the	 enabling	 systems	 can	 be	 done	 through	 various	 ways	 such	 as	 rental,	 procurement,	
development,	reuse	of	organizational	assets,	or	subcontracting.	Usually	the	acquisition	of	the	complete	set	of	enablers	is	a	
mix	of	these	ways.	The	Validation	process	is	used	to	objectively	confirm	that	the	verification	enabling	system	achieves	its	
intended	use	for	its	enabling	functions.	

b) Perform verification. This	activity	consists	of	the	following	tasks:	

1) Define	the	verification	procedures,	each	supporting	one	or	a	set	of	verification	actions.	

NOTE	 Verification	procedures,	which	can	be	performed	by	automated	scripts,	include	the	requirements	to	be	verified,	
the	type	of	software	system	element	or	artifact	to	be	verified	(e.g.,	the	actual	system,	or	a	model,	a	mock‐up,	a	prototype,	
code,	a	procedure,	a	plan,	or	other	information	item),	and	the	expected	results	(success	criteria),	such	as	conformance,	or	
performance	of	a	function	or	capacity	in	terms	of	response	time	or	throughput.	The	procedures	identify	the	purpose	of	the	
verification	 with	 success	 criteria	 (expected	 results),	 the	 verification	 technique	 to	 be	 applied,	 the	 necessary	 enabling	
systems	 (facilities,	 equipment),	 and	 the	 environmental	 conditions	 to	 perform	 each	 verification	 procedure	 (resources,	
qualified	 personnel,	 specialized	 procedural	 set‐up	 or	 work	 instructions).	 Verification	 procedures	 include	 how	 the	
verification	procedure	results	will	be	recorded,	analyzed,	stored,	and	reported.	

2) Perform	the	verification	procedures.	

NOTE	 Verification	occurs,	 in	accordance	with	the	verification	strategy,	at	the	appropriate	time	in	the	schedule,	 in	the	
defined	environment,	with	defined	enabling	systems	and	resources.	The	performance	of	a	verification	action	consists	of	
capturing	a	result	from	the	execution	of	the	verification	procedure;	comparing	the	obtained	and	recorded	result	with	the	
expected	result;	and	deducing	a	degree	of	correctness	(or	success/failure)	of	the	submitted	element.	

c) Manage results of verification. This	activity	consists	of	the	following	tasks:	

1) Review	verification	results	and	anomalies	encountered	and	identify	follow‐up	actions.	

NOTE	1	 			This	 includes	 anomalies	 due	 to	 the	 verification	 strategy,	 the	 verification	 enabling	 systems,	 execution	 of	 the	
verification,	or	incorrect	system	definition.	The	Project	Assessment	and	Control	and	Quality	Assurance	processes	are	used	
to	analyze	the	data	to	identify	the	root	cause,	enable	corrective	or	improvement	actions,	and	to	record	lessons	learned.	

NOTE	2					 The	 evaluation	 of	 verification	 results	 and	 follow‐up	 corrective	 action	 can	 vary	 greatly	 depending	 on	 the	
purpose	of	the	verification.	For	elements	of	software,	examples	include	a	modification	or	waiver	of	requirements,	a	simple	
defect	 fix	 for	 a	 failed	 software	 element,	 followed	 by	 re‐verification,	 or	major	 project	 re‐direction	 based	 on	 a	 failure	 to	
attain	 a	 key	 milestone,	 e.g.,	 failed	 software	 system	 qualification	 testing.	 Often	 simple	 or	 recommended	 solutions	 to	
anomalies	 discovered	 during	 verification,	 are	 recorded	 with	 the	 verification	 result	 to	 facilitate	 analysis	 and	 potential	
corrective	action.	

2) Record	incidents	and	problems	during	verification	and	track	their	resolution.	

NOTE	1	 				Performing	problem	resolution	is	handled	through	the	Quality	Assurance	and	Project	Assessment	and	Control	
processes.	 During	 software	 verification,	 the	 conditions	 under	 which	 the	 problem	 occurred	 are	 documented	 so	 that	 if	
possible,	the	problem	can	be	duplicated	and	the	root	cause	of	the	software	defect	identified.	Changes	to	the	requirements,	
architecture,	design,	or	system	elements	are	done	using	other	Technical	processes.	

3) Obtain	stakeholder	agreement	that	the	software	system	or	element	meets	the	specified	requirements.	

4) Maintain	traceability	of	the	verified	software	system	elements.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

85	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

NOTE	 Bidirectional	 traceability	 is	 maintained	 between	 the	 verified	 system	 elements	 and	 the	 record	 of	 verification	
activity,	system	architecture,	design,	or	system/software	requirements.	

5) Provide	key	artifacts	and	information	items	that	have	been	selected	for	baselines.	

NOTE	 The	Configuration	Management	process	is	used	to	establish	and	maintain	configuration	items	and	baselines.	This	
process	 identifies	candidates	for	the	baseline,	and	the	Information	Management	process	controls	the	 information	items.	
For	this	process,	the	verification	strategy	and	verification	procedures	are	typical	information	items.	

6.4.10 Transition process

6.4.10.1 Purpose

The	purpose	of	 the	Transition	process	 is	 to	 establish	a	 capability	 for	 a	 system	 to	provide	 services	 specified	by	
stakeholder	requirements	in	the	operational	environment.	

This	process	moves	the	system	in	an	orderly,	planned	manner	into	the	operational	status,	such	that	the	system	is	
functional,	 operable	 and	 compatible	with	other	operational	 systems.	 It	 installs	 a	 verified	 system,	 together	with	
relevant	enabling	systems,	e.g.,	planning	system,	support	system,	operator	training	system,	user	training	system,	
as	defined	in	agreements.	This	process	is	used	at	each	level	in	the	system	structure	and	in	each	stage	to	complete	
the	 criteria	 established	 for	 exiting	 the	 stage.	 It	 includes	 preparing	 applicable	 storage,	 handling,	 and	 shipping	
enabling	systems.	

For	software	systems,	 the	purpose	of	 the	Transition	process	 is	 to	establish	a	capability	 for	a	system	to	provide	
services	in	a	different	environment.	

The	Transition	process	is	often	used	for	recurring	deployments	of	software	to	different	environments,	e.g.,	from	a	
development	environment	to	a	test	or	maintenance	environment,	or	between	various	test	environments,	or	from	
one	 operational	 environment	 to	 another	 (e.g.,	 rehosting	 or	 use	 of	 cloud	 services).	 Transitions	 to	 backup	 or	
contingent	sites	are	typically	planned	and	rehearsed	for	business	continuity	and	disaster	recovery.	Transition	for	
software	systems	can	involve	the	physical	relocation	of	hardware,	the	installation	and	activation	or	deactivation	of	
physical	 or	 virtual	 infrastructure	 or	 enabling	 systems	 in	 different	 locations,	 or	 no	 change	 to	 the	 physical	
infrastructure.	 Transition	 can	 involve	 changes	 to	 the	 data	 sources,	 data	 structure,	 or	 updates	 or	 upgrades	 of	
functional	 software.	 Transition	 includes	 recurring	 scheduled	 or	 emergency	 patches	 and	 fixes	 for	 security	 and	
other	 concerns.	 Transition	 can	 involve	 transfer	 between	 organizations	 and	 also	 encompasses	 the	 addition	 of	 a	
large	group	of	new	users	to	an	existing	software	system	or	service.	Transition	to	a	new	system	often	is	performed	
concurrently	with	retirement	and	disposal	of	an	existing	system,	entailing	data	migration	from	the	old	system	to	
its	replacement.	

NOTE	 Transition	can	involve	knowledge	transfer	using	the	Knowledge	Management	process.	

6.4.10.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	Transition	process:

a) Transition	 constraints	 that	 influence	 system/software	 requirements,	 architecture,	 or	 design	 are	
identified.	
	

b) Any	enabling	systems	or	services	needed	for	transition	are	available.	
	

c) The	site	is	prepared.	
	

d) The	system,	as	installed	in	its	operational	location,	is	capable	of	delivering	its	specified	functions.	
	

e) Operators,	users	and	other	stakeholders	necessary	to	the	system	utilization	and	support	are	trained.	
	

f) Transition	results	and	anomalies	are	identified.	
	

g) The	installed	system	is	activated	and	ready	for	operation.

h) Traceability	of	the	transitioned	elements	is	established.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

86	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

6.4.10.3 Activities and tasks

The	project	shall	implement	the	following	activities	and	tasks	in	accordance	with	applicable	organization	policies	
and	procedures	with	respect	to	the	Transition	process.	

a) Prepare for the software system transition.	This	activity	consists	of	the	following	tasks:	

1) Define	 a	 strategy	 for	managing	 software	 releases	 and	 other	 software	 system	 transitions,	 including	 the	
following	considerations:	

i) establishing	the	type	of	transition	and	transition	success	criteria;	

ii) determining	 the	 frequency	 of	 recurring	 transitions,	 such	 as	 updates	 and	 upgrades	 to	
development,	test,	and	operational	software	systems;	

iii) minimizing	security	risks,	disruption,	and	downtime	during	transition;	

iv) archiving,	 destroying,	 or	 converting	 and	 validating	 data	 from	 previous	 systems	 to	 the	 new	
system;	including	data	received	through	external	interfaces;	

v) contingency	 planning	 for	 problem	 resolution,	 backup	 and	 return	 to	 the	 last	 working	 system	
version;	

vi) scheduling	transitions	consistent	with	ongoing	business	processing,	with	phased	or	synchronized	
transition	of	systems	

vii) change	 management	 for	 stakeholders,	 including	 interface	 partners,	 human	 operators,	 system	
administrators,	and	software	system	or	service	users;	

NOTE	 Change	management	activities	are	often	conducted	to	design	changes	in	business	processes	associated	with	the	
new	system,	plan	the	transition	in	business	processes,	and	gain	user	commitment	to	productive	use	of	the	new	system.	

viii) associated	strategies	for	validation	of	the	transitioning	system	or	element;	

ix) initiating	user	support	and	maintenance	activities	with	the	transfer	and	update	of	system	design	
documentation,	user	documentation,	and	test	procedures;	and	

x) concurrent	execution	of	the	Transition,	Operations,	and	Disposal	processes,	when	a	new	system	
is	commissioned	and	an	old	system	is	decommissioned.	

NOTE		 The	strategy	includes	roles	and	responsibilities,	approval	authority,	use	of	readiness	reviews	and	training.	

2) Identify	 and	 define	 facility,	 site,	 communications	 network,	 or	 target	 environment	 changes	 needed	 for	
software	system	installation	or	transition.	

NOTE		 For	each	transition,	identify	and	define	any	needed	changes	in	infrastructure	or	enabling	systems.	A	site	survey	
can	be	performed	to	identify	needed	changes	in	the	physical	environment	to	install	or	use	the	software	system,	such	as	
changes	to	maintain	the	physical	and	information	security	of	the	system.	

3) Identify	 information	 needs	 and	 arrange	 for	 user	 documentation	 and	 training	 of	 operators,	 users,	 and	
other	stakeholders	necessary	for	system	utilization	and	support.	

NOTE	 Transition	 includes	migration	or	activation	of	user	access	 to	 the	software	system.	User	 roles	are	established	
and	user	accounts	and	access	controls	are	implemented.	

4) Prepare	detailed	transition	information,	such	as	plans,	schedules,	and	procedures.	

NOTE	1	 The	 transition	 strategy	 is	 commonly	 recorded	 in	 a	 plan,	 e.g.,	 a	 transition	 plan,	 or	 a	 project’s	 SDP	 or	 SEMP.	
Transition	schedules	help	validate	that	sufficient	resources	and	infrastructure	are	available	to	support	the	transition,	so	
that	activities	can	be	executed	within	a	reasonable	timeframe	to	minimize	disruption.	Schedules	can	include	rehearsals	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

87	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

for	complex	transitions,	in	which	procedures,	such	as	database	and	system	backup	and	restore	and	software	installation,	
are	tested	to	verify	durations	and	correct	results.	

NOTE	2	 During	a	specified	period	of	changeover	or	concurrent	operation,	 the	transfer	of	services	 is	managed	so	that	
continuing	conformance	to	persistent	stakeholder	needs	or	an	agreed	level	of	service	is	achieved.	If	a	period	of	parallel	
operations	for	both	the	old	and	new	systems	is	needed,	special	procedures	are	identified	and	developed	for	receiving	and	
utilizing	data	from	interface	partners.	

5) Identify	 system	 constraints	 from	 transition	 to	 be	 incorporated	 in	 the	 software	 system	 requirements,	
architecture	or	design.	

6) Identify	and	plan	for	the	necessary	enabling	systems	or	services	needed	to	support	transition.	

NOTE	1	 This	includes	identification	of	requirements	and	interfaces	for	the	enabling	systems.	Transition	often	involves	
the	use	of	highly	automated	infrastructure	to	deliver,	install,	and	activate	or	inactivate	software.	For	electronic	software	
distribution,	 temporary	 or	 continuing	 changes	 in	 connectivity	 are	 often	 needed	 for	 software	 and	 data	 migration	 and	
continuing	sustainment.	Enabling	systems	can	include	backup	or	alternate	systems	for	use	during	a	transitional	period.		

7) Obtain	or	acquire	access	to	the	enabling	systems	or	services	to	be	used.	

NOTE	 The	Validation	process	is	used	to	objectively	confirm	that	the	transition	enabling	system	achieves	its	intended	
use	for	its	enabling	functions.	

b) Perform the transition.	This	activity	consists	of	the	following	tasks:	

1) Prepare	the	site	of	operation	or	virtual	environment	in	accordance	with	installation	requirements.	

	 NOTE	 	 Site	 preparation	 is	 conducted	 in	 accordance	 with	 applicable	 health,	 safety,	 security	 and	 environmental	
regulations.	Virtual	environments	and	new	communication	resources	are	initialized	and	verified.	Shipping	and	receiving	
of	physical	system	elements	and	enabling	systems	is	arranged.	

2) Deliver	the	software	system	or	element	for	installation	at	the	correct	location	and	time.	

	 NOTE	1	 Typically	software	is	delivered	electronically.	For	physical	media,	hardware,	and	embedded	software	systems,	it	
is	sometimes	necessary	to	account	for	temporary	storage	prior	to	delivery	or	installation.	

	 NOTE	2	 Deliver	 agreed	 information	 items	 in	 electronic	 or	 physical	 form,	 such	 as	 training	 material,	 logistics	 support	
packages,	or	user	documentation.	

3) Install	the	product	in	its	physical	or	virtual	operational	location	and	interface	to	its	environment.	

	 NOTE	 The	product	installation	includes	configuring	it	with	required	operational	data,	changes	to	the	environment,	or	
business	 process	 changes.	 Databases	 are	 instantiated	 and	 data	 migration	 is	 performed	 as	 applicable.	 Licenses	 and	
maintenance	agreements	for	system	elements,	and	other	intellectual	property,	are	transferred	according	to	agreements.	

4) Provide	user	documentation	and	training	for	the	operators,	users,	and	other	stakeholders	necessary	for	
product	utilization	and	support.	

5) Perform	activation	and	check‐out,	including	the	following	as	agreed:	

	 NOTE	1	 				This	task	takes	the	steps	needed	to	activate	the	product	to	an	operational	state,	including	start‐up,	assessment	
of	environmental	conditions,	and	other	readiness	evaluations,	in	accordance	with	operational	procedures,	organizational	
policies,	and	regulations.	Where	the	exact	location	or	environment	of	operation	is	not	available	or	when	software	will	be	
accessed	from	multiple	or	mobile	locations,	a	representative	example	is	selected.	

	 NOTE	2	 				Acceptance	 tests	are	 sometimes	defined	 in	 the	agreement	 to	demonstrate	satisfactory	 installation.	This	 task	
interacts	 with	 the	 Validation	 process	 to	 objectively	 confirm	 that	 the	 system	 fulfills	 stakeholder	 requirements	 in	 the	
operational	environment.	Acceptance	tests,	as	specified	in	agreements,	can	define	the	criteria	that	demonstrate	that	the	
software	 system	 entity	 possesses	 the	 capability	 to	 deliver	 the	 required	 functions	 and	 services	 when	 installed	 and	
sustained	in	its	operational	environment.	Specific	attention	is	given	to	the	key	functions	and	logical	interfaces.	

	 NOTE	3					 As	part	of	the	Configuration	Management	process,	a	physical	configuration	audit	(PCA)	and	update	of	as‐built	
documentation	is	often	performed	at	the	time	of	system	activation.	Anti‐counterfeit	provisions	can	be	confirmed.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

88	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

i) Demonstrate	proper	installation	of	the	software	system.	

	 NOTE						This	 task	 can	 include	 integrity	 checks	 of	 data	 and	 operations,	 e.g.,	 that	 the	 software	 code	 and	 data	
representations	properly	initialize,	execute,	and	terminate	as	specified.	

ii) Demonstrate	the	installed	or	transitioned	product	is	capable	of	delivering	its	required	functions.	

	 NOTE						This	 is	 an	 operational	 readiness	 task	 that	 examines	 readiness	 of	 functional	 capability	 for	 an	 operational	
state.	 Specific	 attention	 is	 given	 to	 the	 data	 interfaces	 and	 security	 concerns:	 information	 assurance	 and	
interoperability	functions	are	exercised.	

iii) Demonstrate	the	functions	provided	by	the	system	are	sustainable	by	the	enabling	systems.	

	 NOTE						This	is	an	operational	readiness	task	that	examines	readiness	of	enabling	systems	for	an	operational	state.	
For	example,	activation	of	monitoring,	problem	reporting,	access	control,	backup	and	recovery,	and	user	assistance	
(customer	support)	are	demonstrated.	

iv) Review	the	software	system	for	operational	readiness.	

	 NOTE						This	 includes	 the	 results	 of	 functional	 demonstrations,	 validation	 activities,	 and	 sustainment	
demonstrations.	A	readiness	review	can	be	conducted.	Deficiencies,	risks,	and	problems	that	impact	the	success	of	
the	transition	are	resolved,	accepted	for	waiver,	or	closed.	

v) Commission	the	software	system	for	operations.	

	 NOTE						This	 includes	 providing	 support	 to	 the	 users,	 administrators,	 and	 operators	 during	 the	 operations	
commencement	(commissioning)	of	the	system.	

c) Manage results of transition.	This	activity	consists	of	the	following	tasks:	

1) Record	transition	results	and	anomalies	encountered.	

NOTE	 This	 includes	 anomalies	 due	 to	 the	 transition	 strategy,	 the	 transition	 enabling	 systems,	 execution	 of	 the	
transition	or	incorrect	software	system	or	database	system	definition.	Where	inconsistencies	exist	between	the	system,	its	
operational	 environment,	 and	 enabling	 systems,	 the	 deviations	 are	 resolved	 through	 corrective	 actions,	 including	
requirement	changes.	The	Project	Assessment	and	Control	and	Quality	Assurance	processes	are	used	to	analyze	the	data	
to	identify	the	root	cause,	enable	corrective	or	improvement	actions,	and	to	record	lessons	learned.	

2) Record	transition	incidents	and	problems	and	track	their	resolution.	

NOTE	 Performing	problem	resolution	 is	handled	 through	the	Quality	Assurance	and	Project	Assessment	and	Control	
processes.	During	 transition,	 the	 conditions	under	which	 the	problem	occurred	are	documented	so	 that	 if	possible,	 the	
problem	can	be	duplicated	and	the	root	cause	of	the	defect	identified.	Changes	to	the	requirements,	architecture,	design,	
or	software	system	elements	are	done	using	other	Technical	processes.	

3) Maintain	traceability	of	the	transitioned	software	system	elements.	

NOTE	 Bidirectional	 traceability	 is	maintained	 between	 the	 transitioned	 and	 deployed	 system	 and	 elements	 and	 the	
approved	and	controlled	versions	of	the	software	system	and	enabling	systems.	

4) Provide	key	artifacts	and	information	items	that	have	been	selected	for	baselines.	

NOTE	 The	 Configuration	Management	 process	 is	 used	 to	 establish	 and	maintain	 configuration	 items	 and	 baselines,	
including	transitioned	software	system	elements.	This	process	identifies	candidates	for	the	baseline,	and	the	Information	
Management	 process	 controls	 the	 information	 items.	 For	 this	 process,	 the	 transition	 strategy,	 training	 material,	 and	
installation,	 transition	 and	 data	migration	 procedures,	 and	 user	 documentation	 are	 typical	 information	 items	 that	 are	
baselined.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

89	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

6.4.11 Validation process

6.4.11.1 Purpose

The	purpose	 of	 the	Validation	 process	 is	 to	 provide	 objective	 evidence	 that	 the	 system,	when	 in	 use,	 fulfils	 its	
business	 or	 mission	 objectives	 and	 stakeholder	 requirements,	 achieving	 its	 intended	 use	 in	 its	 intended	
operational	environment.	

The	objective	of	validating	a	system	or	system	element	is	to	acquire	confidence	in	its	ability	to	achieve	its	intended	
mission,	or	use,	under	specific	operational	conditions.	Validation	is	ratified	by	stakeholders.	This	process	provides	
the	 necessary	 information	 so	 that	 identified	 anomalies	 can	 be	 resolved	 by	 the	 appropriate	 technical	 process	
where	the	anomaly	was	created.	

The	Validation	process	 is	typically	used	at	key	points	 in	a	product’s	 life	cycle	to	demonstrate	that	the	product’s	
requirements	 for	 stakeholder	 intended	 operational	 use	 have	 been	 met.	 Validation	 is	 also	 applicable	 to	 the	
software	 engineering	 artifacts	 (viewed	 as	 software	 system	 elements).	 Different	 domains	 and	 engineering	 or	
development	communities	can	identify	the	milestones,	validation	strategies	and	criteria	differently.	

For	software	systems,	highly	iterative	life	cycle	models	often	feature	frequent	involvement	by	the	acquirer,	user	
representative,	or	other	stakeholders	to	validate,	e.g.,	the	priority	of	requirements	for	inclusion	in	an	iteration,	the	
usability	of	the	software	interface	through	prototypes,	and	the	suitability	of	the	software	for	performing	business	
tasks	and	fulfilling	the	operational	concept.	

For	software	systems,	the	following	are	purposes	of	the	Validation	process:	

a) To	confirm	that	 the	requirements	 for	a	specific	 intended	use	of	 the	software	work	product	are	 fulfilled	
(often	called	software	validation);	and	

b) To	 achieve	 confidence	 (especially	 with	 an	 acquirer	 or	 customer)	 that	 the	 delivered	 product	 meets	
stakeholder	requirements	and	is	fit	for	use	(often	called	software	acceptance	testing).	

NOTE	1	 The	validation	process	determines	that	the	“right	product	is	built”.	The	verification	process	determines	that	the	
“product	is	built	right”.	

NOTE	2	 Acceptance	criteria,	as	used	for	acceptance	testing,	include	criteria	to	determine	whether	the	delivered	product	
is	 fit	 to	use	or	not.	Acceptance	criteria	for	acceptance	can	be	specified	and	agreed	between	two	parties,	 i.e.,	an	acquirer	
and	a	supplier,	and	included	in	the	stakeholder	requirements.	

NOTE	3	 IEEE	 Std	 1012‐2012,	 IEEE Standard for System and Software Verification and Validation,	 provides	 detailed	
requirements.	 The	 SWEBOK, Guide to the Software Engineering Body of Knowledge,	 discusses	 software	 verification	 and	
validation	in	terms	of	software	Quality	Management	processes,	and	contains	methods	and	techniques	that	support	both	
verification	and	validation.	The	SWEBOK	also	addresses	topics	such	as	requirements	and	model	validation.	

6.4.11.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	Validation	process

a) Validation	criteria	for	stakeholder	requirements	are	defined.	
	

b) The	availability	of	services	required	by	stakeholders	is	confirmed.	
	

c) Constraints	of	validation	that	influence	the	requirements,	architecture,	or	design	are	identified.	
	

d) The	system	or	system	element	is	validated.	
	

e) Any	enabling	systems	or	services	needed	for	validation	are	available.	
	

f) Validation	results	and	anomalies	are	identified.	 	
	

g) Objective	evidence	that	the	realized	system	or	system	element	satisfies	stakeholder	needs	is	provided.	
	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

90	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

h) Traceability	of	the	validated	system	elements	is	established.

6.4.11.3 Activities and tasks

The	project	shall	implement	the	following	activities	and	tasks	in	accordance	with	applicable	organization	policies	
and	procedures	with	respect	to	the	Validation	process.	

a) Prepare for validation. This	activity	consists	of	the	following	tasks:	

1) Define	the	validation	strategy,	which	includes	the	following:	

NOTE	1	 	 A	 validation	 strategy	 generally	 focuses	 on	 minimizing	 cost,	 schedule,	 or	 risk	 by	 progressively	 building	
confidence	in	the	quality	and	suitability	of	the	software	system	for	the	stakeholders.	

NOTE	2	 	 The	 validation	 strategy	 reflects	 the	 life	 cycle	 model,	 and	 often	 involves	 repeated	 validation	 for	 iterative,	
incremental,	or	evolutionary	life	cycles.	

NOTE	3	 	 The	validation	strategy	can	be	documented	in	a	plan,	e.g.,	an	acceptance	plan,	or	a	project’s	SDP	or	SEMP.	

i) Identify	 the	 validation	 scope,	 including	 the	 characteristics	 of	 the	 software	 system,	 element,	 or	
artifact	to	be	validated,	and	the	expected	results	of	validation.	

NOTE								Software	 system	 validation	 is	 typically	 performed	 both	 in	 distinct	 controlled	 environments	 that	 do	 not	
interfere	with	operational	software	or	ongoing	development,	as	well	as	in	operational	environments,	typically	before	
full	 operational	 use	 (e.g.,	 beta	 testing	 or	 acceptance	 testing	 for	 a	 specified	 duration	 with	 agreed	 criteria).	 Scope	
includes	stakeholder	requirements,	including	related	views	of	the	system	(e.g.,	scenarios	or	concept	of	operation)	to	
be	evaluated.	The	scope	depends	on	what	is	appropriate	for	the	systems	life	cycle	stage:	the	system‐of‐interest	or	a	
system	element	or	engineering	artifact,	such	as	a	concept	description	or	document,	an	operational	scenario,	a	model,	
a	mock‐up,	 or	 prototype.	 The	 scope	 also	 includes	 evaluating	 that	 the	 software	 product	 or	 service	 is	 usable	 in	 its	
intended	 environment	 for	 the	 principal	 or	 critical	 functions.	 Additional	 characteristics	 to	 be	 validated	 can	 include	
usability	of	the	documentation;	fault	tolerance,	resilience,	and	recovery	features	of	the	software.	

ii) Identify	the	constraints	that	potentially	limit	the	feasibility	of	validation	actions.	

NOTE		 Constraints	 include	practical	 limitations	 of	 accuracy,	 uncertainty,	 repeatability	 that	 are	 imposed	by	 the	
validation	enablers,	the	associated	measurement	methods,	and	the	availability,	accessibility	and	interconnection	with	
enablers.	 The	 validation	 strategy	 is	 constrained	 by	 the	 progress	 of	 the	 project;	 in	 particular,	 planned	 validation	
actions	are	redefined	or	rescheduled	when	unexpected	events	or	system	evolutions	occur.	Validation	can	be	extended	
to	include	ongoing	measurements	of	user	satisfaction	and	customer	complaints.	

iii) Identify	validation	priorities.	

NOTE	1	 To	 make	 effective	 use	 of	 stakeholders’	 time	 and	 expertise,	 validation	 typically	 focuses	 on	 stakeholder	
priorities,	while	verification	is	used	for	non‐functional	requirements.	Potential	validation	actions	that	are	candidates	
for	deletion	are	evaluated	for	the	risks	their	withdrawal	imposes	

NOTE	2	 The	 supplier,	 the	 acquirer,	 or	 an	 agent	 of	 the	 acquirer	 participates	 in	 or	 performs	 validation.	 The	
responsibility	is	often	designated	in	the	agreement.	

2) Identify	 system	 constraints	 from	 the	 validation	 strategy	 to	 be	 incorporated	 in	 the	 stakeholder	
requirements.	

3) Define	the	purpose,	conditions	and	conformance	criteria	for	each	validation	action.		

4) Select	appropriate	validation	methods	or	techniques	and	associated	criteria	for	each	validation	action.	

NOTE	1	 	 Software	 system	 validation	 methods	 or	 techniques	 include	 inspection,	 analysis,	 analogy/similarity,	
demonstration,	 simulation,	 peer	 review,	 and	 testing.	 Software	 validation	 techniques	 typically	 include	 demonstrations,	
inspection,	 reviews	 and	 code	walkthroughs,	 usability	 tests,	 and	 trial	 use	 of	 the	 software	 (e.g.,	 beta	 testing,	 operational	
testing,	user	testing,	or	an	acceptance	test	with	agreed	criteria).	The	selection	of	validation	methods	or	techniques	is	made	
according	 to	 the	 type	 of	 system,	 the	 purpose	 of	 the	 validation,	 the	 objectives	 of	 the	 project,	 legal	 and	 regulatory	
requirements,	 and	 the	 acceptable	 risks	 of	 a	 validation	 action.	 For	 software	 systems	 with	 human	 interaction,	 usability	
testing	 is	commonly	used	 to	validate	 that	representative	users	can	achieve	specified	goals	with	effectiveness,	efficiency	
and	 satisfaction	 in	 a	 specified	 context	of	 use.	 Further	details	 for	usability	 testing	 are	 found	 in	 ISO/IEC	TR	25060:2010

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

http://www.iso.org/iso/en/CatalogueListPage.CatalogueList�
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList�

ISO/IEC/IEEE 12207:2017(E)

91	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

Systems and software engineering — Systems and software product Quality Requirements and Evaluation (SQuaRE) —
Common Industry Format (CIF) for usability: General framework for usability-related information.	

NOTE	2	 	 Where	 appropriate,	 validation	 steps	 or	 states	 are	 defined	 (e.g.,	 in‐house	 validation,	 on‐site	 validation,	
operational	 validation)	 that	 progressively	 build	 confidence	 in	 conformance	of	 the	 evolving	 software	 system,	 and	 assist	
diagnosis	of	any	encountered	discrepancies.	

NOTE	3	 	 Criteria	for	stakeholder	acceptance	of	service	performance	is	commonly	stated	as	a	service	level	and	recorded	
in	a	service	level	agreement	(SLA).	Service	levels	typically	measure	capacity,	availability,	reliability,	and	timely	response	
for	services,	and	result	in	performance	requirements	for	the	supporting	systems.	

5) Identify	and	plan	for	the	necessary	enabling	systems	or	services	needed	to	support	validation.	

NOTE	 Enabling	 systems	 can	 include	 simulators,	 usability	 laboratory	 or	 test	 facility,	 qualified	 personnel,	 stakeholder	
and	 user	 representatives,	 according	 to	 selected	 validation	 methods	 or	 techniques.	 This	 includes	 identification	 of	
requirements	and	interfaces	for	enabling	systems.		

6) Obtain	or	acquire	access	to	the	enabling	systems	or	services	to	be	used	to	support	validation.	

NOTE	 The	 infrastructure	 management	 process	 or	 acquisition	 process	 can	 be	 invoked	 to	 obtain	 access	 to	 enabling	
systems,	such	as	through	rental,	procurement,	development,	reuse,	or	subcontracting.	Usually	access	to	the	complete	set	
of	enablers	is	a	mix	of	these	ways.	The	Validation	process	is	also	used	to	objectively	confirm	that	the	validation	enabling	
system	achieves	its	intended	use	for	its	enabling	functions.	

b) Perform validation. This	activity	consists	of	the	following	tasks:	

1) Define	the	validation	procedures,	each	supporting	one	or	a	set	of	validation	actions.	

NOTE	 Validation	procedures	identify	stakeholder	requirements	to	be	validated,	the	associated	software	system	artifact	
(e.g.,	the	actual	system,	or	a	model,	a	mock‐up,	a	prototype,	code,	a	set	of	instructions	or	other	information	item),	and	the	
expected	results	(success	criteria),	such	as	completed	and	timely	performance	of	a	function.	The	procedures	identify	the	
purpose	of	 the	validation	with	success	criteria	 (expected	results),	 the	validation	 technique	 to	be	applied,	 the	necessary	
enabling	 systems	 (facilities,	 equipment),	 and	 the	 environmental	 conditions	 to	 perform	 each	 validation	 procedure	
(resources,	 qualified	 personnel,	 participating	 stakeholders,	 and	 specialized	 procedural	 set‐up	 or	 work	 instructions).	
Validation	strategy	includes	how	the	validation	procedure	results	will	be	recorded,	analyzed,	stored,	and	reported.	

2) Perform	the	validation	procedures	in	the	defined	environment.	

NOTE	 Validation	occurs,	in	accordance	with	the	validation	strategy,	at	the	appropriate	time	in	the	schedule,	in	a	defined	
environment	 (such	 as	 the	 operational	 environment,	 a	 similar	 test	 environment,	 or	 other	 representative	 environment),	
with	 defined	 enablers	 and	 resources.	 The	 performance	 of	 a	 validation	 action	 typically	 consists	 of	 capturing	 execution	
results,	 comparing	 the	 obtained	 result	 with	 the	 success	 criteria,	 and	 deducing	 a	 degree	 of	 compliance	 or	 stakeholder	
satisfaction	with	the	software	system,	element,	service,	or	engineering	artifact.	

c) Manage results of validation. This	activity	consists	of	the	following	tasks:	

1) Review	validation	results	and	anomalies	encountered	and	identify	follow‐up	actions.	

NOTE	1	 	 Confirm	that	the	services	of	the	system	that	are	required	by	stakeholders	are	available.	Anomalies	can	result	
from	the	validation	strategy,	the	validation	enabling	systems,	execution	of	the	validation,	 incorrect	system	definition,	or	
inefficient	or	ineffective	system	design,	implementation,	and	integration.	

NOTE	2	 	 The	evaluation	of	validation	results	and	follow‐up	actions	can	include	acceptance	of	the	anomaly	as	a	low	risk	
occurrence.	Corrective	action	can	vary	greatly	depending	on	the	impact	of	the	validation	result.	For	elements	of	software,	
examples	 include	 a	 simple	 defect	 fix	 for	 a	 failed	 software	 element,	 additional	 training	 for	 users,	 corrections	 and	
clarifications	 in	 documentation,	 or	 major	 project	 re‐direction	 based	 on	 a	 failure	 to	 attain	 a	 key	 milestone,	 e.g.,	 failed	
software	system	acceptance	testing.	

2) Record	incidents	and	problems	during	validation	and	track	their	resolution.	

NOTE	 The	 Project	 Assessment	 and	 Control	 process	 and	 Quality	 Assurance	 process	 are	 used	 to	 analyze	 the	 data	 to	
identify	 the	 root	 cause	 of	 problems,	 enable	 corrective	 or	 improvement	 actions,	 and	 to	 record	 lessons	 learned.	 During	
software	validation,	the	gap	between	stakeholder	expectations	and	system	performance	is	documented	so	that	if	possible,	
the	 root	 cause	of	 the	discrepancy	 can	be	 identified.	Problem	resolution	 typically	 involves	determining	 the	 severity	and	
impact	of	the	problem	and	whether	or	when	a	software	discrepancy	is	to	be	corrected	or	accepted	for	a	time	as	a	known	
error.	Often	simple	or	recommended	solutions	to	anomalies	discovered	during	validation	are	recorded	with	the	validation	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

http://www.iso.org/iso/en/CatalogueListPage.CatalogueList�
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList�
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList�
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList�
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList�
http://www.iso.org/iso/en/CatalogueListPage.CatalogueList�

ISO/IEC/IEEE 12207:2017(E)

92	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

result	 to	 facilitate	 analysis	 and	 potential	 corrective	 action.	 Actual	 changes	 to	 the	 stakeholder	 and	 system/software	
requirements,	architecture,	design,	or	system	elements	are	done	within	other	Technical	processes.	

3) Obtain	stakeholder	agreement	that	the	software	system	or	element	meets	the	stakeholder	needs.	

4) Maintain	traceability	of	the	validated	system	elements.	

NOTE	 Bidirectional	 traceability	 is	 maintained	 between	 the	 validated	 system	 elements	 and	 the	 stakeholder	
requirements	and	record	of	validation	results.	

5) Provide	key	artifacts	and	information	items	that	have	been	selected	for	baselines.	

NOTE	 The	Configuration	Management	process	is	used	to	establish	and	maintain	configuration	items	and	baselines.	This	
process	 identifies	 candidates	 for	 the	baseline	 (such	as	 the	validated	 software	 system	or	 element),	 and	 the	 Information	
Management	process	controls	 the	 information	 items.	For	this	process,	 the	validation	strategy	and	validation	results	are	
typical	information	items	that	are	baselined.	

6.4.12 Operation process

6.4.12.1 Purpose

The	purpose	of	the	Operation	process	is	to	use	the	system	to	deliver	its	services.	

This	process	establishes	requirements	for	and	assigns	personnel	to	operate	the	system,	and	monitors	the	services	
and	operator‐system	performance.	In	order	to	sustain	services,	it	identifies	and	analyzes	operational	anomalies	in	
relation	to	agreements,	stakeholder	requirements	and	organizational	constraints.	

The	Operation	process	typically	aims	to	control	or	reduce	the	cost	of	operations	while	sustaining	an	acceptable	or	
improved	level	of	service.	

Software	systems	can	have	dedicated	infrastructure,	but	are	typically	operated	in	distributed	environments	where	
other	 software	 systems	 and	 services	 (e.g.,	 the	 internet)	 are	 active.	 The	 security,	 availability,	 and	 operational	
performance	of	the	software	system‐of‐interest	are	thus	a	matter	of	concern	within	a	larger	system	of	systems.	It	
can	 include	 coordination	with	 pre‐existing,	 concurrent	 or	 continuing	 services	 delivered	 by	 other	 systems	 that	
provide	identical	or	similar	services.	

NOTE								ISO/IEC	20000‐1:2011	(IEEE	Std	20000‐1)	is	a	service	management	system	standard	that	specifies	requirements	for	
the	 design,	 transition,	 delivery	 and	 improvement	 of	managed	 operational	 services,	 and	 supports	 the	 Operation	 process	 to	
achieve	its	purpose.	

6.4.12.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	Operation	process:

a) Operation	 constraints	 that	 influence	 system/software	 requirements,	 architecture,	 or	 design	 are	
identified.	
	

b) Any	enabling	systems,	services,	and	material	needed	for	operation	are	available.	
	

c) Trained,	qualified	operators	are	available.	
	

d) System	product	services	that	meet	stakeholder	requirements	are	delivered.	
	

e) System	product	performance	during	operation	is	monitored.	
	

f) Support	to	the	customer	is	provided.

6.4.12.3 Activities and tasks

The	project	shall	implement	the	following	activities	and	tasks	in	accordance	with	applicable	organization	policies	
and	procedures	with	respect	to	the	Operation	process.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

93	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

a) Prepare for operation.	This	activity	consists	of	the	following	tasks:	

1) Define	an	operation	strategy,	including	the	following	considerations:	

i) The	 expected	 or	 agreed	 capacity,	 availability,	 response	 time,	 and	 security	 of	 services	 as	 they	 are	
introduced,	routinely	operated	and	withdrawn	from	service;	

ii) The	 human	 resources	 strategy,	 depending	 on	 the	 need	 to	 define	 training	 and	 qualification	
requirements,	 train	 or	 obtain	 personnel	 to	 control	 and	 monitor	 software	 system	 operations,	
administer	system	access,	and	support	customer	service	requests	and	user	assistance;	

iii) The	 release	 criteria	 and	 schedules	 of	 the	 software	 system	 to	 permit	 modifications	 that	 sustain	
existing	or	enhanced	services;	

iv) The	 approach	 to	 implement	 the	 operational	 modes	 in	 the	 Operational	 Concept,	 including	 normal	
operations	and	preparations	for,	and	testing	of,	envisioned	types	of	contingency	operations;	

v) Measures	for	operation	that	will	provide	insight	into	performance	levels;	

vi) The	operational	and	occupational	safety	strategy	for	operators	and	others	using	or	in	contact	with	the	
software	system	during	operation,	accounting	for	safety	regulations;	and	

vii) The	environmental	protection	and	sustainability	strategy	for	operating	the	software	system.	

NOTE	 ISO/IEC	16350	 Information technology – Systems and software engineering – Application management,	 provides	
guidance	for	operational	aspects.	

2) Identify	 system	 constraints	 from	 operation	 to	 be	 incorporated	 in	 changes	 to	 the	 system/software	
requirements,	architecture,	design,	implementation,	or	transition.	

3) Identify	and	plan	for	the	necessary	enabling	systems	or	services	needed	to	support	operation.	

NOTE		 This	includes	identification	of	operational	requirements	and	interfaces	for	the	enabling	systems.	Special	modes	
of	the	operational	software	system,	e.g.,	a	training	mode,	can	sometimes	be	active	alongside	or	instead	of	a	full	operational	
mode.	Enabling	systems	include	monitoring	for	changes	in	threats	to	the	software	system.	

4) Obtain	or	acquire	access	to	the	enabling	systems	or	services	to	be	used.	

NOTE	 The	Validation	process	 is	used	to	objectively	confirm	that	the	operation	enabling	system	achieves	 its	 intended	
use	for	its	enabling	functions.	

5) Identify	 or	 define	 training	 and	 qualification	 requirements	 for	 personnel	 needed	 for	 software	 system	
operation.	

NOTE		 The	training	and	qualification	includes	awareness	of	the	software	system	in	its	operational	environment	and	a	
defined	program	of	familiarization,	with	appropriate	failure	detection	and	isolation	instruction.	Operator	knowledge,	skill	
and	experience	requirements	guide	the	personnel	selection	criteria,	and	where	relevant,	their	authorization	to	operate	is	
confirmed.	 The	 scope	 of	 qualification	 depends	 on	 the	 system‐of‐interest	 and	 its	 environment.	 For	 example,	 in	 some	
environments	 regulatory	 requirements	 include	 certification	 of	 operators,	 whereas	 in	 others	 there	 is	 no	 certification	
requirement.	

6) Depending	 on	 the	 need	 for	 human	 intervention	 and	 control	 of	 operations,	 assign	 trained,	 qualified	
personnel	to	be	operators.	

NOTE		 With	due	regard	for	separation	of	duties,	such	as	for	administrative	control	of	system	access	and	investigation	of	
security	 issues,	many	modern	software	products	minimize	the	need	for	operators	as	distinct	 from	end	users,	Operators	
commonly	 support	 enabling	 systems,	 such	 as	 cloud	 services,	 database	 and	 system	 software,	 security	 monitors,	 data	
storage,	and	help	desk.	

b) Perform operation.	This	activity	consists	of	the	following	tasks:	

1) Use	the	software	system	in	its	intended	operational	environment.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

94	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

NOTE	 Where	 agreed,	 continuous	 service	 capacity	 and	 quality	 is	 maintained	 when	 the	 software	 system	 replaces	 an	
existing	system	or	element	that	is	being	retired.	

2) Apply	materials	and	other	resources,	as	required,	to	operate	the	software	system	and	sustain	its	services.	

NOTE		 This	includes	energy	sources	for	hardware,	connectivity	for	software,	and	human	or	automated	operators.	

3) Monitor	software	system	operation,	including	consideration	of	the	following:	

i) Managing	adherence	to	the	operation	strategy	(e.g.,	operational	procedures);	

ii) Recording	 and	 reporting	 significant	 events,	 such	 as	 possible	 breaches	 of	 software	 and	 data	
confidentiality	and	integrity;	

iii) Operating	the	software	system	in	a	safe	manner	and	compliant	with	legislated	guidelines	e.g.,	those	
concerning	occupational	safety	and	environmental	protection;	and	

iv) Recording	when	software	system	or	service	performance	is	not	within	acceptable	parameters.	

NOTE	 This	 includes	 anomalies	 due	 to	 the	 operation	 strategy,	 the	 operation	 enabling	 systems,	 execution	 of	 the	
operation,	 or	 incorrect	 software	 system	 definition.	 The	 system	 sometimes	 exhibits	 unacceptable	 performance	 when	
system	 elements	 implemented	 in	 hardware	 have	 degraded	 or	 exceeded	 their	 useful	 life	 or	 the	 system’s	 operational	
environment	 affects	 the	 software	 operation,	 e.g.,	 workload	 above	 capacity	 thresholds,	 utilization	 by	 contending	
applications,	security	hacks,	or	software	defects.	

4) Consistent	with	the	operational	strategy,	develop	and,	where	feasible,	automate	operational	procedures	
to	minimize	the	risk	of	operational	anomalies.	

NOTE	 This	 includes	 procedures	 for	 handling	 routine	 (pre‐approved)	 change	 requests	 and	 service	 requests,	 trouble‐
shooting	and	incident	reporting,	especially	for	security	incidents.	

5) Consistent	with	the	operational	strategy,	analyze	measurements	to	confirm	that:	

i) Service	 performance	 is	 within	 acceptable	 parameters	 or	 agreed	 service	 levels	 for	 the	 agreed	
workload;	

ii) System	and	service	availability	and	response	times	are	acceptable;	

iii) Cost	of	operation	is	consistent	with	objectives	and	constraints;	and	

iv) Potential	improvements	are	identified	and	prioritized.	

NOTE	 Operator	 feedback	 and	 suggestions	 are	 often	 useful	 input	 for	 improving	 software	 system	 operational	
performance.	The	Quality	Assurance	and	Measurement	processes	can	be	applied.	

6) Perform	contingency	operations,	if	necessary.	

NOTE		 This	 includes	operating	 the	 software	 system	 in	a	degraded	mode,	performing	back‐out	and	 restore	operation,	
system	shutdown,	implementation	of	work‐around	procedures	to	restore	operation,	or	other	modes	for	special	conditions.	
If	 needed,	 the	 operator	 performs	 steps	 necessary	 to	 enter	 into	 contingency	 operations	 and	 possibly	 power	 down	 the	
system.	Contingency	operations	are	performed	 in	accordance	with	pre‐established	procedures	 for	 such	an	event.	Often	
these	procedures	are	accompanied	by	a	continuity	plan.	

c) Manage results of operation. This	activity	consists	of	the	following	tasks:	

1) Record	results	of	operation	and	anomalies	encountered.	

NOTE	 The	 Project	 Assessment	 and	 Control	 and	 Quality	 Assurance	 processes	 are	 used	 to	 analyze	 the	 incident	 and	
problem	data	to	identify	the	root	cause,	enable	corrective	or	improvement	actions,	and	to	record	lessons	learned.	

2) Record	operational	incidents	and	problems	and	track	their	resolution.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

95	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

NOTE	1	 	 Performing	incident	and	problem	resolution	is	handled	through	the	Quality	Assurance	and	Project	Assessment	
and	Control	processes.	 Changes	 to	 the	 requirements,	 architecture,	 design,	 or	 software	 system	elements	 are	done	using	
other	Technical	processes.	

NOTE	2	 	 If	an	incident	is	experienced	during	operation,	the	operator	records	the	incident	(or	is	alerted	to	an	automated	
notification)	 and	 performs	 actions	 prescribed	 in	 validated	 operating	 procedures	 to	 restore	 normal	 operations.	 Some	
procedures	allow	for	provision	of	a	temporary	workaround	solution	until	root	cause	analysis	can	be	performed.	

NOTE	3	 	 During	 software	 operation,	 the	 conditions	 under	 which	 the	 problem	 occurred	 are	 typically	 documented,	
consistent	with	maintaining	or	restoring	operational	availability,	 so	 that	 if	possible,	 the	problem	can	be	duplicated	 in	a	
test	environment	and	the	root	cause	identified.	Problem	resolution	usually	involves	determining	the	severity	and	impact	
of	the	problem	and	whether	or	when	the	problem	is	to	be	corrected	or	accepted	for	a	time	as	a	known	error.	

3) Maintain	traceability	of	the	operational	services	and	configuration	items.	

NOTE	 Bidirectional	 traceability	 is	maintained	 between	 the	 operational	 services	 and	 the	 business	 or	mission	 needs,	
operational	 concept,	 concept	 of	 operations,	 and	 stakeholder	 requirements.	 The	 operational	 configuration	 items	 are	
traceable	to	the	released	versions	and	validated	through	PCA	or	FCA.	

4) Provide	key	artifacts	and	information	items	that	have	been	selected	for	baselines.	

NOTE	 This	 process	 identifies	 candidates	 for	 the	 baseline,	 and	 the	 Information	 Management	 process	 controls	 the	
information	items,	such	as	reports	on	operational	service	performance.	Key	artifacts	(information	items)	for	Operations	
are	listed	in	Annex	B.	

d) Support the customer. This	activity	consists	of	the	following	tasks:	

1) Provide	 assistance	 and	 consultation	 to	 the	 customers	 and	 users	 to	 resolve	 complaints,	 incidents,	
problems,	and	service	requests.	

NOTE	1	 	 Assistance	 and	 consultation	 includes	 providing	 or	 recommending	 sources	 for	 training,	 documentation,	
vulnerability	resolution,	anti‐counterfeit	activities,	and	other	services	supporting	effective	use	of	the	software	system.	

NOTE	2	 	 Customer	 support	 can	 include	 communication	with	 customers	 of	 services,	 users,	 and	 other	 stakeholders	 to	
receive	service	requests	and	change	requests,	resolve	complaints,	and	provide	information	on	the	resolution	of	incidents	
and	problems.	

2) Record	and	monitor	requests	and	subsequent	actions	for	support.	

3) Determine	 the	 degree	 to	 which	 the	 delivered	 software	 system	 or	 services	 satisfy	 the	 needs	 of	 the	
customers	and	users.	

NOTE	 The	results	are	analyzed	and	the	required	actions	to	restore	or	amend	software	system	or	services	to	provide	
continued	customer	satisfaction	and	software	system	usability	are	identified.	Wherever	possible	the	benefit	of	such	action	
is	agreed	with	stakeholders	or	their	representatives.	The	customer	satisfaction	data	also	serves	as	an	input	to	the	Quality	
Management	process.	

6.4.13 Maintenance process

6.4.13.1 Purpose

The	purpose	of	the	Maintenance	process	is	to	sustain	the	capability	of	the	system	to	provide	a	service.	

This	process	monitors	the	system’s	capability	to	deliver	services,	records	incidents	for	analysis,	takes	corrective,	
adaptive,	perfective	and	preventive	actions	and	confirms	restored	capability.	

For	 software	 systems,	 the	 Maintenance	 process	 makes	 corrections,	 changes,	 and	 improvements	 to	 deployed	
software	systems	and	elements.	The	software	systems	maintenance	approach	differs	 for	systems	that	are	freely	
available,	in	wide	commercial	distribution,	or	operating	in	a	small	number	of	controlled	environments.	

The	need	for	software	system	maintenance	can	arise	from	multiple	causes	other	than	latent	system	defects,	such	
as	changes	to	interfaced	systems	or	infrastructure,	evolving	security	threats,	and	technical	obsolescence	of	system	
elements	and	enabling	systems	over	the	system	life	cycle.	Often	the	extension	of	capability,	mid‐life	upgrade,	or	
evolution	 of	 legacy	 systems	 becomes	 a	 new	 software	 system	 development	 project	 that	 will	 apply	 the	 set	 of	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

96	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

processes	within	an	appropriate	life	cycle.	If	so,	the	Portfolio	Management	process	is	the	starting	point	to	initiate	
the	work.	 In	other	 cases,	 software	 system	maintenance	 is	performed	as	a	 continuing	 series	of	prioritized	work	
items,	possibly	on	a	level	of	effort	basis.	Maintenance	of	software	system	elements	can	include	hardware,	software,	
and	 services,	 such	as	 communication	or	web	 services.	Maintenance	 is	 closely	 connected	with	 the	Configuration	
Management	process	 and	 software	 asset	management	 and	 is	 performed	 concurrently	with	 the	 other	Technical	
processes.	

NOTE								ISO/IEC/IEEE	14764:2006	Software Engineering — Software Life Cycle Processes — Maintenance	and	ISO/IEC	16350,	
Information technology — Systems and software engineering — Application management, provide	 additional	 detail.	 The	
SWEBOK,	 Guide to the Software Engineering Body of Knowledge,	 Software	 Maintenance	 knowledge	 area	 discusses	 software	
maintenance	fundamentals,	key	issues,	measurement,	techniques,	maintenance	process	and	support	activities,	and	tools.	The	
guide	also	discusses	models,	techniques	and	measures	that	support	software	reliability.	

6.4.13.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	Maintenance	process:

a)	 Maintenance	constraints	that	influence	system	requirements,	architecture,	or	design	are	identified.	

b)	 Any	enabling	systems	or	services	needed	for	maintenance	are	available.	

c)	 Replacement,	repaired,	or	revised	system	elements	are	made	available.	

d)	 The	need	for	changes	to	address	corrective,	perfective,	or	adaptive	maintenance	is	reported.	

e)	 Failure	and	lifetime	data,	including	associated	costs,	is	determined.

6.4.13.3 Activities and tasks

The	project	shall	implement	the	following	activities	and	tasks	in	accordance	with	applicable	organization	policies	
and	procedures	with	respect	to	the	Maintenance	process.	

a) Prepare for maintenance.	This	activity	consists	of	the	following	tasks:	

1) Define	a	maintenance	strategy,	including	consideration	of	the	following:	

i) Establishing	priorities,	typical	schedules,	and	procedures	for	performing,	verifying,	distributing,	
and	 installing	 software	 maintenance	 changes	 in	 conformance	 with	 operational	 availability	
requirements;	

ii) Establishing	 techniques	 and	methods	 for	 becoming	 aware	 of	 the	 need	 for	 corrective,	 adaptive,	
and	perfective	maintenance;	

iii) Periodic	assessment	of	the	design	characteristics	in	case	of	evolution	of	the	software	system	and	
of	its	architecture;	

iv) Forecasting	 potential	 obsolescence	 of	 components	 and	 technologies	 using	 information	 on	
technical	changes	in	related	systems;	

v) Establishing	priorities	and	resources	to	obtain	access	to	the	correct	versions	of	the	product	and	
product	information	needed	for	performing	maintenance	(e.g.,	scheduled	or	phased	installation,	
maintenance	patches	or	software	upgrades);	

vi) Measures	 for	maintenance	 that	will	 provide	 insight	 into	performance	 levels,	 effectiveness,	 and	
efficiency,	including	access	to	historical	fault	and	failure;	

vii) Agreed	 rights	 to	 data	 and	 the	 impact	 on	 data	 in	 the	 system	 during	 problem	 resolution	 and	
maintenance	activity;	

viii) Approach	to	assure	that	counterfeit	or	unauthorized	system	elements	are	not	introduced	into	the	
system;	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

97	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

ix) Impact	of	the	maintenance	change	on	other	software	systems	elements	versus	the	risk	of	leaving	
a	reported	software	anomaly	in	place;	and	

x) The	skill	and	personnel	levels	required	to	effect	system	or	software	repairs	or	replacements,	fixes,	
patches,	updates,	and	upgrades,	considering	legal	and	regulatory	requirements	regarding	health	
and	safety,	security,	and	the	environment.	

2) For	non‐software	elements,	define	a	logistics	strategy	throughout	the	life	cycle,	including	acquisition	and	
operational	 considerations:	 the	 number	 and	 type	 of	 replacement	 elements	 to	 be	 stored,	 their	 storage	
locations	and	conditions,	their	anticipated	replacement	rate,	and	their	storage	life	and	renewal	frequency.	

NOTE	 Supportability	 implications	 are	 considered	 early	 during	 concept	 exploration	 or	 development	 stages.	 Logistics	
helps	to	ensure	that	the	necessary	material	and	resources,	in	the	right	quantity	and	quality,	are	available	at	the	right	place	
and	time	throughout	deployment	and	sustainment	stages.	

3) Identify	 constraints	 from	 maintenance	 to	 be	 incorporated	 in	 the	 system/software	 requirements,	
architecture,	or	design.	

NOTE	 These	often	result	from	the	need	to	1)	re‐use	existing	maintenance	and	verification	enabling	systems;	2)	re‐use	
existing	 holdings	 of	 replaceable	 system	 element	 and	 accommodate	 re‐supply	 limitations;	 3)	 conduct	 maintenance	 in	
specific	 locations	 or	 environments.	 For	 example,	 software	 architectures	 and	 designs	 that	 emphasize	 encapsulation,	
modularity,	and	scalability	can	be	simpler	to	maintain.	Requirements	to	document	the	system	design	and	construction	can	
reduce	the	effort	needed	to	reverse	engineer	systems	and	elements	when	maintenance	is	needed.	The	system	architecture	
and	 design	 reflect	 the	 need	 to	 roll	 back,	 back	 up,	 and	 recover	 data	 during	 problem	 resolution.	 Functions	 to	make	 the	
system	available	for	remote	diagnostics	and	maintenance	can	be	incorporated	in	the	architecture	and	design.	

4) Identify	trades	such	that	the	system	and	associated	maintenance	and	logistics	actions	result	in	a	solution	
that	is	affordable,	operable,	supportable,	and	sustainable.	

NOTE	 The	 System	 Analysis	 and	 Decision	 Management	 processes	 are	 used	 to	 perform	 the	 assessments	 and	 trade	
decisions.	

5) Identify	and	plan	for	the	necessary	enabling	systems	or	services	needed	to	support	maintenance.	

NOTE	 This	 includes	 identification	of	requirements	and	 interfaces	 for	 the	enabling	systems.	The	selection	of	enabling	
systems	for	maintenance	often	reflects	the	need	to	re‐use	existing	or	equivalent	design,	development,	and	configuration	
management	infrastructure	as	during	the	initial	system	implementation.	

6) Obtain	or	acquire	access	to	the	enabling	systems	or	services	to	be	used.	

NOTE	 The	Validation	process	is	used	to	objectively	confirm	that	the	maintenance	enabling	system	achieves	its	intended	
use	for	its	enabling	functions.	

b) Perform maintenance. This	activity	consists	of	the	following	tasks:	

1) Review	stakeholder	requirements,	complaints,	events,	incident	and	problem	reports	to	identify	corrective,	
adaptive,	perfective	and	preventive	maintenance	needs.	

NOTE		 For	 software	 systems	 with	 iterative	 life	 cycles,	 changing	 requirements	 can	 be	 considered	 as	 the	 source	 for	
adaptive	and	perfective	maintenance	activities.	For	software	maintenance,	 this	process	makes	corrections,	changes,	and	
improvements	to	deployed	software,	as	well	as	patching	and	updates	to	maintain	system	security.	

2) Analyze	the	impact	of	maintenance	changes	on	data	structures,	data,	and	related	software	functions,	user	
documentation,	and	interfaces.	

NOTE	 Reviews	and	analyzes	often	include	factors	such	as	the	category	of	maintenance	action;	size	of	modification;	cost	
involved;	time	to	modify;	and	impacts	on	performance,	safety	or	security.	

3) Upon	 encountering	 unexpected	 faults	 that	 cause	 a	 software	 system	 failure,	 restore	 the	 system	 to	
operational	status.	

NOTE	 Restoration	to	full	or	degraded	operational	status	can	often	be	accomplished	through	a	rollback,	workaround	or	
by	identifying	and	correcting	the	cause	of	the	fault.	If	full	restoration	is	delayed	or	not	possible,	the	system	is	restored	to	a	
degraded	mode,	consistent	with	the	contingency	planning.	If	possible,	the	fault	is	replicated	using	a	distinct	environment	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

98	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

similar	 to	 the	 operational	 environment	 and	 the	 root	 causes	 of	 the	 fault	 are	 identified.	 The	 Configuration	Management	
process,	especially	release	management	activities,	is	invoked	to	control	scheduled	and	emergency	changes	to	the	system.	

4) Implement	the	procedures	for	correction	of	flaws	(defects)	and	errors,	or	for	replacement	or	upgrade	of	
system	elements.	

NOTE	1								Correction	of	flaws	and	errors	uses	problem	resolution	and	can	be	handled	through	the	Quality	Assurance	and	
Project	Assessment	and	Control	processes.	

NOTE	 2								Typically,	 regression	 testing	 is	 performed	 to	 verify	 that	 the	maintenance	 change	 has	 not	 introduced	 other	
issues,	i.e.,	complete	and	correct	implementation	of	the	new	and	modified	requirements	without	effect	on	the	performance	
of	 the	original,	unmodified	 requirements.	The	Transition	process	 can	be	applied	 for	deployment	of	major	maintenance	
changes;	minor	fixes	are	typically	handled	as	part	of	the	Maintenance	process.	Actions	are	recorded	in	order	to	facilitate	
future	maintenance	and	problem	resolution,	and	for	logistics	analyzes	of	degradable	system	elements.	

NOTE	3								System	and	data	recovery	procedures	and	maintenance	information	are	often	made	available	on	media	that	is	
usable	at	the	point	of	performing	maintenance.	

5) Perform	 preventive	 maintenance	 by	 replacing,	 patching,	 augmenting,	 or	 upgrading	 software	 system	
elements,	 to	 improve	 the	 performance	 of	 a	 software	 system	 that	 is	 projected	 to	 reach	 unacceptable	
service	 levels,	e.g.,	 lack	of	capacity	due	to	 increases	 in	demand	or	stored	data,	or	to	avoid	unacceptable	
operating	conditions,	e.g.,	running	with	outdated	security	software.	

6) Identify	when	adaptive	or	perfective	maintenance	is	required.	

NOTE	 	 Adaptive	 and	 perfective	 maintenance	 actions	 usually	 involve	 change	 to	 the	 system/software	 requirements,	
architecture	and	design.	A	new	project	can	be	started	to	modify	the	existing	software	system.	

c) Perform logistics support. This	activity	consists	of	the	following	tasks:

NOTE	 The	logistics	actions	enable	the	software	system	to	sustain	operational	readiness.	The	actions	include	provisions	
for	 staffing,	 supply	 support,	 support	 equipment,	 technical	 data	 needs	 (user	 documentation)	 and	 agreed	 data	 rights,	
training	support,	communications,	equipment/computing	resource	support,	and	facilities.	

1) Obtain	 resources	 to	 support	 the	 software	 system	 through	 its	 life	 cycle	 or	 the	project’s	 life	 (acquisition	
logistics).	

NOTE	 Acquisition	Logistics	considerations	are	included	in	the	agreement	resulting	from	the	Agreement	processes.	This	
includes	performing	analysis	 to	 identify	cost‐effective	changes	 to	 the	 initial	design	of	 the	system	for	supportability	and	
ease	of	maintenance,	as	well	as	arrangements	for	distributing	software	fixes	and	upgrades	during	utilization/deployment.	
These	decisions	are	often	constrained	by	availability	requirements	and	impact	the	supply	chain	management.	

2) Monitor	 the	 quality	 and	 availability	 of	 replacement	 elements	 and	 enabling	 systems,	 their	 delivery	
mechanisms	and	their	continued	integrity	during	storage.	

NOTE		 Operational	 logistics	 involves	 the	 concurrent	 adjustment	 of	 both	 the	 system‐of‐interest	 and	 enabling	 systems	
throughout	 the	 operational	 life	 to	 help	 ensure	 effective	 and	 efficient	 delivery	 of	 software	 functions.	 It	 also	 includes	
availability	of	skilled	resources.	For	example,	reliable	enabling	systems	are	available	with	the	capacity	 to	read	software	
stored	on	previous	media	formats,	or	to	migrate	backup	files	to	current	media	and	currently	maintained	enabling	systems.	

3) Implement	 mechanisms	 for	 software	 system	 or	 element	 distribution,	 including	 packaging,	 handling,	
storage	and	communications	or	transportation	needed	for	items	during	the	life	cycle.	

NOTE	1								Software	distribution	and	installation	is	typically	automated.	Software	packages	commonly	include	software	
license	 terms,	 including	data	 rights,	and	elements	 for	 software	asset	management.	Logistics	planning	 for	other	systems	
elements	is	often	required	to	support	the	objectives	of	the	Integration	and	Transition	processes.	

NOTE	2								Consider	the	need	to	store	spare	elements	or	backup	copies	of	software	onsite	or	 in	additional	 locations,	 to	
maintain	software	system	capabilities,	as	required	(perhaps	at	a	reduced	level	for	contingency	operations).	

4) Confirm	that	logistics	actions	to	fulfill	software	system	or	element	supportability	requirements	or	achieve	
operational	readiness	are	planned	and	implemented.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

99	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

NOTE	 These	 logistic	 actions	 can	 include	 staffing,	 supply	 support,	 support	 equipment,	 technical	 data	 needs	 (user	
documentation,	 instructions,	 lists),	 training	 support,	 communications,	 equipment/computing	 resource	 support,	 and	
facilities.	

d) Manage results of maintenance and logistics. This	activity	consists	of	the	following	tasks:	

1) Record	 incidents	 and	 problems,	 including	 their	 resolutions,	 and	 significant	 maintenance	 and	 logistics	
results.	

NOTE	 This	 includes	anomalies	due	 to	 the	maintenance	 strategy,	 the	maintenance	enabling	 systems,	 execution	of	 the	
maintenance	 and	 logistics,	 or	 incorrect	 system	 definition.	 The	 Project	 Assessment	 and	 Control	 and	 Quality	 Assurance	
processes	are	used	 to	perform	maintenance	problem	 identification	and	 resolution,	 e.g.,	 analyze	 the	data	 to	 identify	 the	
root	 cause,	 enable	 corrective	or	 improvement	 actions,	 and	 record	 lessons	 learned.	This	 activity	 can	 include	 changes	 to	
logistics	or	software	distribution	procedures.	Changes	 to	 the	software	system	requirements,	architecture,	or	design	are	
done	within	other	Technical	processes.	

2) Identify	and	record	trends	of	incidents,	problems,	and	maintenance	and	logistics	actions.	

NOTE	1	 	 Trend	 data	 and	 problem	 resolution	 reports	 are	 used	 to	 inform	 operations	 and	 maintenance	 personnel,	
customers,	and	other	stakeholders	and	projects	that	are	creating	or	utilizing	similar	system	entities.	

NOTE	2		 	 Incident	and	problem	reporting,	 including	resulting	action	taken,	 is	tracked	through	the	incident	and	process	
management	activity	of	the	Quality	Assurance	process.	

3) Maintain	traceability	of	the	system	elements	being	maintained.	

NOTE	 Bidirectional	 traceability	 is	 maintained	 between	 the	 recorded	 maintenance	 actions	 and	 the	 software	 system	
elements	 and	 life	 cycle	 artifacts.	 Changes	 in	 software	 asset	 management,	 such	 as	 assignment	 of	 software	 licenses	 to	
replacement	systems,	are	recorded.	

4) Provide	key	artifacts	and	information	items	that	have	been	selected	for	baselines.	

NOTE	 The	Configuration	Management	process	is	used	to	establish	and	maintain	configuration	items	and	baselines	and	
to	 track	 licenses	 and	 data	 rights.	 This	 process	 identifies	 candidates	 for	 the	 baseline,	 and	 the	 Information	Management	
process	controls	the	information	items,	such	as	maintenance	procedures.	

5) Monitor	and	measure	customer	satisfaction	with	system	and	maintenance	support.	

NOTE		 ISO	 10004:2012	 contains	 guidelines	 for	 monitoring	 and	 measuring	 customer	 satisfaction.	 When	 customer	
satisfaction	data	is	collected,	it	is	then	used	in	the	Quality	Management	process.	

6.4.14 Disposal process

6.4.14.1 Purpose

The	purpose	of	the	Disposal	process	is	to	end	the	existence	of	a	system	element	or	system	for	a	specified	intended	
use,	appropriately	handle	replaced	or	retired	elements,	and	to	properly	attend	to	identified	critical	disposal	needs	
(e.g.,	per	an	agreement,	per	organizational	policy,	or	for	environmental,	legal,	safety,	security	aspects).	

This	 process	deactivates,	 disassembles	 and	 removes	 the	 system	or	 any	of	 its	 elements	 from	 the	 specific	 use.	 It	
addresses	any	waste	products,	consigning	them	to	a	final	condition	and	returning	the	environment	to	its	original	
or	an	acceptable	condition.	The	waste	products	can	be	in‐process	resulting	during	any	life	cycle	stage,	e.g.,	waste	
materials	during	fabrication.	This	process	destroys,	stores,	or	reclaims	system	elements	and	waste	products	in	an	
environmentally	 sound	 manner,	 in	 accordance	 with	 legislation,	 agreements,	 organizational	 constraints	 and	
stakeholder	 requirements.	 Disposal	 includes	 preventing	 expired,	 non‐reusable,	 or	 inadequate	 elements	 from	
getting	back	into	the	supply	chain.	Where	required,	it	maintains	records	in	order	that	the	health	of	operators	and	
users,	and	the	safety	of	the	environment,	can	be	monitored.	When	part	of	the	system	will	continue	to	be	in	use	in	a	
modified	form,	the	Disposal	process	helps	ensure	the	proper	handling	of	the	portion	being	retired.	

Disposal	of	software	systems	encompasses	the	termination	of	services	and	disposal	of	software	elements,	stored	
data,	 media	 and	 firmware,	 information	 items,	 and	 associated	 hardware	 elements	 that	 will	 not	 be	 reused	 or	
transitioned	 to	 another	 system.	 The	 Disposal	 process	 is	 intended	 to	 be	 applicable	 in	 any	 stage	 of	 a	 software	
systems	life	cycle.	For	software,	the	Disposal	process	applies	throughout	the	life	cycle	to	source	code	or	executable	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

100	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

copies	 of	 the	 software,	 personally	 identifiable	 or	 controlled	 data	 used	 in	 the	 software	 system,	 and	 associated	
information	 items,	 retained	 under	 centralized	 configuration	 control	 or	 distributed	 for	 use,	 e.g.,	 disposing	 of	
prototypes	 in	 early	 life	 cycle	 stages,	 and	 decommissioning	 elements	 replaced	 from	 modifications	 during	
utilization/deployment	 and	 support	 stages.	 When	 the	 system‐of‐interest	 is	 being	 modified	 for	 technology	 or	
capability	upgrades,	only	the	impacted	elements	are	deactivated	and	removed.	

NOTE		 The	Business	or	Mission	Analysis	process	and	Decision	Management	process	are	typically	applied	to	address	the	
impact	on	stakeholders	of	system	disposal	and	potential	new	system	capabilities.	

6.4.14.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	Disposal	process:

a) Disposal	constraints	are	provided	as	inputs	to	requirements,	architecture,	design,	and	implementation.	
	

b) Any	enabling	systems	or	services	needed	for	disposal	are	available.	
	

c) The	system	elements	or	waste	products	are	destroyed,	stored,	reclaimed	or	recycled	in	accordance	with	
requirements,	e.g.,	safety	and	security	requirements.	
	

d) The	environment	is	returned	to	its	original	or	an	agreed	state.	
	

e) Records	of	disposal	actions	and	analysis	are	available.

6.4.14.3 Activities and tasks

The	project	shall	implement	the	following	activities	and	tasks	in	accordance	with	applicable	organization	policies	
and	procedures	with	respect	to	the	Disposal	process.	

a) Prepare for disposal.	This	activity	consists	of	the	following	tasks:	

1) Define	a	disposal	 strategy	 for	 the	 software	 system,	 to	 include	each	 system	element	and	 to	 identify	 and	
address	critical	disposal	needs,	including	the	following	considerations:	

i) Permanent	termination	of	the	system’s	functions	and	delivery	of	services,	e.g.,	physical	destruction	
of	data	storage	devices,	or	transition	of	the	software	system	elements	for	future	reuse	in	modified	or	
adapted	form;	

ii) Identification	of	ownership	and	 responsibility	 for	 retention	or	destruction	of	data	and	 intellectual	
property	in	the	software	system;	

iii) Transformation	of	the	product	into,	or	retention	in	a	socially	and	physically	acceptable	state,	thereby	
avoiding	subsequent	adverse	effects	on	stakeholders,	society	and	the	environment;	

iv) The	health,	safety,	security	and	privacy	concerns	applicable	to	disposal	actions	and	to	the	long‐term	
condition	of	resulting	physical	material	and	information;	

v) Notification	to	relevant	stakeholders	of	significant	disposal	activities,	e.g.,	retirement	or	replacement	
of	a	system,	software	products	or	services,	retirement	schedule,	or	replacement	options;	and	

vi) Identification	of	schedules,	actions,	responsibilities,	and	resources	for	disposal	activities.	

2) Identify	 constraints	 on	 disposal	 for	 the	 system/software	 requirements,	 architecture	 and	 design	
characteristics,	or	implementation	techniques.	

NOTE	 This	includes	access	to	and	availability	of	archives	or	long‐term	storage	locations	and	available	skilled	resources	
for	system	deactivation	and	communication	with	stakeholders	and	interface	partners.	

3) Identify	and	plan	for	the	necessary	enabling	systems	or	services	needed	to	support	disposal.	

NOTE		 This	includes	identification	of	requirements	and	interfaces	for	the	enabling	systems.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

101	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

4) Obtain	or	acquire	access	to	the	enabling	systems	or	services	to	be	used.	

NOTE		 The	Validation	process	is	used	to	objectively	confirm	that	the	disposal	enabling	system	achieves	its	intended	use	
for	its	enabling	functions.	

5) Specify	 containment	 facilities,	 storage	 locations,	 inspection	 criteria	and	 storage	periods,	 if	 the	 software	
system	or	data	is	to	be	stored,	consistent	with	security	and	environmental	considerations.	

6) Define	preventive	methods	to	preclude	disposed	elements	and	materials	that	should	not	be	repurposed,	
reclaimed	or	reused	from	re‐entering	the	supply	chain.	

b) Perform disposal. This	activity	consists	of	the	following	tasks:	

1) Deactivate	the	software	system	or	element	to	prepare	it	for	removal.	

NOTE	 Interfaces	to	other	systems	are	considered,	in	accordance	with	special	procedures	or	instructions,	and	relevant	
health,	safety,	security	and	privacy	constraints.	

2) Remove	the	software	system,	its	elements,	its	data,	and	non‐reusable	material	from	use	or	production	for	
appropriate	disposition	and	action.	

NOTE	 The	 disposition	 includes	 reuse,	 recycling,	 reconditioning,	 overhaul,	 or	 destruction.	 The	 disposition	 and	
subsequent	 actions	 are	 conducted	 in	 accordance	 with	 relevant	 safety,	 security,	 privacy	 and	 environmental	 standards,	
directives	and	laws.	Elements	of	the	software	system	that	have	useful	life	remaining,	either	in	their	current	condition	or	
following	 modification,	 are	 transferred	 to	 other	 systems‐of‐interest	 or	 organizations.	 Where	 appropriate,	 consider	
refurbishing	system	elements	to	extend	their	useful	life.	

3) Withdraw	 impacted	 operating	 staff	 from	 the	 software	 system	 or	 system	 element	 and	 record	 relevant	
operating	knowledge.	

NOTE	 Reallocate,	redeploy	or	retire	operators.	This	is	conducted	in	accordance	with	relevant	safety,	security,	privacy	
and	environmental	standards,	directives	and	laws.	Act	to	safeguard	and	secure	operator’s	knowledge	and	skills,	using	the	
Knowledge	Management	process.	

4) Reuse,	recycle,	recondition,	overhaul,	archive,	or	destroy	designated	software	system	elements.	

NOTE	 Handle	system	elements	and	their	parts	that	are	not	intended	for	reuse	in	a	manner	that	will	assure	they	do	not	
get	back	into	the	supply	chain.	

5) Conduct	destruction	of	the	system	elements,	as	necessary,	to	reduce	the	amount	of	waste	treatment	or	to	
make	the	waste	easier	to	handle.	

NOTE	 When	the	element	 is	non‐maintainable	or	non‐recyclable,	 it	 is	necessary	 to	prevent	 the	elements	 from	getting	
back	into	the	supply	chain,	e.g.,	complete	erasure	of	all	software	from	all	system	storage	media	and	removal	of	license	keys,	
data,	 and	 interfaces.	 This	 activity	 includes	 obtaining	 the	 destruction	 services	 to	 melt,	 crush,	 incinerate,	 demolish	 or	
eradicate	the	system	or	its	elements	as	necessary.	

c) Finalize the disposal. This	activity	consists	of	the	following	tasks:	

1) Confirm	that	detrimental	health,	 safety,	security,	and	environmental	conditions	 following	disposal	have	
been	identified	and	treated.	

2) Return	the	environment	to	its	original	state	or	to	a	state	that	is	specified	by	agreement.	

3) Archive	 information	 gathered	 through	 the	 lifetime	 of	 the	 product	 to	 permit	 audits	 and	 reviews	 in	 the	
event	of	long‐term	hazards	to	health,	safety,	security	and	the	environment,	and	to	permit	future	software	
system	creators	and	users	to	build	a	knowledge	base	from	experience.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

102	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

Annex A	
(normative)	

	
Tailoring process

A.1 Introduction

This	Annex	provides	requirements	for	the	tailoring	of	this	document.	

NOTE	1	 Tailoring	is	not	a	requirement	for	conformance	to	this	document.	In	fact,	tailoring	is	not	permitted	if	a	claim	of	“full	
conformance”	is	to	be	made.	If	a	claim	of	“tailored	conformance”	is	made,	then	this	process	is	applied	to	perform	the	tailoring.	

NOTE	2	 Additional	guidance	 for	 tailoring	can	be	 found	 in	 ISO/IEC/IEEE	24748	(all	parts)	on	the	application	of	 life	cycle	
processes.	

A.2 Tailoring process

A.2.1 Purpose

The	purpose	of	the	Tailoring	process	is	to	adapt	the	processes	of	this	document	to	satisfy	particular	circumstances	
or	factors	that:	

a) surround	an	organization	that	is	employing	this	document	in	an	agreement;	
	

b) influence	a	project	that	is	required	to	meet	an	agreement	in	which	this	document	is	referenced;	
	

c) reflect	the	needs	of	an	organization	in	order	to	supply	products	or	services.

A.2.2 Outcomes

As	a	result	of	the	successful	implementation	of	the	Tailoring	process:

a)	 Modified	or	new	 life	 cycle	processes	are	defined	 to	achieve	 the	purposes	 and	outcomes	of	 a	 life	 cycle	
model.

A.2.3 Activities and tasks

If	 this	document	 is	 tailored,	 then	 the	organization	or	project	shall	 implement	 the	 following	 tasks	 in	accordance	
with	applicable	policies	and	procedures	with	respect	to	the	Tailoring	process,	as	required.	

a) Identify	and	record	the	circumstances	that	influence	tailoring.	These	influences	include,	but	are	not	limited	to:	

1) stability	of,	and	variety	in,	operational	environments;	

2) risks,	commercial	or	performance,	to	the	concern	of	interested	parties;	

3) novelty,	size	and	complexity;	

4) starting	date	and	duration	of	utilization;	

5) integrity	issues	such	as	safety,	security,	privacy,	usability,	availability;	

6) emerging	technology	opportunities;	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

103	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

7) profile	of	budget	and	organizational	resources	available;	

8) availability	of	the	services	of	enabling	systems;	

9) roles,	responsibilities,	accountabilities	and	authorities	in	the	overall	life	cycle	of	the	system;	and	

10) the	need	to	conform	to	other	standards.	

b) In	the	case	of	properties	critical	to	the	system,	take	due	account	of	the	life	cycle	structures	recommended	or	
mandated	by	standards	relevant	to	the	dimension	of	the	criticality.	

c) Obtain	input	from	parties	affected	by	the	tailoring	decisions.	This	includes,	but	may	not	be	limited	to:	

1) the	system	stakeholders;	

2) the	interested	parties	to	an	agreement	made	by	the	organization;	and	

3) the	contributing	organizational	functions.	

d) Make	tailoring	decisions	 in	accordance	with	the	Decision	Management	process	to	achieve	the	purposes	and	
outcomes	of	the	selected	life	cycle	model.	

NOTE	1	 	 Organizations	establish	standard	life	cycle	models	as	a	part	of	the	Life	Cycle	Model	Management	process.	It	is	
sometimes	 appropriate	 for	 an	 organization	 to	 tailor	 processes	 of	 this	 document	 in	 order	 to	 achieve	 the	 purposes	 and	
outcomes	of	the	stages	of	a	life	cycle	model	to	be	established.	

NOTE	2	 	 Projects	select	an	organizationally‐established	life	cycle	model	for	the	project	as	a	part	of	the	Project	Planning	
process.	It	is	sometimes	appropriate	to	tailor	organizationally	adopted	processes	to	achieve	the	purposes	and	outcomes	of	
the	stages	of	the	selected	life	cycle	model.	

NOTE	3	 	 In	cases	where	projects	are	directly	applying	this	document,	it	is	sometimes	appropriate	to	tailor	processes	of	
this	document	in	order	to	achieve	the	purposes	and	outcomes	of	the	stages	of	a	suitable	life	cycle	model.	

e) Select	the	life	cycle	processes	that	require	tailoring	and	delete	selected	outcomes,	activities,	or	tasks.	

NOTE	1	 	 Irrespective	of	tailoring,	organizations	and	projects	are	always	permitted	to	implement	processes	that	achieve	
additional	 outcomes	 or	 implement	 additional	 activities	 and	 tasks	 beyond	 those	 required	 for	 conformance	 to	 this	
document.	

NOTE	2	 	 An	organization	or	project	sometimes	encounter	a	situation	where	there	is	the	desire	to	modify	a	provision	of	
this	 document.	 Modification	 is	 to	 be	 avoided	 because	 of	 unanticipated	 consequences	 on	 other	 processes,	 outcomes,	
activities	 or	 tasks.	 If	 necessary,	modification	 is	 performed	 by	 deleting	 the	 provision	 (making	 the	 appropriate	 claim	 of	
tailored	conformance)	and,	with	careful	consideration	of	consequences,	implementing	a	process	that	achieves	additional	
outcomes	or	performs	additional	activities	and	tasks	beyond	those	of	the	tailored	standard.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

104	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

Annex B	
(informative)		

	
Examples of process information items

Table	B.1	provides	a	possible	set	of	work	products,	including	artifacts,	records,	information	items,	and	data	stores	
associated	with	each	process.	This	list	is	not	all‐inclusive:	for	each	process,	an	organization	may	decide	to	develop	
a	policy,	plan,	procedures,	reports,	and	records,	to	demonstrate	the	outcomes	or	perform	the	activities	and	tasks.	
Where	 less	 intensive	 documentation	 is	 considered	 sufficient,	 information	 items	 can	 be	 combined.	 Also	 the	
organizational	policies	and	procedures	can	be	applied	or	tailored	for	each	process	and	project.	Typical	item	titles	
are	shown,	including	common	examples	of	alternate	titles	in	parentheses.	

NOTE	 See	ISO/IEC/IEEE	15289	for	guidance	on	content	and	management	of	Information	Items.	

Artifacts,	records,	record	stores,	and	information	items	are	usually	initiated	in	one	process	and	revised,	enhanced,	
or	completed	in	other	processes.	For	convenience,	they	are	listed	once	in	this	table,	in	a	process	where	they	are	
commonly	 initiated.	 When	 the	 software	 system	 artifacts	 and	 information	 are	 transformed	 or	 elaborated	 by	
another	process,	traceability	is	maintained	and	a	traceability	mapping	can	be	produced.	For	example,	traceability	
can	 be	maintained	 between	 organizational	 and	project	 processes,	 and	 between	 requirements,	 architecture	 and	
design	elements,	and	verification	cases.	

Table B.1 — Sample information items by process

Process
Group

Process Typical Item Title Item
Type

Agreement processes 	
 Acquisition process 	
 Acquisition	Plan	 info	
	 	 Request	for	Supply	(e.g.,	Request	for	Proposal,	Request	for	Tender) info	
	 	 Agreement	Change	Request info	
	 	 Agreement	(e.g.,	Contract) info	
	 	 Agreement	Change	Management	Procedure	 info	
	 	 Delivery	Acceptance	Report info	
 Supply process 	
	 	 Supply	Response	(e.g.,	Proposal,	Tender) info	
	 	 Agreement	Change	Request info	
	 	 Agreement	Change	Management	Procedure		 info	
	 	 Supply	Delivery	Records	(for	system,	software,	product	or	service) record

Organizational Project-Enabling processes		

 Life Cycle Model Management process
	 	 Organizational	Policies	 info	
	 	 Life	Cycle	processes	 artifact
	 	 Life	Cycle	Process	Description info	
	 	 Life	Cycle	Model	 artifact
	 	 Organizational	Procedures	(Process	Management	Procedures) info	
	 	 Process	Assessment	Report info	
	 	 Process	Improvement	Plan info	
	 	 Process	Improvement	Report info	
	 Infrastructure Management process 	
	 	 Infrastructure	Requirements artifact
	 	 Infrastructure	Element	 artifact
	 	 Infrastructure	Description info	
	 	 Infrastructure	Change	Request info	
	 Portfolio Management process	
	 Project	Portfolio	 store	
	 	 Project	Budget	 artifact
	 	 Project	Authorization		 info	
	 Human Resource Management process 	
	 	 Skill	Needs	Report	 info	
	 	 Skill	Development	Assets	(Training	Materials) artifact
	 Skill	Development	Records	(Skill	Inventory,	Training	Record) record

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

105	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

Process
Group

Process Typical Item Title Item
Type

	 	 Qualified	Personnel artifact
	 	 	Staff	Assignment	Records record
	 Quality Management process
	 	 Quality	Management	Plan	(Policies,	Objectives) info
	 	 Quality	Management	Procedures info
	 	 Quality	Assurance	Assessment	Results record
	 	Corrective	and	Preventive	Action	Report	(Problem	Management	Report)		 info
	 Knowledge Management process
	 	 Knowledge	Management	Plan info
	 	 Knowledge	Management	Procedures info
	 	 Knowledge	Asset	Records record
	 Knowledge	Assets artifact
Technical Management processes	
	 Project Planning process

	
	 Project	Plan	(e.g.,	Project	Technical	Management	Plan,	Systems	or	Software	

Engineering	Management	Plan,	Software	Development	Plan,	Transition	Plan)	
info

 	 Work	Breakdown	Structure artifact
	 Resource	Request info
	 	 Project	Schedule artifact
	 	 Project	Infrastructure	and	Services	Requirements artifact
	 Project Assessment and Control process
	 	 Measurement	Analysis	Results	and	Recommendations info
	 	 Project	Assessment	Report info
	 Review	Minutes info
	 	 Authorization	to	Proceed	to	Next	Milestone info
	 Decision Management process
	 	 	Decision	Request info
	 	 	Decision	Records record
	 Risk Management process
	 	 Risk	Management	Plan info
	 	 Risk	Profile	 record
	 	 Risk	Action	Request info
	 Configuration Management process
	 	 Configuration	Management	Plan info
	 	 Configuration	Management	Procedures info
	 	 Configuration	Management	Records record
	 Configuration	Baseline artifact
	 CM	Change/Variance	Request	 info
	 Configuration	Status	Report info
	 	 Configuration	Evaluation	Report info
	 	 System/Software	Release	Report info
	 Information Management process
	 	 Information	Item	Archive store
	 	 Information	Management	Procedures info
	 	 Information	Management	Report info
	 Measurement process
	 	 Measurement	Records record
	 	 Measurement	Procedures info
	 	 Measurement	Information	Needs	Report info
	 Measurement	Report info
	 Quality Assurance process
	 	 Quality	Assurance	Procedures info
	 	 Quality	Assurance	Evaluation	Report info
	 	 Quality	Assurance	Records record
	 Incident	Records record
	 Problem	Records record
Technical processes
	 Business or Mission Analysis process
	 	 Preliminary	Life	Cycle	Concept artifact
 	 Solution	Alternative	Classes	Assessment	Report info
 Stakeholder Needs and Requirements Definition process
 Operational	Concept	 artifact
 Stakeholder	Needs	Assessment info
	 Stakeholder	Requirements artifact
	 Stakeholder	Requirements	Specification info
 Stakeholder	Requirements	Report info
 Critical	Performance	Measures artifact

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

106	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

Process
Group

Process Typical Item Title Item
Type

 System/Software Requirements Definition process 	
 System	or	Element	Description info	
 System/Software	Requirements artifact
 System/software	requirements	Specification info	
	 Requirements	Change	Request info	
	 Architecture Definition process	 	
 Architecture	Viewpoints	 artifact
 Architecture	Views	and	Models	(Architecture	Description) artifact
	 Interface	Definition	(initial) artifact
 Design Definition process	 	
	 Design	Artifact	 artifact
	 Design	Artifacts	Report	(Design	description) info	
	 Interface	Specification	 info	
	 System Analysis process	 	
	 System	Analysis	Report	 info	
	 Implementation process	 	
	 Software	System	Element	 artifact
	 Implementation	Procedures info	
	 	 Implementation	Records	(unit	test	results) record
	 Integration process	 	
	 	 Interface	Control	Description info	
	 	 Integration	and	Test	Procedures info	
	 Integrated	Software	System Elements	(software	library) artifact
	 Integration	Records	 record
	 Verification process	 	
	 	 Verified	System	 artifact
	 	 Verification	Procedures	 info	
	 Verification	Records	 record
	 Verification	Report	 info	
	 Transition process	 	
	 	 Prepared	Site	for	Operations artifact
	 	 Transitioned	System/Software artifact
	 Transition	Records	 record
	 Validation process	 	
		 	 Validated	System	 artifact
		 	 Validation	Procedures	 info	
	 Validation	Records	 record
	 Validation	Report	 info	
	 Operation process	 	
	 	 Continuity	plan		 info	
	 	 Operational	procedures	(User	documentation) info	
	 	 Operation	Records	 record
	 Problem	Report	 info	
	 Customer	Support	Request info	
	 Customer	Support	Records record
	 	 Operation	Report	 info	
	 Maintenance process	 	
	 	 Replacement	System	Element artifact
	 	 Maintenance	Procedures	(Logistics	Procedures) info	
	 	 Maintenance	(Logistics)	Records record
	 Maintenance	Requests	 record
	 	 Maintenance	(Logistics)	Report info	
	 Disposal process 	
	 	 Disposal	Records	 record
	 	 Archive	Report	 info	

	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

107	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

Annex C	
(informative)		

	
Process Reference Model for assessment purposes

C.1 Introduction

Some	users	 of	 this	 document	may	desire	 to	 assess	 the	 implemented	processes	 in	 accordance	with	 the	 ISO/IEC	
33000	series	standards	 for	process	assessment.	This	annex	provides	a	Process	Reference	Model	(PRM)	suitable	
for	use	in	conjunction	with	those	standards.	

The	PRM	is	composed	of	the	processes	in	the	body	of	this	document,	 including	the	name,	statement	of	purpose,	
and	statement	of	outcomes	for	each	process.	Subclause	C.3	identifies	the	processes	in	the	process	reference	model	
and	the	clauses	in	which	they	are	defined.	

C.2 Conformance with ISO/IEC 33004

C.2.1 General

ISO/IEC	33004	subclause	5.3	places	 requirements	on	process	 reference	models	suitable	 for	assessment	by	 that	
standard.	 The	 following	 sections	 quote	 the	 ISO/IEC	 33004	 requirements	 for	 process	 reference	 models	 and	
describe	how	 these	are	met	by	 this	document.	 In	each	of	 the	 following	subclauses	 the	 italicized text	quotes	 the	
requirement	from	the	text	of	ISO/IEC	33004	and	the	non‐italicized	(upright)	text	describes	the	manner	in	which	
the	requirement	is	satisfied	in	this	document.	

C.2.2 Requirements for process reference models

A Process Reference Model shall contain: [ISO/IEC 33020, 5.3.1]

a) A	declaration	of	the	domain	of	the	process	reference	model.	This	is	provided	in	Clause	1.	

b) A	description	of	 the	 relationship	between	 the	process	 reference	model	and	 its	 intended	context	of	use.	
This	is	provided	by	Clause	5.	

c) Descriptions,	meeting	the	requirements	of	[33004]	5.4	[below],	of	the	processes	within	the	scope	of	the	
process	reference	model;	This	is	provided	in	Clause	6	in	the	description	of	each	process.	

d) A	description	of	the	relationship	between	the	processes	defined	within	the	process	reference	model.	This	
is	provided	in	5.6	

The process reference model shall document the community of interest of the model and the actions taken to
achieve consensus within that community of interest: [ISO/IEC 33020, 5.3.2]

a) the relevant community of interest shall be characterized or specified; The	relevant	community	of	interest	is	the	
users	of	ISO/IEC/IEEE	15288	and	ISO/IEC/IEEE	12207.

b) the extent of achievement of consensus shall be documented;	Both	ISO/IEC/IEEE	15288	and	ISO/IEC/IEEE	
12207	are	international	standards	satisfying	the	consensus	requirements	of	ISO/IEC	and	IEEE.	(Not	
applicable).

c) if no actions are taken to achieve consensus, a statement to this effect shall be documented. (Not	applicable).

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

108	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

The	processes	defined	within	a	process	reference	model	shall	have	unique	process	descriptions	and	identification.	
[ISO/IEC	33020,	5.3.3]	The	process	descriptions	are	unique.	The	identification	is	provided	by	unique	names	and	
by	the	clause	numbering	of	this	annex.	

C.2.3 Process descriptions

The fundamental elements of a process reference model are the descriptions of the processes within the scope of the
model.

The process descriptions in the process reference model incorporate a statement of the purpose of the process, which
describes at a high level the overall objectives of performing the process, together with the set of outcomes that
demonstrate successful achievement of the process purpose.

A process description shall meet the following requirements:

a) a	process	shall	be	described	in	terms	of	its	purpose	and	outcomes;	

b) the	set	of	process	outcomes	shall	be	necessary	and	sufficient	to	achieve	the	purpose	of	the	process;	and	

c) process	descriptions	shall	not	contain	or	 imply	aspects	of	 the	process	quality	characteristic	beyond	the	
basic	level	of	any	relevant	process	measurement	framework	conformant	with	ISO/IEC	33003.	

A process outcome describes one of the following: [ISO/IEC 30004:2015, 5.4]

a) production	of	an	artifact;	

b) a	significant	change	of	state;	and	

c) meeting	of	specified	constraints,	e.g.,	requirements,	goals,	etc.	

These	 requirements	 are	met	by	 the	process	descriptions	 in	Clause	6	of	 this	document.	 Some	outcomes	may	be	
interpreted	 as	 contributing	 to	 levels	 of	 capability	 above	 level	 1	 (basic)	 in	 some	 relevant	 process	measurement	
frameworks.	 However,	 conforming	 implementation	 of	 the	 relevant	 processes	 does	 not	 require	 achievement	 of	
these	higher	levels	of	capability.	

C.3 The process reference model

The	 Process	 Reference	 Model	 (PRM)	 is	 composed	 of	 the	 statement	 of	 purpose	 and	 outcomes	 of	 each	 of	 the	
processes	 included	 in	Clause	6	of	 this	document.	The	PRM	 for	 the	 software	 life	 cycle	 is	 composed	of	 the	 set	of	
processes	in	Figure	4,	shown	previously	in	5.6.1	of	this	document.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

109	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

Annex D
(informative)	

	
Process integration and process constructs

D.1 Introduction

A	harmonization	project	within	ISO/IEC	JTC	1/SC	7	—	a	parallel,	coordinated	revision	of	ISO/IEC/IEEE	15288	and	
ISO/IEC/IEEE	12207,	and	development	of	guidance	in	ISO/IEC/IEEE	24748	(all	parts),	which	provides	guidelines	
to	both	of	these	documents	—	is	the	first,	large	step	towards	an	integrated	set	of	standards	describing	system	and	
software	 life	 cycles.	 Concepts	 of	 continual	 process	 improvement	 and	 capability	 assessment	 are	 now	 well	
established	and	recognized,	and	are	being	standardized	in	the	ISO/IEC	33000	series	of	standards	(replacing	the	
ISO/IEC	15504	series).	The	Process	Reference	Models	in	Annex	C	of	ISO/IEC/IEEE	15288:2015	and	this	document	
are	 intended	 to	 be	 used	 in	 conjunction	 with	 ISO/IEC	 33020:2015	 for	 capability	 assessment	 of	 the	 life	 cycle	
processes.	Capability	determination	of	processes	requires	that	the	process	descriptions	include	a	clear	statement	
of	 the	 purpose	 of	 the	 process	 and	 a	 description	 of	 the	 expected	 outcomes.	 Consistent	 implementation	 of	 the	
processes	is	aided	by	having	activities,	tasks,	and	implementation	notes	defined.	Thus,	the	life	cycle	processes	in	
both	life	cycle	standards	have	adopted	common	process	constructs,	as	defined	in	D.2,	Process	constructs	and	their	
usage,	and	are	consistent	with	the	process	definition	guidance	contained	in	ISO/IEC/IEEE	TR	24774.	

D.2 Process constructs and their usage

The	 process	 descriptions	 in	 this	 document	 follow	 clearly	 defined	 rules.	 First,	 they	 were	 grouped	 in	 a	 logical	
fashion.	Those	groupings	are	dictated	by:	

a) Logical	relations	among	the	processes;	and	

b) Responsibility	for	execution	of	the	processes.	

This	document	groups	the	activities	that	may	be	performed	during	the	life	cycle	of	the	system	into	four	Process	
Groups.	The	top‐level	description	of	these	groups	can	be	found	in	5.6.	Each	life	cycle	process	within	those	groups	
is	 described	 in	 terms	 of	 its	 purpose	 and	 desired	 outcomes	 and	 lists	 the	 activities	 and	 tasks	 that	 need	 to	 be	
performed	to	achieve	those	outcomes.	

c) Agreement	processes	–	two	processes	(6.1);	

d) Organizational	Project‐Enabling	processes	–	six	processes	(6.2);	

e) Technical	Management	processes	–	eight	processes	(6.3);	and	

f) Technical	processes	–	fourteen	processes	(6.455).	

Consistent	 application	 of	 process	 description	 rules	 allows	 for	 the	 normalized	 clause	 numbering.	 Within	 this	
document	a	subclause	numbered	as	6.x	denotes	a	process	group	and	6.x.y	denotes	a	process	within	 that	group.	
Subclauses	 numbered	 as	 6.x.y.1	 describe	 the	 purpose	 of	 a	 process,	 subclauses	 numbered	 6.x.y.2	 describe	 the	
outcomes	of	a	process,	and	subclauses	numbered	as	6.x.y.3	describe	the	activities	and	tasks	of	a	process.	

Figure	 D.1	 is	 a	 representation	 of	 process	 constructs	 used	 in	 this	 document	 and	 in	 ISO/IEC/IEEE	 15288:2015.	
These	are	Process,	Activity,	Task,	and	Note.		

A	 process	 requires	 a	 name,	 purpose	 and	 at	 least	 one	 outcome.	 Each	 process	 has	 at	 least	 one	 activity.	 A	 set	 of	
processes,	with	their	statements	of	purpose	and	outcomes,	constitute	a	Process	Reference	Model	(PRM).		

An	activity	is	a	construct	of	related	tasks	for	producing	outcomes,	Activities	provide	a	means	to	organize	related	
tasks	within	the	process,	to	 improve	understanding	and	communication	of	the	process.	 If	an	activity	 is	cohesive	
enough,	it	can	be	converted	to	a	lower	level	process	by	drafting	a	purpose	and	a	set	of	outcomes.		

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

110	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

A	task	is	a	detailed	provision	for	 implementation	of	a	process.	 It	may	be	presented	as	a	requirement	(“shall”),	a	
recommendation	(“should”)	or	a	permission	(“may”).	

Notes	are	used	to	explain	the	intent	or	mechanics	of	a	process,	activity,	or	task.	Notes	provide	insight	regarding	
potential	implementation	or	areas	of	applicability,	such	as	lists,	examples,	and	other	considerations.	

	

Figure D.1 — ISO/IEC/IEEE 12207:2017 and ISO/IEC/IEEE 15288:2015 process constructs

ACTIVITY

TASK

NOTE

Name

PROCESS

Name
Purpose
Outcome

1

1 …

1

0 …

0 …

11

1 …

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

111	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

Annex E
(informative)		

	
Process views

E.1 Introduction

A	process	view	allows	those	representing	a	particular	engineering	interest	to	see	gathered	in	a	single	place	the	set	
of	process	activities	that	directly	and	succinctly	address	their	concern.	For	such	interests,	a	process	view	can	be	
developed to	organize	processes,	activities,	and	tasks	selected	from	ISO/IEC/IEEE	15288	or	ISO/IEC/IEEE	12207	
to	provide	a	focus	to	their	particular	concern	in	a	manner	that	cuts	across	all	or	parts	of	the	life	cycle.	This	annex	
provides	sample	process	viewpoints	that	may	be	used	to	define	process	views	in	these	instances.	

E.2 The process view concept

There	may	 be	 cases	 where	 a	 unified	 focus	 is	 needed	 for	 activities	 and	 tasks	 that	 are	 selected	 from	 disparate	
processes	to	provide	visibility	to	a	significant	concept	or	thread	that	cuts	across	the	processes	employed	across	
the	life	cycle.	It	is	useful	to	advise	users	of	this	document	how	to	identify	and	define	these	activities	for	their	use,	
even	though	they	cannot	locate	a	single	process	that	addresses	their	specific	concern.	

For	this	purpose,	the	concept	of	a	process	view	has	been	formulated.	Like	a	process,	the	description	of	a	process	
view	includes	a	statement	of	purpose	and	outcomes.	Unlike	a	process,	the	description	of	a	process	view	does	not	
include	 activities	 and	 tasks.	 Instead,	 the	 description	 includes	 guidance	 explaining	 how	 the	 outcomes	 can	 be	
achieved	by	employing	the	activities	and	tasks	of	the	various	processes	in	ISO/IEC/IEEE	15288	and	ISO/IEC/IEEE	
12207.	Process	views	can	be	constructed	using	the	process	viewpoint	template	found	in	E.3.	

E.3 Process viewpoint

A	 process	 view	 conforms	 to	 a	 process	 viewpoint.	 The	 process	 viewpoint	 provided	 here	 can	 be	 used	 to	 create	
process	views.	

1) The	Process	viewpoint	is	defined	by:	

1) its	stakeholders:	users	of	this	document;	and	

2) the	concerns	it	frames:	the	processes	needed	to	reflect	a	particular	engineering	interest.	

2) The	contents	of	resulting	process	views	should	include:	

1) process	view	name;	

2) process	view	purpose;	

3) process	view	outcomes;	and	

4) identification	and	description	of	the	processes,	activities	and	tasks	that	implement	the	process	view,	
and	references	to	the	sources	for	these	processes,	activities	and	tasks	in	other	standards.	

NOTE	 The	 requirements	 for	 documenting	 viewpoints	 are	 found	 in	 ISO/IEC/IEEE	42010:2011,	 5.4.	 This	 description	 is	
consistent	with	those	requirements.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

112	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

E.4 Process view for specialty engineering

This	 section	 provides	 an	 example	 of	 applying	 the	 process	 viewpoint	 to	 yield	 a	 process	 view	 for	 specialty	
engineering,	intended	to	illustrate	how	a	project	can	assemble	processes,	activities	and	tasks	of	this	document	to	
provide	focused	attention	to	the	achievement	of	product	characteristics	that	have	been	selected	as	being	of	special	
interest.	

This	 example	 treats	 the	 cluster	 of	 interests,	 generally	 called	 specialty	 engineering,	 which	 includes	 but	 is	 not	
limited	 to	 such	 areas	 as	 availability,	 maintainability,	 reliability,	 safety,	 security,	 human	 factors,	 and	 usability.	
Within	 this	 document,	 these	 “ilities”	 requirements	 are	 referred	 to	 as	 “critical	 quality	 characteristics”.	 These	
characteristics	determine	how	well	 the	product	meets	 its	 specified	 requirements	 in	 a	 specific	 area	 selected	 for	
focus.	See	E.6	for	a	process	view	relating	to	(information	security	assurance	for	software	systems).	

NOTE	1	 This	 is	 a	 generalized	 instance	 of	 a	 process	 view	 that	 covers	 a	 broad	 set	 of	 functional	 and	 non‐functional	
characteristics	 related	 to	 specialty	 engineering.	 It	 provides	 a	 broad	 view	 across	 the	 processes.	 If	 a	 specific	 critical	 quality	
characteristic	has	a	high	priority	relative	to	other	characteristics,	a	specific	process	view	can	be	created	for	that	characteristic,	
including	more	detailed	information	and	requirements.	

NOTE	2	 ISO/IEC	25030,	Software Engineering — Software product quality requirements and evaluation (SQuaRE) — Quality
requirements,	can	be	consulted	in	specifying	software	product	quality	requirements.	

NOTE	3	 INCOSE Systems Engineering Handbook	 contains	 descriptions	 and	 elaboration	 about	 many	 of	 the	 specialty	
engineering	areas	and	the	associated	critical	quality	characteristics.	

Name: Specialty Engineering Process View

Purpose: The	purpose	of	the	Specialty	Engineering	Process	View	is	to	provide	objective	evidence	that	the	system	
achieves	satisfactory	levels	of	certain	critical	quality	characteristics	selected	for	special	attention.	

Outcomes:

a) Product	critical	quality	characteristics	are	selected	for	special	attention.	

b) Requirements	for	the	achievement	of	the	critical	quality	characteristics	are	defined.	

c) Measures	for	the	requirements	are	selected	and	related	to	the	desired	critical	quality	characteristics.	

d) Approaches	for	achieving	the	desired	critical	quality	characteristics	are	defined	and	implemented.	

e) The	extent	of	achievement	of	the	requirements	is	continuously	monitored.	

f) A	satisfactory	level	of	the	critical	quality	characteristics	is	specified	and	achieved.	

The	outcomes	permit	the	possibility	that	the	desired	critical	quality	characteristics	cannot	be	directly	measured,	
but	instead	might	be	argued	and	inferred	based	on	other	product	or	process	characteristics	that	can	be	measured.	
Measurements	can	be	used	 to	show	compliance	with	established	standards.	The	acquirer	and	supplier	 come	 to	
agreement	on	particular	standards	to	be	used	for	this	compliance	verification.	

Specialty Engineering processes, activities and tasks

This	process	view	can	be	implemented	using	the	following	processes,	activities,	and	tasks	from	this	document.	

a) The	Project	Assessment	and	Control	process	(6.3.2)	provides	for	monitoring	the	extent	of	achievement	of	
the	requirements	and	critical	quality	characteristics	and	communicating	the	results	to	stakeholders	and	
managers.	Relevant	activities	and	tasks	include	b)6),	7),	9)	and	10).	

b) The	Decision	Management	process	(6.3.3)	provides	assessment	of	alternative	requirements,	architecture	
characteristics	 and	 design	 characteristics	 against	 the	 decision	 criteria,	 including	 the	 critical	 quality	
characteristics.	Results	of	these	comparisons	are	ranked,	via	a	suitable	selection	model,	and	are	then	used	
to	decide	on	an	optimal	solution.	Relevant	activities	and	tasks	include	b)	(all	tasks);	and	c)1).	

c) The	Risk	Management	process	 (6.3.4),	 in	 its	 entirety,	provides	 for	 identifying,	 evaluating,	 and	handling	
risks	of	the	system,	including	those	related	to	meeting	the	critical	quality	characteristics.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

113	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

d) The	Information	Management	process	(6.3.6),	in	its	entirety,	provides	for	the	specification,	development	
and	maintenance	of	 information	 items	 for	documenting	and	communicating	the	extent	of	achievement.	
Information	 items	 used	 for	 the	 purpose	 of	 critical	 quality	 characteristics	 are	 sometimes	 specialized	 in	
nature.	Sources	for	the	description	of	these	information	items	include	industry	associations,	regulators,	
and	specific	standards.	

e) The	Measurement	process	(6.3.7),	in	its	entirety,	provides	for	defining	an	approach	that	relates	measures	
to	the	required	critical	quality	characteristics.	

f) The	Quality	Assurance	process	(6.3.8)	addresses	identified	anomalies	(incident	and	problems)	that	relate	
to	the	achievement	of	critical	quality	characteristics.	

g) The	Business	and	Mission	Analysis	process	(6.4.1)	provides	for	the	definition	of	the	problem	space	and	
characterization	 of	 the	 solution	 space,	 including	 the	 relevant	 trade‐space	 factors	 and	 preliminary	 life	
cycle	concepts.	This	includes	developing	an	understanding	of	the	context	and	any	key	parameters,	such	
as	the	critical	quality	characteristics,	e.g.,	security	threats,	safety	hazards,	human	interfaces,	operational	
characteristics,	and	system	assurance	context.	Relevant	activities	and	tasks	include	b)1)	and	2);	c)1);	and	
d)1).	

h) The	 Stakeholder	 Needs	 and	 Requirements	 Definition	 process	 (6.4.2)	 provides	 for	 the	 selection	 and	
definition	of	 characteristics,	 including	critical	quality	 characteristics,	 and	associated	 information	 items.	
The	 activities	 and	 the	 documentation	 are	 useful	 in	 identifying,	 prioritizing,	 defining,	 and	 recording	
requirements	 for	 the	 critical	 quality	 characteristics.	 Relevant	 activities	 and	 tasks	 include	 a)1)	 and	 2);	
b)2),3)	and	4);	c)1)	and	2);	d)	all	tasks;	and	e)2).	

i) The	 System/Software	 Requirements	 Definition	 process	 (6.4.2)	 provides	 for	 the	 specification	 of	
parameters	 for	 the	 critical	 quality	 characteristics	 and	 the	 selection	 of	 measures	 for	 tracking	 the	
achievement	 of	 these	 requirements	 with	 respect	 to	 the	 specific	 system	 to	 be	 developed.	 Relevant	
activities	and	tasks	include	a)1);	b)	all	tasks;	and	c)2).	

j) The	Architecture	Definition	process	(6.4.4)	provides	for	the	 identification	of	stakeholder	concerns	 from	
an	architecture	perspective.	These	 concerns	often	 translate	 into	expectations	or	 constraints	across	 the	
life	 cycle	 stages	 that	 relate	 to	 the	 critical	 quality	 characteristics,	 such	 as	 utilization	 e.g.,	 availability,	
security,	 effectiveness,	 usability;	 support,	 e.g.,	 reparability,	 obsolescence	management;	 evolution	of	 the	
system	 and	 of	 the	 environment,	 e.g.,	 adaptability,	 scalability,	 survivability;	 production,	 e.g.,	
manufacturability,	 testability;	 retirement,	 e.g.,	 environmental	 impact,	 transportability.	 This	 process	
further	addresses	those	critical	quality	characteristic	requirements	that	drive	the	architecture	decisions,	
including	the	assessment	of	the	architecture	with	respect	to	the	concerns	and	associated	characteristics.	
Relevant	activities	and	tasks	include	a)2)	and	4);	b)1);	c)2),	3),	4),	and	5);	d)1);	and	e)2).	

k) The	Design	Definition	process	(6.4.5)	provides	for	the	determination	of	necessary	design	characteristics,	
which	 includes	 the	 critical	 quality	 characteristics,	 such	 as	 security	 of	 design	 criteria	 for	 the	 specialty	
characteristics	and	the	evaluation	of	alternative	designs	with	respect	to	those	criteria.	Relevant	activities	
and	tasks	include	a)2);	b)1),	2),	3)	4),	and	6);	and	c)2).	

l) The	 System	Analysis	 process	 (6.4.6)	 provides	 for	 the	 level	 of	 analysis	 needed	 to	 understand	 the	 trade	
space	with	 respect	 to	 the	 critical	 quality	 characteristics	 through	 the	 conduct	of	mathematical	 analysis,	
modeling,	 simulation,	 experimentation,	 and	 other	 techniques.	 The	 analysis	 results	 are	 input	 to	 trades	
made	 through	 the	 Decision	 Management	 process	 in	 support	 of	 other	 Technical	 processes.	 Relevant	
activities	and	tasks	include	a)	(all	tasks);	and	b)	(all	tasks).	

m) The	Implementation	process	(6.4.7)	provides	for	recording	the	evidence	that	critical	quality	requirements	
have	been	met.	Relevant	activities	and	tasks	include	b)3).	

n) The	 Integration	 process	 (6.4.8)	 provides	 for	 planning	 the	 integration,	 including	 the	 considerations	 for	
critical	 quality	 characteristics,	 and	 the	 assurance	 that	 the	 achievement	 of	 the	 characteristics	 is	
determined	and	recorded.	Relevant	activities	and	tasks	include	a)1);	b)3);	and	c)1).	

o) The	 Verification	 process	 (6.4.9),	 provides	 for	 the	 planning	 and	 execution	 of	 a	 strategy	 to	 perform	
verification,	including	the	critical	quality	characteristics.	The	selected	verification	strategy	can	introduce	
design	constraints	that	affect	the	achievement	of	the	characteristics.	Relevant	activities	and	tasks	include	
a)1)	and	3);	b)1),	2);	and	c)1)	and	2).	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

114	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

p) The	Transition	process	(6.4.10)	provides	for	installing	the	system	in	its	operational	environment.	Because	
some	 specialty	 properties	 involve	 a	 trade‐off	 between	 design	 constraints	 and	 operational	 constraints,	
attention	to	installation	is	often	important.	Relevant	activities	and	tasks	include	a)4);	and	b)	4),	6),	and	7).	

q) The	 Validation	 process	 (6.4.11)	 provides	 evidence	 that	 the	 services	 provided	 by	 the	 system	meet	 the	
stakeholders’	 needs,	 including	 the	 critical	 quality	 characteristics.	 Relevant	 activities	 and	 tasks	 include	
a)1)	and	3);	b)1)	and	2);	c)1)	and	2).	

r) The	 Operation	 process	 (6.4.12)	 provides	 for	 usage	 of	 the	 system.	 Assuring	 that	 critical	 quality	
characteristics	 are	 appropriately	 achieved	 involves	 monitoring	 the	 operation	 of	 the	 system.	 Relevant	
activities	and	task	include	b)3)	and	4);	c)1)	and	2);	and	d)1)	and	2).	

s) The	 Maintenance	 process	 (6.4.13)	 sustains	 the	 capabilities	 of	 the	 system,	 particularly	 its	 ongoing	
availability	 to	 provide	 its	 functions,	 including	 its	 critical	 quality	 characteristics.	 This	 includes	 failure	
analysis,	 maintenance	 tasks,	 and	 logistics	 tasks	 needed	 to	 assure	 continued	 operation	 of	 the	 system.	
Relevant	activities	and	tasks	include	b)	all	tasks;	c)	all	tasks;	and	d)1)	and	2).	

t) The	Disposal	process	(6.4.14)	ends	the	existence	of	a	system.	The	inherent	need	to	anticipate	disposal	can	
place	 constraints	 on	 development.	 In	 fact,	 these	 constraints	 can	 be	 critical	 quality	 characteristics.	
Relevant	activities	and	tasks	include	a)2);	b)1)	and	2)	and	c)3).	

E.5 Process view for interface management

This	 section	 provides	 an	 example	 of	 applying	 the	 process	 viewpoint	 to	 yield	 a	 process	 view	 for	 interface	
management,	intended	to	illustrate	how	a	project	can	assemble	processes,	activities	and	tasks	of	this	document	to	
provide	focused	attention	to	the	achievement	of	product	characteristics	that	have	been	selected	as	being	of	special	
interest.	

This	example	treats	a	specific	 instance	of	a	process	view,	called	interface	management,	which	includes	interface	
definition,	design,	and	change	management.	Within	this	document,	the	tasks	that	comprise	interface	management	
are	fully	contained	within	the	existing	processes.	

NOTE	 For	software	systems,	interfaces	with	other	systems	are	a	typical	way	of	receiving	input	data	or	exporting	output	
data	 (reports).	 Interfaces	 with	 external	 systems	 and	 services	 allow	 the	 software	 system	 to	 function	 in	 its	 operating	
environment	and	with	enabling	systems.	The	GUI	is	a	special	interface	for	human	interaction	with	the	software	system.	

Name: Interface Management Process View

Purpose: The	purpose	of	the	Interface	Management	Process	View	is	to	facilitate	identification,	definition,	design	
and	management	of	interfaces	of	the	software	system.	

Outcomes:

a) Business	or	mission	needs	related	to	interfaces	are	identified.	

b) Stakeholder	needs	related	to	interfaces	are	identified	

c) Requirements	for	the	interfaces	are	defined.	

d) Interfaces	between	software	system	elements	are	identified	and	defined.	

e) Interfaces	between	the	software	system	and	external	systems	are	identified	and	defined.	

f) The	extent	of	realization	of	the	interface	requirements	is	continuously	monitored.	

Interface Management processes, activities and tasks

This	process	view	can	be	implemented	using	the	following	processes,	activities,	and	tasks	from	this	document.	

NOTE	 INCOSE Systems Engineering Handbook	contains	descriptions	and	elaboration	about	interface	management.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

115	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

a) The	 Project	 Assessment	 and	 Control	 process	 (6.3.2Error! Bookmark not defined.)	 provides	 for	
monitoring	the	extent	of	achievement	of	the	requirements,	 including	interfaces,	and	communicating	the	
results	to	stakeholders	and	decision	makers.	Relevant	activities	and	tasks	include	b)6),	7),	9)	and	10).	

b) The	 Decision	 Management	 process	 (6.3.3)	 provides	 assessing	 alternative	 requirements,	 architecture	
characteristics	and	design	characteristics	against	the	decision	criteria,	including	the	interfaces.	Results	of	
these	comparisons	are	ranked,	via	a	suitable	selection	model	and	are	then	used	to	decide	on	an	optimal	
solution.	Relevant	activities	and	tasks	include	b)	all	tasks);	and	c)1).	

c) The	Risk	Management	process	 (6.3.4),	 in	 its	 entirety,	provides	 for	 identifying,	 evaluating,	 and	handling	
risks	of	the	system,	including	those	related	to	interfaces.	

d) The	Configuration	Management	process	(6.3.5)	provides	for	the	identification	and	control	of	interfaces.	It	
includes	management	of	 interface	specifications	and	 interface	control	documents.	 Internal	and	external	
interface	requirements	and	changes	are	documented	in	accordance	with	the	project’s	CM	strategy,	which	
is	commonly	represented	in	a	CM	plan.	Relevant	activities	include	b)1)	and	d)1).	

e) The	Information	Management	process	(6.3.6),	in	its	entirety,	provides	for	the	specification,	development	
and	maintenance	of	information	items	for	documenting	interfaces	and	their	operational	performance.	

f) The	Measurement	process	(6.3.7),	in	its	entirety,	provides	for	defining	an	approach	that	relates	measures	
to	the	required	interface	information	needs,	and	then	generating	and	using	those	measures	to	address	the	
identified	interface	information	needs.	

g) The	 Quality	 Assurance	 process	 (6.3.8),	 in	 its	 entirety,	 addresses	 identified	 anomalies	 (incidents	 and	
problems)	that	relate	to	the	achievement	of	interface	requirements.	

h) The	Business	and	Mission	Analysis	process	(6.4.1)	provides	for	the	definition	of	the	problem	space	and	
characterization	of	the	solution	space,	including	the	description	of	the	environment	and	context,	as	well	
as	preliminary	operational	concepts,	including	software	system	interfaces	and	enabling	system	interfaces.	
It	often	identifies	external	systems	that	interface	with	the	system‐of‐interest.	Relevant	activities	and	tasks	
include	b)1)	and	2);	and	c)1).	

i) The	 Stakeholder	 Needs	 and	 Requirements	 Definition	 process	 (6.4.2)	 provides	 for	 the	 identification	 of	
stakeholders	 concerned	 with	 interfaces,	 definition	 of	 operational	 concepts	 and	 the	 interactions	 of	 the	
system	with	users,	existing	interfaces	to	be	transitioned,	and	the	intended	environment	(including	other	
systems).	It	often	identifies	external	systems	that	interface	with	the	system‐of‐interest.	Relevant	activities	
and	tasks	include	a)1),	c)1)	and	2),	and	d)1)	and	3).	

j) The	System/Software	Requirements	Definition	process	 (6.4.3)	provides	 for	 the	definition	of	 the	system	
boundary	and	the	interface	requirements.	Relevant	activities	and	tasks	include	a)1);	b)3)	and	4);	c)	(all	
tasks),	and	d)	1)	and	3).	

k) The	 Architecture	 Definition	 process	 (6.4.4)	 provides	 for	 the	 identification	 of	 interfaces	 from	 an	
architecture	perspective	as	the	architecture	models	evolve.	This	process	further	describes	and	defines	the	
interfaces	to	the	extent	needed	for	the	architecture	description.	Relevant	activities	and	tasks	include	a)2);	
c)1)	through	4);	d)	2);	and	f)2)	and	6).	

l) The	Design	Definition	process	(6.4.5)	provides	for	the	refinement	and	full	definition	of	the	interfaces	and	
the	 creation	 of	 the	 information	 items	 to	 specify	 the	 interface	 characteristics	 and	 protocols.	 Relevant	
activities	and	tasks	include	b)2),	5)	and	6);	c3),	and	d)2).	

m) The	 System	 Analysis	 process	 (6.4.6)	 provides	 for	 the	 level	 of	 analysis	 needed	 to	 balance	 interface	
architecture,	 design	 constraints,	 interface	 performance	 requirements,	 and	 operational	 performance	
measurements,	 through	the	conduct	of	modeling,	simulation,	and	other	techniques.	The	analysis	results	
are	input	to	the	Decision	Management	process	in	support	of	other	Technical	processes.	Relevant	activities	
and	tasks	include	a)	(all	tasks);	and	(b)	(all	tasks).	

n) The	 Implementation	 process	 (6.4.7)	 provides	 for	 development	 of	 the	 interfaces	 and	 recording	 the	
evidence	 that	 interface	 requirements	 for	 an	 implemented	 system	 element	 have	 been	 met.	 Relevant	
activities	and	tasks	include	b)	1)	and	3).	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

116	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

o) The	 Integration	 process	 (6.4.8)	 provides	 for	 planning	 the	 integration,	 including	 the	 considerations	 for	
interfaces	between	software	system	elements	and	with	external	systems.	It	also	includes	the	integration	
of	 systems	or	 system	elements	 and	 interfaces	 and	 confirming	 the	 interfaces	 in	 the	 integrated	 software	
system.	Relevant	activities	and	tasks	include	a)1),	2),	and	5);	b)	all	tasks;	and	c)1).	

p) The	 Verification	 process	 (6.4.9),	 provides	 evidence	 that	 the	 services	 provided	 by	 the	 system	meet	 the	
system	 requirements,	 including	 the	 interface	 requirements.	 The	process	provides	 for	 the	planning	 and	
execution	 of	 a	 strategy	 to	 perform	 verification,	 including	 the	 interface	 requirements.	 The	 selected	
verification	 strategy	 may	 introduce	 interface	 constraints	 that	 affect	 their	 implementation.	 Relevant	
activities	and	tasks	include	a)1)	and	3);	b)1),	2);	and	c)1).	

q) The	Transition	process	(6.4.10)	provides	for	planning	and	migrating	the	software	system	or	elements	and	
data	sets	into	a	different	environment	using	interfaces,	and	establishing	the	use	of	interfaces	in	the	new	
system.	 This	 includes	 identifying	 constraints,	 and	 checking	 the	 installation,	 activation	 and	 operational	
state	of	the	interfaces.	Relevant	activities	and	tasks	include	a)1)	and	3);	b)	3),	4),	6),	and	7).	

r) The	Validation	process	(6.4.11)	provides	evidence	that	the	services	provided	by	the	software	system	meet	
the	 stakeholders’	 needs,	 including	 the	 interface	 requirements.	 The	 selected	 validation	 strategy	 may	
introduce	interface	constraints	that	affect	their	implementation.	Validation	involves	communication	with	
stakeholder	representatives	of	the	interfacing	systems	and	services.	Relevant	activities	and	tasks	include	
a)4);	b)1)	and	2);	c)1)	and	2).	

s) The	Operation	process	(6.4.12)	provides	for	usage	of	the	software	system.	There	also	may	be	constraints	
to	 the	 interfaces	 for	operations.	Confirming	 that	 the	 interface	 requirements	are	appropriately	achieved	
involves	 monitoring	 the	 operation	 of	 the	 system,	 identifying	 and	 performing	 corrective	 action	 when	
interfaces	do	not	function	properly,	and	supporting	contact	with	interface	partners	(customers).	Relevant	
activities	and	task	include	a)1)	and	2),	b)	1),	3)	and	4);	c)1)	and	2),	and	d	(all	tasks).	

t) The	Maintenance	process	(6.4.13)	sustains	the	capabilities	of	the	software	system,	including	its	interfaces,	
and	their	ongoing	availability	to	provide	their	functions.	This	includes	problem	analysis	and	maintenance	
tasks,	and	logistics	tasks	needed	to	assure	continued	and	timely	operation.	Relevant	activities	and	tasks	
include	a)2);	b)	(all	tasks);	and	d)1),	2),	and	3).	

u) The	 Disposal	 process	 (6.4.14)	 ends	 the	 existence	 of	 a	 system	 or	 an	 interface.	 It	 involves	 activities	 to	
disengage	and	discontinue	interfaces.	Relevant	activities	and	tasks	include	a)2)	and	3);	and	b)1),	2),	and	
6).	

E.6 Process view for software assurance (Information security)

This	section	provides	an	example	of	applying	the	process	viewpoint	to	yield	a	process	view	for	software	assurance,	
intended	 to	 illustrate	 how	 a	 project	 can	 assemble	 processes,	 activities	 and	 tasks	 of	 this	 document	 to	 provide	
focused	 attention	 to	 the	 achievement	 of	 software	 assurance	 characteristics	 that	 have	been	 selected	as	 being	of	
special	interest.	The	software	assurance	characteristics,	their	extent	of	achievement,	and	related	information	may	
support	a	software	assurance	claim,	as	described	in	ISO/IEC/IEEE	15026.		

This	 example	 is	 focused	 on	 protection	 against	 intentional	 subversion	 or	 forced	 failure	 due	 to	 the	 software	
architecture,	design,	or	implementation,	especially	construction	of	the	code.	

Name: Software Assurance Process View

Purpose: The	purpose	of	the	Software	Assurance	Process	View	is	to	provide	objective	evidence	that	the	software	
achieves	 satisfactory	 levels	 of	 certainty	 that	 sufficient	 protection	 is	 achieved	 against	 intentional	 subversion	 or	
forced	failure	due	to	the	software	architecture,	design,	or	construction	of	the	code.	

NOTE	 In	 terms	 appropriate	 for	 conformance	 to	 ISO/IEC/IEEE	 15026,	 the	 assurance	 claims	 regarding	 the	 software	
characteristics	 selected	 for	 special	 attention	 are	 achieved	 and	 information	 is	 provided	 showing	 the	 achievement	 of	 those	
claims.	

Outcomes:

a) Product	software	assurance	characteristics	are	selected	for	special	attention.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

117	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

b) Requirements	for	the	achievement	of	the	software	assurance	characteristics	are	defined.	

c) Measures	for	the	requirements	are	selected	and	related	to	the	desired	software	assurance	characteristics.	

d) Approaches	for	achieving	the	desired	software	assurance	characteristics	are	defined	and	implemented.	

e) The	extent	of	achievement	of	the	requirements	is	continuously	monitored.	

f) A	satisfactory	level	of	the	critical	software	assurance	characteristics	is	specified	and	achieved.	

The	 outcomes	 permit	 the	 possibility	 that	 the	 desired	 software	 assurance	 characteristics	 or	 claim	 cannot	 be	
directly	measured	but	 instead	might	 be	 inferred	based	on	other	product	 or	process	 characteristics	 that	 can	be	
measured.	Measurements	may	be	used	to	show	compliance	with	established	standards.	The	acquirer	and	supplier	
agree	on	particular	standards	to	be	used	for	this	compliance	verification.	

Software Assurance processes, activities and tasks

This	process	view	can	be	implemented	using	the	following	processes,	activities,	and	tasks	from	this	document.	

a) The	Agreement	processes	(6.1)	provide	for	the	establishment	of	expectations	and	responsibilities	related	
to	software	assurance,	including	legal	agreements	and	licensing	requirements,	the	protection	of	
organizations’	assets	that	are	accessible	by	suppliers,	the	possibility	of	compromise	during	delivery,	
detection	of	anomalies,	detection	of	counterfeits	in	the	application	element	at	arrival,	expectations	for	
defect	resolution,	patch	management,	service	level	agreements,	and	safeguards	against	supply	chain	
threats.	Relevant	activities	and	tasks	include	in	the	Acquisition	process:	a)1)	and	2)	and	c)1);	and	in	the	
Supply	Process,	c)1),	e)1	and	2).	

b) The	Life	Cycle	Model	Management	process	(6.2.1)	provides	for	the	establishment	and	maintenance	of	
software	assurance	policies	and	procedures	including	a	software	security	development	lifecycle	and	the	
controlled	use	of	outsourced	code.	Relevant	activities	and	tasks	include	a)2	and	3),	b)1,	and	c)	all	tasks.	

	
c) The	Infrastructure	Management	process	(6.2.2),	in	its	entirety,	provides	for	secure	development	and	

operational	environments,	software	assurance	tools,	timely	patch	management,	and	code	libraries	that	
are	properly	maintained	and	improved	based	on	lessons	learned	from	the	projects,	organization	and	
industry.	

d) The	Human	Resource	Management	process	(6.2.4),	in	its	entirety,	provides	for	relevant	screening	of	
employees	and	suppliers	with	access	to	the	software	or	software	development	environment	and	defines	
specific	training	related	to	software	assurance	based	on	roles	and	responsibilities	across	the	life	cycle.		

e) The	Knowledge	Management	process	(6.2.6)	provides	for	collecting	and	maintaining	knowledge	and	
informing	the	project	about	changes	to	the	threat	landscape,	evolutions	in	software	assurance	practices,	
mitigations	for	software	vulnerabilities,	lessons	learned	from	incidents	and	incident	responses,	and	
evolutions	in	software	assurance	testing	tools.	Relevant	activities	and	tasks	include	b)	(all	tasks)	and	d)3).	

f) The	Decision	Management	process	(6.3.3),	in	its	entirety,	assesses	alternative	requirements,	architecture	
characteristics	and	design	characteristics	against	the	decision	criteria,	including	the	software	assurance	
characteristics.	Results	of	these	comparisons	are	ranked	and	recorded	along	with	the	selection	model,	
and	are	then	used	to	decide	on	an	optimal	solution.	Stakeholders	can	make	decisions	based	on	the	
justification	provided.	

g) The	Risk	Management	process	(6.3.4),	in	its	entirety,	provides	for	the	evaluation	of	the	potential	for	not	
being	able	to	achieve	the	necessary	application	security,	resulting	in	a	risk	to	the	users	including	the	
interface	partners,	or	resulting	in	the	software	not	being	used	as	intended.	Software	security	is	a	risk	
category	in	each	risk	analysis.	

h) The	Configuration	Management	process	(6.3.5)	provides	for	the	establishment	and	maintenance	of	the	
integrity	of	all	identified	outputs	of	a	project	or	process,	including	the	monitoring	of	assets	and	security	of	
designated	storage	systems,	and	makes	them	available	to	authorized	parties.	This	includes	records	of	
changes	made	to	the	software	and	software	releases,	as	well	as	control	and	audit	of	all	accesses	to	the	
software	items	that	handle	security	functions.	Relevant	activities	and	tasks	include	a)1),	d)1),	and	f)2).	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

118	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

i) The	Information	Management	process	(6.3.6),	in	its	entirety,	provides	the	information	about	the	
achievement	of	software	assurance	to	the	relevant	stakeholders,	including	regulatory	or	approval	
authorities.	The	quantifiable	information	about	the	software	is	collected	to	support	a	set	of	arguments	
that	justify	a	claim	about	the	software	assurance	of	a	system.	Due	to	the	sensitivity	of	the	data,	additional	
care	is	given	to	identify	the	appropriate	audiences	for	the	various	assurance	measures.	Information	
management	includes	the	protection	of	sensitive	information	items	regarding	software	assurance.	

j) The	Measurement	process	(6.3.7),	in	its	entirety,	provides	a	common	platform	for	collecting	information	
about	the	software	assurance	claims,	strategies,	and	evidence,	sometimes	referred	to	as	an	assurance	case.		

k) The	Quality	Assurance	process	(6.3.8)	evaluates	project	and	supplier	processes	for	conformance	to	
software	assurance	requirements	and	procedures.	It	addresses	identified	anomalies	(incident	and	
problems)	that	relate	to	the	achievement	of	software	assurance	characteristics.	Relevant	activities	and	
tasks	include	c)	and	e)	(all	tasks).	

l) The	Business	and	Mission	Analysis	process	(6.4.1)	provides	for	understanding	the	operating	environment	
for	the	software	system	under	development	and	laws,	policies,	risks,	and	constraints	related	to	software	
assurance.	Relevant	activities	and	tasks	include	b)1)	and	c)1).	

m) The	Stakeholder	Needs	and	Requirements	Definition	process	(6.4.2)	provides	for	the	selection	and	
definition	of	risks	and	threats	to	missions	or	information.	It	incorporates	this	knowledge	in	defining	
requirements	relating	to	software	assurance	(information	security),	including	confidentiality,	availability	
and	integrity	in	the	context	of	how	the	software	is	intended	to	function;	and	in	consideration	of	misuse	
and	abuse	scenarios.	Stakeholders	need	to	agree	upon	what	aspects	of	software	assurance	are	sufficient.	
Relevant	activities	and	tasks	include	a)2);	b)1)	and	2);	and	c)	(all	tasks).	

n) The	System/Software	Requirements	Definition	process	(6.4.3)	provides	for	the	selection	and	definition	of	
software	assurance	(information	security)	related	requirements,	including	confidentiality,	availability	and	
integrity	in	the	context	of	how	the	software	is	intended	to	function;	and	requirements	for	software	
integrity	in	the	event	of	misuse	and	abuse.	Relevant	activities	and	tasks	include	b)3)	and	4);	and	c)	3).	

o) The	Architecture	Definition	process	(6.4.4)	provides	for	the	identification	of	stakeholder	concerns	from	
an	architecture	viewpoint	through	threat	modeling	and	assessing	the	vulnerability	of	the	product	
architecture	and	design	to	potential	attacks	to	gain	an	understanding	of	the	threat	landscape	and	the	
relevant	architecture	elements.	Relevant	activities	and	tasks	include	a)2)	and	4);	b)1);	c)	(all	tasks),	d)5),	
and	f)10,	20,	and	5).	

p) The	Design	Definition	process	(6.4.5)	provides	for	the	determination	of	necessary	design	characteristics,	
which	include	attack	surface	reduction,	including	the	location	of	components;	software	assurance	design	
patterns;	and	avoidance	of	anti‐patterns.	Relevant	activities	and	tasks	include	a)2)	and	3);	b)2),3),	and	6);	
c)2)	and	d)1).	

q) The	Implementation	process	(6.4.7)	provides	for	the	use	of	secure	coding	practices	to	avoid	common	
coding	errors	that	lead	to	exploitable	product	vulnerabilities,	and	the	use	of	a	variety	of	testing	
techniques	including	inspection	for	competent	authenticity,	fuzz	testing,	static	analysis	testing,	and	
dynamic	testing	to	identify	and	address	software	weaknesses	and	vulnerabilities.	Relevant	activities	and	
tasks	include	a)1);	and	b)1),	2)	3)	and	4).	

r) The	Integration	process	(6.4.8)	provides	for	planning	the	integration,	including	the	considerations	for	
software	assurance	characteristics,	and	the	assurance	that	the	achievement	of	the	characteristics	is	
determined	and	recorded.	Implementation	of	interface	standards	wherever	practical	promotes	system	
and	element	sustainability	and	element	reusability.	Relevant	activities	and	tasks	include	a)2)	and	5);	b)3);	
and	c)1)	and	2).	

s) The	Verification	process	(6.4.9)	provides	for	the	planning	and	execution	of	a	strategy	to	verify	that	
software	assurance	requirements,	including	the	software	assurance	characteristics,	have	been	achieved.	
The	selected	verification	strategy	can	introduce	testing	for	code	weaknesses	in	the	development	process	
or	during	sustainment.	Threat	analysis	provides	input	into	the	creation	of	test	plans	and	cases.	The	results	
include	the	information	required	to	effect	the	remedial	actions	that	correct	nonconformances	in	the	
software	or	the	processes	that	act	on	it	and	account	for	uncertainty	in	verification	activities,	such	as	test	
tool	reliability	and	level	of	the	uncertainty	in	results	(i.e.,	rates	of	false	positives	and	false	negatives).	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

119	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

Additional	considerations	include	the	resiliency	of	the	software	to	function.	Relevant	activities	and	tasks	
include	a)1),	4),	5)	and	6:	b)	(all	tasks);	c)1)	and	2).	

t) The	Transition	process	(6.4.10)	provides	for	installing	the	software	system	or	element	in	a	different	
environment.	Because	some	software	assurance	properties	involve	a	trade‐off	between	design	constraints	
and	operational	constraints,	attention	to	installation	and	user	documentation	is	often	important.	Relevant	
activities	and	tasks	include	a)2);	b)1)	and	4),	5),	and	6);	and	c)1)	and	2).	

u) The	Validation	process	(6.4.11)	provides	evidence	that	the	services	provided	by	the	software	system	meet	
the	stakeholders’	needs,	including	the	software	assurance	characteristics.	Validation	methods	include	
vulnerability	scans,	code	assessment	and	validation	using	a	variety	of	tools	and	techniques	such	as	static	
code	analysis,	dynamic	code	analysis,	binary	code	analysis,	code	coverage	tools,	stress	testing,	and	the	use	
of	tools	to	gather	evidence	of	changes	resulting	from	remote	maintenance	activities.	Additional	
considerations	include	the	resiliency	of	the	software	to	function	under	use	and	abuse	cases.	Relevant	
activities	and	tasks	include,	a)1),	3,	and	4),	b	(all	tasks),	and	c)2)	and	3).	

v) The	Operation	process	(6.4.12)	provides	for	usage	of	the	software	system.	Assuring	that	software	
assurance	characteristics	are	appropriately	achieved	involves	monitoring	the	operation	of	the	system	to	
deliver	its	services	in	its	intended	environment	and	provides	support	to	the	customers	of	the	software	
product.	Plans	for	this	process	consider	achievement	of	application	security	throughout	the	life	of	the	
system,	operational	restrictions	such	as	access	control,	and	consistency	of	assumptions	made	during	
earlier	stages	regarding	application	security	with	the	operational	environment.	The	process	includes	
establishing	reporting	systems	and	procedures	for	investigation	and	disposition	of	application	security‐
related	incidents.	Relevant	activities	and	tasks	include	a)1),	b)	(all	tasks);	c)1),	2),	and	3);	and	d)1).	

w) The	Maintenance	process	(6.4.13)	sustains	the	capabilities	of	the	software	system,	particularly	its	ongoing	
availability	to	provide	its	software	assurance	characteristics.	This	includes	failure	analysis,	maintenance	
tasks,	and	logistics	tasks	needed	to	assure	continued	operation	of	the	system.	The	maintenance	process	
provides	for	evaluating	the	effect	on	software	assurance	from	changes	made	to	the	software	during	
maintenance	and	maintaining	appropriate	evidence	for	software	assurance.	It	includes	a	documented	
process	for	patching	and	remediating	software,	detecting	and	removing	or	inactivating	unauthorized	and	
malicious	software,	and	a	process	for	informing	an	acquirer	or	interface	partner	of	notification	and	
remediation	mechanisms.	Remediation	of	vulnerabilities	is	prioritized	based	on	a	variety	of	factors,	
including	risk.	Documented	development	and	sustainment	practices	are	followed	when	implementing	
software	remediation.	Relevant	activities	and	tasks	include	a)1);	b)	(all	tasks);	c)	(all	tasks);	and	d)1)	and	
2).	

x) The	Disposal	process	(6.4.14)	ends	the	existence	of	a	software	system.	The	inherent	need	to	anticipate	
disposal	can	place	constraints	on	development	and	management	of	data	contained	in	the	software	system.	
In	fact,	these	constraints	can	be	software	assurance	characteristics.	Relevant	activities	and	tasks	include	
a)1),	2),	and	5);	b)	(all	tasks);	and	c)1)	and	3).	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

120	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

Annex F
(informative)	

	
Software system architecture modelling

F.1 Introduction

In	this	document,	architecture	and	design	activities	are	described	as	separate	processes.	Several	iterations	of	the	
Architecture	 Definition,	 Design	 Definition,	 and	 Implementation	 processes	 can	 be	 involved	 when	 evolving	 a	
software	 element’s	 architecture	 e.g.,	 to	 determine	 whether	 an	 entity	 or	 function	 will	 be	 realized	 through	
integration	 of	 existing	 software,	 adaptive	 reuse,	 or	 newly	 constructed	 software.	 In	 the	 systems	 and	 software	
engineering	 communities	 dealing	 with	 complex	 systems,	 architecture	 can	 be	 followed	 by	 different	 designs	 for	
different	 systems	 in	 different	 product	 lines.	 In	 this	 case	 it	 is	 important	 to	 perform	 these	 two	 processes	 in	 a	
separate	manner.	Furthermore,	architecture	is	often	done	for	other	reasons	than	as	the	immediate	basis	for	design,	
such	as	to	drive	technology	investments,	to	achieve	consistency	or	reduce	complexity	in	an	organization’s	product	
line	or	portfolio	of	projects,	or	to	guide	acquirer‐supplier	decisions.	

The	 architecture	of	 a	 software	 system	can	be	understood	as	 a	 set	 of	 structured	architectural	 entities	 and	 their	
relationships,	 chosen	 to	 achieve	 characteristics	 such	 as	 interoperability,	 scalability,	 environmental	 resilience,	
encapsulation,	availability,	affordability,	robustness,	execution	efficiency,	or	mission	effectiveness	(fitness	for	use).	
Software	 system	architecture	deals	with	 relationships	 among	 a	 variety	of	 entities,	 such	as	 scenarios,	 functions,	
function	 flows,	 interfaces,	 resource	 flow	 items,	 information	or	data	elements,	 objects,	physical	 components	and	
environments,	containers,	nodes,	links,	communication	resources,	constraints,	equations	and	parametric	models.	

This	Annex	describes	some	of	the	models	(model	kinds)	that	are	used	in	creating	and	evaluating	the	architecture	
of	software	systems.	

NOTE	 ISO/IEC/IEEE	15288:2015,	Annex	F	describes	how	models	and	views	are	applied	to	the	architecture	of	systems	in	
general,	and	has	additional	information	relating	to	views	and	modelling	of	the	architecture	of	physical	products,	such	as	mass	
models	and	layout	models.	

F.2 Views, models and model kinds used in software system architecture

The	Architectural	Definition	process	uses	a	variety	of	models	for	software	systems,	including	the	example	models	
listed	 in	 the	 following	section.	Model	kinds	specify	 the	 languages,	notations,	conventions,	modelling	 techniques,	
analytical	 methods	 or	 other	 operations	 to	 be	 used	 on	 models	 of	 that	 kind.	 (Traditional	 system	 engineering	
practice	classifies	some	of	these	models	as	“logical	models”	or	“physical	models”,	but	the	taxonomical	distinction	is	
unnecessary	 in	 the	 application	 of	 this	 document.)	 A	 variety	 of	 views	 are	 used	 to	 represent	 how	 the	 system	
architecture	 addresses	 stakeholder	 concerns.	 Views	 are	 composed	 of	 models.	 For	 example,	 a	 logical	 view	 of	
software	 can	 represent	 business	 processes	 in	 its	 functions;	 a	 process	 view	 can	 represent	 the	 events	 and	
transformations	 occurring	 within	 different	 states	 of	 the	 software	 and	 can	 include	 concurrency	 and	 timing	
concerns;	a	structural	view	represents	the	different	system	components,	which	can	be	associated	with	physical	or	
virtual	 system	elements,	 an	 information	view	 represents	 the	 relationships	between	data	 elements	 contained	 in	
and	transformed	by	the	software.	

Refer	to	ISO/IEC/IEEE	42010	for	definitions	of	architecture	terms	and	additional	detail	on	architecture	concepts	
and	models.	

F.2.1 Functional model

A	functional	model	of	the	system	is	a	representation	of	a	set	of	functions	that	defines	the	transformations	of	inputs	
into	outputs	performed	by	the	system	to	achieve	its	mission	or	purpose.	These	functions	are	determined	by	how	
the	system	is	expected	to	behave	when	used	as	intended.	Consequently,	every	system	function	is	associated	with	
an	interaction	between	the	system	and	its	environment.	Functional,	performance,	non‐functional,	and	constraint	
requirements	are	usually	analyzed	to	determine	functions	and	input‐output	flows.	When	functions	are	associated	
with	system	elements,	the	design	definition	process	will	need	to	determine	if	each	system/software	element	has	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

121	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

been	 sufficiently	 specified	 to	 build	 or	 buy	 it.	 If	 the	 system	 element	 is	 further	 resolved	 in	 order	 to	 achieve	 this	
sufficiency,	 then	 the	 functions	 associated	 with	 the	 system	 element	 are	 also	 further	 resolved	 and	 properly	
associated	with	the	sub‐elements.	Typically,	there	are	multiple	ways	to	decompose	the	functions	that	contribute	
to	the	definition	of	multiple	candidate	architectures.	

F.2.2 Static model

A	 static	model	 describes	 the	 structure	 of	 a	 software	 system.	 In	 object‐oriented	programming,	 it	 is	 represented	
through	a	set	of	objects	(classes)	and	their	relationships	(inheritance,	association,	and	dependency),	depicted	as	
nodes	and	links.	

F.2.3 Data model

A	 data	 model	 (semantic	 or	 information	 model)	 represents	 the	 data	 elements	 and	 their	 relationships	 and	
properties	(attributes)	that	the	software	system	will	handle.	Logical	data	models	use	schema	to	reflect	structural	
relationships	between	data	entities	which	can	be	implemented	in	databases.	Data	models	reflect	different	types	of	
data	(text,	graphics,	geographic	data,	images,	general	objects)	and	their	use	in	the	system	functions	(frequency	of	
change,	data	volume,	use	in	searching)	as	well	as	the	logical	relationships	among	data	elements.	Data	models	are	
applied	 in	 the	development	of	 interfaces	and	software	services,	data	analysis,	 and	data	 reporting.	Physical	data	
models	reflect	the	schema	for	storage	and	retrieval	of	data	records.	

F.2.4 Behavioral model

A	behavioral	model	(dynamic	model)	 is	an	arrangement	of	 functions	and	 interfaces	(internal	and	external)	 that	
defines	how	 the	system	or	 its	elements	act	under	conditions	 to	 sustain	 the	operational	 scenarios,	 including	 the	
execution	 sequencing,	 synchronization,	 and	 concurrency,	 the	 conditions	 for	 behavioral	 change	 and	 the	
performance.	Behavioral	models	are	applicable	to	software	control	systems.	A	behavioral	model	can	be	described	
with	 a	 set	 of	 interrelated	 scenarios.	 This	 includes	 identifying	 the	 behavioral	 elements	 (e.g.,	 modes/states,	
transitions,	trigger	events,	and	operational	scenarios)	through	the	life	cycle.	

F.2.5 Temporal model

A	 temporal	model	 of	 the	 system	 is	 a	 representation	 that	 expresses	 how	 the	 time	 is	 taken	 into	 account	 in	 the	
behavior	the	system	or	its	elements	that	presents	levels	of	execution	frequency	of	functions	(e.g.,	strategic	level,	
tactical	 level,	 operational	 monitoring	 level,	 regulation	 level)	 corresponding	 to	 levels	 of	 decision	 that	 enable	
humans	 and	 program	 logic	 to	 monitor	 and	 control	 the	 system	 operations.	 This	 includes	 identifying	 temporal	
elements	 (e.g.,	 duration,	 frequency,	 response	 time,	 triggers,	 timeout,	 stop	 conditions),	 from	 the	 operational	
concept	and	system	requirements.	

F.2.6 Structural model

A	structural	model	of	the	system	is	a	representation	that	shows	the	arrangement	of	elements	with	respect	to	each	
other	 and	 where	 necessary	 shows	 the	 interfaces	 between	 elements	 and	 with	 external	 entities.	 Such	 a	 model	
enables	 consolidating	 or	 identifying	 physical	 interfaces	 between	 system	 elements	 in	 a	 level	 of	 the	 system	
hierarchy	and	between	 levels	 of	 the	 system	hierarchy,	 as	well	 as	 those	with	 external	 entities	 to	 the	 concerned	
system	(in	its	environment/context).	Structural	models	can	be	hierarchical	decompositions	or	object‐oriented.	

F.2.7 Network model

A	network	model	defines	an	arrangement	of	nodes	and	links	to	help	understand	how	resources	(e.g.,	information	
and	people)	traverse	from	one	node	to	another.	A	network	model	can	be	used	to	determine	constraints	such	as	
throughput,	latency,	and	congestion	points.	A	network	model	is	sometimes	modelled	along	with	a	protocol	stack	
to	understand	how	layers	in	a	network	interact	vertically	up	and	down	the	stack.	

F.3 Other model considerations

Stakeholder	 life	 cycle	 concerns,	 such	 as	 maintenance,	 evolution,	 disposal,	 potential	 changes	 of	 environment,	
obsolescence	 management,	 and	 other	 non‐functional	 requirements,	 are	 addressed	 by	 defining	 architectural	
characteristics	 such	 as	 modularity,	 relative	 independence,	 scalability,	 upgradability,	 adaptation	 to	 several	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

122	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

environments,	 level	 of	 effectiveness,	 reliability,	 robustness,	 and	 resilience.	 Other	 necessary	models	 can	 include	
some	 of	 these	 characteristics	 or	 other	 critical	 quality	 characteristics.	 For	 example,	 a	 software	 assurance	 case,	
regarded	 as	 a	 model,	 can	 help	 in	 deducing	 potential	 architectural	 mitigations	 to	 minimize	 operational	 risks	
(mission	loss	due	to	exploited	security	vulnerabilities)	related	to	critical	concerns	and	functions.	

Determination	of	which	models	to	use	in	system	definition	can	be	based	on	examination	of	stakeholder	concerns.	
The	models	 and	 the	 resulting	 views	can	be	used	 to	 express	how	 the	 system	architecture	and	design	addresses	
their	concerns	and	to	gain	better	understanding	of	their	actual	needs,	wants	and	expectations.	

Furthermore,	models	can	be	used	in	other	life	cycle	processes	besides	architecture	and	design	definition.	Model‐
Based	Systems	Engineering	 (MBSE)	 is	 the	 formalized	application	of	modelling	 to	 support	 system	requirements,	
architecture,	design,	analysis,	and	verification	and	validation	activities	throughout	the	life	cycle.	

NOTE	 A	verification	and	validation	model	defines	representations	of	test	information,	which	can	support	the	verification	
of	the	architecture.	Verification	and	validation	models	can	generate	test	analyzes,	data,	cases,	and	other	information.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

123	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

Annex G
(informative)		

Application of software life cycle processes to a system of systems

G.1 Introduction

A	 system	 of	 systems	 (SoS)	 is	 a	 system‐of‐interest	 (SOI)	whose	 elements	 are	 themselves	 systems.	 A	 SoS	 brings	
together	a	set	of	systems	for	a	task	that	none	of	the	systems	can	accomplish	on	its	own.	Each	constituent	system	
keeps	its	own	management,	goals,	and	resources	while	coordinating	within	the	SoS	and	adapting	to	meet	SoS	goals.	
In	the	context	of	terminology	discussed	in	5.2.3	(as	shown	in	Figure	3),	the	composite	set	of	systems	including	the	
original	SOI,	enabling	systems	and	interacting	systems	together	constitute	an	SoS.	Where	there	are	concerns	that	
affect	the	composite	set,	the	system	of	systems	becomes	the	SOI,	which	is	considered	to	satisfy	some	business	or	
mission	 objective	 that	 cannot	 be	 satisfied	 by	 the	 individual	 constituent	 systems,	 or	 to	 understand	 emergent	
behavior	of	the	combination.	

This	annex	addresses	the	application	of	system	life	cycle	processes	to	such	SoS.	It	describes	general	characteristics,	
the	common	types	of	SoS,	and	the	implications	throughout	the	life	cycle.	

G.2 SoS characteristics and types

SoS	 are	 characterized	 by	managerial	 and	 operational	 independence	 of	 the	 constituent	 systems,	which	 in	many	
cases	were	developed	and	continue	to	support	originally	 identified	users	concurrently	with	users	of	 the	SoS.	 In	
other	contexts,	each	constituent	system	itself	is	a	SOI;	its	existence	often	predates	the	SoS,	while	its	characteristics	
were	originally	engineered	to	meet	the	needs	of	their	initial	users.	As	constituents	of	the	SoS,	their	consideration	
is	 expanded	 to	 encompass	 the	 larger	 needs	 of	 the	 SoS.	 This	 implies	 added	 complexity,	 particularly	 when	 the	
systems	continue	to	evolve	independently	of	the	SoS.	The	constituent	systems	also	typically	retain	their	original	
stakeholders	and	governance	mechanisms,	which	limits	alternatives	to	address	the	needs	of	the	SoS.	

SoS	 have	 been	 characterized	 into	 four	 types	 based	 on	 the	 governance	 relationships	 between	 the	 constituent	
systems	and	the	SoS	(Table	G.1).	The	strongest	governance	relations	apply	to	directed	system	of	systems,	where	
the	SoS	organization	has	authority	over	the	constituent	systems	despite	the	fact	that	the	constituent	systems	were	
not	 originally	 engineered	 to	 support	 the	 SoS.	 Somewhat	 less	 control	 is	 afforded	 for	 acknowledged	 SoS,	where	
allocated	authority	between	the	constituent	systems	and	the	systems	of	systems	has	an	impact	on	application	of	
some	 of	 the	 systems	 engineering	 processes.	 In	 collaborative	 SoS,	 which	 lack	 system	 of	 systems	 authorities,	
application	 of	 systems	 engineering	 depends	 on	 cooperation	 among	 the	 constituent	 systems.	 Virtual	 systems	 of	
systems	are	largely	self‐organizing	and	limit	opportunity	for	systems	engineering	of	the	SoS.	

Table G.1 — System of Systems types

Type Characteristic

Virtual	 Decentralized	management	authority	

 No	explicit,	centrally	agreed‐upon	purpose	

 Emerging	behaviors	that	rely	on	relatively	invisible	mechanisms	for	continuity	

Collaborative	 Constituent	systems	interact	voluntarily	to	fulfill	agreed‐upon	purposes	

 Collectively	decide	how	to	interoperate,	enforcing	and	maintaining	standards	

Acknowledged	 Recognized	objectives,	a	designated	manager	and	resources	for	the	SoS	

 Constituent	systems	retain	their	independent	ownership,	management,	and	
resources	

Directed	 Integrated	SoS	built	and	managed	to	fulfill	specific	purposes	

 Centrally	managed	and	evolved	

 Constituent	systems	maintain	ability	to	operate	independently	

 Normal	operational	mode	is	subordinated	to	central	purpose	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

124	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

A	key	 characteristic	 of	 SoS	 is	emergence —	the	unanticipated	 effects	 at	 the	SoS	 level	 attributed	 to	 the	 complex	
interaction	 dynamics	 of	 the	 constituent	 systems.	 However,	 in	 SoS,	 constituent	 systems	 are	 intentionally	
considered	 in	 their	 combination,	so	as	 to	obtain	and	analyze	outcomes	not	possible	 to	obtain	with	 the	systems	
alone.	The	complexity	of	the	constituent	systems	and	the	fact	they	perhaps	were	designed	without	regard	to	their	
role	 in	 the	 SoS,	 can	 result	 in	 new,	 unexpected	 behaviors.	 Identifying	 and	 addressing	 unanticipated	 emergent	
results	is	a	particular	challenge	in	engineering	SoS.	

NOTE	 Some	 of	 the	 largest	 software	 SoS,	 such	 as	 the	 Internet,	 are	 virtual	 SoS	 in	 which	 the	 constituent	 systems	 are	
engineered	 to	 follow	 common	 recommendations	 and	 communication	 protocols.	 Virtual	 SoS	 can	 exhibit	 beneficial	 emerging	
behaviors	such	as	redundancy,	dynamic	reconfiguration,	collaboration	and	resilience.	

G.3 SE processes applied to systems of systems

G.3.1 General

The	above	characteristics	of	SoS	have	implications	on	the	application	of	each	of	the	four	types	of	system	life	cycle	
processes.	

G.3.2 Agreement processes

Agreement	 processes	 are	 crucial	 for	 SoS	 because	 they	 establish	 the	 modes	 of	 developmental	 and	 operational	
control	 among	 the	 organizations	 responsible	 for	 the	 SoS	 and	 the	 often	 independent	 constituent	 systems.	
Constituent	 systems,	 which	 are	 acquired	 and	 managed	 by	 different	 organizations,	 sometimes	 hold	 original	
objectives	that	do	not	align	with	those	of	the	SoS.	Except	in	the	directed	SoS	case,	the	SoS	organization	cannot	task	
a	constituent	system	organization	without	their	cooperation.	In	an	acknowledged	or	collaborative	SoS,	these	tasks	
are	 balanced	 against	 the	 tasks	 of	 the	 constituent	 system	 as	 a	 SOI	 in	 its	 own	 right.	 For	 virtual	 SoS,	 agreement	
processes	may	be	informal,	or	considered	only	for	analysis	purposes.	

Even	 in	 agreements	 among	 owners	 of	 constituent	 systems,	 there	 is	 still	 an	 acquirer	 and	 a	 supplier.	 A	 system	
owner	can	be	both	an	acquirer	and	a	supplier	for	another	constituent	system.	

G.3.3 Organizational project enabling processes

In	 a	 typical	 system‐of‐interest,	 Organizational	 Project‐Enabling	 processes	 establish	 the	 environment	 in	 which	
projects	are	conducted.	The	organization	establishes	the	processes	and	life	cycle	models	to	be	used	by	projects;	
establishes,	 redirects,	or	cancels	projects;	provides	 resources	 required,	 including	human	and	 financial;	 and	sets	
and	monitors	the	quality	measures	for	systems	and	other	deliverables	that	are	developed	by	projects	for	internal	
and	external	customers	(6.2).	

In	an	SoS,	 the	owners	of	 the	constituent	systems	usually	retain	responsibility	 for	engineering	their	systems	and	
they	 each	 have	 their	 own	 Organizational	 Project‐Enabling	 processes.	 Depending	 on	 the	 SoS	 type,	 the	 SoS	 also	
applies	 these	 Organizational	 Project‐Enabling	 processes	 to	 the	 particular	 considerations	 of	 the	 SoS:	 planning,	
analyzing,	organizing,	and	integrating	the	capabilities	of	a	mix	of	existing	and	new	systems	into	a	SoS	capability.	

Consequently,	 in	 SoS	 these	 Organizational	 Project‐Enabling	 Processes	 are	 implemented	 at	 two	 levels.	 The	
organizations	responsible	for	the	constituent	systems	implement	these	processes	for	their	SOI	independent	of	the	
SoS.	 The	 SoS	 organization	 (or	 in	 collaborative	 systems	 of	 systems	 by	 agreement	 of	 the	 SoS)	 implement	 these	
processes	 for	 the	 SoS	 for	 those	 considerations	 that	 apply	 to	 the	 overall	 SoS.	 For	 example,	 Human	 Resource	
Management	 is	addressed	by	each	constituent	system	organization	for	 the	engineering	of	 their	system.	The	SoS	
organization	 addresses	 Human	 Resources	 Management	 only	 for	 the	 systems	 engineering	 activities	 that	 apply	
across	the	constituent	systems	to	the	SoS.	

A	particular	challenge	 in	SoS	engineering	 is	 the	 lack	of	alignment	among	 the	constituent	 system	Organizational	
Project‐Enabling	Processes	and	those	of	 the	SoS.	Constituent	systems	processes	are	designed	to	meet	their	own	
outcomes	 and	 sometimes	 do	 not	 align	 with	 those	 of	 the	 SoS.	 For	 example,	 Portfolio	 Management	 can	 be	 a	
constituent	 system	 responsibility	 in	 cases	where	 the	 constituent	 system	 organization	 has	 full	 control	 over	 the	
constituent	system	and	other	systems	and	projects	in	its	portfolio,	distinct	from	the	portfolio	management	of	the	
SoS	organization.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

125	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

G.3.4 Technical management processes

In	a	typical	system‐of‐interest,	Technical	Management	processes	are	concerned	with	managing	the	resources	and	
assets	 allocated	 by	 organization	management	 and	with	 applying	 them	 to	 fulfill	 the	 agreements	 into	which	 the	
organization	or	organizations	enter.	They	relate	to	the	management	of	projects,	in	particular	to	planning	in	terms	
of	 cost,	 timescales	 and	 achievements,	 to	 the	 checking	 of	 actions	 for	 compliance	 with	 plans	 and	 performance	
criteria,	 and	 to	 the	 identification	 and	 selection	 of	 corrective	 actions	 that	 recover	 shortfalls	 in	 progress	 and	
achievement.	They	are	used	to	establish	and	perform	technical	plans	for	the	project,	manage	information	across	
the	 technical	 team,	 assess	 technical	 progress	 against	 the	 plans	 for	 the	 system	 products	 or	 services,	 control	
technical	tasks	through	to	completion,	and	to	aid	in	the	decision‐making	process	(6.3).	

The	Technical	Management	 processes	 are	 also	 implemented	 at	 the	 level	 of	 the	 SoS	 and	 that	 of	 the	 constituent	
systems.	 Technical	 Management	 processes	 are	 applied	 to	 the	 particular	 considerations	 of	 SoS	 engineering	—	
planning,	 analyzing,	 organizing,	 and	 integrating	 the	 capabilities	 of	 a	 mix	 of	 existing	 and	 new	 systems	 into	 a	
system‐of‐systems	 capability.	 In	 parallel,	 the	 constituent	 systems	 organizations	 retain	 responsibility	 for	
engineering	their	systems	and	for	their	own	Technical	Management	processes.	

The	 SoS	 organization	 addresses	 the	 Technical	 Management	 processes	 as	 they	 apply	 across	 the	 SoS,	 while	 the	
processes	 are	 also	 implemented	 independently	 in	 the	 constituent	 system	 organizations.	 For	 configuration	
management,	 for	 instance,	 constituent	 systems	 manage	 their	 own	 configurations	 while	 the	 SoS	 addresses	
configuration	management	 as	 it	 applies	 to	 the	mix	 of	 systems	 in	 the	 SoS.	 Risk	 is	managed	 by	 the	 constituent	
systems	based	on	assessment	of	risk	as	it	applies	to	their	outcomes,	while	the	SoS	risk	management	looks	at	risk	
to	the	SoS.	

Planning	 and	 Assessment	 and	 Control	 (6.3)	 are	 key	 to	 all	 management	 practices;	 a	 key	 challenge	 in	 SoS	
engineering	 is	 the	 lack	 of	 control	 by	 the	 SoS	 organization	 over	 the	 processes	 for	 the	 constituent	 systems	
(particularly	for	acknowledged	and	collaborative	SoS).	Driven	by	its	own	organizational	requirements,	each	of	the	
constituent	 systems	 can	 be	 on	 a	 development	 or	 upgrade	 schedule	 that	 differs	 from	 the	 schedules	 of	 other	
constituent	systems.	The	SoS	organization	plans	an	integrated	life	cycle	that	recognizes	the	independent	changes	
in	the	constituent	systems,	in	addition	to	the	SoS‐initiated	changes	in	a	life	cycle	that	treats	the	SoS	as	the	SOI.	This	
often	 involves	 the	 definition	 of	 stable	 intermediate	 forms	 that	 punctuate	 the	 SoS	 evolution	 with	 incremental	
capabilities	added	among	the	constituent	systems.	

G.3.5 Technical processes

Technical	processes	are	concerned	with	technical	actions	throughout	the	life	cycle.	They	transform	the	needs	of	
stakeholders	 first	 into	 a	 product	 and	 then,	 by	 applying	 that	 product,	 provide	 a	 sustainable	 service,	 when	 and	
where	needed	 in	order	to	achieve	customer	satisfaction.	The	Technical	processes	are	applied	 in	order	to	create	
and	use	a	system,	whether	 it	 is	 in	the	 form	of	a	model	or	 is	a	 finished	product,	and	they	apply	at	any	 level	 in	a	
hierarchy	of	system	structure	(6.4).	

As	 with	 the	 other	 processes	 when	 applied	 to	 SoS,	 Technical	 processes	 are	 implemented	 for	 both	 the	 SoS	 and	
constituent	 systems;	 in	 some	 cases,	 the	 SoS	 implementation	 is	 by	means	 of	 conduct	 of	 the	 constituent	 system	
processes	rather	than	for	the	SoS	as	a	whole.	

Business	or	Mission	Analysis	for	an	SoS	looks	across	the	full	SoS	business	and	mission	environment.	To	the	degree	
the	constituent	system	was	developed	to	operate	in	that	space,	the	Business	or	Mission	Analysis	for	the	systems	of	
system	and	constituent	systems	will	be	largely	shared.	The	objective	is	to	determine	the	best	means	to	provide	the	
desired	capability.	

Stakeholder	Needs	and	Requirements	Definition	focuses	on	the	top	level	SoS,	but	also	considers	how	the	disparate	
needs	of	the	stakeholders	for	the	individual	systems	can	lead	to	constraints	on	the	SoS.	

System/Software	 Requirements	 Definition	 for	 the	 SoS	 tends	 to	 be	 defined	 at	 the	 level	 needed	 to	 satisfy	
stakeholder	needs	and	mission	objectives,	to	be	translated	into	requirements	for	the	constituent	systems	with	the	
SoS	serving	as	“stakeholder”	for	new	requirements	for	the	constituent	systems.	

The	architecture	for	the	SoS	is	a	framework	for	organizing	and	integrating	the	capabilities	of	a	mix	of	existing	and	
new	 systems	 into	 a	 SoS	 capability,	 leaving	 the	 architectures	 of	 the	 constituent	 systems	 to	 their	 organizations.	
Because	the	constituent	systems	in	an	SoS	usually	predate	the	SoS,	SoS	Architecture	Definition	often	begins	with	
the	de	 facto	architecture	of	 the	SoS.	Architecture	alternatives	are	 then	examined	 in	order	 to	 frame	stakeholder	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

126	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

concerns	and	meet	top	level	SoS	requirements,	and	to	recognize	the	effect	of	new	requirements	for	the	constituent	
systems	and	accommodate	the	constituent	system	architecture	constraints.	

The	Design	Definition	process	provides	sufficient	detailed	data	and	information	to	enable	the	SoS	implementation.	
This	involves	collaboration	with	the	constituent	systems	organizations	who	will	conduct	their	own	design	trades	
to	identify	the	approach	to	address	SoS	requirements	as	they	apply	to	their	system.	These	are	the	responsibility	of	
the	 constituent	 system	 organizations.	 Implementation	 is	 done	 by	 the	 constituent	 systems	 with	 the	 SoS	
organization	in	a	monitoring	role.	

Integration,	 Verification,	 Transition,	 and	 Validation	 are	 done	 by	 the	 constituent	 systems	 for	 the	 changes	 they	
implement	 to	 support	 requirements	 generated	 by	 the	 SoS.	 These	 processes	 also	 apply	 to	 the	 SoS	 when	 the	
upgraded	 constituent	 systems	 are	 integrated	 into	 the	 SoS	 and	 performance	 is	 verified	 and	 validated.	 The	
independent	 and	 asynchronous	 nature	 of	 constituent	 systems	 in	 an	 SoS	 poses	 challenges	 to	 effective	
implementation	of	these	processes	as	 implemented	in	a	traditional	SOI.	 In	some	cases,	the	SoS‐level	evaluations	
can	 only	 be	 performed	 in	 the	 operational	 environment,	 in	 which	 case	 precautionary	 measures	 should	 be	
considered	to	avoid	adverse	SoS‐behavior.	

Finally,	the	Operations,	Maintenance	and	Disposal	processes	tend	to	be	implemented	by	the	constituent	systems,	
given	their	management	and	operational	 independence.	SoS‐level	 interactions	can	facilitate	 interoperability	and	
reduce	duplicate	effort	for	those	processes.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

127	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

Annex H
(informative)

Application of Agile

This	 document	 is	 intended	 to	 be	 applied	 in	 organizations	 and	 software	 projects	 using	 agile	 approaches	 and	
methods	 as	well	 as	 in	 those	 using	 other	 formal	 engineering	 approaches.	 Agile	 development	 is	 one	 of	 the	most	
widely	used	approaches	for	software	development	(including	software	maintenance)	because	it	is	believed	to	be	
more	affordable	and	to	deliver	usable	products	more	quickly.	In	large	software	development	efforts	as	well	as	in	
smaller	projects,	many	Agile	methods	can	be	used	with	various	 life	cycle	models,	and	different	methods	can	be	
used	at	different	points	in	the	lifecycle.	This	annex	points	out	interpretations	of	the	process	requirements	in	this	
document	that	are	appropriate	for	commonly	used	agile	techniques.

As	discussed	 in	5.4.2,	 the	 life	cycle	models	used	 in	agile	projects	are	often	highly	 incremental	and	evolutionary.	
However,	 organizations	 that	 use	 agile	 methods	 do	 apply	 the	 life	 cycle	 processes	 identified	 in	 this	 document,	
including	organizational,	technical	management,	and	technical	processes	(and	may	operate	under	the	agreement	
processes).	As	stated	in	5.4.1,	this	document	does	not	prescribe	any	particular	sequence	of	processes	within	the	
life	 cycle	model.	The	 sequence	of	 the	processes	 is	determined	by	project	objectives	 and	by	 selection	of	 the	 life	
cycle	model.	An	agile	project,	because	 it	transforms	or	combines	activities	while	creating	or	 improving	working	
software,	may	find	it	more	appropriate	to	claim	full	conformance	to	outcomes	(4.2.1)	rather	than	full	conformance	
to	activities	and	tasks	(4.2.2).	

Agile	development	succeeds	in	part	because	of	the	nature	of	software,	which	accommodates	flexibility	in	design	
while	 the	 software	 is	 being	 constructed.	 In	 agile	 practice,	 software	 design,	 implementation	 (construction),	 and	
continuous	integration	are	frequently	performed	concurrently.	This	practice	is	contrasted	with	a	formal	top‐down	
approach	 to	 traceability	 in	 which	 construction	 cannot	 begin	 until	 design	 is	 approved	 so	 that	 the	 constructed	
software	 is	 traced	 to	 a	 previously	 approved	 detailed	 design.	 Thus,	 agile	 projects	 take	 full	 advantage	 of	 the	
approach	 in	 this	 document	 in	 which	 processes	 occur	 concurrently,	 as	 contrasted	 with	 sequentially	 staged	
(idealized	waterfall)	projects.	

In	agile	projects,	concept	exploration,	development,	construction,	 testing,	 transition,	and	retirement	of	previous	
software	 can	 be	 performed	 concurrently	 for	 successive	 iterations.	 Agile	 projects	 often	 perform	 replanning	
concurrently	with	the	activities	mentioned	above.	In	such	approaches,	using	the	end	of	a	stage	as	a	management	
checkpoint	or	control	is	not	very	useful.	Other	agile	approaches	perform	replanning	at	points	between	designated	
iterations	(e.g.,	 sprints	or	pre‐defined	 time‐boxed	cadences)	so	 that	each	of	 these	 iterations	can	be	 treated	as	a	
stage.	

Agile	projects	can	have	closely	tied	cycles	for	development	and	software	release	(e.g.,	with	daily,	weekly,	monthly	
scheduled	 releases)	 or	 can	 separate	 completion	 of	 development	 iterations	 from	 management	 of	 scheduled	
software	releases,	for	the	convenience	of	the	customer	or	according	to	organizational	strategy.	

Besides	applying	a	highly	iterative	and	evolutionary	life	cycle	model,	agile	organizations	have	specific	practices	for	
the	Project	Planning	and	Project	Assessment	and	Control	processes.	Rather	than	establishing	major	control	points	
at	the	transition	between	stages	or	processes,	agile	projects	often	hold	 less	 formal	checkpoints	or	retrospective	
reviews	 at	 the	 end	 of	 a	 time‐boxed	 cycle	 to	 agree	 on	 improvements	 for	 the	 next	 cycle.	 Each	 iteration	 includes	
design,	 development,	 and	 test	 activities	 (test‐driven	 development).	 After	 a	 sprint	 of	 approximately	 one	 to	 four	
weeks	 or	 longer,	 new	 working	 software	 elements	 are	 accepted	 as	 “done”	 —	 completely	 developed,	 verified	
(tested)	 and	 validated.	 Lessons	 learned	 and	process	 improvements	 are	 identified,	 and	work	begins	 on	 another	
sprint.	Continuing	learning,	risk	management,	and	process	improvement	can	be	facilitated	by	planning	meetings	
that	initiate	each	iteration	and	retrospective	meetings	held	at	the	end	of	each	iteration.	

Agile	methods	emphasize	the	Stakeholder	Needs	and	Requirements	Definition	process,	facilitating	change	through	
a	high	degree	of	ongoing	stakeholder	involvement.	In	agile	projects,	key	stakeholders,	such	as	the	acquirer	or	user	
representatives,	 are	 not	 just	 approvers	 of	 information,	 measurements,	 and	 evaluation	 reports.	 Continuous	
stakeholder	 involvement	 is	 consistent	with	 this	 document,	which	 identifies	 the	 involvement	 of	 stakeholders	 in	
every	technical	process	as	well	as	in	the	Tailoring	process	(Annex	A).	They	are	closely	involved	in	requirements	
management	 (6.4.3.3.d)	 at	 each	 iteration,	 by	 bringing	 new	 requirements	 and	 changes	 in	 priorities	 and	
participating	when	prioritized	requirements	are	selected	from	a	backlog	of	undeveloped	stories	or	functions	and	
further	 refined	 for	 development.	 The	 iterative	 approach	 encourages	 flexibility	 to	 add,	 reprioritize,	 or	 defer	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

128	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

requirements	 which	 are	 recognized	 as	 being	 within	 the	 general	 scope	 of	 the	 project.	 Also,	 stakeholder	
involvement	in	the	approval	of	tested	software	in	each	iteration	means	that	validation	is	continual	throughout	the	
project.	

With	the	incremental	definition	of	evolving	requirements,	the	concept	of	project	scope	differs	in	an	agile	project	
from	 projects	 where	 scope	 is	 defined	 by	 a	 predetermined	 baseline	 of	 specified	 requirements.	 When	 an	 Agile	
project	 requires	 a	 defined	 product,	 its	 scope	 is	 initially	 tied	 to	 high‐level	 or	 fundamental	 requirements.	 More	
detailed	 levels	 of	 product	 definition	 are	 expected	 to	 emerge	 as	 additional	 knowledge	 is	 gained	 throughout	
construction.	 Agile	 work	 without	 pre‐defined	 products	 (e.g.,	 level	 of	 effort	 maintenance)	 may	 control	 scope	
through	time‐boxed	schedules	or	resource‐limited	teams.	This	approach	is	particularly	appropriate	for	software	
maintenance	efforts,	where	the	extent	or	content	of	corrective	or	adaptive	work	is	not	fully	specified	initially.	

Specification	 of	 baselines	 also	 differs	 in	 degree	 and	 timing	 for	 agile	 development	 projects	 compared	 to	 more	
traditional	 development	 efforts.	 The	 baseline	 of	 requirements	 may	 initially	 comprise	 high‐level	 user	 stories	
(“epics”)	and	key	performance	measurements,	including	standards	for	usability.	Agile	projects	take	full	advantage	
of	the	task	to	“Define	baselines	through	the	life	cycle”	(6.3.5.3.b)4).	During	development,	new	baselines	are	agreed	
upon	and	built	at	least	daily	under	configuration	control.	A	software	element	is	generally	traceable	to	a	high‐level	
functional	 requirement	 and	 closely	 traceable	 to	 the	 use	 case	 it	 implements	 and	 the	 test	 case	 used	 to	 verify	 its	
functionality	and	performance.	Rather	than	being	traceable	to	a	previously	approved,	baselined	design	document,	
a	new	software	element	may	simply	be	traced	to	a	design	element	or	object	that	was,	in	fact,	created	during	the	
construction	of	the	software	and	only	then	placed	under	configuration	control.	

The	preparation	of	specifications,	design	artifacts,	and	information	items	or	documentation	during	agile	projects	
is	often	 limited,	while	 software	developers	apply	 their	 time	and	skills	 to	 transform	a	scenario	or	narrative	of	a	
function	 (“user	 story”)	 into	 a	 working,	 testable	 software	 element.	 Rather	 than	 preparing	 elaborate	 review	
packages	 for	 briefing	 at	 infrequent	 major	 milestone	 reviews,	 the	 team	meets	 with	 stakeholders	 frequently	 to	
present	 informal	 evidence	 of	 completing	 a	 set	 of	 functions	 and	 to	 agree	 on	 the	 content	 of	 the	 next	 iteration.	
Documented	information	items	focus	on	what	will	be	needed	for	transition,	operation	and	maintenance,	such	as	
operator	and	end‐user	documentation	and	baselines	of	tested	and	released	versions	of	software	with	test	plans	
and	test	cases.	Projects	reuse	organizational	procedures	for	configuration	and	release	management,	verification,	
and	 incident	 and	 problem	management.	 Where	 possible,	 bidirectional	 traceability	 is	 enabled	 and	 enforced	 by	
integrated	 automated	 systems	 and	 procedures	 for	 requirements	 management,	 architecture	 and	 design,	
configuration	management,	measurement,	and	information	management.	

The	 incremental	 and	 iterative	 nature	 of	 Agile	 development	 can	 facilitate	 efficient	 technical	 and	 management	
processes	 and	 practices	 to	 reduce	 the	 cost	 associated	 with	 change.	 In	 comparison,	 projects	 managed	 at	 the	
waterfall	end	of	the	continuum	seek	to	reduce	total	rework	cost	by	minimizing	the	number	of	changes,	limiting	the	
number	of	 control	points,	 and	baselining	detailed	 specifications	which	are	 reviewed	and	 traced	 throughout	 the	
project.	

Agile	 projects	 for	 complex	 systems	 attempt	 to	manage	 cost	 by	 prioritizing	 the	most	 important	 capabilities	 for	
early	realization.	If	an	organization	manages	the	development	and	maintenance	of	its	entire	portfolio	of	software	
systems	 as	 a	 single	 system,	 managed	 by	 spend	 rate	 rather	 than	 total	 spending,	 then	 the	 organization	 can,	 in	
principle,	manage	 that	portfolio	of	 systems	as	 a	 continuing	 agile	development,	 analogous	 to	managing	 a	 highly	
iterative	“Kanban”	maintenance	effort.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

129	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

Annex I
(informative)

Process Mapping from ISO/IEC/IEEE 12207:2008

This	document	adopts	a	process	model	that	is	identical	with	ISO/IEC/IEEE	15288:2015.	To	enable	traceability	and	
ease	 transition	 for	 users	 of	 the	 previous	 (2008)	 edition	 of	 ISO/IEC/IEEE	 12207,	 Table	 I.1	 presents	 a	 cross‐
reference	of	processes	that	shows	the	primary	process	alignments	between	the	two	versions.	Table	I.1	does	not	
imply	 that	process	definitions	are	 identical	between	 the	2008	and	the	2017	editions	of	 this	document.	 In	some	
cases,	processes	in	the	earlier	version	are	now	addressed	through	activities	and	tasks	or	described	in	notes.	Other,	
more	detailed	mappings	to	align	process	purpose,	outcomes,	activities,	or	tasks	of	the	two	versions	are	possible.	
One	such	mapping	is	depicted	in	Table	I.2.

Table I.1 — Comparison of processes in ISO/IEC/IEEE 12207:2017 and the previous edition

ISO/IEC/IEEE 12207:2017 and ISO/IEC/IEEE
15288:2015 process

ISO/IEC 12207:2008 (IEEE Std 12207:2008) process

Subclause Title Subclause Title

6	 Software	life	cycle	processes	
6	 System	Life	Cycle	Processes	

7	 Software	Specific	Processes	

6.1	 Agreement	processes	 6.1	 Agreement	Processes	

6.1.1	 Acquisition	process	 6.1.1	 Acquisition	Process	

6.1.2	 Supply	process	 6.1.2	 Supply	Process	

6.2	 Organizational	project‐enabling	processes	 6.2	 Organizational	Project‐Enabling	Processes	

6.2.1	 Life	cycle	model	management	process	 6.2.1	 Life	Cycle	Model	Management	Process	

6.2.2	 Infrastructure	management	process	 6.2.2	 Infrastructure	Management	Process	

6.2.3	 Portfolio	management	process	 6.2.3	 Project	Portfolio	Management	Process	

6.2.4	 Human	resource	management	process	 6.2.4	 Human	Resource	Management	Process	

6.2.5	 Quality	management	process	 6.2.5	 Quality	Management	Process	

6.2.6	 Knowledge	management	process	

6.2.4.2.e	
Human	Resource	Management	Process	Knowledge	
Management	activity	

6.2.4.3.4	 Knowledge	management	(activity)	

7.3 Software	Reuse	Processes	
7.3.1 Domain	Engineering	Process	
7.3.2 Reuse	Asset	Management	Process	
7.3.3 Reuse	Program	Management	Process

6.3	 Technical	management	processes	 6.3	 Project	Processes	

	 	 7.2	 Software	Support	Processes	

6.3.1	 Project	planning	process	 6.3.1	 Project	Planning	Process	

6.3.2	 Project	assessment	and	control	process	 6.3.2	 Project	Assessment	and	Control	Process	

	 	 7.2.6	 Software	Review	Process	

6.3.3	 Decision	management	process	 6.3.3	 Decision	Management	Process	

6.3.4	 Risk	management	process	 6.3.4	 Risk	Management	Process	

6.3.5	 Configuration	management	process	 6.3.5	 Configuration	Management	Process	

	 	 7.2.2	 Software	Configuration	Management	Process	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

130	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

ISO/IEC/IEEE 12207:2017 and ISO/IEC/IEEE
15288:2015 process

ISO/IEC 12207:2008 (IEEE Std 12207:2008) process

Subclause Title Subclause Title

6.3.6	 Information	management	process	 6.3.6	 Information	Management	Process	

	 	 7.2.1	 Software	Documentation	Management	Process	

6.3.7	 Measurement	process	 6.3.7	 Measurement	Process	

6.3.8	 Quality	assurance	process	 7.2.3	 Software	Quality	Assurance	Process	

	 	 7.2.7	 Software	Audit	Process	

	 	 7.2.8	 Software	Problem	Resolution	Process	

6.4	 Technical	processes	 6.4	 Technical	Processes	

6.4.1	 Business	or	mission	analysis	process	 	
NA,	[but	related	to	some	outcomes	of	6.4.1	Stakeholder	
needs	and	requirements	definition	process]		

6.4.2	
Stakeholder	needs	and	requirements	
definition	process	

6.4.1	 Stakeholder	Requirements	Definition	Process	

6.4.3	
System/Software	requirements	definition	
process	

6.4.2	 System	Requirements	Analysis	Process	

	 	 7.1.2	 Software	Requirements	Analysis	Process	

6.4.4	 Architecture	definition	process	 6.4.3	 System	Architectural	Design	Process	

	 	 7.1.3	 Software	Architectural	Design	Process	

6.4.5	 Design	definition	process	 6.4.3	 System	Architectural	Design	Process	

	 	 7.1.4	 Software	Detailed	Design	Process	

6.4.6	 System	analysis	process	 	
NA,	[but	analysis	activities	are	found	in	many	
processes,	especially	Decision	Management]	

6.4.7	 Implementation	process	 6.4.4	 Implementation	Process	

	 	 7.1	 Software	Implementation	Processes	

	 	 7.1.1	 Software	Implementation	Process	

	 	 7.1.5	 Software	Construction	Process	

6.4.8	 Integration	process	 6.4.5	 System	Integration	Process	

	 	 7.1.6	 Software	Integration	Process	

6.4.9	 Verification	process	 6.4.6	 System	Qualification	Testing	Process	

	 	 7.1.7	 Software	Qualification	Testing	Process	

	 	 7.2.4	 Software	Verification	Process	

6.4.10	 Transition	process	 6.2.4	 Human	Resource	Management	Process	

	 	 6.4.7	 Software	Installation	Process	

6.4.11	 Validation	process	 6.4.8	 Software	Acceptance	Support	Process	

	 	 7.2.5	 Software	Validation	Process	

6.4.12	 Operation	process	 6.4.9	 Software	Operation	Process	

6.4.13	 Maintenance	process	 6.4.10	 Software	Maintenance	Process	

6.4.14	 Disposal	process	 6.4.11	 Software	Disposal	Process	

Annex	A	 Tailoring	process	 Annex	A	 Tailoring	Process	

Table	 I.2	 provides	 a	mapping	 of	 outcomes	 of	 processes	 in	 this	 document	with	 outcomes	 of	 selected	 software‐
specific	 implementation,	 reuse	 and	 support	 processes	 in	 ISO/IEC/IEEE	 12207:2008.	 Users	 of	 12207:2008	 can	
identify	 outcomes	 of	 this	 document	 related	 to	 previous	 versions	 of	 lower	 level	 software‐specific	 processes,	
activities	 or	 tasks	 for	 implementation,	 support	 or	 reuse	 of	 software	 elements	 in	 the	 software	 system.	Table	 I.2	
does	not	imply	that	process	outcomes	are	identical	between	the	2008	and	the	2017	editions	of	this	document.	Not	
all	process	outcomes	of	this	document	are	explicitly	identified	in	the	previous	edition.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

131	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

Table I.2 — Comparison of process outcomes in ISO/IEC/IEEE 12207:2017 and software-related outcomes
in the previous edition

ISO/IEC/IEEE 12207:2017 and ISO/IEC/IEEE
15288:2015 process outcome ISO/IEC 12207:2008 (IEEE Std 12207-2008) process outcome

Subclause Outcome Subclause Outcome

6.2.6 Knowledge Management process 7.3.1 Domain Engineering process

6.2.6.2.a	
A	taxonomy	for	the	application	of	
knowledge	assets	is	identified.	

7.3.1.2.a,		

7.3.1.2.b,		

7.3.1.2.c,		

7.3.1.2.d	

The	representation	forms	for	the	domain	
models	and	the	domain	architectures	are	
selected.	

The	boundaries	of	the	domain	and	its	
relationships	to	other	domains	are	
established.	

A	domain	model	that	captures	the	essential	
common	and	different	features,	capabilities,	
concepts,	and	functions	in	the	domain	is	
developed.	

A	domain	architecture	describing	the	family	
of	systems	within	the	domain,	including	
their	commonalities	and	variabilities,	is	
developed.	

6.2.6.2.b
The	organizational	knowledge,	
skills,	and	knowledge	assets	are	
developed	or	acquired.	

7.3.1.2.e,		

7.3.1.2.f	

Assets	belonging	to	the	domain	are	
specified.	

Assets	belonging	to	the	domain	are	acquired	
or	developed	and	maintained	throughout	
their	life	cycles.

6.2.6.2.c	
The	organizational	knowledge,	
skills,	and	knowledge	assets	are	
available.	

7.3.1.2.g	
The	domain	models	and	architectures	are	
maintained	throughout	their	life	cycles.

 7.3.2 Reuse Asset Management process

6.2.6.2.a	
A	taxonomy	for	the	application	of	
knowledge	assets	is	identified.	

7.3.2.2.a,		

7.3.2.2.b	

An	asset	management	strategy	is	
documented.	

An	asset	classification	scheme	is	established.	

6.2.6.2.b
The	organizational	knowledge,	
skills,	and	knowledge	assets	are	
developed	or	acquired.	

7.3.2.2.c	
Criteria	for	asset	acceptance,	certification	
and	retirement	are	defined.	

6.2.6.2.c	
The	organizational	knowledge,	
skills,	and	knowledge	assets	are	
available.	

7.3.2.2.d,	

7.3.2.2.f,		

7.3.2.2.g	

An	asset	storage	and	retrieval	mechanism	is	
operated.	

Changes	to	the	assets	are	controlled.	

Users	of	assets	are	notified	of	problems	
detected,	modifications	made,	new	versions	
created	and	deletion	of	assets	from	the	
storage	and	retrieval	mechanism.	

6.2.6.2.d
Knowledge	management	usage	data	
is	gathered	and	analyzed.	

7.3.2.2.e		 The	use	of	assets	is	recorded.	

 7.3.3 Reuse Program Management process

6.2.6.2.a	
A	taxonomy	for	the	application	of	
knowledge	assets	is	identified.	

7.3.3.2.a,		

7.3.3.2.b		

The	organization’s	reuse	strategy,	including	
its	purpose,	scope,	goals	and	objectives,	is	
defined.	

The	domains	for	potential	reuse	
opportunities	are	identified.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

132	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

ISO/IEC/IEEE 12207:2017 and ISO/IEC/IEEE
15288:2015 process outcome

ISO/IEC 12207:2008 (IEEE Std 12207-2008) process outcome

Subclause Outcome Subclause Outcome

6.2.6.2.b
The	organizational	knowledge,	
skills,	and	knowledge	assets	are	
developed	or	acquired.	

7.3.3.2.c,		

7.3.3.2.d,		

7.3.3.2.e		

The	organization’s	systematic	reuse	
capability	is	assessed.	

The	reuse	potential	of	each	domain	is	
assessed.	

Reuse	proposals	are	evaluated	to	ensure	the	
reuse	product	is	suitable	for	the	proposed	
application.	

6.2.6.2.c	
The	organizational	knowledge,	
skills,	and	knowledge	assets	are	
available.	

7.3.3.2.f	
The	reuse	strategy	is	implemented	in	the	
organization.		

6.2.6.2.d
Knowledge	management	usage	data	
is	gathered	and	analyzed.	

7.3.3.2.g,		

7.3.3.2h	

Feedback,	communication,	and	notification	
mechanisms	that	operate	between	affected	
parties	are	established.	

The	reuse	program	is	monitored	and	
evaluated.

6.3.1	 Project Planning process 	 7.2.6 Software Review process

6.3.1.2.a	 Objectives	and	plans	are	defined.	 7.2.6.2.a	
Management	and	technical	reviews	are	held	
based	on	the	needs	of	the	project.	

6.3.1.2.b	
Roles,	responsibilities,	
accountabilities,	and	authorities	are	
defined.	

7.2.6.2.a	
Management	and	technical	reviews	are	held	
based	on	the	needs	of	the	project.	

6.3.1.2.c	
Resources	and	services	necessary	to	
achieve	the	objectives	are	formally	
requested	and	committed.	

7.2.6.2.a	
Management	and	technical	reviews	are	held	
based	on	the	needs	of	the	project.	

6.3.1.2.d	
Plans	for	the	execution	of	the	
project	are	activated.	

7.2.6.2.a	
Management	and	technical	reviews	are	held	
based	on	the	needs	of	the	project.	

6.3.2	
Project Assessment and Control
process 	

7.2.6	 Software Review process

6.3.2.2.a	
Performance	measures	or	
assessment	results	are	available.	

7.2.6.2.c,		

7.2.6.2.e	

Review	 results	 are	 made	 known	 to	 all	
affected	parties.	

Risks	and	problems	are	identified	and	
recorded.	

6.3.2.2.b	
Adequacy	of	roles,	responsibilities,	
accountabilities,	and	authorities	is	
assessed.	

7.2.6.2a	

7.2.6.2.b	

Management	and	technical	reviews	are	held	
based	on	the	needs	of	the	project.	

The	status	and	products	of	an	activity	of	a	
process	are	evaluated	through	review	
activities.	

6.3.2.2.c	 Adequacy	of	resources	is	assessed.	
7.2.6.2.a	

7.2.6.2.b	

Management	and	technical	reviews	are	held	
based	on	the	needs	of	the	project.	

The	status	and	products	of	an	activity	of	a	
process	are	evaluated	through	review	
activities.	

6.3.2.2.d	
Technical	progress	reviews	are	
performed.	

7.2.6.2.a	
Management	and	technical	reviews	are	held	
based	on	the	needs	of	the	project.	

6.3.2.2.e	
Deviations	in	project	performance	
from	plans	are	investigated	and	
analyzed.	

7.2.6.2.b	
The	status	and	products	of	an	activity	of	a	
process	are	evaluated	through	review	
activities.	

6.3.2.2.f	
Affected	stakeholders	are	informed	
of	project	status.	

7.2.6.2.c	
Review	results	are	made	known	to	all	
affected	parties.	

6.3.2.2.g	
Corrective	action	is	defined	and	
directed,	when	project	achievement	
is	not	meeting	targets.	

7.2.6.2.d	
Action	items	resulting	from	reviews	are	
tracked	to	closure.	

6.3.4 Risk Management process 7.2.6	 Software Review process

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

133	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

ISO/IEC/IEEE 12207:2017 and ISO/IEC/IEEE
15288:2015 process outcome

ISO/IEC 12207:2008 (IEEE Std 12207-2008) process outcome

Subclause Outcome Subclause Outcome

6.3.4.2.a	 Risks	are	identified.	 7.2.6.2.e	
Risks	and	problems	are	identified	and	
recorded.		

6.3.5	
Configuration Management
process 	

7.2.2
Software Configuration Management
process

6.3.5.2.a	
Items	requiring	configuration	
management	are	identified	and	
managed.	

7.2.2.2.a,		

7.2.2.2.b	

A	software	configuration	management	
strategy	is	developed.	

Items	generated	by	the	process	or	project	
are	identified,	defined	and	baselined.	

6.3.5.2.b	 Configuration	baselines	are	
established.	

7.2.2.2.b	 Items	generated	by	the	process	or	project	
are	identified,	defined	and	baselined.	

6.3.5.2.c	
Changes	to	items	under	
configuration	management	are	
controlled.	

7.2.2.2.c,		

7.2.2.2.d	

Modifications	 and	 releases	 of	 the	 items	 are	
controlled.	

Modifications	and	releases	are	made	
available	to	affected	parties.	

6.3.5.2.d	
Configuration	status	information	is	
available.	

7.2.2.2.e	
The	status	of	the	items	and	modifications	
are	recorded	and	reported.	

6.3.5.2.e	
Required	configuration	audits	are	
completed.	

7.2.2.2.f	
The	completeness	and	consistency	of	the	
items	is	ensured.	

6.3.5.2.f	
System	releases	and	deliveries	are	
controlled	and	approved.	

7.2.2.2.c,		

7.2.2.2.d,		

7.2.2.2.g	

Modifications	and	releases	of	the	items	are	
controlled.	

Modifications	and	releases	are	made	
available	to	affected	parties.	

The	storage,	handling	and	delivery	of	the	
items	are	controlled.	

6.3.6 Information Management process 7.2.1
Software Documentation Management
process

6.3.6.2.a	
Information	to	be	managed	is	
identified.	

7.2.1.2.a,		

7.2.1.2.c	

A	strategy	identifying	the	documentation	to	
be	produced	during	the	life	cycle	of	the	
software	product	or	service	is	developed.	

Documentation	to	be	produced	by	the	
process	or	project	is	identified.	

6.3.6.2.b	
Information	representations	are	
defined.	

7.2.1.2.b,		

7.2.1.2.d	

The	standards	to	be	applied	for	the	
development	of	the	software	documentation	
are	identified.	

The	content	and	purpose	of	all	
documentation	is	specified,	reviewed	and	
approved.	

6.3.6.2.c	
Information	is	obtained,	developed,	
transformed,	stored,	validated,	
presented,	and	disposed	of.	

7.2.1.2.d,	

7.2.1.2.e,		

7.2.1.2.f	

The	content	and	purpose	of	all	
documentation	is	specified,	reviewed	and	
approved.	

Documentation	is	developed	and	made	
available	in	accordance	with	identified	
standards.	

Documentation	is	maintained	in	accordance	
with	defined	criteria.	

6.3.6.2.d	
The	status	of	information	is	
identified.	

7.2.1.2.f	
Documentation	is	maintained	in	accordance	
with	defined	criteria.	

6.3.6.2.e	
Information	is	available	to	
designated	stakeholders.	

7.2.1.2.e	
Documentation	is	developed	and	made	
available	in	accordance	with	identified	
standards.	

6.3.8	 Quality Assurance process	 7.2.3	 Software Quality Assurance process

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

134	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

ISO/IEC/IEEE 12207:2017 and ISO/IEC/IEEE
15288:2015 process outcome

ISO/IEC 12207:2008 (IEEE Std 12207-2008) process outcome

Subclause Outcome Subclause Outcome

6.3.8.2.a	
Project	quality	assurance	
procedures	are	defined	and	
implemented.

7.2.3.2.a,		

7.2.3.2.d	

A	strategy	for	conducting	software	quality	
assurance	is	developed.	

Adherence	of	software	products,	processes	
and	activities	to	the	applicable	standards,	
procedures	and	requirements	is	verified.	

6.3.8.2.b	
Criteria	and	methods	for	quality	
assurance	evaluations	are	defined.	

7.2.3.2.a	
A	strategy	for	conducting	software	quality	
assurance	is	developed.	

6.3.8.2.c	

Evaluations	of	the	project’s	
products,	services,	and	processes	
are	performed,	consistent	with	
quality	management	policies,	
procedures,	and	requirements.	

7.2.3.2.d	
Adherence	of	software	products,	processes	
and	activities	to	the	applicable	standards,	
procedures	and	requirements	is	verified.	

6.3.8.2.d	
Results	of	evaluations	are	provided	
to	relevant	stakeholders.	

7.2.3.2.b	
Evidence	of	software	quality	assurance	is	
produced	and	maintained.	

6.3.8.2.f	 Prioritized	problems	are	treated.	 7.2.3.2.c	
Problems	and/or	non‐conformance	with	
requirements	are	identified	and	recorded.	

	 	 7.2.6 Software Review process

6.3.8.2.a	
Project	quality	assurance	
procedures	are	defined	and	
implemented.	

7.2.6.2a	
Management	and	technical	reviews	are	held	
based	on	the	needs	of	the	project.	

6.3.8.2.b	
Criteria	and	methods	for	quality	
assurance	evaluations	are	defined.	

7.2.6.2a	
Management	and	technical	reviews	are	held	
based	on	the	needs	of	the	project.	

6.3.8.2.c	

Evaluations	of	the	project’s	
products,	services,	and	processes	
are	performed,	consistent	with	
quality	management	policies,	
procedures,	and	requirements.	

7.2.6.2.a,		

7.2.6.2.b	

Management	and	technical	reviews	are	held	
based	on	the	needs	of	the	project.	

The	status	and	products	of	an	activity	of	a	
process	are	evaluated	through	review	
activities.	

6.3.8.2.d	
Results	of	evaluations	are	provided	
to	relevant	stakeholders.	

7.2.6.2.c	
Review	results	are	made	known	to	all	
affected	parties.	

6.3.8.	2.f	 Prioritized	problems	are	treated.	
7.2.6.2.d,		

7.2.6.2.e	

Action	items	resulting	from	reviews	are	
tracked	to	closure.	

Risks	and	problems	are	identified	and	
recorded.	

	 	 7.2.7 Software Audit process

6.3.8.2.a	
Project	quality	assurance	
procedures	are	defined	and	
implemented.	

7.2.7.2.a	
An	audit	strategy	is	developed	and	
implemented.	

6.3.8.2.b	
Criteria	and	methods	for	quality	
assurance	evaluations	are	defined.	

7.2.7.2.a	
An	audit	strategy	is	developed	and	
implemented.	

6.3.8.2.c	

Evaluations	of	the	project’s	
products,	services,	and	processes	
are	performed,	consistent	with	
quality	management	policies,	
procedures,	and	requirements.	

7.2.7.2.b,	

7.2.7.2.c	

Compliance	of	selected	software	work	
products	and/or	services	or	processes	with	
requirements,	plans	and	agreement	is	
determined	according	to	the	audit	strategy.	

Audits	are	conducted	by	an	appropriate	
independent	party.	

6.3.8.2.d	
Results	of	evaluations	are	provided	
to	relevant	stakeholders.	

7.2.7.2.d	

Problems	detected	during	an	audit	are	
identified	and	communicated	to	those	
responsible	for	corrective	action,	and	
resolution.	

	 	 7.2.8	 Software Problem Resolution process

6.3.8.2.a	
Project	quality	assurance	
procedures	are	defined	and	
implemented.	

7.2.8.2.a	
A	problem	management	strategy	is	
developed.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

135	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

ISO/IEC/IEEE 12207:2017 and ISO/IEC/IEEE
15288:2015 process outcome

ISO/IEC 12207:2008 (IEEE Std 12207-2008) process outcome

Subclause Outcome Subclause Outcome

6.3.8.2.b	
Criteria	and	methods	for	quality	
assurance	evaluations	are	defined.	

7.2.8.2.a	
A	problem	management	strategy	is	
developed.	

6.3.8.2.d	
Results	of	evaluations	are	provided	
to	relevant	stakeholders.

7.2.8.2.f	
The	status	of	all	problems	reported	is	
known.	

6.3.8.2.e	 Incidents	are	resolved.	 	 	

6.3.8.2.f	 Prioritized	problems	are	treated.	

7.2.8.2.b,		

7.2.8.2.c,		

7.2.8.2.d,		

7.2.8.2.e	

Problems	are	recorded,	identified	and	
classified.	

Problems	are	analyzed	and	assessed	to	
identify	acceptable	solution(s).	

Problem	resolution	is	implemented.	

Problems	are	tracked	to	closure.	

6.4.3
System/Software Requirements
Definition process

7.1.2 Software Requirements Analysis process

6.4.3.2.a	

The	system	or	element	description,	
including	interfaces,	functions	and	
boundaries,	for	a	system	solution	is	
defined.	

7.1.2.2.a	
The	requirements	allocated	to	the	software	
elements	of	the	system	and	their	interfaces	
are	defined.	

6.4.3.2.b	

System/software	requirements	
(functional,	performance,	process,	
non‐functional,	and	interface)	and	
design	constraints	are	defined.	

7.1.2.2.a,		

7.1.2.2.e,		

7.1.2.2.f,		

7.1.2.2.h	

The	requirements	allocated	to	the	software	
elements	of	the	system	and	their	interfaces	
are	defined.	

Prioritization	for	implementing	the	software	
requirements	is	defined.	

The	software	requirements	are	approved	
and	updated	as	needed.	

The	software	requirements	are	baselined	
and	communicated	to	all	affected	parties.	

6.4.3.2.c	
Critical	performance	measures	are	
defined.	

7.1.2.2.c	
The	impact	of	software	requirements	on	the	
operating	environment	is	understood.	

6.4.3.2.d	
The	system/software	requirements	
are	analyzed.	

7.1.2.2.b,	

7.1.2.2.c,		

7.1.2.2.g	

Software	requirements	are	analyzed	for	
correctness	and	testability.	

The	impact	of	software	requirements	on	the	
operating	environment	is	understood.	

Changes	to	the	software	requirements	are	
evaluated	for	cost,	schedule	and	technical	
impact.	

6.4.3.2.e	

Any	enabling	systems	or	services	
needed	for	system/software	
requirements	definition	are	
available.	

	 	

6.4.3.2.f	
Traceability	of	system/software	
requirements	to	stakeholder	
requirements	is	developed.	

7.1.2.2.d		
Consistency	and	traceability	are	established	
between	the	software	requirements	and	
system	requirements.	

6.4.4 Architecture Definition process 7.1.3 Software Architectural Design process

6.4.4.2.a	
Identified	stakeholder	concerns	are	
addressed	by	the	architecture.	

7.1.3.2.a,	

7.1.3.2.c	

A	software	architectural	design	is	developed	
and	baselined	that	describes	the	software	
items	that	will	implement	the	software	
requirements.	

Consistency	and	traceability	are	established	
between	software	requirements	and	
software	design.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

136	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

ISO/IEC/IEEE 12207:2017 and ISO/IEC/IEEE
15288:2015 process outcome

ISO/IEC 12207:2008 (IEEE Std 12207-2008) process outcome

Subclause Outcome Subclause Outcome

6.4.4.2.b	
Architecture	viewpoints	are	
developed.	 7.1.3.2.a	

A	software	architectural	design	is	developed	
and	baselined	that	describes	the	software	
items	that	will	implement	the	software	
requirements.	

6.4.4.2.c	
Context,	boundaries,	and	external	
interfaces	of	the	system	are	defined.	

7.1.3.2.b	
Internal	and	external	interfaces	of	each	
software	item	are	defined.	

6.4.4.2.d	
Architecture	views	and	models	of	
the	system	are	developed.	

7.1.3.2.a	

A	software	architectural	design	is	developed	
and	baselined	that	describes	the	software	
items	that	will	implement	the	software	
requirements.	

6.4.4.2.e	

Concepts,	properties,	
characteristics,	behaviors,	functions,	
or	constraints	that	are	significant	to	
architecture	decisions	of	the	system	
are	allocated	to	architectural	
entities.	

7.1.3.2.a	

A	software	architectural	design	is	developed	
and	baselined	that	describes	the	software	
items	that	will	implement	the	software	
requirements.	

6.4.4.2.f	
System	elements	and	their	
interfaces	are	identified.	

7.1.3.2.a,		

7.1.3.2.b	

A	software	architectural	design	is	developed	
and	 baselined	 that	 describes	 the	 software	
items	 that	 will	 implement	 the	 software	
requirements.	

Internal	and	external	interfaces	of	each	
software	item	are	defined.	

6.4.4.2.g	
Architecture	candidates	are	
assessed.	

7.1.3.2.a	

A	software	architectural	design	is	developed	
and	baselined	that	describes	the	software	
items	that	will	implement	the	software	
requirements.	

6.4.4.2.h	
An	architectural	basis	for	processes	
throughout	the	life	cycle	is	achieved.	

7.1.3.2.a	

A	software	architectural	design	is	developed	
and	baselined	that	describes	the	software	
items	that	will	implement	the	software	
requirements.	

6.4.4.2.i	
Alignment	of	the	architecture	with	
requirements	and	design	
characteristics	is	achieved.	

7.1.3.2.a,		

7.1.3.2.c	

A	software	architectural	design	is	developed	
and	baselined	that	describes	the	software	
items	that	will	implement	the	software	
requirements.	

Consistency	and	traceability	are	established	
between	software	requirements	and	
software	design.	

6.4.4.2.j	
Any	enabling	systems	or	services	
needed	for	architecture	definition	
are	available.		

	 	

6.4.4.2.k	

Traceability	of	architecture	
elements	to	stakeholder	and	
system/software	requirements	is	
developed.	

7.1.3.2.c	
Consistency	and	traceability	are	established	
between	software	requirements	and	
software	design.	

 7.3.1 Domain Engineering process

6.4.4.2.c	
Context,	boundaries,	and	external	
interfaces	of	the	system	are	defined.	

7.3.1.2.b	
The	boundaries	of	the	domain	and	its	
relationships	to	other	domains	are	
established.	

6.4.4.2.d	 Architecture	views	and	models	of	
the	system	are	developed.	

7.3.1.2.a,		

7.3.1.2.c		

The	representation	forms	for	the	domain	
models	and	the	domain	architectures	are	
selected.	

A	domain	model	that	captures	the	essential	
common	and	different	features,	capabilities,	
concepts,	and	functions	in	the	domain	is	
developed.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

137	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

ISO/IEC/IEEE 12207:2017 and ISO/IEC/IEEE
15288:2015 process outcome

ISO/IEC 12207:2008 (IEEE Std 12207-2008) process outcome

Subclause Outcome Subclause Outcome

6.4.4.2.h	
An	architectural	basis	for	processes	
throughout	the	life	cycle	is	achieved.	 7.3.1.2.d	

A	domain	architecture	describing	the	family	
of	systems	within	the	domain,	including	
their	commonalities	and	variabilities,	is	
developed.	

6.4.5 Design Definition process 7.1.4 7.1.4 Software Detailed Design process

6.4.5.2.a	
Design	characteristics	of	each	
system	element	are	defined.	

7.1.4.2.a	
A	detailed	design	of	each	software	
component,	describing	the	software	units	to	
be	built,	is	developed.	

6.4.5.2.b	
System/software	requirements	are	
allocated	to	system	elements.	

7.1.4.2.a,		

7.1.4.2.c	

A	detailed	design	of	each	software	
component,	describing	the	software	units	to	
be	built,	is	developed.	

Consistency	and	traceability	are	established	
between	the	detailed	design	and	the	
requirements	and	architectural	design.	

6.4.5.2.c	
Design	enablers	necessary	for	
design	definition	are	selected	or	
defined.	

7.1.4.2.a	
A	detailed	design	of	each	software	
component,	describing	the	software	units	to	
be	built,	is	developed.	

6.4.5.2.d	
Interfaces	between	system	elements	
composing	the	system	are	defined	
or	refined.	

7.1.4.2.b	
External	interfaces	of	each	software	unit	are	
defined.	

6.4.5.2.e	
Design	alternatives	for	system	
elements	are	assessed.	

7.1.4.2.a	
A	detailed	design	of	each	software	
component,	describing	the	software	units	to	
be	built,	is	developed.	

6.4.5.2.f	 Design	artifacts	are	developed.	 7.1.4.2.a	
A	detailed	design	of	each	software	
component,	describing	the	software	units	to	
be	built,	is	developed.	

6.4.5.2.g	
Any	enabling	systems	or	services	
needed	for	design	definition	are	
available.	

	 	

6.4.5.2.h	

Traceability	of	the	design	
characteristics	to	the	architectural	
entities	of	the	system	architecture	is	
established.	

7.1.4.2.c	
Consistency	and	traceability	are	established	
between	the	detailed	design	and	the	
requirements	and	architectural	design.	

6.4.7 Implementation process 7.1.1 Software Implementation Process

6.4.7.2.a	

Implementation	constraints	that	
influence	the	requirements,	
architecture,	or	design	are	
identified.	

7.1.1.2.a,		

7.1.1.2.b	

An	implementation	strategy	is	defined.	

Implementation	technology	constraints	on	
the	design	are	identified.	

6.4.7.2.b	 A	system	element	is	realized.	 7.1.1.2.c	 A	software	item	is	realized.	

6.4.7.2.c	
A	system	element	is	packaged	or	
stored.	

7.1.1.2.d	
A	software	item	is	packaged	and	stored	in	
accordance	with	an	agreement	for	its	supply.	

6.4.7.2.d	
Any	enabling	systems	or	services	
needed	for	implementation	are	
available.	

	 	

 7.1.5 Software Construction Process

6.4.7.2.a	

Implementation	constraints	that	
influence	the	requirements,	
architecture,	or	design	are	
identified.	

7.1.5.2.a,	

7.1.5.2.d	

Verification	criteria	are	defined	for	all	
software	units	against	their	requirements.	

Verification	of	the	software	units	against	the	
requirements	and	the	design	is	
accomplished.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

138	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

ISO/IEC/IEEE 12207:2017 and ISO/IEC/IEEE
15288:2015 process outcome

ISO/IEC 12207:2008 (IEEE Std 12207-2008) process outcome

Subclause Outcome Subclause Outcome

6.4.7.2.b	 A	system	element	is	realized.	
7.1.5.2.b,		

7.1.5.2.d	

Software	units	defined	by	the	design	are	
produced.	

Verification	of	the	software	units	against	the	
requirements	and	the	design	is	
accomplished.	

6.4.7.2.e	 Traceability	is	established.	 7.1.5.2.c	
Consistency	and	traceability	are	established	
between	software	units	and	requirements	
and	design.	

6.4.8 Integration process 7.1.6 Software Integration Process

6.4.8.2.a	

Integration	constraints	that	
influence	system	requirements,	
architecture,	or	design,	including	
interfaces,	are	identified.	

7.1.6.2.a	

An	integration	strategy	is	developed	for	
software	units	consistent	with	the	software	
design	and	the	prioritized	software	
requirements.	

6.4.8.2.b

Approach	and	checkpoints	for	the	
correct	operation	of	the	assembled	
interfaces	and	system	functions	are	
defined.	

7.1.6.2.a,		

7.1.6.2.c	

An	integration	strategy	is	developed	for	
software	units	consistent	with	the	software	
design	and	the	prioritized	software	
requirements.	

Software	items	are	verified	using	the	defined	
criteria.	

6.4.8.2.c	
Any	enabling	systems	or	services	
needed	for	integration	are	available.	

	 	

6.4.8.2.d
A	system	composed	of	implemented	
system	elements	is	integrated.	

7.1.6.2.d
Software	items	defined	by	the	integration	
strategy	are	produced.	

6.4.8.2.e	
The	interfaces	between	the	
implemented	system	elements	that	
compose	the	system	are	checked.	

7.1.6.2.c	
Software	items	are	verified	using	the	defined	
criteria.	

6.4.8.2.f	
The	interfaces	between	the	system	
and	the	external	environment	are	
checked.	

7.1.6.2.c	
Software	items	are	verified	using	the	defined	
criteria.	

6.4.8.2.g
Integration	results	and	anomalies	
are	identified.	

7.1.6.2.c,		

7.1.6.2.e	

Software	items	are	verified	using	the	defined	
criteria.	

Results	of	integration	testing	are	recorded.	

6.4.8.2.h
Traceability	of	the	integrated	
system	elements	is	established.	

7.1.6.2.f	
Consistency	and	traceability	are	established	
between	software	design	and	software	
items.	

6.4.9	 Verification process	 7.1.5 Software Construction Process

6.4.9.2.a	

Constraints	of	verification	that	
influence	the	requirements,	
architecture,	or	design	are	
identified.	

7.1.5.2.a	
Verification	criteria	are	defined	for	all	
software	units	against	their	requirements.	

	 	 7.1.6 Software Integration Process

6.4.9.2.a	

Constraints	of	verification	that	
influence	the	requirements,	
architecture,	or	design	are	
identified.	

7.1.6.2.b,		

7.1.6.2.g	

Verification	criteria	for	software	items	are	
developed	that	ensure	compliance	with	the	
software	requirements	allocated	to	the	
items	

A	regression	strategy	is	developed	and	
applied	for	re‐verifying	software	items	when	
a	change	in	software	units	(including	
associated	requirements,	design	and	code)	
occur.	

6.4.9.2.c
The	system	or	system	element	is	
verified.	

7.1.6.2.c	
Software	items	are	verified	using	the	defined	
criteria.	

	 	 7.1.7	 Software Qualification Testing process

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

139	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

ISO/IEC/IEEE 12207:2017 and ISO/IEC/IEEE
15288:2015 process outcome

ISO/IEC 12207:2008 (IEEE Std 12207-2008) process outcome

Subclause Outcome Subclause Outcome

6.4.9.2.a	

Constraints	of	verification	that	
influence	the	requirements,	
architecture,	or	design	are	
identified.	

7.1.7.2.a,		

7.1.7.2.d	

Criteria	for	the	integrated	software	are	
developed	that	demonstrate	compliance	
with	the	software	requirements.	

A	regression	strategy	is	developed	and	
applied	for	re‐testing	the	integrated	
software	when	a	change	in	software	items	is	
made.	

6.4.9.2.c
The	system	or	system	element	is	
verified.	

7.1.7.2.b,	

7.1.7.2.d	

Integrated	software	is	verified	using	the	
defined	criteria.	

A	regression	strategy	is	developed	and	
applied	for	re‐testing	the	integrated	
software	when	a	change	in	software	items	is	
made.	

6.4.9.2.e	
Objective	evidence	that	the	realized	
system	fulfils	the	requirements,	
architecture	and	design	is	provided.	

7.1.7.2.c	 Test	results	are	recorded.	

6.4.9.2.f	
Verification	results	and	anomalies	
are	identified.	

7.1.7.2.c	 Test	results	are	recorded.	

6.4.9.2.g	
Traceability	of	the	verified	system	
elements	is	established.	

7.1.7.2.a	
Criteria	for	the	integrated	software	are	
developed	that	demonstrate	compliance	
with	the	software	requirements.	

	
	 7.2.3	 Software Quality Assurance process

6.4.9.2.c	
The	system	or	system	element	is	
verified.	

7.2.3.2.d	
Adherence	of	software	products,	processes	
and	activities	to	the	applicable	standards,	
procedures	and	requirements	is	verified.	

	
	 7.2.4	 Software Verification Process

6.4.9.2.a	

Constraints	of	verification	that	
influence	the	requirements,	
architecture,	or	design	are	
identified.	

7.2.4.2.a,		

7.2.4.2.b	

A	software	verification	strategy	is	developed	
and	implemented.	

Criteria	for	verification	of	all	required	
software	work	products	are	identified.	

6.4.9.2.b	
Any	enabling	systems	or	services	
needed	for	verification	are	available.

7.2.4.2.a	
A	software	verification	strategy	is	developed	
and	implemented.	

6.4.9.2.c	
The	system	or	system	element	is	
verified.	

7.2.4.2.c	
Required	verification	activities	are	
performed.	

6.4.9.2.d	
Data	providing	information	for	
corrective	actions	is	reported.	

7.2.4.2.d	 Defects	are	identified	and	recorded.	

6.4.9.2.e	
Objective	evidence	that	the	realized	
system	fulfils	the	requirements,	
architecture	and	design	is	provided.	

7.2.4.2.e	
Results	of	the	verification	activities	are	
made	available	to	the	customer	and	other	
involved	parties.	

6.4.9.2.f	
Verification	results	and	anomalies	
are	identified.	

7.2.4.2.d	 Defects	are	identified	and	recorded.	

6.4.9.2.g	
Traceability	of	the	verified	system	
elements	is	established.	

7.2.4.2.b,	

7.2.4.2.c	

Criteria	for	verification	of	all	required	
software	work	products	are	identified.	

Required	verification	activities	are	
performed.	

6.4.10	 Transition process 6.2.4 Human Resource Management Process	

6.4.10.2.d	

Operators,	users	and	other	
stakeholders	necessary	to	the	
system	utilization	and	support	are	
trained.	

6.2.4.2.c	
Skills	of	personnel	are	developed,	
maintained	or	enhanced.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

140	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

ISO/IEC/IEEE 12207:2017 and ISO/IEC/IEEE
15288:2015 process outcome

ISO/IEC 12207:2008 (IEEE Std 12207-2008) process outcome

Subclause Outcome Subclause Outcome

	
 6.4.7	 Software Installation Process

6.4.10.2.a	

Transition	constraints	that	influence	
system/software	requirements,	
architecture,	or	design	are	
identified.		

6.4.7.2.a,		

6.4.7.2.b	

A	software	installation	strategy	is	
developed.	

Criteria	for	software	installation	are	
developed	that	demonstrate	compliance	
with	the	software	installation	requirements.	

6.4.10.2.b	
Any	enabling	systems	or	services	
needed	for	transition	are	available.	

6.4.7.2.d	
Readiness	of	the	software	product	for	use	in	
its	intended	environment	is	assured.	

6.4.10.2.c	 The	site	is	prepared.	 6.4.7.2.d	
Readiness	of	the	software	product	for	use	in	
its	intended	environment	is	assured.	

6.4.10.2.d	
The	system,	as	installed	in	its	
operational	location,	is	capable	of	
delivering	its	specified	functions.	

6.4.7.2.d	
Readiness	of	the	software	product	for	use	in	
its	intended	environment	is	assured.	

6.4.10.2.e	

Operators,	users	and	other	
stakeholders	necessary	to	the	
system	utilization	and	support	are	
trained	

6.4.7.2.d	
Readiness	of	the	software	product	for	use	in	
its	intended	environment	is	assured.	

6.4.10.2.f	
Transition	results	and	anomalies	are	
identified.		

6.4.7.2.d	
Readiness	of	the	software	product	for	use	in	
its	intended	environment	is	assured.	

6.4.10.2.g	
The	installed	system	is	activated	
and	ready	for	operation.	

6.4.7.2.c,		

6.4.7.2.d	

The	software	product	is	installed	in	the	
target	environment.	

Readiness	of	the	software	product	for	use	in	
its	intended	environment	is	assured.	

6.4.10.2.h	
Traceability	of	the	transitioned	
elements	is	established.		

6.4.7.2.b	
Criteria	for	software	installation	are	
developed	that	demonstrate	compliance	
with	the	software	installation	requirements.	

	 	 6.4.8	 Software Acceptance Support process	

6.4.10.2.d	
The	system,	as	installed	in	its	
operational	location,	is	capable	of	
delivering	its	specified	functions.	

6.4.8.2.a,		

6.4.8.2.b		

The	product	is	completed	and	delivered	to	
the	acquirer.	

Acquirer	acceptance	tests	and	reviews	are	
supported.	

6.4.10.2.e	

Operators,	users	and	other	
stakeholders	necessary	to	the	
system	utilization	and	support	are	
trained	

6.4.8.2.c	 The	product	is	put	into	operation	in	the	
customers’	environment.	

6.4.10.2.f	
Transition	results	and	anomalies	are	
identified.		

6.4.8.2.d	
Problems	detected	during	acceptance	are	
identified	and	communicated	to	those	
responsible	for	resolution.		

6.4.10.2.g	
The	installed	system	is	activated	
and	ready	for	operation.	

6.4.8.2.c	
The	product	is	put	into	operation	in	the	
customers’	environment.	

6.4.11	 Validation process 6.4.8	 Software Acceptance Support Process

6.4.11.2.b	
The	availability	of	services	required	
by	stakeholders	is	confirmed.	

6.4.8.2.a,		
6.4.8.2.b,		
6.4.8.2.c	

The	product	is	completed	and	delivered	to	
the	acquirer.	

Acquirer	acceptance	tests	and	reviews	are	
supported.	

The	product	is	put	into	operation	in	the	
customers’	environment.	

6.4.11.2.d	
The	system	or	system	element	is	
validated.	

6.4.8.2.b	 Acquirer	acceptance	tests	and	reviews	are	
supported.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

141	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

ISO/IEC/IEEE 12207:2017 and ISO/IEC/IEEE
15288:2015 process outcome

ISO/IEC 12207:2008 (IEEE Std 12207-2008) process outcome

Subclause Outcome Subclause Outcome

6.4.11.2.f	
Validation	results	and	anomalies	are	
identified.	

6.4.8.2.d	 Problems	detected	during	acceptance	are	
identified	and	communicated	to	those	
responsible	for	resolution.		

	 	 6.4.9 Software Operation Process

6.4.11.2.d	
The	system	or	system	element	is	
validated.	

6.4.9.2.c	
The	software	is	tested	and	determined	to	
operate	in	its	intended	environment.	

	 7.2.5	 Software Validation Process

6.4.11.2.a	
Validation	criteria	for	stakeholder	
requirements	are	defined.	

7.2.5.2.a,		

7.2.5.2.b	

A	validation	strategy	is	developed	and	
implemented.	

Criteria	for	validation	of	all	required	work	
products	are	identified.	

6.4.11.2.b	
The	availability	of	services	required	
by	stakeholders	is	confirmed.	

7.2.5.2.c	
Required	validation	activities	are	
performed.	

6.4.11.2.c	

Constraints	of	validation	that	
influence	the	requirements,	
architecture,	or	design	are	
identified.	

7.2.5.2.a,		

7.2.5.2.b	

A	validation	strategy	is	developed	and	
implemented.	

Criteria	for	validation	of	all	required	work	
products	are	identified.	

6.4.11.2.d	
The	system	or	system	element	is	
validated.	

7.2.5.2.c	
Required	validation	activities	are	
performed.	

6.4.11.2.e	
Any	enabling	systems	or	services	
needed	for	validation	are	available.	

7.2.5.2.a	
A	validation	strategy	is	developed	and	
implemented.	

6.4.11.2.f	
Validation	results	and	anomalies	are	
identified.	

7.2.5.2.d	 Problems	are	identified	and	recorded.	

6.4.11.2.g	
Objective	evidence	that	the	realized	
system	or	system	element	satisfies	
stakeholder	needs	is	provided.		

7.2.5.2.e,		

7.2.5.2.f	

Evidence	is	provided	that	the	software	work	
products	as	developed	are	suitable	for	their	
intended	use.	

Results	of	the	validation	activities	are	made	
available	to	the	customer	and	other	involved	
parties.	

6.4.11.2.h	
Traceability	of	the	validated	system	
elements	is	established.	

7.2.5.2.b	
Criteria	for	validation	of	all	required	work	
products	are	identified.	

6.4.12 Operation process 6.4.8	 Software Acceptance Support Process

6.4.12.2.d	
System	product	services	that	meet	
stakeholder	requirements	are	
delivered.

6.4.8.2.c
The	product	is	put	into	operation	in	the	
customers’	environment.

 6.4.9 Software Operation Process

6.4.12.2.a	

Operation	constraints	that	influence	
system/software	requirements,	
architecture,	or	design	are	
identified.

6.4.9.2.a	 An	operation	strategy	is	defined.	

6.4.12.2.b	
Any	enabling	systems,	services,	and	
material	needed	for	operation	are	
available.

6.4.9.2.b	
Conditions	for	correct	operation	of	the	
software	in	its	intended	environment	are	
identified	and	evaluated.	

6.4.12.2.e	
System	product	performance	during	
operation	is	monitored.

6.4.9.2.b	
Conditions	for	correct	operation	of	the	
software	in	its	intended	environment	are	
identified	and	evaluated.	

6.4.12.2.d	
System	product	services	that	meet	
stakeholder	requirements	are	
delivered.

6.4.9.2.d	
The	software	is	operated	in	its	intended	
environment.	

6.4.12.2.f	 Support	to	the	customer	is	provided. 6.4.9.2.e	
Assistance	and	consultation	is	provided	to	
the	customers	of	the	software	product	in	
accordance	with	the	agreement.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

142	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

ISO/IEC/IEEE 12207:2017 and ISO/IEC/IEEE
15288:2015 process outcome

ISO/IEC 12207:2008 (IEEE Std 12207-2008) process outcome

Subclause Outcome Subclause Outcome

6.4.13 Maintenance process 6.4.10 Software Maintenance process

6.4.13.2.a	

Maintenance	constraints	that	
influence	system	requirements,	
architecture,	or	design	are	
identified.	

6.4.10.2.a,		

6.4.10.2.b	

A	maintenance	strategy	is	developed	to	
manage	modification	and	migration	of	
products	according	to	the	release	strategy.	

The	impact	of	changes	to	the	existing	system	
on	organization,	operations	or	interfaces	are	
identified.	

6.4.13.2.b	
Any	enabling	systems	or	services	
needed	for	maintenance	are	
available.	

6.4.10.2.d,6.4.10.2.e	

Modified	products	are	developed	with	
associated	tests	that	demonstrate	that	
requirements	are	not	compromised.	

Product	upgrades	are	migrated	to	the	
customer’s	environment.	

6.4.13.2.c	
Replacement,	repaired,	or	revised	
system	elements	are	made	available.	

6.4.10.c,	
6.4.10.d,	
6.4.10.e,	
6.4.10.f	

Affected	system	and	software	
documentation	is	updated	as	needed.	

Modified	products	are	developed	with	
associated	tests	that	demonstrate	that	
requirements	are	not	compromised.	

Product	upgrades	are	migrated	to	the	
customer’s	environment.	

The	system	software	modification	is	
communicated	to	all	affected	parties.	

6.4.13.2.d	
The	need	for	changes	to	address	
corrective,	perfective,	or	adaptive	
maintenance	is	reported.	

6.4.10.2.b	
The	impact	of	changes	to	the	existing	system	
on	organization,	operations	or	interfaces	are	
identified.	

6.4.13.2.e	
Failure	and	lifetime	data,	including	
associated	costs,	is	determined.	

6.4.10.2.b	
The	impact	of	changes	to	the	existing	system	
on	organization,	operations	or	interfaces	are	
identified.	

	 	 7.3.1 Domain Engineering Process

6.4.13.2.c	
Replacement,	repaired,	or	revised	
system	elements	are	made	available.	

7.3.1.2.f	
Assets	belonging	to	the	domain	are	acquired	
or	developed	and	maintained	throughout	
their	life	cycles.	

6.4.14 Disposal Process 6.4.11 Software Disposal Process

6.4.14.2.a	

Disposal	constraints	are	provided	as	
inputs	to	requirements,	
architecture,	design,	and	
implementation.	

6.4.11.2.a,	

6.4.11.2.b	

A	software	disposal	strategy	is	defined.	
Disposal	constraints	are	provided	as	inputs	
to	requirements.	

6.4.14.2.b	 Any	enabling	systems	or	services	
needed	for	disposal	are	available.	

6.4.11.2.a,	
6.4.11.2.c	

A	software	disposal	strategy	is	defined.		

The	system’s	software	elements	are	
destroyed	or	stored.	

6.4.14.2.c	

The	system	elements	or	waste	
products	are	destroyed,	stored,	
reclaimed	or	recycled	in	accordance	
with	requirements,	e.g.,	safety	and	
security	requirements.	

6.4.11.2.c	 The	system’s	software	elements	are	
destroyed	or	stored.	

6.4.14.2.d	 The	environment	is	returned	to	its	
original	or	an	agreed	state.	

6.4.11.2.d	
The	environment	is	left	in	an	agreed‐upon	
state.	

6.4.14.2.e	 Records	of	disposal	actions	and	
analysis	are	available.	

6.4.11.2.e	
Records	allowing	knowledge	retention	of	
disposal	actions	and	any	analysis	of	long‐
term	impacts	are	available.	

	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

143	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

Bibliography

[1] ANSI/AIAA	G‐043A‐2012e,	ANSI/AIAA	Guide to the Preparation of Operational Concept Documents	

[2] IEC	 61508:2010	 (all	 parts),	 Functional safety of electrical/electronic/programmable electronic safety-
related systems

[3] IEEE	Std	1012™‐2012,	IEEE Standard for System and Software Verification and Validation	

[4] IEEE	Std	1062™‐2015,	IEEE Recommended Practice for Software Acquisition	

[5] IEEE	Std	730™‐2014,	IEEE Standard for Software Quality Assurance Processes

[6] IEEE	Std	828™‐2012,	IEEE Standard for Configuration Management in Systems and Software Engineering

[7] INCOSE	TP‐2003‐020‐01,	Technical Measurement

[8] INCOSE.2015.	Systems Engineering Handbook: A Guide for System Life Cycle Processes and Activities,	version	
4.0.	Hoboken,	NJ,	USA:	John	Wiley	and	Sons,	Inc.,	ISBN:	978‐1‐118‐99940‐0	

[9] ISO	10004:2012,	Quality management — Customer satisfaction — Guidelines for monitoring and measuring	

[10] ISO	10007:2003,	Quality management systems — Guidelines for configuration management

[11] ISO	14001:2004,	Environmental management systems — Requirements with guidance for use	

[12] ISO	15704:2000,	 Industrial automation systems — Requirements for enterprise-reference architectures and
methodologies

[13] ISO	31000:2009,	Risk management — Principles and guidelines	

[14] ISO	9000:2015, Quality management systems — Fundamentals and vocabulary	

[15] ISO	9001:2015,	Quality management systems — Requirements	

[16] ISO	9004:2009,	Quality management systems — Guidelines for performance improvements

[17] ISO	 9241‐210:2010,	 Ergonomics of human-system interaction — Human-centred design for interactive
systems

[18] ISO	Guide	73:2009,	Risk management — Vocabulary	

[19] ISO/FDIS	9241‐220,	Ergonomics of human-system interaction — Part 220: Processes for enabling, executing
and assessing human-centred design within organizations

[20] ISO	TS	18152:2010,	Ergonomics of human-system interaction — Specification for the process assessment of
human-system issues	

[21] ISO/IEC	 10746‐3:2009, Information technology — Open distributed processing — Reference model:
Architecture

[22] ISO/IEC	 15026‐3:2011,	 System and software engineering — Systems and software assurance — Part 3:
System integrity levels

[23] ISO/IEC	 15026‐4:2012,	 Systems and software engineering — Systems and software assurance — Part 4:
Assurance in the life cycle	

[24] ISO/IEC	15939:2007,		Systems and software engineering — Measurement process	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

144	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved	

[25] ISO/IEC	16085:2006,	System and Software Engineering — Life Cycle Management — Risk Management	

[26] ISO/IEC	 16350:2015,	 Information technology — Systems and software engineering — Application
management

[27] ISO/IEC	 19770‐1:2012,	 Information technology — Software asset management — Part 1: Processes and
tiered assessment of conformance	

[28] ISO/IEC	20000‐1:2011	(IEEE	Std	20000‐1:2013),	Information technology — Service management — Part 1:
Service management system requirements

[29] ISO/IEC	25010:2011,	Systems and software engineering — Systems and software Quality Requirements and
Evaluation (SQuaRE) — System and software quality models	

[30] ISO/IEC	 25030:2007,	 Software engineering — Software product Quality Requirements and Evaluation
 (SQuaRE) — Quality requirements	

[31] ISO/IEC	 25063:2014,	 Systems and software engineering — Systems and software product Quality
Requirements and Evaluation (SQuaRE) — Common Industry Format (CIF) for usability: Context of use
description

[32] ISO/IEC	26550:2013,	Software and systems engineering — Reference model for product line engineering and
management

[33] ISO/IEC	 27000:2016,	 Information technology — Security techniques — Information security management
systems — Overview and vocabulary	

[34] ISO/IEC	 27036	 (all	 parts),	 Information technology — Security techniques — Information security for
supplier relationships

[35] ISO/IEC	33001:2015,	Information technology — Process assessment — Concepts and terminology	

[36] ISO/IEC	33002:2015,	 Information technology — Process assessment — Requirement for performing process
assessment

[37] ISO/IEC	 33004:2015,	 Information technology — Process assessment — Requirement for process reference,
process assessment, and maturity models	

[38] ISO/IEC	33020:2015,	Information technology — Process assessment — Process measurement framework for
assessment of process capability	

[39] ISO/IEC	 TR	 19759:2015,	 Guide to the Software Engineering Body of Knowledge (SWEBOK) V3, IEEE
Computer Society, 2014

[40] ISO/IEC	TR	24748‐2:2011,	Systems and software engineering — Life cycle management — Part 2: Guide to
the application of ISO/IEC 15288 (System life cycle processes)	

[41] ISO/IEC	TR	24748‐3:2011,	Systems and software engineering — Life cycle management — Part 3: Guide to
the application of ISO/IEC 12207 (Software life cycle processes)

[42] ISO/IEC	 TR	 24774:20101,	 Systems and software engineering — Life cycle management — Guidelines for
process description

[43] ISO/IEC	 TR	 25060:2010,	 Systems and software engineering — Systems and software product Quality
Requirements and Evaluation (SQuaRE) — Common Industry Format (CIF) for usability: General framework
for usability-related information	

1The	 electronic	 version	of	 this	 International	 Standard	 can	be	 freely	 downloaded	 from	 the	 ISO/IEC	 Information	Technology	
Task	Force	(ITTF)	web	site.		

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

145	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

[44] ISO/IEC	TS	24748‐1:2016,	Systems and software engineering — Life cycle management — Part 1: Guide for
life cycle management

[45] ISO/IEC/IEEE	14764:2006,	Software Engineering — Software Life Cycle Processes — Maintenance	

[46] ISO/IEC/IEEE	15288:2015,	Systems and software engineering — System life cycle processes	

[47] ISO/IEC/IEEE	15289:2015,	Systems and software engineering — Content of life-cycle information products
(documentation)

[48] ISO/IEC/IEEE	 16326:2009,	 Systems and software engineering — Life cycle processes — Project
management

[49] ISO/IEC/IEEE	 24748‐4:2016,	 Systems engineering — Life cycle management — Part 4: Application and
management of the systems engineering process	

[50] ISO/IEC/IEEE	 24748‐52,	 Systems and software engineering — Life cycle management — Part 5: Software
development planning

[51] ISO/IEC/IEEE	247653,	Systems and software engineering — Vocabulary	

[52] ISO/IEC/IEEE	 26515:2011,	 Systems and software engineering: Developing user documentation in an agile
environment

[53] ISO/IEC/IEEE	26531:2015,	Systems and software engineering — Content management for product life-cycle,
user, and service management documentation	

[54] ISO/IEC/IEEE	29119	(all	parts),	Systems and software engineering — Software testing	

[55] ISO/IEC/IEEE	 29148:2011,	 Systems and software engineering — Life cycle processes — Requirements
engineering

[56] ISO/IEC/IEEE	42010:2011,	Systems and software engineering — Architecture description	

[57] NATO	AEP‐67,	Engineering for System Assurance in NATO Programs	

[58] PMI	Practice	Standard	for	Work	Breakdown	Structures‐Second	Edition	

[59] SAE	ANSI/EIA	649B,	Configuration Management Standard

2	To	be	published	

3		Database	version	available	at	<computer.org/sevocab>

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

147	
©	ISO/IEC	2017	–	All	rights	reserved	

©	IEEE	2017	–	All	rights	reserved

Important Notices and Disclaimers Concerning IEEE Standards Documents
Notice and Disclaimer of Liability Concerning the Use of IEEE Standards Documents
IEEE	Standards	documents	(standards,	recommended	practices,	and	guides),	both	 full‐use	and	trial‐use,	are	developed	within	 IEEE	Societies	and	the	Standards	
Coordinating	 Committees	 of	 the	 IEEE	 Standards	 Association	 (“IEEE‐SA”)	 Standards	 Board.	 IEEE	 (“the	 Institute”)	 develops	 its	 standards	 through	 a	 consensus	
development	 process,	 approved	 by	 the	 American	National	 Standards	 Institute	 (“ANSI”),	which	 brings	 together	 volunteers	 representing	 varied	 viewpoints	 and	
interests	 to	 achieve	 the	 final	 product.	 Volunteers	 are	 not	 necessarily	 members	 of	 the	 Institute	 and	 participate	without	 compensation	 from	 IEEE.	While	 IEEE	
administers	the	process	and	establishes	rules	to	promote	fairness	in	the	consensus	development	process,	IEEE	does	not	independently	evaluate,	test,	or	verify	the	
accuracy	of	any	of	the	information	or	the	soundness	of	any	judgments	contained	in	its	standards.	

IEEE	does	not	warrant	or	represent	the	accuracy	or	content	of	the	material	contained	in	its	standards,	and	expressly	disclaims	all	warranties	(express,	implied	and	
statutory)	 not	 included	 in	 this	 or	 any	 other	 document	 relating	 to	 the	 standard,	 including,	 but	 not	 limited	 to,	 the	warranties	 of:	merchantability;	 fitness	 for	 a	
particular	purpose;	non‐infringement;	and	quality,	accuracy,	effectiveness,	currency,	or	completeness	of	material.	In	addition,	IEEE	disclaims	any	and	all	conditions	
relating	to:	results;	and	workmanlike	effort.	IEEE	standards	documents	are	supplied	“AS	IS”	and	“WITH	ALL	FAULTS.”	

Use	of	an	IEEE	standard	is	wholly	voluntary.	The	existence	of	an	IEEE	standard	does	not	imply	that	there	are	no	other	ways	to	produce,	test,	measure,	purchase,	
market,	or	provide	other	goods	and	services	related	to	the	scope	of	the	IEEE	standard.	Furthermore,	the	viewpoint	expressed	at	the	time	a	standard	is	approved	
and	issued	is	subject	to	change	brought	about	through	developments	in	the	state	of	the	art	and	comments	received	from	users	of	the	standard.
In	publishing	and	making	its	standards	available,	IEEE	is	not	suggesting	or	rendering	professional	or	other	services	for,	or	on	behalf	of,	any	person	or	entity	nor	is	
IEEE	undertaking	to	perform	any	duty	owed	by	any	other	person	or	entity	to	another.	Any	person	utilizing	any	IEEE	Standards	document,	should	rely	upon	his	or	
her	own	independent	 judgment	in	the	exercise	of	reasonable	care	in	any	given	circumstances	or,	as	appropriate,	seek	the	advice	of	a	competent	professional	 in	
determining	the	appropriateness	of	a	given	IEEE	standard.	

IN	NO	EVENT	SHALL	IEEE	BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	
LIMITED	TO:	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	
ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	
OF	THE	PUBLICATION,	USE	OF,	OR	RELIANCE	UPON	ANY	STANDARD,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE	AND	REGARDLESS	OF	WHETHER	
SUCH	DAMAGE	WAS	FORESEEABLE.	

Translations
The	 IEEE	consensus	development	process	 involves	 the	 review	of	documents	 in	English	only.	 In	 the	event	 that	 an	 IEEE	standard	 is	 translated,	only	 the	English	
version	published	by	IEEE	should	be	considered	the	approved	IEEE	standard.	

Official statements
A	statement,	written	or	oral,	that	is	not	processed	in	accordance	with	the	IEEE‐SA	Standards	Board	Operations	Manual	shall	not	be	considered	or	inferred	to	be	the	
official	position	of	IEEE	or	any	of	its	committees	and	shall	not	be	considered	to	be,	or	be	relied	upon	as,	a	formal	position	of	IEEE.	At	lectures,	symposia,	seminars,	
or	educational	courses,	an	individual	presenting	information	on	IEEE	standards	shall	make	it	clear	that	his	or	her	views	should	be	considered	the	personal	views	of	
that	individual	rather	than	the	formal	position	of	IEEE.	

Comments on standards
Comments	for	revision	of	IEEE	Standards	documents	are	welcome	from	any	interested	party,	regardless	of	membership	affiliation	with	IEEE.	However,	IEEE	does	
not	provide	consulting	information	or	advice	pertaining	to	IEEE	Standards	documents.	Suggestions	for	changes	in	documents	should	be	in	the	form	of	a	proposed	
change	 of	 text,	 together	with	 appropriate	 supporting	 comments.	 Since	 IEEE	 standards	 represent	 a	 consensus	 of	 concerned	 interests,	 it	 is	 important	 that	 any	
responses	to	comments	and	questions	also	receive	the	concurrence	of	a	balance	of	interests.	For	this	reason,	IEEE	and	the	members	of	its	societies	and	Standards	
Coordinating	 Committees	 are	 not	 able	 to	 provide	 an	 instant	 response	 to	 comments	 or	 questions	 except	 in	 those	 cases	where	 the	matter	 has	 previously	 been	
addressed.	For	the	same	reason,	IEEE	does	not	respond	to	interpretation	requests.	Any	person	who	would	like	to	participate	in	revisions	to	an	IEEE	standard	is	
welcome	to	join	the	relevant	IEEE	working	group.
Comments	on	standards	should	be	submitted	to	the	following	address:
	 Secretary,	IEEE‐SA	Standards	Board
	 445	Hoes	Lane
	 Piscataway,	NJ	08854	USA	

Photocopies
Subject	to	payment	of	the	appropriate	fee,	IEEE	will	grant	users	a	limited,	non‐exclusive	license	to	photocopy	portions	of	any	individual	standard	for	company	or	
organizational	internal	use	or	individual,	non‐commercial	use	only.	To	arrange	for	payment	of	licensing	fees,	please	contact	Copyright	Clearance	Center,	Customer	
Service,	222	Rosewood	Drive,	Danvers,	MA	01923	USA;	+1	978	750	8400.	Permission	to	photocopy	portions	of	any	individual	standard	for	educational	classroom	
use	can	also	be	obtained	through	the	Copyright	Clearance	Center.	

Patents
Attention	 is	 called	 to	 the	 possibility	 that	 implementation	 of	 this	 standard	may	 require	 use	 of	 subject	matter	 covered	 by	 patent	 rights.	 By	 publication	 of	 this	
standard,	 no	 position	 is	 taken	 by	 the	 IEEE	with	 respect	 to	 the	 existence	 or	 validity	 of	 any	 patent	 rights	 in	 connection	 therewith.	 If	 a	 patent	 holder	 or	 patent	
applicant	 has	 filed	 a	 statement	 of	 assurance	 via	 an	 Accepted	 Letter	 of	 Assurance,	 then	 the	 statement	 is	 listed	 on	 the	 IEEE‐SA	 Website	 at	
http://standards.ieee.org/about/sasb/patcom/patents.html.	 Letters	 of	 Assurance	may	 indicate	whether	 the	 Submitter	 is	willing	 or	 unwilling	 to	 grant	 licenses	
under	 patent	 rights	 without	 compensation	 or	 under	 reasonable	 rates,	 with	 reasonable	 terms	 and	 conditions	 that	 are	 demonstrably	 free	 of	 any	 unfair	
discrimination	to	applicants	desiring	to	obtain	such	licenses.
Essential	Patent	Claims	may	exist	 for	which	a	Letter	of	Assurance	has	not	been	received.	The	IEEE	is	not	responsible	 for	 identifying	Essential	Patent	Claims	for	
which	 a	 license	 may	 be	 required,	 for	 conducting	 inquiries	 into	 the	 legal	 validity	 or	 scope	 of	 Patents	 Claims,	 or	 determining	 whether	 any	 licensing	 terms	 or	
conditions	provided	in	connection	with	submission	of	a	Letter	of	Assurance,	if	any,	or	in	any	licensing	agreements	are	reasonable	or	non‐discriminatory.	Users	of	
this	 standard	 are	 expressly	 advised	 that	 determination	 of	 the	 validity	 of	 any	 patent	 rights,	 and	 the	 risk	 of	 infringement	 of	 such	 rights,	 is	 entirely	 their	 own	
responsibility.	Further	information	may	be	obtained	from	the	IEEE	Standards	Association.	

Participants: The	 list	 of	 IEEE	 participants	 can	 be	 accessed	 at	 the	 following	 URL:	 http://standards.ieee.org/downloads/12207/12207‐2017/12207‐2017_wg‐
participants.pdf.	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

http://standards.ieee.org/downloads/12207/12207-2017/12207-2017_wg-participants.pdf�
http://standards.ieee.org/downloads/12207/12207-2017/12207-2017_wg-participants.pdf�

ISO/IEC/IEEE 12207:2017(E)

148	
©	ISO/IEC	2017	–	All	rights	reserved	
©	IEEE	2017	–	All	rights	reserved

	
	
	
	
	
	
	
	
	

Abstract: This	document	establishes	a	common	process	framework	for	describing	the	full	life	cycle	
of	 software	 systems	 from	 conception	 through	 retirement.	 It	 applies	 to	 the	 acquisition	 or	
development	of	software	products	and	services	whether	performed	internally	or	externally	 to	an	
organization.	 Those	 aspects	 of	 software	 system	 definition	 needed	 to	 provide	 the	 context	 for	
software	products	and	services	are	 included.	The	document	also	 supports	 the	definition,	 control,	
assessment	 and	 improvement	 of	 these	 processes.	 These	 processes	 can	 be	 applied	 concurrently,	
iteratively,	 and	 recursively	 to	 a	 software	 system	 and	 its	 elements	 throughout	 the	 life	 cycle	 of	 a	
software	 system.	Users	 of	 the	document	 can	 apply	 the	processes	 and	 terminology	 to	 construct	 a	
suitable	life	cycle	model,	composed	of	stages	that	use	selected	processes.	The	process	purposes	and	
outcomes	in	ISO/IEC/IEEE	15288:2015	(systems	life	cycle	processes)	and	this	document	are	fully	
aligned	so	that	one	may	select	appropriate	activities	from	either	document	for	use	in	systems	with	
substantial	software	content.	

Keywords: acquisition,	 agreement,	 architecture,	 design,	 assessment,	 audit,	 configuration	
management,	 decision	 management,	 development,	 disposal,	 enabling	 system,	 implementation,	
information	management,	 infrastructure,	 integration,	 life	 cycle,	 life	 cycle	model,	 life	 cycle	 stages,	
maintenance,	measurement,	operation,	planning,	process,	process	improvement,	process	reference	
model,	 process	 tailoring,	 process	 view,	 product,	 portfolio,	 quality	 management,	 requirements,	
retirement,	 risk	 management,	 service,	 software,	 software	 system,	 system‐of‐interest,	 stages,	
stakeholder	 requirements,	 supply,	 system,	 system	 structure,	 system‐of‐interest,	 tailoring,	
transition,	validation,	verification	

	

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

ISO/IEC/IEEE 12207:2017(E)

ICS 35.080
ISBN 978-1-5044-4253-4 STD 22737 (PDF); 978-1-5044-4254-1 STDPD 22737 (Print)
Price based on 145 pages

© ISO/IEC 2017 – All rights reserved
© IEEE 2017 – All rights reserved

Authorized licensed use limited to: Burapha University provided by UniNet. Downloaded on January 08,2018 at 04:42:14 UTC from IEEE Xplore. Restrictions apply.

	Systems and software engineering — Software life cycle processes
	Foreword
	Introduction
	1 Scope
	1.1 Overview
	1.2 Purpose
	1.3 Field of application
	1.4 Limitations

	2 Normative references
	3 Terms, definitions, and abbreviated terms
	3.1 Terms and definitions
	3.2 Abbreviated terms

	4 Conformance
	4.1 Intended usage
	4.2 Full conformance
	4.2.1 Full conformance to outcomes
	4.2.2 Full conformance to tasks

	4.3 Tailored conformance

	5 Key concepts and application
	5.1 Introduction
	5.2 Software system concepts
	5.2.1 Software systems
	5.2.2 Software system structure
	5.2.3 Enabling systems
	5.2.4 Life cycle processes for the software system

	5.3 Organization and project concepts
	5.3.1 Organizations
	5.3.2 Organization and project-level adoption

	5.4 Life cycle concepts
	5.4.1 Software life cycle stages
	5.4.2 Life cycle model for the software system

	5.5 Process concepts
	5.5.1 Criteria for processes
	5.5.2 Description of processes
	5.5.3 General characteristics of processes
	5.5.4 Tailoring

	5.6 Process groups
	5.6.1 Introduction
	5.6.2 Agreement processes
	5.6.3 Organizational project-enabling processes
	5.6.4 Technical Management processes
	5.6.5 Technical processes

	5.7 Process application
	5.8 Process reference model

	6 Software life cycle processes
	6.1 Agreement processes
	6.1.1 Acquisition process
	6.1.1.1 Purpose
	6.1.1.2 Outcomes
	6.1.1.3 Activities and tasks

	6.1.2 Supply process
	6.1.2.1 Purpose
	6.1.2.2 Outcomes
	6.1.2.3 Activities and tasks

	6.2 Organizational Project-Enabling processes
	6.2.1 Life cycle model management process
	6.2.1.1 Purpose
	6.2.1.2 Outcomes
	6.2.1.3 Activities and tasks

	6.2.2 Infrastructure Management process
	6.2.2.1 Purpose
	6.2.2.2 Outcomes
	6.2.2.3 Activities and tasks

	6.2.3 Portfolio Management process
	6.2.3.1 Purpose
	6.2.3.2 Outcomes
	6.2.3.3 Activities and tasks

	6.2.4 Human Resource Management process
	6.2.4.1 Purpose
	6.2.4.2 Outcomes
	6.2.4.3 Activities and tasks

	6.2.5 Quality Management process
	6.2.5.1 Purpose
	6.2.5.2 Outcomes
	6.2.5.3 Activities and tasks

	6.2.6 Knowledge Management process
	6.2.6.1 Purpose
	6.2.6.2 Outcomes
	6.2.6.3 Activities and tasks

	6.3 Technical Management processes
	6.3.1 Project Planning process
	6.3.1.1 Purpose
	6.3.1.2 Outcomes
	6.3.1.3 Activities and tasks

	6.3.2 Project assessment and control process
	6.3.2.1 Purpose
	6.3.2.2 Outcomes
	6.3.2.3 Activities and tasks

	6.3.3 Decision Management process
	6.3.3.1 Purpose
	6.3.3.2 Outcomes
	6.3.3.3 Activities and tasks

	6.3.4 Risk Management process
	6.3.4.1 Purpose
	6.3.4.2 Outcomes
	6.3.4.3 Activities and tasks

	6.3.5 Configuration Management process
	6.3.5.1 Purpose
	6.3.5.2 Outcomes
	6.3.5.3 Activities and tasks

	6.3.6 Information Management process
	6.3.6.1 Purpose
	6.3.6.2 Outcomes
	6.3.6.3 Activities and tasks

	6.3.7 Measurement process
	6.3.7.1 Purpose
	6.3.7.2 Outcomes
	6.3.7.3 Activities and tasks

	6.3.8 Quality Assurance process
	6.3.8.1 Purpose
	6.3.8.2 Outcomes
	6.3.8.3 Activities and tasks

	6.4 Technical processes
	6.4.1 Business or Mission Analysis process
	6.4.1.1 Purpose
	6.4.1.2 Outcomes
	6.4.1.3 Activities and tasks

	6.4.2 Stakeholder Needs and Requirements Definition process
	6.4.2.1 Purpose
	6.4.2.2 Outcomes
	6.4.2.3 Activities and tasks

	6.4.3 System/Software requirements definition process
	6.4.3.1 Purpose
	6.4.3.2 Outcomes
	6.4.3.3 Activities and tasks

	6.4.4 Architecture Definition process
	6.4.4.1 Purpose
	6.4.4.2 Outcomes
	6.4.4.3 Activities and tasks

	6.4.5 Design Definition process
	6.4.5.1 Purpose
	6.4.5.2 Outcomes
	6.4.5.3 Activities and tasks

	6.4.6 System Analysis process
	6.4.6.1 Purpose
	6.4.6.2 Outcomes
	6.4.6.3 Activities and tasks

	6.4.7 Implementation process
	6.4.7.1 Purpose
	6.4.7.2 Outcomes
	6.4.7.3 Activities and tasks

	6.4.8 Integration process
	6.4.8.1 Purpose
	6.4.8.2 Outcomes
	6.4.8.3 Activities and tasks

	6.4.9 Verification process
	6.4.9.1 Purpose
	6.4.9.2 Outcomes
	6.4.9.3 Activities and tasks

	6.4.10 Transition process
	6.4.10.1 Purpose
	6.4.10.2 Outcomes
	6.4.10.3 Activities and tasks

	6.4.11 Validation process
	6.4.11.1 Purpose
	6.4.11.2 Outcomes
	6.4.11.3 Activities and tasks

	6.4.12 Operation process
	6.4.12.1 Purpose
	6.4.12.2 Outcomes
	6.4.12.3 Activities and tasks

	6.4.13 Maintenance process
	6.4.13.1 Purpose
	6.4.13.2 Outcomes
	6.4.13.3 Activities and tasks

	6.4.14 Disposal process
	6.4.14.1 Purpose
	6.4.14.2 Outcomes
	6.4.14.3 Activities and tasks

	Annex A
	Annex B
	Annex C
	Annex D
	Annex E
	Annex F
	Annex G
	Annex H
	Annex I

