WG3:VIE-011

H2-2002-013
December, 2001

ISO

International Organization for Standardization

ANSI

American National Standards Institute

ANSI TC NCITS H2
ISO/TIEC JTC 1/SC 32/WG 3

Database

Title: (ISO-ANSI Working Draft) XML-Related Specifications (SQL/XML)
Author: Jim Melton (Editor)

References:

1)
2)
3)
4)
5)
6)
7)
8)
9)

WG3:VIE-003 = H2-2002-005, FCD 9075-1 (SQL / Framework), December, 2002
WG3:VIE-004 = H2-2002-006, FCD 9075-2 (SQL / Foundation), December, 2002
WG3:VIE-005 = H2-2002-007, FCD 9075-3 (SQL/CLI), December, 2002
WG3:VIE-006 = H2-2002-008, FCD 9075-4 (SQL/PSM), December, 2002
WG3:VIE-007 = H2-2002-009, FCD 9075-9 (SQL/MED), December, 2002
WG3:VIE-008 = H2-2002-010, FCD 9075-10 (SQL/OLB), December, 2002
WG3:VIE-009 = H2-2002-011, FCD 9075-11 (SQL/Schemata), December, 2002
WG3:VIE-010 = H2-2002-012, WD 9075-13 (SQL/JRT), December, 2002
WG3:VIE-011 = H2-2002-013, WD 9075-14 (SQL/XML), December, 2002

ISO/IEC JTC 1/SC 32

Date: 2001-12-17

ISO/IEC 9075-14:200x(E)

ISO/IEC JTC 1/SC 32/WG 3

Secretariat: United States of America (ANSI)

Information technology — Database languages — SQL — Part 14: XML-Related
Specifications (SQL/XML)

Technologies de l'information — Langages de base de donnée — SQL — Partie 14: «Specifications a XML»
(SQL/XML)

Document type: International standard
Document subtype:

Document stage: (20) Working Draft
Document language: E

Copyright notice

This 1SO document is a Draft International Standard and is copyright-protected by ISO. Except as
permitted under the applicable laws of the user’s country, neither this ISO draft nor any extract from
it may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, photocopying, recording, or otherwise, without prior written permission being secured.

Requests for permission to reproduce should be addressed to ISO at the address below or ISO’s
member body in the country of the requester.

Copyright Manager

ISO Central Secretariat

1 rue de Varembé

1211 Geneva 20 Switzerland
tel. +41 22 749 0111

fax +41 22 734 1079
internet: iso@iso.ch

Reproduction may be subject to royalty payments or a licensing agreement.

Violaters may be prosecuted.

Contents Page

Foreword e vi
Introduction e vii
1 S COP e . . o e 1
2 Normative references. e 3
2.1 ISO/IEC JTCL standardsottt e e e e et e e et et e 3
2.2 Publicly-available specifications 3
3 Definitions, notations and conventions 5
3.1 Definitions e 5
3.1.1 Definitions provided in Part 14 e 5
3.1.2 Definitions taken from XML 5
3.2 Notations 5
4 ComcCePtS. . . . 7
4.1 Namespaces e 7
4.2 M aDPINgS . . ot ot e e e 7
4.2.1 Mapping SQL character sets to Unicode i . 8
4.2.2 Mapping SQL <identifier>s to XML Namest . 8
4.2.3 Mapping SQL data types to XML Schema datatypes 8
4.2.4 Mapping SQL data values to XML datavalues, 10
4.2.5 Visibility of Columns, Tables, and Schemas in XML Mappings 10
4.2.6 Mapping an SQL Table to an XML Document and an XML Schema Document......... 10
4.2.7 Mapping an SQL Schema to an XML Document and an XML Schema Document 10
4.2.8 Mapping an SQL Catalog to an XML Document and an XML Schema Document 11
4.2.9 Mapping Unicode to SQL character sets 11
4.2.10 Mapping XML Names to SQL <identifier>s 11
5 M apPings . . . oo e 13
5.1 Mapping SQL <identifier>s to XML Namesottt 13
5.2 Mapping a multi-part SQL Name to an XML Name00iiiiunn.... 15
5.3 Mapping an SQL Table to an XML Document and an XML Schema Document. 16
5.4 Mapping an SQL Schema to an XML Document and an XML Schema Document 18
5.5 Mapping an SQL Catalog to an XML Document and an XML Schema Document 20
5.6 Mapping an SQL Table to XML Schema Data Types 22
5.7 Mapping an SQL Schema to XML Schema Data Types 25

Contents iii

WG3:VIE-011 = H2-2002-013

5.8 Mapping an SQL Catalog to XML Schema Data Types 27
5.9 Mapping an SQL Data Type toan XML Name, 29
5.10 Mapping a Collection of SQL Data Types to XML Schema Data Types 34
5.11 Mapping an SQL Data Type to a Named XML Schema Data Type 35
5.12 Mapping an SQL Table to an XML Element 37
5.13 Mapping an SQL Schema to an XML Element 39
5.14 Mapping an SQL Catalog to an XML Element. 40
5.15 Mapping SQL data types to XML Schema data types 41
5.16 Mapping SQL data values to XML e 55
5.17 Mapping XML Names to SQL <identifier>s 59
6 The SQL/XML XML Schema. e i 61
6.1 The SQL/XML XML Schema e 61
T Status codes. e 65
7.1 SQLSTATE 65
8 Conformance 67
Annex A SQL Conformance Summaryuouiinmiunemnnennnennn. 69
Annex B Implementation-defined elements 71
Annex C Implementation-dependent elements 73
Annex D SQL feature and package taxonomy 75
Index Index1

iv (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

Tables

Namespace variables and their URIs
SQLSTATE class and subclass values

WG3:VIE-011 = H2-2002-013

TABLES

Contents v

WG3:VIE-011 = H2-2002-013

Foreword

ISO (the International Organization for Standardization) and IEC (the International Electrotechni-
cal Commission) form the specialized system for worldwide standardization. National bodies that
are members of ISO or IEC participate in the development of International Standards through
technical committees established by the respective organization to deal with particular fields of
technical activity. ISO and IEC technical committees collaborate in fields of mutual interest. Other
international organizations, governmental and non-governmental, in liaison with ISO and IEC, also
take part in the work.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives,
Part 3.

In the field of information technology, ISO and IEC have established a joint technical committee,
ISO/IEC JTC 1. Draft International Standards adopted by the joint technical committee are circu-
lated to national bodies for voting. Publication as an International Standard requires approval by
at least 75% of the national bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this International Standard may
be the subject of patent rights. ISO and IEC shall not be held responsible for identifying any or all
such patent rights.

International Standard ISO/IEC 9075-2 was prepared by Joint Technical Committee ISO/IEC JTC
1, Information technology, Subcommittee SC 32, Data management and interchange.

ISO/TEC 9075 consists of the following parts, under the general title Information technology —
Database languages — SQL:

— Part 1: Framework (SQL/Framework)

— Part 2: Foundation (SQL/Foundation)

— Part 3: Call-Level Interface (SQL/CLI)

— Part 4: Persistent Stored Modules (SQL/PSM)

— Part 5: Host Language Bindings (SQL/Bindings)

® 1 list element deleted.

— Part 9: Management of External Data (SQL/MED)

— Part 10: Object Language Bindings (SQL/OLB)

— Part 13: SQL Routines and Types Using the Java Programming Language (SQL/JRT)
— Part 14: XML-Related Specifications (SQL/XML)

Annexes A, B, C and D of this part of ISO/IEC 9075 are for information only.

vi (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

WG3:VIE-011 = H2-2002-013

Introduction

The organization of this Part of this International Standard is as follows:

D
2)

3)

4)
5)

6)

7)

8)

9)

10)

11)

12)

Clause 1, “Scope”, specifies the scope of this part of ISO/IEC 9075.

Clause 2, “Normative references”, identifies additional standards that, through reference in this
part of ISO/TEC 9075, constitute provisions of this part of ISO/IEC 9075.

Clause 3, “Definitions, notations and conventions”, defines the notations and conventions used
in this part of ISO/IEC 9075.

Clause 4, “Concepts”, presents concepts related to this part of ISO/IEC 9075.

Clause 5, “Mappings”, defines the ways in which certain SQL information can be mapped into
XML and certain XML information can be mapped into SQL.

Clause 6, “The SQL/XML XML Schema”, defines the content of an XML namespace that is used
when SQL and XML are utilized together.

Clause 7, “Status codes”, defines values that identify the status of the execution of SQL-
statements and the mechanisms by which those values are returned.

Clause 8, “Conformance”, specifies the way in which conformance to this part of ISO/IEC 9075
may be claimed.

Annex A, “SQL Conformance Summary”, is an informative Annex. It summarizes the confor-
mance requirements of the SQL language.

Annex B, “Implementation-defined elements”, is an informative Annex. It lists those features for
which this part of ISO/IEC 9075 states that the syntax, the meaning, the returned results, the
effect on SQL-data and/or schemas, or any other behavior is partly or wholly implementation-
defined.

Annex C, “Implementation-dependent elements”, is an informative Annex. It lists those fea-
tures for which this part of ISO/IEC 9075 states that the syntax, the meaning, the returned
results, the effect on SQL-data and/or schemas, or any other behavior is partly or wholly
implementation-dependent.

Annex D, “SQL feature and package taxonomy”, is an informative Annex. It identifies features
and packages of the SQL language specified in this part of ISO/IEC 9075 by an identifier and a
short descriptive name. This taxonomy is used to specify conformance to the packages specified
in this part of ISO/IEC 9075. The feature taxonomy may be used to develop other profiles
involving the SQL language.

In the text of this part of ISO/IEC 9075, Clauses begin a new odd-numbered page. Any resulting
blank space is not significant.

Introduction vii

INTERNATIONAL STANDARD ISO/IEC 9075-4:200x(E)

Information technology — Database languages — SQL —
Part 14: XML-Related Specifications (SQL/XML)

1 Scope

This part of ISO/IEC 9075 defines ways in which Database Language SQL can be used in conjunc-
tion with XML.

Scope 1

WG3:VIE-011 = H2-2002-013

2 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

WG3:VIE-011 = H2-2002-013

2 Normative references

The following normative documents contain provisions that, through reference in this text, consti-
tute provisions of this International Standard. For dated references, subsequent amendments to, or
revisions of, any of these publications do not apply. However, parties to agreements based on this
International Standard are encouraged to investigate the possibility of applying the most recent edi-
tions of the normative documents indicated below. For undated references, the latest edition of the
normative document referred to applies. Members of ISO and IEC maintain registers of currently
valid International Standards.

2.1 ISO/IEC JTC1 standards

ISO 8824-1:1995, Information technology — Specification of Abstract Syntax Notation One
(ASN.1) — Part 1: Specification of basic notation

ISO/IEC 9075-1:1999, Information technology — Database languages — SQL — Part 1: Frame-
work (SQL/Framework).

ISO/IEC 9075-2:1999, Information technology — Database languages — SQL — Part 2: Founda-
tion (SQL/Foundation).

® About 7 references deleted.
ISO/IEC 10646-1:2000, Information technology — Universal Multi-Octet Coded Character Set
(UCS) — Part 1: Architecture and Basic Multilingual Plane.

ISO/TEC FDIS 10646-2:2000, Information technology — Universal Multi-Octet Coded Character
Set (UCS) — Part 2: Supplementary Planes.

2.2 Publicly-available specifications

The Unicode Consortium, The Unicode Standard, Version 3.0, Reading, MA, Addison-Wesley
Developers Press,2000. ISBN 0-201-61633-5.

The Unicode Consortium, The Unicode Standard, Version 3.1.0, Unicode Standard Annex #27:
Unicode 3.1, (which amends The Unicode Standard, Version 3.0), 2001-03-23
http://ww. uni code. or g/ uni code/ reports/tr27

Davis, Mark and Diirst, Martin, Unicode Standard Annex #15: Unicode Normalization Forms,
Version 21.0, 2001-03-23, The Unicode Consortium
http://ww. uni code. or g/ uni code/ reports/tri15-21

Davis, Mark, Unicode Standard Annex #19: UTF-32, Version 8.0, 2001-03-23, The Unicode

Consortium
http://ww. uni code. or g/ uni code/ reports/tr19-8

Normative references 3

WG3:VIE-011 = H2-2002-013
2.2 Publicly-available specifications

Extensible Markup Language (XML) Version 1.0 (second edition), 2 October, 2000,
http://ww. w3. or g/ TR/ REC- xmi

XML Path Language (XPath) Version 1.0, 16 November, 1999, htt p: / / www. w3. or g/ TR/ xpat h

Namespaces in XML, 14 January, 1999, htt p: // waww. w3. or g/ TR/ REC- xni - names

®] reference deleted.

(Recommendation) XML Schema Part 1: Structures, 2 May, 2001,
http://ww. w3. org/ TR/ 2001/ REC- xm schema- 1- 20010502/

(Recommendation) XML Schema Part 2: Datatypes, 2 May, 2001,
http://ww. w3. or g/ TR/ 2001/ REC- xm schema- 2- 20010502/

(Recommendation) Canonical XML Version 1.0, 15 March, 2001,
http://ww. w3. org/ TR/ xm - c14n

(Recommendation) XML Information Set, 24 October, 2001, htt p: // www. w3. or g/ TR/ 2001/ REC-
xm -infoset-20011024

(Note) Unicode in XML and Other Markup Languages, 15 December, 2000,
http://ww. w3. org/ TR/ uni code-xm /

*FHditor’s Note **

Many of the normative references have not been finalized. It will be necessary to reference the
correct specifications as they become available. This may entail changes to other clauses of this
standard to align with the final forms of these specifications. See Possible Problem | XML-002 |in
the Editor’s Notes

4

(ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

WG3:VIE-011 = H2-2002-013

3 Definitions, notations and conventions

This Clause modifies Clause 3, "Definitions, notations, and conventions", in ISO/IEC 9075-2.
3.1 Definitions

This Subclause modifies Subclause 3.1, "Definitions", in ISO/IEC 9075-2.

| Insert this paragraph | For purposes of this part of ISO/IEC 9075, the definitions given in ISO/IEC
9075-1 and ISO/IEC 9075-2 and the following definitions apply.

3.1.1 Definitions provided in Part 14
to be supplied

3.1.2 Definitions taken from XML
This part of ISO/IEC 9075 makes use of the following terms defined in XML:
a) NameChar

b) Name

3.2 Notations

This Subclause modifies Subclause 3.2, "Notation", in ISO/IEC 9075-2.

XML text, when represented in a conventional English-language paragraph, including Rules, is
indicated using bold monospace font, for example, <xsd: el enent >. However, XML text that is
presented on a separate line, as opposed to being incorporated in an English-language paragraph,
and labeled as being XML text in an accompanying paragraph is written in monospace font (but not
in boldface). For example:

<xsd: el enent >

Similarly, when a textual variable in a Rule denotes XML text, then the textual variable is written
in italicized bold monospace font, for example, xsd, and when the same textual variable appears in
a separate line that is clearly marked as XML text, the textual variable is italicized but not bold.

Whenever XML text is presented, an implementation may substitute equivalent XML text, for
example, through insertion or deletion insignificant blanks or new lines.

Definitions, notations and conventions 5

WG3:VIE-011 = H2-2002-013

6 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

WG3:VIE-011 = H2-2002-013

4 Concepts

This Clause modifies Clause 4, "Concepts", in ISO/IEC 9075-2.
4.1 Namespaces

This standard references certain namespaces that are defined by the World-Wide Web Consortium
or by this standard. Each namespace is referenced using a variable name. The namespace variables
and their definitions are shown in Table 1, “Namespace variables and their URIs”.

Table 1—Namespace variables and their URIs

Namespace

variable Namespace URI

xsd: http://ww. w3. or g/ 2001/ XM_.Schena

XSi : http://ww. w3. or g/ 2001/ XM_Schena- i nst ance

sql xm : http://ww. i so-standards. org/ nral/ 9075/ 2001/ 12/ sql xm

A conforming implementation is not required to use the namespace prefixes xsd: , xsi :, or sql xm :
as the values of these namespace variables (i.e., to reference these namespaces).

**Kditor’s Note™*
The value of the sql xn : namespace identifier may change. See Possible Problem | XML-001 |

4.2 Mappings

This standard defines mappings from SQL to XML, and from XML to SQL. The mappings from SQL
to XML include:

— Mapping SQL character sets to XML character sets.

— Mapping SQL <identifier>s to XML Names.

— Mapping SQL data types (as used in SQL-schemas to define SQL-schema objects such as
columns) to XML Schema data types.

— Mapping SQL data values to XML data values.

— Mapping an SQL table to an XML document and an XML Schema document.
— Mapping an SQL schema to an XML document and an XML Schema document.
— Mapping an SQL catalog to an XML document and an XML Schema document.

The mappings from XML to SQL include:

Concepts 7

WG3:VIE-011 = H2-2002-013
4.2 Mappings

— Mapping Unicode to SQL character sets.

— Mapping XML Names to SQL <identifier>s.

4.2.1 Mapping SQL character sets to Unicode

For each character set SQLCS in the SQL-environment, there shall be an implementation-defined
mapping CSM of strings of SQLCS to strings of Unicode. The mapping CSM is called homomorphic
if for each nonnegative integer N, there exists a nonnegative integer M such that all strings of
length N in SQLCS are mapped to strings of length M in Unicode. Thus a homomorphic mapping
has the property that fixed-length strings in SQLCS may be mapped to fixed-length strings in
Unicode.

NOTE 1 — The XML entities & t ; , &np; , > ; , &pos; , and " ; are regarded as each representing a
single character in XML, and do not pose an obstacle to defining homomorphic mappings.

Since SQL_TEXT is a character set in the SQL-environment, there shall be an implementation-
defined mapping of strings of SQL_TEXT to Unicode. This mapping is called the plain text mapping
from SQL to XML, and it is used to represent SQL text strings in XML when their use in XML is
not as an XML Name (for example, in annotations).

4.2.2 Mapping SQL <identifier>s to XML Names

Since not every SQL <identifier> is an acceptable XML Name, it is also necessary to define a
mapping of SQL <identifier>s to XML Names. This mapping is defined in Subclause 5.1, “Mapping
SQL <identifier>s to XML Names”. The basic idea of this mapping is that characters that are not
valid in XML Names are converted to a sequence of hexadecimal digits derived from the Unicode
encoding of the character, bracketed by an introductory underscore and lowercase x and a trailing
underscore.

There are actually two variants of the mapping, known as partially escaped and fully escaped. The
two differences are in the treatment of non-initial <colon> and the treatment of an <identifier>
beginning with the letters xm in any combination of upper or lower case. The fully escaped variant
maps a non-initial <colon> to _x003A , whereas the partially escaped variant maps non-initial
<colon> to : . Also, the fully escaped variant maps initial xnl (in any case combination) by prefixing
XFFFF, whereas the partially escaped does not.

4.2.3 Mapping SQL data types to XML Schema data types

For each SQL type, there is defined a corresponding XML Schema type. The mapping is fully
specified in Subclause 5.15, “Mapping SQL data types to XML Schema data types”. The following is
a conceptual description of this mapping.

In general, each SQL predefined type SQLT is mapped to the XML Schema built-in type XMLT that
is the closest analog to SQLT. Since the value space of XMLT is frequently richer than the set of
values that can be represented by SQLT, XML facets are used to restrict XMLT in order to capture
the restrictions on SQLT as much as possible.

In addition, many of the distinctions in the SQL type system (for example, CHARACTER VARYING
versus CHARACTER LARGE OBJECT) have no corresponding distinction in the XML Schema type
system. In order to represent these distinctions, XML Schema annotations are defined. The content
of the annotations is defined by this standard; however, whether such annotations are actually
generated is implementation-dependent.

8 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

WG3:VIE-011 = H2-2002-013
4.2 Mappings

The SQL character string types are mapped to the XML Schema type xsd: stri ng. For the SQL type
CHARACTER, if the mapping of the SQL character set to the XML character set is homomorphic,
then fixed length strings are mapped to fixed length strings, and the facet xsd: | engt h is used.
Otherwise (i.e., CHARACTER when the mapping is not homomorphic, as well as CHARACTER
VARYING and CHARACTER LARGE OBJECT), the facet xsd: maxLengt h is used. Annotations
optionally indicate the precise SQL type (CHARACTER, CHARACTER VARYING, or CHARACTER
LARGE OBJECT), the length or maximum length of the SQL type, the character set, and the
default collation.

The SQL binary string types are mapped to either the XML Schema type xsd: hexBi nary or the
XML Schema type xsd: base64Bi nary. It is implementation-dependent which of these types is used
to map the SQL binary string types. The xsd: maxLengt h facet is set to the maximum length of the
binary string in octets. Annotations optionally indicate the SQL type (BINARY LARGE OBJECT)
and the maximum length in octets.

®] paragraph deleted.

The exact numeric SQL types NUMERIC and DECIMAL are mapped to the XML Schema

type xsd: deci nal using the facets xsd: preci si on and xsd: scal e. The SQL types INTEGER,
SMALLINT, and BIGINT are mapped to the XML Schema type xsd: i nt eger using the facets
xsd: max| ncl usi ve and xsd: mi nl ncl usi ve. Annotations optionally indicate the SQL type (NU-
MERIC, DECIMAL, INTEGER, SMALLINT, or BIGINT), precision of NUMERIC, user-specified
precision of DECIMAL (which may be less than the actual precision), and scale of NUMERIC and
DECIMAL.

The approximate numeric SQL types are mapped to either the XML Schema type xsd: f| oat, if
the binary precision is less than or equal to 24 binary digits (bits) and the range of the binary
exponent lies between -149 and 104, inclusive; otherwise, the XML Schema type xsd: doubl e is
used. Annotations optionally indicate the SQL type (REAL, DOUBLE PRECISION, or FLOAT),
the binary precision, the minimum and maximum values of the range of binary exponents, and, for
FLOAT, the user-specified binary precision (which may be less than the actual precision).

The SQL type BOOLEAN is mapped to the XML Schema type xsd: bool ean. Optionally, an annota-
tion indicates the SQL type (BOOLEAN).

The SQL type DATE is mapped to the XML Schema type xsd: dat e. The xsd: patt ern facet is used
to exclude the possibility of a time zone. Optionally, an annotation indicates the SQL type, DATE.

The SQL types TIME WITHOUT TIME ZONE and TIME WITH TIME ZONE are mapped to the
XML Schema type xsd: ti me. The xsd: pattern facet is used to exclude the possibility of a time zone,
in the case of TIME WITHOUT TIME ZONE, or to require a time zone, in the case of TIME WITH
TIME ZONE. The pattern also reflects the fractional seconds precision of the SQL type. Annotations
optionally indicate the SQL type (TIME or TIME WITH TIME ZONE) and the fractional seconds
precision.

The SQL types TIMESTAMP WITHOUT TIME ZONE and TIMESTAMP WITH TIME ZONE are
mapped to the XML Schema type xsd: dat eTi me. The xsd: pattern facet is used to exclude the
possibility of a time zone, in the case of TIMESTAMP WITHOUT TIME ZONE, or to require a
time zone, in the case of TIMESTAMP WITH TIME ZONE. The pattern also reflects the fractional
seconds precision of the SQL type. Annotations optionally indicate the SQL type (TIMESTAMP or
TIMESTAMP WITH TIME ZONE) and the fractional seconds precision.

The SQL interval types are mapped to the XML Schema type xsd: durati on. The xsd: pattern facet
is used to require precisely the year, month, day, hour, minute and second fields indicated by the
SQL type. The pattern also reflects the leading field precision and the fractional seconds precision
(when applicable). Annotations optionally indicate the SQL type, leading field precision and (when
applicable) the fractional seconds precision.

Concepts 9

WG3:VIE-011 = H2-2002-013
4.2 Mappings

4.2.4 Mapping SQL data values to XML data values

For each SQL type SQLT, there is also a mapping of values of type SQLT to the value space of
the corresponding XML Schema type. The mappings of values are largely determined by the data
type mappings. The precise rules for nonnull values are found in Subclause 5.16, “Mapping SQL
data values to XML”. The mappings for values of predefined types are designed to exploit <cast
specification> as much as possible.

4.2.5 Visibility of Columns, Tables, and Schemas in XML Mappings

A column C of table T is a visible column of T for authorization identifier U if the applicable privi-
leges for U include the SELECT privilege on C.

A table T of schema S is a visible table of S for authorization identifier U if T is either a base table
or a viewed table that contains a column C that is a visible column for U.

A schema S of catalog C is a visible schema of C for authorization identifier U if S contains a table
T that is a visible table for U.

4.2.6 Mapping an SQL Table to an XML Document and an XML Schema
Document

Subclause 5.3, “Mapping an SQL Table to an XML Document and an XML Schema Document?”,
defines a mapping between an SQL table and two documents, an XML document that reflects the
data in the table, and an XML Schema document that describes the first document. Only base
tables and viewed tables may be the source of this mapping.

These XML documents may be physical documents or virtual documents, depending upon the
environment in which they are used.

Only the visible columns of this table for the user that invokes this mapping will be reflected in
these two XML documents.

This mapping allows the invoker to specify whether to map null values to absent elements (absent),
or whether to map them to elements that are marked with xsi : ni | ="true" (nil).

Some of the XML Schema type definitions and element definitions may contain annotation elements
to reflect SQL metadata that is not directly relevant to XML. It is implementation-dependant
whether these annotation elements are generated.

4.2.7 Mapping an SQL Schema to an XML Document and an XML Schema
Document

Subclause 5.4, “Mapping an SQL Schema to an XML Document and an XML Schema Document”,
defines a mapping between the tables of an SQL schema and two documents, an XML document
that reflects the data in these tables, and an XML Schema document that describes the first. These
XML documents may be physical documents or virtual documents, depending upon the environment
in which they are used.

Only the visible tables of the schema for the user that invokes this mapping will be reflected in
these two XML documents. Only the visible columns of these tables for the user that invokes this
mapping will be reflected in these two XML documents.

10 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

WG3:VIE-011 = H2-2002-013
4.2 Mappings

This mapping allows the invoker of this mapping to specify whether to map null values to absent
elements (absent), or whether to map them to elements that are marked with xsi : ni | ="true" (nil).

Some of the XML Schema type definitions and element definitions may contain annotation elements
to reflect SQL metadata that is not directly relevant to XML. It is implementation-dependant
whether these annotation elements are generated.

4.2.8 Mapping an SQL Catalog to an XML Document and an XML Schema
Document

Subclause 5.5, “Mapping an SQL Catalog to an XML Document and an XML Schema Document”,
defines a mapping between the tables of an SQL catalog and two documents, an XML document that
reflects the data in these tables, and an XML Schema document that describes the first document.
These XML documents may be physical documents or virtual documents, depending upon the
environment in which they are used.

Only the visible schemas of this catalog for the user that invokes this mapping will be reflected in
these two XML documents. Only the visible tables of these schemas for the user that invokes this
mapping will be reflected in these two XML documents. Only the visible columns of these tables for
the user that invokes this mapping will be reflected in these two XML documents.

This mapping allows the user that invokes this mapping to specify whether to map null val-
ues to absent elements (absent), or whether to map them to elements that are marked with
xsi:nil="true" (nil).

Some of the XML Schema type definitions and element definitions may contain annotation elements
to reflect SQL metadata that is not directly relevant to XML. It is implementation-dependant
whether these annotation elements are generated.

4.2.9 Mapping Unicode to SQL character sets

For each character set SQLCS in the SQL-environment, there shall be an implementation-defined
mapping CSM of strings of Unicode to strings of SQLCS.

4.2.10 Mapping XML Names to SQL <identifier>s

A single algorithm suffices to reverse both the partially escaped and the fully escaped variants of the
mapping of SQL <identifier>s to XML Names. This algorithm is found in Subclause 5.17, “Mapping
XML Names to SQL <identifier>s”. The basic idea is to scan the XML Name from left to right,
looking for escape sequences of the form _xNNNN_ or _xNNNNNNNN_ where N denotes a hexadecimal
digit. Such sequences are converted to the character of SQL_TEXT that corresponds to the Unicode
code point U+0000NNNN or U+NNNNNNNN, respectively.

NOTE 2 — The sequence of mappings from SQL <identifier> to XML Name to SQL <identifier> restores the
original SQL <identifier> (assuming that every character in the source SQL-implementation’s SQL <identifier>
is a character of SQL_TEXT in the target SQL-implementation). However, the sequence of mappings from
XML Name to SQL <identifier> to XML Name does not necessarily restore the XML Name. Also, more than
one XML Name may be mapped to the same SQL <identifier>.

Concepts 11

WG3:VIE-011 = H2-2002-013

12 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

WG3:VIE-011 = H2-2002-013

5 Mappings

5.1 Mapping SQL <identifier>s to XML Names

Function
Define the mapping of SQL <identifier>s to XML Names.
Format

<uppercase hexit> ::= <digit>]| A| B| C| D| E| F

Syntax Rules

None.

General Rules

1) Let SQLI be an SQL <identifier> in an application of this Subclause. SQLI is a sequence of
characters of SQL_TEXT. Let N be the number of characters in SQLI. Let S, So, ..., Sy be
the characters of SQLI, in order from left to right.

2) Let EV be the escape variant in an application of this Subclause. EV is either partially escaped
or fully escaped.

3) Let TM be the implementation-defined mapping of the characters of SQL_TEXT to characters of
Unicode.

NOTE 3 — Unicode scalar values in the ranges U+0000 through U+001F (inclusive), sometimes called
the “CO controls”, and U+007F through U+009F (inclusive), sometimes called “delete” (U+007F) and the
“C1 controls” (the remainder of that latter range) are not encoding of abstract characters in Unicode.
Programs that conform to the Unicode Standard may treat these Unicode scalar values in exactly the
same way as they treat the 7- and 8-bit equivalents in other protocols. Such usage constitutes a higher-
level protocol and is beyond the scope of the Unicode standard. These Unicode scalar values do not occur
in XML Names, but may appear in other places in XML text.

4) For each i between 1 (one) and N, let T; be TM(S;).

5) For each i between 1 (one) and N, let X; be the Unicode character string defined by the following
rules.

Case:

a) If S; has no mapping to Unicode (i.e., TM(S;) is undefined), then X; is implementation-
defined.

b) IfS; is <colon>, then

Case:

i) Ifi =1 (one), then let X; be _x003A_.

Mappings 13

WG3:VIE-011 = H2-2002-013
5.1 Mapping SQL <identifier>s to XML Names

ii) If EV is fully escaped, then let X; be _x003A .
iii) Otherwise, let X; be T;.
c¢) Ifi < N-1, S, is <underscore>, and S;,; is the lowercase letter x, then let X; be _x005F .

d) If EV is fully escaped, i = 1 (one), N > 3, Sy is either the uppercase letter X or the lowercase
letter x, Sg is either the uppercase letter Mor the lowercase letter m and Sj is either the
uppercase letter L or the lowercase letter | , then let X; be _xFFFF_T1.

e) If T, is not a valid XML NameChar, or if i = 1 (one) and T; is not a valid first character of an
XML Name, then:

i) Let Uy, Uy, ..., Ug be the eight <uppercase hexit>s such that T; is U+U; Us...Ug in the
UCS-4 encoding.

ii) Case:

1) Ifu; =0,Uy =0, U3 =0, and Uy = 0, then let X; be _xUsUgU;Ug_.
NOTE 4 — This case implies that T; has a UCS-2 encoding, which is U+UsUsU7Us.

2) Otherwise, let X; be _xUjUyUsUyUsUgU7Ug_.
NOTE 5 — The normative definition of valid XML Name characters is found in Extensible
Markup Language (XML) Version 1.0 (second edition), as cited in Subclause 2.2, “Publicly-
available specifications”. Valid first characters of XML Names are Letters, <underscore> and
<colon>. Valid XML Name characters, after the first character, are Letters, Digits, <period>,
<minus sign>, <underscore>, <colon>, CombiningChars, and Extenders. Note that the XML
definition of Letter and Digit is broader than <simple Latin letter> and <digit> respectively.

f) Otherwise, let X; be T;.
NOTE 6 — That is, any character in SQLI that does not occasion a problem as a character in an

XML Name is simply copied into the XML Name.
6) Let XMLN be the character string concatenation of Xy, X9, . .., and Xy in order from left to right.

7) XMNis the XML Name that is the mapping of SQLI to XML.

14 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

WG3:VIE-011 = H2-2002-013
5.2 Mapping a multi-part SQL Name to an XML Name

5.2 Mapping a multi-part SQL Name to an XML Name

Function

Define the mapping of a sequence of SQL <identifier>s to an XML Name.

General Rules

1)

2)

3)

4)

5)

Let SQLI;, 1 (one) < i < n be a sequence of n SQL <identifier>s provided for an application of
this Subclause.

Let NP(S) be the mapping of a string S to a result string defined as follows:

a) Let m be the number of characters in S. For each character S;, 1 (one) <j < m, in S, let
NPS; be defined as follows:

1) If S; is <period>, then NPS; is “_x002E_".
ii) Otherwise, NPS; is S;.
b) NP(S) is the concatenation of NPSJ-, 1 (one) <j < m.

For each i between 1 (one) and n, let XMLN; be the XML Name formed by the application of
Subclause 5.1, “Mapping SQL <identifier>s to XML Names”, to SQLI; using the fully escaped
variant of the mapping.

Let XMLR be the concatenation of the following strings:
NP(XMLN1), <period> NP(XM.Np), <period> ... NP(XMNp)

XM.R is the XML Name that is the result of this mapping.

Mappings 15

WG3:VIE-011 = H2-2002-013
5.3 Mapping an SQL Table to an XML Document and an XML Schema Document

5.3 Mapping an SQL Table to an XML Document and an XML
Schema Document

Function

Define the mapping of an SQL table to an XML document and an XML Schema document that
describes this XML document.

General Rules

1) Let T be the table provided for an application of this mapping. Let NULLS be the choice
of whether to map null values to absent elements (absent), or whether to map them to ele-
ments that are marked with xsi : ni | ="true" (nil). Let U be the authorization identifier that is
invoking this mapping.

2) Let XS be the XML Schema document that is the result of this mapping. XS reflects the meta-
data associated with 7.

a) Let TC, TS, and TN be the <catalog name>, <unqualified schema name>, and <qualified
identifier> of the <table name> of T, respectively.

b) Let XMLTN be the result of applying the mapping defined in Subclause 5.1, “Mapping SQL
<identifier>s to XML Names”, to TN using the fully escaped variant of the mapping.

¢) Let XMLTYPEN be the result of applying the mapping defined in Subclause 5.2, “Mapping a
multi-part SQL Name to an XML Name”, to “TableType”, TC, T'S, and TN.

d) Let CT be the visible columns of T for U. Let XSCT be the result of applying the mapping
defined in Subclause 5.10, “Mapping a Collection of SQL Data Types to XML Schema Data
Types”, to the data types of the columns of CT.

e) Let XST be the result of applying the mapping defined in Subclause 5.6, “Mapping an SQL
Table to XML Schema Data Types”, to T using NULLS as the choice of whether to map null
values to absent elements or elements that are marked with xsi: ni | ="true" and U as the
invoker of this mapping.

f) Let SQLXMLNS be the value of the namespace definition provided for the namespace variable
sql xm : in Table 1, “Namespace variables and their URIs”.

g) Let XSDNS be the value of the namespace definition provided for the namespace variable
xsd: in Table 1, “Namespace variables and their URIs”.

h) XS has the following contents:

<?xm version="1.0"7?>

<xsd: schema
xm ns: xsd=" XSDNS"
xm ns: sql xm =" SQLXMLNS" >

<xsd: i nport
namespace=" SQLXM.NS"
schemalLocat i on="SQLXMLNS. xsd" />

XSCT
XST
<xsd: el ement name="XM.TN' type="XM.TYPEN"' />

16 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

WG3:VIE-011 = H2-2002-013
5.3 Mapping an SQL Table to an XML Document and an XML Schema Document

</ xsd: schema>

Editor’s Note
Document XS is created without declaring a namespace. A user may wish to specify a namespa
for this mapping that is used as the value of an xsd: t ar get Nanespace attribute. See Possible

Problem [XML-007 | in the Editor’s Notes.

3) Let XSL be the URL that identifies XS.

4) Let XD be the XML document that is the result of this mapping. XD reflects the data of 7.

5)

a)

b)

c)

Let XDROWS be the result of applying the mapping defined in Subclause 5.12, “Mapping an
SQL Table to an XML Element”, to T using NULLS as the choice of whether to map null
values to absent elements or elements that are marked with xsi : ni | ="true" and U as the
invoker of this mapping.

Let XSI NS be the value of the namespace definition provided for the namespace variable
xsi: in Table 1, “Namespace variables and their URIs”.

XD has the following contents:

<?xm version="1.0"7?>

<XM.TN
xm ns: xsi =" XSI NS"
xsi : noNanespaceSchenaLocat i on=" XSL" >

XDROWS
</ XMLTN>

XD is the XML document and XS is the XML Schema document that describes XD that are the
result of this mapping.

Mappings 17

WG3:VIE-011 = H2-2002-013
5.4 Mapping an SQL Schema to an XML Document and an XML Schema Document

5.4 Mapping an SQL Schema to an XML Document and an XML

Schema Document

Function

Define the mapping of an SQL schema to an XML document and an XML Schema document that
describes this XML document.

General Rules

1) Let S be the schema provided for an application of this mapping. Let NULLS be the choice
of whether to map null values to absent elements (absent), or whether to map them to ele-
ments that are marked with xsi : ni |l ="true" (nil). Let U be the authorization identifier that is
invoking this mapping.

2) Let XS be the XML Schema document that is the result of this mapping. XS reflects the meta-
data associated with S.

a)

b)

c)

d)

e)

g)

h)

Let SC and SN be the <catalog name> and <unqualified schema name> of S, respectively.

Let XMLSN be the result of applying the mapping defined in Subclause 5.1, “Mapping SQL
<identifier>s to XML Names”, to SN using the fully escaped variant of the mapping.

Let CT be the visible columns of the viewed and base tables contained in S for U. Let XSCT
be the result of applying the mapping defined in Subclause 5.10, “Mapping a Collection of
SQL Data Types to XML Schema Data Types”, to the data types of the columns of CT.

Let XMLTYPEN be the result of applying the mapping defined in Subclause 5.2, “Mapping a
multi-part SQL Name to an XML Name”, to “SchemaType”, SC, and SN.

Let XST be the result of applying the mapping defined in Subclause 5.7, “Mapping an SQL
Schema to XML Schema Data Types”, to S using NULLS as the choice of whether to map
null values to absent elements or elements that are marked with xsi: nil ="true" and U as
the invoker of this mapping.

Let SQLXMLNS be the value of the namespace definition provided for the namespace variable
sql xm : in Table 1, “Namespace variables and their URIs”.

Let XSDNS be the value of the namespace definition provided for the namespace variable
xsd: in Table 1, “Namespace variables and their URIs”.

XS has the following contents:

<?xm version="1.0"7?>

<xsd: schema
xm ns: xsd=" XSDNS"
xm ns: sql xm =" SQLXMLNS" >

<xsd: i nport
nanmespace=" SQLXM.NS"
schemalLocat i on="SQLXMLNS. xsd" />

XSCT
XST
<xsd: el ement name="XM.SN' type="XM.TYPEN' />

18 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

3)
4)

5)

WG3:VIE-011 = H2-2002-013
5.4 Mapping an SQL Schema to an XML Document and an XML Schema Document

</ xsd: schema>
Let XSL be the URL that identifies XS.

Let XD be the XML Document that is the result of this mapping. XD reflects the data of the
tables contained in S.

a) Let XDSCHEMA be the result of applying the mapping defined in Subclause 5.13, “Mapping an
SQL Schema to an XML Element”, to S using NULLS as the choice of whether to map null
values to absent elements or elements that are marked with xsi: ni | ="true" and U as the
invoker of this mapping.

b) Let XSI NS be the value of the namespace definition provided for the namespace variable
xsi: in Table 1, “Namespace variables and their URIs”.

¢) XD has the following contents:

<?xm version="1.0"7?>

<XM.SN
xm ns: xsi =" XSI NS"
xsi : noNanespaceSchenaLocat i on=" XSL" >

XDSCHEVA
</ XMLSN>

XD is the XML document and XS is the XML Schema document that describes XD that are the
result of this mapping.

Mappings 19

WG3:VIE-011 = H2-2002-013
5.5 Mapping an SQL Catalog to an XML Document and an XML Schema Document

5.5 Mapping an SQL Catalog to an XML Document and an XML

Schema Document

Function

Define the mapping of an SQL catalog to an XML document and an XML Schema document that
describes this XML document.

General Rules

1) Let C be the catalog provided for an application of this mapping. Let NULLS be the choice
of whether to map null values to absent elements (absent), or whether to map them to ele-
ments that are marked with xsi : nil ="true" (nil). Let U be the authorization identifier that is
invoking this mapping.

2) Let XS be the XML Schema document that is the result of this mapping. XS reflects the meta-
data associated with C.

a)

b)

c)

d)

e)

g)

h)

Let CN be the <catalog name> of C.

Let XMLCN be the result of applying the mapping defined in Subclause 5.1, “Mapping SQL
<identifier>s to XML Names”, to CN using the fully escaped variant of the mapping.

Let CT be the visible columns of the viewed and base tables contained in C for U. Let XSCT
be the result of applying the mapping defined in Subclause 5.10, “Mapping a Collection of
SQL Data Types to XML Schema Data Types”, to the data types of the columns of CT.

Let XMLTYPEN be the result of applying the mapping defined in Subclause 5.2, “Mapping a
multi-part SQL Name to an XML Name”, to “CatalogType” and CN.

Let XST be the result of applying the mapping defined in Subclause 5.8, “Mapping an SQL
Catalog to XML Schema Data Types”, to C using NULLS as the choice of whether to map
null values to absent elements or elements that are marked with xsi: nil ="true" and U as
the invoker of this mapping.

Let SQLXMLNS be the value of the namespace definition provided for the namespace variable
sql xm : in Table 1, “Namespace variables and their URIs”.

Let XSDNS be the value of the namespace definition provided for the namespace variable
xsd: in Table 1, “Namespace variables and their URIs”.

XS has the following contents:

<?xm version="1.0"7?>

<xsd: schema
xm ns: xsd=" XSDNS"
xm ns: sql xm =" SQLXMLNS" >

<xsd: i nport
nanmespace=" SQLXM.NS"
schemalLocat i on="SQLXMLNS. xsd" />

XSCT
XST
<xsd: el enent name="XM.CN' type="XM.TYPEN' />

20 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

3)
4)

5)

WG3:VIE-011 = H2-2002-013
5.5 Mapping an SQL Catalog to an XML Document and an XML Schema Document

</ xsd: schema>
Let XSL be the URL that identifies XS.

Let XD be the XML Document that is the result of this mapping. XD reflects the data of the
tables contained in C.

a) Let XDCATALOG be the result of applying the mapping defined in Subclause 5.14, “Mapping
an SQL Catalog to an XML Element”, to C using NULLS as the choice of whether to map
null values to absent elements or elements that are marked with xsi : ni | ="true" and U as
the invoker of this mapping.

b) Let XSI NS be the value of the namespace definition provided for the namespace variable
xsi: in Table 1, “Namespace variables and their URIs”.

¢) XD has the following contents:

<?xm version="1.0"7?>

<XM_CN
xm ns: xsi =" XSI NS"
xsi : noNanespaceSchenaLocat i on=" XSL" >

XDCATALOG
</ XMLCN>

XD is the XML document and XS is the XML Schema document that describes XD that are the
result of this mapping.

Mappings 21

WG3:VIE-011 = H2-2002-013
5.6 Mapping an SQL Table to XML Schema Data Types

5.6 Mapping an SQL Table to XML Schema Data Types

Function
Define the mapping of an SQL table to XML Schema data types.
General Rules

1) Let T be the table provided for an application of this mapping. Let NULLS be the choice
of whether to map null values to absent elements (absent), or whether to map them to ele-
ments that are marked with xsi : ni |l ="true" (nil). Let U be the authorization identifier that is
invoking this mapping.

2) Let TC, TS, and TN be the <catalog name>, <unqualified schema name>, and <qualified identi-
fier> of the <table name> of T, respectively.

3) Let XMLTN be the result of applying the mapping defined in Subclause 5.1, “Mapping SQL
<identifier>s to XML Names”, to TN using the fully escaped variant of the mapping.

4) Let n be the number of visible columns of T for U.

5) For i ranging from 1 (one) to n:
a) Let C; be the i-th visible column of T for U in order of its ordinal position within 7.
b) Let CN be the <column name> of C;. Let D be the data type of C;.

¢) Let XMLCN be the result of applying the mapping defined in Subclause 5.1, “Mapping SQL
<identifier>s to XML Names”, to CN using the fully escaped variant of the mapping.

d) Let XMLCTN be the result of applying the mapping defined in Subclause 5.9, “Mapping an
SQL Data Type to an XML Name”, to D.

e) Case:
i) If C; is known not nullable, then let XMLNULLS be the zero-length string.

ii) Otherwise,

Case:

1) If NULLS is absent, then let XMLNULLS be

m nQccur s="0"

2) If NULLS is nil, then let XMLNULLS be

ni Il abl e="true"
f) Case:
i) If D is a character string data type, then:
1) Let CS be the character set of D.

2) Let CSC, CSS, and CSN be the <catalog name>, <unqualified schema name>, and
<SQL language identifier> of the <character set name> of CS, respectively.

22 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

6)

7)

8)

9)

WG3:VIE-011 = H2-2002-013
5.6 Mapping an SQL Table to XML Schema Data Types

3) Let XMLCSCN, XMLCSSN, and XMLCSN be the result of applying the mapping defined in
Subclause 5.1, “Mapping SQL <identifier>s to XML Names”, to CSC, CSS, and CSN,
respectively, using the fully escaped variant of the mapping.

4) Let CO be the collation of D.

5) Let COC, COS, and CON be the <catalog name>, <unqualified schema name>, and
<qualified identifier> of the <collation name> of CO, respectively.

6) Let XMLCOCN, XMLCCOSN, and XM_CON be the result of applying the mapping defined
in Subclause 5.1, “Mapping SQL <identifier>s to XML Names”, to COC, COS, and
CON, respectively, using the fully escaped variant of the mapping.

7) It is implementation-dependant whether COLANN is the zero-length string or

<xsd: annot at i on>
<xsd: appi nf o>
<sql xm : sql nane
t ype=" CHARACTER SET"
cat al ogName=" XM.CSCN"
schemaNane=" XM_CSSN"
| ocal Name="XMLCSN' />
<sgl xn : sqgl nane
t ype="COLLATI ON'
cat al ogNanme=" XM_COCN"
schemaNanme=" XM_COSN"
| ocal Name="XM_LCON" />
</ xsd: appi nf 0>
</ xsd: annot ati on>

ii) Otherwise, let COLANN be the zero-length string.

g) Let XMLCE; be

<xsd: el emrent nanme="XM.CN' type="XM.CTN' XM_NULLS>
COLANN
</ xsd: el ement >

Let XMLTYPEN be the result of applying the mapping defined in Subclause 5.2, “Mapping a
multi-part SQL Name to an XML Name”, to “TableType”, TC, T'S, and TN.

Let XMLROWN be the result of applying the mapping defined in Subclause 5.2, “Mapping a multi-
part SQL Name to an XML Name”, to “RowType”, TC, TS, and TN.

Let XMLCN, XMLSN, and XM_TN be the result of applying the mapping defined in Subclause 5.1,
“Mapping SQL <identifier>s to XML Names”, to TC, TS, and TN, respectively, using the fully
escaped variant of the mapping.

If T is a base table, then TYPE is BASE TABLE. Otherwise, TYPE is VI EVED TABLE. It is
implementation-dependent whether SQLANN is the zero-length string or

<xsd: annot at i on>
<xsd: appi nf o>
<sql xm : sql nane
type="TYPE"
cat al ogNane=" XM_CN'
schemaNane=" XM_SN"
| ocal Name="XMLTN" />
</ xsd: appi nf 0>
</ xsd: annot ati on>

Mappings 23

WG3:VIE-011 = H2-2002-013
5.6 Mapping an SQL Table to XML Schema Data Types

10)

11)

24

Let XMLTN be:

<xsd: conpl exType nane="XM_ROMW' >
<xsd: sequence>
XM.CE1
XM.CEn,
</ xsd: sequence>
</ xsd: conpl exType>

<xsd: conpl exType nane="XM.TYPEN' >
SQLANN
<xsd: sequence>
<xsd: el enent nane="row'
t ype=" XM_ROM"
m nCccur s="0"
maxQccur s="unbounded" />
</ xsd: sequence>
</ xsd: conpl exType>

Editor’s Note
Some members feel that the row element is not necessary. Instead of multiple row elements within
a table element, they would create multiple elements with the name of the table. See Possible

Problem [XML-008 | in the Editor’s Notes.

XM.TN contains the XML Schema data types that are the result of this mapping.

(ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

WG3:VIE-011 = H2-2002-013
5.7 Mapping an SQL Schema to XML Schema Data Types

5.7 Mapping an SQL Schema to XML Schema Data Types

Function
Define the mapping of an SQL table to XML Schema data types.
General Rules

1)

2)

3)

4)
5)

6)

7)

8)

Let S be the schema provided for an application of this mapping. Let NULLS be the choice

of whether to map null values to absent elements (absent), or whether to map them to ele-
ments that are marked with xsi : ni | ="true" (nil). Let U be the authorization identifier that is
invoking this mapping.

Let SC, and SN be the <catalog name> and <unqualified schema name> of the <schema name>
of S, respectively.

Let XMLSN be the result of applying the mapping defined in Subclause 5.1, “Mapping SQL
<identifier>s to XML Names”, to SN using the fully escaped variant of the mapping.

Let n be the number of visible tables of S for U.

For i ranging from 1 (one) to n:

a) Let T; be the i-th visible table of S.

b) Let TN be the <qualified identifier> of the <table name> of 7.

¢) Let XM_TN be the result of applying the mapping defined in Subclause 5.1, “Mapping SQL
<identifier>s to XML Names”, to TN using the fully escaped variant of the mapping.

d) Let XMLTTN be the result of applying the mapping defined in Subclause 5.2, “Mapping a
multi-part SQL Name to an XML Name”, to “TableType”, SC, SN, and TN.

e) Let XM.TE; be
<xsd: el ement name="XM.TN' type="XM.TTN' />

Let XMLTYPEN be the result of applying the mapping defined in Subclause 5.2, “Mapping a
multi-part SQL Name to an XML Name”, to “SchemaType”, SC, and SN.

Let XMLSC be the result of applying the mapping defined in Subclause 5.1, “Mapping SQL
<identifier>s to XML Names”, to SC using the fully escaped variant of the mapping.

It is implementation-dependant whether SQLANN is the zero-length string or

<xsd: annot ati on>
<xsd: appi nf o>
<sql xm : sql nane
t ype=" SCHEMA"
cat al ogNane="XM_SC"
schemaName="XMLSN" />
</ xsd: appi nf o>
</ xsd: annot ati on>

Mappings 25

WG3:VIE-011 = H2-2002-013
5.7 Mapping an SQL Schema to XML Schema Data Types

9) Let XM_SCHEMAT be:
<xsd: conpl exType nane="XM.TYPEN' >
SQLANN
<xsd: al | >
XM.TE1
XMTE
</xsd:all>
</ xsd: conpl exType>

10) XMLSCHEMAT contains the XML Schema data types that are the result of this mapping.

26 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

WG3:VIE-011 = H2-2002-013
5.8 Mapping an SQL Catalog to XML Schema Data Types

5.8 Mapping an SQL Catalog to XML Schema Data Types

Function

Define the mapping of an SQL catalog to XML Schema data types.

General Rules

1)

2)
3)

4)
5)

6)

7)

8)

Let C be the catalog provided for an application of this mapping. Let NULLS be the choice

of whether to map null values to absent elements (absent), or whether to map them to ele-
ments that are marked with xsi: nil ="true" (nil). Let U be the authorization identifier that is
invoking this mapping.

Let CN be the <catalog name> of C.

Let XMLCN be the result of applying the mapping defined in Subclause 5.1, “Mapping SQL
<identifier>s to XML Names”, to CN using the fully escaped variant of the mapping.

Let n be the number of visible schemas of C for U.

For i ranging from 1 (one) to n:

a) Let S; be the i-th visible schema of S.

b) Let SN be the <unqualified schema name> of the <schema name> of S;.

¢) Let XMLSN be the result of applying the mapping defined in Subclause 5.1, “Mapping SQL
<identifier>s to XML Names”, to SN using the fully escaped variant of the mapping.

d) Let XMLSTN be the result of applying the mapping defined in Subclause 5.2, “Mapping a
multi-part SQL Name to an XML Name”, to “SchemaType”, SC, and SN.

e) Let XM_SE; be
<xsd: el ement nanme="XM.SN' type="XM.STN' />

Let XMLTYPEN be the result of applying the mapping defined in Subclause 5.2, “Mapping a
multi-part SQL Name to an XML Name”, to “CatalogType” and CN.

It is implementation-dependant whether SQLANN is the zero-length string or

<xsd: annot ati on>
<xsd: appi nf o>
<sql xm : sql nane
type=" CATALCG'
cat al ogNane="XMLCN' />
</ xsd: appi nf 0>
</ xsd: annot ati on>

Let XMLCATT be:

<xsd: conpl exType nane="XM.TYPEN' >
SQLANN
<xsd:al | >
XMLSE1
XMLSEp,
</xsd:all >
</ xsd: conpl exType>

Mappings 27

WG3:VIE-011 = H2-2002-013
5.8 Mapping an SQL Catalog to XML Schema Data Types

9) XM.CATT contains the XML Schema data types that are the result of this mapping.

28 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

WG3:VIE-011 = H2-2002-013
5.9 Mapping an SQL Data Type to an XML Name

5.9 Mapping an SQL Data Type to an XML Name

Function

Define the mapping of an SQL data type to an XML Name.

General Rules

1) Let D be the SQL data type provided for an application of this subclause.

2) If D is a character string type, then:

a)
b)
c)

d)

e)

Let SQLCS be the character set of D.
Let N be the length or maximum length of D.

Let CSM be the implementation-defined mapping of strings of SQLCS to strings of Unicode.
Let MAXCSL be the maximum length in characters of Unicode of CSM(S), for all strings S
of length N of characters of SQLCS.

Let MLI T be the canonical XML Schema literal denoting MAXCSL in the lexical representa-
tion of XML Schema type xsd: i nt eger.

Let NLI T be the canonical XML Schema literal denoting N in the lexical representation of
XML Schema type xsd: i nt eger.

Case:

i) If CSM is homomorphic, and N equals MAXCSL, then
Case:

1) If the type designator of D is CHARACTER, then let XMLN be the following:
CHAR MLIT

2) If the type designator of D is CHARACTER VARYING, then let XMLN be the follow-
ing:

VARCHAR_MLI'T

3) If the type designator of D is CHARACTER LARGE OBJECT, then let XM_N be the
following:

CLOB MLIT

ii) If CSM is homomorphic, and N does not equal MAXCSL, then

Case:
1) If the type designator of D is CHARACTER, then let XMLN be the following:

CHAR NLIT MLIT

2) If the type designator of D is CHARACTER VARYING, then let XMLN be the follow-
ing:

VARCHAR_NLI T_MLI'T

Mappings 29

WG3:VIE-011 = H2-2002-013
5.9 Mapping an SQL Data Type to an XML Name

3)

4)

5)

6)

7)

30

3) If the type designator of D is CHARACTER LARGE OBJECT, then let XMLN be the
following:

CLOB NLIT MIT
iii) Otherwise,
Case:

1) If the type designator of D is CHARACTER or CHARACTER VARYING, then let
XMoN be the following:

VARCHAR NLIT_M.IT

2) If the type designator of D is CHARACTER LARGE OBJECT, then let XM_N be the
following:

CLOB NLIT MIT
If the type designator of D is BINARY LARGE OBJECT, then:

a) Let N be the maximum length of D. Let XN be the canonical XML Schema literal denoting N
in the lexical representation of XML Schema type xsd: i nt eger .

b) Let XM.N be the following:
BLOB_XN
If the type designator of D is NUMERIC, then:

a) Let P be the precision of D. Let XP be the canonical XML Schema literal denoting P in the
lexical representation of XML Schema type xsd: i nt eger.

b) Let S be the scale of D. Let XS be the canonical XML Schema literal denoting S in the lexical
representation of XML Schema type xsd: i nt eger.

¢) Let XMLN be the following:
NUVERI C_XP_XS

If the type designator of D is DECIMAL, then:

a) Let P be the precision of D. Let XP be the canonical XML Schema literal denoting P in the
lexical representation of XML Schema type xsd: i nt eger .

b) Let S be the scale of D. Let XS be the canonical XML Schema literal denoting S in the lexical
representation of XML Schema type xsd: i nt eger.

¢) Let XMLN be the following:
DECI MAL_XP_XS

If the type designator of D is INTEGER, then let XMLN be the following:
| NTEGER

If the type designator of D is SMALLINT, then let XMLN be the following:
SMVALLI NT

(ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

8)

9)

10)

11)

12)

13)

14)

15)

16)

WG3:VIE-011 = H2-2002-013
5.9 Mapping an SQL Data Type to an XML Name

If the type designator of D is BIGINT, then let XMLN be the following:
Bl G NT

If the type designator of D is FLOAT, then:

a) Let P be the precision of D. Let XP be the canonical XML Schema literal denoting P in the
lexical representation of XML Schema type xsd: i nt eger .

b) Let XM.N be the following:

FLOAT XP

If the type designator of D is REAL, then let XMLN be the following:
REAL

If the type designator of D is DOUBLE PRECISION, then let XMLN be the following:

DOUBLE

If the type designator of D is BOOLEAN, then let XMLN be the following:
BOOLEAN

If the type designator of D is TIME WITHOUT TIME ZONE, then:

a) Let TP be the time precision of D. Let XTP be the canonical XML Schema literal denoting TP
in the lexical representation of XML Schema type xsd: i nt eger .

b) Let XM.N be the following:
TI ME_XTP
If the type designator of D is TIME WITH TIME ZONE, then:

a) Let TP be the time precision of D. Let XTP be the canonical XML Schema literal denoting TP
in the lexical representation of XML Schema type xsd: i nt eger .

b) Let XM.N be the following:
TI VEWZ_XTP
If the type designator of D is TIMESTAMP WITHOUT TIME ZONE, then:

a) Let TSP be the timestamp precision of D. Let XTPS be the canonical XML Schema literal
denoting TPS in the lexical representation of XML Schema type xsd: i nt eger.

b) Let XMLN be the following:
TI MESTAMP_XTSP

If the type designator of D is TIMESTAMP WITH TIME ZONE, then:

a) Let TSP be the timestamp precision of D. Let XTSP be the canonical XML Schema literal
denoting TSP in the lexical representation of XML Schema type xsd: i nt eger.

b) Let XM.N be the following:
TI NESTAMP_WIZ_XTSP

Mappings 31

WG3:VIE-011 = H2-2002-013
5.9 Mapping an SQL Data Type to an XML Name

17) If the type designator of D is DATE, then let XMLN be the following:
DATE

18) the type designator of D is INTERVAL, then

Case:

a) If D is specified with a <single datetime field>, then let ILFP be the value of <interval
leading field precision> and let XI LFP be the canonical XML Schema literal denoting ILFP
in the lexical representation of XML Schema type xsd: i nt eger.

Case:
i) If SECOND was specified in the <single datetime field>, then:

1) Let IFSP be the value of <interval fractional seconds precision>. Let XI FSP be the
canonical XML Schema literal denoting IFSP in the lexical representation of XML
Schema type xsd: i nt eger.

2) Let XM.N be the following:
| NTERVAL_SECOND XI LFP_XI FSP

ii) Otherwise:
1) Let FT be the value of <non-second primary datetime field>.

2) Let XMLN be the following:
| NTERVAL_FT_XI LFP

b) Otherwise:
i) Let SFT be the value of <non-second primary datetime field> in <start field> of D.

ii) Let ILFP be the value of <interval leading field precision> in <start field> of D. Let
Xl LFP be the canonical XML Schema literal denoting ILFP in the lexical representation
of XML Schema type xsd: i nt eger.

iii) Case:
1) If <end field> of D specifies SECOND, then:

A) Let IFSP be the value of <interval fractional seconds precision>in <end field> of
D. Let X FSP be the canonical XML Schema literal denoting IF'SP in the lexical
representation of XML Schema type xsd: i nt eger.

B) Let XMLN be the following:
| NTERVAL_SFT_XI LFP_SECOND_XI FSP

2) Otherwise:

A) Let EFT be the value of <non-second primary datetime field> in <end field> of
D.

B) Let XMLN be the following:
| NTERVAL_SFT_XI LFP_EFT

32 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

WG3:VIE-011 = H2-2002-013
5.9 Mapping an SQL Data Type to an XML Name

19) XM.Nis the XML name that is result of this mapping.

Mappings 33

WG3:VIE-011 = H2-2002-013
5.10 Mapping a Collection of SQL Data Types to XML Schema Data Types

5.10 Mapping a Collection of SQL Data Types to XML Schema
Data Types

Function
Define the mapping of a collection of SQL data types to XML Schema data types.
General Rules

1) Let n be the number of SQL data types provided for an application of this subclause.
2) Let XMLD be the zero-length string. Let XMLTL be an empty list of XML Names.
3) For i ranging from 1 (one) to n:

a) Let D; be the i-th SQL data type provided for an application of this subclause.

b) Let XMLN; be the result of applying the mapping defined in Subclause 5.9, “Mapping an SQL
Data Type to an XML Name”, to D;.

¢) Let XMLT; be the XML Schema data type that is the result of applying the mapping defined
in Subclause 5.15, “Mapping SQL data types to XML Schema data types”, to D;.

d) Two XML Names are considered to be equivalent to each other if they have the same
number of characters and the Unicode values of all corresponding characters are equal.

e) If XMLN, is not equivalent to the value of any XML Name in XM.TL, then:
i) Append XM.T; to XM.D.
ii) Append XMLN; to XM_TL.

4) XM.D contains the XML Schema data types that are the result of this mapping.

34 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

WG3:VIE-011 = H2-2002-013
5.11 Mapping an SQL Data Type to a Named XML Schema Data Type

5.11 Mapping an SQL Data Type to a Named XML Schema Data
Type
Function

Define the mapping of an SQL data type to an XML Schema data type.

General Rules

1) Let D be the SQL data type provided for an application of this subclause.

2) If D is a character string data type, then:

a)
b)
c)

d)

e)

Let SQLCS be the character set of D.
Let N be the length or maximum length of D.

Let CSM be the implementation-defined mapping of strings of CS to strings of Unicode. Let
MAXCSL be the maximum length in characters of Unicode of CSM(S), for all strings S of
length N of characters of SQLCS.

Let MLI T be the canonical XML Schema literal denoting MAXCSL in the lexical representa-
tion of XML Schema type xsd: i nt eger .

Case:

i) If CSM is homomorphic, N equals MAXCSL, and the type designator of D is CHARAC-
TER, then let SQLCDT be the following:

<xsd: si npl eType name="XM.N'>
<xsd:restriction base="xsd:string">
<xsd:length value="MIT" />
</ xsd:restriction>
</ xsd: si npl eType>

ii) Otherwise, let SQLCDT be the following:

<xsd: si npl eType name="XM.N'>
<xsd:restriction base="xsd:string">
<xsd: maxLengt h val ue="M.IT" />
</ xsd:restriction>
</ xsd: si npl eType>

3) If D is a predefined data type that is not a character string data type, then:

a)

b)

c)

Let XMLN be the result of applying the mapping defined in Subclause 5.9, “Mapping an SQL
Data Type to an XML Name”, to D.

Let XMLT be the XML Schema data type that is the result of applying the mapping defined
in Subclause 5.15, “Mapping SQL data types to XML Schema data types”, to D.

Case:

i) If XML.T is of the form <xsd: si npl eType>XM.TC</ xsd: si npl eType>, then let SQLCDT be
the following:

Mappings 35

WG3:VIE-011 = H2-2002-013
5.11 Mapping an SQL Data Type to a Named XML Schema Data Type

<xsd: si npl eType name="XM.N'>
XMLTC
</ xsd: si npl eType>

ii) Otherwise, let SQLCDT be the following:

<xsd: si npl eType name="XM.N'>
<xsd:restriction base="XM.T" />
</ xsd: si npl eType>

4) SQLCDT is the XML Schema data type that is the result of this mapping.

36 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

WG3:VIE-011 = H2-2002-013
5.12 Mapping an SQL Table to an XML Element

5.12 Mapping an SQL Table to an XML Element

Function
Define the mapping of an SQL table to an XML element.

General Rules

1)

2)
3)

4)
5)

Let T be the table provided for an application of this mapping. Let NULLS be the choice

of whether to map null values to absent elements (absent), or whether to map them to ele-
ments that are marked with xsi : ni |l ="true" (nil). Let U be the authorization identifier that is
invoking this mapping.

Let TN be the <qualified identifier> of the <table name> of 7.

Let XMLTN be the result of applying the mapping defined in Subclause 5.1, “Mapping SQL
<identifier>s to XML Names”, to TN using the fully escaped variant of the mapping.

Let n be the number of rows of 7" and let m be the number of visible column sof T for U.
For i ranging from 1 (one) to n:
a) Let R; be the i-th row of 7.
b) For j ranging from 1 (one) to m:
i) Let C; be the j-th visible column of T for U.
ii) Let CN; be the <column name> of C;.

iii) Let XM.CN; be the result of applying the mapping defined in Subclause 5.1, “Mapping
SQL <identifier>s to XML Names”, to CN; using the fully escaped variant of the map-

ping.
iv) Let V; be the value of C;.
v) Case:
1) If V;is the null value and NULLS is absent, then XM_.G; is the zero-length string.

2) If VJ is the null value and NULLS is nil, then XML is
<XNLCNJ' xsi:nil="true" />

3) Otherwise:

A) Let XMV, be the result of applying the mapping defined in Subclause 5.16,
“Mapping SQL data values to XML”, to V.

B) XM.G; is
<XM_CNJ' >XM_VJ' </ XM_CNJ' >

Mappings 37

WG3:VIE-011 = H2-2002-013
5.12 Mapping an SQL Table to an XML Element

c¢) Let XML.R, be

<r ow>
XM.Cq

XM.Crn

</ row>

6) Let XMLTE be:

<XMLTN
XM_R;

XM_Rn
</ XNLTN>

7) XM.TE is the XML element that is the result of the application of this clause.

38 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

WG3:VIE-011 = H2-2002-013
5.13 Mapping an SQL Schema to an XML Element

5.13 Mapping an SQL Schema to an XML Element

Function

Define the mapping of an SQL schema to an XML element.

General Rules

1)

2)
3)

4)
5)

6)

7)

Let S be the schema provided for an application of this mapping. Let NULLS be the choice

of whether to map null values to absent elements (absent), or whether to map them to ele-
ments that are marked with xsi : ni | ="true" (nil). Let U be the authorization identifier that is
invoking this mapping.

Let SN be the <unqualified schema name> of S.

Let XMLSN be the result of applying the mapping defined in Subclause 5.1, “Mapping SQL
<identifier>s to XML Names”, to SN using the fully escaped variant of the mapping.

Let n be the number of visible tables of S for U.
For i ranging from 1 (one) to n:
a) Let T; be the i-th visible table of S for U.

b) Let XM.T; be the result of applying the mapping defined in Subclause 5.12, “Mapping an
SQL Table to an XML Element”, to 7; using NULLS as the choice of whether to map null
values to absent elements or elements that are marked with xsi: ni | ="true" and U as the
invoker of this mapping.

Let XM_SE be:

<XMLSN>
XMLT1

XM.Tp,
</ XNLSN>

XM_SE is the XML element that is the result of the application of this clause.

Mappings 39

WG3:VIE-011 = H2-2002-013
5.14 Mapping an SQL Catalog to an XML Element

5.14 Mapping an SQL Catalog to an XML Element

Function

Define the mapping of an SQL catalog to an XML element.

General Rules

1)

2)
3)

4)
5)

6)

7)

40

Let C be the catalog provided for an application of this mapping. Let NULLS be the choice

of whether to map null values to absent elements (absent), or whether to map them to ele-
ments that are marked with xsi: nil ="true" (nil). Let U be the authorization identifier that is
invoking this mapping.

Let CN be the <catalog name> of C.

Let XMLCN be the result of applying the mapping defined in Subclause 5.1, “Mapping SQL
<identifier>s to XML Names”, to CN using the fully escaped variant of the mapping.

Let n be the number of visible schemas of C for U.
For i ranging from 1 (one) to n:
a) Let S; be the i-th visible schema of C for U.

b) Let XM_S; be the result of applying the mapping defined in Subclause 5.13, “Mapping an
SQL Schema to an XML Element”, to S; using NULLS as the choice of whether to map null
values to absent elements or elements that are marked with xsi: ni | ="true" and U as the
invoker of this mapping.

Let XML_CE be:

<XM.CN>
XMLSq

XM_Sq,
</ XMLCN>

XM_CE is the XML element that is the result of the application of this clause.

(ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

WG3:VIE-011 = H2-2002-013
5.15 Mapping SQL data types to XML Schema data types

5.15 Mapping SQL data types to XML Schema data types

Function
Define the mapping of SQL data types to XML Schema data types.
Syntax Rules

None.

General Rules

1)
2)

3)

4)

5)

6)

7)

Let SQLT be the SQL data type in an application of this Subclause.

Let IM be the mapping of SQL <identifier>s to XML defined in Subclause 5.1, “Mapping SQL
<identifier>s to XML Names”.

Let TM be the implementation-defined mapping of character strings of SQL_TEXT to character
strings of Unicode.

Let xsd: be the XML namespace prefix to be used to identify the XML Schema namespace as
shown in Table 1, “Namespace variables and their URIs”.

Let sql xnl : be the XML namespace prefix to be used to identify the XML namespace as shown
in Table 1, “Namespace variables and their URIs”.

Hditor’s Note
The value of the sgl xm : namespace identifier may change. See Possible Problem | XML-001 |in
the Editor’s Notes

Let XMLT denote the representation of the XML Schema data type that is the mapping of SQLT
into XML. XWM.T is defined by the following rules.

Case:
a) If SQLT is a character string type, then:

i) Let SQLCS be the character set of SQLT. Let SQLCSN be the name of SQLCS. Let N
be the length or maximum length of SQLT.

ii) Let CSM be the implementation-defined mapping of strings of SQLCS to strings of
Unicode. Let MAXCSL be the maximum length in characters of Unicode of CSM(S), for
all strings S of length N of characters of SQLCS.

iii) Let NLI T and M.I T be XML Schema literals denoting N and MAXCSL, resepectively, in
the lexical representation of XML Schema type xsd: i nt eger.

iv) Case:
1) If the type designator of SQLT is CHARACTER, then:
A) Case:

I) If CSM is homomorphic, then let FACET be the XML text

<xsd: |l ength val ue="M.IT">

Mappings 41

WG3:VIE-011 = H2-2002-013
5.15 Mapping SQL data types to XML Schema data types

42

II) Otherwise, let FACET be the XML text

<xsd: maxLengt h val ue="M.IT">

B) It is implementation-dependent whether the XML text ANNT is the zero-length
string or given by

nane=" CHAR"

C) It is implementation-dependent whether the XML text ANNL is the zero-length
string or given by

| engt h="NLIT"
2) If the type designator of SQLT is CHARACTER VARYING, then:
A) Let FACET be the XML text

<xsd: maxLengt h val ue="M.IT">

B) It is implementation-dependent whether the XML text ANNT is the zero-length
string or given by

nanme=" VARCHAR"

C) It is implementation-dependent whether the XML text ANNL is the zero-length
string or given by

maxLengt h="NLI T"
3) If the type designator of SQLT is CHARACTER LARGE OBJECT, then:

A) Let FACET be the XML text

<xsd: maxLengt h val ue="M.IT">

B) It is implementation-dependent whether the XML text ANNT is the zero-length
string or given by
name="CLOB"
C) It is implementation-dependent whether the XML text ANNL is the zero-length
string or given by
maxLengt h="NLI T"
v) Let the XML text SQLCSNLI T be the result of mapping SQLCSN to Unicode using TM. It

is implementation-dependent whether the XML text ANNCS is the zero-length string or
given by

char act er Set Name="SQLCSNLI T"

vi) Let SQLCON be the name of the collation of SQLT. Let the XML text SQLCONLI T be
the result of mapping SQLCON to Unicode using TM. It is implementation-dependent
whether the XML text ANNCOis the zero-length string or given by

col I ati on="SQ.CONLI T"

(ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

vii)

viii)

WG3:VIE-011 = H2-2002-013
5.15 Mapping SQL data types to XML Schema data types

It is implementation-dependent whether the XML text ANN is the zero-length string or
given by

<xsd: annot at i on>
<xsd: appi nf o>
<sql xm : sql type ANNT ANNL ANNCS ANNCQO >
</ xsd: appi nf 0>
</ xsd: annot ati on>

XM.T is the XML Schema type defined by

<xsd: si npl eType>
ANN
<xsd:restriction base=xsd:string>
FACET
</xsd:restriction>
</ xsd: si npl eType>

b) If SQLT is a binary string type, then:

i)

ii)

iii)

iv)

V)

vi)

vii)

Let N be the maximum length of SQLT. Let NLI T be an XML Schema literal denoting N
in the lexical representation of the XML Schema type xsd: i nt eger.

It is implementation-dependent whether to encode a binary string in hex or base64.

Case:
1) If the encoding is in hex, then let EN be the XML text hexBi nary.
2) Otherwise, let EN be the XML text base64Bi nary.

Let FACET be the XML text

<xsd: maxLengt h val ue="NLI T" >

It is implementation-dependent whether the XML text ANNT is the zero-length string or
given by

nanme="BLOB"

It is implementation-dependent whether the XML text ANNL is the zero-length string or
given by

maxLengt h="NLI T"

It is implementation-dependent whether the XML text ANN is the zero-length string or
given by

<xsd: annot at i on>
<xsd: appi nf o>
<sqgl xm : sql t ype ANNT ANNL/ >
</ xsd: appi nf o>
</ xsd: annot ati on>

XM.T is the XML Schema type defined by

Mappings 43

WG3:VIE-011 = H2-2002-013
5.15 Mapping SQL data types to XML Schema data types

<xsd: si nmpl eType>
ANN
<xsd: restriction base="xsd:: EN'>
FACET
</xsd:restriction>
</ xsd: si npl eType>

® 1 subrule deleted.
¢) If the type designator of SQLT is NUMERIC or DECIMAL, then:

i) Let P be the precision of SQLT. Let PLI T be an XML Schema literal denoting P in the
lexical representation of the XML Schema type xsd: i nt eger. Let FACETP be the XML
text

<xsd:total Digits val ue="PLIT"/>

ii) Let S be the scale of SQLT. Let SLI T be an XML Schema literal denoting S in the lexical
representation of the XML Schema type xsd: i nt eger. Let FACETS be the XML text

<xsd:fractionDigits value="SLIT"/>

iii) Case:
1) If the type designator of SQLT is NUMERIC, then:

A) It is implementation-dependent whether the XML text ANNT is the zero-length
string or

nanme="NUVERI C'

B) It is implementation-dependent whether the XML text ANNP is the zero-length
string or

preci sion="PLIT"
2) If the type designator of SQLT is DECIMAL, then:

A) Tt is implementation-dependent whether the XML text ANNT is the zero-length
string or
nane="DECI MAL"

B) Let UP be the value of the <precision> specified in the <data type> used to
create the descriptor of SQLT. Let UPLI T be an XML Schema literal denoting
UP in the lexical representation of the XML Schema type xsd: i nteger. It is

implementation-dependent whether the XML text ANNP is the zero-length string
or

user Preci si on="UPLI T"

NOTE 7 — UP may be less than P, as specified in Syntax Rule 20) of Subclause 6.1,
"<data type>", in ISO/IEC 9075-2.

iv) It is implementation-dependent whether the XML text ANNS is the zero-length string or

preci sion="SLIT"

44 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

WG3:VIE-011 = H2-2002-013
5.15 Mapping SQL data types to XML Schema data types

v) It is implementation-dependent whether the XML text ANN is the zero-length string or

Vi)

<xsd: annot ati on>
<xsd: appi nf o>
<sql xm : sql type ANNT ANNP ANNS/ >
</ xsd: appi nf o>
</ xsd: annot ati on>

XM.T is the XML Schema type defined by

<xsd: si npl eType>
ANN
<xsd: restriction base="xsd: deci mal ">
FACETP
FACETS
</ xsd:restriction>
</ xsd: si npl eType>

d) If the type designator of SQLT is INTEGER, SMALLINT, or BIGINT, then:

1)

i)

ii)

Let MAX be the maximum value representable by SQLT. Let MAXLI T be an XML
Schema literal denoting MAX in the lexical representation of the XML Schema type
xsd: i nteger. Let FACETMAX be the XML text

<xsd: max!| ncl usi ve val ue="NMAXLI T"/ >

Let MIN be the minimum value representable by SQLT. Let M NLI T be an XML Schema
literal denoting MIN in the lexical representation of the XML Schema type xsd: i nt eger .

Let FACETM N be the XML text

<xsd: m nl ncl usi ve val ue="M NLI T"/ >
Case:

1) If the type designator of SQLT is INTEGER, then it is implementation-dependent
whether the XML text ANN is the zero-length string or

<xsd: annot ati on>
<xsd: appi nf 0>
<sqgl xm : sqgl type name="| NTECER"/ >
</ xsd: appi nf 0>
</ xsd: annot ati on>

2) If the type designator of SQLT is SMALLINT, then it is implementation-dependent

whether the XML text ANN is the zero-length string or

<xsd: annot ati on>
<xsd: appi nf o>
<sqgl xm : sqgl t ype name="SMALLI NT"/ >
</ xsd: appi nf o>
</ xsd: annot ati on>

3) If the type designator of SQLT is BIGINT, then it is implementation-dependent
whether the XML text ANN is the zero-length string or

<xsd: annot ati on>
<xsd: appi nf o>
<sqgl xm : sql type nane="BlI G NT"/ >
</ xsd: appi nf 0>
</ xsd: annot ati on>

Mappings 45

WG3:VIE-011 = H2-2002-013
5.15 Mapping SQL data types to XML Schema data types

iv) XM.T is the XML Schema type defined by

<xsd: si npl eType>

ANN
<xsd:restriction base="xsd:integer">

FACETNVAX
FACETM N

</ xsd:restriction>

</ xsd: si npl eType>

e) If SQLT is approximate numeric, then:

i) Let P be the binary precision of SQLT, let MINEXP be the minimum binary exponent
supported by SQLT, and let MAXEXP be the maximum binary exponent supported by
SQLT.

ii) Case:

iii)

1)

2)

If P is less than or equal to 24 binary digits (bits), MINEXP is greater than or equal
to -149, and MAXEXP is less than or equal to 104, then let the XML text TYPE be
float.

Otherwise, let the XML text TYPE be doubl e.

Case:

1

2)

3)

If the type designator of SQLT is REAL, then the XML text ANNUP is the zero-
length string, and it is implementation-dependent whether the XML text ANNT is the
zero-length string or

nane=" REAL"
If the type designator of SQLT is DOUBLE PRECISION, then the XML text ANNUP

is the zero-length string, and it is implementation-dependent whether the XML text
ANNT is the zero-length string or

name="DOUBLE PRECI S| ON'

Otherwise:

A) It is implementation-dependent whether the XML text ANNT is the zero-length
string or
name="FLOAT"

B) Let UP be the value of the <precision> specified in the <data type> used to
create the descriptor of SQLT. Let UPLI T be an XML Schema literal denoting
UP in the lexical representation of the XML Schema type xsd: i nteger. It is

implementation-dependent whether the XML text ANNUP is the zero-length string
or

user Preci si on="UPLI T"

NOTE 8 — UP may be less than P, as specified in Syntax Rule 20) of Subclause 6.1,
"<data type>", in ISO/IEC 9075-2.

46 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

WG3:VIE-011 = H2-2002-013
5.15 Mapping SQL data types to XML Schema data types

iv) Let PLI T be an XML Schema literal denoting P in the lexical representation of the XML

Schema type xsd: i nt eger. It is implementation-dependent whether the XML text ANNP
is the zero-length string or

preci sion="PLIT"

v) Let M NLI T be an XML Schema literal denoting MINEXP in the lexical representation of
the XML Schema type xsd: i nt eger. It is implementation-dependent whether the XML
text ANNM N is the zero-length string or

m nExponent ="M NLI T"

vi) Let MAXLI T be an XML Schema literal denoting MAXEXP in the lexical representation of

the XML Schema type xsd: i nt eger. It is implementation-dependent whether the XML
text ANNMAX is the zero-length string or

maxExponent =" MAXLI T"

vii) It is implementation-dependent whether the XML text ANN is the zero-length string or

<xsd: annot at i on>
<xsd: appi nf o>
<sql xm : sql type ANNT ANNP ANNUP ANNVAX ANNM N >
</ xsd: appi nf 0>
</ xsd: annot ati on>

viii) It is implementation-dependent whether XMLT is xsd: TYPEor the XML Schema type

g)

defined by

<xsd: si npl eType>
ANN
<xsd:restriction base="xsd: TYPE">
</ xsd:restriction>

</ xsd: si npl eType>

If the type designator of SQLT is BOOLEAN, then it is implementation-dependent whether
XML.T is xsd: bool ean or the XML Schema type defined by

<xsd: si npl eType>
<xsd: restriction base="xsd: bool ean">
<xsd: annot ati on>
<xsd: appi nf o>
<sqgl xm : sqgl t ype nanme="BOOLEAN'/
</ xsd: appi nf o>
</ xsd: annot ati on>
</ xsd:restriction>
</ xsd: si npl eType>

If the type designator of SQLT is DATE, then:

i) It is implementation-dependent whether the XML text ANNis the zero-length string or

<xsd: annot at i on>
<xsd: appi nf o>
<sql xm : sql t ype nane="DATE"/ >
</ xsd: appi nf o>
</ xsd: annot ati on>

Mappings 47

WG3:VIE-011 = H2-2002-013
5.15 Mapping SQL data types to XML Schema data types
i) XM.T is the XML Schema type defined by
<xsd: si npl eType>
ANN
<xsd: restriction base="xsd: date">
<xsd: pattern
val ue="\ p{Nd}{4}-\p{Nd} {2} -\ p{Nd}{2}"/ >

</ xsd:restriction>
</ xsd: si npl eType>

h) If SQLT is TIME WITHOUT TIME ZONE, then:

i) Let S be the <time fractional seconds precision> of SQLT. Let SLI T be an XML Schema
literal denoting S in the lexical representation of XML Schema type xsd: i nt eger.

ii) Case:

1) If S is greater than 0 (zero), then let the XML text FACETP be

<xsd: pattern val ue=
"\p{Nd}{2}:\p{Nd}{2}: \ p{Nd} {2} .\ p{Nd}{SLIT}"/ >

2) Otherwise, let the XML text FACETP be

<xsd: pattern val ue=
"\p{Nd}{2}:\ p{Nd}{2}:\p{Nd}{2}"/>

iii) It is implementation-dependent whether the XML text ANNT is the zero-length string or

name="TI ME"

iv) It is implementation-dependent whether the XML text ANNS is the zero-length string or
scal e="SLI T"

v) It is implementation-dependent whether the XML text ANN is the zero-length string or

<xsd: annot at i on>
<xsd: appi nf o>
<sqgl xm : sql t ype ANNT ANNS/ >
</ xsd: appi nf o>
</ xsd: annot ati on>

vi) XM.T is the XML Schema type defined by
<xsd: si npl eType>
ANN
<xsd:restriction base="xsd:tine">
FACETP

</ xsd:restriction>
</ xsd: si npl eType>

1) If SQLT is TIME WITH TIME ZONE, then:

i) Let S be the <time fractional seconds precision> of SQLT. Let SLI T be an XML Schema
literal denoting S in the lexical representation of XML Schema type xsd: i nt eger.

ii) Let the XML text TZ be
(+1-)\p{Nd} {2} :\ p{ Nd} {2}

48 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

iii)

iv)

V)

vi)

vii)

WG3:VIE-011 = H2-2002-013
5.15 Mapping SQL data types to XML Schema data types

Case:

1) If S is greater than O (zero), then let the XML text FACETP be

<xsd: pattern val ue=
“\p{Nd}{2}:\p{Nd}{2}:\ p{Nd}{2}.\p{Nd}{SLI T} TZ"/ >

2) Otherwise, let the XML text FACETP be

<xsd: pattern val ue=
"\p{Nd} {2} : \ p{Nd} {2} : \ p{ Nd} { 2} TZ"/ >

It is implementation-dependent whether the XML text ANNT is the zero-length string or
name="TI ME WTH Tl ME ZONE"

It is implementation-dependent whether the XML text ANNS is the zero-length string or
scal e="SLI T"

It is implementation-dependent whether the XML text ANN is the zero-length string or

<xsd: annot at i on>
<xsd: appi nf o>
<sqgl xm : sql t ype ANNT ANNS/ >
</ xsd: appi nf 0>
</ xsd: annot ati on>

XM.T is the XML Schema type defined by

<xsd: si npl eType>
ANN
<xsd: restriction base="xsd:tinme">
FACETP
</ xsd:restriction>
<xsd: si npl eType>

j) IfSQLT is TIMESTAMP WITHOUT TIME ZONE, then:

i)

ii)

iii)

iv)

Let S be the <time fractional seconds precision> of SQLT. Let SLI T be an XML Schema
literal denoting S in the lexical representation of XML Schema type xsd: i nt eger.

Let the XML text DATE be
\ p{Nd} {4} -\ p{Nd} {2} -\ p{Nd} {2}
Case:

1) If S is greater than O (zero), then let the XML text FACETP be

<xsd: pattern val ue=
"DATET\ p{ Nd} {2} : \ p{Nd} {2} : \ p{ Nd} {2} . \ p{ Nd} { SLI T} "/ >

2) Otherwise, let the XML text FACETP be

<xsd: pattern val ue=
"DATET\ p{Nd} {2} : \ p{Nd} {2} : \ p{ Nd} {2} "/ >

It is implementation-dependent whether the XML text ANNT is the zero-length string or
name="TI MESTAMP"

Mappings 49

WG3:VIE-011 = H2-2002-013
5.15 Mapping SQL data types to XML Schema data types

V)

Vi)

vii)

It is implementation-dependent whether the XML text ANNS is the zero-length string or
scal e="SLIT"

It is implementation-dependent whether the XML text ANN is the zero-length string or

<xsd: annot ati on>
<xsd: appi nf o>
<sql xm : sql t ype ANNT ANNS/ >
</ xsd: appi nf o>
</ xsd: annot at i on>

XM.T is the XML Schema type defined by

<xsd: si npl eType>
ANN
<xsd: restriction base="xsd: dateTi ne">
FACETP
</xsd:restriction>
</ xsd: si npl eType>

k) If SQLT is TIMESTAMP WITH TIME ZONE, then:

i)

ii)

iii)

iv)

V)

Vi)

vii)

Let S be the <time fractional seconds precision> of SQLT. Let SLI T be an XML Schema
literal denoting S in the lexical representation of XML Schema type xsd: i nt eger.

Let the XML text DATE be

\ p{Nd} {4} -\ p{Nd} {2} -\ p{ Nd} { 2}
Let the XML text TZ be
(+-)Vp{Nd}{2}:\ p{Nd}{2}
Case:

1) If S is greater than 0 (zero), then let the XML text FACETP be

<xsd: pattern val ue=
"DATET\ p{ Nd} {2} : \ p{ Nd} {2} : \ p{ Nd} { 2} . \ p{ Nd} { SLI T} TZ"/ >

2) Otherwise, let the XML text FACETP be

<xsd: pattern val ue=
" DATET\ p{ Nd} {2} : \ p{ Nd} { 2} : \ p{ Nd} { 2} TZ"/ >
It is implementation-dependent whether the XML text ANNT is the zero-length string or
name="TlI MESTAVP W TH TI ME ZONE"

It is implementation-dependent whether the XML text ANNS is the zero-length string or
scal e="SLI T"

It is implementation-dependent whether the XML text ANN is the zero-length string or

<xsd: annot ati on>
<xsd: appi nf o>
<sql xm : sql t ype ANNT ANNS/ >
</ xsd: appi nf 0>
</ xsd: annot ati on>

50 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

WG3:VIE-011 = H2-2002-013
5.15 Mapping SQL data types to XML Schema data types

viii) XM.T is the XML Schema type defined by

<xsd: si npl eType>

ANN
<xsd: restriction base="xsd: dateTi ne">

FACETP

</ xsd:restriction>

</ xsd: si npl eType>

1) If the type designator of SQLT is INTERVAL, then:

i) Let P be the <interval leading field precision> of SQLT. Let PLI T be an XML Schema
literal for P in the XML Schema type xsd: i nteger. It is implementation-dependent
whether the XML text ANNP is the zero-length string or

i)

iii)

| eadi ngPreci si on="PLI T"

Case:

1

2)

If the <end field> or <single datetime field> of SQLT specifies SECOND, then let
S be the <interval fractional seconds precision> of SQLT, and let SLI T be an XML
Schema literal for S in the XML Schema type xsd: i nt eger. Let the XML text SECS
be

\p{Nd} {2} .\ p{Nd}{SLIT}S

It is implementation-dependent whether the XML text ANNS is the zero-length string
or

scal e="SLI T"

Otherwise, let the XML text ANNS be the zero-length string, and let the XML text
SECS be

\p{Nd} {2} S

Case:

1)

2)

If SQLT is INTERVAL YEAR then:

A) Let the XML text FACETP be
<xsd: pattern val ue="-?P\p{Nd}{PLI T} Y"/>

B) It is implementation-dependent whether the XML text ANNT is the zero-length
string or

name="| NTERVAL YEAR'
If SQLT is INTERVAL YEAR TO MONTH then:

A) Let the XML text FACETP be
<xsd: pattern val ue="-?P\p{Nd}{PLI T}Y\ p{Nd} {2} M'/ >

B) It is implementation-dependent whether the XML text ANNT is the zero-length
string or

name="| NTERVAL YEAR TO MONTH'

Mappings 51

WG3:VIE-011 = H2-2002-013
5.15 Mapping SQL data types to XML Schema data types

3) If SQLT is INTERVAL MONTH then:
A) Let the XML text FACETP be

<xsd: pattern val ue="-?P\p{Nd}{PLI T} M'/ >

B) It is implementation-dependent whether the XML text ANNT is the zero-length
string or

name="| NTERVAL MONTH'
4) If SQLT is INTERVAL DAY then:
A) Let the XML text FACETP be
<xsd: pattern val ue="-?P\p{Nd}{PLIT} D"/ >

B) It is implementation-dependent whether the XML text ANNT is the zero-length
string or

name="| NTERVAL DAY"
5) If SQLT is INTERVAL DAY TO HOUR then:
A) Let the XML text FACETP be
<xsd: pattern val ue="-?P\ p{Nd} { PLI T} DT\ p{ Nd} { 2} H'/ >

B) It is implementation-dependent whether the XML text ANNT is the zero-length
string or

name="| NTERVAL DAY TO HOUR'
6) If SQLT is INTERVAL DAY TO MINUTE then:

A) Let the XML text FACETP be

<xsd: pattern val ue=
"-?P\ p{Nd}{PLI T} DT\ p{ Nd} { 2} H\ p{ Nd} {2} M'/ >

B) It is implementation-dependent whether the XML text ANNT is the zero-length
string or

name="| NTERVAL DAY TO M NUTE"
7) If SQLT is INTERVAL DAY TO SECOND then:

A) Let the XML text FACETP be

<xsd: pattern val ue=
"-?P\ p{ Nd} { PLI T} DT\ p{ Nd} { 2} H\ p{ Nd} { 2} MSECSS"/ >

B) It is implementation-dependent whether the XML text ANNT is the zero-length
string or

name="| NTERVAL DAY TO SECOND'
8) If SQLT is INTERVAL HOUR then:

A) Let the XML text FACETP be
<xsd: pattern val ue="-?PT\ p{Nd}{PLI T} H'/ >

52 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

9)

10)

11)

12)

13)

WG3:VIE-011 = H2-2002-013
5.15 Mapping SQL data types to XML Schema data types

B) It is implementation-dependent whether the XML text ANNT is the zero-length
string or

name="| NTERVAL HOUR'
If SQLT is INTERVAL HOUR TO MINUTE then:

A) Let the XML text FACETP be

<xsd: pattern val ue=
"-?PT\ p{Nd} { PLI T} HA p{ Nd} { 2} M"/ >

B) It is implementation-dependent whether the XML text ANNT is the zero-length
string or

name="| NTERVAL HOUR TO M NUTE"
If SQLT is INTERVAL HOUR TO SECOND then:

A) Let the XML text FACETP be

<xsd: pattern val ue=
" - 2PT\ p{ Nd} { PLI T} H\ p{ Nd} { 2} MBECSS" / >

B) It is implementation-dependent whether the XML text ANNT is the zero-length
string or

name="1 NTERVAL HOUR TO SECOND"
If SQLT is INTERVAL MINUTE then:
A) Let the XML text FACETP be

<xsd: pattern val ue="-?PT\ p{Nd}{PLI T} M'/ >

B) It is implementation-dependent whether the XML text ANNT is the zero-length
string or

name="1 NTERVAL M NUTE"
If SQLT is INTERVAL MINUTE TO SECOND then:

A) Let the XML text FACETP be
<xsd: pattern val ue="-?PT\ p{ Nd} { PLI T} MSECSS"/ >

B) It is implementation-dependent whether the XML text ANNT is the zero-length
string or

name="1 NTERVAL M NUTE TO SECOND"
If SQLT is INTERVAL SECOND then:

A) Let the XML text FACETP be
<xsd: pattern val ue="-?PTSECSS"/ >

B) It is implementation-dependent whether the XML text ANNT is the zero-length
string or

name="1 NTERVAL SECOND"

Mappings 53

WG3:VIE-011 = H2-2002-013
5.15 Mapping SQL data types to XML Schema data types

iv) It is implementation-dependent whether the XML text ANN is the zero-length string or

<xsd: annot ati on>
<xsd: appi nf o>
<sqgl xm : sql type ANNT ANNP ANNS/ >
</ xsd: appi nf o>
</ xsd: annot ati on>

v) XM.T is the XML Schema type defined by

<xsd: si npl eType>
ANN
<xsd: restriction base="xsd: duration">
FACETP
</xsd:restriction>
</ xsd: si npl eType>

8) XM.T defines the mapping of SQLT into XML.

54 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

WG3:VIE-011 = H2-2002-013
5.16 Mapping SQL data values to XML

5.16 Mapping SQL data values to XML

Function
Define the mapping of nonnull SQL data values to XML.
Syntax Rules

None.

General Rules

1)

2)

3)
4)

5)

6)

Let SQLV be the SQL data value in an application of this Subclause. Let SQLT be the SQL
data type of SQLV.

Let XMLT be the XML Schema type obtained by mapping SQLT using the Rules of Sub-
clause 5.15, “Mapping SQL data types to XML Schema data types”.

Let M be the implementation-defined maximum length of variable-length character strings.

Let CV be the result of
CAST (SQLV AS CHARACTER VARYI NG(M)

Let CSM be the implementation-defined mapping of the default character set of CHARACTER
VARYING to Unicode.

Case:

a)

b)

If SQLT is a character string type, then let CS be the character set of SQLT. Let XMV be the
result of mapping SQLV to Unicode using the implementation-defined mapping of character
strings of CS to Unicode.

If SQLT is a binary string type, then

Case:
i) If XML.T encodes a binary string in hex, then let XM_V be the hex encoding of SQLV.

ii) Otherwise, let XMLV be the base64 encoding of SQLV.

® 1 subrule deleted.

c)

d)

e)

If SQLT is a numeric type, then let XMLV be the result of mapping CV to Unicode using
CSM.

If SQLT is a BOOLEAN, then let TEMP be the result of

LOAER (CQV)

Let XMLV be the result of mapping TEMP to Unicode using CSM.
If SQLT is DATE, then let TEMP be the result of

SUBSTRI NG (CV FROM 6 FCR 10)

Let XMV be the result of mapping TEMP to Unicode using CSM.

Mappings 55

WG3:VIE-011 = H2-2002-013
5.16 Mapping SQL data values to XML

f) If SQLT specifies TIME, then:
i) Let P be the <time fractional seconds precision> of SQLT.
ii) If P is 0 (zero), then let @ be 0 (zero); otherwise, let @ be P + 1 (one).
iii) If SQLT specifies WITH TIME ZONE, then let Z be 6; otherwise, let Z be 0 (zero).

iv) Let TEMP be the result of
SUBSTRING (CV FROM 6 FOR 8 + Q + 2)

v) Let XMV be the result of mapping TEMP to Unicode using CSM.
g) If SQLT specifies TIMESTAMP, then:
i) Let P be the <timestamp fractional seconds precision> of SQLT.
ii) If P is O (zero), then let @ be 0 (zero); otherwise, let @ be P + 1 (one).
iii) If SQLT specifies WITH TIME ZONE, then let Z be 6; otherwise, let Z be 0 (zero).

iv) Let TEMP be the result of

SUBSTRI NG (CV FROM 11 FCR 10)
H SLBSTRING(CV FROM 22 FOR 8 + Q + 2)
v) Let XMLV be the result of mapping TEMP to Unicode using CSM.
h) If SQLT specifies INTERVAL, then:

i) If SQLYV is negative, then let SIGN be ' -’ (a character string of length 1 (one) consisting
of <minus sign>); otherwise, let SIGN be the zero-length string.

ii) Let SQLVA be ABS(SQLV).
iii) Let CVA be the result of
CAST (SQLVA AS CHARACTER VARYI NG(M)
iv) Let L be the <interval leading field precision> of SQLT.
v) Let P be the <interval fractional seconds precision> of SQLT, if any.
vi) If Pis O (zero), then let @ be 0 (zero); otherwise, let @ be P + 1 (one).
vii) Case:

1) If SQLT is INTERVAL YEAR, then let TEMP be the result of
SIGN || 'P || SUBSTRING (CVA FROM 10 FOR L) || 'Y

2) If SQLT is INTERVAL YEAR TO MONTH, then let TEMP be the result of
SIGN || 'P

|| SUBSTRING (CVA FROM 10 FOR L) || 'Y
|| SUBSTRING (CVA FROM 11 + L FOR 2) || 'M

56 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

WG3:VIE-011 = H2-2002-013
5.16 Mapping SQL data values to XML
3) If SQLT is INTERVAL MONTH, then let TEMP be the result of

SIGN || 'P
|| SUBSTRING (CVA FROM 10 FOR L) || 'M

4) If SQLT is INTERVAL DAY, then let TEMP be the result of

SIN || P
|| SUBSTRING (CVA FROM 10 FOR L) || ' D

5) If SQLT is INTERVAL DAY TO HOUR, then let TEMP be the result of
SIGN || 'P

|| SUBSTRING (CVA FROM 10 FOR L) || ' DT
|| SUBSTRING (CVA FROM 11 + L FOR 2) || 'H

6) If SQLT is INTERVAL DAY TO MINUTE, then let TEMP be the result of

SIGN || 'P
|| SUBSTRING (CVA FROM 10 FOR L) || ' DT
|| SUBSTRING (CVA FROM 11 + L FOR 2) || 'H
|| SUBSTRING (CVA FROM 14 + L FOR 2) || 'M

7) If SQLT is INTERVAL DAY TO SECOND, then let TEMP be the result of

SIN || P
SUBSTRI NG (CVA FROM 10 FOR L) || ’ DT’
SUBSTRING (CVA FROM 11 + L FOR 2) || 'H
SUBSTRI NG (CVA FROM 14 + L FOR 2) ||

I

I
|
|| SUBSTRING (CVA FROM 17 + L FOR 2 + Q

| 'S
8) If SQLT is INTERVAL HOUR, then let TEMP be the result of

SIGN || 'PT
|| SUBSTRING (CVA FROM 10 FOCR L) || 'H

9) If SQLT is INTERVAL HOUR TO MINUTE, then let TEMP be the result of
SIGN || 'PT

|| SUBSTRING (CVA FROM 10 FOR L) || 'H
|| SUBSTRING (CVA FROM 11 + L FOR 2) || 'M

10) If SQLT is INTERVAL HOUR TO SECOND, then let TEMP be the result of
SIGN || ' PT
SUBSTRI NG (CVA FROM 10 FOR L) || ' H

|
|| SUBSTRING (CVA FROM 11 + L FOR 2) || 'M
|| SUBSTRING (CVA FROM 14 + L FOR2 + Q || 'S

11) If SQLT is INTERVAL MINUTE, then let TEMP be the result of

SIGN || ' PT
|| SUBSTRING (CVA FROM 10 FOR L) || 'M

12) If SQLT is INTERVAL MINUTE TO SECOND, then let TEMP be the result of

SIGN || 'PT
|| SUBSTRING (CVA FROM 10 FOR L) || 'M
|| SUBSTRING (CVA FROM11 + L FOR2 + Q || 'S

13) If SQLT is INTERVAL SECOND, then let TEMP be the result of

SIGN || ' PT
|| SUBSTRING (CVA FROM 10 FORL + Q || 'S

Mappings 57

WG3:VIE-011 = H2-2002-013
5.16 Mapping SQL data values to XML

viii) Let XMLV be the result of mapping TEMP to Unicode using CSM.

7) XMV is the result of mapping SQLV to XML.

Editor’s Note
These rules do not handle the escaping of the reserved symbols such as <less than operator>, which
might be done using either entities (such as & t;) or by escaping the entire string using CDATA. See

Possible Problem [XML-005 | in the Editor’s Notes.

58 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

WG3:VIE-011 = H2-2002-013
5.17 Mapping XML Names to SQL <identifier>s

5.17 Mapping XML Names to SQL <identifier>s

Function
Define the mapping of XML Names to SQL <identifier>s.
Syntax Rules

None.

General Rules

1)

2)

3)

4)

Let XMLN be an XML Name in an application of this Subclause. XM_N is a sequence of Unicode
characters. Let N be the number of characters in XMLN. Let X, X9 , ..., Xy be the characters of
XMLN in order from right to left.

Let the N Unicode character strings Uy, Uy, . .., Uy be defined as follows:

If U;, 1 (one) < i < N, has not yet been determined, then

Case:

a) If X, =’ _’ (an <underscore>), and X;,1 =’ x’, and each of X;,o, X;,3, %14, and X;,5 are all
<hexit>s, and X;,4 =’ _’, then
Case:

i) Ifi =1 (one) and X3, X4, X5, and Xg are all ' F | then let Uy, Uy, Us, Uy, Us, Ug, and Uy
be the zero-length string.

ii) If the Unicode codepoint U+X; 9X;,3X;,4X;,5 is a valid Unicode character UC, then let
U; be the character string of length 1 (one) whose character is UC and let U, 1, Ui 9, U3,
Uir4, Uiy5, and U, g be the zero-length string.

iii) Otherwise, U;, U1, Uiro, Uiys, Uisg, Uis, and U;, g are implementation-defined.

b) If X; =’ _’ (an <underscore>), and X;,1 =’ x’, and each of X; 2, Xi+3, Xi+4> X455 Xi+6> Xi+7> Xi+8>
and X9, are all <hexit>s, and X;,19 =’ _’, then
Case:

i) If the Unicode codepoint U+X; 90X, ,3X;,4X;15 X;16X;+7X;+8X;+9 1s a valid Unicode charac-
ter UC, then let U; be the character string of length 1 (one) whose character is UC and
let Uy1, Uiy, Uiess Uirds Uirss Uires U7, Uirs, Uirg, and Uii19, be the zero-length string.

1)) Otherwise, Uj, U1, Uiy, Uirs, Yird, Uirs, Uire, Uie7, Uirs, Uirg, and Ui, g0 are implementation-
defined.

¢) Otherwise, let U; be the character string of length 1 (one) whose character is X;.

Let U be the Unicode character string constructed by concatenating every U;, 1 (one) < i < N,
in order by i.

Let SQLI be the SQL_TEXT character string obtained by mapping the Unicode character string
U to SQL_TEXT using the implementation-defined mapping of Unicode to SQL_TEXT. If SQLI
can not be mapped to SQL_TEXT, then an exception condition is raised: SQL/XML mapping
error — unmappable XML Name.

Mappings 59

WG3:VIE-011 = H2-2002-013
5.17 Mapping XML Names to SQL <identifier>s

5) The SQL <identifier> that is the mapping of XMLN is the <delimited identifier> " SQLI ".

60 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

6 The SQL/XML XML Schema

WG3:VIE-011 = H2-2002-013

6.1 The SQL/XML XML Schema

Function

Define the contents of the XML Schema for SQL/XML.
Syntax Rules

1) The contents of the SQL/XML XML Schema are:

<?xm version="1.0"7?>

<xsd: schema

xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"

tar get NaneSpace="htt p: // ww. i so- st andar ds. net/ 9075/ 2001/ 12/ sql xm "

xm ns: sqgl xm ="http://ww.iso-standards. net/nra/ 9075/ 2001/ 12/ sqgl xm ">
<xsd: annot ati on>

<xsd: docunent ati on>

1 SO'| EC 9075-14: 2003 (SQ./ XM.)

Thi s docunent contains definitions of types and
annotations as specified in |1SOIEC 9075-14: 200n.
</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: si npl eType nanme="t ypeKeywor d" >

<xsd:restriction base="xsd:string">
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:
<xsd:

enuner at i
enuner at i
enuner at i
enuner at i
enuner at i
enuner at i
enuner at i
enuner at i
enuner at i
enuner at i
enuner at i
enuner at i
enuner at i
enuner at i
enuner at i
enuner at i
enuner at i
enuner at i
enuner at i
enuner at i
enuner at i
enuner at i
enuner at i
enuner at i
enuner at i
enuner at i
enuner at i
enuner at i
enuner at i
enuner at i

on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on

val ue="CHAR"/ >

val ue="VARCHAR"/ >

val ue="CLOB"/ >
val ue="BLOB"/ >

val ue="NUMERI C'/ >
val ue="DECI MAL"/ >
val ue="1 NTEGER"/ >
val ue="SVALLI NT"/ >

val ue="BlI G NT"/ >

val ue="FLOAT"/ >
val ue="REAL"/ >

val ue="DOUBLE PRECI SI ON'/ >
val ue="BOOLEAN"/ >

val ue="DATE"/ >
val ue="TI ME"/ >

val ue="TIME WTH Tl ME ZONE"/ >
val ue="TI MESTAMP" [>
val ue="TI MESTAMP W TH Tl ME ZONE"/ >

val ue="1 NTERVAL
val ue="1 NTERVAL
val ue="1 NTERVAL
val ue="1 NTERVAL
val ue="1 NTERVAL
val ue="1 NTERVAL
val ue="1 NTERVAL
val ue="1 NTERVAL
val ue="1 NTERVAL
val ue="1 NTERVAL
val ue="1 NTERVAL
val ue="1 NTERVAL

YEAR'/ >

YEAR TO MONTH'/ >
MONTH'/ >

DAY" | >

DAY TO HOUR'/ >
DAY TO M NUTE"/ >
DAY TO SECOND'/ >
HOUR'/ >

HOUR TO M NUTE"/ >
HOUR TO SECOND'/ >
M NUTE"/ >

M NUTE TO SECOND'/ >

The SQL/XML XML Schema

61

WG3:VIE-011 = H2-2002-013
6.1 The SQL/XML XML Schema

<xsd: enuner ati on val ue="1 NTERVAL SECOND'/ >
</ xsd:restriction>
</ xsd: si npl eType>

<xsd: el ement nanme="sql type">
<xsd: conpl exType>

<xsd:attribute name="nane"
type="sql xm : t ypeKeywor d"/ >

<xsd: attribute nane="|ength" type="xsd:integer"
m nCccurs="0"/>

<xsd: attribute nane="naxLength"
type="xsd:integer" mnGCccurs="0"/>

<xsd:attribute name="charact er Set Nane"
type="xsd: string" mnCccurs="0"/>

<xsd:attribute nanme="collation" type="xsd:string"
m nCccurs="0"/>

<xsd: attribute nane="precision" type="xsd:integer"
m nCccurs="0"/>

<xsd: attribute nane="scal " type="xsd:integer"
m nCccurs="0"/>

<xsd: attribute nane="naxExponent"
type="xsd:integer" mnCccurs="0"/>

<xsd: attribute nane="ni nExponent"
type="xsd:integer" minGCccurs="0"/>

<xsd:attribute name="userPrecision"
type="xsd:integer" minGCccurs="0"/>

<xsd: attribute nane="| eadi ngPreci si on"
type="xsd:integer" minGCccurs="0"/>

</ xsd: conpl ext Type>
</ xsd: el enent >

<xsd: si npl eType nane="obj ect Type" >
<xsd:restriction base="xsd:string">
<xsd: enuneration val ue="CATALOG' />
<xsd: enunerati on val ue=" SCHENVA" />
<xsd: enuneration val ue="BASE TABLE" />
<xsd: enuneration val ue="VI EWED TABLE" />
<xsd: enuner ati on val ue="CHARACTER SET" />
<xsd: enuneration val ue=" COLLATI ON' />
</ xsd:restriction>
</ xsd: si npl eType>

<xsd: el ement nane="sql nane" >
<xsd: conmpl exType>
<xsd:attribute nane="type"
type="sql xm : obj ect Type" use="required" />
<xsd: attribute name="cat al ogNane"
type="xsd:string" />
<xsd:attribute nanme="schenaNane"
type="xsd:string" />
<xsd:attribute name="1ocal Nane"
type="xsd:string" />
</ xsd: conpl exType>
</ xsd: el enent >

</ xsd: schema>

=Fditor s INote™

The value of the sql xnl : namespace identifier may change. See Possible Problem | XML-001 |

Editor’s Note
The publication date of this part must be supplied in the annotation in the sql xm : namespace in
two places. See Possible Problem [XML-003 |.

62 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

WG3:VIE-011 = H2-2002-013
6.1 The SQL/XML XML Schema

General Rules

None.

Editor’s Note
Which is normative, Clause 6, “The SQL/XML XML Schema”, or the actual URL that defines this
namespace on-line? If it is the URL, should this clause be downgraded to an informative Annex?

If the clause or annex is modified by a TC, is the URL or its contents also changed? See Possible
Problem [XML-004 | in the Editor’s Notes.

The SQL/XML XML Schema 63

WG3:VIE-011 = H2-2002-013

64 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

7 Status codes

WG3:VIE-011 = H2-2002-013

This Clause modifies Clause 23, "Status codes", in ISO/IEC 9075-2.

7.1 SQLSTATE

This Subclause modifies Subclause 23.1, "SQLSTATE", in ISO/IEC 9075-2.

Table 2, “SQLSTATE class and subclass values”, modifies Table 35, "SQLSTATE class and subclass
values", in ISO/IEC 9075-2.

Table 2—SQLSTATE class and subclass values

Category| Condition Class Subcondition Subclass
X SQL/XML mapping error ON (no subclass) 000
unmappable XML Name 001

Status codes 65

WG3:VIE-011 = H2-2002-013

66 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

WG3:VIE-011 = H2-2002-013

8 Conformance

This Clause modifies Clause 24, "Conformance", in ISO/IEC 9075-2.
- to be defined -

Conformance 67

WG3:VIE-011 = H2-2002-013

68 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

WG3:VIE-011 = H2-2002-013

Annex A
(informative)

SQL Conformance Summary

This Annex modifies Appendix A, "SQL Conformance Summary", in ISO/IEC 9075-2.
- to be supplied -

SQL Conformance Summary 69

WG3:VIE-011 = H2-2002-013

70 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

WG3:VIE-011 = H2-2002-013

Annex B
(informative)

Implementation-defined elements

This Annex modifies Appendix B, "Implementation-defined elements", in ISO/IEC 9075-2.

This Annex references those features that are identified in the body of this part of ISO/IEC 9075 as
implementation-defined.

The term implementation-defined is used to identify characteristics that may differ between SQL-
implementations, but shall be defined.

1) Subclause 4.2.1, “Mapping SQL character sets to Unicode”:
a) The mapping of an SQL character set to Unicode is implementation-defined.
2) Subclause 4.2.9, “Mapping Unicode to SQL character sets”:

a) The mapping of Unicode to a character set in the SQL-environment is implementation-
defined.

3) Subclause 5.1, “Mapping SQL <identifier>s to XML Names”:

a) If S is a character in an SQL <identifier> SQLI and S has no mapping to Unicode, then the
mapping of S to create an XML Name corresponding to SQLI is implementation-defined.

4) Subclause 5.17, “Mapping XML Names to SQL <identifier>s”:

a) The treatment of an escape sequence of the form _xNNNN_ or _xNNNNNNNN_ whose correspond-
ing Unicode code point U+NNNN or U+NNNNNNNN is not a valid Unicode character is
implementation-defined.

Implementation-defined elements 71

WG3:VIE-011 = H2-2002-013

72 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

WG3:VIE-011 = H2-2002-013

Annex C
(informative)

Implementation-dependent elements

This Annex modifies Appendix C, "Implementation-dependent elements", in ISO/IEC 9075-2.

This Annex references those features that are identified in the body of this part of ISO/IEC 9075 as
implementation-dependent.

The term implementation-dependent is used to identify characteristics that may differ between
SQL-implementations, but are not necessarily specified for any particular SQL-implementation.

1) Subclause 5.15, “Mapping SQL data types to XML Schema data types”:
a) All annotations are implementation-dependent.
b) It is implementation-dependent whether to encode a binary string in hex or base64.

®] list element.

Implementation-dependent elements 73

WG3:VIE-011 = H2-2002-013

74 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

WG3:VIE-011 = H2-2002-013

Annex D
(informative)

SQL feature and package taxonomy

This Annex modifies Appendix F, "SQL feature and package taxonomy", in ISO/IEC 9075-2.
- to be supplied -

SQL feature and package taxonomy 75

Index

Index entries appearing in boldface indicate the page where the word, phrase, or BNF nonterminal was defined; index entries
appearing in italics indicate a page where the BNF nonterminal was used in a Format; and index entries appearing in roman
type indicate a page where the word, phrase, or BNF nonterminal was used in a heading, Function, Syntax Rule, Access Rule,

General Rule, Leveling Rule, Table, or other descriptive text.

— A —
all+8, 9, 10, 11, 13, 26, 27, 29, 34, 35, 41, 59, 71
annotation « 8, 9, 10, 11, 23, 25, 27, 43, 45, 47, 48,
49, 50, 54, 62, 73
appinfo « 23, 25, 27, 43, 45, 47, 48, 49, 50, 54

— B —
base«1, 3, 9, 10, 18, 20, 23, 35, 36, 43, 44, 45, 46,
47, 48, 49, 50, 51, 54, 55, 62, 73
base64Binary « 9, 43
BIGINT 9, 31, 45, 62
BINARY LARGE OBJECT ¢ 9, 30
boolean * 9, 47
BOOLEAN « 9, 31, 47, 55, 62

—C —
C0-13
Cl.3,13
CAST « 55, 56
<cast specification>« 10
catalogName 23, 25, 27, 62
<catalog name>+ 16, 18, 20, 22, 23, 25, 27, 40
CHARACTER « 29, 30, 35
CHARACTER LARGE OBJECT » 29, 30
character set+7, 8, 9, 11, 22, 29, 35, 41, 55, 71
characterSetName « 42, 62
<character set name> ¢ 22
CHARACTER VARYING - 29, 30
codepoint « 59
<collation name> ¢ 23
<colon>+38, 13, 14
<column name>+ 22, 37
complexType ¢ 24, 26, 27, 62

—D—
data type * 7, 8, 10, 16, 18, 20, 22, 24, 25, 26, 27,
28, 29, 34, 35, 36, 41, 44, 46, 55
<data type> « 44, 46
data value « 7, 10, 55
date * 3, 9, 32, 48, 50, 51, 62
DATE « 9, 32, 47, 55, 62
dateTime ¢ 9, 50, 51
DAY « 52, 57, 62

decimal « 8, 9, 11, 44, 45, 46
DECIMAL 9, 30, 44, 62
<delimited identifier> ¢ 60
Digit » 14, 44

<digit>+ 13, 14
documentation * 62

double < 9, 46

DOUBLE « 9, 31, 46, 62
duration* 9, 54

—E —
Editor's Note ¢ 7, 17, 24, 41, 58, 62, 63
element -5, 10, 11, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 27, 37, 38, 39, 40, 62, 71, 73
encoding * 8, 13, 14, 43, 55
<end field>« 32, 51
entities « 8, 58
enumeration ¢ 62
exponent e 9, 46
Extender ¢ 14

—F —
facete8, 9
float« 9, 46
FLOAT » 9, 31, 46, 62
FOR ¢ 55, 56, 57
fractionDigits « 44
FROM ¢ 55, 56, 57
fully escaped « 8, 11, 13, 14, 15, 16, 18, 20, 22, 23,
25, 27, 37, 39, 40

—H —
hexBinary ¢ 9, 43
<hexit> ¢ 59
homomorphic ¢ 8, 9, 29, 35, 41
HOUR « 52, 53, 57, 62

1 —
<identifier>+ 7, 8, 11, 13, 15, 41, 59, 60, 71
implementation-defined « 8, 11, 13, 29, 35, 41, 55, 59,
71
implementation-dependent « 8, 9, 23, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54, 73
importe 17, 19, 21

Index

71

WG3:VIE-011 = H2-2002-013

integer « 8, 9, 29, 30, 31, 32, 35, 41, 43, 44, 45, 46,
47, 48, 49, 50, 51, 62

INTEGER ¢ 9, 30, 45, 62

INTERVAL « 32, 51, 52, 53, 56, 57, 62

<interval fractional seconds precision>+ 32, 51, 56

<interval leading field precision> 32, 51, 56

—L—

LARGE 8, 9, 29, 30, 42

leadingPrecision ¢ 51, 62

length 8, 9, 22, 23, 25, 27, 29, 30, 34, 35, 37, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
54, 55, 56, 59, 62

<less than operator> * 58

Letter « 14

lexical representation 29, 30, 31, 32, 35, 41, 43, 44,
45, 46, 47, 48, 49, 50

literal 29, 30, 31, 32, 35, 41, 43, 44, 45, 46, 47, 48,
49, 50, 51

localName ¢ 23, 62

M —
maxExponent » 47, 62
maxlInclusive ¢ 9, 45
maxLength « 9, 35, 42, 43, 62
maxOccurs « 24
minExponent « 47, 62
mininclusive ¢ 9, 45
minOccurs « 22, 24, 62
<minus sign> ¢ 14, 56
MINUTE » 52, 53, 57, 62
MONTH « 51, 52, 56, 57, 62

—N —

name 4, 7, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 29, 33, 34, 35, 36, 37, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
62, 63

Name <4, 5, 7, 8, 11, 13, 14, 15, 17, 19, 21, 23, 25,
27, 29, 34, 35, 42, 59, 62, 65, 71

NameChar ¢ 5, 14

namespace * 7, 16, 17, 18, 19, 20, 21, 41, 62, 63

nil » 10, 11, 16, 17, 18, 19, 20, 21, 22, 25, 27, 37, 39,
40

noNamespaceSchemalocation » 17, 19, 21

<non-second primary datetime field> ¢ 32

NUMERIC ¢ 9, 30, 44, 62

— 0 —
OBJECT ¢ 8, 9, 29, 30, 42
objectType ¢ 62

—P—
Part1+3,4,5
Part 14 «5
Part 2.3, 4
partially escaped ¢ 8, 11, 13
pattern « 9, 48, 49, 50, 51, 52, 53
<period> « 14, 15
plain text mapping « 8

precision « 9, 30, 31, 32, 44, 46, 47, 48, 49, 50, 51,
56, 62

PRECISION « 9, 31, 46, 62

<precision> « 44, 46

prefixe 7, 8, 41

—Q—

<qualified identifier>« 16, 22, 23, 25, 37

—R—

REAL « 9, 31, 46, 62

required 7, 62

restriction « 8, 35, 36, 43, 44, 45, 46, 47, 48, 49, 50,
51, 54, 62

—S —

scale * 9, 30, 44, 48, 49, 50, 51, 62

schema- 4, 7, 10, 11, 16, 17, 18, 19, 20, 21, 22, 23,
25, 27, 34, 35, 39, 40, 61, 62, 63

Schema-4, 7, 8, 9, 10, 11, 16, 17, 18, 19, 20, 21,
22, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35,
36, 39, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51,
54, 55, 61, 62

schemalocation« 17, 19, 21

schemaName « 23, 25, 62

<schema name> « 25, 27

SECOND - 32, 51, 52, 53, 57, 62

sequence 8, 11, 13, 15, 24, 59, 71

<simple Latin letter>+ 14

simpleType ¢« 35, 36, 43, 44, 45, 46, 47, 48, 49, 50,
51, 54, 62

<single datetime field>« 32, 51

SMALLINT « 9, 30, 45, 62

SQL/XML mapping error ¢ 59, 65

SQL-environment ¢ 8, 11, 71

SQL-implementation « 11, 71, 73

<SQL language identifier> ¢ 22

sglname ¢ 23, 25, 27, 62

sqltype ¢ 8, 34, 35, 41, 43, 45, 47, 48, 49, 50, 54, 55,
62, 73

sglxml e 7, 16, 17, 18, 19, 20, 21, 23, 25, 27, 41, 43,
45, 47, 48, 49, 50, 54, 61, 62, 63

SQL_TEXT « 8, 11, 13, 41, 59

<start field> « 32

string « 8, 9, 11, 13, 14, 15, 22, 23, 25, 27, 29, 34,
35, 37, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,
51, 52, 53, 54, 55, 56, 58, 59, 62, 73

SUBSTRING ¢ 55, 56, 57

—_T —
<table name> « 16, 22, 25, 37
targetNamespace « 17
time 9, 13, 31, 32, 48, 49, 50, 51, 56
TIME « 9, 31, 48, 49, 50, 56, 62
<time fractional seconds precision> « 48, 49, 50, 56
TIMESTAMP « 9, 31, 49, 50, 56, 62
<timestamp fractional seconds precision> ¢ 56
TO <51, 52, 53, 56, 57, 62
totalDigits * 44

78 (ISO-ANSI Working Draft) 9075-14 XML-Related Specifications (SQL/XML)

type+4, 7,8, 9, 10, 11, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35,
36, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51,
54, 55, 62, 73

TYPE « 16, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 46,
47

type designator « 29, 30, 31, 32, 35, 41, 42, 44, 45,
46, 47, 51

typeKeyword ¢ 62

— U —

UCS-2+14

UCS-4+14

<underscore> ¢ 14, 59

Unicode * 3, 4, 8, 11, 13, 29, 34, 35, 41, 42, 55, 56,
58, 59, 71

Unicode scalar value « 13

unmappable XML Name ¢ 59, 65

<unqualified schema name> -« 16, 18, 22, 23, 25, 27,
39

<uppercase hexit>+ 13, 14

userPrecision ¢ 44, 46, 62

—V —
value+7, 8, 9, 10, 11, 13, 16, 17, 18, 19, 20, 21, 22,
25, 27, 32, 34, 35, 37, 39, 40, 41, 42, 43, 44,
45, 46, 48, 49, 50, 51, 52, 53, 55, 62, 65
VARYING - 8, 9, 29, 30, 42, 55, 56
visible column 10, 11, 16, 18, 20, 22, 37
visible schema« 10, 11, 27, 40
visible table « 10, 25, 39

— W —
WITH « 9, 31, 48, 49, 50, 56, 62
WITHOUT « 9, 31, 48, 49
World-Wide Web ¢ 7

—_X —

xmle1, 3,4,5,7,8, 10, 11, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 25, 27, 29, 34, 35, 37, 39,
40, 41, 43, 45, 47, 48, 49, 50, 54, 55, 59, 61,
62, 63, 65, 67, 69, 71, 73, 75

XML-1,4,5,7,8,9, 10, 11, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 58, 59, 60, 61, 62, 63, 65, 71

XML-001 7, 41, 62

XML-002 « 4

XML-003 « 62

XML-004 « 63

XML-005 « 58

XML-007 « 17

XML-008 24

xmins 17, 19, 21, 62

xsde5, 7,9, 16, 17, 18, 19, 20, 21, 23, 24, 25, 26,
27, 29, 30, 31, 32, 35, 36, 41, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54, 62

xsie 7, 10, 11, 16, 17, 18, 19, 20, 21, 22, 25, 27, 37,
39, 40

WG3:VIE-011 = H2-2002-013

xsi:nil="true" « 10, 11, 16, 17, 18, 19, 20, 21, 22, 25,
27, 37, 39, 40

XSINS + 17, 19, 21

XSL-17,19, 21

—Y —
YEAR 51, 56, 62

—_7 —
zero-length « 22, 23, 25, 27, 34, 37, 42, 43, 44, 45,
46, 47, 48, 49, 50, 51, 52, 53, 54, 56, 59

ZONE » 9, 31, 48, 49, 50, 56, 62

Index 79

1 Possible problems with SQL/XML

I observe some possible problems with SQL/XML as defined in this document. These are noted
below. Further contributions to this list are welcome. Deletions from the list (resulting from change
proposals that correct the problems or from research indicating that the problems do not, in fact,
exist) are even more welcome. Other comments may appear in the same list.

Because of the highly dynamic nature of this list (problems being removed because they are solved,
new problems being added), it has become rather confusing to have the problem numbers automati-
cally assigned by the document production facility. In order to reduce this confusion, I have instead
assigned "fixed" numbers to each possible problem. These numbers will not change from printing to
printing, but will instead develop "gaps" between numbers as problems are solved.

Possible problems related to SQL/XML

Significant Possible Problems:
[999] In the body of the Working Draft, I have occasionally highlighted a point that requires urgent
attention thus:

Editor’s Note

Text of the problem.

These items are indexed under "**Editor’s Note**".
The following Possible Problem has been noted:

Severity: Major Technical

Reference: P14-nn.nn, Subclause 4.1, "Namespaces"

Note at: The end of Subclause 4.1, "Namespaces", and in the General Rules of Subclause 5.15,
"Mapping SQL data types to XML Schema data types".

Source: WG3:E3A-003

Possible Problem:

The value of the sqgl xnl :) namespace must be supplied correctly and finally.

The following Possible Problem has been noted:

Severity: Major Technical

Reference: Subclause 2.2, "Publicly-available specifications"

Note at: The end of Subclause 2.2, "Publicly-available specifications"
Source: WG3:E3A-003

Possible Problem:

Many of the normative references have not been finalized. It will be necessary to reference
the correct specifications as they become available. This may entail changes to other clauses
of this standard to align with the final forms of these specifications.

[XML-003 | The following Possible Problem has been noted:

Severity: Major Technical

Reference: Subclause 6.1, "The SQL/XML XML Schema"

Note at: At the end of the Syntax Rules of Subclause 6.1, "The SQL/XML XML Schema"
Source: WG3:E3A-003

Possible problems with SQL/ XML 1

Editor’s Notes for WG3:VIE-011 = H2-2002-013

Possible Problem:

The publication date of this part must be supplied in the annotation in the sql xm : names-
pace in two places.

[XML-004 | The following Possible Problem has been noted:

Severity: Major Technical

Reference: Clause 6, "The SQL/XML XML Schema"

Note at: At the end of Clause 6, "The SQL/XML XML Schema"
Source: WG3:E3A-003

Possible Problem:

Which is normative, Clause 6, "The SQL/XML XML Schema", or the actual URL that
defines this namespace on-line? If it is the URL, should this clause be downgraded to an
informative Annex? If the clause or annex is modified by a TC, is the URL or its contents
also changed?

The following Possible Problem has been noted:

Severity: Major Technical

Reference: Subclause 5.16, "Mapping SQL data values to XML"

Note at: At the end of Subclause 5.16, "Mapping SQL data values to XML"
Source: WG3:E3A-011

Possible Problem:

The rules for mapping non-null SQL data values to XML do not handle the escaping of the
reserved symbols such as <less than operator>, which might be done using either entities
(such as &l t;) or by escaping the entire string using CDATA.

[XML-007 | The following Possible Problem has been noted:

Severity: Major Technical

Reference: P14, SQL/XML, Subclause 5.3, "Mapping an SQL Table to an XML Document and
an XML Schema Document"

Note at: GRs of Subclause 5.3, "Mapping an SQL Table to an XML Document and an XML
Schema Document"

Source: WG3:YYJ-038R1 = H2-2001-373R1

Possible Problem:

Document XS is created without declaring a namespace. A user may wish to specify a names-
pace for this mapping that is used as the value of an xsd:targetNamespace attribute.
Proposed Solution:

None provided with comment.

The following Possible Problem has been noted:

Severity: Major Technical

Reference: P14, SQL/XML, Subclause 5.6, "Mapping an SQL Table to XML Schema Data Types"
Note at: GRs of Subclause 5.6, "Mapping an SQL Table to XML Schema Data Types"

Source: WG3:YYJ-038R1 = H2-2001-373R1 and WG3:YYJ-054 = H2-2001-___

Possible Problem:

Some members feel that the row element is not necessary. Instead of multiple row elements
within a table element, they would create multiple elements with the name of the table.

2 Editor’s Notes for (ISO-ANSI working draft) XML-Related Specifications (SQL/XML)

Editor’s Notes for WG3:VIE-011 = H2-2002-013

Michael Rys added: Depending on the preferred mapping, a table may be mapped to an XML
fragment colleciton and not a document. Thus we would avoid the term XML document and
only use the term XML.

Michael also added: We disagree with the proposed mapping and prefer the form (white space
only added for formatting purposes):

<EMPLOYEE>
<EMPNC>000010</ EMPNO>
<FI RSTNAME>Chr i st i ne</ FI RSTNAME>
<LASTNAME>Haas</ LASTNAVE>
<Bl RTHDATE>1933- 08- 24</ Bl RTHDATE>
<SALARY>52750. 00</ SALARY>
</ EMPLOYEE>
<EMPLOYEE>
<EMPNC>000020</ EMPNO>
<FI RSTNAME>M chael </ FI RSTNAMVE>
<LASTNAME>Thonpson</ LASTNAME>
<BlI RTHDATE>1948- 02- 02</ Bl RTHDATE>
<SALARY>41250. 00</ SALARY>
<EMPLOYEE>

Michael also added: Here are some counter-arguments against the reasons provided in the
document:

First, when we map just the EMPLOYEE table in this way, we then need to create a single
root element that contains the sequence of <EMPLOYEE> elements.

There is really no need to provide an element on this level. XML query languages such as XPath
or XQuery do not require a single root. Having an implied root for the database or letting the
user/tools specify a root in situations where a dump needs to be performed is sufficient.

Thus, there is no need to have this additional level for a default view of a table. A table does
not need to correspond to an XML document.

Our second reason is that a table with no rows in it will not appear at all in the mapping of
an SQL schema. A table for which the user does not have SELECT privilege will also not
appear at all in this mapping. We believe that and empty table and a table that the user is
not allowed to see should have different representations in XML.

This argument forgets to consider that every default XML view of relational data also has an
associated schema with it and we could use the schema to disambiguate between the two cases
above:

e Table exists, but user has no access: no entry in the schema, no data elements.

e Table exists, user has access, no rows: entry in the schema, no data elements.

In addition, our product ships with a default XML view mechanism based on not including
<row> elements and so far we have not received any feedback from our users or customers that
would warrant such an additional level of indirection.

Proposed Solution:

None provided with comment.

The following Possible Problem has been noted:

Severity: Major Technical

Reference: P14, SQL/XML, No particular location
Note at: None.

Source: WG3:YYJ-054/H2-2001-_

Possible problems with SQL/ XML 3

Editor’s Notes for WG3:VIE-011 = H2-2002-013

Possible Problem:

We believe it should be left to the implementation on whether the names are fully escaped or
partially escaped.
Proposed Solution:

None provided with comment.

The following Possible Problem has been noted:

Severity: Major Technical

Reference: P14, SQL/XML, No particular location
Note at: None.

Source: WG3:YYJ-054/H2-2001-_

Possible Problem:

There are many alternatives on schema and catalog mappings. Schemata and catalogs in SQL
are used to scope table names. In XML, such scoping can be done using either namespaces or
local elements as proposed in WG3:YYJ-038R1 = H2-2001-373R1, or in a combination of both.

Thus, if table names are mapped to element names, both are available. Namespaces have
the advantage that they provide a fully unique scoping of the names across the different
databases (assuming each database server has its own base URI), which provides protecction
in information integration scenarios. Namespaces are also the preferred way to associate XML
Schema information with the data. Since namespaces should be used anyway for associating
XML Schema information with the data, we should consider whether schema and catalog level
information is better mapped into the namespace URIL.

Proposed Solution:

None provided with comment.

[XML-011 | The following Possible Problem has been noted:

Severity: Major Technical

Reference: P14, SQL/XML, No particular location
Note at: None.

Source: WG3:YYJ-054/H2-2001-_

Possible Problem:

We disagree with the need of introducing artificial names for the table types and suggest
anonymous types should be used.

XML elements are a kind of types. Tables as specified in this paper in the relational world are
mapped to these elements and do not have a named type in the relational domain. We are of
the opinion that this should be preserved in the mapping and lead to anonymous complex types
in the generated XML Schema.

This will allow us to map explicitly named table types into named XML complex types in the
future without the fear of name clashes. Also the arguments that are made against anonymous
types can be countered as follows:

"There is no name by which they can be referenced"

Neither is the structure of a table named except through referring to the table name itself. This
is analogous to mapping the structure to an anonymous complex type of the named element.
Also, there is no requirement or situation, where this type can be reused anyway.

4 Editor’s Notes for (ISO-ANSI working draft) XML-Related Specifications (SQL/XML)

Editor’s Notes for WG3:VIE-011 = H2-2002-013

Typed XML query languages such as XQuery are capable of restricting a typed expression to the
element, so even in this context, having a named complex type is not needed.

"and no name by which a tool or application can report information about them.

Tools and application can report information about the element and its complex type, so there is
really no need to create a new named construct.

As mentioned above, introducing such explicit names makes it impossible for the user to use
unnamed table types to hide the type names and use explicitly named table types if the type
name should be exposed.

Proposed Solution:

None provided with comment.

The following Possible Problem has been noted:

Severity: Major Technical

Reference: P14, SQL/XML, No particular location
Note at: None.

Source: WG3:YYJ-054/H2-2001-_

Possible Problem:

The preferred way to associate XML schema to instance data is by means of a targetNamespace
for the schema and the use of the XML namespace to associate the data. See the examples
given below. Using physical locations is bad practice and not scalable over large distributed
applications.

Examples using alternate approaches: XML mappings of table EMPLOYEE inside
ADMINISTRATOR schema and HR catalog

We would like to illustrate the arguments raised in this paper using the above example with
three ways of representing schemas and catalogs: (i) Schema/catalog only in namespace (ii)
Only as XML elements or (iii) Both.

However, the simplicity of not having a row element and explicitly named complex types speaks
for itself in all three cases.

Schema and catalog only in namespace

The format of the targetnamespace is only an example. Other URI formats could be used. The
base URI (http:/mydatabase.com) could be either product specific or user specified.

Possible problems with SQL/ XML 5

Editor’s Notes for WG3:VIE-011 = H2-2002-013

<xsd: schema xm ns: xsd=". ..
tar get Nanespace="htt p: // mydat abase. concat al og=HR&schema=ADM NI STRATCR" >
<xsd: el ement name="EMPLOYEE" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent nanme="EVPNO' >
<xsd: si npl eType>
<xsd:restriction base="xsd:string">
<xsd: |l ength val ue="6"/>
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: el enent >
<xsd: el ement nanme="Fl RSTNMVE" >

</ xsd: el enent >

</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: schema>

Instance data:

<EMPLOYEE
xm ns="http:// nydat abase. con?cat al og=HR&schena=ADM NI STRATCOR" >
<EMPNC>000010</ EMPNO>
<FI RSTNVE>CHRI STI NE</ FI RSTNVE>
<LASTNAME>HAAS</ LASTNAME>
<Bl RTHDATE>1933- 08- 24</ Bl RTHDATE>
<SALARY>52750. 00</ SALARY>
</ EMPLOYEE>
<EMPLOYEE
xm ns="http:// nydat abase. con?cat al og=HR&schena=ADM NI STRATCOR" >
<EMPNC>000020</ EMPNO>
<FI RSTNVE>M CHAEL</ FI RSTNVE>
<LASTNAME>THOVPSON</ LASTNAME>
<Bl RTHDATE>1948- 02- 02</ Bl RTHDATE>
<SALARY>41250. 00</ SALARY>
</ EMPLOYEE>

Schema and catalog only as XML elements

We would still need a namespace to scope against database instances. The problem then is that
the Employee Element needs to be local to the schema (and the schema local to the catalog), to
avoid conflicts with other employee tables in other catalogs or schemata.

6 Editor’s Notes for (ISO-ANSI working draft) XML-Related Specifications (SQL/XML)

Editor’s Notes for WG3:VIE-011 = H2-2002-013

<xsd: schema xm ns: xsd="..." target Nanmespace="http://nydat abase. conm' >
<xsd: el ement name="HR"'>
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent nanme="ADM NI STRATOR' >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement name="EMPLOYEE" mi noccurs="0" naxoccurs="unbounded">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent nanme="EVPNO' >
<xsd: si npl eType>
<xsd:restriction base="xsd:string">
<xsd: |l ength val ue="6"/>
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: el enent >
<xsd: el ement nanme="Fl RSTNMVE" >

</ xsd: el enent >

</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: schema>

Instance data:

<HR xm ns="htt p:// nydat abase. coni >
<ADM NI STRATOR>
<EMPLOYEE>
<EMPNO>000010</ EMPNO>
<FI RSTNME>CHRI STI NE</ FI RSTNVE>
<LASTNAME>HAAS</ LASTNAVE>
<BI RTHDATE>1933- 08- 24</ Bl RTHDATE>
<SALARY>52750. 00</ SALARY>
</ EMPLOYEE>
<EMPLOYEE>
<EMPNO>000020</ EMPNO>
<FI RSTNME>M CHAEL </ FI RSTNVE>
<LASTNAME>THOVPSON</ LASTNAMVE>
<BI RTHDATE>1948- 02- 02</ Bl RTHDATE>
<SALARY>41250. 00</ SALARY>
</ EMPLOYEE>
</ ADM NI STRATOR>
</ HR>

Schema and catalog as XML elements with namespaces

This provides the biggest flexibility at the cost of more XML schemata. It allows to keep the
schema and table element declarations global but keeps the schema, catalog and element names
in different namespaces. It requires the use of substitution groups.

Possible problems with SQL/XML 7

Editor’s Notes for WG3:VIE-011 = H2-2002-013

<xsd: schema xm ns:xsd="..." targetNamespace="http://nydatabase. cont >
<!-- database schema, only contains abstract catal og el ements -->

<xsd: el ement nane="cat al og" abstract="true"/>
</ xsd: schema>

<xsd: schema xm ns: xsd="..." target Nanespace="http://nydat abase. confcat al og=HR"
xm ns: db="htt p:// nydat abase. coni >
<l-- a specific catalog XM. schema, only contains abstract schenma el enents -->

<xsd: el enent nane="schenma" abstract="true"/>

<xsd: el ement nanme="HR' substitutionG oup="db: catal og">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent ref="schema" m noccurs="0" maxoccurs="unbounded"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: schena>

<xsd: schema xm ns: xsd="..."
t ar get Nanespace="htt p: // mydat abase. concat al og=HR&schena=ADM NI STRATOR"'
xm ns: cat="http:// nmydat abase. con?cat al og=HR' >
<I-- a specific relational schema, only contains abstract table el enents -->

<xsd: el enent nane="tabl e" abstract="true"/>

<xsd: el emrent nanme="ADM Nl STRATOR" substituti onG oup="cat:schem">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement ref="table" minoccurs="0" maxoccurs="unbounded"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >

</ xsd: schema>

<xsd: schema xm ns: xsd="..."
t ar get Nanespace="htt p:// mydat abase. coni t abl es?cat al og=HR&chena=ADM NI STRATOR"'
xm ns: schema="htt p:// nmydat abase. conf?cat al og=HR&schena=ADM NI STRATOR" >
<I-- contains the specific tables of a relational schema -->

<xsd: el ement name="EMPLOYEE" substituti onG oup="schenma: schem" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement name="EMPNO' >
<xsd: si npl eType>
<xsd:restriction base="xsd:string">
<xsd: | ength val ue="6"/>
</ xsd:restriction>
</ xsd: si npl eType>
</ xsd: el ement >
<xsd: el enent nanme="F| RSTNVE" >

</ xsd: el enent >
</ xsd: sequence>
</ xsd: conpl exType>

</ xsd: el enent >
</ xsd: schema>

8 Editor’s Notes for (ISO-ANSI working draft) XML-Related Specifications (SQL/XML)

Editor’s Notes for WG3:VIE-011 = H2-2002-013

Instance data:

<HR xm ns="htt p:// nmydat abase. con?cat al og=HR' >
<ADM NI STRATOR
xm ns="http:// nydat abase. con’cat al og=HR&chenma=ADM NI STRATOR" >
<EMPLOYEE

xm ns="http://nmydat abase. coni t abl es?cat al og=HR&schema=ADM NI STRATCR" >

<EMPNC>000010</ EMPNOC>
<FI RSTNME>CHRI STI NE</ FI RSTNVE>
<LASTNAME>HAAS</ LASTNAMVE>
<BlI RTHDATE>1933- 08- 24</ Bl RTHDATE>
<SALARY>52750. 00</ SALARY>

</ EMPLOYEE>

<EMPLOYEE

xm ns="http:// nmydat abase. coni t abl es?cat al og=HR&schena=ADM NI STRATOR" >

<EMPNC>000020</ EMPNC>
<FI RSTNVE>M CHAEL</ FI RSTNVE>
<LASTNAME>THOVPSON</ LASTNAME>
<Bl RTHDATE>1948- 02- 02</ Bl RTHDATE>
<SALARY>41250. 00</ SALARY>

</ EMPLOYEE>

</ ADM NI STRATOR>
</ HR>

Proposed Solution:

None provided with comment.

Possible problems with SQL/XML 9

Editor’s Notes for WG3:VIE-011 = H2-2002-013

Minor Problems and Wordsmithing Candidates:

10 Editor’s Notes for (ISO-ANSI working draft) XML-Related Specifications (SQL/XML)

Index

Index entries appearing in boldface indicate the page where the word, phrase, or BNF nonterminal was defined; index entries
appearing in italics indicate a page where the BNF nonterminal was used in a Format; and index entries appearing in roman
type indicate a page where the word, phrase, or BNF nonterminal was used in a heading, Function, Syntax Rule, Access Rule,
General Rule, Leveling Rule, Table, or other descriptive text.

[999]- 1 XML-005 |« 2
XML-007 | 2

—X— XML-008 |« 2

XML-001 |« 1 XML-009 |« 3
XML-002 |+ 1 XML-010 |+ 4
XML-003 |« 1 XML-011 |+ 4
XML-004 |« 2 XML-012 |+ 5

Indexil 11

