
ISOLATION IN CLOUD STORAGE

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Ji-Yong Shin

January 2017

c© 2017 Ji-Yong Shin

ALL RIGHTS RESERVED

ISOLATION IN CLOUD STORAGE

Ji-Yong Shin, Ph.D.

Cornell University 2017

Due to the presence of large and heterogeneous user workloads and concur-

rent I/O requests, it is important to guarantee isolation in cloud storage sys-

tems. This dissertation explores isolation in cloud storage systems and makes

fundamental contributions that advance the state of the art in supporting such

isolation.

Specifically, this dissertation focuses on three key areas necessary for iso-

lation in cloud storage systems: performance isolation, transactional isolation,

and fine-grained consistency control. Regarding the first, performance isolation,

resource contention in storage systems is often unavoidable under concurrent

users and the contention allows a user to affect the performance experienced by

other users. In particular, a single user can easily degrade the performance for

all other users in a disk-based system because the disk performance is inherently

susceptible to random I/O requests. Second, to maintain consistent data states

under concurrent I/O requests, systems have implemented transactional isola-

tion in high layers of the storage stack. However, different implementations in

high layers of the storage stack make the support for transactional isolation re-

dundant and transactions executed by different applications incompatible with

each other. Thus, portable and compatible transactional isolation is required, as

well as reconsideration of the layers of the storage stack in which transactional

isolation should be placed. Finally, distributed systems often provide per-client

views of the system by using client-centric consistency semantics to trade off

consistency and performance. While cloud storage servers have tens of parallel

storage devices and CPU cores, which make the server comparable to a dis-

tributed system, the potential trade-off between consistency and performance

within a server has never been explored.

We subsequently make three contributions embodied in approaches to ad-

dressing various isolation challenges. First, we present an approach that

achieves performance isolation by resolving I/O contention using a chained-

logging design. The chained-logging design retains at least one disk for se-

quentially logging without I/O contention even under garbage collection and

systematically separates read and write operations to different disks. We im-

plemented an instance of the approach in a system called Gecko. Second, we

investigate an approach for block-level transactions that support portable and

compatible transactional isolation. The block-level transaction facilitates trans-

actional application designs in any layer of the storage stack and enables cross-

application transactions. We implemented an instance of the approach in a sys-

tem called Isotope. Finally, we define a new class of systems called StaleStore,

which can trade off consistency and performance within a server using stale

data, and we study the necessary functionality and interface to take advantage

of this trade-off. Yogurt, an instance of StaleStore, explores different versions

of data and estimates the access cost for each version under client-centric con-

sistency semantics to trade off consistency and performance within a server.

Together, these three approaches are important steps towards isolation in cloud

storage systems.

BIOGRAPHICAL SKETCH

Ji-Yong Shin was born in Seoul, Republic of Korea, where he grew up dreaming

of becoming a scientist or an engineer like his father. When he joined Yonsei

University, Seoul, Republic of Korea in 2000, his interest in programming and

the dot-com bubble influenced him to become a computer scientist.

During his college years, Ji-Yong loved systems and computer architecture

courses and enjoyed programming. Two years after he studied computer sci-

ence at his college, he joined the Republic of Korea Army to fulfill the manda-

tory military service for Korean men. He worked as a journalist and translator

for two years. Although his position in the military had nothing to do with

computer science, his military experience taught him the true meaning of en-

durance and perseverance, which later helped him to pursue the Ph.D. degree.

Two years after he finished his military service, he earned the B.S. degree in

Computer Science and Industrial Engineering with a minor in Electrical and

Electronics Engineering.

To extend his horizons in computer science, Ji-Yong joined KAIST (Korea

Advanced Institute of Science and Technology), Daejeon, Republic of Korea in

2007. He pursued his M.S. degree under the supervision of Prof. Seungryoul

Maeng while focusing on designing new computer architectures and NAND

flash-based SSDs. During his time at KAIST, he broadened his view by meet-

ing with many smart colleagues and doing an internship at Microsoft Research

Asia, Beijing, China. Then he decided to join a Ph.D. program in the U.S. to

further extend his understanding of computer science.

While he was applying for Ph.D. programs in the U.S., he did internships

at Microsoft Research, Redmond, WA and IBM T.J. Watson Research Center,

Hawthorne, NY. The projects Ji-Yong participated in were related to systems,

iii

which were somewhat different from what he used to work on at KAIST. Such

work experience and his growing interest in systems led him to pursue the Ph.D.

degree in the systems field.

In 2010, Ji-Yong joined Cornell University’s Ph.D. program. During the first

two years, he jointly worked with Prof. Hakim Weatherspoon and Prof. Emin

Gün Sirer on datacenter networks and then switched to working on storage

systems under the supervision of Prof. Hakim Weatherspoon alone. Besides the

research at Cornell, Ji-Yong worked at Microsoft Research Silicon Valley Center,

Mountain View, CA and Google, Mountain View, CA as a summer intern. After

spending six years at Cornell, Ji-Yong is now looking forward to joining Yale

University as a postdoctoral associate.

iv

For my family and friends

who always supported me, stood by me, and prayed for me.

v

ACKNOWLEDGEMENTS

First, I would like to thank the faculty members at Cornell. I would like to ex-

press my deepest gratitude to my advisor, Hakim Weatherspoon, who has pa-

tiently guided me and taught me how to become a systems researcher through-

out my degree program. Through him, I could learn the insight to look into

problems from various angles, how to collaborate with others, and effectively

and passionately present research findings. He always inspired me and encour-

aged me when I was questioning about my research directions and outcomes,

and stepped out to help not only regarding research but also regarding small

issues surrounding the life of a Ph.D. student. Next, I would like to thank Emin

Gün Sirer for showing me how to do hacking-based systems research and teach-

ing me how to properly write papers during the collaboration with him. I am

grateful to Andrew Myers and Edward Suh who gracefully accepted to become

by dissertation committee members and provided me with valuable pieces of

advice and comments for my research.

Second, I was lucky to work with many great research collaborators. I am

very grateful to work with Mahesh Balakrishnan who gave constructive feed-

backs and inspiring ideas all the time. I worked with Mahesh on many projects

and he was like my second advisor. I could learn how to take care of small

details of research projects and ways to write convincing papers from him. I

thank Tudor Marian who has been a great consultant and mentor for difficult

programming challenges including hacking Linux kernel. Tudor was also a

great host during my internship at Google. I thank Lakshmi Ganesh for her

collaboration on the Gecko project and Jakub Szefer for opening the door to in-

tegrating my research work into hardware. I appreciate Darko Kirovski, Rama

Ramasubramanian, and Chandu Thekkath for being wonderful mentors during

vi

my internships at Microsoft Research and letting me know and experience how

research can impact real life.

Third, I thank my colleagues in the Computer Science department and mem-

bers of the Systems Lab who have been great company, especially Ki-Suh Lee,

Han Wang, Zhiming Shen, Qin Jia, Robert Escriva, Deniz Altinbuken, Elisavet

Kozyri, Zhiyuan Teo, Stavros Nikolaou, Hussam Abu-Libdeh, Dan Williams,

Joonsuk (Jon) Park, Moontae Lee, and Jaeyong Sung.

Forth, I would like to thank the people outside of the department. I thank

Younghwa Seok for always supporting and encouraging me especially during

several challenging moments of the degree program. I also thank Younghwa

for helping proofread many chapters of this dissertation. I thank Jangwoo Kim,

Heyjun Park, Young-Hye Song, Jaesun Lee, Daniel Lee, Goeun Lee, and mem-

bers of the Korean Church at Cornell and the Cornell Korean Tennis Club for

being wonderful friends who made the time I spent in Ithaca and Cornell beau-

tiful and enjoyable.

Finally, I would like to thank my family, father, mother and brother, for their

endless love, support, encouragement and prayer. Without them, I would not

have made it this far.

vii

TABLE OF CONTENTS

Biographical Sketch . iii
Dedication . v
Acknowledgements . vi
Table of Contents . viii
List of Tables . xi
List of Figures . xii

1 Introduction 1
1.1 Cloud Storage Servers . 2

1.1.1 Cloud Storage Server Trends 3
1.1.2 Cloud Storage Stacks . 8

1.2 Isolation . 9
1.2.1 Performance Isolation . 10
1.2.2 Transactional Isolation . 11
1.2.3 Client-Centric Consistencies 13

1.3 Challenges . 15
1.3.1 Lack of Cloud Storage Server Performance Isolation 15
1.3.2 Lack of Cloud Storage Server Transactional Isolation . . . 18
1.3.3 Lack of Cloud Storage Server Consistency Control 20

1.4 Contributions . 23
1.5 Organization . 25

2 Scope and Methodology 26
2.1 Scope: Understanding Cloud Storage Servers 26

2.1.1 Cloud Storage Servers Need Performance Isolation 27
2.1.2 Cloud Storage Servers Need Transactional Isolation 32
2.1.3 Cloud Storage Servers Need Consistency Control 37

2.2 Methodology . 46
2.2.1 Linux Device Mapper . 46
2.2.2 Emulations . 48
2.2.3 Public Workloads and Systems 50

2.3 Summary . 54

3 Performance Isolation with Contention-Oblivious Disk Arrays 55
3.1 Design . 60

3.1.1 Metadata . 62
3.1.2 Caching . 65
3.1.3 Smarter Cleaning . 66
3.1.4 Discussion . 68

3.2 Evaluation . 71
3.2.1 Write Throughput with GC 72
3.2.2 Caching the Tail . 75

viii

3.2.3 Gecko Performance for Real Workloads 80
3.3 Summary . 83

4 Transactional Isolation Support from the Block Layer 85
4.1 The Isotope API . 89

4.1.1 Composability . 93
4.2 Design and Implementation . 94

4.2.1 Deciding Transactions . 96
4.2.2 Applying Transactions . 99
4.2.3 Implementation Details . 100

4.3 Isotope Applications . 106
4.3.1 Transactional Key-Value Stores 107
4.3.2 Transactional Filesystem . 108
4.3.3 Experience . 109

4.4 Performance Evaluation . 110
4.4.1 Isotope Performance . 111
4.4.2 Isotope Application Performance 114

4.5 Summary . 119

5 Consistency Control in Cloud Servers Using Stale Data 120
5.1 Design Space for StaleStores . 123

5.1.1 What Is a StaleStore? . 125
5.1.2 Which Layer Should Be a StaleStore? 128

5.2 Yogurt Design . 131
5.2.1 Block-level StaleStore API 131
5.2.2 Wrapper APIs . 132
5.2.3 Versioned Storage Design 134

5.3 Implementation . 135
5.3.1 Snapshot Access and Read Mapping 135
5.3.2 Data Placement . 137
5.3.3 Read Cost Estimation . 138
5.3.4 A Key-Value Store Example 139

5.4 Evaluation . 140
5.4.1 Pileus-Like Block Store . 141
5.4.2 GetCost Overhead . 143
5.4.3 Pileus-Like Key-Value Store 144

5.5 Summary . 146

6 Related Work 147
6.1 Performance Isolation and Logging 147
6.2 Transactional Systems . 148
6.3 Consistency and Performance Trade-Off 150
6.4 Multi-Versioning . 151
6.5 Smart Block Storage . 151

ix

7 Future Work and Conclusion 153
7.1 Future Work . 153

7.1.1 Hardware Integration . 153
7.1.2 Support for Distributed Storage Systems 154
7.1.3 Towards Smarter Block Storage 156

7.2 Conclusion . 157

A Transactions and ACID Properties 159

B Consistency Semantics 161
B.1 Database Systems . 161

B.1.1 Strict Serializability . 161
B.1.2 Snapshot Isolation . 162

B.2 Distributed Systems . 163
B.2.1 Data-Centric Consistencies 163
B.2.2 Client-Centric Consistency 164

Glossary 168

Bibliography 177

x

LIST OF TABLES

1.1 Dell server specifications from year 2000 [49], 2006 [50], and
2016 [51]. 4

1.2 Hard disk drive specifications from year 1997 [140], 2007 [139],
and 2016 [70, 69]. 5

1.3 Communication ports and interfaces [89]. 7

3.1 Workload combinations: from 9 raw traces, we can compose 8
8-trace combinations and 13 4-trace combinations that write at
least 512GB of data. 76

4.1 Lines of code for Isotope storage systems. 108

5.1 Example key-value StaleStore. 125
5.2 Yogurt APIs. 130

xi

LIST OF FIGURES

1.1 Linux storage stack. 8

2.1 Throughput of 4-disk RAID-0 storage under N sequential writ-
ers + 1 random writer. 29

2.2 In the Griffin system, being able to read older versions from a
SSD than the latest version from the disk cache can be faster. . . . 39

2.3 Read latency and disk cache hit rate of Griffin with different disk
to SSD data migration trigger sizes. Accessing stale data can
avoid reading from the disk. 40

2.4 In a deduplicated system with cache, data items are shared with
many others. If an older version is referenced by another address
and is inside the cache, reading this than the latest version is in
the disk is faster. 41

2.5 Read latency and memory cache hit rate on stale data in a dedu-
plicated system with different deduplication rates. Accessing
stale data results in higher cache utilization and lower read la-
tency. 42

2.6 If data items are smaller than the cache block in a fine-grained
logging system, other items (e.g. 2-v2) can follow an item (e.g. 3-
v6) being read into the cache. If the item that followed is an older
version, accessing the older item can be faster than the latest item
in the SSD. 43

2.7 Read latency and memory cache hit rate on stale data in sys-
tem with fine-grained logging over a block-grain cache. The
read latency decreases and the cache hit rate increases when the
allowed staleness of data and the number of items placed in a
cache block increase. 44

2.8 Linux storage stack and device mapper. 47

3.1 Chained logging: all writes go to the tail drive of the chain, while
reads are serviced mostly from the body of the chain or a cache.
Mirrors in the body can be powered down. 57

3.2 Metadata persistence in Gecko: mapping from physical to logical
addresses is stored on flash, with actively modified head and tail
metadata buffered in RAM. 63

3.3 Gecko (Top) offers steady, high application throughput (60MB/s
or 15K IOPS) for a random write workload during GC with a
50% trim pattern (Left) and a 0% trim pattern (Right). Log-
structured RAID-0 (Bottom) suffers application throughput col-
lapse to 10MB/s for 50% trims (Left) and provides 40MB/s for
0% trims. 73

xii

3.4 With compact-in-body GC (CiB), a log chain of length 2 achieves
120MB/s application throughput on random writes with concur-
rent GC on 50% trims. 75

3.5 Effectiveness of tail caching on different workload combinations
with a 2GB RAM + 32GB SSD cache. The hit rate is over 86% for
all 21 combinations, over 90% for 13, and over 95% for 6. 77

3.6 Average, min and max hit rates of tail caching across workload
combinations as the tail drive fills up. 78

3.7 Gecko’s hybrid caching scheme for its tail drives increases the
lifetime of the SSD read cache by at least 2X for all 21 workload
combinations, and by more than 4X for 13 combinations. 79

3.8 Gecko (Left) offers 2X to 3X higher throughput than log-
structured RAID-10 (Right) on a highly cacheable (Top) and less
cacheable (Bottom) workload combination for writes as well as
reads. 81

3.9 A Gecko chain outperforms log-structured RAID-0 even on 7
drives: one uncontended disk for writes is better than many
contention-prone disks. 83

4.1 The Isotope API. 90
4.2 Example application: setattr code for a filesystem built over Iso-

tope. 92
4.3 Isotope consists of (A) a timestamp counter, (B) a multiversion

index, (C) a write buffer, (D) a decision algorithm, and (E) a per-
sistent log. 95

4.4 Conflict detection under snapshot isolation: a transaction com-
mits if no other committed transaction in its conflict window has
an overlapping write-set. 97

4.5 Without fine-grained conflict detection, Isotope performs well
under low contention workloads. 112

4.6 With fine-grained conflict detection, Isotope performs well even
under high block-level contention. 113

4.7 IsoHT and IsoBT outperform LevelDB for data operations while
providing stronger consistency. 115

4.8 YCSB over different compositions of IsoBT and IsoHT. 117
4.9 IOZone over IsoFS and ext2/ext3. 118

5.1 The new storage/memory hierarchy (from a LADIS 2015 talk by
Andy Warfield). 120

5.2 Logical illustration of multi-version index and snapshots. 137
5.3 Performance of Yogurt under synthetic workloads. 142
5.4 GetCost overhead and query size. 144
5.5 Key-value store’s read latency and value size. 145

xiii

CHAPTER 1

INTRODUCTION

Individuals and broad cross-sections of organizations — including tech services,

financial services, education, media and publishing, hardware industries, busi-

ness services, software services, and others — rely heavily on the cloud [105].

Cloud computing refers to both applications delivered as services over the In-

ternet and the system software and hardware in the datacenters that provide

those services, whereas the cloud itself refers to the hardware and software for

cloud computing [31]. Cloud storage is a part of cloud computing services that

supports the storage functionality. The extensive use of the cloud has resulted

in individuals, enterprises, and governments storing a vast amount of data in

cloud storage systems. Cloud providers report that they host trillions of data ob-

jects and handle millions of concurrent requests [22, 23, 3]. Further, the use

of the cloud and cloud storage is expected to grow [16]. The challenge is or-

chestrating and ensuring individual user performance and their requests as if

each user were isolated from massive numbers of users especially with regard

to cloud storage systems.

Guaranteeing isolation is crucial to handling high volumes of concurrent re-

quests in cloud storage systems, but it entails many challenges. Isolation refers

to encapsulating users or processes in an independent execution environment

or ensuring users are less affected or not at all affected by others [63, 134]. For

example, isolation of performance in storage systems prevents one user from

affecting the performance for other users. Another aspect of isolation is found

in data access semantics — definitions, restrictions and formal rules that govern

how data is accessed [88]. Data access semantics enable multiple users to simul-

1

taneously access shared data without encountering any anomalous data states

by maintaining isolated data access rules [38]. However, high volumes of con-

current requests, a mix of user workloads, heterogeneous and parallel hardware

configurations, and so on within cloud storage systems provide new challenges

and opportunities to achieve isolation.

Therefore, this dissertation focuses on addressing the following research

question: how can a cloud storage system achieve isolation? We explore this ques-

tion in three key areas: performance isolation, transactional isolation, and fine-

grained consistency control. This chapter first presents background information

regarding the research question and then elaborates on the challenges in each

key area. Based on the challenges, we present detailed research questions and

summarize our contributions.

1.1 Cloud Storage Servers

We generalize the definition of a cloud storage system as any storage system that

is shared and accessed concurrently by multiple users, processes, or threads.

It varies in scale ranging from a single block device to large-scale key-value

stores and filesystems to a large (distributed) system that consists of thousands

of servers [1, 2, 8, 14]. In this dissertation, we focus on key characteristics: shared

and concurrently accessed.

We define a single cloud storage server as an individual server that is part of

a cloud storage system. The cloud storage server also shares the same key char-

acteristics of being shared and concurrently accessed by multiple users. A cloud

storage server can serve the user by itself and can be used as a basic building

2

block to construct a large-scale storage system. This dissertation focuses on a

cloud storage server.

1.1.1 Cloud Storage Server Trends

We compare the server specifications from years 2000, 2006, and 2016, to un-

derstand how the storage server has evolved. Table 1.1 summarizes the server

trends, which reflect how the hardware technology for servers has evolved. Dell

PowerEdge models 2450 [49], 2850 [50], and R930 [51] from years 2000, 2006,

and 2016, respectively, are compared by showing the CPU types and the total

number of cores, last level cache and memory sizes, network interfaces, storage

drives, and external ports. The servers are equipped with the latest available

hardware when they were manufactured and are specialized for storage ser-

vices.

The “CPU” row of the table indicates that the total number of cores has in-

creased from 2 and 4 to 96 in the year 2016. The number is increased by 48X

and 24X compared to years 2000 and 2006, respectively. The increase reflects

the CPU development trend of increasing number of cores [25]. Assuming that

a core hosts one user at a time, the number of parallel accesses in a cloud stor-

age server has increased by almost 50 times compared to the year 2000. The

increased number of CPU cores and parallelism emphasize the importance of

isolation in cloud storage servers.

Similarly, the last level cache capacity has grown by 30X (from 2MB to

60MB), the memory size increased by 384X to 3000X (from 2GB and 16GB to

6TB), and the total bandwidth – the amount of data that can be transferred per

3

Year 2000 2006 2016
Model Dell Dell Dell

PowerEdge 2450 PowerEdge 2850 PowerEdge R930
CPU
(total # of
cores)

2 × single core Intel
Pentium III Xeon @
600 MHz

2 × dual core Intel
Xeon @ 2.8GHz

4 × 24 core Intel
Xeon @ 2.1GHz

(2) (4) (96)
Last level
cache

None
(CPU internal)

2MB 60MB

Memory 2GB 16GB 6TB
Network
interfaces

1 × 100Mbps Ether-
net

2 × 1Gbps Ethernet 2 × 1Gpbs Ethernet,
2 × 10Gbps Ether-
net

Storage
drives

4 × SCSI HDD,
1 × tape drive

6 × SCSI HDD
(one can be used for
a tape drive)

24 × SAS HDD or
SAS/SATA SSD,
8 × PCIe SSD

External
ports

1 × serial,
1 × parallel

2 × PCIe,
1 × PCI-X

10 × PCIe

Table 1.1: Dell server specifications from year 2000 [49], 2006 [50], and
2016 [51].

second – of network interfaces has expanded by 11X to 220X (from 100Mpbs and

2Gpbs to 220Gbps) during one and a half decades. Together, the CPU, the last

level cache, memory, and network interfaces show that a single cloud storage

server in 2016 is as powerful as tens to hundreds of servers in years 2000 and

2006. The hardware resource trends in the table imply that the cloud storage

server has become powerful and offers great parallelism.

The “storage drives” row in the table highlights that the servers rely on hard

disk drives (HDD). A HDD is composed of multiple platters, a spindle, and

an arm [122]. The platter is a round magnetic disk, where the data is stored.

Platters have circular tracks, which form concentric circles from the center to

the edge. Each track consists of sectors that are data accessing units of a HDD.

A sector has a fixed capacity such as 512 bytes, but the physical size of a sector

4

Year 1997 2007 2016 2016
Model Western Digital Western Digital HGST HGST

Caviar
AC22500

WD1600AABS Ultrastar He10 Ultrastar
C10K1800

Capacity 2.5 GB 250GB 10 TB 1.2TB
Rotational
speed

5400RPM 7200RPM 7200RPM 10520RPM

Average La-
tency

5.8ms 4.2ms 4.2ms 2.8ms

Average
seek time

11.5ms 8.9ms 8.3ms 3.3ms

Interface EIDE SATA II SATA III SAS-3
(bandwidth) (264Mb/s) (3Gb/s) (6Gb/s) (12Gb/s)
Form factor
(platter
size)

3.5in 3.5in 3.5in 2.5in

Table 1.2: Hard disk drive specifications from year 1997 [140], 2007 [139],
and 2016 [70, 69].

varies as the length of a track varies. A spindle holds the platters together in a

cylindrical shape and rotates the platters. The arm has a head at its tip and the

head accesses data from the platter. The arm mechanically moves between the

inner and the outer tracks of platters. The movement of the arm and the rotation

of platters enable the head to access the entire surface of the platter. To access

a sector, the disk arm moves to find the track of the sector on a platter, which

is known as the seek operation, and the platter rotates so that the sector can be

accessed by the head. When the head accesses data in sequential addresses, the

data is read from the same track and the arm does not need to seek. On the

other hand, when the head accesses random addresses, the arm seeks to find

the track. The seek time dominates the HDD access latency, which is the time

interval between a request and the following response. The problem is that the

latency for the seek has not improved much for decades: the average seek time

improved from approximately 12ms to 3ms over two decades [56].

5

Table 1.2 shows the HDD specifications from 1997 to 2016. HDDs with the

largest capacity in each year are selected. The HDD capacity has grown by

4000X (from 2.5GB to 10TB), but the rotational speed and the average latency

have improved by only 2X (from 5.4K RPM to 10.5K RPM and from 5.8ms to

2.8ms). The average latency is mainly limited by the seek time that hardly de-

creases. As shown in Table 1.2, the seek time is noticeably reduced only when

using a smaller form factor: smaller platter size makes the seek distance shorter.

The gap of improvements found in the HDD versus CPU and memory tech-

nologies makes storage operations relatively slower.

Despite the slow performance (latency) trends, the number of HDDs in

servers has increased by 5X to 8X (from 4 and 6 to 32) during the past one and

a half decades and the bandwidth to storage devices has become greater (“Stor-

age drives” row of Table 1.1 and “Interface” row of Table 1.2). The bandwidth is

capped by the communication interfaces between the server and the storage de-

vice and Table 1.3 summarizes the interfaces. The storage interface has evolved

from Enhanced Integrated Device Electronics (EIDE) to Serial Attached Small

Computer System Interface (SAS) and the bandwidth has increased steadily

for two decades. Serial, Parallel, Peripheral Component Interconnect eXtended

(PCI-X), and Peripheral Component Interconnect Express (PCI-e) were mainly

used to connect non-storage devices to the server, but PCIe is being actively

used for high-end solid state drives (SSD).

NAND-flash-based SSDs are persistent storage devices, which are being

widely deployed in cloud storage servers as shown in the ”storage drives” row

of Table 1.1. A SSD is composed of multiple NAND flash memory chips. The

NAND flash memory stores data persistently using a floating gate, which is an

6

Name Bandwidth Common Usage
EIDE
(Enhanced Integrated
Drive Electronics)

16.67Mbps HDD, CD/DVD Drive

SCSI
(Small Computer System
Interface)

160Mbps - 640Mbps HDD, CD/DVD Drive

SATA
(Serial AT Attachment)

1.5Gpbs - 16Gbps HDD, SSD, CD/DVD Drive

SAS
(Serial Attached SCSI)

3Gbps - 22.5Gbps HDD, SSD

Serial 110bps - 256Kbps Terminal, printer, phone, mouse
Parallel 150Kbps Zip drive, scanner, modem, ex-

ternal HDD
PCI-X
(Peripheral Component
Interconnect eXtended)

6.4Gbps - 34.4Gpbs Network interface card, graphics
card

PCIe
(Peripheral Component
Interconnect Express)

2Gbps - 252Gbps SSD, Network interface card,
graphics card

Table 1.3: Communication ports and interfaces [89].

electronically controlled storage element. Thus, the NAND flash memory does

not have any mechanical moving parts and as a result can access random data

locations with much lower latency compared to a HDD. Thus, the data access

speed of a SSD is generally faster than that of a HDD [39]. The data access la-

tency of a SSD is bounded by the NAND flash memory speed, which varies

depending on the vendor. The flash memory requires erase operations before

writing data to the same location. Typically, the read, write, and erase latencies

are approximately 20µs, 300µs, and 2ms, respectively [39, 58]. The bandwidth of

an SSD can increase by utilizing multiple NAND flash memory chips in parallel

and employing wider storage interfaces. Due to the high cost, however, SSDs

are used for special purposes rather than completely replacing HDDs [91].

7

VFS

Filesystems

Logical Block Devices

Device Drivers

Physical Block Devices

Applications / High-level Storage Systems

Operating System

Database /
Middleware

Figure 1.1: Linux storage stack.

1.1.2 Cloud Storage Stacks

Understanding the storage stack helps understand the cloud storage server as

the cloud systems and applications run in different layers of the stack. We de-

tail the storage stack based on a Linux operating system [40]. A Linux operating

system has physical block devices, device drivers, logical block devices, filesys-

tems, virtual filesystems (VFS), and applications in the storage stack (Figure 1.1).

The filesystem and virtual filesystem layers can be replaced with databases and

middleware layers depending on the needs of applications. Device drivers in-

terface between operating system and physical block devices to send and re-

ceive hardware-specific commands. Logical block devices are software abstrac-

tions of physical block devices. Filesystems use the block interface to implement

file abstractions, and the virtual filesystem provides a uniform interface to ac-

cess files on different filesystems. Databases store data in row and column for-

8

mats for easy composition and searching, and middleware interfaces between

applications and the operating system.

A cloud storage application typically runs on filesystems and databases, but

it can bypass them and directly access logical block devices. High-level storage

systems, such as library databases and even distributed key-value stores, are

often built in the application layers. Similar to the applications, high-level stor-

age systems can access filesystems, databases, and logical block devices directly

depending on their designs.

Cloud services often use virtualization to multiplex and share physical hard-

ware machines [34]. Virtualization is enabled by hypervisor software, which

creates and manages multiple virtual machines (VM) on a physical machine.

VMs are emulated computer machines that can be accessed independently. VMs

have virtualized hardware devices, such as virtual CPU, virtual memory, virtual

disk, and so on, which are created by the hypervisor. Based on the virtualized

hardware devices, VMs can run software as if the software is running on a phys-

ical machine. Hypervisors run directly on a physical hardware machine (type

I hypervisor) or inside the application layer of an operating system (type II hy-

pervisor) [99]. The type I hypervisor runs on the same layer as the operating

system, so the virtualization overhead is relatively lower than that of the type II

hypervisor.

1.2 Isolation

In this dissertation, we focus on three different topics regarding isolation: per-

formance isolation, transactional isolation, and client-centric consistencies. The

9

following subsections provide the definition and the context for each topic.

1.2.1 Performance Isolation

Performance isolation is a property that minimizes noticeable contention of re-

sources and access time delays in systems to make users unaware of each other’s

behaviors [134, 63]. Performance isolation is not meant to prevent sharing of the

physical storage – for example, share part of the storage bandwidth – but rather

filtering out side effects of a user that significantly slow down others. For exam-

ple, IceFS provides performance isolation to each user by flushing data of each

user independently from memory to disk [80]. On the other hand, ext3 filesys-

tem, a filesystem commonly used in Linux, flushes all data in memory to disk

even when only one user calls sync. Thus, other users that did not call sync can

be significantly slowed down because their data is unnecessarily flushed [80].

Performance isolation is indispensable in storage systems. Storage band-

width in systems is typically lower than the CPU and memory bandwidth and

accessing the storage has been a long-standing bottleneck. Hence, when multi-

ple users issue requests at a high rate, the contention for the storage access be-

comes noticeable. The access latency to the storage is also very high compared

to that of CPU or memory, so queued input/output (I/O) requests under con-

current storage accesses can cause significant delays. To provide performance

isolation and hide resource contention, for example, cloud providers predict

the storage bandwidth conservatively, limit the maximum storage access band-

width of a user to be a very small fraction of the total bandwidth, and give

vague or no guarantees for the latency [35].

10

1.2.2 Transactional Isolation

Transactional isolation is a property that defines how concurrent transactions

should access data independently without violating the integrity of data in stor-

age systems. A transaction is a sequence of operations carried out in a reliable,

independent and consistent way on a shared storage [37]. It is a programming

model that has been used in databases for decades. Transactions have four

properties called ACID: atomicity, consistency, isolation, and durability (see Ap-

pendix A). Atomicity guarantees that a transaction is executed completely or not

at all. Consistency guarantees a transaction changes the storage state from one

consistent state to another consistent state, which does not violate the integrity

constraint – predefined rules for how and in which format the data should be

stored [127]. Isolation guarantees that concurrent transactions are executed in

an order that does not violate consistency. Finally, durability ensures that data

updates successfully made by a transaction are stored durably and cannot be

lost.

While consistency defines how the data should transform in each step in a

storage system, transactional isolation defines how multiple users should ac-

cess data concurrently without interfering with others and not violating con-

sistency; it defines the ordering constraints of multiple transactions accessing

shared data. Keeping consistency is straightforward under a single user, but

concurrency complicates maintaining consistency. When multiple users access

a storage system simultaneously, for example, data pieces that should be mod-

ified together can be updated partially or at different times, which can lead to

violating consistency. Thus, transactional isolation should coordinate the data

access from multiple transactions to keep the storage consistent. As with perfor-

11

mance isolation, transactional isolation is important especially as concurrency

increases in cloud storage systems.

There are several transactional isolation semantics [37], but we discuss two:

strict serializability and snapshot isolation. Strict serializability is equivalent to

scheduling concurrent transactions sequentially one after another with no over-

lapping transactions while preserving the order observed by the transaction is-

suing processes [37]. Strict serializability is the strongest guarantee, which leads

to the same result as transactions executing one at a time. On the other hand,

snapshot isolation is a weaker guarantee than strict serializability because snap-

shot isolation allows interleaved transactions that are prohibited by strict serial-

izability. Snapshot isolation is a guarantee that all reads by a transaction see all

updates by transactions that have successfully completed before the transaction

started [36]. A snapshot refers to a state of the storage system at a particular time

point. Namely, the reads of the transaction are served from a consistent snap-

shot of the storage system that was taken at the beginning of the transaction.

Still, snapshot isolation is widely used in databases for performance reasons; it

allows for greater concurrency (overlap) in transaction executions.

There are two different implementations of the transactional isolation se-

mantics known as pessimistic concurrency control and optimistic concurrency

control [37]. Pessimistic concurrency control assumes that there are always

transactions that have conflicting data accesses. It uses locks to prevent trans-

actions from executing prohibited data accesses. Once a transaction locks data,

no other transactions can access the data until the same transaction unlocks the

data. On the other hand, optimistic concurrency control assumes that there are

no transactions that have conflicting data accesses. It lets any transactions access

12

any data. However, the updates made by a transaction are not directly applied

to the storage system. At the end of a transaction execution, the transaction is

tested whether it has any conflicting data accesses with other transactions. If

there is no conflict, the transaction commits, which means the transaction suc-

ceeded and its updates are applied to the storage. If a conflict is found, only

one of the conflicting transactions commits and all others abort, which means

the transaction failed and the updates are not applied to the storage. The pes-

simistic approach conservatively blocks the execution of transactions while the

optimistic approach allows transactions to continue. Thus, if conflicts are rare,

the optimistic approach generally performs better. However, if there are many

conflicting transactions, the optimistic approach can suffer from a huge amount

of aborts [37].

1.2.3 Client-Centric Consistencies

A client-centric consistency is a class of weak consistency semantics in dis-

tributed systems, which only defines per-client guarantees. Distributed sys-

tems often replicate data across different servers and assume that the updates

are propagated from one server to another slowly with an uncertain amount of

network delays [133, 78]. Consistency semantics define how and in which or-

der an update to a data object is propagated to servers and how users access

the data [128]. Consistency semantics take into account the propagation delay

of updates and different versions of data that exist in the servers. Data-centric

consistency semantics enforce a consistent view of the entire storage system by

ordering sequences of data accesses similar to transactional isolation semantics.

Client-centric consistency semantics provide isolated views of the storage sys-

13

tem to each user with guarantee rules per data object rather than a sequence of

data accesses in the storage system (see Appendix B).

Client-centric consistencies focus on the consistent view of a storage system

centered from a client and do not guarantee anything regarding concurrent data

accesses among different clients. The followings are examples of client-centric

consistency guarantees:

• Bounded staleness guarantees that the data read by a client once was the

latest data within a time bound. The time bound can be replaced with the

number of updates.

• Monotonic reads guarantee that the value of a data read by a client is the

same or newer than the previously read value of the same data by the

same client.

• Read-my-writes guarantee that the value of a data read by a client is the

same or newer than the previously written value of the same data by the

same client.

The following example describes how client-centric consistency works. As-

sume that there are two users A and B, two servers S 1, and S 2, and two data

objects X, and Y , in a distributed storage system. The data values for each ob-

ject are represented with version numbers, for example, x1 is the first version of

data X’s value. User A reads values x5 of X, adds value one to x5, and writes

the result as y5 to data Y in server S 1. After a while, due to an unstable network

condition, server S 1 holds values x5 and y5, but S 2 holds values x4 and y5. Then,

user B, who is closer to S 2 reads data Y from S 2 and gets y5. User B tries to read

data X next. Under a data-centric consistency model, the value y5 is dependent

14

on x5, because x5 is used to generate y5, so user B should read x5 of data X from

server S 1 which can take a long time. Under a client-centric consistency model,

say monotonic-reads, the dependency created by user A has nothing to do with

user B. Thus, as long as user B did not read value x5 before, user B can access

the closer server S 2 to quickly read the value x4 of X.

Under client-centric consistency semantics, the general assumption is that

a server returns only one version of data (locally latest to the server) at any

given time and the returned version of the data can differ only among different

servers. Later in the dissertation, we break this assumption and return multiple

versions of data from a server.

1.3 Challenges

In this section, we introduce the details of the problems and challenges for sup-

porting isolation in cloud servers and explain three research questions that this

dissertation addresses.

1.3.1 Lack of Cloud Storage Server Performance Isolation

Under concurrent accesses, the performance of a cloud storage server is difficult

to predict unless the storage workload is well known and does not change over

time [136]. The underlying assumption of the cloud is that a storage workload

can run anywhere, so a workload of a user can be co-located on a same physical

server with workloads run by others [148, 121]. If the user gets lucky, the work-

load is placed on an idle server or a server with well behaving (e.g. sequential

15

disk) workloads and runs under good performance. If not, the workload is lo-

cated on a busy server or with misbehaving (e.g. random disk) workloads and

suffers from a bad performance. In the latter case, the main causes for the bad

performance are often found from the use of hard disk drives and the lack of

performance isolation.

The fundamental challenge is overcoming the mechanical characteristics of

the disk that make one workload susceptible to another while supporting in-

creased user parallelism. Disks have been notorious for being poor at handling

random I/Os because of how the mechanical parts are designed [96]. Random

I/Os make the disk arm seek, which significantly delays the I/O. In a multi-user

environment that shares a disk, this can be especially harmful: when there is a

user issuing random I/Os, all other users suffer from random seek operations.

Even if there is no user issuing random I/Os, sequential I/O requests from mul-

tiple users can be mixed together to behave like random I/Os. Namely, the per-

formance of a disk is very easily affected by the characteristics of workloads

and is worsened even under well-behaving workloads if they run together. Im-

portantly, the performance becomes far worse than dividing the maximum disk

performance by the number of concurrent users when random I/Os are present.

Therefore, a disk is inherently bad for performance isolation. Although the disk

characteristics remain the same and the performance has not been improved as

much as other hardware, a cloud storage server holds tens of disks and mix of

other storage devices such as SSDs. Under the cloud storage server environ-

ment, we investigate the first research question: given the diversity and abundance

of storage devices, how can we achieve performance isolation on a disk-based storage

system?

16

A log-structured filesystem (LFS) [107] concatenates all data that is being

written to make write operations sequential. Sequential writes significantly im-

prove the performance of the disk-based storage system. However, LFS needs

to recycle disk blocks which have been overwritten using an operation called

garbage collection. Garbage collection involves reading old data blocks and re-

locating only the data blocks that are up-to-date. In LFS, the garbage collection

and read operations of applications cause random I/Os in disks and degrade

the performance. SSDs have been proposed as caches on top of disks to prevent

random seek operations [106], but the cache misses still have a significant per-

formance impact. Moreover, limited lifetime, garbage collection of flash pages,

and the high cost of SSDs make it less suitable to cache all I/Os.

Disks are excellent at handling sequential I/Os, but very bad at handling

random I/Os. The performance for handling sequential and random I/O dif-

fers by orders of magnitude [118]. Thus, a disk that always accesses data se-

quentially can outperform multiple disks that access data randomly. Similarly,

reserving a disk to always access data sequentially can lead to better perfor-

mance isolation, as the random access to disk is disruptive for performance

isolation. Therefore, we investigate keeping at least one disk to always access

data sequentially, when multiple disks are present. As an instance of this ap-

proach, we explore chained logging design, which uses both logging and SSD-

based caching to always keep one disk to write sequentially without contention.

Gecko is an instance of chained logging and uses the log-structured design that

eliminates read-write contention by chaining together a small number of disks

into a single log, effectively writing to one drive after another once a drive gets

full. As a result, writes proceed sequentially to only one drive, which we call

the tail drive, at any given moment. Garbage collection reads and application

17

reads are restricted to non-tail drives and do not contend with writes with the

help of a SSD caching policy specific to the tail drive. The tail drive always

remains executing sequential I/O and achieves better performance and perfor-

mance isolation compared to the state of the art. The details of chained logging

and Gecko can be found in Chapter 3.

1.3.2 Lack of Cloud Storage Server Transactional Isolation

Cloud applications are developed with multiple concurrent users in mind.

Transactional models, which include transactional isolation, have been used

in databases for decades and are well adopted in the cloud for handling con-

currency [38, 78]. Transactions have been implemented in many systems and

applications in the high layers, such as filesystem and application layers, of the

storage stack. Traditionally, the low layer of the storage stack, such as the logi-

cal block layer, have been used to handle simple read and write operations and

rich functionalities such as transactions have not been implemented. Hence,

applications and systems in the high layer are built without transactional func-

tionalities support by the lower layer and implement transactions of their own.

Implementing transactions repeatedly in every new application is a big burden

for developers as the implementation is sophisticated and different implemen-

tations are typically not compatible with each other. Therefore, for the purpose

of supporting transactions in cloud storage servers, where multiple systems and

applications run together, implementing transactions at the application level is

not sustainable.

The fundamental challenge is figuring out how to support transactions from

18

the low layer of the storage stack so that systems and applications in the cloud

environment do not have to implement transactions of their own and have a

compatible transaction support with each other. The transaction implementa-

tion and API in the low layer of the stroage stack must be general and portable

so that any storage or software stack can easily use. Thus, the API should be

pushed down to the lowest common software stack, which is the logical block

storage layer. The support for transactions, especially isolation, has not been

implemented in the block layer not only because the block layer has been tra-

ditionally kept simple, but also because the data access context – e.g. which

application is accessing the data block, which part of the block is actually ac-

cessed, and so on – to handle transactional isolation is lost in the block layer.

Here, we address the second research question: what are the implications of push-

ing transactional isolation to the block layer and what are the required abstractions?

Due to the portability and compatibility issues, filesystem layers or appli-

cation layers are not good fits to host transactional APIs. Many systems im-

plemented transactions in such layers [81, 28, 132, 94, 144, 24], and these sys-

tems cannot be used universally within cloud storage stacks. Depending on the

layer which a new application is developed, these systems can be bypassed or

the new application can sit below the systems, which makes the systems un-

usable. Indeed, no storage system supports ACID transactions from the block

layer, which can be potentially used universally. The block storage systems have

been used by all applications either directly or indirectly, but have been treated

to handle only simple reads and writes. Some systems support transactional

atomicity in the block layer [43, 48, 114, 101, 44], but they all come up short sup-

porting full ACID transactions, due to missing transactional isolation support.

19

A transaction support from the block layer should be very general and easy

to use. The API should notify the start and the end of a transaction so that it

can be used by any application. To reinforce the missing application context in

the block layer, APIs to notify the context should be present. For compatibil-

ity among different applications using the same transactional features from the

block layer, communication APIs among the applications should be present. All

these APIs should work without slowing down applications. We propose and

investigate a new design and explore how it can change transactional software

development in the cloud storage server. As an instance of this approach, we

present Isotope, the first block storage system to support transactional isolation.

It works based on a simple API, beginTX, endTX, and abortTX. Data access con-

text is transferred from the application to the system using mark accessed API.

The APIs obviate the implementation of transactions, so the application de-

sign becomes very simple and easy. By using additional APIs releaseTX and

takeoverTX, different applications can collaborate to work on the same transac-

tion. In Chapter 4, we present the design of Isotope and show how Isotope can

facilitate cloud application designs.

1.3.3 Lack of Cloud Storage Server Consistency Control

Regardless of the consistency semantics, a server in a distributed system returns

the latest value of a data item in the server. That is, although the value returned

by the server may not be the latest globally, the value is locally the latest from

the viewpoint of the server. Client-centric consistency allows clients to have

independent views of the storage system, such that clients have more choices of

servers to access data from and speed up the data access. A client accesses the

20

locally latest value from a server that can be accessed the quickest among the

servers that satisfy the client-centric consistency constraints.

The key observation is that the advancement of hardware has made a cloud

storage server as powerful and diverse as tens to hundreds of servers in a dis-

tributed system from a decade ago. Diverse storage devices lead to various data

access speeds within a server, which is similar to accessing different servers with

different access latencies in a distributed system. In a sense, the cloud storage

server that only returns the latest value stored in one of the storage devices is

underutilizing its potentials to provide a finer-grained view of the storage sys-

tem to the client and to even further speed up the data access. Thus, a cloud

storage server is a strong candidate to internally support client-centric consis-

tencies to trade off consistency and performance and to support an even greater

variety of fine-grained isolated views of the storage system to the client.

The fundamental challenge is that there has not been any system that sup-

ports client-centric consistency within a single server, and applications that can

take advantage of client-centric consistency in a server are limited. In addition,

to support client-centric consistency, multiple versions of data must exist across

different storage devices in the server and new APIs to access versioned data

should be present. Even if a server has multiple versions of data, ways to ex-

plore and select the data version to return to the client is unknown. Thus, we

investigate the research question: how can client-centric consistency be supported

within a cloud storage server to trade off consistency and performance, which systems

or applications can adapt to supporting client-centric consistencies, and what are the

necessary APIs?

Client-centric consistency has been supported only in distributed set-

21

tings [128, 131, 129]. Thus, some applications in distributed domains can work

with client-centric consistencies and are likely to take advantage of the client-

centric consistency within a single server. A cloud storage server often uses

logging for reliability and logging naturally stores multiple versions of data in

the server. Storage devices with different access latencies are tiered, e.g. for

caching, and sometimes different tiers hold different versions of data as a side

effect. Therefore, multiple versions of data are likely to exist in cloud storage

servers and there are cases when stale data, which are older versions of data,

can be accessed quicker. The similarities between a cloud storage server and

a distributed system facilitate the adoption of consistency control and using

client-centric consistencies in a single server setting.

To exploring client-centric consistency within a server, we demonstrate the

usefulness of trading off consistency and performance. Once the target exam-

ples and systems are known we can extract common functionalities and APIs

that are necessary. By implementing the functionality and APIs we can truly

evaluate whether applying the client-centric consistency within a cloud storage

server is feasible and useful. As an instance of this approach, we first identify

and study StaleStore, a new class of storage systems which can take advantage

of client-centric consistencies within a server and trade off consistency and per-

formance. When different versions of data exist across many different storage

devices in a server, StaleStore returns the fastest data given a staleness bound by

the client/application. We study the necessary APIs for StaleStores and present

a prototype system, Yogurt. Yogurt demonstrates that enabling access to stale

data within a server and supporting APIs for a client-centric consistency can

lead to better performance. The design principles and the necessary APIs for

StaleStore are described in Chapter 5.

22

1.4 Contributions

By exploring and investigating the three research questions in the previous

subsections, we overcome the challenges and contribute towards isolation in

a cloud storage system. As problems and questions target various aspects of

isolation, the contributions emerge from different angles to collectively achieve

an isolated environment in a cloud storage system.

First, we show how to utilize multiple block devices in cloud storage

servers to design a contention-oblivious block storage system based on disks.

We propose a novel chained logging design that logs data over multiple disks

in order and a special SSD caching scheme, which protects sequential write op-

erations from reads, to solve the long-standing problems of log-structured de-

signs: this resolves the I/O contention between garbage collection operations

and writes as well as the contention between reads and writes. A reduced con-

tention results in better performance isolation, advances the state of the arts,

and achieves higher performance in general.

Second, we explore transactional isolation in the block layer and demon-

strate that it can facilitate cloud storage system and application designs. We

show that pushing transactional isolation into the logical block layer can result

in simpler high-level storage systems that provide strong transactional isola-

tion semantics without sacrificing performance. Our exploration results in the

first system to support transactional isolation from the block layer and the APIs

are capable of supporting various applications and programming scenarios. We

show that systems and applications can be composed using the API. The API

enables applications with different high-level constructs, such as files, directo-

23

ries, and key-value pairs, to work on the same transaction. The system achieves

transactional isolation in the cloud.

Third, we explore how to trade off performance and consistency in a stor-

age server by supporting client-centric consistencies, propose APIs to make

use of the trade-off, and define a new class of applications that are capable of

utilizing the trade-off. We first show the feasibility and potential benefit of con-

sistency control within a server by studying existing systems running on storage

devices with different speeds. Different from a distributed setting, the consis-

tency control within a server requires careful selection of consistency semantics,

as not many applications running on top of a single storage server can toler-

ate data staleness. We create a class of local storage systems called StaleStores

that can support client-centric consistencies by returning stale data for better

performance. We describe several examples of StaleStore and show that serv-

ing stale data can significantly improve access latencies. Based on this study,

we define necessary APIs for providing client-centric consistencies using stale

data. We explore the details of how to trade off consistency and performance,

and present a prototype system. Using the system, we show that it is possible

to provide the client-centric consistency within a server and support users with

different views of the storage system to improve the performance.

Overall, all three results of the investigation contribute to transforming a

cloud storage system to support isolation. We present how to achieve perfor-

mance isolation on a disk-based system and how to support transactional iso-

lation from the block layer to facilitate cloud application designs. We show a

client-centric consistency can be used to trade off consistency and performance

within a server while providing a more flexible view of the storage system. This

24

dissertation leads to a development of cloud storage systems and applications

that enable better utilization of a cloud storage server and cloud storage system

under isolation.

1.5 Organization

The rest of this dissertation is organized as follows. The scope of the prob-

lem and the methodology used for investigating the research questions are de-

scribed in Chapter 2. Chapter 3 details the exploration for performance isolation

in a cloud storage server using contention-oblivious disk arrays. Chapter 4 ad-

dresses how we can design transactional APIs inside block storage and facilitate

cloud storage systems and applications to achieve transactional isolation. Our

study regarding the trade-off between consistency and performance and sup-

porting client-centric consistencies inside a storage server using stale data are

presented in Chapter 5. Chapter 6 discusses related work, and Chapter 7 de-

scribes future work and concludes.

25

CHAPTER 2

SCOPE AND METHODOLOGY

This chapter presents the scope of problems which this dissertation addresses

and methodologies that are used to investigate the problems. We first character-

ize the cloud storage server and take a closer look at the problems surrounding

isolation. We clarify the scope by reviewing the insights and motivations for

each topic and then describe the approach for exploring the problem and the

methodology to carry out the investigation.

2.1 Scope: Understanding Cloud Storage Servers

In this section, we describe the scope of the problem. In particular, we enu-

merate the challenge of each research question in more detail to focus on the

approach that we take to investigate the problem. We first explore how disk

infrastructures do harm to performance isolation in cloud storage servers and

review the opportunities for improvements. Second, we study the need for

transactional isolation support from the lower layer of storage stacks. In par-

ticular, we revisit the end-to-end principle [108], which is a canonical guideline

for system designs, to review the soundness of our approach. Finally, we inves-

tigate the feasibility of supporting consistency and performance trade-off and

examine several existing systems to motivate the need for the support.

26

2.1.1 Cloud Storage Servers Need Performance Isolation

Cloud storage servers require performance isolation to mitigate unexpected per-

formance fluctuation and degradation. Storage servers have used disks for

decades and disks are expected to be around for a long time in the cloud en-

vironment [91]. Cloud storage servers host multiple users and the servers in-

evitably place multiple user workloads on a common disk-based infrastructure.

Disks are known to be bad at handling random I/Os, but any workload run-

ning on a shared disk can issue random I/Os. Thus, we first conduct a study

of how workloads running on shared disks perform and identify the need for

performance isolation. Then, we review new storage technologies and potential

approaches to achieve performance isolation in cloud storage servers.

Disk Contention

A common example of a cloud storage setting is a virtualized environment,

where multiple virtual machines (VMs) execute on a single machine and operate

on filesystems that are stored on virtualized disks. The application within each

VM is oblivious to the virtual nature of the underlying disk and the existence of

other VMs on the same machine. In reality, virtualized disks are implemented

as logical block devices or files of the operating system, where the hypervisor

runs. While performance isolation across VMs can be achieved by storing each

virtual disk on a separate disk, this defeats the goal of virtualization to achieve

efficient multiplexing of resources. Accordingly, it is usual for different virtual

disks to reside on the same physical disk, and thus, applications accessing the

virtual disks concurrently access the same physical disk.

27

Disk virtualization leads to disk contention. A single application that con-

tinually issues random I/Os to a disk can disrupt the throughput of every other

application running over that disk [61]. As machines come packed with in-

creasing numbers of cores – and as cloud providers cram more users on a single

physical box [142] – it increases the likelihood that some application is issuing

random I/Os at any given time, disrupting the overall throughput of the entire

system. In fact, throughput in such settings is likely to be sub-optimal even if

every application issues sequential I/Os, since the physical disk array sees a

mix of multiple sequential streams that is unlikely to stay sequential [65].

To clearly identify these problems, we ran a simple experiment on an 8-core

machine with 4 disks configured as a RAID-0 array [97]. RAID-0 stripes data: it

splits data into small fixed-size chunks which are written in parallel to the disks.

In the experiment, we ran multiple writers concurrently on different cores to

observe the resulting impact on throughput. To make sure that the results were

not specific to virtual machines, we ran the experiments with different levels

of layering: processes writing to a raw logical block device (RAW Disk), pro-

cesses writing to a filesystem (EXT4 FS), processes within different VMs writing

to a raw logical block device (VM + RAW disk), and processes within different

VMs writing to a filesystem (VM + EXT4 FS). In the absence of contention (i.e.,

with a single sequential writer), we were able to obtain 300 to 400MB/s of write

throughput in this setup, depending on the degree of layering. Adding more se-

quential writers lowered throughput; with 8 writers, the system ran at between

120 and 300MB/s.

Figure 2.1 shows the impact on throughput of a single random writer when

collocated with sequential writers. We show measurements of system through-

28

 0

 5

 10

 15

 20

 25

 1 2 3 4 5 6 7

T
hr

ou
gh

pu
t (

M
B

/s
)

Number of Sequential Writers

RAW Disk
EXT4 FS

VM + RAW Disk
VM + EXT4 FS

Figure 2.1: Throughput of 4-disk RAID-0 storage under N sequential writ-
ers + 1 random writer.

put for increasing numbers of sequential writers, along with a single random

writer issuing 4KB writes. For any number of sequential writers and any de-

gree of layering, throughput is limited to less than 25MB/s, representing an

order of magnitude drop compared to 300 to 400MB/s throughput without the

random writer. The performance drop strongly suggests the need to overcome

the limitations of disk characteristics to achieve better performance and perfor-

mance isolation. At the same time, the observed order of magnitude drop of

performance shows that multiple disks under random I/O can perform worse

than a single disk under sequential I/O (i.e. 120 MB/s). Thus, our approach

to investigate performance isolation is to keep at least one disk always under

sequential I/O.

29

Flash memory and Log-Structured Systems

Log-structured filesystems (LFS) were introduced in the 1990s on the premise

that the falling price of random access memory (RAM) would allow for large,

inexpensive read caches. Accordingly, workloads were expected to be increas-

ingly write-dominated, prompting designs such as LFS that converted slow

random writes into fast sequential writes to disk. A similar approach can be

explored using flash memory instead of RAM.

Flash memory price has been steadily dropping [15]. Given this trend, it is

tempting to imagine that flash will soon replace disk, or more pragmatically,

act as a write cache for disk. The flash write cache can act as an intermediate

layer between a RAM and a disk so that users can temporarily write data to the

flash quickly and later flush the data to the disk. Unfortunately, cheaper flash

translates into less reliable flash, which in turn translates into limited device

lifetime [120]. The two ways of lowering flash cost – decreasing process sizes

and cramming more bits per flash cell (i.e., multi-level cell (MLC) flash that

stores multiple bits per memory cell) – both result in much higher error rates

for storing data, straining the ability of hardware error correction code (ECC)

to provide disk-like reliability. As a result, lower costs have been accompanied

by lower erase cycle thresholds – the number of erase operations permitted for

flash memory blocks to store data without errors – and the threshold determines

the lifetime of the device when it is subjected to heavy write workloads. In other

words, the cost per gigabyte of flash has dropped, but not the cost per erase

cycle.

In contrast, read caches, which temporarily store data from disks and send

the stored data quickly to the reader, are a more promising use of flash. Unlike

30

primary stores or write caches, read caches do not need to see every data update

immediately, but instead have leeway in deciding when (and whether) to cache

data. For example, a read cache might wait for some time period before caching

a newly written block so that writes on the same block can be coalesced in the

meantime and flash lifetime can be extended by skipping the writes. It could

also avoid caching data that is frequently overwritten but rarely read. Crucially,

read caches do not need to be durable and hence the lower reliability of flash

over time is not as much of a barrier to deployment; the read cache only requires

a reliable mechanism to detect data corruption, which effectively translates into

a cache miss.

Accordingly, our core assumption is nearly identical to that of the origi-

nal LFS work: larger, effective (flash-based) read caches will result in write-

dominated workloads. Unfortunately, simply using LFS under a flash-based

read cache does not work, because of two key problems. First, as noted earlier,

LFS is notorious for its garbage collection (GC); GC reads (which are unlikely to

be caught by a read cache) can contend with writes from applications, negating

the positive effect of logging writes. Second, even a small fraction of random

reads past the cache can interfere with write throughput. In other words, LFS

effectively prevents write-write contention but is very susceptible to read-write

contention, both from GC reads and application reads. Our goal is to build a

log-structured storage design that prevents both write-write as well as read-

write contention.

In addition to caching reads, flash memory further acts as a catalyst for log-

structured designs by providing an inexpensive, durable metadata store. Meta-

data refers to information about data including size, location, accessed time, and

31

so on. A primary challenge for any log-structured system involves maintaining

an index over the log, which maps the location of (the latest) data blocks. As

a result, log-structured designs are usually found at layers of the stack that al-

ready require indices in some form, such as filesystems or databases. Designs at

the block-level with a logging component have historically suffered from seeks

on on-disk metadata, or predicated on the availability of battery-backed RAM

or non-volatile-RAM (NV-RAM) [43, 48, 141]. Consequently, such designs have

been restricted to expensive enterprise storage solutions. By providing an inex-

pensive means of durably storing an index and accessing it rapidly, flash enables

log-structured designs at lower layers of the stack, such as the logical block de-

vice.

Following the trend of increased use of flash memories [91], we explore per-

formance isolation on disks using flash and logging in Chapter 3.

2.1.2 Cloud Storage Servers Need Transactional Isolation

Transactional isolation support from the cloud storage server would benefit

most applications and systems running on top of the server, because the cloud

inherently entails concurrent data accesses. Cloud storage servers host a vari-

ety of applications and systems, but most applications and systems implement

transactional isolation of their own. Thus, transactional isolation has become a

redundant feature that is used by many but not supported by the cloud storage

server itself. Transactional isolation has become redundant because the storage

stack is traditionally designed to place sophisticated functionalities, including

transactions, in the high layers of the stack [79, 108]. However, the cloud opens

32

up new opportunities to question the traditional storage stack design. The logi-

cal block device layer is the lowest common software layer of the storage stack

which has been kept simple but it is used directly or indirectly by most systems

and applications. To support transactional isolation (in addition to atomicity

and durability) as a feature provided from the cloud storage server to all sys-

tems and applications, we reason about supporting transactions from the block

layer and explore the potential benefit.

End-to-End Argument

End-to-end argument [108] is a system design guideline which helps the de-

signer to decide where to place a particular functionality in a layered system.

The argument advocates placing functionalities in the end-application or the

high layers of the software stack in two cases. The first is when application-

specific care or information is necessary even after the low layer has processed

the functionality. Exceptions can be made when there is a performance or utility

reason to place the functionality down the stack. The second is when placing

the functionality in the low layer incurs unnecessary overhead to applications

that do not use the functionality. To summarize, if a functionality is not com-

plete by itself in the low layer, is not usable for most applications in the system,

or does not have performance benefits to be placed in the low layer, it should

be located in the high layers of the stack. We carefully review the end-to-end

argument to investigate the soundness of transactional isolation support from

the block layer.

Although the first part of the end-to-end argument may not completely com-

ply with our approach, the exception to the first clause ensures that transac-

33

tional isolation in the block layer is a viable approach especially in cloud stor-

age servers. Transactional isolation has been implemented in high layers of the

storage stack, partially because of the first part of the end-to-end argument.

Transactional isolation requires handling of information about which part of

data the application has accessed in a transaction. However, transactional iso-

lation in the block layer of cloud storage servers passes the first clause of the

end-to-end argument, because the block layer support is undeniably useful for

most applications running on a cloud storage server. The applications require

transactional isolation or concurrency control by default in the cloud and once

the necessary information for a transaction becomes available to the block layer,

applications do not have to handle transactions redundantly. One of our goals is

to provide a general block level API for transactions, so applications can easily

adopt transactional features from the block layer.

Considering the second part of the end-to-end argument, transactional isola-

tion is efficiently implementable at a low layer of the stack with negligible per-

formance overhead using flash based storage devices, terabytes of RAM, and

tens to hundreds of cores that already exist in cloud storage servers. Moreover,

the fact that most applications require transactional isolation in the cloud elim-

inates concerns for imposing unnecessary performance overhead to any appli-

cation.

Other Needs and Benefits

In addition to the examination of the end-to-end argument, we investigate ad-

vantages and other goals for support transactional isolation from the block

layer:

34

Overcoming the complexity of locks: Storage systems typically implement pes-

simistic concurrency control via locks, opening the door to a wide range of aber-

rant behavior such as deadlocks. A deadlock is a status which a program can-

not make any progress because processes/threads in the program have locked

different data simultaneously and are indefinitely waiting for others to release

the lock. This problem is exacerbated when developers attempt to extract more

parallelism via fine-grained locks, and add more complexity by incorporating

mechanisms for atomicity and durability [87]. Transactions can provide a sim-

pler design of storage system by supplying isolation, atomicity and durability

at the same time using a single abstraction.

Supporting a generic transaction: Storage systems often provide concurrency

control APIs over their high-level storage abstractions; for example, NTFS, a

Windows filesystem, offers transactions over files, while Linux provides file-

level locking. Unfortunately, these high-level concurrency control primitives

often have complex, weakened, and idiosyncratic semantics [98]; for instance,

NTFS provides transactional isolation for accesses to the same file, but not for

directory modifications, while a Linux lock using fnctl commands can be re-

leased when the file is closed by any process that was accessing the file instead

of an explicit unlock [5]. The complex semantics are typically a reflection of a

complex implementation, which has to operate over high-level constructs such

as files and directories. In addition, if each storage system implements isolation

independently transactions cannot span over different systems: for example, it

is impossible to do a transaction over a file on NTFS and an arbitrary database

system. One of our goals for exploring block level transactions is to support

transactions over multiple systems that work on different data constructs.

35

Efficient transactions using multiversion concurrency control. Pessimistic con-

currency control with locks is slow and prone to bugs; for example, when locks

are exposed to end applications directly or via a transactional interface, the ap-

plication could hang while holding a lock. Optimistic concurrency control [74]

works well in this case, ensuring that other transactions can proceed without

waiting for the hung process. Multiversion concurrency control works even bet-

ter. Multiversion concurrency control (MVCC) is one of the optimistic concur-

rency control mechanisms which maintains multiple versions of data to serve

users with different snapshots. Transactions with stable, consistent snapshots (a

key property for arbitrary applications that can crash if exposed to inconsistent

snapshots [59]) allow read-only transactions to always commit [38] and enables

weaker but more performant isolation levels such as snapshot isolation [36].

However, implementing MVCC can be difficult for storage systems due to its

inherent need for multiversion states. High-level storage systems are not always

intrinsically multiversioned, making it difficult for developers to switch from

pessimistic locking to a MVCC scheme. Multiversioning can be particularly

difficult to implement for complex data structures like B-trees – a balanced tree

commonly used in databases and filesystem to index data blocks – requiring

explicit marking of deleted data which is known as tombstone [53, 103].

In contrast, multiversioning is relatively easy to implement over the static

address space provided by a block store (for example, no tombstones are re-

quired since addresses can never be deleted). Additionally, many block stores

are already multiversioned in order to obtain write sequentiality: examples are

shingled drives [26], SSDs, and log-structured disk stores. Thus, as an efficient

implementation strategy for transactions, we investigate pushing MVCC in the

36

block layer as well.

Chapter 4 details how we design transactional block layer using a new multi-

version concurrency control method and demonstrate how this facilitates cloud

application designs.

2.1.3 Cloud Storage Servers Need Consistency Control

Distributed systems use client centric consistency semantics to trade off consis-

tency and performance and a cloud storage server, which has become as pow-

erful as a distributed system, has the potentials to take advantage of the same

trade-off. Cloud storage servers are highly parallel internally and use storage

devices with different speeds. Tens to hundreds of CPU cores and tens of hetero-

geneous storage devices are similar to servers in distributed systems, and dis-

tinct access speeds of storage media are analogous to network delays between

the servers. However, no study has been conducted surrounding the trade-off

between consistency and performance within a cloud storage server. Support-

ing client-centric consistency within a server can potentially provide each user

with an independent view of the storage server under better performance. By

exploring the similarity between a cloud storage server and a distributed sys-

tem, we investigate how to trade-off consistency and performance in the cloud

storage server.

Besides the similarity of hardware between a cloud storage server and a dis-

tributed system, our study for consistency and performance trade-off within the

cloud storage server relies on two key observations: local storage systems often

have multiple versions of data due to logging and caching, and older versions,

37

which are known as stale data, are often faster to access. We first enumerate

the example systems where the observations hold and investigate why older

versions are faster to access.

Because there are no systems that already trade-off consistency and perfor-

mance within a server, we built high-fidelity emulations of three systems to fur-

ther study the characteristics of the example systems and evaluate the potentials

for the consistency-performance trade-off. The emulations are not functionally

complete (e.g., they do not handle recovery after crash) but faithfully mimic the

I/O behavior of the original system. Using these emulated studies, we show

that accessing older versions can significantly cut access latency while achiev-

ing finer-grained control of client-centric consistencies in a server.

S1. Single-disk log-structured stores. The simplest and most common exam-

ple of a system design that internally stores faster stale versions of data is a

log-structured storage system, either in the form of a filesystem [107] or block

store [48]. Such systems extract sequential write bandwidth from hard disks

by logging all updates. This log-structured design results in the existence of

stale versions; furthermore, these stale versions can be faster to access if they

are closer to the disk arm than the latest version. Previous work has explored

storing a single version of data redundantly and accessing the closest copy [147].

S2. SSD FTLs (Flash Translation Layers). SSDs based on NAND flash are inter-

nally log-structured and the FTL, a software in flash chips or SSDs, is in charge

of maintaining the log, redirecting I/O requests according to the log index, and

performing garbage collections [120]. Data in flash are written in an erase block,

which consists of multiple 4KB pages, and the pages in the same erase block

are erased or reset together during garbage collection. Stale versions, which are

38

created by logging, can be faster to access if the latest version happens to be in

an erase block that is undergoing garbage collection.

S3. Log-structured arrays. Some designs chain a log over multiple disks. Gecko

which we explore in Chapter 3 is a storage array with a chained log; updates

proceed to the tail drive of the log, while reads are served by all the disks in the

log. In such a design, reads from disks in the body of the log are faster since they

do not interfere with writes. Accordingly, reading a stale version in the body of

the chained log may be faster – and less disruptive to write throughput – than

reading the latest version from the tail drive.

1-v50-v1 2-v2 3-v6 4-v1 5-v2 6-v3 7-v1 ... N-vX

5-v31-v6 3-v7 1-v7 2-v3

SSD: stores the latest versions flushed from the disk cache.

Disk cache:

logs all incoming writes.
Log

F
lu

sh

Read addr 2

Regular read to

the latest version.

Staleness allowed read to an older version. blk addr

version

Figure 2.2: In the Griffin system, being able to read older versions from a
SSD than the latest version from the disk cache can be faster.

S4. Durable write caches that are fast for writes but slow for reads. Grif-

fin [124] layers a disk-based write cache over an SSD; the goal is to coalesce

overwrites before they hit the SSD, reducing the rate at which the SSD wears

out. In such a system, the latest version resides on the write cache; reading it

can trigger a slow, random read on the disk that disrupts write throughput. On

the other hand, older versions live in the backing SSD and are much faster to

access (Figure 2.2).

39

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

0 1 2 3 4 5 6 7

A
vg

 r
ea

d
la

te
nc

y
(u

s)

Staleness bound

128MB
256MB
512MB
1024MB

(a) Read latency

 0

 5

 10

 15

 20

 25

0 1 2 3 4 5 6 7

D
is

k
hi

t r
at

e
(%

)

Staleness bound

128MB
256MB
512MB
1024MB

(b) Disk cache hit rate

Figure 2.3: Read latency and disk cache hit rate of Griffin with different
disk to SSD data migration trigger sizes. Accessing stale data
can avoid reading from the disk.

We implemented an emulator for the Griffin system. Figure 2.3-(a) shows the

latency benefit of serving older versions. The y-axis is the latency; the x-axis is

the parameter for the bounded staleness consistency guarantee, signifying how

stale the returned value can be in terms of the number of updates it omits. We

run a simple block storage workload where a 4GB address space is written to

40

and 8 threads issue random reads and writes with 9 to 1 ratio. Depending on

the configuration, the Griffin system flushes data from the disk cache to SSD

whenever 128MB to 1GB worth of data is written to the disk. The figure shows

that allowing the returned value to be stale by even one update can reduce read

latency down to 1/8 and down to 1/20 by allowing values stale by four updates.

Figure 2.3-(b) shows the ratio of reads hitting the disk cache. Read accesses to

disk can be eliminated by allowing values stale by five updates.

c1c0 c2 c3 c4 c5 c6 c7 ... cN

c1c7

c0 c2

c3 c5

Disk: stores deduplicated data chunks.

Read addr 2

Hash key v2→c4

Hash key v1→c3

Regular read to the latest version.

Staleness allowed read

to an older version.

deduplicated

chunk

Memory cache

Figure 2.4: In a deduplicated system with cache, data items are shared
with many others. If an older version is referenced by another
address and is inside the cache, reading this than the latest ver-
sion is in the disk is faster.

S5. Deduplicated systems with read caches. Deduplicaiton finds redundant

copies of information in a storage system to saves space: redundant copies are

removed and only one copy is shared by all users of the system [86]. In such

systems, an older version of a data item may be identical to the latest, cached

version of some other data item; in this case, fetching the older version can result

in a cache hit (Figure 2.4).

Figure 2.5 shows the performance and memory cache hit rate on stale data of

41

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
vg

 r
ea

d
la

te
nc

y
(u

s)

Staleness bound

30%
50%
70%
90%

(a) Read latency

 0

 5

 10

 15

 20

 25

 30

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S
ta

le
 d

at
a

hi
t r

at
e

(%
)

Staleness bound

30%
50%
70%
90%

(b) Cache hit rate on stale data

Figure 2.5: Read latency and memory cache hit rate on stale data in a
deduplicated system with different deduplication rates. Ac-
cessing stale data results in higher cache utilization and lower
read latency.

a deduplication system which is under bounded staleness guarantees. The sys-

tem is a block store which deduplicates 4KB blocks. 8 threads randomly read

and write blocks with 9 to 1 ratio within 4GB address space. The overall dedu-

plication ratio, which defines the amount of redundant data, is controlled to be

42

30 to 90 percent. The system uses a disk as a primary storage and 256MB RAM

as a read/write cache, which is indexed by the hash key and uses least recently

used (LRU) policy. LRU policy evicts least recently accessed data first when the

cache is full. The performance improvement plateaus as the allowed staleness

bound increases, but the performance is improved up to 10 to 35% depending on

the deduplication ratio (Figure 2.5-(a)). Such performance improvement trends

follow the cache hit rate on stale data (Figure 2.5-(b)).

1-v5... 2-v2 3-v6 2-v3 5-v2 1-v6 4-v2

1-v50-v1

1-v6 4-v2

2-v2 3-v6

SSD: logs fine-grained data smaller than a block.

Memory cache

Get key 2

Regular read to the latest version.

Log

Staleness allowed read

to an older version.

←Block size→ key

version

Figure 2.6: If data items are smaller than the cache block in a fine-grained
logging system, other items (e.g. 2-v2) can follow an item (e.g.
3-v6) being read into the cache. If the item that followed is an
older version, accessing the older item can be faster than the
latest item in the SSD.

S6. Fine-grained logging over a block-grain cache. Consider a log-structured

key-value store implemented over an SSD (e.g., like FAWN [30]), which in turn

has an internal memory cache. New key-value updates are merged and written

as single blocks at the tail of a log layered over the SSD’s address space. As key-

value pairs are overwritten, blocks in the body of the log hold progressively

fewer valid key-value pairs, reducing the effectiveness of the memory cache

within the SSD. However, if stale values can be tolerated, the effectiveness of

43

the memory cache increases since it holds valid versions – stale or otherwise –

for a larger set of keys (Figure 2.6).

 0

 200

 400

 600

 800

 1000

 1200

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
vg

 r
ea

d
la

te
nc

y
(u

s)

Staleness bound

2 items
4 items
8 items
16 items

(a) Read latency

 0

 10

 20

 30

 40

 50

 60

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S
ta

le
 d

at
a

hi
t r

at
e

(%
)

Staleness bound

2 items
4 items
8 items
16 items

(b) Cache hit rate on stale data

Figure 2.7: Read latency and memory cache hit rate on stale data in sys-
tem with fine-grained logging over a block-grain cache. The
read latency decreases and the cache hit rate increases when
the allowed staleness of data and the number of items placed
in a cache block increase.

Figure 2.7 shows the performance of a simple emulation of a key-value store

layered over an SSD with a 256MB DRAM cache. 1 million key-value pairs are

44

present in the system and 8 threads randomly read and write them with 9 to 1 ra-

tio. The key-value pair size is parameterized such that 2 to 16 pairs can be stored

in a block. If N key-value pairs fit in a block, at most N − 1 key-value pairs can

be wastefully loaded in the cache. Allowing access to older versions reenables

utilization of potentially wasteful data items in the cache block (Figure 2.7-(b))

and higher utilization of DRAM cache results in increased performance up to

60% (Figure 2.7-(a)).

S7. Systems storing differences from previous versions. Some log-structured

systems store new data as changes against older versions. In Delta-FTL [145],

when a block is overwritten, the system does not log the entire new block; in-

stead, it logs the change against the existing version. For instance, if only the

first 100 bytes of the block have been changed by the overwrite, the system only

logs the new 100 bytes. In such a system, accessing the latest version requires

reading both some old version and one or more changes, triggering multiple

block reads. Accessing an older version can be faster since it requires fewer

reads.

All the above cases keep older versions to achieve better performance, stor-

age durability, storage utilization, ease of data maintenance, and so on, but be-

ing able to access older versions faster than the latest version is a side effect.

However, our exploration has shown that trading off consistency and perfor-

mance within a server has potentials to improve system performance. In Chap-

ter 5 we investigate a system that explicitly utilizes this side effect – whenever

it is possible – to speed up storage performance and to provide fine-grained

control of client-centric consistency inside a server.

45

2.2 Methodology

In this dissertation, we investigate how to achieve isolation in cloud storage

servers from different angles. Each angle stems from different research ques-

tions and challenges surrounding performance, transaction, and consistency

control. We explore each topic by designing, implementing, and evaluating

a system. The system design and implementation represent our approach to

investigate the research question, and the evaluation reveals our findings and

verifies the soundness of our approach.

In the rest of the section, we describe the environment, where we build our

systems, and detail the tools and applications that we use to evaluate the sys-

tems. We also present baseline systems that we employ to compare our ap-

proaches.

2.2.1 Linux Device Mapper

We built three systems to investigate isolation in cloud storage servers. All our

systems are built in a Linux kernel as device mappers. The device mapper is a

Linux kernel module that enables logical block device management [12]. The

device mapper is located above or in the same storage stack as the logical block

device as shown in Figure 2.8: it is under the filesystem and above the device

driver. Similar to how block devices are represented and accessed in a Linux

kernel, the device mapper shares the same block I/O interface. Filesystems can

run on top and interact with the device mapper using block I/Os and applica-

tions can also directly open and access the device mapper. Examples of a device

46

Applications

VFS

Filesystems

Device Mappers

Block Device

Device Drivers

Physical Block Devices

User Space

Kernel
Space

Hardware
Specific

Block I/Os

File I/Os

Ext2/3/4, XFS, JFS, etc.

LVM, Software RAID, etc.

HDD, SSD, etc.

SCSI, SATA, IDE, MMC etc.

Figure 2.8: Linux storage stack and device mapper.

mapper are logical volume manager (LVM) and software RAID. LVM creates

resizable logical disks that are smaller than or larger than an actual disk using

a part of a disk or multiple disks and software RAID creates a logical disk that

uses RAID techniques using multiple disks under the hood.

The device mapper module can combine multiple physical or logical block

devices to create a new logical block device. Once a device mapper creates a

logical block device, it maps the I/O request coming into the block device to the

underlying block device. For example, LVM can create a large size logical block

device by combining multiple physical block devices and redirects the I/Os to

the physical block device. Similarly, the systems in this dissertation are repre-

sented as a logical block device, but internally log data to multiple disks and

cache data in a SSD or memory. In addition to simply creating different sized

block devices and redirecting the I/Os, device mappers are used to implement

more sophisticated functionalities, such as encryption (dm-crypt), deduplica-

tion (dm-dedup), and so on.

47

Because a device mapper represents logically the same form as regular logi-

cal block devices, it can even be nested under each other. For example, a logical

volume created by the LVM can be used under software RAID. In Chapter 3, we

use this feature for evaluation. We use multiple disks to create a RAID 0 volume

and run our system and baseline systems on top.

The ioctl system call is used to trigger an interactive function that is spe-

cific to a device mapper. The device mapper’s programming interface includes

handling of custom ioctl calls. We use the ioctl interfaces to implement new

APIs and use transactional and consistency trading off functionalities.

Device mappers are configured and controlled using dmsetup and

libdevmapper, which are a user space tool and a library, respectively. For

example, dmsetup’s message command can reconfigure the device mapper or

issue specialized commands on the fly, and its status command can retrieve

the status information of the device mapper.

2.2.2 Emulations

To investigate our approaches that do not strictly require a full-fledged system,

we use emulations. Emulations are usually run in user space and are easier to

implement than an actual system in an operating system (OS) kernel. Emula-

tions enable fast prototyping and can yield a very precise outcome that is almost

identical to running a real system. An emulated system may or may not be able

to run applications that used to run on the original system, but given the input,

the core outcome of interest should be identical. In this dissertation, we use em-

ulations focusing on the I/O behaviors of the system. The emulations do not

48

fully emulate the original system’s behavior and run real applications, but the

emulations trigger the same read/write operations to the block devices as the

real system when I/O workloads are executed on top.

Emulations are suitable to test the performance and to analyze the behavior

of storage systems. Accessing a persistent storage media takes longer than ac-

cessing any other hardware parts in a computer system. While access to main

memory takes hundreds of nanoseconds, accesses to a SSD and a disk take hun-

dreds of microseconds and tens of milliseconds, respectively, which results in

three to five orders of magnitude gaps. Thus, computation time in CPUs and

memory access time are easily hidden by the storage access time. Namely, dif-

ferences in CPU and memory accesses between a real system and an emulated

system are not easily noticeable as long as the I/O access patterns are identi-

cal. For this reason, emulating a kernel storage system in a user space does not

cause a huge difference regarding performance, and doing so makes the testing

and prototyping process easier and faster as debugging in kernel space can be

very time-consuming. We implemented all of our systems in the Linux kernel,

but used emulations to quickly explore and test new functionalities that can be

time-consuming to implement in the kernel. We use emulations in Chapter 3 to

evaluate some additional functionalities that do not exist in kernel implementa-

tions.

Emulations can be useful when the internals or source code of a system are

not accessible. One can quickly mimic and emulate the known core behavior

of the system, which others have built, to get internal statistics or to compare

against other systems. For example, it is difficult to openly access the firmware

code or the hardware implementation of SSDs. In Chapter 3, we emulate the

49

behavior of an SSD to test the lifetime expectancy when it is used as a cache. In

Section 2.1.3, we have already shown several emulations of systems designed

by others to prove our motivating concepts that returning stale data can result

in faster data accesses and providing consistency and performance trade-off can

be useful.

2.2.3 Public Workloads and Systems

To evaluate our systems and approaches, we use block I/O traces, benchmarks,

storage systems, and development frameworks. In this subsection, we describe

the ones that are publicly available and how we use them.

Block I/O Traces

Block I/O traces are often used to evaluate storage systems. Because the traces

only describe the I/O access patterns and not the data contents that can be sen-

sitive, block I/O traces are relatively easier to release in the public domain. Mi-

crosoft has released three sets of traces – Microsoft production server traces,

Microsoft enterprise traces, and Microsoft Research Cambridge traces – in the

SNIA repository [20] and they have been actively used in many research projects

and papers. The traces are collected from SQL servers, Exchange mail servers,

network filesystems, Live map service, printer servers, source management

servers and so on, which ranges from a small system to a large distributed scale

system. These are very useful as they are collected from a real deployment

of systems and were collected for an extended time period. These traces can

be used to evaluate how a new system can perform under various workload

50

patterns that can be found in real life. By running different I/O traces simul-

taneously, we emulate a cloud environment where random traces run together.

In this dissertation, the block I/O traces are mostly used for evaluating perfor-

mance isolation.

Benchmarks

Using a benchmark software is a standard way of evaluating a new system.

Storage system benchmarks generate various I/O patterns and enable testing

the system under different settings.

IOZone [9]: IOZone is a filesystem benchmark tool. It generates various

I/O patterns in different phases such as sequential reads, sequential writes,

re-writes, read backwards, read strided, random reads, random writes, asyn-

chronous reads, and asynchronous writes. Although it is a filesystem bench-

mark, block devices can be tested when IOZone is run directly on the logical

block layer. For the evaluation of our device mapper based systems, we used

options using O DIRECT and O SYNCwhich enable I/Os to directly interact with

the block layer. At the end of the execution, IOZone returns statistics including

bandwidth and latency. Using multiple IOZone threads, we create a system

environment with multiple concurrent users issuing heavy I/O.

LevelDB benchmark [11]: LevelDB is a library key-value store developed

by Google. LevelDB benchmark is designed as a part of LevelDB to evaluate

the performance. LevelDB benchmark uses the LevelDB interface to issue I/O

requests. Similar to IOZone, the benchmark generates synthetic I/O patterns,

such as random and sequential reads and writes. We use this benchmark and

51

LevelDB to evaluate our approach in Chapter 4. We build our own key-value

store, which shares the LevelDB interface, on top of our system and compare

the performance against LevelDB.

Yahoo! Cloud Serving Benchmark (YCSB) [46]: YCSB is developed by Ya-

hoo to evaluate key-value stores and cloud serving stores. It mostly generates

I/Os based on zipf distributions [41], where I/Os appear more on popular data

items and the popularity is logarithmically distributed to each data item. There

are six basic workload patterns: update heavy, read mostly, read only, read lat-

est, short ranges, and read-modify-write. We use update heavy workload (YCSB

workload-a) which issues 50% read and 50% write I/Os in zipf distributions.

Similar to the LevelDB benchmark, we use it on top of key-value stores running

on top of our systems in Chapter 4 and 5 to evaluate the performance.

FUSE Framework

Filesystem in user space (FUSE) framework [6] lets developers write user space

filesystems. It consists of a FUSE kernel module and the libfuse user space

library that connects the user space file system implementation with the kernel

module. Typically, a filesystem in the kernel space is difficult to develop and

test, due to the inherent difficulty of kernel programming, but FUSE reduces this

burden. Although there are overheads for running a filesystem in the user space

due to frequent context switching between kernel space and user space, FUSE is

used for many purposes, such as for prototyping and education. In Chapter 4,

we build a transactional filesystem using FUSE to evaluate our system.

52

Baseline Systems

To support our claim and compare our approaches, we use a baseline configu-

ration or a baseline system created by others. The following systems and con-

figurations are the publicly available baselines we used for the investigation.

Software RAID [13]: Linux software RAID is a device mapper module that

configures multiple block devices into a RAID drive. It supports RAID 0, 1, 4,

5 and 6 [97]. We use RAID-0 configuration to parallelize multiple block devices

and to run logging on top. We use this configuration to evaluate our system in

Chapter 3.

LevelDB [10]: LevelDB is a library key-value store optimized for range

queries. It uses a log-structured merge (LSM) tree [95] to maintain its data.

The LSM tree has several levels of logs and sorts the index in each level while

key-value pairs are being inserted. LSM tree makes LevelDB perform fast writes

and execute range queries efficiently. We use LevelDB and LevelDB benchmark

to compare and evaluate the performance of our system in Chapter 4.

Ext2/Ext3 Filesystem [64]: Ext2 and ext3 filesystems are widely used filesys-

tems in Linux. Ext2 is simple and fast but lacks fault tolerance, so ext3 was

developed to overcome this problem by logging the changes to be made (i.e.

journaling). We run ext2 and ext3 filesystems on top of our systems to evaluate

the performance and overhead.

53

2.3 Summary

A cloud storage server faces challenges to support performance isolation, trans-

actional isolation, and client-centric consistency control. First, the cloud storage

needs to overcome the characteristics of spinning disks, which are susceptible

to concurrent accesses, to accomplish performance isolation. Opportunities lie

in logging, new storage technologies such as SSDs and tens of storage devices

in cloud storage servers. Second, the storage stack has not supported rich func-

tionalities from the low layers and the cloud environment opens up new oppor-

tunities to redesign the stack. Support of the transactional from the block I/O

layer suggests strong potentials to preclude the redevelopment of transactions

in the cloud and to grant compatibility of transactions. Finally, the cloud stor-

age lacks support for control of consistency inside servers for consistency and

performance trade-offs. Carefully exploring the distinct data access latencies

in servers and providing APIs for client-centric consistency have the potentials

to further boost the performance and support better-isolated views of the stor-

age system to the users. In the remainder of this dissertation, we describe how

we investigate the research questions that we asked and present the system de-

signs, implementations, and evaluations that realize our approach and validate

our findings.

54

CHAPTER 3

PERFORMANCE ISOLATION WITH CONTENTION-OBLIVIOUS DISK

ARRAYS

To provide isolation of performance in cloud storage servers, the concurrent

nature of users must be understood and the underlying storage device char-

acteristics must be overcome. Cloud environments often use virtualization,

where the compute and storage resources of each physical server are multi-

plexed across a large number of applications. The cloud entails multiple users

who are routinely assigned to different computational processing (CPU) cores

on the same server. The increasing number of cores on individual servers forces

applications to co-exist on the same machine. The hardware cost to host multi-

ple users and applications drops by sharing of resources, but resource sharing

leads to greater challenges for performance isolation, especially on disks.

When many applications run together, applications are susceptible to the

behavior of other applications executing on the same machine. In particular,

contention in the storage subsystem of a cloud storage server is a significant

issue, especially when a disk array is shared by multiple applications running

on different cores. In such a setting, an application designed for high I/O per-

formance – for example, one that always writes or reads sequentially to disk –

can perform poorly due to random I/O introduced by applications running on

other cores [61]; in Chapter 2, we quantified this effect and showed how disks

are poor at performance isolation. In fact, even in the case where every applica-

tion on the physical machine accesses storage strictly sequentially, the disk array

can still see a non-sequential I/O workload due to the intermixing of multiple

sequential streams [65]. Disk contention of this nature is endemic to any system

55

design where a single disk array is shared by multiple applications running on

different cores. Thus, better performance isolation is necessary for disk-based

cloud storage servers.

Existing solutions to mitigate the effects of disk contention revolve around

careful scheduling decisions, either spatial or temporal. For instance, one so-

lution to minimize interference involves careful placement of applications on

machines [61, 62]. However, this requires the cloud provider to accurately pre-

dict the future I/O patterns of applications. Additionally, placement decisions

are usually driven by a large number of considerations, not just disk I/O pat-

terns; these include data/network locality, bandwidth and CPU usage, migra-

tion costs, security concerns, etc. A different solution involves scheduling I/O

to maintain the sequentiality of the workload seen by the disk array. Typically,

this involves delaying the I/O of other applications while a particular applica-

tion is accessing the disk array. However, I/O scheduling sacrifices access la-

tency for better throughput, which may not be an acceptable trade-off for many

applications.

A more promising approach is to build systems that are oblivious to con-

tention by design. For instance, log-structured designs for storage – such as the

log-structured filesystem (LFS) [107] – can support sequential or random write

streams from multiple applications at the full sequential speed of the under-

lying media. Unfortunately, the Achilles’ Heel of LFS is read-write contention

caused by garbage collection (GC) [116, 82]; specifically, the random reads intro-

duced by GC often interfere with first-class writes by the application, negating

any improvement in write throughput. Additionally, LFS can also be subject to

read-write contention from application reads; the original LFS work assumed

56

Figure 3.1: Chained logging: all writes go to the tail drive of the chain,
while reads are serviced mostly from the body of the chain or
a cache. Mirrors in the body can be powered down.

that large caches would eliminate reads to the point where they did not interfere

with write throughput. More recently, systems have emerged that utilize new

flash technology to implement read caches or log-structured write caches [42]

that can support contention-free I/O from multiple applications. However, this

results in a highly stressful write workload for the flash drives that can wear

them out within months [124].

In this chapter, we present Gecko, a new log-structured design for disk ar-

rays. The key idea in Gecko is chained logging, in which the tail of the log – where

writes occur – is separated from its body by placing it on a different drive. In

other words, the log is formed by concatenating or chaining multiple drives.

Figure 3.1 shows a chain of three drives, D0, D1 and D2. On a brand new de-

ployment, writes will first go to D0; once D0 fills up, the log spills over to D1,

and then in turn to D2. In this state, new writes go to D2, where the tail of the

57

log is now located, while reads go to all drives. As space on D0 and D1 is freed

due to overwrites on the logical address space, compaction and garbage collec-

tion is initiated. As a result, when D2 finally fills up, the log can switch back

to using free space on D0 and D1. Any number of drives can be chained in this

fashion. Also, each link in the chain can be a mirrored pair of drives (e.g., D0

and D
′

0) for fault-tolerance and better read performance.

The key insight in chained logging is that the sequential, contention-free

write bandwidth of a single drive is preferable to the randomized, contention-

affected bandwidth of a larger array. As with any logging design, chained log-

ging ensures that write-write contention between applications does not result

in degraded throughput, since all writes are logged sequentially at the tail drive

of the chain. Crucially, chained logging also eliminates read-write contention

between garbage collection (GC) activity and first-class writes by separating

the tail of the log from its body. In the process, it trades off the maximum

contention-free write throughput of the array – which is now limited to the se-

quential bandwidth of the tail drive of the chain – in exchange for stable, pre-

dictable write performance in the face of contention. In our evaluation, we show

that a Gecko chain can operate at 60MB/s to 120MB/s under heavy write-write

contention and concurrent GC activity, whereas a conventional log-structured

RAID-0 configuration over the same drives collapses to around 10MB/s during

GC.

To tackle read-write contention caused by application reads, Gecko uses

flash and RAM-based caching policies that leverage the unique structure of the

logging chain. All new writes to the tail drive in the chain are first cached in

RAM, and then lazily moved to an SSD cache dedicated to the tail drive. As a

58

result, reads on recently written data on the tail drive are served by the RAM

cache, and reads on older data on the tail drive are served by the SSD tail cache.

This caching design has two important properties. First, it is tail-specific: it pre-

vents application reads from reaching the tail drive and randomizing its work-

load, thus allowing writes to proceed sequentially without interference from

reads. Based on our analysis of server block-level traces, we found that a RAM

cache of 2GB and an SSD cache of 32GB was sufficient to absorb over 86% of

reads directed at the 512GB tail drive of a Gecko chain for all the workload com-

binations we tried. Second, it’s two-tier structure allows overwrites to be coa-

lesced in RAM before they reach the SSD cache; as we show in our evaluation,

this can prolong the lifetime of the SSD by 2X to 8X compared to a conventional

caching design.

Chained logging has other benefits. Eliminating read-write contention has

the side-effect that writes no longer slow down reads. As a result, chained logs

can exhibit higher read throughput for many workloads compared to conven-

tional RAID variants, since reads are served by either the tail cache or the body

of the log and consequently do not have to contend with write traffic. Chained

logging can also be used to save power: when mirrored drives are chained to-

gether, half the disks in the body of the log can be safely switched off since they

do not receive any writes. This lowers the read throughput of the log, but does

not compromise fault-tolerance.

Importantly, Gecko is a log-structured block device rather than a filesystem;

as a result, any filesystem or database can execute over it without modification.

Historically, the difficulty of persistently maintaining metadata under the block

layer has outweighed the benefits of block-level logging, forcing such designs to

59

incur metadata seeks on disk or restricting them to expensive enterprise storage

solutions that can afford battery-backed RAM or other forms of NVRAM [43,

48, 141, 111, 83]. Gecko is the first system to use a commodity MLC SSD to store

metadata for a log-structured disk array; accordingly, it uses a new metadata

scheme carefully designed to exploit the access characteristics of flash as well as

conserve its lifetime.

This chapter makes the following contributions. First, we propose the novel

technique of chained logging, which provides the benefits of log-structured stor-

age (obliviousness to write-write contention) without suffering from its draw-

backs (susceptibility to read-write contention). Second, we describe the design

of a block storage device called Gecko that implements chained logging, focus-

ing on how the system utilizes inexpensive commodity flash for caching and

persistence over the chained log structure. Third, we evaluate a software imple-

mentation of Gecko, showing that chained logging provides high, stable write

throughput during GC activity, in contrast to log-structured RAID-0; it effec-

tively prevents reads from impacting write throughput by using a tail-specific

cache; and it outperforms log-structured RAID-0 in terms of both read and write

performance on real workloads. Collectively, all these contributions lead to per-

formance isolation in cloud storage servers.

3.1 Design

Gecko implements the abstraction of a block device, supporting reads and

writes to a linear address space of fixed-size sectors. Underneath, this address

space is implemented over a chained log structure, in which a single logical log

is chained or concatenated across multiple drives such that the tail of the log and

60

its body are on different drives. A new write to a sector in the address space is

sent to the tail of the log; if it’s an overwrite, the previous entry in the log for that

sector is invalidated or trimmed. As the body of the log gets fragmented due to

such overwrites on the address space, it is cleaned so that the freed space can

be reused; importantly, this GC activity incurs reads on the body of the chained

log, which do not interfere with first-class writes occurring at the tail drive of

the log.

We first present the simplest possible instantiation of chained logging in

Gecko, and then describe more sophisticated features. Gecko is implemented

as a block device driver, occupying the same slot in the OS stack as software

RAID; as with RAID, it can also be implemented in the form of a hardware con-

troller. Gecko maintains an in-memory map (implemented as a simple array)

from logical sectors on the supported address space to physical locations on the

drives composing the array. In addition, it maintains an inverse map (also a

simple array) to find the logical sector that a physical location stores; a special

‘blank’ value is used to indicate that the physical location does not contain valid

data. Also, Gecko maintains two counters – one for the tail of the log and one

for the head – each of which indexes into the total physical space available on

the disk array.

When the application issues a read on a logical sector in the address space,

the primary map is consulted to determine the corresponding physical location.

When the application writes to a logical sector, the tail counter is checked and

a write I/O is issued to the corresponding physical location on the tail drive.

Both the primary map and the inverse map are then updated to reflect the link-

age between the logical sector and the physical location, and the tail counter is

61

incremented.

In the default form of GC supported by Gecko, data is constantly moved

from the head of the chained log to its tail in order to reclaim space; we call this

‘move-to-tail’ GC. A cleaning process examines the next physical entry at the

head of the log, checks if it is occupied by consulting the inverse map, and if so

re-appends it to the tail of the log. It then increments the head and (if the entry

was moved) the tail counter.

The basic system described thus far provides the main benefit of log chains –

logging without interference from GC reads – but suffers from other problems.

It does not offer tolerance to power failures or to disk failures. While GC writes

do not drastically affect first-class writes, they do occur on the same drive as ap-

plication writes and hence reduce write throughput to some extent. Further, the

system is susceptible to contention between application reads and writes: reads

to recently written data will go to the tail disk and disrupt first-class writes.

Below, we discuss solutions to address these concerns.

3.1.1 Metadata

The total amount of metadata required by Gecko can easily fit into RAM on

modern machines; to support a mirrored 4TB address space of 4KB sectors (i.e.,

1 billion sectors) on an 16TB array, we need 4GB for the primary map (1 billion

4-byte entries), 8GB for the inverse map (2 billion 4-byte entries) and two 4-

byte counters. However, a RAM-based solution poses the obvious problem of

persistence: how do we recover the state of the Gecko address space from power

failures?

62

BA C

metadata:

(flash)

drives:

filled

empty

metadata block:

phys à logical

0: 25709904

1: 4020000

2: 10224591

…

1024: -1

head tail

RAM: buffered

metadata for head+tail

Figure 3.2: Metadata persistence in Gecko: mapping from physical to log-
ical addresses is stored on flash, with actively modified head
and tail metadata buffered in RAM.

One possibility is to store some part of the metadata on an SSD. An obvious

candidate is the primary map, which is sufficient to reconstruct both the inverse

map and the tail / head counters. Random reads on SSDs are fast enough (at

roughly 200 microseconds) to exist comfortably in the critical path of a Gecko

read. However, the primary map has very little update locality; a series of Gecko

writes can in the worst case be distributed evenly across the entire logical ad-

dress space. As a result, the metadata SSD is subjected to a workload of random

4-byte writes, which can wear it out very quickly.

Instead, Gecko provides persistence across power failures by storing the in-

verse map on an SSD, as shown in Figure 3.2. Each 4KB page on the SSD stores

1024 entries in the physical-to-logical map; we call this a metadata block. Ac-

cordingly, the larger log on the address space of the disk array is reflected at

63

much smaller scale (a factor of 1K smaller) on the address space of the SSD. The

ith 4-byte entry on the SSD is the logical address stored in the ith physical sector

on the disk array. On a brand-new Gecko deployment, each such 4-byte meta-

data entry on the SSD is set to the ‘blank’ value, indicating that no valid data

exists at that physical location on the array.

Gecko buffers a small number of metadata pages (in the simplest case, just

one page) corresponding to the tail of the log in RAM; accordingly, as first-class

writes are issued on the logical address space, these buffered metadata pages are

modified in-memory. The metadata pages are flushed to the SSD when all en-

tries in them have been updated, with the important condition that these flushes

occur in strict sequential logging order. Correspondingly, Gecko also buffers the

metadata pages at the head of the log during GC, which updates metadata en-

tries to point to the ‘blank’ value. As a result of the flush-in-order condition, at

any moment in time the SSD consists of two contiguous segments: one contain-

ing ‘blank’ entries and one with non-‘blank’ entries. As a result, on recovery

from power failure, it is a simple task to reconstruct not only the primary map

but also the head and tail counters, since they are simply the beginning and end

of the contiguous non-‘blank’ segment.

The metadata buffering scheme described above avoids small random writes

to the SSD due to the perfect update locality of the inverse map. However, it

does introduce a window of vulnerability; all buffered metadata is lost on a

power failure. A useful property of Gecko’s log-structured design is that any

such data loss is confined to a recent suffix of the log; in other words, the logical

drive supported by Gecko simply reverts to an earlier (but consistent) state. If

the application does want to guarantee durability of data, it can issue a ‘sync’

64

command to the Gecko block device, which causes Gecko to flush its current

metadata page ahead of time to the SSD (and do an overwrite subsequently

when the rest of the metadata page is updated). Alternatively, if Gecko is im-

plemented as a hardware controller, battery-backed RAM or supercapacitors

can be used to store the metadata pages being actively modified.

Under normal operation, this solution imposes a gentle, sequential workload

on the SSD. The SSD only sees two 4KB page writes (one to change the entry

from ‘blank’ to a valid location, and another to change it back during GC) for

every 1024 4KB writes to the Gecko array. One of these writes can be avoided if

the SSD supports a persistent trim command [92], since metadata blocks at the

head can be trimmed instead of changed back to ‘blank’. In the example above

of a 16TB disk array with a mirrored 4TB address space, an 8GB SSD with 10K

erase cycles (which should cost somewhere between $8 and $16 at current flash

prices) should be able to support 10K times 8TB of writes, or 80PB of writes.

3.1.2 Caching

In Gecko, the role of caching is multi-fold: to reduce read latencies to data,

but also to prevent application reads from interfering with writes (read-write

contention). In conventional storage designs, it is difficult to predict which data

to cache in order to minimize read-write contention. In contrast, eliminating

read-write contention in Gecko is simply a matter of caching the data on the tail

drive in the system, thus avoiding any disruption to the write throughput of the

array.

To do so, Gecko uses a combination of RAM and an SSD (this can be a sep-

65

arate volume created on the same SSD used for storing metadata, or a separate

SSD). When data is first written to a Gecko volume, it is sent to the tail drive

and simultaneously cached in RAM. As a result, if the data is read back imme-

diately, it can be served from RAM without disturbing sequentiality of the tail

drive. As the tail drive and RAM cache continue to accept new data, older data

is evicted from the RAM cache to the SSD cache in simple FIFO order (taking

overwrites on the Gecko logical address space into account), and the SSD cache

in turn uses an LRU-based eviction policy.

This simple caching scheme also prolongs the lifetime of the SSD cache by

coalescing overwrites in the RAM cache. It is partly inspired by the technique

of using a hard disk as a write cache for an SSD [124], and similarly extends the

lifetime of the SSD by 2X to 8X.

Additionally, Gecko can optionally use RAM and SSD (again, another vol-

ume on the same SSD or a different drive) as a read cache for the body of the

log, with the goal of improving read performance on the body of the log. In the

rest of the chapter, we use the term ‘SSD cache’ to refer to the tail cache, unless

explicitly specified otherwise.

3.1.3 Smarter Cleaning

Thus far, we have described the system as using move-to-tail GC, a simple

cleaning scheme where data is moved in strict log order from the head of the

log to its tail. While this scheme ensures that GC reads do not interfere with

write throughput, GC writes do impact first-class writes to some extent. In par-

ticular, GC writes in move-to-tail GC do not disrupt the sequentiality of the

66

tail drive, but instead take up a proportion of the sequential bandwidth of the

drive; in the worst case where every element in the log is valid and has to be

re-appended, this proportion can be as high as 50%, since every first-class write

is accompanied by a single GC write.

To prevent GC writes from interfering with first-class writes, Gecko supports

a more sophisticated form of GC called ‘compact-in-body’. The key observation

in compact-in-body is that any valid entry in the body of the log can be moved

to any other position that succeeds it in the log without impacting correctness.

Accordingly, instead of moving data from the head to the tail, we move it from

the head to empty positions in the body of the log.

The cleaning process for compact-in-body GC is very similar to that of move-

to-tail GC. It examines the next physical entry at the head of the log, checks if

it is occupied by consulting the inverse physical-to-logical map, and if so, finds

a free position in the body of the log between the current head and current tail.

It then increments the head counter but leaves the tail counter alone (unless no

free positions were found in the body of the log, forcing the update to go to the

tail). Finding a free position requires the cleaning process to periodically scan

ahead on the inverse map and create a free list of positions. These scans occur

on the metadata SSD rather than the disk array and hence do not impact read

throughput on the body of the log.

Compact-in-body has the significant benefit compared to move-to-tail that

GC activity is now completely independent of first-class writes. It creates space

at the head of the log by moving data to the body of the log rather than its tail,

and hence does not use up a proportion of the write bandwidth of the tail drive.

In addition, it requires no changes to the metadata or caching schemes described

67

above.

However, as described, compact-in-body does have one major disadvantage;

it randomizes the workload seen by the metadata SSD, since we are moving data

from the head to free positions in the log, which could be randomly distributed.

In practice, the difference in write bandwidth of a Gecko chain running move-

to-tail GC versus compact-in-body GC is at most a factor of two, since move-

to-tail GC uses up 50% of the tail drive’s write bandwidth in the worst case

whereas compact-in-body does not use any. Accordingly, we provide users the

option of using either form of GC, depending on whether they want to maxi-

mize write bandwidth or minimize SSD wear.

3.1.4 Discussion

Chain Length: As mentioned previously, chained logging is based on the

premise that the sequential write throughput of a single, uncontended drive

is preferable to the overall throughput of multiple, contention-hit drives. This

argument obviously does not scale to a large number of drives; beyond a cer-

tain array size, the random write throughput of the entire array will exceed the

sequential throughput of a single drive. The shorter the length of the chain, the

more likely it is that chained logging will outperform conventional RAID-0 over

the same number of drives.

However, longer chains have other benefits, such as the improved read

throughput that results from having multiple disk heads service the body of

the log. Another reason for longer chains is that it allows capacity to be added

to the physical log. This capacity can be used to either extend the size of the sup-

68

ported address space, or to lower garbage collection stress on the same address

space. In practice, we find that chains of two to four drives provide a balance

between write throughput, read throughput and capacity.

Multiple Chains: We expect multiple Gecko chains to be deployed on a

single system; for example, a 32-core system with 24 disks might have four mir-

rored chains of length 3, each serving a set of 8 cores. A single metadata SSD can

be shared by all the chains, since the metadata has a simple one-to-one mapping

to the physical address space of the entire system. A single cache SSD can be

partitioned across chains, with each chain using a 32GB cache.

On a large system with multiple chains, each chain can be extended or short-

ened on the fly by moving drives to and from other chains, as the occupancy

(and consequently, GC demands) of the supported address space and the read-

/write ratio of the workload change over time. Read-intensive workloads re-

quire more disks to be dedicated to the body of the chain.

System Cost: The design described thus far requires: an SSD read cache for

the tail, an SSD read cache for the body, a metadata SSD, and a few GB of RAM

per chain. Consider an array of 30 512GB drives (15TB in total), organized into

5 mirrored chains of length 3. Based on our experience with Gecko, each such

chain requires 2GB of RAM, 32GB of flash for the tail cache, 32GB of flash for the

body cache, and 1.5GB of flash for metadata; the total for 5 chains is 10GB RAM

and around 340GB of flash. At current RAM and flash prices, this amounts to

less than $500, a reasonably small fraction of the total cost for such a system.

Mirroring: As described earlier, a Gecko chain can consist of mirrored drive

pairs. Mirroring is very simple to implement; since the drives are paired deter-

69

ministically and kept perfectly synchronized, none of the Gecko data structures

need to be modified. Some benefits of mirroring are obvious, such as fault tol-

erance against drive failures and higher read throughput. A more subtle point

is that Gecko facilitates power saving when used over mirrored drives. Since

writes in chained logs only happen at the tail, drives in the body of the log can

be powered down as long as one mirror stays awake to serve reads. In a chain

consisting of three mirrored pairs, two drives (or a third of the array) can be

powered down without affecting data availability. With longer chains, a larger

fraction of the array can be powered down.

Additionally, Gecko can potentially perform decoupled GC on mirrors, al-

lowing one drive to serve first-class reads while cleaning the other drive. This

complicates the metadata structures maintained by Gecko, both in RAM as well

as the metadata SSD, since it needs to now maintain state for each drive sepa-

rately. Due to the increased complexity of this option, we chose not to explore it

further.

Striping: Gecko can also be easily combined with striping, simply by hav-

ing each drive in the chain be a striped RAID-0 volume. This allows a single

Gecko address space to scale to larger numbers of drives. One implication of

striping is that the tail drive(s) now have much greater capacity and may re-

quire proportionally larger SSD caches to prevent reads from impacting them.

Other RAID variants such as RAID-5 and RAID-6 can be layered in similar fash-

ion under Gecko without any change to the system design.

70

3.2 Evaluation

We have implemented Gecko as a device driver in Linux that exposes a block

device to applications. This device driver implements move-to-tail GC and a

simplistic form of persistence involving checkpointing all metadata to an SSD

every few minutes. In addition, we also implemented a user-space emulator to

test the more involved aspects of Gecko, such as the metadata logging design

for persistence described in Section 3.1.1, compact-in-body GC, and different

caching policies. All our experiments were conducted on a system with a 12-

core Intel Xeon processor, 24GB RAM, 15 10K RPM drives of 600GB each, and a

single 120GB SSD.

Our main baseline for comparison is a conventional log layered over either

RAID-0 or RAID-10 (which we call log-structured RAID-0 / RAID-10), compa-

rable respectively to the non-mirrored and mirrored Gecko deployments. For

instance, an array of six drives may be configured as a 3-drive Gecko chain,

where each drive is mirrored; for this, the comparison point would be a log-

structured RAID-10 volume with three stripes, each of which is mirrored. To

implement this log-structured RAID design, we treat the entire array as a single

RAID-0 or RAID-10 volume and then run a single-drive Gecko chain over it;

this ensures that we use identical, optimized code bases for both Gecko and the

baseline. When appropriate, we also report numbers on in-place (as opposed

to log-structured) RAID-0, though most of our workloads have enough random

I/O that in-place RAID-0 only offers a few MB/s and is not competitive.

Our evaluation focuses on three aspects of Gecko. First, we show that a

Gecko chain implementing move-to-tail GC is capable at operating at high, sta-

71

ble write throughput even during periods of high GC activity under an adver-

sarial workload, whereas the write throughput of log-structured RAID-0 drops

drastically. This validates our claim that Gecko write throughput does not

suffer from contention with GC reads. Second, we show that our RAM+SSD

caching policies are capable of eliminating almost all first-class reads from the

tail drive for a majority of tested workloads, while preserving the lifetime of the

SSD cache. Thus, we show that Gecko write throughput does not suffer from

contention between application reads. Finally, we play back real traces on a

Gecko deployment and show that Gecko offers higher write throughput as well

as higher read throughput compared to log-structured RAID-10.

3.2.1 Write Throughput with GC

To show that Gecko can sustain high write throughput despite concurrent GC,

we ran a synthetic workload of random writes from multiple processes over the

block address space exposed by the Gecko in-kernel implementation. In this ex-

periment, we used a 2-drive, non-mirrored Gecko chain and a conventional log

layered over 2-drive RAID-0. Midway through the workload, we turned on GC

for Gecko and measured the resulting drop in total and application throughput.

For the log-structured RAID-0, we triggered GC for the same time period as

Gecko. Figure 3.3 (Top) shows Gecko throughput for different trim patterns in

the body of the log; e.g., a trim pattern with 50% valid data has half the blocks

in the body of the log marked as invalid, while the other half is valid and has to

be moved by GC to the tail.

As shown in the figure, Gecko throughput remains high and steady during

72

 0

 50

 100

 150

 200

 0 30 60 90 120

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (s)

Total Writes
App Writes
GC Writes

 0

 50

 100

 150

 200

 0 30 60 90 120

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (s)

Total Writes
App Writes
GC Writes

 0

 50

 100

 150

 200

 0 30 60 90 120

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (s)

Total Writes
App Writes
GC Writes

 0

 50

 100

 150

 200

 0 30 60 90 120

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (s)

Total Writes
App Writes
GC Writes

Figure 3.3: Gecko (Top) offers steady, high application throughput
(60MB/s or 15K IOPS) for a random write workload during
GC with a 50% trim pattern (Left) and a 0% trim pattern
(Right). Log-structured RAID-0 (Bottom) suffers application
throughput collapse to 10MB/s for 50% trims (Left) and pro-
vides 40MB/s for 0% trims.

GC activity, while application throughput drops proportionally to accommo-

date GC writes. We trigger GC to clear a fixed amount of physical space in the

log; as a result, the 50% trim pattern (Top Left) has a GC valley that is approx-

imately half as wide as that of the 0% trim pattern (Top, Right), since it moves

exactly half the amount of data. The two different trim patterns on the body

of the log do not impact Gecko write throughput in any way, showing that the

strategy of decoupling the tail of the log from its body succeeds in shielding

write throughput from GC read activity.

73

In contrast, the log-structured RAID-0 in Figure 3.3 (Bottom) performs very

poorly when GC is turned on for the 50% trim pattern; throughput collapses

drastically to the 10MB/s mark. Counter-intuitively, it performs better for 0%

trim pattern; even though more data has to be moved in this pattern, the GC

reads to the drive are sequential, causing less disruption to the write through-

put of the array. An important point is that Gecko cleans 2X to 3X the phys-

ical space compare to log-structured RAID-0 in the same time period: the top

Gecko graphs show almost 4GB of log space being reclaimed while the bottom

log-structured RAID-0 graphs show reclamation of approximately 1.5 GB of log

space in a 40 second (Left) and 60 second (Right) period.

One point to note is that Gecko does suffer from a drop in application

throughput, or goodput, due to GC. In the worst case where all data is valid

and has to be moved (shown in the top right figure), application throughput

can drop by exactly half. This represents a lower bound on application through-

put, since in the worst case every new write requires a single GC write to clear

up space in the physical log. Accordingly, Gecko application throughput is

bounded between 60MB/s (half the sequential bandwidth of a single drive) and

120MB/s (the full sequential bandwidth of a drive), with the exact performance

depending on the size of the supported logical address space, as well as the pat-

tern of overwrites observed by it. Not shown in the figure is in-place RAID-0,

which provided only a few MB/s under this random writes workload, as ex-

pected.

Next, we ran the Gecko emulator in compact-in-body mode as well as move-

to-tail mode for a random write workload with a 50% trim pattern. Figure 3.4

shows that compact-in-body GC allows application writes to proceed at the full

74

 0

 20

 40

 60

 80

 100

 120

 140

No GC MtT GC CiB GC

T
hr

ou
gh

pu
t (

M
B

/s
)

Figure 3.4: With compact-in-body GC (CiB), a log chain of length 2
achieves 120MB/s application throughput on random writes
with concurrent GC on 50% trims.

sequential speed of the tail drive during GC activity. As discussed previously,

this performance benefit comes at the cost of erase cycles on the metadata SSD;

accordingly, we do not explore compact-in-body GC further.

3.2.2 Caching the Tail

Having established that Gecko provides high write throughput in the presence

of GC activity, we now focus on contention between first-class reads and writes.

We show that Gecko can effectively cache data on the tail drive in order to

prevent contention between first-class reads and writes. In these experiments,

we use block-level traces taken from the SNIA repository [20]; specifically, we

use the Microsoft Enterprise, Microsoft Production Server and MSR Cambridge

trace sets. Running these traces directly over Gecko is unrealistic, since they

were collected on non-virtualized systems. Instead, we run workload combina-

75

Raw Trace GB of Writes
A. DevDivRelease 176.1
B. Exchange 459.6
C. LiveMapsBE 558.2
D. prxy 778.6
E. src1 883.7
F. proj 342.2
G. MSNFS 102.3
H. prn 76.8
I. usr 95.7

Combination 0 – 7: any 8 from {A,...,I}
Combination 8 – 20: any 4 from {A,...,E}

Table 3.1: Workload combinations: from 9 raw traces, we can compose 8
8-trace combinations and 13 4-trace combinations that write at
least 512GB of data.

tions by interleaving I/Os from sets of either 4 or 8 traces, to emulate a system

running different workloads within separate virtual machines. We play each

trace within its own virtual address space and concatenate each of these to-

gether to obtain a single logical address space.

To study the effectiveness of Gecko’s tail caching, we ran multiple such

workload combinations over our user-space Gecko emulator, starting with an

empty tail drive. We then measured the hit rate of Gecko’s hybrid cache con-

sisting of 2GB of RAM and a 32GB SSD. Recall that new writes in Gecko go to

the tail drive and are simultaneously cached in RAM, and subsequently evicted

from RAM to the SSD. A cache hit is when data that resides on the tail drive

is also found in either RAM or the SSD; conversely, a cache miss occurs when

data that resides in the tail drive is not found in RAM or the SSD, necessitating

a read from the tail drive. Note that any read to data that does not exist on the

tail drive is ignored in this particular experiment, since it will be serviced by the

body of the log without causing read-write contention.

76

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

C
ac

he
 H

it
R

at
e

(%
)

Workload #

RAM+SSD RAM only

Figure 3.5: Effectiveness of tail caching on different workload combina-
tions with a 2GB RAM + 32GB SSD cache. The hit rate is over
86% for all 21 combinations, over 90% for 13, and over 95% for
6.

To avoid overstating cache hit rates, we needed each workload combination

to write at least 512GB (i.e., the size of the tail drive); as we show later, cache hit

rates are very high as we start writing to the tail drive, but drop as it fills up.

From the 21 SNIA traces, we found 8 8-trace combinations that lasted at least

512GB (which we number 0 to 7), and 13 4-trace combinations that lasted at

least 512GB (which we number 8 to 20), for a total of 21 workload combinations

of at least 512GB each. These workload combinations used 9 of the 21 raw SNIA

traces, as shown in Table 3.1; the remaining 12 raw traces did not have enough

writes to be useful for this caching analysis.

Figure 3.5 shows cache hit rates – for just the 2GB RAM cache as well as for

the combined 2GB+32GB RAM+SSD cache – for these 21 workload combina-

tions, measured over the time that the 512GB tail drive is filled. The hit rate is

over 86% for all tested combinations, over 90% for 13 of them, and over 95%

for 6 of them. This graph validates a key assumption of Gecko: the tail drive

77

 60

 80

 100

 0 100 200 300 400 500 600

C
ac

he
 H

it
R

at
e

(%
)

Data Written to Tail (GB)

Figure 3.6: Average, min and max hit rates of tail caching across workload
combinations as the tail drive fills up.

of a chained log can be cached effectively, preventing application reads from

disrupting the sequential write throughput of the log.

Next, we measured how the cache hit rate changes over time as the tail drive

fills up. Figure 3.6 shows the average hit rate across the 21 workload combi-

nations for the RAM+SSD cache, in each consecutive 100GB interval on the tail

drive (the error bars denote the min and the max across the workload combi-

nations). The hit rate is extremely high for the first 100GB of data, as the total

amount of data on the tail drive is not much bigger than the cache. As expected,

the hit rate dips as more data is stored on the tail. Note that Figure 3.5 previ-

ously showed the cumulative hit rate over 512GB of writes, whereas this figure

shows the hit rate for each 100GB interval separately.

We claimed earlier that Gecko’s two-tier RAM+SSD caching scheme could

prolong the lifetime of the SSD compared to an SSD-only cache by coalescing

overwrites in RAM. Following the methodology in [124], we calculate the life-

78

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 5 10 15 20

S
S

D
 L

ife
tim

e
(d

ay
s)

Workload #

Lifetime with write coalescing
Lifetime at 40 MB/s writes

Figure 3.7: Gecko’s hybrid caching scheme for its tail drives increases the
lifetime of the SSD read cache by at least 2X for all 21 workload
combinations, and by more than 4X for 13 combinations.

time of an SSD by assuming a one-to-one ratio between page writes sent to the

SSD and erase cycles used per page, and assuming that the SSD supports 10,000

block erase cycles. Under these assumptions, a constant 40MB/s workload will

wear out a 32GB SSD in approximately 3 months; accordingly, this would be

the lifetime of a conventional SSD-based write or read cache if the system were

written to continuously at 40MB/s.

By using a RAM+SSD read cache and coalescing overwrites in RAM, we de-

crease the number of writes going to the SSD by a factor of 2X to 8X for different

workload combinations. In Figure 3.7, we plot the number of days the SSD

lasts with write coalescing, under the assumptions previously stated. For some

workload combinations, we are able to stretch out the SSD lifetime to over two

years even at this high 40MB/s update rate; for all of them, we at least double

the SSD lifetime. A simple linear relationship exists between these numbers and

the average data rate of the system; at 20MB/s, for instance, the SSD will last

79

twice as long. Alternatively, we can use larger capacity SSDs to extend the SSD

replacement cycle: e.g. with a 64GB SSD, the cycle can double if one uses the

first half until it wears out and then uses the other half.

3.2.3 Gecko Performance for Real Workloads

To show that effective tail-caching results in better performance, we played two

8-trace combinations – specifically, the ones with the highest and lowest cache

hit rates – over the Gecko implementation. In this experiment, we played each

trace combination as fast as possible, issuing the appropriate I/Os to either the

SSD cache or disk. We used a single outstanding I/O queue of size 24 for each

trace in the combination, shared by reads and writes.

For Gecko, we used a 3-drive mirrored chain with a 2GB RAM + 32GB SSD

tail cache and a separate 32GB SSD cache for the body of the log. For compar-

ison, we used a conventional log over a 6-drive RAID-10 volume with a single

unified cache for the entire array, consisting of 2GB RAM and 64GB SSD.

In the experiment, we played the trace combination forward until 200GB

of the tail was filled before taking measurements, to ensure that we obtained

average caching performance on the tail. Reads on logical addresses that had

not yet been written were directed to random locations on the body of the log.

Figure 3.8 shows the total read plus write throughput of the system as well

as just write throughput over a 120 second period. On top we show the highly

cacheable workload combination; on bottom we show the less cacheable one.

On the left we show Gecko performance, while on the right we show the perfor-

80

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (s)

Total Throughput
Write Throughput

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (s)

Total Throughput
Write Throughput

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (s)

Total Throughput
Write Throughput

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120

T
hr

ou
gh

pu
t (

M
B

/s
)

Time (s)

Total Throughput
Write Throughput

Figure 3.8: Gecko (Left) offers 2X to 3X higher throughput than log-
structured RAID-10 (Right) on a highly cacheable (Top) and
less cacheable (Bottom) workload combination for writes as
well as reads.

mance of log-structured RAID-10. No GC activity was triggered concurrently,

in order to isolate the impact of first-class reads on performance.

At a basic level, it’s clear that Gecko outperforms log-structured RAID-10

by 2X to 3X on both workloads. Gecko offers lower write performance than

expected, since write throughput is not pegged at 120MB/s; this is an artefact

of our trace playback process, since our fixed-size window of I/Os ends up

clogged with the slower reads on the body of the log, preventing new writes

from being issued. Surprisingly, Gecko offers much better read performance

than log-structured RAID-10, again by a factor of 2X to 3X; in effect, separating

81

reads and writes has a positive effect on reads, which do not have to contend

with write traffic anymore. Especially, all fresh reads that are not cached from

recent writes contend with writes in both cache and disks for log-structured

RAID-10 and this significantly lowers the throughput for both reads and writes.

An interesting point is that both workloads are highly cacheable for reads; our

classification of these workloads as highly cacheable and less cacheable was

based on the cacheability of the tail drive, which does not seem to correlate to

the cacheability of the body.

To test the performance under GC, we triggered move-to-tail GC in the same

setup as in Figure 3.8 with 700GB of data pre-filled. Approximately 75% of data

was trimmed for both workloads and the average total throughputs of Gecko

dropped to 65MB/s and 62MB/s for highly and less cacheable workloads re-

spectively due to contention between first-class reads and GC reads. However,

Gecko still outperformed log-structured RAID-10 performing GC by over 2X to

3X. The average application throughputs of Gecko were 33MB/s and 27MB/s

whereas those of log-structured RAID-10 were 13MB/s and 12MB/s for the re-

spective workloads.

Finally, we plot the impact of chain length on throughput in Figure 3.9. We

run the highly cacheable workload from the previous experiments on Gecko

and log-structured RAID-0, measuring read and write throughput while in-

creasing the number of drives used without GC. In Gecko, more drives in the ar-

ray translates into more drives in the body of the chain, while for log-structured

RAID-0 it provides more disks to stripe over. As the graph shows, a single

Gecko chain outperforms log-structured RAID-0 for both reads and writes even

on a 7-disk array. Essentially, two key principles in the Gecko design continue

82

 0

 20

 40

 60

 80

 100

 120

 140

 160

G
ecko 2

G
ecko 3

G
ecko 4

G
ecko 5

G
ecko 6

G
ecko 7

Log-R
A

ID
0 2

Log-R
A

ID
0 3

Log-R
A

ID
0 4

Log-R
A

ID
0 5

Log-R
A

ID
0 6

Log-R
A

ID
0 7

T
hr

ou
gh

pu
t (

M
B

/s
)

Write
Read

Figure 3.9: A Gecko chain outperforms log-structured RAID-0 even on 7
drives: one uncontended disk for writes is better than many
contention-prone disks.

to hold even for long chains: a single uncontended disk arm is better for write

performance than multiple contended disk arms; and segregating reads from

writes enables better read performance.

3.3 Summary

In this chapter, we demonstrated how to resolve disk contention by using

a chained logging design. A number of factors herald a resurgence of log-

structured storage designs in cloud storage systems: the prevalence of many-

core machines and the availability of flash-based read caches. Log-structured

designs have the potential to be a panacea for storage contention in the cloud;

however, they continue to be plagued by the cleaning-related performance is-

sues that held back widespread deployment in the 1990s. Gecko attempts to

solve this long-standing problem and provide performance isolation in cloud

83

storage servers by separating the tail of the log from its body to isolate cleaning

activity completely from application writes. A dedicated cache for the tail drive

prevents reads from interfering with writes. Using these mechanisms, Gecko

offers the benefits of a log-structured design without its drawbacks, presenting

system designers with a storage system with improved performance isolation.

84

CHAPTER 4

TRANSACTIONAL ISOLATION SUPPORT FROM THE BLOCK LAYER

To support transactional isolation in a cloud storage server, the transactional

functionality should be placed in a lower layer of the storage stack so that all

applications running in the server can access the functionality with ease. Trans-

actional isolation in a cloud storage server is becoming more important with the

advent of multi-core machines and storage systems such as filesystems, key-

value stores, graph stores and databases which are increasingly parallelized

over dozens of cores. Such systems run directly or indirectly over the block

layer but assume very little about its interface and semantics. As a result, each

system implements complex code to layer high-level semantics such as transac-

tional atomicity and transactional isolation over the simple block address space.

Redundant implementations of transactional functionalities in the high layer

of storage stacks suggest rethinking the storage stack design and pushing the

transactional functionality down to the block layer.

In this chapter, we propose the abstraction of a transactional block store

that provides isolation in addition to atomicity and durability in the cloud stor-

age server. While multiple systems have implemented transactional atomicity

within the block store [43, 48, 101, 17, 44], transactional isolation has tradition-

ally been delegated to the storage system above the block store. A number of

factors make isolation a prime candidate for demotion down the stack.

1) Isolation is general; since practically every storage system has to ensure

safety in the face of concurrent accesses, an isolation mechanism imple-

mented within the block layer is broadly useful.

2) Isolation is hard, especially for storage systems that need to integrate fine-

85

grained concurrency control with coarse-grained durability and atomicity

mechanisms (e.g., see ARIES [87]); accordingly, it is better provided via a

single, high-quality implementation within the block layer.

3) Block-level transactions allow storage systems to effortlessly provide end-

user applications with transactions over high-level constructs such as files

or key-value pairs.

4) Block-level transactions are oblivious to software boundaries at higher lev-

els of the stack, and can seamlessly span multiple layers, libraries, threads,

processes, and interfaces. For example, a single transaction can encap-

sulate an end application’s accesses to an in-process key-value store, an

in-kernel filesystem, and an out-of-process graph store.

5) Finally, multiversion concurrency control (MVCC) [38] provides superior

performance and liveness in many cases but is particularly hard to im-

plement for storage systems since it requires them to maintain multiver-

sioned state; in contrast, many block stores (e.g., log-structured designs)

are already internally multiversioned.

Block-level isolation is enabled and necessitated by several trends in block

stores. Block stores are increasingly implemented via a combination of host-

side software and device firmware [21, 7]; they incorporate multiple, heteroge-

neous physical devices under a single address space [124, 119]; they leverage

new NVRAM technologies to store indirection metadata; and they provide so-

phisticated functionality such as virtualization [21, 126], tiering [21], dedupli-

cation and wear-leveling. Unfortunately, storage systems such as filesystems

continue to assume minimum functionality from the block store, resulting in

redundant, complex, and inefficient stacks where layers constantly tussle with

86

each other [126]. A second trend that argues for pushing functionality from

the filesystem to a lower layer is the increasing importance of alternative ab-

stractions that can be implemented directly over block storage, such as graphs,

key-value pairs [19], tables, caches [113], tracts [93], byte-addressable [32] and

write-once [33] address spaces, etc.

To illustrate the viability and benefits of block-level isolation in a cloud stor-

age server, we present Isotope, a transactional block store that provides isolation

(with a choice of strict serializability or snapshot isolation) in addition to atom-

icity and durability. Isotope is implemented as an in-kernel software module

running over commodity hardware, exposing a conventional block read/write

interface augmented with beginTX/endTX IOCTLs to demarcate transactions.

Transactions execute speculatively and are validated by Isotope on endTX by

checking for conflicts. To minimize the possibility of conflict-related aborts, ap-

plications can provide information to Isotope about which sub-parts of each

4KB block are read or written, allowing Isotope to perform conflict detection at

sub-block granularity.

Internally, Isotope uses an in-memory multiversion index over a persistent

log to provide each transaction with a consistent, point-in-time snapshot of a

block address space. Reads within a transaction execute against this snapshot,

while writes are buffered in RAM by Isotope. When endTX is called, Isotope

uses a new MVCC commit protocol to determine if the transaction commits

or aborts. The commit/abort decision is a function of the timestamp-ordered

stream of recently proposed transactions, as opposed to the multiversion index;

as a result, the protocol supports arbitrarily fine-grained conflict detection with-

out requiring a corresponding increase in the size of the index. When transac-

87

tions commit, their buffered writes are flushed to the log, which is implemented

on an array of physical drives [119], and reflected in the multiversion index.

Importantly, aborted transactions do not result in any write I/O to persistent

storage.

Storage systems built over Isotope are simple, stateless, shim layers that fo-

cus on mapping some variable-sized abstraction – such as files, tables, graphs,

and key-value pairs – to a fixed-size block API. We describe several such sys-

tems in this chapter, including a key-value store based on a hashtable index,

one based on a B-tree, and a POSIX user-space filesystem. These systems do not

have to implement their own fine-grained locking for concurrency control and

logging for failure atomicity. They can expose transactions to end applications

without requiring any extra code. Storage systems that reside on different par-

titions of an Isotope volume can be composed with transactions into larger end

applications.

Block-level isolation does have its limitations. Storage systems built over

Isotope cannot share arbitrary, in-memory soft state such as read caches across

transaction boundaries, since it is difficult to update such state atomically based

on the outcome of a transaction. Instead, they rely on block-level caching in Iso-

tope by providing hints about which blocks to cache. We found this approach

well-suited for both the filesystem application (which cached inode blocks, indi-

rection blocks and allocation maps) and the key-value stores (which cached their

index data structures). In addition, information is invariably lost when func-

tionality is implemented at a lower level of the stack: Isotope cannot leverage

properties such as commutativity and idempotence while detecting conflicts.

This chapter makes the following contributions:

88

• We propose the abstraction of a fully transactional block store that pro-

vides isolation, atomicity and durability. While others have explored

block-level transactional atomicity [43, 48, 101, 44], this is the first proposal

for block-level transactional isolation.

• We realize this abstraction in a system called Isotope via a new MVCC pro-

tocol. We show that Isotope exploits sub-block concurrency in workloads

to provide a high commit rate for transactions and high I/O throughput.

• We describe storage systems built using Isotope transactions – two key-

value stores and a filesystem – and show that they are simple, fast, and

robust, as well as composable via Isotope transactions into larger end ap-

plications.

4.1 The Isotope API

The basic Isotope API is shown in Figure 4.1: applications can use stan-

dard POSIX calls to issue reads and writes to 4KB blocks, bookended by be-

ginTX/endTX calls. The beginTX call establishes a snapshot; all reads within

the transaction are served from that snapshot. Writes within the transaction

are speculative. Each transaction can view its own writes, but the writes are

not made visible to other concurrent transactions until the transaction commits.

The endTX call returns true if the transaction commits, and false otherwise. The

abortTX allows the application to explicitly abort the transaction. The applica-

tion can choose one of two isolation levels on startup: strict serializability or

snapshot isolation.

The Isotope API implicitly associates transaction IDs with user-space

89

/*** Transaction API ***/
int beginTX();
int endTX();
int abortTX();
//POSIX read/write commands

/*** Optional API ***/
//release ongoing transaction and return handle
int releaseTX();

//take over a released transaction
int takeoverTX(int tx_handle);

//mark byte range accessed by last read/write
int mark_accessed(off_t blknum, int start, int size);

//request caching for blocks
int please_cache(off_t blknum);

Figure 4.1: The Isotope API.

threads, instead of augmenting each call signature in the API with an explicit

transaction ID that the application supplies. We took this route to allow appli-

cations to use the existing, highly optimized POSIX calls to read and write data

to the block store. The control API for starting, committing and aborting trans-

actions is implemented via IOCTLs. To allow transactions to execute across

different threads or processes, Isotope provides additional APIs via IOCTLs:

releaseTX disconnects the association between the current thread and the trans-

action, and returns a temporary transaction handle. A different thread can call

takeoverTX with this handle to associate itself with the transaction.

Isotope exposes two other optional calls via IOCTLs. After reading or writ-

ing a 4KB block within a transaction, applications can call mark accessed to ex-

plicitly specify the accessed byte range within the block. This information is key

90

for fine-grained conflict detection; for example, a filesystem might mark a single

inode within an inode block, or a single byte within a data allocation bitmap.

Note that this information cannot be inferred implicitly by comparing the old

and new values of the 4KB block; the application might have overwritten parts

of the block without changing any bits. The second optional call is please cache,

which lets the application request Isotope to cache specific blocks in RAM; we

discuss this call in detail later in the chapter. Figure 4.2 shows a snippet of ap-

plication code that uses the Isotope API (the setattr function from a filesystem).

If a read or write is issued outside a transaction, it is treated as a singleton

transaction. Singleton reads see all prior committed data since they access the

latest snapshot of the system. Singleton writes always commit and are immedi-

ately durable. In effect, Isotope behaves like a conventional block device if the

reads and writes issued to it are all non-transactional. In addition, Isotope can

preemptively abort transactions to avoid buggy or malicious applications from

hoarding resources within the storage subsystem. When a transaction is pre-

emptively aborted, any reads, writes, or control calls issued within it will return

error codes, except for endTX, which will return false, and abortTX.

Transactions can be nested – i.e., a beginTX/endTX pair can have other pairs

nested within it – with the simple semantics that the internal transactions are ig-

nored. A nested beginTX does not establish a new snapshot, and a nested endTX

always succeeds without changing the persistent state of the system. A nested

abortTX causes any further activity in the transaction to return error codes until

all the enclosing abortTX/endTX have been called. This behavior is important

for allowing storage systems to expose transactions to end-user applications. In

the example of the filesystem, if an end-user application invokes beginTX (ei-

91

isofs_inode_num ino;
unsigned char *buf;

//allocate buf, set ino to parameter
...
int blknum = inode_to_block(ino);

txbegin:
beginTX();

if(!read(blknum, buf)){
abortTX();
return EIO;

}
mark_accessed(blknum, off, sizeof(inode));

//update attributes
...

if(!write(blknum, buf)){
abortTX();
return EIO;

}
mark_accessed(blknum, off, sizeof(inode));

if(!endTX())
goto txbegin;

Figure 4.2: Example application: setattr code for a filesystem built over Iso-
tope.

ther directly on Isotope or through a filesystem-provided API) before calling

the setattr function in Figure 4.2 multiple times, the internal transactions within

each setattr call are ignored and the entire ensemble of operations will commit

or abort atomically.

92

4.1.1 Composability

As stated earlier, a primary benefit of a transactional block store is its oblivious-

ness to the structure of the software stack running above it, which can range

from a single-threaded application to a composition of multi-threaded appli-

cation code, library storage systems, out-of-process daemons and kernel mod-

ules. The Isotope API is designed to allow block-level transactions to span ar-

bitrary compositions of different types of software modules. We describe some

of these composition patterns in the context of a simple photo storage appli-

cation called ImgStore, which stores photos and their associated metadata in a

key-value store.

In the simplest case, ImgStore can store images and various kinds of meta-

data as key-value pairs in IsoHT, which in turn is built over a Isotope volume

using transactions. Here, a single transaction-oblivious application (ImgStore)

runs over a single transaction-aware library-based storage system (IsoHT).

Cross-Layer: ImgStore may want to atomically update multiple key-value pairs

in IsoHT; for example, when a user is tagged in a photo, ImgStore may want

to update a photo-to-user mapping as well as a user-to-photo mapping, stored

under two different keys. To do so, ImgStore can encapsulate calls to IsoHT

within Isotope beginTX/endTX calls, leveraging nested transactions.

Cross-Thread: In the simplest case, ImgStore executes each transaction within

a single thread. However, if ImgStore is built using an event-driven library

that requires transactions to execute across different threads, it can use the re-

leaseTX/takeoverTX calls.

Cross-Library: ImgStore may find that IsoHT works well for certain kinds of ac-

93

cesses (e.g., retrieving a specific image), but not for others such as range queries

(e.g., finding photos taken between March 4 and May 10, 2015). Accordingly, it

may want to spread its state across two different library key-value stores, one

based on a hashtable (IsoHT) and another on a B-tree (IsoBT) for efficient range

queries. When a photo is added to the system, ImgStore can transactionally call

put operations on both stores. This requires the key-value stores to run over

different partitions on the same Isotope volume.

Cross-Process: For various reasons, ImgStore may want to run IsoHT in a sep-

arate process and access it via an IPC mechanism; for example, to share it with

other applications on the same machine, or to isolate failures in different code-

bases. To do so, ImgStore has to call releaseTX and pass the returned transaction

handle via IPC to IsoHT, which then calls takeoverTX. This requires IsoHT to ex-

pose a transaction-aware IPC interface for calls that occur within a transactional

context.

4.2 Design and Implementation

Figure 4.3 shows the major components of the Isotope design. Isotope internally

implements an in-memory multiversion index (B in the figure) over a persistent

log (E). Versioning is provided by a timestamp counter (A) which determines

the snapshot seen by a transaction as well as its commit timestamp. This commit

timestamp is used by a decision algorithm (D) to determine if the transaction

commits or not. Writes issued within a transaction are buffered (C) during its

execution, and flushed to the log if the transaction commits. We now describe

the interaction of these components.

94

(A) 55

0 1 2 3 ...
Logical Address Space

0 1 2 3 4 5 ...(E)

(C)
0

1

...

V55:L5

V43:L4

V55:L3

(B)

(D) Commit?
Append

beginTX();
Read(1);
Write(0);
endTX();

Yes

Figure 4.3: Isotope consists of (A) a timestamp counter, (B) a multiversion
index, (C) a write buffer, (D) a decision algorithm, and (E) a
persistent log.

When the application calls beginTX, Isotope creates an in-memory intention

record for the speculative transaction: a simple data structure with a start times-

tamp and a read/write-set. Each entry in the read/write-set consists of a block

address, a bitmap that tracks the accessed status of smaller fixed-size chunks

or fragments within the block (by default, the fragment size is 16 bytes, result-

ing in a 256-bit bitmap for each 4KB block), and an additional 4KB payload

only in the write-set. These bitmaps are never written persistently and are only

maintained in-memory for currently executing transactions. After creating the

intention record, the beginTX call sets its start timestamp to the current value of

the timestamp counter (A in Figure 4.3) without incrementing it.

Until endTX is called, the transaction executes speculatively against the (po-

tentially stale) snapshot, without any effect on the shared or persistent state of

the system. Writes update the write-set and are buffered in-memory (C in Fig-

95

ure 4.3) without issuing any I/O. A transaction can read its own buffered writes,

but all other reads within the transaction are served from the snapshot corre-

sponding to the start timestamp using the multiversion index (B in Figure 4.3).

The mark accessed call modifies the bitmap for a previously read or written block

to indicate which bits the application actually touched. Multiple mark accessed

calls have a cumulative effect on the bitmap. At any point, the transaction can

be preemptively aborted by Isotope simply by discarding its intention record

and buffered writes. Subsequent reads, writes, and endTX calls will be unable

to find the record and return an error code to the application.

All actions happen on the endTX call, which consist of two distinct phases:

deciding the commit/abort status of the transaction, and applying the transaction

(if it commits) to the state of the logical address space. Regardless of how it

performs these two phases, the first action taken by endTX is to assign the trans-

action a commit timestamp by reading and incrementing the global counter. The

commit timestamp of the transaction is used to make the commit decision, and

is also used as the version number for all the writes within the transaction if it

commits. We use the terms timestamp and version number interchangeably in

the following text.

4.2.1 Deciding Transactions

To determine whether the transaction commits or aborts, endTX must detect the

existence of conflicting transactions. The isolation guarantee provided – strict

serializability or snapshot isolation – depends on what constitutes a conflicting

transaction. We first consider a simple strawman scheme that provides strict

96

...
W(17)
W(88)

W(88)
W(25)

W(33) W(77) W(25)
W(33)

T1 T2 T3 T4 T5

beginTX();
Read(25);
Write(25);
Write(33);
endTX();

Start
Timestamp

Commit
TimestampConflict Window

Conflict with T3!Commit Abort

Figure 4.4: Conflict detection under snapshot isolation: a transaction com-
mits if no other committed transaction in its conflict window
has an overlapping write-set.

serializability and implements conflict detection as a function of the multiver-

sion index. Here, transactions are processed in commit timestamp order, and for

each transaction the multiversion index is consulted to check if any of the logical

blocks in its read-set has a version number greater than the current transaction’s

start timestamp. In other words, we check whether any of the blocks read by

the transaction has been updated since it was read.

This scheme is simple, but suffers from a major drawback: the granularity

of the multiversion index has to match the granularity of conflict detection. For

example, if we want to check for conflicts at 16-byte grain, the index has to

track version numbers at 16-byte grain as well; this blows up the size of the in-

memory index by 256X compared to a conventional block-granular index. As a

result, this scheme is not well-suited for fine-grained conflict detection.

To perform fine-grained conflict detection while avoiding this blow-up in

97

the size of the index, Isotope instead implements conflict detection as a func-

tion over the temporal stream of prior transactions (see Figure 4.4). Concretely,

each transaction has a conflict window of prior transactions between its start

timestamp and its commit timestamp.

• For strict serializability, the transaction T aborts if any committed transac-

tion in its conflict window modified an address that T read; else, T com-

mits.

• For snapshot isolation, the transaction T aborts if any committed trans-

action in its conflict window modified an address that T wrote; else, T

commits.

In either case, the commit/abort status of a transaction is a function of a window

of transactions immediately preceding it in commit timestamp order.

When endTX is called on T , a pointer to its intention record is inserted into

the slot corresponding to its commit timestamp in an in-memory array. Since

the counter assigns contiguous timestamps, this array has no holes; each slot

is eventually occupied by a transaction. At this point, we do not yet know the

commit/abort status of T and have not issued any write I/O, but we have a

start timestamp and a commit timestamp for it. Each slot is guarded by its own

lock.

To decide if T commits or aborts, we simply look at its conflict window of

transactions in the in-memory array (i.e., the transactions between its start and

commit timestamps). We can decide T ’s status once all these transactions have

decided. T commits if each transaction in the window either aborts or has no

overlap between its read/write-set and T ’s read/write-set (depending on the

98

transactional semantics). Since each read/write-set stores fine-grained infor-

mation about which fragments of the block are accessed, this scheme provides

fine-grained conflict detection without increasing the size of the multiversion

index.

Defining the commit/abort decision for a transaction as a function of other

transactions is a strategy as old as optimistic concurrency control itself [74], but

choosing an appropriate implementation is non-trivial. Like us, Bernstein et

al. [103] formulate the commit/abort decision for distributed transactions in the

Hyder system as a function of a conflict window over a totally ordered stream

of transaction intentions. Unlike us, they explicitly make a choice to use the

spatial state of the system (i.e., the index) to decide transactions. A number of

factors drive our choice in the opposite direction: we need to support writes at

arbitrary granularity (e.g., an inode) without increasing index size; our intention

log is a local in-memory array and not distributed or shared across the network,

drastically reducing the size of the conflict window; and checking for conflicts

using read/write-sets is easy since our index is a simple address space.

4.2.2 Applying Transactions

If the outcome of the decision phase is commit, endTX proceeds to apply the

transaction to the logical address space. The first step in this process is to ap-

pend the writes within the transaction to the persistent log. This step can be

executed in parallel for multiple transactions, as soon as each one’s decision is

known, since the existence and order of writes on the log signifies nothing: the

multiversion index still points to older entries in the log. The second step in-

99

volves changing the multiversion index to point to the new entries. Once the

index has been changed, the transaction can be acknowledged and its effects

are visible.

One complication is that this protocol introduces a lost update anomaly.

Consider a transaction that reads a block (say an allocation bitmap in a filesys-

tem), examines and changes the first bit, and writes it back. A second transac-

tion reads the same block concurrently, examines and changes the last bit, and

writes it back. Our conflict detection scheme will correctly allow both transac-

tions to commit. However, each transaction will write its own version of the 4KB

bitmap, omitting the other’s modification; as a result, the transaction with the

higher timestamp will destroy the earlier transaction’s modification. To avoid

such lost updates, the endTX call performs an additional step for each trans-

action before appending its buffered writes to the log. Once it knows that the

current transaction can commit, it scans the conflict window and merges updates

made by prior committed transactions to the blocks in its write-set.

4.2.3 Implementation Details

Isotope is implemented as an in-kernel software module in Linux 2.6.38; specifi-

cally, as a device mapper that exposes multiple physical block devices as a single

virtual disk, at the same level of the stack as software RAID. Below, we discuss

the details of this implementation.

Log implementation: Isotope implements the log (i.e., E in Figure 4.3) over

a conventional address space with a counter marking the tail (and additional

bookkeeping information for garbage collection, which we discuss shortly).

100

From a correctness and functionality standpoint, Isotope is agnostic to how this

address space is realized. For good performance, it requires an implementation

that works well for a logging workload where writes are concentrated at the tail,

while reads and garbage collection can occur at random locations in the body.

A naive solution is to use a single physical disk (or a RAID-0 or RAID-10 array

of disks), but garbage collection activity can hurt performance significantly by

randomizing the disk arm. Replacing the disks with SSDs increases the cost-to-

capacity ratio of the array without entirely eliminating the performance prob-

lem: SSDs typically run slower for random workloads than sequential ones (by

at least 2X), and perform poorly when exposed to mixed workloads rather than

read-only or write-only workloads [123].

As a result, we use a design where a log is chained across multiple disks or

SSDs (similar to Gecko in Chapter 3). Chaining the log across drives ensures that

garbage collection – which occurs in the body of the log/chain – is separated

from the first-class writes arriving at the tail drive of the log/chain. In addition,

a commodity SSD is used as a read cache with an affinity for the tail drive of

the chain, preventing application reads from disrupting write sequentiality at

the tail drive. In essence, this design ‘collars’ the throughput of the log, pegging

write throughput to the speed of a single drive, but simultaneously eliminat-

ing the throughput troughs caused by concurrent garbage collection and read

activity.

Garbage collection (GC): Compared to conventional log-structured stores, GC

is slightly complicated in Isotope by the need to maintain older versions of

blocks. Isotope tracks the oldest start timestamp across all ongoing transactions

and makes a best-effort attempt to not garbage collect versions newer than this

101

timestamp. In the worst case, any non-current versions can be discarded with-

out compromising safety, by first preemptively aborting any transactions read-

ing from them. The application can simply retry its transactions, obtaining a

new, current snapshot. This behavior is particularly useful for dealing with the

effects of rogue transactions that are never terminated by the application. The

alternative, which we did not implement, is to set a flag that preserves a running

transaction’s snapshot by blocking new writes if the log runs out of space; this

may be required if it’s more important for a long-running transaction to finish

(e.g., if it’s a critical backup) than for the system to be online for writes.

Caching: The please cache call in Isotope allows the application to mark the

blocks it wants cached in RAM. To implement caching, Isotope annotates the

multiversion index with pointers to cached copies of block versions. This call

is merely a hint and provides no guarantees to the application. In practice, our

implementation uses a simple LRU scheme to cache a subset of the blocks if the

application requests caching indiscriminately.

Index persistence: Thus far, we have described the multiversion index as an

in-memory data structure pointing to entries on the log. Changes to the index

have to be made persistent so that the state of the system can be reconstructed

on failures. To obtain persistence and failure atomicity for these changes, we

use a metadata log. The size of this log can be limited via periodic checkpoints.

A simple option is to store the metadata log on battery-backed RAM, or on

newer technologies such as PCM or flash-backed RAM (e.g., Fusion-io’s Auto-

Commit Memory [18]). In the absence of special hardware on our experimental

testbed, we instead used a commodity SSD. Each transaction’s description in the

metadata log is quite compact (i.e., the logical block address and the physical log

102

position of each write in it, and its commit timestamp). To avoid the slowdown

and flash wear-out induced by logging each transaction separately as a syn-

chronous page write, we batch multiple committed transactions together [52],

delaying the final step of modifying the multiversion index and acknowledging

the transaction to the application. We do not turn off the write cache on the SSD,

relying on its ability to flush data on power failures using supercapacitors.

Memory overhead: A primary source of memory overhead in Isotope is the

multiversion index. A single-version index that maps a 2TB logical address

space to an 4TB physical address space can be implemented as a simple array

that requires 2GB of RAM (i.e., half a billion 4-byte entries), which can be eas-

ily maintained in RAM on modern machines. Associating each address with a

version (without supporting access to prior versions) doubles the space require-

ment to 4GB (assuming 4-byte timestamps), which is still feasible. However,

multiversioned indices that allow access to past versions are more expensive,

due to the fact that multiple versions need to be stored, and because a more

complex data structure is required instead of an array with fixed-size values.

These concerns are mitigated by the fact that Isotope is not designed to be a

fully-fledged multiversion store; it only stores versions from the recent past,

corresponding to the snapshots seen by executing transactions.

Accordingly, Isotope maintains a pair of indices: a single-version index in

the form of a simple array and a multiversion index implemented as a hashtable.

Each entry in the single-version index either contains a valid physical address

if the block has only one valid, non-GC’ed version, a null value if the block has

never been written, or a constant indicating the existence of multiple versions. If

a transaction issues a read and encounters this constant, the multiversion index

103

is consulted. An address is moved from the single-version index to the multi-

version index when it goes from having one version to two; it is moved back

to the single-version index when its older version(s) are garbage collected (as

described earlier in this section).

The multiversion index consists of a hashtable that maps each logical ad-

dress to a linked list of its existing versions, in timestamp order. Each entry

contains forward and backward pointers, the logical address, the physical ad-

dress, and the timestamp. A transaction walks this linked list to find the entry

with the highest timestamp less than its snapshot timestamp. In addition, the

entry also has a pointer to the in-memory cached copy, as described earlier. If

an address is cached, the first single-version index is marked as having multiple

versions even if it does not, forcing the transaction to look at the hashtable index

and encounter the cached copy. In the future, we plan on applying recent work

on compact, concurrent maps [54] to further reduce overhead.

Rogue Transactions: Another source of memory overhead in Isotope is the

buffering of writes issued by in-progress transactions. Each write adds an en-

try to the write-set of the transaction containing the 4KB payload and a 4K
C bit

bitmap, where C is the granularity of conflict detection (e.g., with 16-byte de-

tection, the bitmap is 256 bits). Rogue transactions that issue a large number of

writes are a concern, especially since transactions can be exposed to end-user

applications. To handle this, Isotope provides a configuration parameter to set

the maximum number of writes that can be issued by a transaction (set to 256

by default); beyond this, writes return an error code. Another parameter sets

the maximum number of outstanding transactions a single process can have

in-flight (also set to 256). Accordingly, the maximum memory a rogue process

104

can use within Isotope for buffered writes is roughly 256MB. When a process is

killed, its outstanding transactions are preemptively aborted.

Despite these safeguards, it is still possible for Isotope to run out of mem-

ory if many processes are launched concurrently and each spams the system

with rogue, never-ending transactions. In the worst case, Isotope can always

relieve memory pressure by preemptively aborting transactions. Another op-

tion which we considered is to flush writes to disk before they are committed;

since the metadata index does not point to them, they won’t be visible to other

transactions. Given that the system is only expected to run out of memory in

pathological cases where issuing I/O might worsen the situation, we didn’t im-

plement this scheme.

Note that the in-memory array that Isotope uses for conflict detection is not

a major source of memory overhead; pointers to transaction intention records

are inserted into this array in timestamp order only after the application calls

endTX, at which point it has relinquished control to Isotope and cannot prolong

the transaction. As a result, the lifetime of an entry in this array is short and

limited to the duration of the endTX call.

Clustering sub-block writes: Widening the interface to the block store can

enable new optimizations. For example, applications often issue small, sub-

block writes to their on-disk metadata structures (e.g., a filesystem might mod-

ify an inode within a block). In our current implementation, as in conventional

block stores, each sub-block write triggers a full block write to the data log.

Instead, Isotope can leverage its knowledge of the dirty regions within each

write to optimize disk I/O in the critical path of the transaction. When applying

105

committed transactions, it can accumulate sub-block writes from different log-

ical blocks into a single physical block on the persistent data log; in effect, this

physical block acts as a byte-level mini-log, temporally clustering small writes.

For example, a filesystem write might involve a single bit flip on an allocation

map, a pointer assignment in an indirection block and a timestamp change on

an inode; all three of these fine-grained modifications could be written out in

a single 4KB mini-log write to the persistent log. Eventually, the writes have

to be rewritten as separate, conventional entries on the log. In the interim, the

multiversion index has to track which fragments exist in these mini-log entries

to serve reads correctly.

4.3 Isotope Applications

To illustrate the usability and performance of Isotope, we built four applica-

tions using Isotope transactions: IsoHT, a key-value store built over a persistent

hashtable; IsoBT, a key-value store built over a persistent B-tree; IsoFS, a user-

space POSIX filesystem; and ImgStore, an image storage service that stores im-

ages in IsoHT, and a secondary index in IsoBT. These applications implement

each call in their respective public APIs by following a simple template that

wraps the entire function in a single transaction, with a retry loop in case the

transaction aborts due to a conflict (see Figure 4.2).

106

4.3.1 Transactional Key-Value Stores

Library-based or ‘embedded’ key-value stores (such as LevelDB or Berkeley DB)

are typically built over persistent, on-disk data structures. We built two key-

value stores called IsoHT and IsoBT, implemented over an on-disk hashtable

and B-tree data structure, respectively. Both key-value stores support basic

put/get operations on key-value pairs, while IsoBT additionally supports range

queries. Each API call is implemented via a single transaction of block reads and

writes to an Isotope volume.

We implemented IsoHT and IsoBT in three stages. First, we wrote code with-

out Isotope transactions, using a global lock to guard the entire hashtable or B-

tree. The resulting key-value stores are functional but slow, since all accesses

are serialized by the single lock. Further, they do not provide failure atomicity:

a crash in the middle of an operation can catastrophically violate data structure

integrity.

In the second stage, we simply replaced the acquisitions/releases on the

global lock with Isotope beginTX/endTX/ abortTX calls, without changing the

overall number of lines of code. With this change, the key-value stores provide

both fine-grained concurrency control (at block granularity) and failure atom-

icity. Finally, we added optional mark accessed calls to obtain sub-block concur-

rency control, and please cache calls to cache the data structures (e.g., the nodes

of the B-tree, but not the values pointed to by them). Table 4.1 reports on the

lines of code (LOC) counts at each stage for the two key-value stores.

107

Application Original Basic APIs Optional APIs
with locks (lines modified) (lines added)

IsoHT 591 591 (15) 617 (26)
IsoBT 1,229 1,229 (12) 1,246 (17)
IsoFS 997 997 (19) 1,022 (25)

Table 4.1: Lines of code for Isotope storage systems.

4.3.2 Transactional Filesystem

IsoFS is a simple user-level filesystem built over Isotope accessible via FUSE [6],

comprising 1K lines of C code. Its on-disk layout consists of distinct regions for

storing inodes, data, and an allocation bitmap for each. Each inode has an indi-

rect pointer and a double indirect pointer, both of which point to pages allocated

from the data region. Each filesystem call (e.g., setattr, lookup, or unlink) uses a

single transaction to access and modify multiple blocks. The only functionality

implemented by IsoFS is the mapping and allocation of files and directories to

blocks; atomicity, isolation, and durability are handled by Isotope.

IsoFS is stateless, caching neither data nor metadata across filesystem calls

(i.e., across different transactions). Instead, IsoFS tells Isotope which blocks to

cache in RAM. This idiom turned out to be surprisingly easy to use in the con-

text of a filesystem; we ask Isotope to cache all bitmap blocks on startup, each

inode block when an inode within it is allocated, and each data block that’s al-

located as an indirect or double indirect block. Like the key-value stores, IsoFS

was implemented in three stages and required few extra lines of code to go from

a global lock to using the Isotope API (see Table 4.1).

IsoFS trivially exposes transactions to end applications over files and direc-

tories. For example, a user might create a directory, move a file into it, edit the

108

file, and rename the directory, only to abort the entire transactions and revert

the filesystem to its earlier state. One implementation-related caveat is that we

were unable to expose transactions to end applications of IsoFS via the FUSE

interface, since FUSE decouples application threading from filesystem thread-

ing and does not provide any facility for explicitly transferring a transaction

handle on each call. Accordingly, we can only expose transactions to the end

application if IsoFS is used directly as a library within the application’s process.

4.3.3 Experience

Composability: As we stated earlier, Isotope-based storage systems are triv-

ially composable: a single transaction can encapsulate calls to IsoFS, IsoHT and

IsoBT. To demonstrate the power of such composability, we built ImgStore, the

image storage application described in Section 4.1. ImgStore stores images in

IsoHT, using 64-bit IDs as keys. It then stores a secondary index in IsoBT, map-

ping dates to IDs. The implementation of ImgStore is trivially simple: to add an

image, it creates a transaction to put the image in IsoHT, and then updates the

secondary index in IsoBT. The result is a storage system that – in just 148 LOC

– provides hashtable-like performance for gets while supporting range queries.

Isolation Levels: Isotope provides both strict serializability and snapshot isola-

tion; our expectation was that developers would find it difficult to deal with the

semantics of the latter. However, our experience with IsoFS, IsoHT and IsoBT

showed otherwise. Snapshot isolation provides better performance than strict

serializability, but introduces the write skew anomaly [36]: if two concurrent

transactions read two blocks and each updates one of the blocks (but not the

109

same one), they will both commit despite not being serializable in any order.

The write skew anomaly is problematic for applications if a transaction is ex-

pected to maintain an integrity constraint that includes some block it does not

write to (e.g., if the two blocks in the example have to sum to less than some

constant). In the case of the storage systems we built, we did not encounter

these kinds of constraints; for instance, no particular constraint holds between

different bits on an allocation map. As a result, we found it relatively easy to

reason about and rule out the write skew anomaly.

Randomization: Our initial implementations exhibited a high abort rate due

to deterministic behavior across different transactions. For example, a simple

algorithm for allocating a free page involved getting the first free bit from the

allocation bitmap; as a result, multiple concurrent transactions interfered with

each other by trying to allocate the same page. To reduce the abort rate, it was

sufficient to remove the determinism in simple ways; for example, we assigned

each thread a random start offset into the allocation bitmap.

4.4 Performance Evaluation

We evaluate Isotope on a machine with an Intel Xeon CPU with 24 hyper-

threaded cores, 24GB RAM, three 10K RPM disks of 600GB each, an 128GB SSD

for the OS and two other 240GB SSDs with SATA interfaces. In the following

experiments, we used two primary configurations for Isotope’s persistent log:

a three-disk chained logging instance with a 32GB SSD read cache in front, and

a 2-SSD chained logging instance. In some of the experiments, we compare

against conventional systems running over RAID-0 configurations of 3 disks

110

and 2 SSDs, respectively. In the chained logging configurations, all writes are

logged to the single tail drive, while reads are mostly served by the other drives

(and the SSD read cache for the disk-based configuration). The performance

of this logging design under various workloads and during GC activity has

been documented in Chapter 3. In all our experiments, GC is running in the

background and issuing I/Os to the drives in the body of the chain to compact

segments, without disrupting the tail drive.

Our evaluation consists of two parts. First, we focus on the performance

and overhead of Isotope, showing that it exploits fine-grained concurrency in

workloads and provides high, stable throughput. Second, we show that Isotope

applications – in addition to being simple and robust – are fast, efficient, and

composable into larger applications.

4.4.1 Isotope Performance

To understand how Isotope performs depending on the concurrency present

in the workload, we implemented a synthetic benchmark. The benchmark ex-

ecutes a simple type of transaction that reads three randomly chosen blocks,

modifies a random 16-byte segment within each block (aligned on a 16-byte

boundary), and writes them back. This benchmark performs identically with

strict serializability and snapshot isolation, since the read-set exactly matches

the write-set.

In the following experiments, we executed 64 instances of the micro bench-

mark concurrently, varying the size of the address space accessed by the in-

stances to vary contention. The blocks are chosen from a specific prefix of the

111

0

100

200

300

400

500

600

16KB
256KB

4MB
64MB

1GB
16GB

256GB

Disk

M
B

/s
ec

K
s

of
 T

X
es

/s
ec

Accessed address space

Throughput
Goodput

16KB
256KB

4MB
64MB

1GB
16GB

256GB

0

5

10

15

20

25
SSD

M
B

/s
ec

K
s

of
 T

X
es

/s
ec

Accessed address space

Throughput
Goodput

Figure 4.5: Without fine-grained conflict detection, Isotope performs well
under low contention workloads.

address space, which is a parameter to the benchmark; the longer this prefix,

the bigger the fraction of the address space accessed by the benchmark, and

the less skewed the workload. The two key metrics of interest are transaction

goodput (measured as the number of successfully committed transactions per

second, as well as the total number of bytes read or written per second by these

transactions) and overall transaction throughput; their ratio is the commit rate

of the system. Each data point in the following graphs is averaged across three

runs; in all cases, the minimum and the maximum run were within 10% of the

average.

Figure 4.5 shows the performance of this benchmark against Isotope without

fine-grained conflict detection; i.e., the benchmark does not issue mark accessed

calls for the 16-byte segments it modifies. On the x-axis, we increase the frac-

tion of the address space accessed by the benchmark. On the left y axis, we plot

the rate at which data is read and written by transactions; on the right y-axis,

we plot the number of transactions/sec. On both disk and SSD, transactional

contention cripples performance on the left part of the graph: even though the

112

0

100

200

300

400

500

600

16KB
256KB

4MB
64MB

1GB
16GB

256GB

Disk

M
B

/s
ec

K
s

of
 T

X
es

/s
ec

Accessed address space

Throughput
Goodput

16KB
256KB

4MB
64MB

1GB
16GB

256GB

0

5

10

15

20

25
SSD

M
B

/s
ec

K
s

of
 T

X
es

/s
ec

Accessed address space

Throughput
Goodput

Figure 4.6: With fine-grained conflict detection, Isotope performs well
even under high block-level contention.

benchmark attempts to commit thousands of transactions/sec, all of them ac-

cess a small number of blocks, leading to low goodput. Note that overall trans-

action throughput is very high when the commit rate is low: aborts are cheap

and do not result in storage I/O.

Conversely, disk contention hurts performance on the right side of Fig-

ure 4.5-Left: since the blocks read by each transaction are distributed widely

across the address space, the 32GB SSD read cache is ineffective in serving reads

and the disk arm is randomized and seeking constantly. As a result, the system

provides very few transactions per second (though with a high commit rate).

In the middle of the graph is a sweet spot where Isotope saturates the disk at

roughly 120 MB/s of writes, where the blocks accessed are concentrated enough

for reads to be cacheable in the SSD (which supplies 120 MB/s of reads, or 30K

4KB IOPS), while distributed enough for writes to not trigger frequent conflicts.

We can improve performance on the left side of the graphs in Figure 4.5 via

fine-grained conflict detection. In Figure 4.6, the benchmark issues mark accessed

calls to tell Isotope which 16-byte fragment it is modifying. The result is high,

113

stable goodput even when all transactions are accessing a small number of

blocks, since there is enough fragment-level concurrency in the system to en-

sure a high commit rate. Using the same experiment but with smaller and

larger data access and conflict detection granularities than 16 bytes showed sim-

ilar trends. Isotope’s conflict detection was not CPU-intensive: we observed an

average CPU utilization of 5.96% without fine-grained conflict detection, and

6.17% with it.

4.4.2 Isotope Application Performance

As described earlier, we implemented two key-value stores over Isotope: IsoHT

using a hashtable index and IsoBT using a B-tree index, respectively. IsoBT ex-

poses a fully functional LevelDB API to end applications; IsoHT does the same

minus range queries. To evaluate these systems, we used the LevelDB bench-

mark [11] as well as the YCSB [46] benchmark. We ran the fill-random, read-

random, and delete-random workloads of the LevelDB benchmark and YCSB

workload-A traces (50% reads and 50% updates following a zipf distribution

on keys). All these experiments are on the 2-SSD configuration of Isotope. For

comparison, we ran LevelDB on a RAID-0 array of the two SSDs, in both syn-

chronous mode (‘LvlDB-s’) and asynchronous mode (‘LvlDB’). LevelDB was set

to use no compression and the default write cache size of 8MB. For all the work-

loads, we used a value size of 8KB and varied the number of threads issuing

requests from 4 to 128. Results with different value sizes (from 4KB to 32KB)

showed similar trends.

For operations involving writes (Figure 4.7-(a), (c), and (d)), IsoHT and IsoBT

114

 0

 5

 10

 15

 20

 25

 30

 35

4 8 16 32 64 128

G
oo

dp
ut

 (
K

 O
ps

/s
ec

)

of Threads
(a) Random fill

 0

 5

 10

 15

 20

 25

 30

 35

4 8 16 32 64 128

G
oo

dp
ut

 (
K

 O
ps

/s
ec

)

of Threads

LvlDB-s
LvlDB
IsoHT
IsoBT

(b) Random read

 0

 10

 20

 30

 40

 50

 60

 70

 80

4 8 16 32 64 128

G
oo

dp
ut

 (
K

 O
ps

/s
ec

)

of Threads
(c) Random delete

 0

 5

 10

 15

 20

 25

 30

 35

4 8 16 32 64 128

G
oo

dp
ut

 (
K

 O
ps

/s
ec

)

of Threads
(d) YCSB workload-A

Figure 4.7: IsoHT and IsoBT outperform LevelDB for data operations
while providing stronger consistency.

goodput increases with the number of threads, but dips slightly beyond 64

threads due to an increased transaction conflict rate. For the read workload

(Figure 4.7-(b)), throughput increases until the underlying SSDs are saturated.

Overall, IsoHT has higher goodput than IsoBT, since it touches fewer meta-

data blocks per operation. We ran these experiments with Isotope providing

snapshot isolation, since it performed better for certain workloads and gave

sufficiently strong semantics for building the key-value stores. With strict seri-

alizability, for instance, the fill workload showed nearly identical performance,

whereas the delete workload ran up to 25% slower.

115

LevelDB’s performance is low for fill operations due to sorting and multi-

level merging (Figure 4.7-(a)), and its read performance degrades as the num-

ber of concurrent threads increases because of the CPU contention in the skip

list, cache thrashing, and internal merging operations (Figure 4.7-(b)). Still, Lev-

elDB’s delete is very efficient because it only involves appending a small delete

intention record to a log, whereas IsoBT/IsoHT has to update a full 4KB block

per delete (Figure 4.7-(c)).

The point of this experiment is not to show IsoHT/IsoBT is better than Lev-

elDB, which has a different internal design and is optimized for specific work-

loads such as sequential reads and bulk writes. Rather, it shows that systems

built over Isotope with little effort can provide equivalent or better performance

than an existing system that implements its own concurrency control and failure

atomicity logic.

Composability

To evaluate the composability of Isotope-based storage systems, we ran the

YCSB workload on ImgStore, our image storage application built over IsoHT

and IsoBT. In our experiments, ImgStore transactionally stored a 16KB pay-

load (corresponding to an image) in IsoHT and a small date-to-ID mapping

in IsoBT. To capture the various ways in which Isotope storage systems can

be composed (see Section 4.1), we implemented several versions of ImgStore:

cross-library, where ImgStore accesses the two key-value stores as in-process li-

braries, with each transaction executing within a single user-space thread; cross-

thread, where ImgStore accesses each key-value store using a separate thread,

and requires transactions to execute across them; and cross-process, where each

116

 0

 2

 4

 6

 8

 10

 12

 14

 16

4 8 16 32 64 128

G
oo

dp
ut

 (
K

 O
ps

/s
ec

)

of Threads

Cross-library
Cross-thread
Cross-process

Figure 4.8: YCSB over different compositions of IsoBT and IsoHT.

key-value store executes within its own process and is accessed by ImgStore

via socket-based IPC. Figure 4.8 shows the resulting performance for all three

versions. It shows that the cost of the extra takeoverTX/releaseTX calls required

for cross-thread transactions is negligible. As one might expect, cross-process

transactions are slower due to the extra IPC overhead. Additionally, ImgStore

exhibits less concurrency than IsoHT or IsoBT (peaking at 32 threads), since each

composite transaction conflicts if either of its constituent transactions conflict.

Filesystem Performance

Next, we compare the end-to-end performance of IsoFS running over Isotope

using the IOZone [9] write/rewrite benchmark with 8 threads. Each thread

writes to its own file using a 16KB record size until the file size reaches 256MB;

it then rewrites the entire file sequentially; and then rewrites it randomly. We

ran this workload against IsoFS running over Isotope, which converted each

16KB write into a transaction involving four 4KB Isotope writes, along with

117

 0

 100

 200

 300

 400

 500

seq-write seq-rewrite rand-rewrite

Disk

M
B

/s
ec

ext2
ext3

IsoFS
IsoFS-lib (SSD only)

 0

 100

 200

 300

 400

 500

seq-write seq-rewrite rand-rewrite

SSD

M
B

/s
ec

Figure 4.9: IOZone over IsoFS and ext2/ext3.

metadata writes. We also ran ext2 and ext3 over Isotope; these issued solitary,

non-transactional reads and writes, which were interpreted by Isotope as sin-

gleton transactions (in effect, Isotope operated as a conventional log-structured

block store, so that ext2 and ext3 are not penalized for random I/Os). We ran

ext3 in ‘ordered’ mode, where metadata is journaled but file contents are not.

Figure 4.9 plots the throughput observed by IOZone: on disk, IsoFS matches

or slightly outperforms ext2 and ext3, saturating the tail disk on the chain. On

SSD, IsoFS is faster than ext2 and ext3 for initial writes, but is bottlenecked by

FUSE on rewrites. When we ran IsoFS directly using a user-space benchmark

that mimics IOZone (‘IsoFS-lib’), throughput improved to over 415MB/s. A

secondary point made by this graph is that Isotope does not slow down appli-

cations that do not use its transactional features (the high performance is mainly

due to the underlying logging scheme, but ext2 and ext3 still saturate disk and

SSD for rewrites), satisfying a key condition for pushing functionality down the

stack [108].

118

4.5 Summary

In this chapter, we explored a block-level transaction support abstraction to en-

able transactional isolation in cloud storage servers. We described Isotope as

an instance of this approach to achieve the transactional abstraction. Isotope

is a transactional block store that provides isolation in addition to atomicity

and durability. We showed that transactional isolation can be implemented ef-

ficiently within the block layer, leveraging the inherent multi-versioning of log-

structured block stores and application-provided hints for fine-grained conflict

detection. Isotope-based systems are simple and fast, while obtaining database-

strength guarantees on failure atomicity, durability, and consistency. Isotope-

based systems are also composable, allowing application-initiated transactions

to span multiple storage systems and different abstractions such as files and

key-value pairs. The portability of Isotope allows easy design of transactional

applications in any layer of the storage stack and it can be easily used by any

application running in a cloud storage server.

119

CHAPTER 5

CONSISTENCY CONTROL IN CLOUD SERVERS USING STALE DATA

The control of consistency within cloud storage servers is necessary as the server

becomes more powerful and complex. The ongoing explosion in the diversity

of memory and storage technology has made hardware heterogeneity a fact of

life for cloud storage servers. Current storage system designs typically use a

mix of multi-device idioms – such as caching, tiering, striping, mirroring, etc. –

to spread data across a range of devices, including hard disks, DRAM, NAND-

based solid state drives (SSDs), and byte-addressable NVRAM. Each such stor-

age medium exhibits vastly different throughput and latency characteristics; ac-

cess latencies to data can vary considerably depending on which media the data

resides on. Figure 5.1 shows the performance characteristics and cost of some

of the storage options available at the time of writing this dissertation.

In parallel, multi-device storage systems have become increasingly multi-

versioned, retaining older versions of data that are typically not exposed to the

application. Often, multi-versioning is a side-effect of log-structured designs

that avoid writing in place; for example, SSDs expose a single-version block ad-

Devices Throughput Latency Cost / GB
Registers - 1 cycle -
Caches - 2-10ns -
DRAM 10s of GB/s 100-200ns $10.00
NVDIMM 10s of GB/s 100-200ns $10.00
NVMM 10s of GB/s 800ns $5.00
NVMe 2GB/s 10-100us $1.40
SATA SSD 500MB/s 400us $0.40
Disk 100MB/s 10ms $0.05

Figure 5.1: The new storage/memory hierarchy (from a LADIS 2015 talk
by Andy Warfield).

120

dress space to applications, but internally log data to avoid triggering expensive

erase operations on block rewrites. In other cases, tiering or caching strategies

can introduce multiple versions by replicating data and synchronizing lazily; for

example, SSDs typically have DRAM-based write caches that are lazily flushed

to the underlying flash.

We observe that the existence of multiple versions of data within a storage

system – and the non-uniform performance characteristics of the storage media

that these versions reside on – creates an opportunity for trading off consistency

or staleness for performance. We make a case for weakly consistent local storage

systems in a cloud storage server: when applications access data, we want the

option of providing them with stale data in exchange for better performance.

This behavior is in contrast to the strong consistency or linearizability offered

by existing storage systems, which guarantee that read operations will reflect

all writes that complete before the read was issued [68]. Accessing older ver-

sions can provide better performance for a number of reasons: the latest version

might be slow to access because it resides on a write cache that is unoptimized

for reads [124], or on a hard disk stripe that is currently logging writes [119] or

undergoing maintenance operations such as a RAID rebuild. In all these cases,

accessing older versions can provide superior latency and/or throughput. In

Section 2.1.3, we have described these and other scenarios in detail.

The killer app for a weakly consistent local storage system is distributed cloud stor-

age. Services such as S3, DynamoDB, and Windows Azure Storage routinely ne-

gotiate weak consistency guarantees with clients, primarily to mask round-trip

delays to remote data centers. A client might request client-centric consistency,

such as read-my-writes consistency, monotonic reads, or bounded-writes con-

121

sistency from the cloud service, indicating its willingness to tolerate an older

version of data for better performance. For example, in the case of monotonic

reads consistency, a client that last saw version 100 of a key is satisfied with any

version of that key equal to or greater than 100.

Traditionally, a distributed storage service leverages weaker consistency re-

quirements to direct the client’s request to nearby servers that can provide the

desired consistency (e.g., contain a version equal to or greater than 100). The

server itself – typically implemented as a user-level process over a strongly con-

sistent local storage subsystem – strenuously returns the latest value of the key

that it stores (e.g., version 200), ignoring the presence of older, potentially faster

versions on the underlying subsystem that would satisfy the guarantee (e.g.,

version 110, 125, etc.). Instead, a cloud storage service could propagate knowl-

edge of weaker consistency requirements down to the local storage subsystem

on each individual server, allowing it to return older data at faster speeds.

Accordingly, in this chapter we propose and explore a new class of local

storage systems for cloud storage servers – e.g. embedded key-value stores,

filesystems, and block stores – that are consistency-aware, trading off staleness

for performance. We call these StaleStores. While different StaleStores can have

widely differing external APIs and internal designs, they share a number of

common features, such as support for multi-versioned access, and cost estima-

tion APIs that allow applications to determine the fastest version for a particular

data item.

In addition, we describe the design and implementation of a particular Stale-

Store: a log-structured block store called Yogurt. We implement over Yogurt a

variant of a distributed cloud storage system called Pileus [131] that supports

122

multiple consistency levels, and show that exploiting the performance/consis-

tency trade-off within individual cloud storage servers provides a 6X speed-up

in access latency.

5.1 Design Space for StaleStores

For any cloud storage service, the software stack on a single server typically

contains a top-most layer that runs as a user-space process and exposes some

high-level abstraction – such as key-value pairs and files – over the network

to applications running on remote clients. This process acts in concert with

other processes to implement a distributed storage service; for example, it might

act as a primary or secondary replica, or as a caching node. If the distributed

storage service supports weaker consistency guarantees, clients can mandate

that reads satisfy some such guarantee (such as read-your-writes or monotonic

reads); typically they do so by specifying a set of versions which are permissible.

Many systems rely on timestamps that provide an ordering across versions; reads

can then specify the earliest timestamp they can tolerate without violating the

required guarantee.

As a concrete example of a cloud storage service that supports weaker con-

sistency levels, the Pileus system [131] consists of a single primary server and

multiple backup servers. A client writes a new key-value pair by sending it to

the primary, which assigns a monotonically increasing timestamp to it before

writing it to local storage. The primary then asynchronously sends the update

to the backups, which apply updates in timestamp order. As a result, a global

ordering exists across all updates (and consequently all versions of data). At

123

any given point in time, each backup server contains a strict prefix of this global

order corresponding to some timestamps. Clients can then obtain weaker con-

sistency guarantees by specifying a timestamp for their reads, and contacting

the closest server that is storing a prefix which extends beyond this timestamp.

For example, a client has written a key-value pair at the primary and was

told by the primary that the write’s timestamp is T44. The primary has seen 100

writes, including the client’s write, and assigned them timestamps T1 to T100.

Backup A has seen writes up to timestamp T50. Backup B has seen writes up to

T35. The client then wishes to issue a read on the same key K satisfying the read-

your-writes guarantee; i.e., it requires the read to reflect its own latest write,

but not necessarily the latest writes by other clients. Accordingly, it contacts

the backup server closest to it with a read request annotated with T44. Backup

B cannot satisfy this request since it has seen writes only up to T35. Backup A,

on the other hand, can satisfy this request by returning any version of K with a

timestamp higher than or equal to T44.

In current distributed storage services, each individual server is typically

single-versioned (unless the distributed service exposes reads to older versions

as a feature). Specifically, existing systems do not have individual servers se-

lectively returning older versions in order to gain better performance from their

local storage stack. In the example above, we want backup A to be capable of

selecting a version between T44 and T50 that can be returned the fastest from its

local storage. This is the capability we seek to explore.

124

Key-Value
StaleStore API

Parameters Description

Get key, version # Reads a key corresponding to the
version #.

Put key, version #,
value

Writes a key with the specified value
and version #.

GetCost key, version # Returns an integer cost to access the
specified key with the version #.

GetVersionRange key, version # Returns a range of version #s within
which a version of a key is valid.

Table 5.1: Example key-value StaleStore.

5.1.1 What Is a StaleStore?

Abstractly, a StaleStore is a single-node storage system that maintains and

serves multiple versions. Different StaleStores support different application-

facing APIs – such as files, key-value pairs, block storage, etc. – that are aug-

mented in similar ways to allow applications to trade off consistency for perfor-

mance.

In designing the StaleStore abstraction, we observe that the information re-

quired to support consistency and performance trade-offs is typically split be-

tween the application and the store. The application (i.e., the server process

implementing the distributed cloud store) understands consistency (i.e., times-

tamps), and the store understands performance characteristics (i.e., where data

is placed and how fast it can be accessed). Required is an API that allows

performance information to flow up the stack and consistency information to

flow down the stack. Specifically, we push consistency information down the

stack by associating versions within the multi-version store with application-

level timestamps; conversely, we push performance information up the stack

by allowing applications to query the estimated cost of issuing a read operation

125

against a specific version.

Accordingly, a StaleStore API has four characteristics. In the following de-

scriptions, we use the terms ‘timestamp’ and ‘version number’ interchangeably.

In addition, we use the term ‘snapshot’ to define a consistent view of the data

store from the viewpoint of the storage at a particular timestamp.

• Timestamped writes: First, writes to the StaleStore are accompanied by a

monotonically increasing timestamp. This version number is global across

all writes to the StaleStore; for example, for a key-value store, each put op-

eration must have a non-decreasing timestamp, regardless of which key-

value pair it touches.

• Snapshot reads: Second, the application should be able to read from a

consistent, potentially stale snapshot corresponding to a timestamp. Read

APIs are augmented with a timestamp parameter. A read operation at a

timestamp T reflects all writes with a lower or equal timestamp. For ex-

ample, for a key-value store, if a particular key has been updated by three

puts at timestamps T7, T33 and T56 respectively, a get operation at times-

tamp T100 will return the value inserted by the put at T56, which reflects

the latest update at timestamp T100.

• Cost estimation: Third, the application should be able to query the cost

of issuing a particular read operation at a snapshot. This cost is an arbi-

trary integer value that may not correspond to real-world metrics such as

latency or throughput; all we require is that two cost estimates from the

same StaleStore can be compared.

• Version exploration: Finally, the application should be able to determine

– having read a particular version of an item – what range of timestamps

126

that version is valid for. For example, if the application reads an item X

at timestamp T7, and that item does not change next until timestamp T33,

the application can optimize cost querying operations with this informa-

tion, or read other items at any timestamp in between and still obtain a

consistent snapshot across items.

Table 5.1 shows an example API for a key-value StaleStore. It provides an

API for timestamped writes (Put), snapshot reads (Get), cost estimation (Get-

Cost), and version exploration (GetVersionRange).

Why timestamps instead of consistency guarantees? Making the single-node

store aware of individual guarantees (such as read-my-writes or monotonic

reads consistency) is challenging; these guarantees can be application-specific

and refer to application-level entities (e.g., the session consistency guarantee re-

quires a notion of an application-level session started by a specific client). In

contrast, timestamps are compact, simple and sufficient representations of con-

sistency requirements, and are used by a wide range of systems to provide weak

consistency in a distributed setting. The higher layer simply tags every read and

write with a global timestamp.

What about concurrency control? One approach to implement the above API

in a real system involves guarding all data with a single, coarse lock. In this

case, it’s simple for application logic to ensure that writes are always in non-

decreasing timestamp order, and that reads reflect writes with prior timestamps.

In practice, however, the application can use fine-grained locking to issue re-

quests in parallel, while providing the same semantics as a single lock. For ex-

ample, in a key-value store, puts to different keys can proceed in parallel, while

a get on a key has to be ordered after any puts to that key with a lower times-

127

tamp. We expect the application to implement concurrency control above the

StaleStore API (in much the same way a filesystem implements locking above

a block store API, or a key-value store implements locking above a filesystem

API), while ensuring that the semantics of the system are as if a single lock

guards all data.

5.1.2 Which Layer Should Be a StaleStore?

The API exposed by an individual server within a cloud storage service to exter-

nal clients typically mirrors the API of the cloud storage service. For example,

a storage service might expose a key-value API to applications allowing them

to put and get key-value pairs; each individual server exposes the same API to

client-side logic used by the application to access the service. We call this the

public-facing API.

Internally, each server runs a process (the application from the StaleStore’s

perspective) that implements the public-facing API over some internal, single-

server storage API; we call this the internal API. The internal API could be pro-

vided by a filesystem like ext3, an embedded key-value store like LevelDB or

RocksDB, a single block store such as Storage Spaces. These are the internal

APIs that we propose augmenting to support consistency/performance trade-

offs, as described above. Each of these internal subsystems could be a multi-

versioned StaleStore, allowing the application to request older versions from

them in exchange for better performance. Alternatively, the application could

be implemented over one or more unmodified, single-versioned storage subsys-

tems, and itself act as an application-level StaleStore, managing older versions

128

and accessing the fastest one. Below, we discuss the implications of each option:

Application-level StaleStore: In this option, the application-level stor-

age system manages and maintains versions across unmodified single-version

stores (filesystems, key-value stores, block devices), with no support from the

underlying local storage stack. This approach has one significant benefit: the

application is aware of the consistency guarantee required (or equivalently, of

high-level constructs such as timestamps), and knows which versions will sat-

isfy the read. It also has a significant drawback: the application is a user-space

process that typically has little visibility or control over the location of data on

physical devices. Multiple layers of indirection – in the form of logs, read caches

and write caches – can exist between the application and raw hardware. While

the application can explicitly maintain versions over a logical address space (a

file or a block device), it cannot predict access latencies to individual addresses

on each address space.

Filesystem / embedded key-value StaleStore: In this option, the applica-

tion stores all its data in a filesystem or embedded key-value StaleStore. An

important benefit of such an approach is generality and reusability: a filesys-

tem StaleStore can be reused by multiple cloud storage systems. On the flip

side, it itself operates over a logical address space – a block device – and has

little visibility into where blocks are mapped, making it difficult to estimate the

cost of reads to particular versions. This is particularly true with the advent

of ‘smart’ block layers in hardware (e.g. SSDs) and software (e.g. Microsoft’s

Storage Spaces), which are sophisticated, multi-device systems in themselves.

However, certain types of StaleStores can only be implemented at the filesystem

or key-value store level; one example is scenario S6 from Section 2.1.3, in which

129

StaleStore APIs Parameters Description
ReadVersion Block address,

version #.
Reads a block corresponding to the
version #.

WriteVersion Block address,
version #, data.

Writes a block with the specified ver-
sion #.

GetCost Block address,
version #.

Returns an integer cost to access the
specified block with the version #.

GetVersionRange Block address,
version #.

Returns the snapshot version range
where the block data is intact.

Wrapper APIs Parameters Description
POSIX APIs Does basic block I/Os such as read,

write, seek, etc.
OpenSnapshot Version # Opens snapshot.
CloseSnapshot Closes snapshot and flushes writes.

Table 5.2: Yogurt APIs.

a key-value store combines fine-grained logging with a block-grain buffer cache

over a block address space with relatively uniform access latencies.

Block-level StaleStore: The third option is for a smart block layer to man-

age, maintain, and expose versions. The block layer has detailed information

on where each block in its address space lives, and can provide accurate ac-

cess latency estimates. Further, the block device shares the advantage of the

filesystem: implementing tunable consistency within the block device allows

new high-level storage systems – such as graph stores, new types of filesys-

tems, table stores, databases, etc. – to easily support consistency/performance

trade-offs without reimplementing the required mechanisms. We now describe

the design and implementation of a block-level StaleStore called Yogurt.

130

5.2 Yogurt Design

Yogurt is a block-level StaleStore. It exposes a simple, block-level StaleStore API

(shown in Table 5.2) that supports timestamped writes, reads and cost estima-

tion. This API is necessary and sufficient for adding StaleStore functionality to

a block store; it is analogous to the example key-value StaleStore API shown

previously.

Building a block-level StaleStore poses some unique challenges. Applica-

tions might prefer to use the standard POSIX-style API for reads and writes to

minimize changes to code, and also to use the existing, highly optimized I/O

paths from user-space to the block storage driver. Also supporting application-

level data abstractions, such as files and key-value pairs, necessitates multi-

ple block accesses. Supporting these require some deviation from the basic

StaleStore API. Specifically, Yogurt provides an alternative wrapper API where

applications can specify timestamp via explicit control calls (implemented via

IOCTLs) and follow those up with POSIX read/write calls.

5.2.1 Block-level StaleStore API

The Yogurt API is simple and matches the generic characteristics of a StaleStore

API described in Section 5.1. ReadVersion(block addr, version) reads a block corre-

sponding to the version number (specifically, the last written block with a times-

tamp lower than the supplied version number), and WriteVersion(block addr, ver-

sion, data) writes a block data with the given version number. It is identical to

accessing a simple block store, but with an additional version number to read

131

and write the data.

GetCost(block addr, version) is the cost estimation API. The versioned block

store computes the integer value to return which can be compared against other

GetCost calls’ results. The smaller the number, the smaller the estimated cost

to access it. Depending on the underlying storage settings this number can be

configured differently and more details will be presented in Section 5.3.

GetVersionRange(block addr, version) returns a lower and upper bounds of

snapshots that contains the specified block intact. An identical block of data

can be part of multiple snapshots. This API returns the version number when

the block data was last written before the given version number and the version

number when the block data is overwritten after the given version number.

5.2.2 Wrapper APIs

As mentioned previously, a standard StaleStore API – consisting of timestamp-

augmented versions of the original calls – is problematic for a block store, since

it precludes the use of the highly optimized POSIX calls. A second issue for

applications is the granularity mismatch between the application and the block

store. Application-level consistency is defined at a grain that is either smaller

(e.g. small key-value pairs) or larger (e.g. large files) than a single block. In

addition, a single access to an application-level construct like a key-value pair

or a file often requires multiple accesses at the block level (e.g., one access to look

up a key-value index or a filesystem inode; a second access to read the data). If

these multiple writes are sent to the StaleStore with different timestamps, the

application could potentially access inconsistent snapshots reflecting one write

132

but not the other (e.g., it might see the inode write but not the subsequent data

write). Required is a wrapper API that allows applications to use the POSIX

calls as well as ensure that inconsistent states of the store cannot be seen.

The answer to both these questions lies in a wrapper API that exposes Open-

Snapshot and CloseSnapshot calls. OpenSnapshot(version) opens a snapshot with

the specified version number. If the version number is invalid, the operation

will fail. The application that opened a snapshot can read one or more blocks

within the snapshot using the POSIX read APIs until it closes the snapshot by

calling CloseSnapshot().

If the snapshot accessed by the OpenSnapshot(version) call is from the past,

one cannot directly write new data onto it. To write data, the application sup-

plies a timestamp to OpenSnapshot() greater than any the StaleStore has seen

before; this opens a writeable snapshot. The application can then write multiple

blocks within the snapshot, and then call CloseSnapshot to flush the writes out to

the store.

Note that the OpenSnapshot/CloseSnapshot wrapper calls do not provide a

full transactional API; they do not handle concurrency control or transactional

isolation; the application has to implement its own locking above the wrapper

API. However, these calls do provide failure atomicity over the basic StaleStore

API.

Under the hood, OpenSnapshot simply sets the timestamp to be used for ver-

sioned reads and writes. Reads within the snapshot execute via the ReadVersion

call in the StaleStore API; CloseSnapshot flushes writes to the underlying store

using the WriteVersion call.

133

5.2.3 Versioned Storage Design

Yogurt implements the block-level StaleStore API over a number of raw block

devices, handling I/O requests to multi-versioned data and offering cost esti-

mates for reads. The versioned block store in Yogurt is patterned after Gecko

(see Chapter 3 and S3 in Section 2.1.3), which chains a log across multiple de-

vices such that new writes proceed to the tail drive while reads can be served

by any drive in the chain. Yogurt maintains a multi-version index over this

chained log that maps each logical block address and version number pair to a

physical block address on a drive in the chain (in contrast to Gecko, which does

not provide multi-version access).

The wrapper layer makes sure that a block is never overwritten with the

same version number and a set of writes corresponding to a new snapshot is

not exposed to applications other than the one issuing the writes until all writes

are persisted in the versioned block store. When WriteVersion is called, the ver-

sioned block store updates the multi-version index and appends new block data

to the log. Similarly, ReadVersion simply returns the data corresponding to the

address and version pair.

Because the versioned block store sits right on top of block devices, it knows

the block device types, characteristics, and how busy each device is. Based on

the physical location of each versioned block data, the versioned block store can

estimate the cost for accessing a particular version of the block. When GetCost

API is invoked, the multi-version index is looked up to figure out the physical

location of the data, and the access cost is computed based on the storage media

speed and the number of queued requests.

134

5.3 Implementation

Yogurt is implemented as a device mapper, which is a Linux kernel module

similar to software RAID and LVM. The wrapper and StaleStore APIs other than

the POSIX APIs are implemented as IOCTL calls and kernel function calls.

5.3.1 Snapshot Access and Read Mapping

Since modern applications are highly concurrent and serve multiple users, Yo-

gurt should be able to service multiple snapshots to one or many applications.

To do this, Yogurt identifies its users using pid, which is distinctively given to

each thread. When a thread calls OpenSnapshot, all read requests from the thread

are served from the opened snapshot until the thread calls CloseSnapshot. Once a

thread is mapped with a snapshot, each read is tagged with the snapshot num-

ber and issued via the ReadVersion API.

Figure 5.2 shows a logical view of a multi-version index and how a snapshot

is constituted. The x-axis is the logical block address and the y-axis is the snap-

shot version number. Each entry shows a physical block address and a version

number corresponding to the logical address. The entries in the same row are

the blocks that were written when the snapshot was created. Thus, a snapshot

consists of the latest data blocks with version numbers less than or equal to the

snapshot’s version number.

When the application wishes to access an application-level data item with a

certain consistency level, it translates that to a lowest acceptable version num-

ber, which we call Vlow. It then uses the latest snapshot version as Vup. Once the

135

application knows the upper and lower bounds Vup and Vlow, it can issue mul-

tiple GetCost queries within that range. We leave the querying strategy to the

application; however, one simple strategy is to assign a query budget Q, and

then issue Q GetCost requests to a number of versions Vquery that are uniformly

selected between Vup and Vlow:

Vquery = Vlow + b((Vup − Vlow)/(Q − 1)) × nc, (5.1)

where {n ∈ Z|0 ≤ n ≤ Q}. For example, for upper bound 9, lower bound 5,

and querying budget 3, get cost is issued to versions 5, 7, and 9. Depending

on the returned costs, the application reads the cheapest version and updates

Vlow, if necessary. If the returned costs are the same for different versions, the

application prefers older versions to keep the query range large.

Here, notice that if multiple blocks need to be accessed to read an object (e.g.

a file that spans multiple data blocks), the blocks accessed after a block become

dependent on the previously accessed block. For example, if an application

reads a metadata block, the data block locations are valid only for the snapshots

where the metadata block is valid. Say Vlow and Vup were initially set to 0 and

10, respectively by a read semantic and the application read version 1 of logical

block 2 in Figure 5.2. Then Vlow and Vup becomes 1 and 5, respectively, which

is the range the read block is valid. If version 3 of logical block 7 is read next,

the version range becomes Vlow = 3 and Vup = 5, which is the common range

for the two blocks. Similarly, once the application opens a snapshot and reads

a block, GetVersionRange should be called to update the common Vlow and Vup

range while reading the blocks.

136

0 1 2 3 4 5 6 7 8 9 10 11 ... N

1
3

0
2

0
0

1
4

0
1

1
5

2
7

3
10

3
9

2
8

4
11

4
13

4
12

2
6

5
15

5
14

6
18

6
17

Logical Address Space

Sn
ap

sh
o

t
V

er
si

o
n

#

Version #
Phy addr

6
16

Figure 5.2: Logical illustration of multi-version index and snapshots.

5.3.2 Data Placement

To provide as many read options with different access costs as possible, it can be

helpful for Yogurt to save different versions of a same block to different physical

storage media. Yogurt uses two data layers to do this: the lower layer consists of

the chained log with multiple disks and/or SSDs, and the higher layer is built as

a memory cache over the chained log. The memory cache is a LRU based read

or read/write cache, where the data written to or read from the bottom layer is

cached. When the cache acts as a read/write cache, the data writes through the

cache for durability. Perfectly distributing different versions to different block

devices is doable in the lower layer, but it can make the versioned block store de-

sign complicated and can cause data skew to certain block devices depending

137

on the workload. Instead, the versioned block store uses a simpler approach:

data is logged using small segments to each block device in a round robin fash-

ion (e.g. log 16 MB segment to disk 0, log the next 16MB to disk 1, log the next

16MB to disk 2, and then back to disk 0). This results in RAID-0 like throughput

behavior, by enabling independent access to each block device.

5.3.3 Read Cost Estimation

Based on the physical storage layer described in the previous subsection, Yo-

gurt returns two-tiered estimated cost. For all GetCost calls, the versioned block

store first looks up the memory cache. If the searching data block is inside the

memory cache, it is always faster to read it from the memory than from either

disk or SSD. To indicate this, the cost is returned as a negative value.

If the data block is not in the cache, the cost reflects the number of queued

I/Os of the block device containing the block. The versioned block store can

trace this using simple counters. For disks and SSDs, precise cost estimation is

difficult because the internal states of the block devices are not exposed. Still,

there are several known facts that can be applied for estimating the cost: 1) all

writes within Yogurt are sequential log appends; 2) mixing random and sequen-

tial I/Os within disks results in overall bad performance; 3) mixing reads and

writes can penalize read operations in SSDs; and 4) random read latencies of

SSDs are orders of magnitude faster than those of disks. Since data blocks are

read from a log, we can assume most reads will be accessing physical blocks

randomly, and from 1), 2), and 3), separating reads from writes becomes impor-

tant. So we add more cost to block devices with queued writes and add small

138

cost for queued reads. From 4) we make the cost of reading a disk an order of

magnitude more expensive than reading a SSD.

To summarize, there is no cost difference among cached blocks, and cached

blocks are the cheapest. SSDs are preferred over disks most of the time, unless

there is an order of magnitude more I/Os queued on SSDs. Queued writes are

more expensive than reads. Costs are computed as follows:

CCache = −1 (5.2)

CS S D = Crd ssd × Nr +Cwr ssd × Nw (5.3)

CDisk = Crd disk × Nr +Cwr disk × Nw (5.4)

where the C variables are the costs of reading from or writing to SSD or disk,

and the N variables are the number of queued reads and writes.

5.3.4 A Key-Value Store Example

We describe an example of a key-value store implementation to demonstrate

how the Yogurt APIs can be used. The key-value store returns the fastest value

of the key while satisfying the consistency constraints of each client.

The key-value store works in the following steps: 1) When a client connects

to the key-value store, a session is created for the client and the latest snapshot

number of the connected server is used to set up Vlow values for the key-value

pairs depending on the consistency semantics. 2) When the client issues a read

to a key-value pair, Vup is set to the latest snapshot number of the server and

GetCost calls are issued to different versions of the metadata block of the key.

3) Based on the returned cost of different versions of the metadata block, the

139

key-value store calls OpenSnapshot to read the cheapest version of the block.

4) After the read, GetVersionRange is called and Vlow and Vup are updated. 5)

Next, the key-value store reads data blocks one by one by calling GetCost to

versions between Vlow and Vup and going through steps 3) to 4) repeatedly. 6)

When the value of the key is completely read, CloseSnapshot is called. 7) Finally,

depending on the consistency semantics, Vlow and Vup are updated for future

reads (e.g. under monotonic-reads, the version of the key-value pair that has

been read is recorded in Vlow and later when the client issues another read, the

latest available snapshot number in the server becomes Vup).

As shown in the example, it is the responsibility of the application developer

to wrap around the access to a single data object using OpenSnapshot and CloseS-

napshot. In addition, OpenSnapshot should be repeatedly called within Vlow and

Vup range to read multiple blocks so that a data object that spans multiple blocks

are read from a consistent snapshot.

5.4 Evaluation

To evaluate the benefit of Yogurt, we implemented a distributed storage service

patterned on Pileus [131], where a client accesses a primary server and a sec-

ondary server. The primary server always has the latest data and is far away;

the secondary server can be stale but is closer to the client. We tested against

two variants of this system: one where the distributed service exposed a block

API (matching the block store abstraction provided by Yogurt), and a second

where it exposed a key-value service to clients. We call these Pileus-Block and

Pileus-KV, respectively, and the latter follows the implementation of the exam-

140

ple key-value store in the previous section.

The hardware configuration we use under Yogurt is three disks and 256MB

memory cache. Data is logged to three disks in round robin in 1GB segments,

using a design similar to Gecko’s chain logging with smaller segment size. The

memory cache can be enabled or disabled as will be described in each experi-

ment.

Throughout the evaluation we aim to answer the following questions:

• What is the performance gain we can get by accessing stale data?

• Is there any overhead for accessing older versions?

• How well do real applications run on Yogurt?

5.4.1 Pileus-Like Block Store

First, we measure the base performance of Yogurt when it is used with a dis-

tributed block store, comparing accessing older versions versus accessing only

the latest versions. We compare Yogurt against two baseline settings, where

the latest versions can be interpreted in different ways: 1) we compare against

accessing the latest version within the local server, and 2) against accessing a

remote primary server where the globally latest versions reside. We emulate

the network latency of accessing the primary server as if it is located across the

continental US from the client, delaying the response by 100ms.

For this evaluation we use two different workloads, uniform random and

zipf workload that access 256K blocks. In the local server, we run a thread that

141

 0

 50000

 100000

 150000

 200000

 250000

1 2 3 4 5 6 7 8

Primary

Local latest

A
vg

 r
ea

d
la

te
nc

y
(u

s)

of available older versions at start time

Yogurt RMW
Yogurt MR

 0

 50000

 100000

 150000

 200000

 250000

1 2 3 4 5 6 7 8

Primary

Local latest

A
vg

 r
ea

d
la

te
nc

y
(u

s)

of available older versions at start time

Yogurt RMW
Yogurt MR

(a) Without memory cache - Uniform
random

(b) Without memorycache - Zipf

 0

 50000

 100000

 150000

 200000

 250000

1 2 3 4 5 6 7 8

Primary

Local latest

A
vg

 r
ea

d
la

te
nc

y
(u

s)

of available older versions at start time

Yogurt RMW
Yogurt MR

 0

 50000

 100000

 150000

 200000

 250000

1 2 3 4 5 6 7 8

Primary

Local latest
A

vg
 r

ea
d

la
te

nc
y

(u
s)

of available older versions at start time

Yogurt RMW
Yogurt MR

(c) With memory cache - Uniform random (d) With memory cache - Zipf

Figure 5.3: Performance of Yogurt under synthetic workloads.

aggressively writes a stream of data coming from the primary node and mea-

sured the performance from 8 threads that are reading and writing data in 9 to

1 ratio. The threads run with read-my-writes (RMW) or monotonic reads (MR)

consistency guarantees and we start the threads after making N versions of data

available to them. Figure 5.3 shows the average read latency of 3 runs.

For all cases, accessing the primary server takes the longest as the added

network latency is relatively huge and then comes accessing the latest version

in the local storage. The latest data in the local server is mostly found in the

disk that is writing data and most requests tend to concentrate on this disk.

142

However, Yogurt can find alternative versions from different disks. The la-

tency quickly drops to 20-25% of accessing the latest version in local storage

as the GetCost calls enable faster data retrievals. Since there are three disks the

best performance is found after being able to access three or more older ver-

sions. Monotonic reads semantics show slightly better performance than read-

my-writes semantics because writes from the threads that use read-my-writes

limit the version range to explore before reading a data that has been written by

the thread. Still, being able to explore staleness of one update can provide over

50% latency reduction.

Figures 5.3 (c) and (d) show the cases with memory cache. Although the

overall performance of the baseline in (c) and (d) is comparable or better than

that of the cases without memory cache (Figures 5.3 (a) and (b)), Yogurt can

still return data quicker than the baselines. When there is a cache miss, Yogurt

can bring quicker versions as shown with the case without the cache (Figure 5.3

(a) and (b)). Also if a certain version is in the cache (it can be an older version

that has been read), Yogurt can reuse the data with better efficiency. For this

reason zipf workload that has skewed data access can immediately get large

performance gain (Figure 5.3-(d)). This result also shows that Yogurt can take

advantage of heterogeneous storage media efficiently.

5.4.2 GetCost Overhead

To access older versions from Yogurt, applications call GetCost before every read

to find out the lowest cost version. Comparing the cost retrieved from Yogurt is

trivial as it is a simple O(N) comparison of numbers. However, GetCost function

143

 0

 1

 2

 3

 4

 5

 6

 7

32B
(3)

64B
(7)

128B
(15)

256B
(31)

512B
(63)

1024B
(127)

A
vg

 la
te

nc
y

(u
s)

Query size (# of versions)

Figure 5.4: GetCost overhead and query size.

call crosses the user space and kernel space boundary and involves copying

information which can incur additional latencies.

Figure 5.4 shows the GetCost latency of differently sized queries. Larger

query size means asking for the cost of larger number of older versions. The

larger the query size, the greater the GetCost latency. However, considering the

read latency of a disk or a SSD which can be tens of microseconds to hundreds

of milliseconds, the GetCost latency in the figure is very small. All our perfor-

mance related experiments use 64B queries and results show that we can get far

more latency improvements than the 1.4 microsecond overhead.

5.4.3 Pileus-Like Key-Value Store

Pileus-KV uses a persistent hashtable over the Yogurt block address space in

order to store variable-sized key-value pairs. We ran YCSB workload A which

is composed of 50% write and 50% read on the key-value store, choosing keys

144

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

4KB 8KB 12KB 16KB 20KB

A
vg

 r
ea

d
la

te
nc

y
(u

s)

Value size

Primary
Local latest
Yogurt RMW
Yogurt MR

Figure 5.5: Key-value store’s read latency and value size.

according to a zipf distribution, and measured the performance. The values

of the keys can be partially updated when only part of the value changes. In

the experiment, the value size is varied from 4KB to 20KB, which is equivalent

to 1 to 5 data blocks. To read or write a key-value pair at least one additional

metadata block must be accessed to locate the block that is storing the key. We

evaluate Yogurt’s capability to access stale data that spans multiple blocks using

GetVersionRange API with GetCost calls.

We used the same server configurations as for the Pileus-like block store and

used the memory cache. There are 16 threads accessing the key-value store and

a stream of incoming writes from the primary. Figure 5.5 shows the average

read latency. As the value size grows to span multiple blocks, Yogurt can pro-

vide multiple options for selecting each block. The gap between accessing the

latest block from the local storage and accessing older versions grows as the

value size gets larger. The key-value store is querying costs every time before

it reads, so the overall approach is a simple greedy selection. More sophisti-

145

cated selection schemes can be proposed to further improve the performance,

but the figure shows that for both read-my-writes and monotonic reads seman-

tics greedy selection can already lead to better performance than the baselines.

5.5 Summary

In this chapter, we repurposed a well-known distributed systems principle

within the context of a single cloud storage server: storage systems should ex-

pose older versions to applications for better performance. This principle en-

ables consistency control within a cloud storage server and provides different

isolated views of the storage server to each client. This principle is increas-

ingly relevant as we move toward a post-disk era of storage systems that are

often internally multi-versioned and multi-device. Distributed storage services

in the cloud can benefit from this principle by pushing relaxed consistency re-

quirements (negotiated between the client and the service) down the stack to

the storage subsystem on each server. In the future, we believe that new ap-

plications will emerge on a single storage server that can work with weaker

consistency guarantees in exchange for better performance.

146

CHAPTER 6

RELATED WORK

In this dissertation, we explored how to support isolation with regard to perfor-

mance, transactions, and consistency control in cloud storage systems. In this

chapter, we discuss previous work related to our contributions, the techniques

on which they build, and alternate or complementary approaches.

6.1 Performance Isolation and Logging

Log-structured storage has a long history starting with the original log-

structured filesystem (LFS) [107]. Much of the work on LFS in the 1990s fo-

cused on its shortcomings related to garbage collection [115, 82, 116]. Other

work, such as Zebra [67], extended LFS-like designs to distributed storage sys-

tems. Attempts to distribute logs focused entirely on striping logs over multiple

drives, as opposed to the chained-logging design that we investigated in Chap-

ter 3.

Log-structured designs have made a strong comeback in part because of the

emergence of flash memory, which requires a log-structured design to mini-

mize wear-out. Not only do individual SSDs layer an address space over a

log, but filesystems designed to run over SSDs are often log-structured to min-

imize the stress on the SSD’s internal mapping mechanisms [27]. New log-

structured designs have emerged as flash has entered the mainstream; for in-

stance, CORFU [33] uses an off-path sequencer to implement a distributed,

shared log over a flash cluster. Another reason for the return of log-structured

147

designs is the increased prevalence of geo-distributed systems, where intrinsic

ordering properties of logs provide consistency-related benefits [138].

In addition, performance isolation and contention in data centers have re-

ceived increasing attention. Lithium [65] uses a single on-disk log structure to

support multiple VMs, much as Gecko does (Chapter 3), but it layers this log

conventionally over RAID and does not offer any new solutions to the prob-

lem of read-write contention. However, the authors of the Lithium paper make

two relevant points: first, replicated workloads are even more likely to be write-

dominated, and second, the inability of log-structured designs to efficiently ser-

vice large, sequential reads is unlikely to matter in virtualized settings where

such reads are rare due to cross-VM interference. Parallax [85] supports large

numbers of virtual disks over a shared block device but focuses on features such

as frequent snapshots rather than performance under contention. PARDA [60]

is a system that provides fair sharing of a storage array across multiple VMs

but does not focus as Gecko does on improving aggregate throughput under

contention.

6.2 Transactional Systems

The idea of transactional atomicity for multi-block writes was first proposed in

Mime [43], a log-structured storage system that provided atomic multi-sector

writes. Over the years, many other projects have proposed block-level or page-

level atomicity: the Logical Disk [48] in 1993, Stasis [114] in 2006, TxFlash [101]

in 2008, and MARS [44] in 2013. RVM [110] and Rio Vista [79] proposed atom-

icity over a persistent memory abstraction. All these systems explicitly stopped

148

short of providing full transactional semantics, relying on higher layers to im-

plement isolation. To the best of our knowledge, no existing single-machine

system has implemented transactional isolation at the block level, or indeed

any concurrency control guarantee beyond linearizability.

On the other hand, distributed filesystems have often relied on the un-

derlying storage layer to provide concurrency control. Boxwood [81], Sinfo-

nia [28], and CalvinFS [132] presented simple network filesystem (NFS) designs

that leveraged transactions over distributed implementations of high-level data

structures and a shared address space. Transactional isolation has been pro-

posed for shared block storage accessed over a network [29] and for key-value

stores [125]. Isotope (Chapter 4) can be viewed as an extension of similar

ideas to single-machine, multi-core systems that do not require consensus or

distributed rollback protocols. Our single-machine IsoFS implementation has

much in common with the Boxwood, Sinfonia, and CalvinFS NFS implementa-

tions that ran against clusters of storage servers.

A number of filesystems have been built over a full-fledged database. In-

version [94] is a conventional filesystem built over the POSTGRES database,

while Amino [144] is a transactional filesystem (i.e., exposing transactions to

users) built over Berkeley DB. WinFS [24] was built over a relational engine de-

rived from SQL Server. This route requires storage system developers to adopt

a complex interface – one that does not match or expose the underlying grain

of the hardware – in order to obtain benefits such as isolation and atomicity.

In contrast, Isotope retains the simple block storage interface while providing

isolation and atomicity.

TxOS [100] is a transactional operating system that provides ACID seman-

149

tics over syscalls, which include file accesses. In contrast, Isotope is largely OS-

agnostic and can be ported easily to commodity operating systems or even im-

plemented under the OS as a hardware device. In addition, Isotope supports

the easy creation of new systems such as key-value stores and filesystems that

run directly over block storage.

Isotope is also related to a large body of work on software transactional

memory (STM) [117, 66] systems, which typically provide isolation but not

durability or atomicity. Recent work has leveraged new NVRAM technolo-

gies to add durability to the software transactional memory (STM) abstraction:

Mnemosyne [135] and NV-Heaps [45] with PCM and Hathi [112] with commod-

ity SSDs. In contrast, Isotope aims for transactional secondary storage rather

than transactional main-memory.

6.3 Consistency and Performance Trade-Off

The idea of trading off consistency – defined as data freshness – for perfor-

mance or availability in a distributed system has a rich history [128, 129]. Cloud

services ranging from research prototypes such as Pileus [131] and production

cloud services such as Amazon SimpleDB [4] offer variable consistency levels.

Yogurt (Chapter 5) uses the same trade-off and consistency model within a sin-

gle cloud storage server context.

150

6.4 Multi-Versioning

Multi-versioning is the key to handling transactions in Isotope and trading off

consistency and performance in Yogurt (Chapter 5. A number of storage sys-

tems are multi-versioned mainly for storing and accessing older versions. The

systems include WAFL [71] and other filesystems [109, 47, 90], as well as block

stores [55, 102]. Also, peer-to-peer storage systems use multi-versioning such as

OceanStore [73, 104] and Antiquity [138]. Underlying these systems is research

on multiversion data structures [53].

6.5 Smart Block Storage

Although the low-level storage stack, including the block layer, has been kept

simple, research on adding more functionality to the block layer has been ongo-

ing. Gecko is inspired heavily by a long line of block-level storage designs,

starting with RAID [97]. Such designs typically introduced a layer of indi-

rection at the block level for higher reliability and better performance; for in-

stance, the Logical Disk [48] implemented a log-structured design at the block

level for better performance. Log-structured arrays [83] layered a log-structured

design over a RAID-5 array. HP AutoRAID [141] switched dynamically be-

tween RAID-1 and RAID-5 for hot and cold data, respectively. Petal [76] ex-

tended this design to a distributed setting, maintaining an indirection map that

could support arbitrary mappings between a logical address space and physi-

cal disks. Many systems typically use battery-backed RAM for persisting block-

level metadata [111, 83]. While Gecko is similar to these systems in philosophy,

it benefits from the availability of commodity flash for achieving persistence,

151

but consequently it must work around the wear-related limitations of flash.

Isotope and Yogurt also fit into block storage systems with rich features,

but they add extra block interfaces to support new functionality. Similarly, a

number of systems have augmented the block interface [43, 137, 57], modified

it [149], and even replaced it with an object-based interface [84].

152

CHAPTER 7

FUTURE WORK AND CONCLUSION

7.1 Future Work

Isolation in storage systems has been long studied and is continuously explored

in the cloud environment. Gecko (Chapter 3), Isotope (Chapter 4), and Yogurt

(Chapter 5) contribute to three aspects of isolation – performance, transaction,

and consistency control – but there are many future directions and relevant

problems that require further research. In this chapter, we review and discuss

future research directions.

7.1.1 Hardware Integration

Moving features for isolation below the block layer requires research of further

exploration. SSDs have embedded processors and run firmware that carries

out complex functionality such as address translation, garbage collection, and

caching [27]. Shingled drives [26] that need a data indirection layer have designs

similar to those of SSDs. Such modern hardware designs open new possibilities

for pushing rich functionality down to the physical block device. Some possible

future research directions include the following.

First, operations that are CPU intensive can be offloaded to the block de-

vice, thus simplifying the storage stack. As part of this approach, transactions

can be pushed down to the physical block device. The block device can offload

the caching of uncommitted blocks and computations for comparing transac-

153

tion conflicts from the host machine. However, additional coordination be-

tween block devices for transaction decision-making and committing transac-

tions requires research. A similar approach, which pushes functionality down

to a physical block device, can be found on Seagate’s new key-value disk drive,

which has an Ethernet port and supports key-value interfaces [19]. Seagate’s

key-value drive facilitates key-value store designs, offloads key-value search-

ing operations from the host machine, and enables bypassing several layers of

the storage stack by using Ethernet-based accesses.

Second, a hardware implementation in a physical block device can react

quickly to requests. Support for StaleStore APIs is a good candidate for im-

plementation in hardware, because the storage access cost estimation is time

sensitive and needs knowledge of the physical block device. Gecko and Isotope

rely on flash drives or SSDs to persist metadata and transaction records. Dura-

bility guarantees can be best made by the hardware since the storing media’s

characteristics determine how and when data is persisted.

7.1.2 Support for Distributed Storage Systems

The systems introduced in this dissertation are inside a cloud storage server.

Some principles directly apply or extend to distributed storage settings, but

some are not immediately usable. For example, transactional APIs of Isotope

that are provided from the block layer may not scale in distributed settings. The

core idea of handling block level transactions can be applied to a distributed

block store, but details such as deciding and aborting transactions should in-

volve network communications among multiple nodes. Network communi-

154

cations can be an overhead in implementing strong isolation guarantees, and

operations may need to roll back depending on the implementation. With a

centralized controller, coordinating transactions can be easier but the scalabil-

ity can remain a problem. On the other hand, distributed decision-making

can scale well, but it can complicate the design and communication protocols.

Large distributed storage systems tend to implement their own transactions

with transactional guarantees that are less general and tuned for system-specific

needs [125, 29]. A future research direction is to extend the Isotope transactional

API to support distributed transactions. The goal would be to enable different

semantics under the same API, similar to how Pileus [131] supports different

client-centric consistency semantics, but using data-centric consistency models.

One of the challenges that makes distributed transactions difficult is time

synchronization: distributed nodes have different clocks and deciding the order

of transactions is difficult. There are two approaches to deal with this problem.

The first is using logical clocks such as the Lamport clock and vector clock [128].

Following this direction results in systems that are similar to many distributed

systems now in common use. However, a recently proposed datacenter time

protocol [77] synchronizes physical timestamps at a scale of tens of nanosec-

onds with bounds using cheap hardware. As another research direction, Iso-

tope could be combined with physically synchronized clocks. We expect such a

system to make local decisions for a certain portion of transactions without con-

sulting or with less contact with a centralized decision engine while supporting

strong guarantees.

155

7.1.3 Towards Smarter Block Storage

Finally, a third research direction includes making block storage smarter. Block

storage has been treated as very simple, but a great number of features are be-

ing integrated similar to the work described in this dissertation. Smarter block

storage enables bypassing software stacks, so it can be useful to strip down un-

necessary layers in a heavily layered cloud storage system. From the viewpoint

of embedded devices that cannot afford heavy layers of software stacks, a smart

block store can keep the software stack simple and save power. Block devices

are becoming powerful due to advances in hardware technology and there is a

need for rethinking the storage stack design. In addition to logging and transac-

tions, deduplication, encryption, data placement for efficient data accesses and

fewer defragmentations, and so on can be considered for new features.

Making the block layer smarter requires redesigning other layers such as

the filesystem, virtual filesystem, page cache, and even applications at the same

time. Gecko, Isotope, and Yogurt demonstrate how new features in the block

storage can affect the layers above. Logging and caching approaches inside

Gecko and Isotope can influence the caching policy in a page cache and consis-

tency management of Isotope and Yogurt can affect how synchronization works

in existing filesystems. The role of each layer in storage stacks will change ac-

cordingly, and a great research direction is to investigate how the full storage

stack will evolve in the future.

156

7.2 Conclusion

At the time of writing of this dissertation, cloud storage servers lack support

for isolation — performance isolation, transactional isolation and client-centric

consistency control. First, cloud storage servers rely on disks that are suscep-

tible to random accesses. A single user executing random I/Os can easily de-

grade the performance of the storage server and slow down performance for

all users. Second, applications in cloud storage servers redundantly implement

transactions by repeating the convention of placing complex functionality in

high layers of the storage stack. The redundant implementation is a significant

burden for developers and different implementations are not compatible with

each other. Most cloud applications need transactions or other concurrency con-

trol mechanisms, so it is necessary to rethink the storage stack with regard to

placing transactions in a more accessible layer. Third, although cloud storage

servers have abundant storage resources, making the server as powerful as a

distributed system, consistency control within the server had not been investi-

gated. Consistency control within the server provides the opportunity to speed

up user access by trading off consistency and performance.

We have explored fundamental approaches to support these types of iso-

lation in cloud storage servers. In particular, we have designed a contention-

oblivious disk array based on chained logging to minimize I/O contention and

to separate garbage collections from logging operations. This design isolates

the performance for users under concurrent storage accesses and also leads to a

better performance in general. We designed a block storage system with trans-

actional isolation. The block-level transaction can be ported to any storage stack

including and above the block layer and can enable cross-application transac-

157

tions. Finally, we categorized a new class of systems called StaleStore, which

can trade off consistency and performance within a cloud storage server. Using

different versions of data and computing the access cost for each version, Stale-

Store can support various consistency semantics and achieve improved perfor-

mance. Together, the steps described in this dissertation represent significant

progress towards isolation in cloud storage systems.

To validate each approach, we designed, implemented, and evaluated three

systems: Gecko, Isotope, and Yogurt. Gecko adds performance isolation to

disk-based cloud storage systems. It uses the chained-logging design to address

write-write and write-garbage-collection contention and employs a smart SSD

cache to minimize read-write contention. Isotope supports transactional isola-

tion from the block layer to enable the easy design of transactional applications.

It enables full ACID transactions to be used in any storage stack and across any

application with simple API calls. Yogurt controls consistency by using stale

data. It can trade off consistency and performance based on client-centric con-

sistency semantics within a server for improved data access latencies.

Cloud storage systems inevitably face challenges regarding isolation as they

are foundationally based on resource sharing. As hardware technology ad-

vances, the amount of concurrency in the storage system will grow and sup-

port for isolation will become more crucial. This dissertation contributes ap-

proaches towards isolation in cloud storage environments — performance isola-

tion, transactional isolation, and client-centric consistency control in cloud stor-

age systems.

158

APPENDIX A

TRANSACTIONS AND ACID PROPERTIES

A transaction is a sequence of operations executed on shared data storage that is

carried out in a coherent, reliable, and independent manner even under concur-

rent accesses to shared data. ACID stands for atomicity, consistency, isolation,

and durability, which are the key properties of a transaction. Each item of ACID

is used with subtle difference in subfields of computer science, but the database

community [37] and this dissertation share the same definitions:

• Atomicity: a transaction should execute completely or not at all, which

is known as the all-or-nothing semantics. No effects of a non-completed

transaction should be visible to or affect any other transactions. For exam-

ple, if a system fails while executing a transaction, the state of the system

should be recovered in the state before the transaction began.

• Consistency: a transaction should change the data storage’s state from

a consistent state to another consistent state, which does not violate any

integrity constraints. The integrity constraints may vary depending on the

system: e.g., a database’s primary keys should be unique, a filesystem’s

inode should point to correct location of data, etc.

• Isolation: when multiple transactions execute concurrently, the transac-

tions should execute as if they were running one at a time in an isolated

manner. Isolation defines an ordering constraint that does not violate con-

sistency. For example, strict serializability semantic ensures all transac-

tions to have a total order of execution. Since each transaction preserves

consistency, serial execution of transactions will always keep consistency

159

as well. This, however, should not be confused with atomicity as concur-

rent atomic transactions can violate consistency: e.g. if two transactions

are depositing $10 to the same bank account that had $0 balance, both

transaction can read $0 and then add $10 resulting in a final balance of $10

instead of $20. With isolation (e.g. strict serializability), we can make one

transaction to execute after another: the latter will always read $10 and the

final balance will be $20.

• Durability: the updates made by a successfully completed transaction

should be stored durably. Even under a system failure, such as power

outage, the updates should be preserved. Typically, this means that the

updates should be applied in a non-volatile storage media, such as a hard

disk drive or a SSD, and not in a volatile storage media, such as a DRAM.

160

APPENDIX B

CONSISTENCY SEMANTICS

Consistency is a property that is defined and used in many fields – e.g.

databases, distributed systems, filesystems, shared or distributed caches and

memories in multicore systems, etc. – of computer science. Although the defi-

nitions slightly vary, consistency semantics define the restrictions that keep the

integrity constraints of a data store: it describes the integrity constraints, the

rules to issue operations and the rules to view the results of the operations. In

this dissertation, we adopt the definitions of databases and distributed systems

communities.

B.1 Database Systems

Consistency semantics of a database are tied with ACID database transactions

(Appendix A). The semantics assume atomic and durable operations, and are

defined as isolation levels that keep consistencies.

B.1.1 Strict Serializability

Strict serializability is equivalent to being able to schedule transactions in a se-

quence of time with no overlapping transactions while preserving the order

observed by the transaction issuing processes [37]. This is the highest isolation

level which leads to the same result as transactions executing one at a time, one

after the other on a data storage. However, this means that completely indepen-

dent transactions can be executed in any order. It can be easily understood as an

161

assumption that the data a transaction is reading will not change by others un-

til the transaction ends. Thus, the design of strict serializability should prevent

read-write conflicts of transactions on the same data.

B.1.2 Snapshot Isolation

Snapshot isolation is a guarantee that all reads by a transaction see all updates

by transactions that are committed before the transaction started [36]. It means

that the reads are served from a consistent snapshot of the data storage that

was taken at the beginning of the transaction. A transaction succeeds to com-

mit only if the data that the transaction is trying to update is not updated (and

committed) by other transactions after the transaction started. Thus, write-write

conflicts of transactions are prohibited.

Snapshot isolation is a weaker guarantee than strict serializability and can

cause write skew anomaly. Write skew anomaly occurs when two transactions

read two different data from the same snapshot and updates the other data that

each transaction read. Both transactions can commit according to the definition

of the semantics, but the end result cannot be reached under the strict serializ-

ability semantics. For example, two transactions T1 and T2 read balances from

two bank accounts B1 = $5 and B2 = $5, respectively, from the same snapshot.

Bank allows withdrawing money as much as the sum of all the accounts from

any account. If both T1 and T2 tries to withdraw $10 from B2 and B1, respectively,

both transactions will succeed. However, the total amount of money withdrawn

from the bank will be $20 resulting in B1 = −$5 and B2 = −$5, which the bank

did not intend.

162

B.2 Distributed Systems

Consistency problems of distributed systems stem from the uncertainty of the

network and concurrent users accessing multiple machines. Rather than trans-

actions, distributed systems keep consistencies based on a consistency unit

(conit), which is like an object or base unit that needs to be maintained con-

sistently [146]. The basic assumptions are that the data is shared and replicated

on multiple machines, and the updates of data should be applied to the replicas

in a consistent order 1. In this section, we introduce two categories of consis-

tency models of distributed systems: data-centric and client-centric consisten-

cies [128].

B.2.1 Data-Centric Consistencies

Data-centric consistencies focus on providing a system-wide consistent view of

a data storage. Data-centric consistencies assume environments with frequent

concurrent updates that require strong ordering guarantees global to the stor-

age.

Sequential Consistency

Sequential consistency was first defined by Leslie Lamport in a multiproces-

sor context: ”The result of any execution is the same as if the operations of all

the processors were executed in some sequential order and the operations of

1Notice that consistency semantics introduced here should not be confused with distributed
transactions, which enforce ACID transactions to multiple machines.

163

each individual processor appear in this sequence in the order specified by its

program [75].” The operations are fetch and store operations, which are reads

and writes, and the processors are analogous to distributed nodes in the context

of distributed systems. Sequential consistency allows interleaving of read and

write operations, but the constraint is that all nodes should see the same inter-

leaving of the operations. Thus, a node does not need to see the latest update of

a data at the moment, but should observe an update order that is globally the

same.

Causal Consistency

Causal consistency model was presented as a relaxed model of sequential con-

sistency. Causal consistency requires all nodes to agree on the order of causally

related effects, but allow concurrent events that are not causally related to be ob-

served in different orders [72]. For example, if a process reads x = 1 and writes

y = x + 1, y’s value is causally dependent on x and ordering of the operations

should be enforced, but if each a = 3 and b = 5 are updated by two different

processes to random values a = 1 and b = 7, the updates are not causally related

and can be executed in any order. Causal consistency requires keeping track

of updates seen by each node to trace the causality. Such tracking results in a

dependency graph of orders that should be enforced to all the nodes.

B.2.2 Client-Centric Consistency

Client-centric consistency focuses on guaranteeing consistency specific to in-

dividual clients in a distributed system [131, 130]. Client-centric consistency

164

assumes environments with infrequent simultaneous updates (or simultaneous

updates that can be easily resolved) and operations mostly performing reads.

Writes on each object are assumed to be done in a serial order, which applies the

same to replicated nodes. An example of such environment is found in primary

backup systems. However, the arrival time of the ordered writes are difficult to

predict and this causes consistency semantics to diverge.

Strong Consistency

Strong consistency guarantees that all read operations always see the latest data.

Strong consistency is the strongest guarantee as if a client is accessing a non-

distributed storage. To achieve this guarantee, however, clients can frequently

wait for the updates to be propagated to the nodes that they are accessing.

Eventual Consistency

Eventual consistency has no guarantees for when the updates will arrive at the

replicated nodes. Like its name, the semantics only guarantee that the storage

system will eventually become consistent. Thus, the client can read any version

of data, or any subset of writes that are performed anytime in the past.

Bounded Staleness

Bounded staleness guarantees that the data value that is read by a client is

within a certain staleness bound. The staleness bound can be defined in various

ways. For example, a time-period bound guarantees that the value returned had

165

been the latest within the given time period and a number-of-updates bound

guarantees that the value diverges from the latest data within the defined num-

ber of updates.

Monotonic Reads

Monotonic reads guarantee that the value that is read by a client is the same

or newer than the value that was last read by the client. Monotonic reads only

guarantee per data object (conit) rules, so a client can read a value written at

time 100 for object X and then read a value written at time 1 for object Y .

Monotonic Writes

Monotonic writes guarantee that a write to an object by a client should be com-

pleted before the same client writes on the same object. It means that if a client

writes to an object on one node and then writes to the same object on another

node, the former write should be propagated to the latter node, or the latter

write has to wait for the former write to be propagated.

Read-My-Writes

Read-my-writes (also known as read-your-writes) guarantee that the value that

is read by a client is the same or newer than the value that was last written by

the client. Similar to monotonic reads, this is a guarantee per data object (conit).

166

Writes-Follow-Reads

Writes-follow-reads guarantee that writes by a client on an object following a

read by the same client on the same object are executed on the same or newer

value than what was read. This is useful for making sure that writes by a client

on an object are applied only when the object already exists in a node.

167

GLOSSARY

Abort An unsuccessful completion of a transaction execution. Updates made

within aborted transactions are obliterated from the data store [37].

ACID Atomicity, consistency, isolation, and durability, which are key proper-

ties of a transaction [37].

API Application program interface.

Atomicity A property of a transaction. A transaction should execute com-

pletely or not at all [37].

Bandwidth The amount of data that can be transferred per unit time. Typically,

a bandwidth is indicated as bits per second.

Block device Software or hardware that implements the block abstraction. It

consists of linear block address space and corresponding data blocks and

provides interfaces to read and write the blocks.

Block store Storage systems that work with block abstractions. Data in the stor-

age is stored as fixed sized blocks in a linear address space and is accessed

through the block address.

Bounded staleness One of client-centric consistency semantics, which guaran-

tees that the data read by a client was the latest data within a time bound.

The time bound can be replaced with the number of updates [128].

Cache A hardware or software component that stores duplicate data (from a

slow storage media) for fast data accesses in the future.

Cache miss A situation where a data item searched from a cache is not found.

Cache misses for reads typically involve reading the data item from the

lower layers of the storage hierarchy, which can be slow.

168

Cloud The hardware and software for cloud computing [31].

Cloud computing Both applications delivered as services over the Internet and

the system software and hardware in the datacenters that provide those

services [31].

Cloud provider A company that provides computing infrastructures, network-

ing services, and applications based on the cloud.

Cloud storage A part of cloud computing services that supports storage func-

tionalities.

Commit A successful completion of a transaction execution. Updates made

within committed transactions are permanently applied to the data

store [37].

Consistency A property of a transaction. A transaction should change the

database’s state from a consistent state to another consistent state [37].

Core An independent processing unit within a CPU. A core can be considered

as a small CPU.

CPU Central processing unit. An electronic circuit within a computer that

carries out basic arithmetic, logical, control, and input/output opera-

tions [89].

Data integrity The ’right’ condition for a data store, which consistency seman-

tics must preserve. E.g., a database’s primary keys should be unique, a

filesystem’s inode should point to correct location of data, and so on.

Data-centric consistency A class of consistency semantics which focuses on

providing a system-wide consistent view of data storage: it involves a

form of global ordering of data accesses [128]. Data-centric consistency as-

sumes environments with frequent concurrent updates that require strong

169

ordering guarantees from the viewpoint of the entire storage. Examples of

data-centric consistency semantics are causal consistency and sequential

consistency.

Deduplication A specialized data compression method that identifies redun-

dant data chunks and keeps a minimal number of copies. Data objects

that consist of same data contents use references to point to the same data

chunks [86].

Durability A property of a transaction. The updates made by a successfully

completed transaction should be stored durably in a stable storage [37].

ECC Error correction code. A special code that is used for detecting and cor-

recting errors in data, for example, by adding redundant bits or parity

bits. Error correction code makes data more reliable during a data transfer

over a network or a data store in a storage media, which can incur data

corruption and bit errors.

End-to-end argument A classical system design principle [108] which mainly

explains where to place functions in a system. The paper that proposed

this principle uses network system examples and argues that in many

cases placing functions in the end application can be better than placing

them in the intermediary nodes unless there is compelling reasons for per-

formance or utility.

Eventual consistency One of consistency semantics in distributed systems that

guarantees that updates will arrive at the replicated nodes in the future

but without any time bounds [128]. Clients of the system can read any

versions of data or any subsets of writes that are performed anytime in

the past.

170

Ext2 filesystem The second extended filesystem. Ext2 filesystem is the first

commercial grade filesystem for Linux. One of the biggest drawbacks of

ext2 filesystem is the unreliability under crash or unclean shutdown of the

host system, which is improved by ext3 filesystem [64].

Ext3 filesystem The third extended filesystem. Ext3 filesystem is a Linux

filesystem that succeeds Ext2 filesystem. Ext3 filesystem improved reli-

ability under crash or unclean shutdown of the host system by using jour-

naling [64].

Filesystem Filesystem uses file and directory abstractions on top of block de-

vices to control how data is stored and retrieved in a system. It takes care

of data placement, indexing, storage space management and so on.

Flash Memory Non-volatile memory that is made of floating gate transistors.

It is faster than disks but slower than DRAM. Data is written typically in a

4KB page and a page must be erased before overwriting. Erase granularity

is a block which consists of multiple pages. Read, write, and erase are the

basic operations, and the read is the fastest and the erase is the slowest

operation.

FUSE Filesystem in userspace [6]. A framework that enables userspace design

of filesystem.

Garbage collection Memory or storage space management operations that re-

claim data objects which are no longer used.

Hybrid drives Persistent data storage drives that use two or more different per-

sistent storage media internally. E.g. a combination of SSD and HDD.

IOCTL A system call for device-specific input/output control operations.

171

Isolation (1) Encapsulating users or processes in an independent execution

environment or keeping them to be less or not at all affected by oth-

ers [63, 134].

Isolation (2) A property of a transaction. When multiple transactions execute

concurrently, the transactions should execute as if they were running one

at a time in an isolated manner [37].

Key-value store A data store where each record is associated with a unique

key. Storing and retrieving the record requires the corresponding keys

and typical interfaces to the data store are put, get and delete.

Latency Time interval between a request and the following response, or a stim-

ulation and the following effect.

Lock A mechanism to enforce limits on accessing a resource. For example,

when multiple processes share a resource (e.g. a piece of data in mem-

ory) and a process locks the resource, depending on the type of the lock,

the process can get exclusive access to the resource. Locks are commonly

used to arbitrate multiple user requests on a shared resource to guarantee

safe and consistent accesses.

Log A data structure that appends all data writes sequentially [107].

Log-structured merge tree A data structure that consists of multiple levels of

trees [95]. Typically, the high-level tree exists in memory and the low-

level tree exists on disk. Each tree maintains a set of sorted data. Once

the high-level three reaches certain threshold size the nodes in the high-

level tree are evicted and merged with the nodes in the low-level tree and

logged to the disk. The multi-level structure makes it suitable for frequent

172

write operations and merging and logging in low-levels make it suitable

for range search of data.

MLC Multi-level cell. Memory cells that can have more than two states. Each

cell can store more than one bit.

Monotonic reads One of client-centric consistency semantics, which guaran-

tees that the value of a data read by a client is the same or newer than the

previously read value of the same data by the same client [128].

Multi-version concurrency control A concurrency control method which uses

multiple versions of data/snapshots instead of locks so that multiple users

can concurrently access the data [37].

NVRAM Non-volatile random access memory. Flash memories and phase-

change memories fall into this category.

Optimistic concurrency control A concurrency control method which assumes

that there are no transactions that have conflicting data accesses [37]. It lets

any transactions access any data. At the end of a transaction execution, the

transaction is tested whether it has any conflicting data accesses with other

transactions. If there is no conflict, the transaction commits, otherwise, it

aborts.

Performance isolation A property that minimizes noticeable contention of re-

sources and access time delays in systems to make users unaware of each

other’s behaviors [134, 63].

Pessimistic concurrency control A concurrency control method which as-

sumes that there are always transactions that have conflicting data ac-

173

cesses [37]. It uses locks to prevent transactions from executing prohibited

data accesses.

Phase change memory A type of non-volatile random access memory which

uses heat and crystallization to encode bits [143]. It has a faster data access

latency but a lower circuit density than a flash memory.

POSIX Portable operating system interface. A set of standards for compatibil-

ity of operating systems.

PRAM See phase change memory.

RAID Redundant array of inexpensive/independent disks [97]. It ties together

multiple disks, erasure codes the data, and stripes the data and the erasure

code to the disks for better performance and reliability. There are different

levels of RAID, which defines the how data is encoded and placed.

RAID-0 One of RAID levels that evenly stripes data to disks with no parity bits.

RAID-1 One of RAID levels that mirrors (makes exact same copy) data to disks.

RAID-10 A combination of RAID-0 and RAID-1, where the data is first striped

to groups of disks and mirrored within each group.

RAID-4 One of RAID levels that evenly stripes data to disks with a dedicated

parity disk. Can tolerate one disk failure.

RAID-5 One of RAID levels that evenly stripes data to disks with distributed

parity all over the disks. Improved version of RAID-4 by distributing con-

centrated parity writes in a dedicated parity disk. Can tolerate one disk

failure.

RAID-6 One of RAID levels that evenly stripes data to disks with two parity

blocks distributed all over the disks. Can tolerate two disk failures.

174

RAM Random access memory. A form of computer data storage typically built

out of transistors. The memory cell that stores the data is an electronic cir-

cuit that can be quickly accessed but loses data when the power goes out.

The random access memory is used as a cache for CPUs (static random ac-

cess memory) and as a main memory (dynamic random access memory)

for a computer depending on the type.

Random I/O Accesses to data items in nonconsecutive addresses. Random I/O

in hard disk drives requires seek operations.

Read-my-writes One of client-centric consistency semantics, which guarantees

that the value of a data read by a client is the same or newer than the

previously written value of the same data by the same client [128].

RPM Abbreviation for revolutions per minute. A measurement unit that is

used for indicating the speed of disk rotation in hard disk drives.

Seek A disk arm movement between the inner and the outer track of a platter.

Sequential I/O Accesses to data items in consecutive addresses. Sequential I/O

in hard disk drives does not incur seek operations.

Skiplist Multiple layered list that enables fast searching. The lowest layer is an

ordinary linked list and as the layer goes higher the list becomes sparser:

i.e. the higher layer list includes a fewer number of entries by skipping a

larger number of entries at the lowest layer. Thus, similar to a tree struc-

ture, search happens from the highest layer in a coarse-grained manner

and then the search range becomes smaller as the operation moves to-

wards the lowest layer.

SLC Single level cell. Memory cells that have only two states. Each cell can

store only one bit.

175

Snapshot A state of the storage system at a particular time point.

Snapshot isolation One of transactional isolation semantics which guarantees

that all reads by a transaction see all updates by transactions that had suc-

cessfully completed before the transaction started [36].

SSD Solid State Drive (Disk). Persistent block device made of flash memory.

Strict serializability One of transactional isolation semantics which is equiva-

lent to scheduling concurrent transactions sequentially one after another

with no overlapping transactions while preserving the order observed by

the transaction issuing processes [37].

Transaction A sequence of operations carried out in a reliable, independent and

consistent way on a shared storage [37].

Virtual machine (VM) An emulated computer machine that runs on top of vir-

tualized hardware devices. The devices, which are in reality shared hard-

ware resources, are created by hypervisor software [34].

Virtualization Creating and managing multiple virtual machines on a physical

machine. Virtualization is enabled by hypervisor software, which isolates

virtual machines and multiplexes shared hardware resources to them [34].

Weak consistency Refers to consistency models weaker than sequential consis-

tency.

Write skew anomaly An anomalous state that is reachable when two transac-

tions read overlapping values, make disjoint updates to the values, and

concurrently commit. This is called anomaly as the state is unreachable

under serializablily semantics [36].

176

BIBLIOGRAPHY

[1] Amazon elastic block store. https://aws.amazon.com/ebs/.

[2] Amazon S3. https://aws.amazon.com/s3/.

[3] Amazon S3 - two trillion objects, 1.1 million requests / second.
https://aws.amazon.com/blogs/aws/amazon-s3-two-trillion-objects-
11-million-requests-second/.

[4] Amazon SimpleDB. https://aws.amazon.com/simpledb/.

[5] fcntl man page. http://man7.org/linux/man-pages/man2/
fcntl.2.html.

[6] Filesystem in userspace (FUSE). https://github.com/libfuse/
libfuse.

[7] Fusion-io. www.fusionio.com.

[8] Google cloud storage. https://cloud.google.com/storage/.

[9] IOZone filesystem benchmark. http://www.iozone.org.

[10] LevelDB. https://github.com/google/leveldb.

[11] LevelDB benchmarks. http://leveldb.googlecode.com/svn/
trunk/doc/benchmark.html.

[12] Linux device mapper documentation. https://www.kernel.org/
doc/Documentation/device-mapper/.

[13] mdadm man page.

[14] Microsoft Azure storage. https://azure.microsoft.com/en-us/
services/storage/.

[15] Next generation EMC: Lead your storage transformation.
https://www.emc.com/campaign/global/forum2013/pdf/
ch-storage-next-generation-emc.pdf.

177

https://aws.amazon.com/ebs/
https://aws.amazon.com/s3/
https://aws.amazon.com/simpledb/
http://man7.org/linux/man-pages/man2/fcntl.2.html
http://man7.org/linux/man-pages/man2/fcntl.2.html
https://github.com/libfuse/libfuse
https://github.com/libfuse/libfuse
www.fusionio.com
https://cloud.google.com/storage/
http://www.iozone.org
https://github.com/google/leveldb
http://leveldb.googlecode.com/svn/trunk/doc/benchmark.html
http://leveldb.googlecode.com/svn/trunk/doc/benchmark.html
https://www.kernel.org/doc/Documentation/device-mapper/
https://www.kernel.org/doc/Documentation/device-mapper/
https://azure.microsoft.com/en-us/services/storage/
https://azure.microsoft.com/en-us/services/storage/
https://www.emc.com/campaign/global/forum2013/pdf/ch-storage-next-generation-emc.pdf
https://www.emc.com/campaign/global/forum2013/pdf/ch-storage-next-generation-emc.pdf

[16] Roundup of cloud computing forecasts and market estimates, 2016.
http://www.forbes.com/sites/louiscolumbus/2016/03/13/roundup-
of-cloud-computing-forecasts-and-market-estimates-2016.

[17] SanDisk Fusion-io atomic multi-block writes.
http://www.sandisk.com/assets/docs/
accelerate-myql-open-source-databases-with-sandisk-nvmfs-and-fusion-iomemory-sx300-application-accelerators.
pdf.

[18] SanDisk Fusion-io auto-commit memory. http://web.sandisk.
com/assets/white-papers/MySQL_High-Speed_Transaction_
Logging.pdf.

[19] Seagate Kinetic open storage platform. http://www.seagate.com/
solutions/cloud/data-center-cloud/platforms/.

[20] SNIA IOTTA repository. http://iotta.snia.org/.

[21] Storage spaces overview. https://technet.microsoft.com/
en-us/library/hh831739(v=ws.11).aspx.

[22] US federal government in the cloud. https://aws.amazon.com/federal/.

[23] Windows Azure storage - 4 trillion objects and counting.
https://azure.microsoft.com/en-us/blog/windows-azure-storage-4-
trillion-objects-and-counting/.

[24] WinFS. http://blogs.msdn.com/b/winfs/.

[25] Anant Agarwal and Markus Levy. The kill rule for multicore. In Design
Automation Conference, 2007.

[26] Abutalib Aghayev and Peter Desnoyers. Skylight a window on shingled
disk operation. In USENIX Conference on File and Storage Technologies, 2015.

[27] N. Agrawal, V. Prabhakaran, T. Wobber, J.D. Davis, M. Manasse, and
R. Panigrahy. Design tradeoffs for SSD performance. In USENIX Annual
Technical Conference, 2008.

[28] Marcos K Aguilera, Arif Merchant, Mehul Shah, Alistair Veitch, and
Christos Karamanolis. Sinfonia: a new paradigm for building scalable

178

 http://www.sandisk.com/assets/docs/accelerate-myql-open-source-databases-with-sandisk-nvmfs-and-fusion-iomemory-sx300-application-accelerators.pdf
 http://www.sandisk.com/assets/docs/accelerate-myql-open-source-databases-with-sandisk-nvmfs-and-fusion-iomemory-sx300-application-accelerators.pdf
 http://www.sandisk.com/assets/docs/accelerate-myql-open-source-databases-with-sandisk-nvmfs-and-fusion-iomemory-sx300-application-accelerators.pdf
 http://web.sandisk.com/assets/white-papers/MySQL_High-Speed_Transaction_Logging.pdf
 http://web.sandisk.com/assets/white-papers/MySQL_High-Speed_Transaction_Logging.pdf
 http://web.sandisk.com/assets/white-papers/MySQL_High-Speed_Transaction_Logging.pdf
http://www.seagate.com/solutions/cloud/data-center-cloud/platforms/
http://www.seagate.com/solutions/cloud/data-center-cloud/platforms/
http://iotta.snia.org/
https://technet.microsoft.com/en-us/library/hh831739(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/hh831739(v=ws.11).aspx
http://blogs.msdn.com/b/winfs/

distributed systems. ACM SIGOPS Operating Systems Review, 41(6):159–
174, 2007.

[29] Khalil Amiri, Garth A Gibson, and Richard Golding. Highly concurrent
shared storage. In IEEE International Conference on Distributed Computing
Systems, 2000.

[30] David G. Andersen, Jason Franklin, Michael Kaminsky, Amar Phan-
ishayee, Lawrence Tan, and Vijay Vasudevan. FAWN: A fast array of
wimpy nodes. In ACM Symposium on Operating Systems Principles, 2009.

[31] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia. A view of cloud computing. Com-
munications of the ACM, 53(4):50–58, 2010.

[32] Anirudh Badam and Vivek S Pai. SSDAlloc: hybrid SSD/RAM memory
management made easy. In USENIX Symposium on Networked Systems De-
sign and Implementation, 2011.

[33] M. Balakrishnan, D. Malkhi, V. Prabhakaran, T. Wobber, M. Wei, and
J. Davis. CORFU: A shared log design for flash clusters. In USENIX Sym-
posium on Networked Systems Design and Implementation, 2012.

[34] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of
virtualization. In ACM Symposium on Operating Systems Principles, 2003.

[35] Salman A. Baset. Cloud SLAs: Present and future. ACM SIGOPS Operat-
ing Systems Review, 46(2):57–66, 2012.

[36] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and
Patrick O’Neil. A critique of ANSI SQL isolation levels. ACM SIGMOD
Record, 24(2):1–10, 1995.

[37] Philip Bernstein and Eric Newcomer. Principles of Transaction Processing.
Morgan Kaufmann Publishers, 2 edition, 2009.

[38] Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. Concur-
rency control and recovery in database systems. Addison-Wesley Longman
Publishing, 1987.

179

[39] Andrew Birrell, Michael Isard, Chuck Thacker, and Ted Wobber. A design
for high-performance flash disks. ACM SIGOPS Operating Systems Review,
41(2):88–93, 2007.

[40] Daniel Bovet and Marco Cesati. Understanding The Linux Kernel. Oreilly &
Associates Inc, 2005.

[41] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web
caching and zipf-like distributions: Evidence and implications. In IEEE
International Conference on Computer Communications, 1999.

[42] B. Calder, J. Wang, A. Ogus, N. Nilakantan, A. Skjolsvold, S. McKelvie,
Y. Xu, S. Srivastav, J. Wu, H. Simitci, et al. Windows Azure storage: A
highly available cloud storage service with strong consistency. In ACM
Symposium on Operating Systems Principles, 2011.

[43] Chia Chao, Robert English, David Jacobson, Alexander Stepanov, and
John Wilkes. Mime: a high performance parallel storage device with
strong recovery guarantees. Technical Report HPL-CSP-92-9, Hewlett-
Packard Laboratories, 1992.

[44] Joel Coburn, Trevor Bunker, Rajesh K Gupta, and Steven Swanson.
From ARIES to MARS: Reengineering transaction management for next-
generation, solid-state drives. In ACM Symposium on Operating Systems
Principles, 2013.

[45] Joel Coburn, Adrian M Caulfield, Ameen Akel, Laura M Grupp, Rajesh K
Gupta, Ranjit Jhala, and Steven Swanson. NV-Heaps: making persistent
objects fast and safe with next-generation, non-volatile memories. ACM
SIGARCH Computer Architecture News, 39(1):105–118, 2011.

[46] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. Benchmarking cloud serving systems with YCSB. In ACM
Symposium on Cloud Computing, 2010.

[47] Brian Cornell, Peter A Dinda, and Fabián E Bustamante. Wayback: A
user-level versioning file system for linux. In USENIX Annual Technical
Conference, 2004.

[48] Wiebren De Jonge, M Frans Kaashoek, and Wilson C Hsieh. The logical
disk: A new approach to improving file systems. ACM SIGOPS Operating
Systems Review, 27(5):15–28, 1993.

180

[49] Dell Inc. Dell PowerEdge 2450 Systems Installation and trouble shooting guide,
November 1999.

[50] Dell Inc. Dell PowerEdge 2850 Server, September 2005.

[51] Dell Inc. Dell PowerEdge R930, May 2016.

[52] David J DeWitt, Randy H Katz, Frank Olken, Leonard D Shapiro,
Michael R Stonebraker, and David A. Wood. Implementation techniques
for main memory database systems. In ACM SIGMOD International Con-
ference on Management of Data, 1984.

[53] James R Driscoll, Neil Sarnak, Daniel Dominic Sleator, and Robert Endre
Tarjan. Making data structures persistent. In ACM symposium on Theory of
computing, 1986.

[54] Bin Fan, David G Andersen, and Michael Kaminsky. MemC3: Compact
and concurrent memcache with dumber caching and smarter hashing. In
USENIX Symposium on Networked Systems Design and Implementation, 2013.

[55] Michail Flouris and Angelos Bilas. Clotho: Transparent data versioning at
the block i/o level. In International Conference on Massive Storage Systems
and Technology, 2004.

[56] Richard F. Freitas, Joe Slember, Wayne Sawdon, and Lawrence Chiu. GPFS
scans 10 billion files in 43 minutes. Technical Report RJ10484 (A1107-011),
IBM, July 2011.

[57] Gregory R Ganger. Blurring the line between OSes and storage devices. School
of Computer Science, Carnegie Mellon University, 2001.

[58] Laura M. Grupp, John D. Davis, and Steven Swanson. The bleak future of
nand flash memory. In USENIX Conference on File and Stroage Technologies,
2012.

[59] Rachid Guerraoui and Michal Kapalka. On the correctness of transac-
tional memory. In ACM SIGPLAN Symposium on Principles and practice of
parallel programming, 2008.

[60] A. Gulati, I. Ahmad, and C.A. Waldspurger. PARDA: Proportional alloca-
tion of resources for distributed storage access. In USENIX Conference on
File and Storage Technologies, 2009.

181

[61] A. Gulati, C. Kumar, and I. Ahmad. Storage workload characterization
and consolidation in virtualized environments. In Workshop on Virtualiza-
tion Performance: Analysis, Characterization, and Tools, 2009.

[62] A. Gulati, G. Shanmuganathan, I. Ahmad, C. Waldspurger, and M. Uysal.
Pesto: Online storage performance management in virtualized datacen-
ters. In ACM Symposium on Cloud Computing, 2011.

[63] Diwaker Gupta, Ludmila Cherkasova, Rob Gardner, and Amin Vah-
dat. Enforcing performance isolation across virtual machines in xen. In
ACM/IFIP/USENIX Middleware Conference, 2006.

[64] William Von Hagen. Linux Filesystems. Sams, 2001.

[65] Jacob Gorm Hansen and Eric Jul. Lithium: Virtual machine storage for
the cloud. In ACM Symposium on Cloud Computing, 2010.

[66] Tim Harris, James Larus, and Ravi Rajwar. Transactional Memory. Morgan
and Claypool Publishers, 2010.

[67] John H. Hartman and John K. Ousterhout. The zebra striped network file
system. ACM Transactions on Computer Systems, 13(3):274–310, 1995.

[68] M. P. Herlihy and J. M. Wing. Axioms for concurrent objects. In ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
1987.

[69] HGST. Ultrastar C10K1800, 2015.

[70] HGST. Ultrastar He10, 2016.

[71] Dave Hitz, James Lau, and Michael A Malcolm. File system design for an
nfs file server appliance. In USENIX Winter Technical Conference, 1994.

[72] P. W. Hutto and M. Ahamad. Slow memory: weakening consistency to en-
hance concurrency in distributed shared memories. In International Con-
ference on Distributed Computing Systems, 1990.

[73] John Kubiatowicz, David Bindel, Yan Chen, Steven Czerwinski, Patrick
Eaton, Dennis Geels, Ramakrishna Gummadi, Sean Rhea, Hakim Weath-
erspoon, Chris Wells, and Ben Zhao. OceanStore: An architecture for

182

global-scale persistent storage. In ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, 2000.

[74] Hsiang-Tsung Kung and John T Robinson. On optimistic methods for
concurrency control. ACM Transactions on Database Systems, 6(2):213–226,
1981.

[75] Leslie Lamport. How to make a multiprocessor computer that cor-
rectly executes multiprocess programs. IEEE Transactions on Computers,
100(9):690–691, 1979.

[76] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual disks. ACM
SIGOPS Operating Systems Review, 30(5):84–92, 1996.

[77] Ki Suh Lee, Han Wang, Vishal Shrivastav, and Hakim Weatherspoon.
Globally synchronized time via datacenter networks. In ACM SIGCOMM
Conference on Data Communication, 2016.

[78] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. An-
dersen. Don’t settle for eventual: Scalable causal consistency for wide-
area storage with cops. In ACM Symposium on Operating Systems Principles,
2011.

[79] David E Lowell and Peter M Chen. Free transactions with rio vista. ACM
SIGOPS Operating Systems Review, 31(5):92–101, 1997.

[80] Lanyue Lu, Yupu Zhang, Thanh Do, Samer Al-Kiswany, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Physical disentangle-
ment in a container-based file system. In USENIX Symposium on Operating
Systems Design and Implementation, 2014.

[81] John MacCormick, Nick Murphy, Marc Najork, Chandramohan A
Thekkath, and Lidong Zhou. Boxwood: Abstractions as the foundation
for storage infrastructure. In USENIX Symposium on Operating Systems
Design and Implementation, 2004.

[82] J.N. Matthews, D. Roselli, A.M. Costello, R.Y. Wang, and T.E. Anderson.
Improving the performance of log-structured file systems with adaptive
methods. In ACM Symposium on Operating System Principles, 1997.

[83] J. Menon. A performance comparison of raid-5 and log-structured arrays.

183

In IEEE International Symposium on High Performance Distributed Comput-
ing, 1995.

[84] Mike Mesnier, Gregory R Ganger, and Erik Riedel. Object-based storage.
IEEE Communications Magazine, 41(8):84–90, 2003.

[85] Dutch T Meyer, Gitika Aggarwal, Brendan Cully, Geoffrey Lefebvre,
Michael J Feeley, Norman C Hutchinson, and Andrew Warfield. Paral-
lax: virtual disks for virtual machines. ACM SIGOPS Operating Systems
Review, 42(4):41–54, 2008.

[86] Dutch T. Meyer and William J. Bolosky. A study of practical deduplica-
tion. In USENIX Conference on File and Stroage Technologies, 2011.

[87] C Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Pe-
ter Schwarz. ARIES: a transaction recovery method supporting fine-
granularity locking and partial rollbacks using write-ahead logging. ACM
Transactions on Database Systems, 17(1):94–162, 1992.

[88] Katherine F. Moore and Dan Grossman. High-level small-step operational
semantics for transactions. In ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pages 51–62, 2008.

[89] Scott Mueller. Upgrading and Repairing Pcs, Eighteenth Edition. Que Corp.,
22 edition, 2015.

[90] Kiran-Kumar Muniswamy-Reddy, Charles P Wright, Andrew Himmer,
and Erez Zadok. A versatile and user-oriented versioning file system. In
USENIX Conference on File and Storage Technologies, 2004.

[91] D. Narayanan, E. Thereska, A. Donnelly, S. Elnikety, and A. Rowstron.
Migrating server storage to SSDs: Analysis of tradeoffs. In European Con-
ference on Computer Systems, 2009.

[92] D. Nellans, M. Zappe, J. Axboe, and D. Flynn. ptrim ()+ exists (): Exposing
new FTL primitives to applications. In Non-Volatile Memories Workshop,
2011.

[93] Edmund B Nightingale, Jeremy Elson, Jinliang Fan, Owen Hofmann, Jon
Howell, and Yutaka Suzue. Flat datacenter storage. In USENIX Sympo-
sium on Operating Systems Design and Implementation, 2012.

184

[94] Michael A Olson. The design and implementation of the inversion file
system. In USENIX Winter Technical Conference, 1993.

[95] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. The
log-structured merge-tree (LSM-tree). Acta Informatica, 33(4):351–385, June
1996.

[96] T. M. Oslon. Disk array performance in a random IO environment. ACM
SIGARCH Computer Architecture News, 17(5):71–77, 1989.

[97] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redun-
dant arrays of inexpensive disks (RAID). In ACM SIGMOD International
Conference on Management of Data, pages 109–116, 1988.

[98] Avery Pennarun. Everything you never wanted to know about file lock-
ing. http://apenwarr.ca/log/?m=201012#13.

[99] Gerald J. Popek and Robert P. Goldberg. Formal requirements for vir-
tualizable third generation architectures. Communications of the ACM,
17(7):412–421, 1974.

[100] Donald E Porter, Owen S Hofmann, Christopher J Rossbach, Alexander
Benn, and Emmett Witchel. Operating system transactions. In ACM Sym-
posium on Operating Systems Principles, 2009.

[101] Vijayan Prabhakaran, Thomas L Rodeheffer, and Lidong Zhou. Transac-
tional flash. In USENIX Symposium on Operating Systems Design and Imple-
mentation, 2008.

[102] Sean Quinlan and Sean Dorward. Venti: A new approach to archival stor-
age. In USENIX Conference on File and Storage Technologies, 2002.

[103] Colin Reid, Philip A Bernstein, Ming Wu, and Xinhao Yuan. Optimistic
concurrency control by melding trees. Proceedings of the VLDB Endowment,
4(11), 2011.

[104] Sean Rhea, Patrick Eaton, Dennis Geels, Hakim Weatherspoon, Ben Zhao,
and John Kubiatowicz. Pond: The OceanStore prototype. In USENIX
Conference on File and Storage Technologies, 2003.

[105] RightScale Inc. State of the cloud report, 2016.

185

http://apenwarr.ca/log/?m=201012#13

[106] David Roberts, Taeho Kgil, and Trevor Mudge. Integrating NAND flash
devices onto servers. Communications of the ACM, 52(4):98–103, 2009.

[107] Mendel Rosenblum and John K. Ousterhout. The design and implementa-
tion of a log-structured file system. ACM Transaction on Computer Systems,
10(1):26–52, 1992.

[108] Jerome H Saltzer, David P Reed, and David D Clark. End-to-end argu-
ments in system design. ACM Transactions on Computer Systems, 2(4):277–
288, 1984.

[109] Douglas S Santry, Michael J Feeley, Norman C Hutchinson, Alistair C
Veitch, Ross W Carton, and Jacob Ofir. Deciding when to forget in the
elephant file system. ACM SIGOPS Operating Systems Review, 33(5):110–
123, 1999.

[110] Mahadev Satyanarayanan, Henry H Mashburn, Puneet Kumar, David C
Steere, and James J Kistler. Lightweight recoverable virtual memory. ACM
Transactions on Computer Systems, 12(1):33–57, 1994.

[111] S. Savage and J. Wilkes. AFRAID: A frequently redundant array of inde-
pendent disks. In USENIX Annual Technical Conference, 1996.

[112] Mohit Saxena, Mehul A Shah, Stavros Harizopoulos, Michael M Swift,
and Arif Merchant. Hathi: durable transactions for memory using flash.
In International Workshop on Data Management on New Hardware, pages 33–
38, 2012.

[113] Mohit Saxena, Michael M Swift, and Yiying Zhang. FlashTier: a
lightweight, consistent and durable storage cache. In European Conference
on Computer Systems, 2012.

[114] Russell Sears and Eric Brewer. Stasis: Flexible transactional storage. In
USENIX Symposium on Operating Systems Design and Implementation, 2006.

[115] M. Seltzer, K. Bostic, M.K. McKusick, and C. Staelin. An implementation
of a log-structured file system for UNIX. In USENIX Winter Technical Con-
ference, 1993.

[116] M. Seltzer, K.A. Smith, H. Balakrishnan, J. Chang, S. McMains, and V. Pad-
manabhan. File system logging versus clustering: A performance com-
parison. In USENIX Annual Technical Conference, 1995.

186

[117] Nir Shavit and Dan Touitou. Software transactional memory. Distributed
Computing, 10(2):99–116, 1997.

[118] Ji-Yong Shin, Mahesh Balakrishnan, Lakshmi Ganesh, Tudor Marian, and
Hakim Weatherspoon. Gecko: A contension-oblivious design for cloud
storage. In USENIX Workshop on Hot Topics in Storage and File Systems,
2012.

[119] Ji-Yong Shin, Mahesh Balakrishnan, Tudor Marian, and Hakim Weather-
spoon. Gecko: Contention-oblivious disk arrays for cloud storage. In
USENIX Conference on File and Storage Technologies, 2013.

[120] Ji-Yong Shin, Zeng-Lin Xia, Ning-Yi Xu, Rui Gao, Xiong-Fei Cai, Seun-
gryoul Maeng, and Feng-Hsiung Hsu. FTL design exploration in recon-
figurable high-performance SSD for server applications. In Proceedings of
International Conference on Supercomputing, 2009.

[121] David Shue, Michael J. Freedman, and Anees Shaikh. Performance isola-
tion and fairness for multi-tenant cloud storage. In USENIX Symposium
on Operating Systems Design and Implementation, 2012.

[122] Abraham Silberschatz, Henry Korth, and S. Sudarshan. Database Systems
Concepts. McGraw-Hill, Inc., 5 edition, 2006.

[123] Dimitris Skourtis, Dimitris Achlioptas, Noah Watkins, Carlos Maltzahn,
and Scott Brandt. Flash on rails: consistent flash performance through
redundancy. In USENIX Annual Technical Conference, 2014.

[124] G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and T. Wobber. Ex-
tending SSD lifetimes with disk-based write caches. In Proceedings of
USENIX Conference on File and Storage Technologies, 2010.

[125] Yair Sovran, Russell Power, Marcos K Aguilera, and Jinyang Li. Transac-
tional storage for geo-replicated systems. In ACM Symposium on Operating
Systems Principles, 2011.

[126] Lex Stein. Stupid file systems are better. In Workshop on Hot Topics in
Operating Systems, 2005.

[127] Michael Stonebraker. Implementation of integrity constraints and views
by query modification. In ACM SIGMOD International Conference on Man-
agement of Data, 1975.

187

[128] Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Prin-
ciples and Paradigms (2Nd Edition). Prentice-Hall, Inc., 2006.

[129] D. B. Terry, M. M. Theimer, Karin Petersen, A. J. Demers, M. J. Spreitzer,
and C. H. Hauser. Managing update conflicts in bayou, a weakly con-
nected replicated storage system. In ACM Symposium on Operating Systems
Principles, 1995.

[130] Doug Terry. Replicated data consistency explained through baseball. Com-
munications of the ACM, 56(12):82–89, 2013.

[131] Douglas B Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Bal-
akrishnan, Marcos K Aguilera, and Hussam Abu-Libdeh. Consistency-
based service level agreements for cloud storage. In ACM Symposium on
Operating Systems Principles, 2013.

[132] Alexander Thomson and Daniel J. Abadi. CalvinFS: Consistent wan repli-
cation and scalable metadata management for distributed file systems. In
USENIX Conference on File and Storage Technologies, 2015.

[133] Robbert Van Renesse and Fred B Schneider. Chain replication for support-
ing high throughput and availability. In USENIX Symposium on Operating
Systems Design and Implementation, 2004.

[134] Ben Verghese, Anoop Gupta, and Mendel Rosenblum. Performance iso-
lation: Sharing and isolation in shared-memory multiprocessors. In ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems, 1998.

[135] Haris Volos, Andres Jaan Tack, and Michael M Swift. Mnemosyne:
Lightweight persistent memory. ACM SIGARCH Computer Architecture
News, 39(1):91–104, 2011.

[136] M. Wang, K. Au, A. Ailamaki, A. Brockwell, C. Faloutsos, and G. R.
Ganger. Storage device performance prediction with CART models. In
IEEE Modeling, Analysis, and Simulation On Computer and Telecommunica-
tion Systems Conference, 2004.

[137] Randolph Y Wang, Thomas E Anderson, and David A Patterson. Virtual
log based file systems for a programmable disk. ACM SIGOPS Operating
Systems Review, 33:29–44, 1998.

188

[138] H. Weatherspoon, P. Eaton, B.G. Chun, and J. Kubiatowicz. Antiquity:
Exploiting a Secure Log for Wide-Area Distributed Storage. ACM SIGOPS
Operating Systems Review, 41(3):371–384, 2007.

[139] Western Digital. WD Caviar Desktop Hard Drives, 2007.

[140] Western Digital. Specifications for the WD Caviar AC22500.
http://www.wdc.com/en/products/legacy/Legacy.asp?
Model=AC22500, 2016.

[141] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP AutoRAID hier-
archical storage system. ACM Transactions on Computer Systems, 14(1):108–
136, 1996.

[142] Dan Williams, Hani Jamjoom, Yew-Huey Liu, and Hakim Weatherspoon.
Overdriver: Handling memory overload in an oversubscribed cloud. In
ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments, 2011.

[143] H. S. P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran,
M. Asheghi, and K. E. Goodson. Phase change memory. Proceedings of the
IEEE, 98(12):2201–2227, 2010.

[144] Charles P Wright, Richard Spillane, Gopalan Sivathanu, and Erez Zadok.
Extending ACID semantics to the file system. ACM Transactions on Storage,
3(2):4, 2007.

[145] Guanying Wu and Xubin He. Delta-FTL: Improving SSD lifetime via ex-
ploiting content locality. In European Conference on Computer Systems, 2012.

[146] Haifeng Yu and Amin Vahdat. Design and evaluation of a continuous
consistency model for replicated services. In USENIX Symposium on Op-
erating Systems Design and Implementation, 2000.

[147] Xiang Yu, Benjamin Gum, Yuqun Chen, Randolph Y Wang, Kai Li, Arvind
Krishnamurthy, and Thomas E Anderson. Trading capacity for perfor-
mance in a disk array. In USENIX Symposium on Operating System Design
and Implementation, 2000.

[148] Yinqian Zhang, Ari Juels, Alina Oprea, and Michael K. Reiter. Homealone:
Co-residency detection in the cloud via side-channel analysis. In IEEE
Symposium on Security and Privacy, 2011.

189

http://www.wdc.com/en/products/legacy/Legacy.asp?Model=AC22500
http://www.wdc.com/en/products/legacy/Legacy.asp?Model=AC22500

[149] Yiying Zhang, Leo Prasath Arulraj, Andrea C Arpaci-Dusseau, and
Remzi H Arpaci-Dusseau. De-indirection for flash-based ssds with name-
less writes. In USENIX Conference on File and Storage Technologies, 2012.

190

	Biographical Sketch
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Cloud Storage Servers
	Cloud Storage Server Trends
	Cloud Storage Stacks

	Isolation
	Performance Isolation
	Transactional Isolation
	Client-Centric Consistencies

	Challenges
	Lack of Cloud Storage Server Performance Isolation
	Lack of Cloud Storage Server Transactional Isolation
	Lack of Cloud Storage Server Consistency Control

	Contributions
	Organization

	Scope and Methodology
	Scope: Understanding Cloud Storage Servers
	Cloud Storage Servers Need Performance Isolation
	Cloud Storage Servers Need Transactional Isolation
	Cloud Storage Servers Need Consistency Control

	Methodology
	Linux Device Mapper
	Emulations
	Public Workloads and Systems

	Summary

	Performance Isolation with Contention-Oblivious Disk Arrays
	Design
	Metadata
	Caching
	Smarter Cleaning
	Discussion

	Evaluation
	Write Throughput with GC
	Caching the Tail
	Gecko Performance for Real Workloads

	Summary

	Transactional Isolation Support from the Block Layer
	The Isotope API
	Composability

	Design and Implementation
	Deciding Transactions
	Applying Transactions
	Implementation Details

	Isotope Applications
	Transactional Key-Value Stores
	Transactional Filesystem
	Experience

	Performance Evaluation
	Isotope Performance
	Isotope Application Performance

	Summary

	Consistency Control in Cloud Servers Using Stale Data
	Design Space for StaleStores
	What Is a StaleStore?
	Which Layer Should Be a StaleStore?

	Yogurt Design
	Block-level StaleStore API
	Wrapper APIs
	Versioned Storage Design

	Implementation
	Snapshot Access and Read Mapping
	Data Placement
	Read Cost Estimation
	A Key-Value Store Example

	Evaluation
	Pileus-Like Block Store
	GetCost Overhead
	Pileus-Like Key-Value Store

	Summary

	Related Work
	Performance Isolation and Logging
	Transactional Systems
	Consistency and Performance Trade-Off
	Multi-Versioning
	Smart Block Storage

	Future Work and Conclusion
	Future Work
	Hardware Integration
	Support for Distributed Storage Systems
	Towards Smarter Block Storage

	Conclusion

	Transactions and ACID Properties
	Consistency Semantics
	Database Systems
	Strict Serializability
	Snapshot Isolation

	Distributed Systems
	Data-Centric Consistencies
	Client-Centric Consistency

	Glossary
	Bibliography

