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This paper studies the problem of color consistency correction for sequential images with diverse color
characteristics. Existing algorithms try to adjust all images to minimize color differences among images
under a unified energy framework, however, the results are prone to presenting a consistent but unnat-
ural appearance when the color difference between images is large and diverse. In our approach, this
problem is addressed effectively by providing a guided initial solution for the global consistency opti-
mization, which avoids converging to a meaningless integrated solution. First of all, to obtain the reliable
intensity correspondences in overlapping regions between image pairs, we creatively propose the his-
togram extreme point matching algorithm which is robust to image geometrical misalignment to some
extents. In the absence of the extra reference information, the guided initial solution is learned from the
major tone of the original images by searching some image subset as the reference, whose color charac-
teristics will be transferred to the others via the paths of graph analysis. Thus, the final results via global
adjustment will take on a consistent color similar to the appearance of the reference image subset.
Several groups of convincing experiments on both the synthetic dataset and the challenging real ones suf-
ficiently demonstrate that the proposed approach can achieve as good or even better results compared
with the state-of-the-art approaches.
� 2017 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Nowadays, the development in photography technology makes
it easy to obtain massive remote sensing images and digital pho-
tographs, which presents both an opportunity and a challenge.
Image stitching is an important step in the field of remote sensing
and panorama stitching, which merges two or multiple images
with overlapping areas into a single composite image as seamless
as possible in both geometry and color tone. Different illumination
and sensor properties may cause the enormous color and bright-
ness differences among images, which can not be effectively con-
cealed by smoothing transition (Levin et al., 2004; Xiong and
Pulli, 2009) and image blending (Perez et al., 2003, 2008, 2011,
2014). In order to generate the higher quality and better accuracy
result for many applications such as remote sensing image
mosaicking (Kerschner, 2001; Li et al., 2015), panorama roaming
and virtual tourism (Brown and Lowe, 2007; Xiong and Pulli,
2010; Tian et al., 2002; Snavely et al., 2006), the research about
color consistency becomes ever more and more necessary.
In the remote sensing field, most of the works on solving the
tonal difference for multi-view mosaicking are radiometric nor-
malization (or gain compensation) (Canty et al., 2004; Canty and
Nielsen, 2008; Lópeza et al., 2011), and some other methods often
take relatively simple treatments (Wang et al., 2005; Li et al.,
2015). These models often globally and symmetrically found a gain
correction that minimizes color differences over corresponding
overlaps, but cannot eliminate tonal difference between two adja-
cency images to the utmost extent. To overcome this problem, Pan
et al. (2010) proposed a global-to-local strategy in which the global
processing was based on a linear model and the local optimization
was carried out by a nonlinear model which divided each overlap
into subareas and performed the linear adjustment in each
subarea. Vallet and Lelégard (2013) utilized partial iterates to sym-
metrize the non-parametric color correction, which simultane-
ously adjusts two images without preserving one image. Because
of only symmetrizing the color correction of an image pair, it is
required to iterate the process for mosaic correction. Although
these algorithms work for some cases, they may fail to completely
compensate for color difference between different views when the
lighting conditions vary dramatically. Panoramic stitching can
obtain an image with a large field of view and present a broader
scene, which is quite popular among landscape, cityscape and
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architectural photographers both at home and abroad. The basic
steps of image mosaicking are comprised of geometric alignment,
tone correction, seamline searching, and feathering or blending.
When there exist less color difference between images, there are
many blending algorithms can be directly utilized to effectively
eliminate artifacts, such as feathering (Prados et al., 2013), alpha
blending (Baudisch and Gutwin, 2004), Poisson blending (Pérez
et al., 2003) and Gaussian blending (Popovic et al., 2013). However,
enormous color difference among images still generated obvious
stitching artifacts in the last stitched or mosaicked panorama if
we only utilize image blending to correct color consistence. In
image processing and computer graphics communities, lots of
color manipulation methods have been developed in recent years.
These approaches can be divided into two categories: parametric
and non-parametric at a high level (Xu and Mulligan, 2010).

Approaches based on the transformation models are paramet-
ric, which assume the color relation between images can be

described by a transform: Î ¼ f ðIÞ, where f stands for any transfor-
mation equation for a color vector. Reinhard et al. (2001) were pio-
neers in establishing the concept of color transfer with an approach
to modify the color distribution of the original image based on the
global color statistics of an example image in the decorrelated lab
color space. Their work has been widely used as the baseline by
other approaches. To operate the color in the RGB color space
directly, Ilie and Welch (2005) utilized a general polynomial trans-
formation to correct the color vector in the RGB color space. Huang
and Chen (2009) regarded the RGB values and the 2D coordinates
as a feature vector of landmark pixels and built the corresponding
relation about landmark pixels between the original image and the
target one with the Mahalanobis distance. Naim and Isa (2012)
proposed a new method of the 3D distribution rotation which
was applied on the 2D two-color channel plane (i.e., the red-
green plane, the red-blue one, and the green–blue one) instead of
the 3D RGB color model. Exposure compensation and vignetting
correction are also the prime technologies that address the color
balancing problem when the inputs are partially overlapped
images (Goldman, 2010). Through statistical analysis between
the mean and the standard deviation of an image, some inherent
differences between the low-contrast scene image and the normal
one can be found, which provide the accurate contrast restoration
of color images (Oakley and Bu, 2007). When there exists a great
color difference between the images, the forecast about the level
of ‘‘airlight” may perform not well. Kim and Pollefeys (2008) uti-
lized corresponding pixels to estimate the exposures and vignet-
ting. This method is robust to noise and outliers. Furthermore,
based on the spatial color discrepancy model and the temporal
variation model, Shao et al. (2010) introduced a new color correc-
tion method with a lower computational complexity and a higher
accuracy, which was applied to multi-view images and videos. In
order to get a global correct relation, Rizzi et al. (2003) proposed
a computational model of the human visual system to adjust color
consistency, which is based on the global equalization mechanisms
that are ‘‘Gray World” and ‘‘White Patch”. Tai et al. (2005) pro-
posed a local color transfer scheme based on probabilistic image
segmentation and region mapping using the Gaussian mixture
models (GMM) and the expectation–maximization (EM) algorithm.
Xiang et al. (2009) improved this work in the case that multiple
source images are available for selection. The bin-ratio-based his-
togram distance was used in (Hu et al., 2014), which is more robust
to partial matching and histogram normalization. Park et al. (2016)
adopted a global color correction model based on a low-rank
matrix factorization approach to automatically optimize color con-
sistency. This approach is much more efficient in calculations and
robust to outliers for a large number of images. However, there are
still obvious color difference in the last stitched image, because the
parametric method always utilizes the stable model to address
color consistency. At the same time, the compensation obtained
from this stable model cannot entirely eliminate color difference
for the whole images.

Non-parametric methods mostly study the overlapped area of
two images which consist of the same scene or object and can be
utilized to design the color mapping. This mapping can be used
to maintain the frame-to-frame consistency. The look-up table
method is widely used to record the mapping of the full range of
color levels directly. To simplify the look-up table, Yoo et al.
(2013) proposed to search the major colors in both the original
image and the example one, which cluster and then build the map-
ping relation between major colors through a defined similarity
metric. Actually, the look-up table is often replaced by some kind
of curves, like Gamma curve, S-curve and B-splines, etc. Moulon
et al. (2013) utilized the intensity values in the quantiles of his-
tograms to depict the mapping relation which were then optimized
globally as a convex problem. In order to deal with color his-
tograms as much as possible, Papadakis et al. (2011) proposed a
variational formulation to transform two or more color images.
Pitié et al. (2005, 2007) presented a transfer method of the N-
dimensional probability density function (PDF) to reduce the
high-dimensional PDF matching to the one-dimensional PDF
matching by Radon transform. Another popular color transfer
framework is based on iterative optimization, which generally
belongs to one of nonlinear and non-parametric methods
(Tehrani et al., 2010; Moulon et al., 2013; Hwang et al., 2014).
HaCohen et al. (2011) presented a new framework of image itera-
tion based on fitting a global non-linear parametric color model. To
achieve the color consistency, HaCohen et al. (2013) found the
minimum of a quadratic cost function by global optimization
which includes regularization terms and constraints. Frigo et al.
(2011) proposed an example-based Chromatic Adaption Transform
(CAT) to obtain the illumination matching and select the dominant
colors as optimal mapping between input and example images.

Although the above mentioned approaches have solved some
key problems in color transfer effectively and made practical
improvements, they only considered the processing for two adja-
cent images, which is not suitable for the global processing for
massive images among which there exist obvious color differences.
The global optimization strategy has many advantages of minimiz-
ing color differences for dozens or even thousands of images, but
the results are prone to presenting an unnatural appearance. In this
paper, the guided initial solution for the global optimization is pro-
posed to solve this problem and achieve the color consistency.
There are generally three steps of the proposed method, as
described in Fig. 1. Firstly, we convert the input images into the
lab color space before tonal correction. To figure out the corre-
sponding relationship of gray values in overlapping areas between
two adjacent images, we creatively introduce the histogram
extreme point matching strategy based on the feature vectors of
the histogram peaks. Then, based on a color difference optimiza-
tion framework for massive images, if we do not supplement other
constraints, the solution is mostly meaningless though it can result
in a consistent appearance. To address this issue, we search the
optimal reference images and figure out the mapping order as
the guided initial solution, referring to which other images will
be transformed. Finally, a new global optimization framework is
proposed to eliminate the subtle color difference after applying
the initial solution, which regards the color difference of overlaps
between two adjacent images and the distance with the original
mapping curve as the data term and the regularity one, respec-
tively. Our approach also allows the user to construct the optimal
mapping order by selecting several adjacent images as the
maximum-consistent subset. Experimental results on both the



Fig. 1. The flowchart of our proposed color consistency correction framework for image mosaicking.
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synthetic dataset and the challenging real ones sufficiently demon-
strate that the proposed color consistency strategy for image
mosaicking performed better with our method and the main color
tone of images to be stitched can be selected to satisfy the user
specified constrains when using the user preference editing.

The remainder of this paper is organized as follows. The prob-
lem statement about the color mapping model is briefly given in
Section 2. Section 3 describes the proposed color correction opti-
mization strategy for image mosaicking in details. The experimen-
tal results are reported in Section 4 followed by conclusions and
future works drawn in Section 5.
2. Problem statement

Considering the existing correlations between channels in the
mostly-used RGB color space, all the pixel operations in our
approach are performed in the orthogonal color space lab, which
makes no requirement of dealing with different channels in a col-
laborative way. Given a sequence of images with overlaps, our goal
is to generate the consistent color of the composited mosaic image
by remapping the intensities of the pixels of each image into new
values according to its own mapping function. More exactly, the
mapping function is defined as three monotonically increasing
mapping curves (one per channel), each of which is formulated
as a piecewise-quadratic spline with Q control knots (Q ¼ 6 was
used in this paper). As illustrated in Fig. 2, the coordinates of the

unknown knots fðvq;v 0
qÞgQq¼1

are partly determined by the intensity

range of the original image, where fðvqÞgQq¼1 are fixed evenly on the
horizontal axis to control the mapping curve effectively, while

fðv 0
qÞgQq¼1

are free to determine the shape of the mapping curve

as the actually unknown parameters. Therefore, the mapping func-
tion for an image I can be parameterized as:

f ¼ arg fðv 0
1; . . . ;v

0
Q Þcg

3
c¼1

; ð1Þ

where c is the label number for each channel (corresponding to l;a,
and b, respectively). That’s to say, the degree of freedom of this
mapping function is 3Q .
With the defined mapping model, our goal is to find such a
group of mapping curves that can transform the sequential images
into a consistent and natural appearance. To solve this problem, we
propose to select a set of images with most suitable color charac-
teristics from the original images as the reference subset and find
the optimal transferring path by the shortest path algorithm,
thought which the corresponding mapping curves can be figured
out as the initial solution. Then we perform a global optimization
to refine the consistency, instead of taking the risk of creating a
consistent but unnatural tone by performing the global optimiza-
tion directly, as demonstrated in Fig. 3.

3. Our approach

As a problem of non-linear optimization adjusting all the map-
ping functions’ parameters jointly to obtain the ideal result, there
are three essential components needed to be considered: the con-
straint information or measurements, the initial solution, and the
energy function. Here, the intensity correspondences in the over-
lapping regions between images are used as the constraint during
energy optimization. The initial solution is determined by transfer-
ring the color characteristics of the selected image subset onto
others via cascading intensity mapping, and the energy function
is comprised of two terms: the differences of the corresponding
intensities between images as the data term and the deviation
from the initial solution as the penalty one.

3.1. Histogram extreme point matching

Due to some factors such as the illumination variations and dif-
ferent exposure settings, the same objects in the overlaps between
adjacent images often present different colors. Even under the
same illumination and exposure setting, the same positions possi-
bly present different colors because of the geometric misalign-
ment. To build the color corresponding relationship of the
adjacently overlapped images, we select the peaks of a histogram
as the feature vectors which combine the information of peaks in
Probability Density Function (PDF) and Cumulative Distribution
Function (CDF) which make the algorithm more robust. Specifi-



Fig. 2. An illustration of the mapping model used in our approach: (Left) the quadratic spline curve parameterized by 6 knots with their positions evenly fixed on the
horizontal (v) axis and free on the vertical (v 0) axis where vmin and vmax denote the minimal and maximal intensities of the overlapped image region, respectively; (Right) the
appearances of an example image before and after applying the intensity mapping.

Fig. 3. An illustration of the advantage of the proposed algorithm based on the guided color consistency optimization: (Top-Left) original images (labeled by numbers)
captured at different times under different lighting conditions; (Top-Right) the corrected result of our approach without applying the guided initial solution, which results in
an unnaturally consistent gray tone; (Bottom-Left) the corrected result of our approach with the user-defined reference subset {5, 6}; (Bottom-Right) the corrected result of
our approach with the automatically selected reference subset {7, 8}. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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cally, the histogram of each channel (l;a; b) is built by counting the
number of pixels belonging to every interval which are divided
evenly from the image intensity range (default: 300 bins), since
the pixel intensity is continuous in the lab color space. Let A and
B be the overlapping regions of two adjacent images, and the rele-
vant PDFs and CDFs are denoted as PDFA;CDFA and PDFB;CDFB,
respectively.

3.1.1. Extracting extreme points
To robustly find extreme points in PDFA and PDFB, we firstly

apply the Gaussian filter on them to suppress possible noise.
According to the common definition of the histogram peak, the ini-
tial local extreme points can be easily obtained from the filtered
PDFA and PDFB. To address the problem that extreme points may
be centralized locally, we further check out all initial extreme
points by a local window suppression. Let fv i

Ag
m
i¼1 be the intensities

of m extreme points fPi
Ag

m

i¼1 in PDFA, which are sorted in the

ascending order. Given an extreme point Pi
A, we select the extreme

point(s) within the neighborhood ½v i
A �w;v i

A þw� centered on the
corresponding intensity v i
A with the size of (2wþ 1) (w ¼ 2 in

default), and only retain the extreme point with the highest fre-
quency in PDFA when there exist multiple extreme points in that
neighborhood. Similarly, all initial extreme points are checked in
this way. Finally, we obtain the final extreme points of PDFA and

PDFB, which are represented as fPi
Ag

MA

i¼1 and fP j
Bg

MB

j¼1, respectively,
where MA and MB are the numbers of the retained extreme points
in PDFA and PDFB, respectively. For each extreme point P, its fea-

ture vector consists of 4 components fF;v ; bC ; �Cg where F denotes
the frequency of this point in PDF, v stands for the corresponding

intensity, and bC and �C denote the cumulative values of intensities
ðv � �Þ and ðv þ �Þ in CDF (� ¼ 2 in default).
3.1.2. Matching extreme points
The extreme points can reflect image statistical characteristics

in considerable degree. Making the intensities of corresponding
extreme points as nearby as possible is an effective way to
decrease the color differences between images. To reliably match



(b)

(c)

(a)

Fig. 4. A visual example of our proposed histogram extreme point matching
strategy: (a)-(b) the overlapped image regions of two adjacent involved images,
respectively; (c) the curves of PDF in one channel where the red curve stands for the
left image and the blue one stands for the right one. Those points with the same
digital labels are regarded to be matched point pairs. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
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these extreme points fPi
Ag

MA

i¼1 and fPi
Bg

MB

j¼1, we define a cost function

to measure the matching similarity of two extreme points Pi
A and

P j
B as:

CostðPi
A;P

j
BÞ ¼

Fi
A þ F j

B

2Fmax
� minðFi

A; F
j
BÞ

maxðFi
A; F

j
BÞ

� maxðbCi
A � �Ci

A;
bC j
B � �C j

BÞ
maxðbCi

A;
bC j
BÞ �minð�Ci

A;
�C j
BÞ
; ð2Þ

where Fmax is the maximal frequency of all the extreme points in
PDFA and PDFB. From the above equation, we can find that when
the frequencies of an extreme point pair are larger and more simi-
lar, and their accumulative values are more nearby, their matching
cost is bigger. The higher the cost function value is, the more likely
the two points are matched. Based on this cost definition, a match-
ing cost matrix W ¼ ½Wij�MA�MB

is created. In order to efficiently
remove the impossibly matched extreme points, we design three
hard conditions from the views of both PDF and CDF to further

examine Pi
A and P j

B according to:

minðFiA ;F
j
B
Þ

maxðFiA ;F
j
BÞ
< hf ;

bCi
A > �C j

B þ hc � Cmax;

bC j
B > �Ci

A þ hc � Cmax;

8>>><
>>>:

ð3Þ

where hf and hc are two given thresholds, and Cmax is the maximal
value of CDF, which means the valid pixel number of overlapping

regions. The first term minðFiA ;F
j
BÞ

maxðFiA ;F
j
BÞ
indicates that the similar frequencies

for two possibly matched extreme points Pi
A and P j

B in PDF. The
lower the value of hf we set is, the allowable difference of frequen-
cies between two extreme points is bigger. We set hf ¼ 0:25 by
default, which is used to measure the distance between two

extreme points Pi
A and P j

B in CDF. The higher the value of hc is, the
allowable distance between two extreme points in CDF is bigger.
We set hc ¼ 0:02 by default. If at least one of the above three condi-

tions is met, which indicates that Pi
A and P j

B are not possibly
matched, their matching cost is set to zero, i.e.,

Wij ¼ CostðPi
A;P

j
BÞ ¼ 0. From the view of PDF, the first condition

indicates that the frequencies of the two possibly matched extreme

points Pi
A and P j

B should be a relatively small difference. From the

view of CDF, the second and third conditions indicate that Pi
A and

P j
B are more likely to be matched when their corresponding CDF val-

ues are approximate. According to the above three hard conditions,
the matching cost matrix W will be updated, in which all the zero
elements indicate that they are not possibly matched.

Based on the computed matching cost matrixW, we propose an
efficient iterative strategy to find the matched extreme points as:

� Step 1: Finding the highest non-zero cost element Wij from the

matrix W and its corresponding extreme points Pi
A and P j

B are
selected out as a reliable extreme point match.

� Step 2: Updating the matrix W by removing the i-th row and

the j-th column due to that Pi
A and P j

B have been matched
successfully.

By performing the above two steps iteratively until the updated
matrix W is empty or there exists no non-zero element in W, a set
of reliable extreme point matches will be found, as an example
result of extreme points matching shown in Fig. 4. The bin of the
horizontal axis is the index of intervals which divide the dynamic
intensity range into 300 uniformly spaced samples for each color
channel in the lab color space.
Sometimes, no match or too few matches can be reliably found
via the above matching strategy in the whole CDF range or some
relatively large CDF range. In this case, we will introduce more
matches with the help of both CDFA and CDFB, which are selected

from H uniformly distributed points fCk
Ag

H

k¼1 and fCk
Bg

H

k¼1 from CDFA

and CDFB, respectively, but not from the previously found extreme
points. The same number of sampling points in CDFA and CDFB are
uniformly selected in accordance with the cumulative density val-
ues. If there exists no extreme point match found in the ranges

½Ck
A � jCmax;C

k
A þ jCmax� and ½Ck

B � jCmax;C
k
B þ jCmax�, the current

sampling points Ck
A and Ck

B will be added into the matching set as
a new point match, where j is a given threshold in advance
(j ¼ 0:1 in default).

To demonstrate the advantage of our proposed histogram
extreme point matching strategy, we conducted the experiment
on six image pairs with overlap (the first five pairs from panorama
images and the last one from remote sensing ones) via color cor-
rection optimization based on our proposed histogram extreme
point matching strategy and the widely-used CDF probability cor-
respondence strategy. In general, the CDF probability correspon-
dences between two overlapped images can be built based on
the evenly sampled points on their corresponding CDF curves.
The histogram distances (i.e., tonal differences) in the l channel
of six image pairs of finally corrected results by applying different
color correspondence strategies are shown in Fig. 5(e). We
observed that our proposed matching strategy can build better cor-
respondences which will result in lower histogram distances. The
same conclusions can be observed in the a and b channels. For



(a) (b) (c) (d)

(e)

Fig. 5. A comparative illustration of the proposed histogram extreme point matching strategy and the CDF probability correspondence strategy: (a) the reference image; (b)
the original image; (c) the result corrected by the CDF probability correspondence strategy; (d) the result corrected by the proposed histogram extreme point matching
strategy; (e) the histogram distances (i.e., tonal differences) in the l channels by applying two different matching strategies on six image pairs.
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visual comparison, we chose the fifth image pair as shown in Fig. 5
(a-b), which are regarded as the original image and the reference
one, respectively. The finally corrected results by applying two
color correspondence strategies are shown in Fig. 5(c) and (d),
respectively. We can find that there exist obvious color deviation
caused by incorrect corresponding points in the corrected image,
as shown in Fig. 5(c), which was obtained by applying the CDF
probability correspondence strategy. While, the image corrected
by our approach, as shown in Fig. 5(d), presents a good color con-
sistence with the reference image as shown in Fig. 5(a). In this
selected image pair, the nearly fifty percent overlap between two
images is covered by green vegetation. In this case, the CDF prob-
ability correspondence strategy is prone to building incorrect cor-
responding point pairs. However, our proposed matching strategy
is more robust. The above experiment results sufficiently demon-
strate that our proposed matching strategy outperformed the
CDF probability correspondence strategy.
3.2. Guided initial solution

As aforementioned, we have to select an image subset as the
reference to transfer their color characteristics onto all the other
images, whose relevant mapping curves are served as the initial
solution for the following global optimization. Without extra refer-
ence information available, we adopt a heuristic strategy to take
the major tone of the original images as the reference, namely to
search the maximum subset of images with consistent color.
3.2.1. Histogram distance
To judge the color difference between two adjacent images, we

define the distance between histograms as a quantitative metric.
Given an image pair (Ii; Ij), we utilize the matched extreme point

pair set fPi
k;P

j
kg

Kij

k¼1 whose corresponding intensity values are

fv i
k;v

j
kg

Kij

k¼1 to fit a quadratic spline curve in the coordinate system
ov iv j as an example shown in Fig. 6(a). The distance between two
histograms in the overlapping regions between Ii and Ij is mea-
sured as:

dHðIi; IjÞ ¼ As=maxðjv i
1 � v i

Kij
j; jv j

1 � v j
Kij
jÞ; ð4Þ

where Kij is the number of matched histogram extreme points, As

denotes the area of the shadow region formed by the fitted curve
and the unit-slope line as shown in Fig. 6(a). It is easy to understand
that the fitted curve will coincide with the unit-slope line when
there is no difference between the two histograms.

3.2.2. Reference subset
The optimal reference images are selected through two ways:

automatic selection and user editing. The detailed descriptions
about user preference editing are presented in Section 3.4 and
the strategy of automatic reference selection will be discussed
below. After histogram distance calculation, we can construct a
graph of images in which each image is regarded as a node and
the neighboring relationship with overlap is represented as an
arc. The cost of an arc linking two images Ii and Ij is defined as:



Fig. 6. (a) shadow area formed by the unit-slop line and the quadratic spline curve fitted from the extreme points pairs (labeled as green dots) between Ii and Ij; (b) discrete
points (little black dots) picked evenly on the fitted curve, which are used to solve the mapping model parameters of Ii , namely to determine the positions of the red knots.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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cðIi; IjÞ ¼ 1
3

daHðIi; IjÞ þ db
HðIi; IjÞ þ cbase

� �
; ð5Þ

where daHðIi; IjÞ and db
HðIi; IjÞ denote the distances between his-

tograms of the overlapping regions between Ii and Ij in the a and
b channels, respectively. Note that the cost value won’t be affected
by the difference in the luminance channel, since the satisfying
luminance consistency is easy to be obtained in the global optimiza-
tion and should not interfere the selection of color reference. Spe-
cially, the regularity term cbase, set as 1 in our experiments, aims
to avoid to find a least-cost path across too many nodes in some
extreme cases. According to the cost values that are bigger or smal-
ler than the given thresholds in the a and b channels, the arcs are
classified into consistent arcs and inconsistent ones, as shown in
Fig. 7(a). In our experiments, the threshold combination was set
as ð0:03;0:005Þ for the a and b channels, respectively, which can
always give the ideal results according to a lots of testing results.
As a result, we can get some connected sub graphs with the consis-
tent arcs, for example, the image subsets {08,13,14} and
{17,18,19,20} shown in Fig. 7(a), and these image subsets were
selected as candidate sets for reference image subset. The nodes
of the maximum connected sub graph with the consistent arcs are
automatically selected as the reference image subset.
3.2.3. Optimal transferring path
By applying the shortest path algorithm, we can find the opti-

mal transferring path from the root (i.e., the selected reference
image subset) to each of other nodes by searching on the spanning
tree as illustrated in Fig. 7(b). Thus, the color characteristics of the
reference images can be transferred to any other image by cascad-
ing the mapping relations along the optimal path, which can be
described as a mapping curve fitted by the updated extreme point
pairs.

To avoid an extreme case in which there are too few matches,
first of all, we fit the mapping curves based on the matched his-
togram extreme points, and then select some denser samples
evenly on these curves. According to the evenly-distributed sam-
ples on the mapping curves, we can solve the unknown control
points of the mapping model to best fit the samples as shown in

Fig. 6(b), which are used as the initial solution f�f igNi¼1 of the map-

ping curves ff igNi¼1 for the following global optimization where N
is the total number of images.
3.3. Global consistency optimization

Although all the images may present the similar color charac-
teristics to those of the original reference images via applying
the initial solution, there probably exist some subtle color differ-
ences among images since these deviations have never been pro-
cessed in a global way. In this section, we propose to adjust all
the images jointly in a unified energy framework to increase the
global color consistency, and the optimization procedure is con-
ducted independently in each channel with the energy function
formulated as:

E ¼
X

Ii\Ij–£;i;j2½1;N�
wijEdataðf i; f jÞ þ k

XN
i¼1

Esmoothðf iÞ

subject to : f 0i > 0;8i 2 ½1;N�ð6Þ
where wij is the weight proportional to the area of the overlapping
region between Ii and Ij;N is the total number of all the images, and
the first-order derivative f 0i of f is used to ensure the mapping mono-
tonically increasing. The parameter k denotes the weight coefficient
(we set it as 200 by default) for balancing the data term and the reg-
ularity one, which are respectively expressed as:

Edataðf i; f jÞ ¼
XKij

k¼1

f iðv i
kÞ � f jðv j

kÞ
� �2

;

Esmoothðf iÞ ¼
XQ
q¼1

f iðv i
qÞ � �f iðv i

qÞ
� �2

;

8>>>>><
>>>>>:

ð7Þ

where Kij denotes the number of the matched extreme point pairs

fPi
k;P

j
kg

Kij

k¼1 with the intensities fv i
k;v

j
kg

Kij

k¼1 between Ii and Ij, and Q

is the number of evenly-distributed control knots fvqgQq¼1, which
is the same for all images (Q ¼ 6 was used in this paper). Specially,

f�f igNi¼1 stands for the initial solutions of ff igNi¼1, which are computed
from the operation detailed in Section 3.2. The above defined data
term is used to measure the color difference between adjacent
images based on the matched extreme point pairs whose corre-
sponding transformed intensities will be iteratively interpolated
from the fitted mapping curves based on the optimized evenly-

distributed control knots fvqgQq¼1, while the smooth term is used

to ensure that the optimized mapping curves ff igNi¼1 do not deviate



Fig. 7. An illustration of finding the optimal reference subset and the optimal transferring order: (a) the graph of 20 images in 4 strips with 5 images each, whose arcs are
labeled in red (consistent arcs) or in blue (inconsistent arcs), where the nodes of the maximum connected sub graph with the red arcs are selected as the reference image
subset; (b) the spanning tree generated by the shortest path algorithm, which is applied with the costs between the reference images set as 0. Note: the nodes of the reference
subset are labeled in red as the root ones. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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too far from the initial solution f�f igNi¼1 which represents the tonal
characteristic of natural meanings, and the gradient of quadratic
spline is increasing monotonicity. The above optimization can be
easily solved by the Levenberg–Marquardt (LM) algorithm. Note

that the initial solution f�f igNi¼1 are parameterized with the matched
extreme point pairs obtained via the optimal transferring path

while the finally optimized solution ff igNi¼1 are parametrized with
the evenly-distributed control knots.

It should be noted that the non-uniformly matched extreme
point pairs are used as the constrain information or measurements
during global optimization and the evenly-distributed control
knots are unknown parameters to be optimized in this paper. For
two images, we can also regard the matched histogram extreme
points as unknown parameters, which can better represent the
monolithic color characteristic. Nevertheless, in the multi-view
case, each image always has several overlapping neighbors with
distinctive tones and we can get multiple sets of matched extreme
points for each image, based on which it is hard to adjust the color
tones of adjacent images jointly. In order to address this important
issue, we select the evenly-distributed control knots on the map-
ping curves as unknown parameters based on which color tones
can be adjusted jointly.
3.4. User preference editing

As described above, our color consistency algorithm is auto-
matic completely and doesn’t need the user input or the parameter
setting to obtain a consistent color appearance across all the
images. To guarantee the result to be as natural as possible, the
final color characteristics will be similar to those of the reference
images selected during constructing the initial solution for guiding.
The reference images are selected based on the principle keeping
the major tone of the original images, however, users may prefer
some particular color characteristic presented on some original
image(s). To provide the function of the user editing, users can
select the reference images manually during building the initial
solution and the color appearance will propagate across all the
images after the process of our algorithm, as an illustration shown
in Fig. 3(Bottom-Left).
When there exist obvious color differences among a large set of
images covering a wide area, only one local reference image subset
cannot make all images presenting similar color characteristics
after applying the initial solution and would possibly result in a
large propagation cumulative error for images which are far away
from the reference image subset. To overcome this problem, our
proposed algorithm allows the user to manually select two or mul-
tiple separated image subsets as the reference. This can effectively
alleviate the propagation cumulative error caused by applying the
initial solution which transfers color characteristics of the refer-
ence subsets to any other image by cascading the mapping rela-
tions along the optimal transferring path. The optimal mapping
graph based on two or multiple reference subsets are utilized as
the initial solution for global optimization, as illustrated in Fig. 8
from which we observe that a more consistent color can be
achieved by manually selecting two image subsets as the refer-
ence. Moreover, to make the color appearance more appealing,
the user can edit the color of partial images by some softwares like
Photoshop or techniques in advance and set them as the reference
images in our algorithm.
4. Experimental results

In remote sensing community, there are basically two cate-
gories methods to adjust the tone of images. The one is radiance
calibration, such as the top-of-atmosphere(TOA) correction. Such
kind of algorithms, based on some well-defined physically imaging
model, are usually used to remove the effects induced by atmo-
sphere condition or sensors’ quality for a single image. The other
is tonal correction based on physical model, which aims at turning
a group of multi-view images into a consistent tone by adjusting
their color palette. Thus, they are mainly used in cartographic
applications and image mosaicking visualizations. Our proposed
method belongs to the latter. In this section, only tonal correction
based methods will be compared while radiance calibration based
methods will not be discussed. This is because they only works on
dataset whose imaging parameters are available, and their perfor-
mance on multi-view tonal correction can not match those of tonal
correction based methods, as Fig. 9 illustrated.



Fig. 8. Comparison after selecting one or two image subsets as reference: (Top) a composited mosaic of original 18 images; (Middle) the mosaicking result after applying the
single reference subset marked in the red rectangle; (Bottom) the mosaicking result after applying two reference subsets marked in the red rectangles. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. The experimental results on multispectral images acquired by Landsat8 satellite: (a) original images displayed as a composited mosaic by a simple superposition and
labeled by its image index at the upper right corner; (b) the result corrected by TOA correction; (c) the result corrected by our approach with the auto-selected consistent
reference image subset f1;2;5g. The TOA radiation correction was applied with the FLAASH Atmospheric Correction Module of a commercial software named ENVI on the
multispectral images.
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To test our method, four typical datasets, including one syn-
thetic dataset and three real ones, were used to evaluate our pro-
posed approach. Along with the experimental analysis, the
comparative experiments with the state-of-the-art algorithm pro-
posed by Park et al. (2016) were performed, which were evaluated
both qualitatively and quantitatively. The quantitative evaluations
were made by computing the average color difference between all
the image pairs in each channel (l;a, and b) according to Eq. (4)
and their corresponding consumed time. The comprehensive anal-
ysis results demonstrate the superiority of our approach in
improving the color consistency of sequential images for
mosaicking.



52 R. Xie et al. / ISPRS Journal of Photogrammetry and Remote Sensing 135 (2018) 43–59
4.1. Synthetic dataset

In this experiment, a synthetic image dataset comprised of
5� 5 images was cropped from a wide-view high resolution
remote sensing image as shown in Fig. 10(a) with the size of
3676� 3127 pixels, in which there exists a 20% overlap between
two adjacent images. To test the robustness of our approach, all
these cropped images, except for three particularly selected as
the reference, were adjusted individually in a commercial software
named Photoshop to present a diverse appearance, as illustrated in
Fig. 10(b). During our experiment, the three unedited images were
selected automatically as the optimal reference images in our
approach, and they were also kept fixed in the optimization of Park
et al.’s approach (Park et al., 2016) to make the comparison mean-
ingful. For the convenience of more detailed comparisons, all the
images via different operations are all displayed in the form of
the mosaicked image through a simple superposition as shown in
Fig. 10(b). From the results shown in Fig. 10(c)–(d), it’s easy to find
that the color consistency among images via both approaches have
been increased so much that there is nearly no difference between
the original image and the mosaicked images composited from
them. However, compared to Park et al.’s approach, our approach
has obtained a more consistent result with the original images,
for example, the top right part of the image shown in Fig. 10(c)
has not been corrected completely from the color cast using Park
et al.’s approach. As a quantitative evaluation, the similarity
between each transferred image and its original image was mea-
sured by computing the Peak Signal to Noise Ratio (PSNR), and
the analysis results illustrated in Fig. 11 show the superiority of
Fig. 10. The experimental results on the synthetic dataset (SYNTHETICS): (a) the orig
individually via Photoshop displayed as a composited mosaicked image; (c) the result corr
in optimization, and the red box marks an example region inconsistent with the original
reference image subset {12,13,14}. (For interpretation of the references to color in this
our approach over Park et al.’s approach in keeping the PSNR of
the transferred results.

The visual variations on the images shown in Fig. 10(c)–(d) are
not obvious enough but the related numerical comparative analy-
sis in each channel shown in Table 1 demonstrates that the color
deviation between image pairs greatly decreased after the applica-
tion of both Park et al.’s approach and ours. Further more, we
observe that our approach achieved a more consistent result than
Park et al.’s approach in all channels. This benefits from our used
mapping model that has more degrees of freedom (DoFs) to adjust
the appearance of each image, while Park et al.’s approach only
employed a 2-DoF model based on the gamma correction.

4.2. Real multi-temporal datasets

4.2.1. Comparative analysis
Firstly we tested our approach on a set of multi-temporal

images with three strips consisting of 21 images with the down-
sampling size of 2294� 1904 captured by the Chinese satellite
ZY-3. These three strips, comprised of 01 � 07;08 � 14, and
15 � 21 images, respectively, as shown in Fig. 12(a), were captured
at different times, 2012/06/26-15:34, 2013/06/15-15:42, and
2012/06/16-15:37, respectively. Because of the different atmo-
sphere conditions or various angles of lighting, there exists the
color inconsistency among both intra-strip and inter-strip images.
After applying the color consistency optimization, all the images
were turned into a similar color characteristic, as shown in
Fig. 12(b) and (c) corresponding to Park et al.’s approach and ours,
respectively. The final color appearance of the result via our
inal high-resolution image; (b) the cropped images with a 20% overlap adjusted
ected by Park et al.’s approach (Park et al., 2016) with image subset {12,13,14} fixed
image in color style; (d) the result corrected by our approach with the auto-selected
figure legend, the reader is referred to the web version of this article.)



Fig. 11. The PSNR comparative results of the transferred images with respect to their corresponding original ones by Park et al.’s approach and ours, respectively. From top to
bottom, the comparative results correspond to the l;a, and b channels, respectively. Note that the values of PSNR for the images {12,13,14} in Park et al.’s approach are omitted
since they are totally the same with their original ones.
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approach is close to the color characteristics of the auto-selected
reference image subset {13,14,19,20,21}. There is a noticeable tonal
difference between image strips and residual white tone uncor-
rected (marked in red boxes) in Fig. 12(c). From the visual compar-
ison, it is hard to say whose result is much better. The numerical
comparative analysis for this dataset is reported in Table 1, which
demonstrates the superiority of our approach over Park et al.’s in
decreasing the color difference among images.

Besides, we should notice that the appearance of the image 07
has not been changed under the operation of Park et al.’s approach.
Because of lacking the texture and the low contrast, the feature
matching between the image 07 and other images failed, so it
has no access to join into the optimization. Therefore, as far as
robustness is concerned, our approach relying on the histogram
extreme points matching of overlapping regions is superior to Park
et al.’s approach relying on feature matching, since the overlapping
regions can be determined easily and robustly but sometimes fea-
ture matching doesn’t work. Moreover, it should be noted that the
quality of the initial solution makes direct effects to the final
results, since the finally optimized result is actually a local optimal
around the initial solution. For example, a better performance is
obtained on the synthetic datasets than dataset-1, and it is because
the squared layout of the synthetic data benefits from the central
reference image making relatively shorter average transferring
path, which tends to provide an initial solution of higher quality
for the final optimization.

For a more noticeable comparison on vision, the second multi-
temporal dataset consisting of 16 images with a down-sampling
size of 2795� 2295, which presents even more severe color differ-
ence, was used to test the approaches further. The original images
are shown in Fig. 13(a) as a mosaicked image, and the correspond-
ing results of Park et al.’s approach and ours are illustrated in
Fig. 13(b) and (c), respectively. The result of Park et al.’s approach
has noticeable tonal difference between image strips and residual
yellow tone uncorrected (marked in red boxes). Besides, in
Fig. 13(b), the mosaicking contour lines between inter-strip images



Table 1
Quantitative evaluations on the experimental results of the four datasets. Unit of time: second (s).

Methods Item l a b Time

Synthetics Input 0.19504 0.02053 0.00370 0.00
Park et al.’s method 0.01586 0.00434 0.00076 1044.14

Our approach 0.00126 0.00310 0.00046 15.07

Dataset-1 Input 0.03910 0.01470 0.00179 0.00
Park et al.’s method 0.02440 0.00597 0.00091 5209.64

Our approach 0.02055 0.00327 0.00063 56.89

Dataset-2 Input 0.06835 0.02450 0.00248 0.00
Park et al.’s method 0.03402 0.00895 0.00101 3649.97

Our approach 0.02068 0.00232 0.00039 35.22

Dataset-3 Input 0.21265 0.03764 0.00491 0.00
Park et al.’s method 0.09458 0.02145 0.00267 2744.31

Our approach 0.07294 0.01207 0.00220 38.36

)c()b()a(

Fig. 12. The experimental results on three strips of multi-temporal images (Dataset-1): (a) original images labeled by its image index at the upper left corner; (b) the result
corrected by Park et al.’s approach; (c) the result corrected by our approach with the auto-selected consistent reference image subset f13;14;19;20;21g.
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in the first and second strips are more obvious, on the contrary, the
color consistency optimization performed better between the third
strip of images and the fourth strip of images. It is because the for-
mer has lower overlaps and feature matching didn’t work so well,
which resulted in a few feature matches. Although there is a great
color difference among original images, the result corrected by our
approach takes on such a good consistent appearance that the
boundary lines between images are almost invisible. Also, we
observe that the color consistency was kept well in intra-strip
images. Table 1 shows the comparative statistics in mean his-
togram distances between all pairs of images for Park et al.’s
approach and ours. It should be noted that the reference images
were selected manually as f03;04;09;10g, because setting the
automatic consistent subset as reference would result in a little
over-saturation effect on the image 04 (for example, the lake turns
sort of green). This is the weakness of histogram mapping algo-
rithm for color transfer, which is prone to possibly causing the
pixel saturation problem when the color difference among images
is very large or the color transferring path is too long.

The last dataset contains 18 multi-temporary images acquired
by Chinese GF-2 satellite, which present obvious tonal variations
as shown in Fig. 14(a). The corresponding results of Park et al.’s
approach and ours are illustrated in Fig. 14(b) and (c) respectively.
Obviously, the whole visual feeling of Fig. 14(c) is more natural and
consistent than that of Fig. 14(b), as can be observed that Fig. 14(b)
improves very limitedly with respect to Fig. 14(a). This was con-
tributed by two aspects: the one is that the correction model is
more flexible to handle dramatic color disparity, and another is that
the transfer of reference tone guarantees a natural appearance.

4.2.2. Efficient analysis
Our method was implemented with C++, while the code of Park

et al.’s approach is provided in Matlab implementation. All the pro-
cedures were tested in a computer with an Intel Core i5-3350 at



Fig. 13. The experimental results on four strips of multi-temporal images (Dataset-2): (a) original images with large and diverse color differences; (b) the result corrected by
Park et al.’s approach; (c) the result corrected by our approach with the manually selected yellow-tone reference images f03;04;09;10g. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

(a) )c()b(

Fig. 14. The experimental results on multi-temporal images acquired by Chinese GF-2 satellite (Dataset-3): (a) original images with large and diverse color differences; (b)
the result corrected by Park et al.’s approach; (c) the result corrected by our approach with the color consistent reference image subset f10;16;17;18g. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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3.1 GHz with 16 GB RAM and the running times are depicted in
Table 1. Because the publicly provided code of Park et al.’s
approach was implemented with Matlab, the comparison of run-
ning time is meaningless and we prefer to analyze the algorithm
complexity. Park et al. utilized a robust low-rank matrix factoriza-
tion method to estimate model parameters, which just needs
sparse feature matching. But, structure from motion (SfM) and
inner iterative scheme are respectively used to obtain multi-
image correspondence and matrix decomposition, which take the
major computation and the computational cost towards time is
typically high. In our method, color correspondences extraction
takes the major computation, and the global optimization con-
verges quickly with the provided initial solution.

In general, an image featuring or blending operation must be
applied after color tonal correction to generate a mosaic as seam-
less as possible. To demonstrate the effectiveness and superiority
of our method, we applied a multi-band blending method (Burt
and Adelson, 1983) with an open-source software called ‘‘Enblend” 1
1 Available at http://enblend.sourceforge.net/.
on the corrected images from the second real dataset. Enblend
allows the user to change the number of levels for pyramid blending,
based on which we can change the number of levels to analyze the
color consistency performance on the finally mosaicked results. Each
new level works on a linear scale twice as large as the previous one,
which means the n-th level contains the image data at the 2n-pixel
scale. The image with the size of width� height pixels can not be
deconstructed into a pyramid of more than log2ðminðwidth;heightÞÞ
levels. Fewer levels emphasize local features and suppress global
ones. For comparison, we applied the multi-band blending on three
groups of images, consisting of the original second real dataset, and
the corrected results on the second real dataset via Park et al.’s
approach and ours. Limited by the image size, the number of levels
only can be changed from 1 to 11 and the mosaicked results with
1, 6 and 11 levels are illustrated in Fig. 15. The mosaicked images
in the first row, as shown Fig. 15(a)–(c), were generated by applying
Enblend with 1 level, which is equivalent to the simple superposition
with the detected seamlines in practice. The stitching artifacts
caused by color inconsistencies can be obviously observed in
Fig. 15(a)-(b) but it almost disappeared in our result as shown in
Fig. 15(c). With the increase of the number of levels, the stitching

http://enblend.sourceforge.net/


)c()b()a(

)f()e()d(

)j()i()h(

Fig. 15. Visual comparison with respect to different numbers of levels used in ‘‘Enblend”: (a), (d) and (h) the results of original images after blending; (b), (e) and (i) Park
et al.’s results after blending; (c), (f) and (j) the results of our approach after blending. From top to bottom, the comparative results correspond to one, six and eleven levels,
respectively.

Fig. 16. The computational times of applying ‘‘Enblend” with different numbers of pyramid levels on the second real multi-temporal image dataset shown in Fig. 15(a).
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artifacts were gradually concealed. Even with the maximum number
(i.e., 11) of levels, the stitching artifacts can be observed indistinctly
on the results of the original images and the corrected ones by Park
et al.’s approach as shown in Fig. 15(h) and (i), respectively. This
experiment demonstrates that the color consistency correction is
necessary for image mosaicking when there exist large color differ-
ences among the images. In addition, it sufficiently demonstrates
that our approach outperformed Park et al.’s.
Fig. 17. Comparative results on histogram distances of different image sets with resp
correspond to the l;a, and b channels, respectively. The solid and dotted lines correspon
The computational costs of applying Enblend with different
numbers of pyramid levels for image blending are shown in
Fig. 16. These costs don’t cover the computation of seamline
searching. The computation of applying Enblend with 1 level was
not taken into account, because it is equivalent to the simple
superposition with the detected seamlines in practice. From the
experimental results of different numbers of pyramid levels, we
can observe that the computational time ascends along with the
ect to the numbers of control knot. From top to bottom, the comparative results
d to remote sensing image sets and the panoramic image set, respectively.
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increase of the number of pyramid levels. In order to achieve a
good color consistency of an image mosaic, the required number
of pyramid levels corresponding to our approach is much less than
the number of Park et al.’s approach, which results in the less com-
putation cost. These experimental results demonstrate the superi-
ority of our approach over Park et al.’s in the aspect of
computational effectiveness.

4.3. Analysis on the number of control knots

We selected several datasets to analyze the number of evenly-
distributed control knots that parameterize the quadratic spline
curve. To keep the diversity of testing data, both panoramic images
and remote sensing oneswere used to analyze the effect of the num-
ber of control knots. Considering more obvious color differences
existed in remote sensing images and the just different luminances
existed in the most panoramic images, we chose a set of 18 panora-
mic images as shown in Fig. 8 and four sets of remote sensing ones
including multi-temporal and multi-resolution images with two or
three strips consisting of 8 and 16 ones captured by the Chinese
satellite GF-1, and 8 and 21 ones captured by the Chinese satellite
ZY-3.

When the number of control knots decreases for the same data-
set, the corresponding constraint on the quadratic spline curve will
be loosened, which possibly results in the lower optimization accu-
racy. In theory, we can choose a greater number of control knots to
increase the accuracy, but the corresponding optimization becomes
more complex. The comparative analysis on five image sets
reported in Fig. 17 shows that the histogram distances of the over-
lapping image regions for each channel (corresponding to l;a and b,
respectively) decrease quickly at the beginning and keep relatively
stable when the number of control knots exceeds 6. Taking both
accuracy and complexity into consideration, we used 6 control
knots in this paper.

5. Conclusion

In this paper, we proposed a novel approach to improve the
color consistency of sequential images for mosaicking. Firstly, the
specially proposed histogram extreme points matching strategy
increases the reliability and precision of intensity correspondence
greatly. To achieve a satisfying consistent appearance of the
images, we proposed to provide an initial solution, learned from
the major color style of the original images, to the global optimiza-
tion as a guidance. The energy function of the global optimization
was designed to minimize the total color difference under the con-
straint of not going far away from the initial solution. Experimental
results on several representative synthetic and real image datasets
sufficiently demonstrate the proposed method is superior to the
state-of-the-art algorithm through qualitative analysis and quanti-
tative estimation. However, there also exist some deficient aspects
to be further improved in our approach. One is the strategy of
selecting the reference image subset, which won’t select two or
multiple subsets disconnected with each other, even though they
are in a very consistent tone. Besides, when the color difference
among images is very large or the color transferring path is too
long, the weakness of histogram mapping algorithm for color
transfer is prone to causing pixel saturation problem. A more effec-
tive solution to avoid pixel saturation should be considered in such
algorithm based on the mapping curve optimization. All of these
problems will be deeply investigated in our future work.
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