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Catan (formerly known as The Settlers of Catan) is a board game based on property
development and resource trading. Like many other games, Catan contains opportuni-
ties for the application of game theory, probability, and statistics (see, e.g., [1]). How-
ever, some games also provide interesting contexts for exploring combinatorics (see,
e.g., [3]). Catan is one such game due to its game board design which allows play-
ers to “construct” a new board every time they play by randomly arranging nineteen
hexagonal tiles, eighteen number tokens, and nine port (harbor) markers according to
a set of given parameters. To many, this leads to seemingly endless possible boards,
but a mathematician will likely raise the “Catanbinatorics” question of exactly how
many possible boards exist. In this paper we use basic combinatorial techniques to
explore this question. We also address two related counting problems by focusing on
parts of the game board design. The first reconsiders the way in which we count the
arrangements of number tokens based on their role in the game. The second explores
two methods of counting non-equivalent ways to arrange only the resource tiles. One
might expect that no longer considering the number tokens and ports would simplify
calculations, however, removing these components surprisingly makes the problem
more complex (and interesting!) to solve.

A Brief History of Catan

Catan is an award-winning, internationally popular, easy-to-learn strategy board game
which has been credited with revolutionizing the board game industry [7]. Since its
introduction in Germany in 1995, Klaus Teuber’s innovative game has received numer-
ous awards including, but not limited to, Spiel des Jahres Game of the Year (1995),
Meeples Choice Award (1995), Games Magazine Hall of Fame (2005), and GamesCon
Vegas Game of the Century (2015) [2]. As of 2015, Catan has sold over 22 million
copies and has been translated into over 30 different languages [9]. It has inspired
several expansions and themed game variations, as well as several digital adaptations
for platforms such as Microsoft, Nintendo, Xbox, iPod/iPhone, and Facebook [2]. The
seasoned Catan player may even notice some subtle differences between editions of
the base game. We will not explore these expansions and variations.

The complexities of Catan as a strategy game have received attention in both pro-
fessional and recreational domains. Computer scientists have praised Catan as a sce-
nario ripe with potential for artificial intelligence and programming analysis (see, e.g.,

Math. Mag. 92 (2019) 187–198. doi:10.1080/0025570X.2019.1561096 c© Mathematical Association of America
MSC: Primary 05A15, Secondary 20B30
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/umma.

mailto:jwaustin@salisbury.edu
mailto:kronenthal@kutztown.edu
mailto:smolitor@kennesaw.edu
http://www.tandfonline.com/umma


188 MATHEMATICS MAGAZINE

[6,11,13]). Mathematicians have highlighted how one might mathematize the choices
made during initial settlement placement by using statistics and expected value to
assign values to potential settlement locations based on players’ individual strategies
[1]. Catan has also received significant attention in various amateur circles via blog
posts and other unreviewed works. Several of these focus on counting problems related
to Catan, including how many distinct possible boards exist (see, e.g., [8, 10, 12]).
Many present correct information, and furthermore some discuss approaches similar
to what appears in this paper. However, the mathematics presented here was developed
independently. Due to the general unreliability of unreviewed information, we assert
the value of an authoritative and mathematically accurate exploration that is widely
accessible while still substantive and interesting. We hope the reader will find that this
paper satisfies these goals.

Board Construction

According to the Catan game rules, the board is assembled in three stages: the resource
tiles, the number tokens, and the ports. The first step is positioning the nineteen hexag-
onal resource tiles in a larger roughly hexagonal configuration shown in Figure 1.
These tiles designate which resources will be produced by each location on the board.
There are four lumber tiles, four grain tiles, four wool tiles, three brick tiles, three ore
tiles, and one desert tile which does not produce any resources.

Next the number tokens are arranged, one per hexagon resource tile with the excep-
tion of the desert. The number tokens are labeled “2” through “12” (excluding “7”),
with one “2,” one “12,” and two of each for numbers “3” through “11” (except “7”).
These tokens are placed in one-to-one correspondence with the resource tiles and dic-
tate when each resource will be produced during the game; at the start of each turn, a
player rolls a pair of dice and the resource tiles whose label matches the roll will pro-
duce resources for any player who has a settlement adjacent to the tile. The game rules
dictate that tokens with red numbers (labeled “6” or “8”) cannot be next to one another;
however, for the purposes of this article, we are opting to ignore this restriction in favor
of an entirely random set-up design.

The final phase of board construction involves placing ports at different designated
locations around the larger hexagonal configuration, also shown in Figure 1. The ports
allow players to trade two of a specified resource type for one of any other or to trade
three of any common type for one of any other. There is one port for each of the
five resources (lumber, brick, wool, grain, and ore), and four ports which allow any
resource to be traded at the reduced three-for-one rate.

How Many Boards?

One’s first instinct when counting the number of boards may be to consider it as no
more than a relatively straight-forward combinatorial problem for permutations with
repeated elements, similar to counting the number of possible arrangements of the
letters in the word MISSISSIPPI. We begin with the resource tiles, number tokens,
and ports, and then account for equivalent boards under symmetries.

In laying out the resource tiles we begin with the 19 tile locations and choose four
for the lumber, four for the grain, four for the wool, three for the ore, and three for
the brick, with the remaining spot designated as the desert. So the number of ways to
arrange just the resource tiles would be

(
19

4, 4, 4, 3, 3, 1

)
=

(
19

4

)(
15

4

)(
11

4

)(
7

3

)(
4

3

)
= 244,432,188,000. (1)
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Figure 1 A sample board.

Then, adding in the number tokens would require selecting two of the eighteen non-
desert spots for each number token from “3” to “11,” excluding “7,” and then choosing
one of the remaining two spots for the “2” and the other by default for the “12.” So the
number of ways to place the number tokens would be

(
18

2, 2, 2, 2, 2, 2, 2, 2, 1, 1

)
=

(
18

2

)(
16

2

)(
14

2

)(
12

2

)(
10

2

)(
8

2

)(
6

2

)(
4

2

)(
2

1

)

= 25,009,272,288,000.

Adding the ports is a much simpler process because we would simply choose four
locations for the three-for-one ports and then distribute the five resource-specific ports
among the remaining five positions, for a total of

(
9

4

)
· 5! = 15,120.

To obtain the total number of possible boards, we multiply the number of arrange-
ments for each of these three components, i.e., the resource tiles, number tokens, and
ports, to get more than 9.2429635 × 1028 possible configurations of the resources num-
bers and ports. While this may seem like the final number of boards, there is one more
factor which must be taken into account. Because of the way Catan is played, the
structure of the game board depends only on how various elements of the board are
arranged relative to one another. The general arrangement of resource tiles, number
tokens, and ports has (120n)◦ rotational symmetry for n = 0, 1, 2 and three lines of
symmetry; see Figure 2. Any such rotation or reflection of a given board will create
a new configuration while maintaining all salient adjacencies among board elements,
and therefore can be thought of as equivalent to the original board. So for any given
board there are five other equivalent boards as related by possible reflections, rotations,
and combinations thereof. So we must divide our previous total number of configura-
tions by six in order to account for the six equivalent versions of the same board. This
leaves us with more than 1.5404939 × 1028 boards. But this is not the end; there are a
few more important “Catanbinatorial” questions to consider.
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Figure 2 This figure contains images of six equivalent boards; they are simplified in that
only one port and one resource tile are labeled to make the equivalences more visible. If
(a) is considered the original board, (b) can be obtained by rotating (a) 120◦ clockwise, (c)
can be obtained by rotating (a) 240◦ clockwise, and (d), (e), and (f) can each be obtained
by reflecting (a) across the line shown on each respective board.

Equivalence among number token configurations

The strategy for counting the arrangements of the number tokens provided earlier can
also be refined for equivalent configurations based on how the number tokens act dur-
ing game play. The primary purpose of the numbers involves connecting the production
of resources to the roll of a pair of standard six-sided dice. Each turn begins with a dice
roll; resources are then produced by the resource tiles which have number tokens that
match the number produced by the roll and are collected by any player(s) who have a
settlement adjacent to the producing resource tiles. Because of this function, one may
wish to think of the number tokens based on their probability of being rolled rather
than the actual number printed on each. For example, a “6” and an “8” are essentially
the same because they are equally likely to be rolled. Under this assumption there are
two number tokens with probability 1/36, and four each of tokens with probabilities
2/36, 3/36, 4/35, and 5/36. So instead of placing two “6” tokens and two “8” tokens,
one can imagine distributing four tokens with probability 5/36.
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This would reduce our calculation to(
18

4, 4, 4, 4, 2

)
=

(
18

4

)(
14

4

)(
10

4

)(
6

4

)
= 9,648,639,000.

This result is significantly smaller than our original estimate which contained nearly
25 trillion more possibilities. However, such groupings may seem a bit hasty to the
seasoned Catan payer. Although in the long term a 6 and an 8 are equally likely to be
rolled, the game has a much different feel depending on if your settlements are adja-
cent to duplicate number tokens such as two tokens labeled “6” or diversified number
tokens such as a “6” and an “8.” In order to take this into account and still consider
duplicate boards we consider only the possibility of switching pairs of numbers, such
as switching the two “6” tokens with the two “8” tokens. Because there are five pairs
of numbers with the same probability of being rolled, we can simply divide the orig-
inal calculation by 25, one 2 for each pair that could be switched. This brings our
total to ( 18

2,2,2,2,2,2,2,2,1,1

)
25

=
(18

2

)(16
2

)(14
2

)(12
2

)(10
2

)(8
2

)(6
2

)(4
2

)(2
1

)
25

= 781,539,759,000.

Replacing the original calculation for number tokens with this equivalent one would
again reduce the total number of boards to more than 4.8140434 × 1026 possible
boards. This is still a lot of boards. If we counted one possible board every second
of every day for 365 days a year, it would still take over 1.5 × 1019 years to go through
them all!

Counting Resource Configurations

In the following section, we explain two ways to count the total number of possible
configurations of the 19 resource tiles alone, without considering the number tokens
or ports. Why isn’t the answer 244,432,188,000 as calculated earlier in equation (1)?
If we are only placing the resource tiles, we actually have a significantly more compli-
cated system of symmetries to explore. When considering complete boards, the pres-
ence of the number tokens and ports eliminates these symmetries. Thus, this work
must be considered as its own problem and cannot inform the board counting argu-
ment. The reader may wish to pause while admiring this mathematical oddity: one
might expect that removing the number tokens and ports from consideration would
make calculations easier. However, this simplification surprisingly makes the problem
more complex to solve.

Hence, our main objective in this section is to account for this more compli-
cated system of symmetries of resource tile configurations. We do so in two ways.
The first uses a simple and readily accessible direct approach without any heavy
machinery. The second approach is more elegant and makes use of abstract
algebra.

First, we note that no nontrivial rotation (less than 360◦) of a configuration can
ever produce itself. Indeed, there are no fixed configurations under 60◦ or 300◦ rota-
tions because there are not six copies of any single resource (see Figure 3a). Simi-
larly, there are no fixed configurations under 120◦ or 240◦ rotations because there are
not six sets of three like resources (see Figure 3b). Finally, there are no fixed con-
figurations under a 180◦ rotation because there are not nine pairs of like resources
(see Figure 3c).
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Figure 3 Nontrivial rotations of less than 360◦ do not fix any configuration.

A Direct Approach We begin by placing the desert; there are four choices, up to
rotational and reflectional symmetry. For further explanation on type a and type b

lines of symmetry, see Figures 4 and 5, respectively.

• Case A: The desert lies in the outer ring on a type a line of symmetry.
• Case B: The desert lies in the outer ring on a type b line of symmetry.
• Case C: The desert lies in the inner ring.
• Case D: The desert is the middle tile.

We begin with case A; without loss of generality, suppose the desert is placed in the
uppermost location as shown in Figure 4.

Let T denote the set of all such configurations. Now,

|T | = 18!

4!4!4!3!3!
= 12,864,852,000.

Observe that any configuration that is NOT symmetric across line a will actually be
counted twice: once for each of the two equivalent configurations. Denote by Sa the
set of configurations that have reflectional symmetry across line a. Note that in all
such configurations, the pair of resources placed in locations labeled x1, x2, . . . , x7
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Figure 4 A case A configuration with symmetry across line a.

in Figure 4 must be the same. As there are eight available pairs (two pairs of wool
tiles, two pairs of lumber, two pairs of grain, one pair of brick, and one pair of ore) in
addition to a spare brick and ore, we proceed based on which of the eight pairs is not
chosen.

If we leave out a pair of wool, lumber, or grain, then there are
(3

1

) · 7!
2!2! ways to place

the pairs because there are
(3

1

)
ways to choose which pair to exclude, and 7!

2!2! ways to
place the 7 remaining pairs, dividing by 2!2! to account for the fact that there are two
identical pairs which may each be interchanged without changing the configuration.
We then must multiply by

(4
2

) · 2, the number of ways to place the remaining tiles (the
excluded pair of tiles, one brick, and one ore). Similarly, if we leave out a pair of brick
or ore, then there are

(2
1

) · 7!
2!2!2! · (4

1

)
configurations. Hence, we have

|Sa| =
(

3

1

)
· 7!

2!2!
·
(

4

2

)
· 2 +

(
2

1

)
· 7!

2!2!2!
·
(

4

1

)
= 50,400.

Therefore, since each configuration in T \ Sa is double counted, the total number
of distinct case A configurations up to symmetry is

|T | − |Sa|
2

+ |Sa| = |T | + |Sa|
2

= 6,432,451,200.

We next consider case B; without loss of generality, suppose the desert is placed as
shown in Figure 5.

As in the previous case, let T denote the set of all such configurations, double
counting those that are not symmetric across line b; once again,

|T | = 18!

4!4!4!3!3!
= 12,864,852,000.

We let Sb denote the set of configurations that have reflectional symmetry across line
b. This time, all eight pairs must be placed as illustrated in Figure 5, followed by the
left-over brick and ore, and so

|Sb| = 8!

2!2!2!
· 2 = 10,080.
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Figure 5 A case B configuration with symmetry across line b.

Hence, the total number of distinct case B configurations up to symmetry is

|T | − |Sb|
2

+ |Sb| = |T | + |Sb|
2

= 6,432,431,040.

As can be seen by comparing Figure 6 to Figure 4, the number of case C configu-
rations is equal to the number of case A configurations, namely 6,432,451,200.

Figure 6 A case C configuration with symmetry across line a.

Finally, we consider case D. This case requires a bit more care due to the central
location of the desert. It appears at first glance that we must consider rotational sym-
metry, but we already explained why this type of symmetry is impossible (see Figure 3
and the discussion immediately preceeding the “A Direct Approach” section). There-
fore, we need only account for three potential lines of symmetry of type a and three
potential lines of symmetry of type b. However, no configuration can be simultane-
ously fixed by a reflection of type a and a reflection of type b because this would
either require six copies of a single resource (see Figure 7a) or three sets of four like
resources and three additional pairs of like resources (see Figure 7b).
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Figure 7 No configuration can be reflected onto itself using both type a and type b

reflections.

Hence, the total number of distinct configurations up to symmetry is

1

6
·
( |T | − 3 (|Sa| + |Sb|)

2
+ 3 (|Sa| + |Sb|)

)
= |T | + 3 (|Sa| + |Sb|)

12

= 1,072,086,120,

where we divided by six because each configuration will be counted six times, one for
each of the six possible rotations of the board.

Combining all cases, the total number of configurations up to symmetry is

6,432,451,200 + 6,432,431,040 + 6,432,451,200 + 1,072,086,120 = 20,369,419,560.

“Ore” would you prefer a more elegant approach?

A More Elegant Approach In this alternative approach, we will use Burnside’s
lemma to simplify our counting problem. We will need the following concepts.

Definition. Let G be a group of permutations on a set S (in other words, each element
of G is a bijection φ : S → S). For any φ in G, define

fix(φ) = {i ∈ S|φ(i) = i}.
In other words, fix(φ) is the set of all elements of S that are fixed by φ.

Burnside’s lemma is a statement about orbits. Again, let G be a group of permu-
tations on a set S. Then for any s ∈ S, the orbit of G on s is the set of all elements
that s can be mapped to by an element of G; i.e., orbG(s) = {φ(s)|φ ∈ G}. Then there
exist s1, . . . , sn such that orbG(s1), . . . , orbG(sn) are disjoint and their union is S. The
choice of s1, . . . , sn is usually not unique; however, the number of orbits of G on S,
i.e., the value of n, is fixed for a given G and S. The purpose of Burnside’s lemma is
to calculate this number.



196 MATHEMATICS MAGAZINE

Theorem (Burnside’s Lemma). Let G be a finite group of permutations on a set S.
Then the number of orbits of G on S is

1

|G|
∑
φ∈G

|fix(φ)|.

For more information about these concepts, consult an abstract algebra text such as
[4] or [5].

In our problem, the group of permutations G is D6, the dihedral group whose ele-
ments are the 12 symmetries of a regular hexagon (six rotations and six reflections).
The set of all resource configurations, without removing symmetric configurations,
will be the set S; recall from (1) that |S| = 244,432,188,000. For a given resource con-
figuration s, the orbit of s is the set of all resource configurations that we can obtain
by applying the symmetries in G = D6 (rotations and reflections) to s.

Let’s begin by calculating fix(φ) for the six rotations φ. When φ is the rotation of
0◦ (i.e., the identity element of D6), φ fixes every element of S. Hence,

|fix(φ)| = |S| = 244,432,188,000.

Furthermore, notice that if φ is a rotation of (60n)◦, n = 1, . . . , 5, then |fix(φ)| = 0;
see Figure 3 and the discussion before the “A Direct Approach” section.

This leaves only the reflectional symmetries across lines of type a and b as described
previously. Before proceeding, recall that there are eight available pairs of resource
tiles (2 pairs of wool tiles, 2 pairs of lumber, 2 pairs of grain, 1 pair of brick, and 1 pair
of ore), as well as 1 additional brick, ore, and desert.

We’ll let Fa denote a reflectional symmetry (F for flip) across a line of type a. Then
to fill the seven pairs of locations (marked by x1, . . . , x7 in Figure 8a), we choose from
the eight pairs of resources. We must choose the pair to exclude, place the seven pairs,
and then place the remaining five resources along line a. Since there are two cases
(depending on whether the excluded pair is a wool, lumber, or grain, or is a brick or
ore), we have

|fix(Fa)| =
(

3

1

)
·
(

7

1, 1, 2, 1, 2

)
·
(

5

2

)
· 3! +

(
2

1

)
·
(

7

2, 2, 1, 2

)
·
(

5

3

)
· 2!

= 252,000.

Similarly, consider reflections across a line of type b. Then there are eight pairs of
locations to fill with the eight pairs of resources; see Figure 8b.

The remaining three locations are filled with the leftover brick, ore, and desert.
Hence,

|fix(Fb)| =
(

8

2, 1, 2, 1, 2

)
· 3! = 30,240.

Finally, we are ready to apply Burnside’s lemma. Since there are three reflectional
symmetries of type a and three of type b, and Figure 7 illustrates why Fa ∩ Fb = ∅,
the number of distinct configurations up to symmetry is

1

12

(
244,432,188,000 + 3(252,000) + 3(30,240)

)
= 20,369,419,560.

Of course, this is the same number as we obtained using the more direct approach!
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Figure 8 Configurations fixed under reflections across line a and line b, respectively.

Conclusion

The “Catanbinatorics” presented in this article provide a first insight into the com-
binatorial potential of this game board. The way the game itself is played provides
motivation for considering additional restrictions on board configurations such as
rules about resource or number adjacency, or limiting which number tokens might be
placed on which resource tiles. Counting the boards within these restrictions could
require still other rich combinatorial techniques. Additional counting problems may
be considered for similar boards with different quantities or types of tiles. Although
the number of possible boards is not actually endless, this game may provide countless
opportunities for the exploration of interesting “Catanbinatorics.”
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