
International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 3, Issue 1, January – February 2014 ISSN 2278-6856

Volume 3, Issue 1 January – February 2014 Page 243

Abstract: English reading comprehension is recognized as
a common problem for many non-English-speaking college
students in science and technology. Cumulative Sentence
Analysis, or CSA, was developed to help students master the
skill of reading and understanding technical writings in
English. Since each analysis step is rigorously defined, CSA
is especially suitable for e-learning and a web-based system
has been created to facilitate various activities in teaching
and learning CSA. This paper presents the design of such a
system.

Keywords: E-learning, Cumulative Sentence Analysis, E-
education, Web-Based Systems

1. INTRODUCTION
English is adopted as the standard language of
communication in many disciplines in science and
technology. Naturally, many textbooks and technical
papers in these areas are written in English. More often
than not, these writings employ long sentences with
complicated structures because authors need to present
complicated ideas with as much precision as possible.
Many non-English-speaking college students in these
fields of study, therefore, face the daunting task of
overcoming the language hurdle so as to be able to read
and understand textbooks and other technical writings
correctly and efficiently.

The situation is not much different for college students
in Taiwan. Even though they have six years of English in
high school, where basic English grammar is not only
taught but also made a big part of many tests, most of
them still have difficulties applying grammar rules
effectively in analyzing difficult long sentences. Failure to
understand sentences in a textbook makes reading
comprehension at higher levels, such as paragraphs and
sections, even more difficult.

CSA, short for Cumulative Sentence Analysis [1], is
our effort to help students deal with this problem. It is
basically a method for analyzing English sentences in
precisely defined steps. CSA has been included as part of
the English for Science and Technology (EST) course at
Information Engineering Department in I-Shou
University, where most courses are still taught using
English textbook. Since the primary goal of the EST
course is to teach students how to read and understand
textbooks in English, students are first taught CSA and
then asked to apply CSA on selected sentences from the

textbook of another course taught at the same time as
EST. In the past few years, we have been using Absolute
C++ [2], which is the textbook used in Computer
Programming. A separate study has shown that CSA is
indeed effective in improving students' reading
comprehension [3].

Since its inception, CSA has been accompanied by
software that facilitates the creation of formatted analysis.
This is out of necessity because CSA steps are so rigorous
and the format of the resulting analysis so rigid that
creating CSA results manually would be too time-
consuming and error-prone to be viable. This software
has gone through several versions over the past few years.

The purpose of this paper is to describe from a
technical point of view the design of the web-based
system that is currently used to support CSA instruction.
However, in order to fully justify some of the design
decisions, it is necessary to have a thorough
understanding of the steps in CSA. Section II presents a
rather detailed introduction for this purpose. In Section
III, the design of the web-based system is described with
screenshots illustrating functionalities provided by the
system. Section IV discusses future works and concludes
the paper.

2. 2. BRIEF DESCRIPTION OF CSA

It should be noted that the term CSA is used in this paper
to refer to two different things. In the broader sense, the
term refers to the method of incrementally accumulating
words to restore a sentence to its original form. In the
narrower sense, it refers to the end result one gets after
applying the method to a particular sentence. The context
in which the term appears usually provides enough
information to distinguish between the two usages.

2.1 Main Idea behind CSA
The main idea behind CSA is simple -- within a group of
words that form a phrase, clause, or sentence, some words
are more important than others. Typically, the purpose of
the less important words is to add details to the more
important one. In grammatical terms, this is called
modification. For example, the English grammar dictates
that nouns can be modified by adjectives. Thus, in the
phrase "a white dress", we say the adjective "white"
modifies the noun "dress" because it provides more detail
to the noun, namely, its color. The noun "dress" is

Design of A Web-Based System to Support CSA
Instruction

Yukon Chang1 and Chi-Chang Chen2*

1,2Information Engineering Department, I-Shou University,

Kaohsiung, Taiwan
*corresponding author

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 3, Issue 1, January – February 2014 ISSN 2278-6856

Volume 3, Issue 1 January – February 2014 Page 244

nevertheless the primary focus of the phrase. Similarly, a
prepositional phrase such as "in a white dress" can be
used to add detail to a noun "girl" and form the phrase "a
girl in a white dress". In sentences with only one clause,
called simple sentences by grammarians, the single pair
of subject and main verb are universally taken to be the
most important words. Other words are modifiers that can
be added to the subject-verb pair in some suitable
sequence to make the sentence complete. For sentences
with more than one clause, the clauses are separated first
and each clause is dealt with individually in the same
manner.

It is an experience common to many English learners
that long sentences with complicated structures are the
ones that give them the most trouble. By removing the
modifiers and focusing only on the modified, we make a
sentence shorter while retaining the core meaning of the
sentence. Since shorter sentences are easier to
comprehend than longer ones, we make initial
understanding of the core meaning much easier. The
parts that are left out are subsequently added back in
chunks incrementally to restore the original meaning. If
the restoration process is done in a suitable sequence, the
reader is given a chance to view the sentence in various
levels of details, which may also contribute to improving
his or her reading comprehension at the sentence level.

2.2 Steps in CSA
CSA consists of six steps, as illustrated in Fig. 1.
Description of each step is given below.
Step 1. Identify finite verbs. A finite verb is a verb in one
of three forms: the un-conjugated base form, the third
person singular form, usually with -s suffix, and the past
tense. The English grammar requires each clause to have
one finite verb unless it is omitted. Other verb forms,
namely the present participle, the past participle, and the
infinitive, are called nonfinite. In this step, all finite verbs
in a given sentence are identified. In most cases, the
number of finite verbs is also the number of clauses in the
sentence.

Although not directly related to cumulating chunks of
words to restore a sentence, identifying finite verbs is
nonetheless an important preparatory step in CSA. In
addition to providing a reliable means to correctly
determine the number of clauses in a given sentence to
facilitate their separation, it also helps identify subject-
verb pairs because finite verbs identified here will always
be part of S+V pair.
Step 2. Find keywords. Keywords are those words that
appear at the beginning of a dependent clause in a
complex sentence or an additional independent clause in
a compound sentence. This step is included in CSA to
make the next step easier because (1) a sentence with n
clauses normally has n-1 keywords, and (2) keywords
often reveal the locations where one clause ends and
another starts. Furthermore, the type of clauses can

sometimes be determined by the keywords. For instance, a
clause led by a subordinate conjunction is almost always
an adverbial clause. Correctly identifying the type of a
clause is important when trying to discover the meaning
of a long, complicated sentence.

Figure 1 Six steps of CSA

Step 3. Separate clauses. Depending on the type of
clauses, three different actions are used to separate them.
They are bisection, extraction, and substitution. Bisection
is used to separate either two independent clauses or a
dependent and an independent clause by simply making a
cut at the point the two clauses meet. Extraction is used to
temporarily take a relative clause out of the sentence.
Substitution works by first taking away a noun clause and
then in its place put in a generic noun, such as something,
as a placeholder. These three actions are shown in Fig. 2.

Figure 2 Actions to separate clauses: (a) bisection (b)

extraction (c) substitution

As mentioned earlier, different keywords are related to
different types of clauses, which in turn require different
separation actions. Table 1 gives a short list of keywords

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 3, Issue 1, January – February 2014 ISSN 2278-6856

Volume 3, Issue 1 January – February 2014 Page 245

along with their corresponding actions. Since simple
sentences have only one clause, steps 2 and 3 can be
skipped completely, as can be seen in Fig. 1.

Table 1: Keywords and corresponding actions

Action Keywords

bisection

coordinating conjunctions: and, but,
or, for, yet, nor, so
subordinate conjunctions: if, because,
although, since, while, until, unless,
so that, before, after, as if, rather
than, as long as, etc.

extraction relative pronouns: who, whose,
whom, which, that

substitution that, where, when, what, how, why

Step 4. Identify the subject and main verb pairs. This step
is to find out the subject and main verb for each clause.
The subject should be as concise as possible. The verb
part should include auxiliary verbs, all words that are
used to form the complete tense and voice, and any other
words that go with the main verb to form an idiom. This
rather stringent rule is intend to make the core meaning
concise on one hand while adherent to the original
meaning on the other. The subject-verb pair become the
first words selected in the first pass in step 5.
Step 5. Add words stepwise. This is where the major
work of CSA resides. This step includes a number of
passes where one or more words are added in each pass to
incrementally restore the original sentence. For non-
simple sentences, the same process is applied to each
clause in the sentence.

CSA is extremely flexible in this step. Unlike previous
steps where a correct answer can be uniquely specified,
there is no single standard answer for step 5. Even though
a particular sequence has to be chosen when presenting
the analysis of a sentence, any sequence in which (1) the
chunking of words is acceptable and (2) modifiers are
added later than or at the same time as the words they
modify will have to be considered correct. Granularity of
the analysis can be controlled by adding more or fewer
words in each pass. An additional goal of CSA is that
following the rules above will make most partially filled
sentences in the sequence not only grammatically correct

but also consistent with the original sentence
semantically.
Step 6. Translate the sentence into Chinese. In this step,
Chinese translation is provided for the resulting partially
filled sentence in each pass of step 5. Once translation for
each clause is given, the translation of the entire sentence
can be finalized.

An example of all six steps in CSA is shown in Fig. 3.
Fonts in the figure are intentionally made large enough so
that the content is easily readable. The figure is actually
the screenshot of the Viewer, to be discussed in Section
III. It displays the analysis of the sentence "Call-by-value
parameters are local variables just like the variables you
declare within the body of a function". Colors are used in
each step to highlight selected words, individual clauses,
and words added in each pass. The screenshot shows that
the finite verbs are "are" and "declare"; the keyword is an
omitted and restored "that"; one clause is shown in red
and the other in blue; and "parameters are" and "you
declare" are the subject-verb pairs. The sequence in step 5
and translation in step 6 should be self-explanatory.

3. DESIGN OF THE SYSTEM
3.1 System Overview
The current system supporting CSA instruction has a
classical client-server architecture. The server is a PC
running FreeBSD [4] with Apache [5] installed as the
web server. Server-side programs are coded in PHP [6]
and persistent data is stored in MySQL [7] database at the
server. Any web browser conforming to W3C standards
can be used as the client. Client-side programming is
done mainly in JavaScript [8] with occasional use of other
frameworks to gain special functionality. For instance, the
CSA Animator uses YUI library [9] to provide animation.

To make the system as easy to use as possible, user
interface at the client side is mostly done with simple
mouse clicking except when text input is required. In
steps 1, 2, 4, and 5, clicking a word identifies the word as
a finite verb, a keyword, a word belonging to a subject-
verb pair, and a word to be added in the next pass,
respectively. In step 3, different colors are used to
represent different clauses and there is always a current
color. Clicking a word colors the word with the current
color. Clicking a word while pressing down the shift key
colors the clicked word as well as the entire block of
uncolored words directly before it.
It should be pointed out that the purpose of this system is
to facilitate the creation, management, and application of
CSA for a pool of sentences. This system has never been
intended to be a full-fledged course management system.
For instance, lecture notes and slides are not the
responsibility of the system. Community interaction is
also not supported by the system.

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 3, Issue 1, January – February 2014 ISSN 2278-6856

Volume 3, Issue 1 January – February 2014 Page 246

Figure 3 CSA of a sentence, displayed through the Viewer

3.2 Users of the System
Users of the system can be categorized into four groups
based on the roles they play. Arranged in decreasing
privilege levels, they are authors, instructors, students,
and visitors. The role of each group is described below.

Authors are assigned the responsibility to select
sentences, create CSA for them, and commit the results to
the sentence pool in the database. The tool for this task is
the CSA Editor.

An instructor of the system is allowed to create classes,
add new or existing users to a class, create exams and
retrieve exam results. It is also the responsibility of the
instructor to manually grade step 6 because step 6 cannot
be automatically graded.

A student in a class can take exams administered by
the instructor and practice CSA from problem banks
All aforementioned users must be authenticated before
using the system. A person without an account can still
use the system as a visitor. A visitor can view the analysis
of a sentence using the Viewer and try the Freeform
Editor as an anonymous user.

A user in a group with higher privilege can do
everything that is permitted to a user in a group with
lower privilege. For instance, a student can also use the
Freeform Editor to practice CSA on sentences not in a
problem bank.

The user management subsystem shares the same code
and user information with that in Personal WorkBank,
another web-based system created by the author [10].
Because both systems are used by registered students in

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 3, Issue 1, January – February 2014 ISSN 2278-6856

Volume 3, Issue 1 January – February 2014 Page 247

EST courses, consolidating users means one fewer
password to remember for the users and more coherent
user management.

3.3 Data Structure for CSA
Central to the system design is the choice of a suitable
data structure to store the result from each step of CSA.
Since encoding steps 1-4 and 6 is more or less trivial, the
main focus is on selecting a data structure to represent the
sequence in which words are cumulated in step 5. Adding
to the complexity of the selection is that recording the
sequence alone is not enough, because that particular
sequence is only one of many acceptable ways to build up
the sentence. As described in Section II, any sequence
that satisfies the condition that the modified words are
added before or at the same time as the modifier words
must also be considered as a correct sequence.

This requirement can be satisfied by using a tree in
which each node represents a chunk of words added in
the same pass and an edge from a child to its parent
represents words in the child must be added no earlier
than the words in the parent. We call such a tree a pass
tree. Using the example shown in Fig. 3, the pass tree for
the first clause is shown in Fig. 4.

Figure 4 Pass tree specifying precedence for adding
words

Two most frequently used formats in the web era are

XML [11] and JSON [12]. Realizing that CSA requires
only array and key-value pairs to represent its steps, we
pick JSON because it is "fat-free" [13], flexible, and
comes with excellent support in both JavaScript and PHP.

The pass tree in Fig. 4 is encoded as a JSON array [-1,-
1,1,2,1,2,3]. Since JSON arrays start with index 0 and
pass 1 must precede all other passes, the first two entries
are filled with a nonexistent pass number, -1. Other
entries point up to their respective parents. Table 2 lists
major key-value pairs in JSON representation of CSA.

Once this data structure is determined, programs can
be written to create, modify, and access this data structure

to provide services to various users. Almost all
components in the system make use of this data structure
in certain ways. Some of the more important components
are presented in the following subsections.

Table 2: JSON representation of CSA

Step Key Value and Interpretation
1 fv fv = 1 if the word is a finite verb

2 kw
kw = 1 if the word is a keyword
kw = 2 for an omitted keyword,
usually "that"

3 cl cl = i if the word is in clause i

4 sv sv = i if the word is part of S+V
pair in clause i

5

pa
passtree

pa = i if the word is added in pass
ian
array specifies partial ordering
among passes

6

trClauses

trAll

Chinese translation for each pass in
a clause
Chinese translation for the entire
sentence

3.4 CSA Editor
The primary goal of the Editor is to create CSA for a
given sentence. The Editor first breaks up the sentence
into tokens and then guides the author through the steps
prescribed by CSA. The result of tokenization can be
manually corrected if necessary. All processing performed
by the Editor is carried out at the client side without
server interaction. This is accomplished by manipulating
style sheets and DOM objects through JavaScript. Only
when the final JSON is produced does the Editor send it
to the server and terminates. An example of the Editor
half way through step 3 is presented in Fig. 5.

The Editor can also be used to modify an existing CSA.
For example, when an author creates CSA for all
sentences in a paragraph, it is sometimes more efficient to
first finish steps 1-5 for each sentence. Adding
translation, which requires a large amount of typing and
cut-and-paste, can be done at a later time.
The scenario mentioned in the previous paragraph is
actually not uncommon. Experience has shown that
having an entire paragraph or page analyzed in CSA
works better on improving comprehension. Students are
presented with a complete paragraph where every
sentence can be clicked to reveal its CSA. This gives a
sense of context, which is nonexistent in case of isolated
sample sentences. To facilitate this common task, the
Editor is accompanied by a front end called Sentencizer,
whose job is to divide a paragraph into sentences and to
handle proper indexing of each sentence. Since technical
writing sometimes contains

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 3, Issue 1, January – February 2014 ISSN 2278-6856

Volume 3, Issue 1 January – February 2014 Page 248

Figure 5 CSA Editor in step 3

notations, equations, or code segments that may be
difficult to break up automatically, a manual override
mechanism is provided to the Sentencizer.

After the CSA for a sentence is created and entered
into database, other activities based on this sentence may
start.

3.5 Viewer and Animator
The task of the Viewer is simply to render the CSA of a
sentence as a static web page. The processing is rather
straightforward. The JSON representation of the sentence
is retrieved from the database and converted into a
JavaScript record with the built-in function json_decode(
). Relevant information is extracted in each step to
produce the output. An example of the Viewer output has
already be given in Fig. 3.

The beauty of having a set of well-defined steps and a
large sentence pool is that once a program is written to
provide some sort of sophisticated presentation or
processing, that capability is readily available for every
sentence in the sentence pool automatically. As an
example of CSA's versatility, we designed a client side
program, called Animator, which can present the
sequence of building up a sentence in an animated web
page as long as CSA of that sentence is available.

3.6 Tester and Grader
No instructional system, computerized or otherwise, is
complete without the capability to assess the progress
made by the students. The Tester in our system provides
just that capability. The Tester comes in two versions, one
that provides immediate feedback to the student and one

that does not. The former is well suited for practice
purposes. A student can go through the sentences in a test
bank using the program and find out if his understanding
of CSA is valid. The latter is intended for formal test
prepared by the instructor. Such a test usually consists of
multiple sentences and a student must finish them all
without getting any feedback while the test is still going
on. Because the six steps of CSA are usually taught in
order, each test has an argument specifying the number of
steps a student should do. This feature is handy because
by eliminating step 6 from the test, the entire test can be
graded automatically

In either version, the Tester works in a way similar to
the way Editor does. The student taking the test mostly
clicks through the steps unless text input is required.
After a sentence is finished and the answer submitted, the
Grader will be activated to determine the correctness for
steps 1-5. If feedback is to be provided, the Grader lists
the answer submitted by the student and the standard
answer side by side along with the verdict of whether a
step is done correctly. Fig. 6 shows the output of the
Grader for the sentence in Fig. 3. The test stops at step 5.

Note that although the step 5 answer provided by the
student is different from the standard answer, it is
nevertheless marked correct because no modified words
are added after the modifiers.
The system provides yet a third form of Tester, which we
call Freeform Editor. This is where a user can select any
sentence and perform a CSA on the sentence. Naturally,
no grading can be done in this case, but the CSA created
by the user will be stored in the database so that it can be
retrieved later for discussion or assessment.

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 3, Issue 1, January – February 2014 ISSN 2278-6856

Volume 3, Issue 1 January – February 2014 Page 249

Figure 6 Grader output with correct/incorrect verdict

4. CONCLUSIONS
CSA was originally designed to be self-explanatory --
once a user gets acquainted with the output format, he or
she can read the CSA of any sentence without further
explanation. It has been used in real-world English for
Science and Technology courses and its effectiveness has
been established.

One of the most unique features of CSA is the well-
defined steps, through which the mental process of
comprehending a sentence is in some way made visible.
This feature creates many possibilities for further studies
to understand the English learning process. In a separate
study, for example, error patterns among CSA steps are

identified and analyzed using data mining [14]. Studies
such as this may lead to further improvement of CSA.

References
[1] Y. Chang, English for Science and Technology, 2nd

Ed., New Wun Ching Publishing, 2008. (in Chinese)
[2] W. Savitch, Absolute C++, 5th Ed., Boston:

Pearson/Addison-Wesley, 2013.
[3] Y.-R. Tsai, Y. Chang, & Y.-H. Shiu, Supporting EFL

learners’ reading comprehension through an on-line
Cumulative Sentence Analysis (CSA) strategy
instruction, British Journal of Educational
Technology, submitted for publication.

[4] The FreeBSD Project, http://www.freebsd.org/

International Journal of Emerging Trends & Technology in Computer Science (IJETTCS)
Web Site: www.ijettcs.org Email: editor@ijettcs.org, editorijettcs@gmail.com

Volume 3, Issue 1, January – February 2014 ISSN 2278-6856

Volume 3, Issue 1 January – February 2014 Page 250

[5] The Apache Software Foundation,
http://www.apache.org/

[6] PHP, http://www.php.net/
[7] MySQL, http://www.mysql.com/
[8] M. Haverbeke, Eloquent JavaScript, A Modern

Introduction to Programming, No Starch Press, CA
USA, 2011.

[9] YUI Library, http://developer.yahoo.com/yui/
[10] M. Lin, Y. Chang, W. Ku, W. Chen, The study of

Backword in personal wordbank, Proceedings of
Information Technologies, Applications and
Management Conference, Kaohsiung, Taiwan, 2011.

[11] XML, http://www.w3.org/XML/
[12] JSON, http://json.org/
[13] D. Crockford, JSON: The Fat-Free Alternative to

XML, International World Wide Web Conference,
Edinburgh, Scotland, 2006.

[14] Y.-R. Tsai, Y. Chang, C.-S. Ouyang, Mining Error
Patterns of Engineering Studetns’ English Reading
Comprehension, 2011 International Conference on
Machine Learning and Cybernetics, pp.68-72,
Guilin, Guangxi, China, 2011.

AUTHORS

Yukon Chang received the Ph.D. degree in computer
science from Pennsylvania State University, University
Park, in 1986. He was an assistant professor of computer
science with the State University of New York at Albany
from 1986 to 1992. In 1992, he joined the Department of
Information Engineering, I-Shou University, Kaohsiung,
Taiwan, R.O.C., where he is now an associate professor.
He also served as Director of Computer Center from 1993
to 1996, Director of the Library at I-Shou University from
1998 to 2001, and Department Head from 2002 to 2005.
His primary research interest is in multimedia networks,
information network, software engineering, and digital
Learning

Chi-Chang Chen (corresponding author) received the BS
degree in computer science from Shochow University,
Taiwan, in 1984, and the MS degree in information
engineering from Tatung University, Taiwan, in 1986.
He received the PhD degree in computer science from the
Texas A&M University in 1995. He is currently an
associated professor in information engineering
department, I-Shou University, Kaohsiung, Taiwan. His
research interests include wireless sensor networks,
cluster computing, cloud computing, and digital
Learning.

