Istation ${ }^{\circ}$ Math

Correlation of Standards
North Carolina Standard Course of Study
Mathematics
Grades 2-5

Supporting Educators. Empowering Kids. Changing Lives.
www.istation.com

Istation Math Curriculum Correlated to North Carolina Standard Course of Study for Mathematics Grade 2				
Standards	Objectives	Istation Application *	Istation Teacher Resources *	MP Standards
Number and Operations in Base Ten (NBT)				
Understand place value.				
2.NBT. 1	Understand that the three digits of a three-digit number represent amounts of hundreds, tens, and ones; e.g., 706 equals 7 hundreds, 0 tens, and 6 ones. Understand the following as special cases: a. 100 can be thought of as a bundle of ten tens called a "hundred." b. The numbers $100,200,300,400,500,600,700$, 800, 900 refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).	Unit 30: Writing Standard Form from Expanded Form Unit 30: Writing Expanded Form from Standard Form Unit 30: Writing Word Form from Expanded and Standard Form	Unit 30: Building Numbers Using Base 10 Blocks Unit 30: Writing Expanded Form from Standard Form Unit 30: Writing Word Form from Expanded and Standard Form ISIP Math: Same Number, Different Ways ISIP Math: Place Value Pair-Up ISIP Math: Race to the Cube ISIP Math: Partitioning ISIP Math: Creating Numbers with Base 10 Blocks ISIP Math: Place Value Cups ISIP Math: Writing Standard Form from Expanded Form	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
2.NBT. 2	Count within 1000; skip-count by 5s, 10s, and 100s.		ISIP Math: Skip Counting	$\begin{aligned} & \hline \text { MP1 } \\ & \text { MP2 } \\ & \text { MP3 } \\ & \text { MP4 } \\ & \text { MP5 } \\ & \text { MP6 } \\ & \text { MP7 } \\ & \text { MP8 } \\ & \hline \end{aligned}$
2.NBT. 3	Read and write numbers to 1000 using base-ten numerals, number names, and expanded form.	Unit 30: Writing Standard Form from Expanded Form Unit 30: Writing Expanded Form from Standard Form Unit 30: Writing Word Form from Expanded and Standard Form	Unit 30: Writing Expanded Form from Standard Form Unit 30: Writing Word Form from Expanded and Standard Form ISIP Math: Same Number, Different Ways ISIP Math: Place Value Pair-Up ISIP Math: Partitioning ISIP Math: Place Value Cups ISIP Math: Writing Standard Form from Expanded Form	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8

Istation Math Curriculum Correlated to North Carolina Standard Course of Study for Mathematics Grade 2				
Standards	Objectives	Istation Application *	Istation Teacher Resources *	MP Standards
2.NBT. 4	Compare two three-digit numbers based on meanings of the hundreds, tens, and ones digits, using >, =, and < symbols to record the results of these comparisons.	Unit 30: Comparing Whole Numbers with Language and Symbols Unit 30: Comparing Two Three-Digit Numbers Unit 30: Comparing Two Three-Digit Numbers with Zeroes	Unit 30: Comparison Symbols Unit 30: Comparison - Three-Digit Numbers ISIP Math: Steps for Comparing Three-Digit Numbers	$\begin{aligned} & \text { MP1 } \\ & \text { MP2 } \\ & \text { MP3 } \\ & \text { MP4 } \\ & \text { MP5 } \\ & \text { MP6 } \\ & \text { MP7 } \\ & \text { MP8 } \end{aligned}$
2.NBT. 5	Fluently add and subtract within 100 using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction.	Unit 31: Adding with Regrouping Using Concrete Models Unit 31: Subtracting with Regrouping Using Concrete Models Unit 31: Adding with Regrouping - Partitioning Unit 31: Subtracting with Regrouping - Partitioning Unit 31: Adding on a Number Line Unit 31: Subtracting on a Number Line Unit 31: Fact Families - Addition and Subtraction	Unit 31: Adding with Regrouping - Concrete Unit 31: Subtracting with Regrouping - Concrete Unit 31: Adding Using Partitioning Unit 31: Subtracting Using Partitioning Unit 31: Adding on a Number Line Unit 31: Subtracting on a Number Line Unit 31: Fact Families - Addition and Subtraction ISIP Math: Addition and Subtraction Fact Families ISIP Math: Fact Family Triangles ISIP Math: Break Apart to Add ISIP Math: Race to the Cube ISIP Math: Using Arrow Paths to Add and Subtract ISIP Math: Math Mind Reader ISIP Math: Partitioning	$\begin{aligned} & \text { MP1 } \\ & \text { MP2 } \\ & \text { MP3 } \\ & \text { MP4 } \\ & \text { MP5 } \\ & \text { MP6 } \\ & \text { MP7 } \\ & \text { MP8 } \end{aligned}$

Istation Math Curriculum Correlated to North Carolina Standard Course of Study for Mathematics

Grade 2

Standards	Objectives	Istation Application *	Istation Teacher Resources *	MP Standards
2.NBT. 7	Add and subtract within 1000, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method. Understand that in adding or subtracting three-digit numbers, one adds or subtracts hundreds and hundreds, tens and tens, ones and ones; and sometimes it is necessary to compose or decompose tens or hundreds.	Unit 31: Adding with Regrouping Using Concrete Models Unit 31: Subtracting with Regrouping Using Concrete Models Unit 31: Adding with Regrouping - Partitioning Unit 31: Subtracting with Regrouping - Partitioning Unit 31: Adding on a Number Line Unit 31: Subtracting on a Number Line Unit 31: Fact Families - Addition and Subtraction	Unit 31: Adding with Regrouping - Concrete Unit 31: Subtracting with Regrouping - Concrete Unit 31: Adding Using Partitioning Unit 31: Subtracting Using Partitioning Unit 31: Adding on a Number Line Unit 31: Subtracting on a Number Line Unit 31: Fact Families - Addition and Subtraction ISIP Math: Break Apart to Add ISIP Math: Race to the Cube ISIP Math: Using Arrow Paths to Add and Subtract ISIP Math: Partitioning ISIP Math: Skip Counting	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8

Istation Math Curriculum Correlated to North Carolina Standard Course of Study for Mathematics

Standards	Objectives	Istation Application *	Istation Teacher Resources *	MP Standards
2.NBT. 9	Explain why addition and subtraction strategies work, using place value and the properties of operations.	Unit 31: Adding with Regrouping Using Concrete Models Unit 31: Subtracting with Regrouping Using Concrete Models Unit 31: Adding with Regrouping - Partitioning Unit 31: Subtracting with Regrouping - Partitioning Unit 31: Adding on a Number Line Unit 31: Subtracting on a Number Line Unit 31: Fact Families - Addition and Subtraction	Unit 31: Adding with Regrouping - Concrete Unit 31: Subtracting with Regrouping - Concrete Unit 31: Adding Using Partitioning Unit 31: Subtracting Using Partitioning Unit 31: Adding on a Number Line Unit 31: Subtracting on a Number Line Unit 31: Fact Families - Addition and Subtraction ISIP Math: Addition and Subtraction Fact Families ISIP Math: Fact Family Triangles ISIP Math: Break Apart to Add ISIP Math: Race to the Cube ISIP Math: Using Arrow Paths to Add and Subtract ISIP Math: Math Mind Reader ISIP Math: Partitioning	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
Measurement and Data (MD)				
Measure and estimate lengths in standard units.				
2.MD. 1	Measure the length of an object by selecting and using appropriate tools such as rulers, yardsticks, meter sticks, and measuring tapes.		ISIP Math: Appropriate Tools for Linear Measurement ISIP Math: How to Use Linear Measurement Tools ISIP Math: Measuring Objects ISIP Math: Ruler Relay	$\begin{aligned} & \text { MP1 } \\ & \text { MP2 } \\ & \text { MP3 } \\ & \text { MP4 } \\ & \text { MP5 } \\ & \text { MP6 } \\ & \text { MP7 } \\ & \text { MP8 } \end{aligned}$
2.MD. 2	Measure the length of an object twice, using length units of different lengths for the two measurements; describe how the two measurements relate to the size of the unit chosen.		ISIP Math: Unit Relationships	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8

Istation Math Curriculum Correlated to North Carolina Standard Course of Study for Mathematics Grade 2				Istation
Standards	Objectives	Istation Application *	Istation Teacher Resources *	MP Standards
2.MD. 4	Measure to determine how much longer one object is than another, expressing the length difference in terms of a standard length unit.		ISIP Math: Ruler Relay	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
Relate addition and subtraction to length.				
2.MD. 5	Use addition and subtraction within 100 to solve word problems involving lengths that are given in the same units, e.g., by using drawings (such as drawings of rulers) and equations with a symbol for the unknown number to represent the problem.		ISIP Math: The Benevolent Ruler	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
2.MD. 6	Represent whole numbers as lengths from 0 on a number line diagram with equally spaced points corresponding to the numbers $0,1,2, \ldots$, and represent whole-number sums and differences within 100 on a number line diagram.	Unit 31: Adding on a Number Line Unit 31: Subtracting on a Number Line	Unit 31: Adding on a Number Line Unit 31: Subtracting on a Number Line ISIP Math: Skip Counting	$\begin{aligned} & \text { MP1 } \\ & \text { MP2 } \\ & \text { MP3 } \\ & \text { MP4 } \\ & \text { MP5 } \\ & \text { MP6 } \\ & \text { MP7 } \\ & \text { MP8 } \end{aligned}$
Work with time and money. 2				
2.MD. 7	Tell and write time from analog and digital clocks to the nearest five minutes, using a.m. and p.m.	Unit 34: Tell Time to the Nearest Five Minutes	Unit 34: Time to the Nearest Five Minutes Unit 34: Time - $A M$ and $P M$ Unit 34: Time to the Quarter Hour	$\begin{aligned} & \hline \text { MP1 } \\ & \text { MP2 } \\ & \text { MP3 } \\ & \text { MP4 } \\ & \text { MP5 } \\ & \text { MP6 } \\ & \text { MP7 } \\ & \text { MP8 } \end{aligned}$
2.MD. 8	Solve word problems involving dollar bills, quarters, dimes, nickels, and pennies, using $\$$ and $\$$ symbols appropriately. Example: If you have 2 dimes and 3 pennies, how many cents do you have?		Unit 32: Money Word Problems (Retail Riddles)	$\begin{aligned} & \text { MP1 } \\ & \text { MP2 } \\ & \text { MP3 } \\ & \text { MP4 } \\ & \text { MP5 } \\ & \text { MP6 } \\ & \text { MP7 } \\ & \text { MP8 } \end{aligned}$
Represent and interpret data.				
2.MD. 10	Draw a picture graph and a bar graph (with singleunit scale) to represent a data set with up to four categories. Solve simple put-together, take-apart, and compare problems using information presented in a bar graph.	Unit 33: Solve Problems Using Information Presented in Picture Graphs Unit 33: Solve Problems Using Information Presented in Bar Graphs	Unit 33: Solving Picture Graph Problems Unit 33: Solving Bar Graph Problems	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8

Istation Math Curriculum Correlated to North Carolina Standard Course of Study for Mathematics Grade 2				$\begin{gathered} \text { Istation } \\ \text { In } \end{gathered}$
Standards	Objectives	Istation Application *	Istation Teacher Resources*	MP Standards
Geometry (G)				
Reason with shapes and their attributes.				
2.G. 3	Partition circles and rectangles into two, three, or four equal shares, describe the shares using the words halves, thirds, half of, a third of, etc., and describe the whole as two halves, three thirds, four fourths. Recognize that equal shares of identical wholes need not have the same shape.	Unit 32: Partitioning to Identify Halves, Thirds, and Fourths Unit 32: Equal Shares of Identical Wholes	Unit 32: Identifying Halves, Thirds, Fourths Unit 32: Equal Shares of Identical Wholes	$\begin{aligned} & \text { MP1 } \\ & \text { MP2 } \\ & \text { MP3 } \\ & \text { MP4 } \\ & \text { MP5 } \\ & \text { MP6 } \\ & \text { MP7 } \\ & \text { MP8 } \end{aligned}$
		* Includes content released during the 2017-18 school year	* Includes content released during the 2017-18 school year	
End of Grade 2				

Istation Math Curriculum Correlated to North Carolina Standard Course of Study for Mathematics Grade 3				Istation ducators. Empow Changing Lives.
Standards	Objectives	Istation Application *	Istation Teacher Resources *	MP Standards
K-12 Mathematical Practices				
1	Make sense of problems and persevere in solving the			
2	Reason abstractly and quantitatively.			
3	Construct viable arguments and critique the reasoning	g of others.		
4	Model with mathematics.			
5	Use appropriate tools strategically.			
6	Attend to precision.			
7	Look for and make use of structure.			
8	Look for and express regularity in repeated reasoning.			
Operations and Algebraic Thinking (OA)				
Represent and solve problems involving multiplication and division.				
3.OA. 1	Interpret products of whole numbers, e.g., interpret 5 $\times 7$ as the total number of objects in 5 groups of 7 objects each. For example, describe a context in which a total number of objects can be expressed as 5×7.	Unit 36: Multiply One-Digit Numbers Using Concrete Models	Unit 36: One-Digit by One-Digit Multiplication Unit 36: Multiplying Two One-Digit Numbers with Arrays ISIP Math: Relating Multiplication and Division Fact Practice: Multominoes; Tall Towers	$\begin{aligned} & \text { MP1 } \\ & \text { MP2 } \\ & \text { MP3 } \\ & \text { MP4 } \\ & \text { MP5 } \\ & \text { MP6 } \\ & \text { MP7 } \\ & \text { MP8 } \end{aligned}$
3.OA. 2	Interpret whole-number quotients of whole numbers, e.g., interpret $56 \div 8$ as the number of objects in each share when 56 objects are partitioned equally into 8 shares, or as a number of shares when 56 objects are partitioned into equal shares of 8 objects each. For example, describe a context in which a number of shares or a number of groups can be expressed as $56 \div 8$.		ISIP Math: Relating Multiplication and Division	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
3.OA. 3	Use multiplication and division within 100 to solve word problems in situations involving equal groups, arrays, and measurement quantities, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem.	Unit 36: Two-Step Word Problems - All Operations	Unit 36: Two-Step Word Problems - All Operations ISIP Math: Multiplying with Three Factors ISIP Math: Strip Diagrams - Compare Problems ISIP Math: Doubling and Halving	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8

Istation Math Curriculum Correlated to North Carolina Standard Course of Study for Mathematics Grade 3				
Standards	Objectives	Istation Application *	Istation Teacher Resources *	MP Standards
3.OA. 4	Determine the unknown whole number in a multiplication or division equation relating three whole numbers. For example, determine the unknown number that makes the equation true in each of the equations $8 \times ?=48,5=_\div 3,6 \times 6=$?	Unit 36: Fact Families - Multiplication and Division	Unit 36: Fact Families - Multiplication and Division ISIP Math: Practicing Fact Families ISIP Math: Relating Multiplication and Division ISIP Math: Strip Diagrams: Compare Problems ISIP Math: Using the Commutative Property of Multiplication	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
Understand properties of multiplication and the relationship between multiplication and division.				
3.OA. 5	Apply properties of operations as strategies to multiply and divide. (Note: Students need not use formal terms for these properties.) Examples: If $6 \times$ $4=24$ is known, then $4 \times 6=24$ is also known. (Commutative property of multiplication) $3 \times 5 \times 2$ can be found by $3 \times 5=15$, then $15 \times 2=30$, or by $5 \times 2=10$, then $3 \times 10=30$. (Associative property of multiplication) Knowing that $8 \times 5=40$ and 8×2 $=16$, one can find 8×7 as $8 \times(5+2)=(8 \times 5)+(8$ $\times 2)=40+16=56$. (Distributive property)	Unit 36: Properties of Multiplication	ISIP Math: Using the Commutative Property of Multiplication ISIP Math: Multiplying with Three Factors	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
3.OA. 6	Understand division as an unknown-factor problem where a remainder does not exist. For example, find $32 \div 8$ by finding the number that makes 32 when multiplied by 8 with no remainder.	Unit 36: Fact Families - Multiplication and Division	Unit 36: Fact Families - Multiplication and Division ISIP Math: Practicing Fact Families ISIP Math: Relating Multiplication and Division	$\begin{aligned} & \hline \text { MP1 } \\ & \text { MP2 } \\ & \text { MP3 } \\ & \text { MP4 } \\ & \text { MP5 } \\ & \text { MP6 } \\ & \text { MP7 } \\ & \hline \end{aligned}$

Istation Math Curriculum Correlated to North Carolina Standard Course of Study for Mathematics Grade 3				
Standards	Objectives	Istation Application *	Istation Teacher Resources *	MP Standards
Multiply and divide within 100.				
3.OA. 7	Fluently multiply and divide within 100 , using strategies such as the relationship between multiplication and division (e.g., knowing that $8 \times 5=$ 40, one knows $40 \div 5=8$) or properties of operations. By the end of Grade 3, know from memory all products of two one-digit numbers.	Unit 35: Arithmetic Patterns in Multiplication Unit 36: Multiply One-Digit Numbers Using Concrete Models Unit 36: Fact Families - Multiplication and Division Unit 36: Two-Step Word Problems - All Operations Unit 36: Properties of Multiplication	Unit 35: Arithmetic Patterns in Multiplication Unit 36: One-Digit by One-Digit Multiplication Unit 36: Multiplying Two One-Digit Numbers with Arrays Unit 36: Two-Step Word Problems - All Operations Unit 36: Fact Families - Multiplication and Division Fact Practice Activities: Dice Blocks; Multominoes; Spider Queen's Hidden Products; Spider Queen's Spiders; Tall Towers; Wipe Out ISIP Math: Practicing Fact Families ISIP Math: Relating Multiplication and Division ISIP Math: Strip Diagrams: Compare Problems ISIP Math: Using the Commutative Property of Multiplication ISIP Math: Doubling and Halving	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
Solve problems involving the four operations, and identify and explain patterns in arithmetic.				
3.OA. 8	Solve two-step word problems using the four operations. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding. (Note: This standard is limited to problems posed with whole numbers and having whole-number answers; students should know how to perform operations in the conventional order when there are no parentheses to specify a particular order - Order of Operations.)	Unit 36: Two-Step Word Problems - All Operations	Unit 35: Problem Solving without Numbers: Addition and Subtraction Unit 36: Problem Solving without Numbers: Multiplication and Division Unit 36: Two-Step Word Problems - All Operations	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8

Istation Math Curriculum Correlated to North Carolina Standard Course of Study for Mathematics Grade 3				Istation
Standards	Objectives	Istation Application *	Istation Teacher Resources*	MP Standards
3.OA. 9	Identify arithmetic patterns (including patterns in the addition table or multiplication table), and explain them using properties of operations. For example, observe that 4 times a number is always even, and explain why 4 times a number can be decomposed into two equal addends.	Unit 35: Arithmetic Patterns in Multiplication	Unit 35: Arithmetic Patterns in Multiplication Unit 36: Fact Families: Multiplication and Division ISIP Math: Doubling and Halving ISIP Math: Practicing Fact Families ISIP Math: Relating Multiplication and Division ISIP Math: Using the Commutative Property of Multiplication	$\begin{aligned} & \text { MP1 } \\ & \text { MP2 } \\ & \text { MP3 } \\ & \text { MP4 } \\ & \text { MP5 } \\ & \text { MP6 } \\ & \text { MP7 } \\ & \text { MP8 } \end{aligned}$
Number and Operations in Base Ten (NBT)				
Use place value understanding and properties of operations to perform multi-digit arithmetic. (Note: A range of algorithms may be used.)				
3.NBT. 1	Use place value understanding to round whole numbers to the nearest 10 or 100 .	Unit 35: Rounding to the Nearest Ten Unit 35: Rounding to the Nearest Hundred	Unit 35: Rounding - Nearest Ten Unit 35: Rounding - Nearest Hundred Unit 35: Rounding - Nearest Ten, Hundred, Thousand Unit 35: Rounding within Three- and Four-Digit Numbers - Number Line	$\begin{aligned} & \text { MP1 } \\ & \text { MP2 } \\ & \text { MP3 } \\ & \text { MP4 } \\ & \text { MP5 } \\ & \text { MP6 } \\ & \text { MP7 } \\ & \text { MP8 } \end{aligned}$
3.NBT. 2	Fluently add and subtract within 1000 using strategies and algorithms based on place value, properties of operations, and/or the relationship between addition and subtraction.	Unit 36: Two-Step Word Problems - All Operations	Unit 36: Two-Step Word Problems - All Operations	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
3.NBT. 3	Multiply one-digit whole numbers by multiples of 10 in the range 10-90 (e.g., $9 \times 80,5 \times 60$) using strategies based on place value and properties of operations.	Unit 35: Arithmetic Patterns in Multiplication	Unit 35: Arithmetic Patterns in Multiplication	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8

Istation Math Curriculum Correlated to North Carolina Standard Course of Study for Mathematics Grade 3				Istation
Standards	Objectives	Istation Application *	Istation Teacher Resources *	MP Standards
Number and Operations - Fractions (NF)				
Develop understanding of fractions as numbers.				
3.NF. 1	Understand a fraction $1 / b$ as the quantity formed by 1 part when a whole is partitioned into b equal parts; understand a fraction a / b as the quantity formed by a parts of size $1 / b$.	Unit 37: Fractions Equivalent to One Unit 37: Fractions Equivalent to Whole Numbers Unit 37: Mixed Numbers Unit 37: Using Fraction Bars or Number Lines to Find Many Equivalent Fractions Unit 37: Using Fraction Bars or Number Lines to Determine If Two Fractions Are Equivalent	Unit 37: Fractions Equivalent to One Unit 37: Fractions Equivalent to Whole Numbers Unit 37: Mixed Numbers on a Number Line Unit 37: Many Equivalent Fractions Unit 37: Identifying Equivalent Fractions Unit 37: Expressing Equivalent Fractions with Denominators of 10 and 100 Unit 37: Using Models to Identify Equivalent Fractions ISIP Math: Fractions in Problem Situations ISIP Math: Recognizing Fractions in Different Forms ISIP Math: Writing Fractions - Symbolic Notation ISIP Math: Identifying Equivalent Fractions Using Area Models	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
3.NF. 2	Understand a fraction as a number on the number line; represent fractions on a number line diagram. a. Represent a fraction $1 / b$ on a number line diagram by defining the interval from 0 to 1 as the whole and partitioning it into b equal parts. Recognize that each part has size $1 / b$ and that the endpoint of the part based at 0 locates the number $1 / b$ on the number line. b. Represent a fraction a / b on a number line diagram by marking off a lengths $1 / b$ from 0 . Recognize that the resulting interval has size a / b and that its endpoint locates the number a / b on the number line.	Unit 37: Fractions Equivalent to One Unit 37: Fractions Equivalent to Whole Numbers Unit 37: Mixed Numbers Unit 37: Using Fraction Bars or Number Lines to Find Many Equivalent Fractions Unit 37: Using Fraction Bars or Number Lines to Determine If Two Fractions Are Equivalent	Unit 37: Fractions Equivalent to One Unit 37: Fractions Equivalent to Whole Numbers Unit 37: Mixed Numbers on a Number Line Unit 37: Many Equivalent Fractions Unit 37: Identifying Equivalent Fractions	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8

Istation Math Curriculum Correlated to North Carolina Standard Course of Study for Mathematics Grade 3				Istation
Standards	Objectives	Istation Application *	Istation Teacher Resources*	MP Standards
Represent and interpret data.				
3.MD. 3	Draw a scaled picture graph and a scaled bar graph to represent a data set with several categories. Solve one- and two-step "how many more" and "how many less" problems using information presented in scaled bar graphs. For example, draw a bar graph in which each square in the bar graph might represent 5 pets.	Unit 39: Solve Two-Step Problems Using Information Presented in Scaled Bar Graphs	Unit 39: Solving Two-Step Problems Using Bar Graphs	$\begin{array}{\|l\|} \hline \text { MP1 } \\ \text { MP2 } \\ \text { MP3 } \\ \text { MP4 } \\ \text { MP5 } \\ \text { MP6 } \\ \text { MP7 } \\ \text { MP8 } \end{array}$
3.MD. 4	Generate measurement data by measuring lengths using rulers marked with halves and fourths of an inch. Show the data by making a line plot, where the horizontal scale is marked off in appropriate units: whole numbers, halves, or quarters.		ISIP Math: Measuring to the Nearest Quarter Inch	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
Geometric measurement: Understand concepts of area and relate area to multiplication and to addition.				
3.MD. 5	Recognize area as an attribute of plane figures and understand concepts of area measurement. a. A square with side length 1 unit, called "a unit square," is said to have "one square unit" of area, and can be used to measure area. b. A plane figure that can be covered without gaps or overlaps by n unit squares is said to have an area of n square units.		ISIP Math: Area Square ISIP Math: Finding the Area of Polygons ISIP Math: Finding the Area of Rectangles	$\begin{array}{\|l\|} \hline \text { MP1 } \\ \text { MP2 } \\ \text { MP3 } \\ \text { MP4 } \\ \text { MP5 } \\ \text { MP6 } \\ \text { MP7 } \\ \text { MP8 } \\ \hline \end{array}$
3.MD. 6	Measure areas by counting unit squares (square cm, square m , square in, square ft , and improvised units).		ISIP Math: Area Square ISIP Math: Finding the Area of Polygons ISIP Math: Finding the Area of Rectangles	$\begin{aligned} & \text { MP1 } \\ & \text { MP2 } \\ & \text { MP3 } \\ & \text { MP4 } \\ & \text { MP5 } \\ & \text { MP6 } \\ & \text { MP7 } \\ & \text { MP8 } \end{aligned}$

Istation Math Curriculum Correlated to North Carolina Standard Course of Study for Mathematics

Standards	Objectives	Istation Application *	Istation Teacher Resources *	MP Standards
$3 . M D .7$	Relate area to the operations of multiplication and addition. a. Find the area of a rectangle with whole-number side lengths by tiling it, and show that the area is the same as would be found by multiplying the side lengths. b. Multiply side lengths to find areas of rectangles with whole-number side lengths in the context of solving real-world and mathematical problems, and represent whole-number products as rectangular areas in mathematical reasoning. c. Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths a and $b+c$ is the sum of $a \times b$ and $a \times c$. Use area models to represent the distributive property in mathematical reasoning.		ISIP Math: Area Square ISIP Math: Finding the Area of Polygons ISIP Math: Finding the Area of Rectangles	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
Geometric measurement: Recognize perimeter as an attribute of plane figures and distinguish between linear and area measures.				
3.MD. 8	Solve real-world and mathematical problems involving perimeters of polygons, including finding the perimeter given the side lengths, finding an unknown side length, and exhibiting rectangles with the same perimeter and different areas or with the same area and different perimeters.	Unit 38: Perimeter Word Problems	Unit 38: Perimeter Bundle ISIP Math: Perimeter of Polygons	$\begin{array}{\|l\|} \hline \text { MP1 } \\ \text { MP2 } \\ \text { MP3 } \\ \text { MP4 } \\ \text { MP5 } \\ \text { MP6 } \\ \text { MP7 } \\ \text { MP8 } \\ \hline \end{array}$
Geometry (G)				
Reason with shapes and their attributes.				
3.G. 1	Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.		ISIP Math: Are Squares the Perfect Shape? ISIP Math: Attributes of Polygons ISIP Math: Building Hexagons ISIP Math: Defining Quadrilaterals by Attributes ISIP Math: Multiplying with Polygons	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
		*/nc/udes content released during the 2017-18 school year	*Includes content released during the 2017-18 school year	
End of Grade 3				

Istation Grade 4	Math Curriculum Correlated to	North Carolina Standard Course	f Study for Mathematics	
Standards	Objectives	Istation Application *	Istation Teacher Resources*	MP Standards
K-12 Mathematical Practices				
1	Make sense of problems and persevere in solving them.			
2	Reason abstractly and quantitatively.			
3	Construct viable arguments and critique the reasoning of others.			
4	Model with mathematics.			
5	Use appropriate tools strategically.			
6	Attend to precision.			
7	Look for and make use of structure.			
8	Look for and express regularity in repeated reasoning.			
Operations and Algebraic Thinking (OA)				
Use the four operations with whole numbers to solve problems.				
4.OA. 1	Interpret a multiplication equation as a comparison, e.g., interpret $35=5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5 . Represent verbal statements of multiplicative comparisons as multiplication equations.	Unit 41: Multiply Two-Digit Numbers with Concrete Models Unit 42: Solve Multistep Word Problems	Unit 41: Two-Digit by Two-Digit Concrete	
			Multiplication	MP1 MP2
			Unit 42: Solve Multistep Word Problems	MP3 MP4
			ISIP Math: Using Arrays to Derive and Learn Basic	MP5
				MP6 MP7
			ISIP Math: Commutative Property of Multiplication to Represent Numbers	MP8
4.OA. 2	Multiply or divide to solve word problems involving multiplicative comparison, e.g., by using drawings and equations with a symbol for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison.	Unit 42: Solve Multistep Word Problems	Unit 42: Solve Multistep Word Problems ISIP Math: Using Multiplication to Solve If-Then Word Problems	MP1
				MP2
				MP3
				MP4
				MP5
				MP7
				MP8
4.OA.3	Solve multistep word problems posed with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.	Unit 42: Solve Multistep Word Problems	Unit 42: Solve Multistep Word Problems ISIP Math: Using Multiplication to Solve If-Then Word Problems	MP1
				MP3
				MP4
				MP5
				MP6
				MP7
				MP8

Istation Math Curriculum Correlated to North Carolina Standard Course of Study for Mathematics Grade 4				
Standards	Objectives	Istation Application *	Istation Teacher Resources *	MP Standards
Gain familiarity with factors and multiples.				
4.OA. 4	Find all factor pairs for a whole number in the range 1-100. Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range 1-100 is a multiple of a given one-digit number. Determine whether a given whole number in the range $1-100$ is prime or composite.		Fact Practice Activities: Dice Blocks; Multominoes; Spider Queen's Hidden Products; Spider Queen's Spiders; Tall Towers; Wipe Out ISIP Math: Multiplication Practice Game	$\begin{aligned} & \hline \text { MP1 } \\ & \text { MP2 } \\ & \text { MP3 } \\ & \text { MP4 } \\ & \text { MP5 } \\ & \text { MP6 } \\ & \text { MP7 } \\ & \text { MP8 } \\ & \hline \end{aligned}$
Generate and analyze patterns.				
4.OA. 5	Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself. For example, given the rule "Add 3" and the starting number 1, generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even numbers. Explain informally why the numbers will continue to alternate in this way.		ISIP Math: Integrating Fact Practice Using Input/Output Function Tables	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
Number and Operations in Base Ten (NBT)				
Generalize place value understanding for multi-digit whole numbers.				
4.NBT. 1	Recognize that in a multi-digit whole number, a digit in one place represents ten times what it represents in the place to its right. For example, recognize that $700 \div 70=10$ by applying concepts of place value and division.	Unit 40: Writing Standard Form from Expanded Form to Thousands Unit 40: Writing Expanded Form from Standard Form to Thousands Unit 40: Writing Word Form from Expanded and Standard Form to Thousands Unit 40: Writing Standard Form from Expanded Form through Millions Unit 40: Writing Expanded Form from Standard Form through Millions Unit 40: Writing Word Form from Expanded and Standard Form through Thousands and Millions	Unit 40: Writing Expanded Form from Standard Form through Thousands and Millions Unit 40: Writing Standard Form from Expanded Form through Thousands and Millions Unit 40: Writing Word Form from Expanded and Standard Form through Thousands and Millions	$\begin{aligned} & \text { MP1 } \\ & \text { MP2 } \\ & \text { MP3 } \\ & \text { MP4 } \\ & \text { MP5 } \\ & \text { MP6 } \\ & \text { MP7 } \\ & \text { MP8 } \end{aligned}$

Istation Math Curriculum Correlated to North Carolina Standard Course of Study for Mathematics

Standards	Objectives	Istation Application *	Istation Teacher Resources *	MP Standards
4.NBT. 2	Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using $>,=$, and < symbols to record the results of comparisons.	Unit 40: Writing Standard Form from Expanded Form to Thousands		
		Unit 40: Writing Expanded Form from Standard Form to Thousands	Unit 40: Writing Expanded Form from Standard Form through Thousands and Millions	MP1
		Unit 40: Writing Word Form from Expanded and Standard Form to Thousands	Unit 40: Writing Standard Form from Expanded Form through Thousands and Millions	$\begin{aligned} & \text { MP2 } \\ & \text { MP3 } \\ & \text { MP4 } \end{aligned}$
		Unit 40: Writing Standard Form from Expanded Form through Millions	Unit 40: Writing Word Form from Expanded and Standard Form through Thousands and Millions	MP5 MP6 MP7
		Unit 40: Writing Expanded Form from Standard Form through Millions		MP8
		Unit 40: Writing Word Form from Expanded and Standard Form through Thousands and Millions		
4.NBT. 3	Use place value understanding to round multi-digit whole numbers to any place.	Unit 40: Rounding within Whole Numbers to the Nearest Ten, Hundred, Thousand with Number Line Unit 40: Rounding within Whole Numbers to the Nearest Ten, Hundred, Thousand with Algorithm Unit 40: Rounding Zero	Unit 40: Rounding - Nearest Thousand	
			Unit 40: Rounding - Nearest Ten, Hundred, Thousand	MP1 MP2 MP3
			Unit 40: Rounding within Three- and Four-Digit	MP4
			Numbers - Number Line	$\begin{aligned} & \text { MP5 } \\ & \text { MP6 } \end{aligned}$
			Unit 40: Rounding within Three- and Four-Digit Numbers - Abstract	$\begin{array}{\|l\|} \text { MP7 } \\ \text { MP8 } \end{array}$
			Unit 40: Zero as the Rounding Digit	
Use place value understanding and properties of operations to perform multi-digit arithmetic.				
4.NBT. 4	Fluently add and subtract multi-digit whole numbers using the standard algorithm.		ISIP Math: Adding Multidigit Numbers and Checking for Reasonableness	MP1
				MP2
				MP3
				MP4
				MP5
				MP6
				MP7
				MP8
4.NBT. 5	Multiply a whole number of up to four digits by a onedigit whole number, and multiply two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	Unit 41: Multiply Two-Digit Numbers with Concrete Models	Unit 41: Two-Digit by Two-Digit Concrete	MP1
			Multiplication	MP2
				MP3
			ISIP Math: Commutative Property of Multiplication to	MP4
			Represent Numbers	MP5
				MP6
			ISIP Math: Multiplying Using the Distributive	MP7
				MP8

Istation Math Curriculum Correlated to North Carolina Standard Course of Study for Mathematics Grade 4				
Standards	Objectives	Istation Application *	Istation Teacher Resources*	MP Standards
4.NBT. 6	Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	Unit 42: Solve Multistep Word Problems	Unit 42: Solve Multistep Word Problems	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
Number and Operations - Fractions (NF)				
Extend understanding of fraction equivalence and ordering.				
4.NF. 1	Explain why a fraction a / b is equivalent to a fraction $(n \times a) /(n \times b)$ by using visual fraction models, with attention to how the number and size of the parts differ even though the two fractions themselves are the same size. Use this principal to recognize and generate equivalent fractions.	Unit 43: Use Models to Compare Equivalent Fractions Unit 43: Expressing Equivalent Fractions with Denominators of 10 and 100	Unit 37: Using Models to Identify Equivalent Fractions Unit 43: Expressing Equivalent Fractions with Denominators of 10 and 100 ISIP Math: Comparing Fractions ISIP Math: Using Area Models to Compare Fractions	$\begin{aligned} & \text { MP1 } \\ & \text { MP2 } \\ & \text { MP3 } \\ & \text { MP4 } \\ & \text { MP5 } \\ & \text { MP6 } \\ & \text { MP7 } \\ & \text { MP8 } \end{aligned}$
4.NF. 2	Compare two fractions with different numerators and different denominators, e.g., by creating common denominators or numerators, or by comparing to a benchmark fraction such as $1 / 2$. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, =, or <, and justify the conclusions, e.g., by using a visual fraction model.	Unit 43: Use Benchmark Fractions to Compare Fractions with Different Denominators Unit 43: Compare Fractions with Unlike Denominators by Creating Common Denominators	Unit 43: Compare Fractions by Creating Common Denominators Unit 43: Benchmark Fractions Unit 43: Fractions - Symbols ISIP Math: Comparing Fractions ISIP Math: Using Area Models to Compare Fractions	$\begin{aligned} & \text { MP1 } \\ & \text { MP2 } \\ & \text { MP3 } \\ & \text { MP4 } \\ & \text { MP5 } \\ & \text { MP6 } \\ & \text { MP7 } \\ & \text { MP8 } \end{aligned}$
Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers.				
4.NF.3	Understand a fraction a / b with $a>1$ as a sum of fractions $1 / b$. a. Understand addition and subtraction of fractions as joining and separating parts referring to the same whole. b. Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: $3 / 8=1 / 8+1 / 8+1 / 8 ; 3 / 8$ $=1 / 8+2 / 8 ; 21 / 8=1+1+1 / 8=8 / 8+8 / 8+1 / 8$.	Unit 43: Add Fractions with Both Denominators of 10 and 100 Unit 43: Add a Denominator of 10 to a Denominator of 100 Unit 43: Add Fractions with Denominators of 10 and 100 Unit 43: Decomposing Fractions (Reteach lesson)	Unit 43: Add Denominators of 10 to Denominators of 100 Unit 43: Adding Like Denominators of 10 and 100	$\begin{aligned} & \text { MP1 } \\ & \text { MP2 } \\ & \text { MP3 } \\ & \text { MP4 } \\ & \text { MP5 } \\ & \text { MP6 } \\ & \text { MP7 } \\ & \text { MP8 } \end{aligned}$

Istation Math Curriculum Correlated to North Carolina Standard Course of Study for Mathematics

Standards	Objectives	Istation Application *	Istation Teacher Resources *	MP Standards
Understand decimal notation for fractions, and compare decimal fractions.				
4.NF. 5	Express a fraction with denominator 10 as an equivalent fraction with denominator 100 , and use this technique to add two fractions with respective denominators 10 and 100. (Note: Students who can generate equivalent fractions can develop strategies for adding fractions with unlike denominators in general. But addition and subtraction with unlike denominators in general is not a requirement at this grade.) For example, express $3 / 10$ as $30 / 100$, and add $3 / 10+4 / 100=$ 34/100.	Unit 43: Add Fractions with Both Denominators of 10 and 100 Unit 43: Express Equivalent Fractions - Tenths and Hundredths Unit 43: Add a Denominator of 10 to a Denominator of 100 Unit 43: Add Fractions with Denominators of 10 and 100	Unit 43: Expressing Equivalent Fractions with Denominators of 10 and 100 Unit 43: Add Denominators of 10 to Denominators of 100 Unit 43: Adding Like Denominators of 10 and 100	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
4.NF. 6	Use decimal notation for fractions with denominators 10 or 100. For example, rewrite 0.62 as 62/100; describe a length as 0.62 meters; locate 0.62 on a number line diagram.	Unit 43: Write Word Form of Decimals (0.1-0.9 and 0.01-0.09) Unit 43: Write Word Form of Decimals (0.10-0.90) Unit 43: Write Word Form of Decimals (0.01-1.99)	Unit 43: Decimals as Fractions (Tenths and Hundredths) Unit 43: Decimals - Standard and Word Form ISIP Math: Linking Fractions to Equivalent Decimal Numbers ISIP Math: Understanding Decimal Numbers with Fractional Language	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
4.NF. 7	Compare two decimals to hundredths by reasoning about their size. Recognize that comparisons are valid only when the two decimals refer to the same whole. Record the results of comparisons with the symbols >, =, or <, and justify the conclusions, e.g., by using a visual model.		ISIP Math: Comparing and Ordering Decimals	$\begin{aligned} & \hline \text { MP1 } \\ & \text { MP2 } \\ & \text { MP3 } \\ & \text { MP4 } \\ & \text { MP5 } \\ & \text { MP6 } \\ & \text { MP7 } \\ & \hline \end{aligned}$

Measurement and Data (MD)

Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit.

4.MD. 1	Know relative sizes of measurement units within one system of units including km, m, cm; kg, g; lb, oz.; l, ml ; hr, min, sec. Within a single system of measurement, express measurements in a larger unit in terms of a smaller unit. Record measurement equivalents in a two-column table. For example, know that 1 ft is 12 times as long as 1 in . Express the length of a 4 ft snake as 48 in . Generate a conversion table for feet and inches listing the number pairs (1, 12), (2, 24), (3, 36),	Unit 44: Converting Units of Measurement to Solve Word Problems	Unit 44: Measurement Conversion Word Problems

Istation Math Curriculum Correlated to North Carolina Standard Course of Study for Mathematics Grade 4				Istation
Standards	Objectives	Istation Application *	Istation Teacher Resources *	MP Standards
4.MD. 2	Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.	Unit 44: Converting Units of Measurement to Solve Word Problems	Unit 44: Measurement Conversion Word Problems ISIP Math: Calculating Elapsed Time ISIP Math: Area of Rectangles and Part-Part-Whole Word Problems ISIP Math: Measuring Length to the Nearest Quarter Inch	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
4.MD. 3	Apply the area and perimeter formulas for rectangles in real-world and mathematical problems. For example, find the width of a rectangular room given the area of the flooring and the length, by viewing the area formula as a multiplication equation with an unknown factor.		ISIP Math: Area of Rectangles and Part-Part-Whole Word Problems ISIP Math: Finding Area of Rectangles and Squares by Using Multiplication ISIP Math: Making Connections between Multiplication and Area ISIP Math: Quantifying Areas of Rectangles and Squares	$\begin{aligned} & \text { MP1 } \\ & \text { MP2 } \\ & \text { MP3 } \\ & \text { MP4 } \\ & \text { MP5 } \\ & \text { MP6 } \\ & \text { MP7 } \\ & \text { MP8 } \end{aligned}$
Geometric measurement: Understand concepts of angle and measure angles.				
4.MD. 5	Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement: a. An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through $1 / 360$ of a circle is called a "one-degree angle," and can be used to measure angles. b. An angle that turns through n one-degree angles is said to have an angle measure of n degrees.	Unit 45: Measure Angles with a Protractor	Unit 45: Measure Angles with a Protractor ISIP Math: Line and Angle Identification	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
4.MD. 6	Measure angles in whole-number degrees using a protractor. Sketch angles of specified measure.	Unit 45: Measure Angles with a Protractor	Unit 45: Measure Angles with a Protractor ISIP Math: Line and Angle Identification	$\begin{aligned} & \hline \text { MP1 } \\ & \text { MP2 } \\ & \text { MP3 } \\ & \text { MP4 } \\ & \text { MP5 } \\ & \text { MP6 } \\ & \text { MP7 } \\ & \text { MP8 } \end{aligned}$

Istation Math Curriculum Correlated to North Carolina Standard Course of Study for Mathematics Grade 4				
Standards	Objectives	Istation Application *	Istation Teacher Resources*	MP Standards
4.MD. 7	Recognize angle measure as additive. When an angle is decomposed into non-overlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real-world and mathematical problems, e.g., by using an equation with a symbol for the unknown angle measure.	Unit 45: Missing Angles	Unit 45: Missing Angles ISIP Math: Decomposing Figures to Find the Area of Polygons	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
Geometry (G)				
Draw and identify lines and angles, and classify shapes by properties of their lines and angles.				
4.G. 1	Draw points, lines, line segments, rays, angles (right, acute, obtuse), and perpendicular and parallel lines. Identify these in two-dimensional figures.	Unit 45: Measure Angles with a Protractor	Unit 45: Measure Angles with a Protractor ISIP Math: Line and Angle Identification	$\begin{array}{\|l\|} \hline \text { MP1 } \\ \text { MP2 } \\ \text { MP3 } \\ \text { MP4 } \\ \text { MP5 } \\ \text { MP6 } \\ \text { MP7 } \\ \text { MP8 } \\ \hline \end{array}$
		* Includes content released during the 2017-18 school year	* Includes content released during the 2017-18 school year	
End of Grade 4				

Grade 5

Istation

Standards	Objectives	Istation Application *	Istation Teacher Resources *	MP Standards
K-12 Mathematical Practices				
1	Make sense of problems and persevere in solving them.			
2	Reason abstractly and quantitatively.			
3	Construct voable arguments and critique the reasoning of others.			
4	Model with mathematics.			
5	Use appropriate tools strategically.			
6	Attend to precision.			
7	Look for and make use of structure.			
8	Look for and express regularity in repeated reasoning.			
Operations and Algebraic Thinking (OA)				
Write and interpret numerical expressions.				
5.OA. 1	Use parentheses or brackets in numerical expressions, and evaluate expressions with these symbols.	Unit 49: Writing Expressions from Words Unit 49: Interpreting Expressions Unit 49: Evaluate Numerical Expressions with Parentheses	Unit 49: Writing Expressions from Words - Subtraction Unit 49: Writing Expressions from Words - Addition and Subtraction Unit 49: Evaluating Numerical Expressions with Parentheses Unit 49: Identifying Expressions in Scenarios	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
5.OA. 2	Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7 , then multiply by 2 " as $2 \times(8$ $+7)$. Recognize that $3 \times(18932+921)$ is three times as large as $18932+921$, without having to calculate the indicated sum or product.	Unit 49: Writing Expressions from Words Unit 49: Interpreting Expressions	Unit 49: Writing Expressions from Words - Subtraction Unit 49: Writing Expressions from Words - Addition and Subtraction Unit 49: Evaluating Numerical Expressions with Parentheses Unit 49: Identifying Expressions in Scenarios	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
Analyze patterns and relationships.				
5.OA. 3	Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3" and the starting number 0 , and given the rule "Add 6 " and the starting number 0 , generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so.	Unit 51: Comparing Points on a Coordinate Plane	Unit 51: Comparing Points on a Coordinate Plane ISIP Math: Identifying and Plotting Ordered Pairs on the Coordinate Plane	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8

Istation Math Curriculum Correlated to North Carolina Standard Course of Study for Mathematics Grade 5

Standards	Objectives	Istation Application *	Istation Teacher Resources *	MP Standards
Number and Operations in Base Ten (NBT)				
Understand the place value system.				
5.NBT. 1	Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and $1 / 10$ of what it represents in the place to its left.	Unit 46: Multiplying Decimals by 10 and 100 Unit 46: Dividing Decimals by 10 and 100 Unit 46: Exploring Powers of Ten Unit 46: Multiplying and Dividing Decimals by Powers of 10	Unit 46: Multiplying Decimals by 10 and 100 Unit 46: Dividing Decimals by 10 and 100 Unit 46: Multiplying and Dividing Decimals by Powers of Ten Unit 46: Exploring Powers of Ten Unit 46: Decimal Grids and Place Value Mats Unit 46: Decimals on Place Value Mats	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
5.NBT. 2	Explain patterns in the number of zeros of the product when multiplying a number by powers of 10 , and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10 .	Unit 46: Multiplying Decimals by 10 and 100 Unit 46: Dividing Decimals by 10 and 100 Unit 46: Exploring Powers of Ten Unit 46: Multiplying and Dividing Decimals by Powers of 10	Unit 46: Multiplying Decimals by 10 and 100 Unit 46: Dividing Decimals by 10 and 100 Unit 46: Multiplying and Dividing Decimals by Powers of Ten Unit 46: Exploring Powers of Ten	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
5.NBT. 3	Read, write, and compare decimals to thousandths. b. Compare two decimals to thousandths based on meanings of the digits in each place, using $>,=$, and < symbols to record the results of comparisons.	Unit 46: Concrete Decimal Comparison (Training only) Unit 46: Decimal Comparison with Grids (Training Only) Unit 46: Comparison of Tenths and Hundredths on the Number Line Unit 46: Abstract Comparison of Tenths and Hundredths Unit 46: Abstract Comparison of Thousandths Unit 46: Abstract Comparison of Whole Numbers and Decimals	Unit 46: Abstract Decimal Comparison Unit 46: Decimal Comparison on the Number Line Unit 46: Decimals to Whole Numbers	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
5.NBT. 4	Use place value understanding to round decimals to any place.	Unit 46: Rounding Decimals with a Number Line Unit 46: Rounding Decimals with Dials Unit 46: Roll-Over Rounding	Unit 46: Rounding - Decimals - Number Line Unit 46: Rounding - Decimals - Algorithm	$\begin{aligned} & \text { MP1 } \\ & \text { MP2 } \\ & \text { MP3 } \\ & \text { MP4 } \\ & \text { MP5 } \\ & \text { MP6 } \\ & \text { MP7 } \\ & \text { MP8 } \end{aligned}$

Istation Math Curriculum Correlated to North Carolina Standard Course of Study for Mathematics Grade 5

Standards	Objectives	Istation Application *	Istation Teacher Resources *	MP Standards
Perform operations with multi-digit whole numbers and with decimals to hundredths.				
5.NBT. 5	Fluently multiply multi-digit whole numbers using the standard algorithm.		ISIP Math: Factor Game for Multiplication Facts Practice ISIP Math: Solving Multiplication and Division Word Problems with Diagrams	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
5.NBT. 6	Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.	Unit 44: Divide with Concrete Models Unit 44: Divide Using an Algorithm	Unit 44: Divide with Concrete Models Unit 44: Divide Using an Algorithm ISIP Math: Estimating Quotients Using Compatible Numbers ISIP Math: Models for Understanding Remainders ISIP Math: Using Models to Practice Extended Division Facts ISIP Math: Inverse Operations and Fact Families to Solve Simple Equations ISIP Math: Solving Multiplication and Division Word Problems with Diagrams	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
5.NBT. 7	Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used.	Unit 46: Multiplying Decimals by 10 and 100 Unit 46: Dividing Decimals by 10 and 100 Unit 46: Exploring Powers of Ten Unit 46: Multiplying and Dividing Decimals by Powers of 10	Unit 47: Decimal Addition Unit 47: Decimal Subtraction Unit 47: Concrete Decimal Division Unit 47: Representational Decimal Division Unit 46: Multiplying Decimals by 10 and 100 Unit 46: Dividing Decimals by 10 and 100 Unit 46: Multiplying and Dividing Decimals by Powers of Ten ISIP Math: Adding and Subtracting Decimal Numbers in a Word Problem ISIP Math: Calculating Reasonable Estimates of Decimal Number Sums	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8

Istation Math Curriculum Correlated to North Carolina Standard Course of Study for Mathematics Grade 5

Standards	Objectives	Istation Application *	Istation Teacher Resources *	MP Standards
Number and Operations - Fractions (NF)				
Use equivalent fractions as a strategy to add and subtract fractions.				
5.NF. 1	Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, $2 / 3+5 / 4=8 / 12$ $+15 / 12=23 / 12$. (In general, $a / b+c / d=(a d+$ bc)/bd.)		Unit 48: Adding Fractions with Unlike Denominators ISIP Math: Adding and Subtracting Fractions with Unlike Denominators	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
Apply and extend previous understandings of multiplication and division to multiply and divide fractions.				
5.NF. 4	Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction. a. Interpret the product $(a / b) \times q$ as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations $a \times q \div b$. For example, use a visual fraction model to show (2/3) \times $4=8 / 3$, and create a story context for this equation. Do the same with $(2 / 3) \times(4 / 5)=8 / 15$. (In general $(a / b) \times(c / d)=a c / b d$.) b. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas.	Unit 48: Multiplying by Fractions Less than One Unit 48: Multiplying by Fractions with Improper Fractions Unit 50: Area of a Rectangle with Fractional Sides	Unit 48: Multiplying by Fractions Less Than One Unit 48: Multiplying by Fractions Less Than One with Improper Fractions Unit 50: Area of a Rectangle with Fractional Sides	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
5.NF. 5	Interpret multiplication as scaling (resizing), by: a. Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication. b. Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $a / b=(n \times a) /(n \times b)$ to the effect of multiplying a / b by 1 .	Unit 48: Multiplying by Fractions Less than One Unit 48: Multiplying by Fractions Less than One with Improper Fractions	Unit 48: Multiplying by Fractions Less Than One Unit 48: Multiplying Fractions Less Than One with Improper Fractions	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8

Standards	Objectives	Istation Application *	Istation Teacher Resources *	MP Standards
Measurement and Data (MD)				
Convert like measurement units within a given measurement system.				
5.MD. 1	Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems.		ISIP Math: Converting Standard Units of Measurement ISIP Math: Performing Customary Measurement Conversions	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
Geometric measurement: Understand concepts of volume and relate volume to multiplication and to addition.				
5.MD. 3	Recognize volume as an attribute of solid figures and understand concepts of volume measurement. a. A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume and can be used to measure volume. b. A solid figure that can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units.		ISIP Math: Quantifying Volume: Counting Same-Sized Units ISIP Math: Volume as an Attribute of Three-Dimensional Space	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
5.MD. 4	Measure volumes by counting unit cubes, using cubic cm , cubic in, cubic ft , and improvised units.		ISIP Math: Quantifying Volume: Counting Same-Sized Units	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8

Istation Math Curriculum Correlated to North Carolina Standard Course of Study for Mathematics

Standards	Objectives	Istation Application *	Istation Teacher Resources *	MP Standards
5.MD. 5	Relate volume to the operations of multiplication and addition and solve real-world and mathematical problems involving volume. a. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication. b. Apply the formulas $V=I \times w \times h$ and $V=b \times h$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real-world and mathematical problems. c. Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the nonoverlapping parts, applying this technique to solve real-world problems.		ISIP Math: Quantifying Volume: Counting Same-Sized Units ISIP Math: Volume as an Attribute of Three-Dimensional Space ISIP Math: Calculating Volume in Multistep Word Problems ISIP Math: Integrating Fact Practice and Volume	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
Geometry (G)				
Graph points on the coordinate plane to solve real-world and mathematical problems.				
5.G. 1	Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis with the convention that the names of the two axes and the coordinates correspond (e.g., x axis and x-coordinate, y-axis and y-coordinate).	Unit 51: Graph Points on a Coordinate Plane Unit 51: Lines on a Coordinate Plane	Unit 51: Graph Points in a Coordinate Plane Unit 51: Lines on a Coordinate Plane ISIP Math: Identifying and Plotting Ordered Pairs on the Coordinate Plane	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8
5.G. 2	Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation.	Unit 51: Graph Points on a Coordinate Plane Unit 51: Lines on a Coordinate Plane	Unit 51: Graph Points in a Coordinate Plane Unit 51: Lines on a Coordinate Plane ISIP Math: Identifying and Plotting Ordered Pairs on the Coordinate Plane	MP1 MP2 MP3 MP4 MP5 MP6 MP7 MP8

Standards	Objectives	Istation Application *	Istation Teacher Resources *	MP Standards
Classify two-dimensional figures into categories based on their properties.				
5.G. 3	Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles.		ISIP Math: Analyzing Properties of Two- and ThreeDimensional Figures ISIP Math: What's My Rule? Corresponding Sides of Similar Triangles ISIP Math: Triangles: Finding a Missing Angle Measurement	$\begin{array}{\|c\|} \hline \text { MP1 } \\ \text { MP2 } \\ \text { MP3 } \\ \text { MP4 } \\ \text { MP5 } \\ \text { MP6 } \\ \text { MP7 } \\ \text { MP8 } \end{array}$
5.G. 4	Classify two-dimensional figures in a hierarchy based on properties.		ISIP Math: Analyzing Properties of Two- and ThreeDimensional Figures	$\begin{aligned} & \text { MP1 } \\ & \text { MP2 } \\ & \text { MP3 } \\ & \text { MP4 } \\ & \text { MP5 } \\ & \text { MP6 } \\ & \text { MP7 } \\ & \text { MP8 } \\ & \hline \end{aligned}$
		*Includes content released during the 2017-18 school year	*Includes content released during the 2017-18 school year	
End of Grade 5				

