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Elementary random processes

Elementary random processes

Consider a coin-tossing experiment. Head: you win $1, tail: you give
me $1.

Let Ri be the outcome of the i-th toss, Ri = +1 or Ri = −1 both
with probability 1/2.

Ri is a random variable.

E [Ri ] = 0, E [R2
i ] = 1, E [RiRj ] = 0.

No memory! Same as a fair die, a balanced roulette wheel, but not
blackjack!

Now let Si =
∑i

j=1 Rj be the total amount of money you have up to
and including the i-th toss.
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Elementary random processes

Random walks

This is an example of a random walk.

Figure: The outcome of a coin-tossing experiment. From PWQF.
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Elementary random processes

If we now calculate expectations of Si it does matter what
information we have.

E [Si ] = 0 and E [S2
i ] = E [R2

1 + 2R1R2 + . . .] = i .

The random walk has no memory beyond where it is now. This is the
Markov property.

The random walk has also the martingale property:
E [Si |Sj , j < i ] = Sj . That is, the conditional expectation of your
winnings at any time in the future is just the amount you already hold.

Quadratic variation:
∑i

j=1(Sj − Sj−1)2. You either win or lose $1
after each toss, so |Sj − Sj−1| = 1. Hence the quadratic variation is
always i .
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Elementary random processes

Brownian motion

Now change the rules of the game: allow n tosses in a time t.
Second, the size of the bet will not be $1 but $

√
t/n.

Again the Markov and martingale properties are retained and the

quadratic variation is still
∑n

j=1(Sj − Sj−1)2 = n
(√

t
n

)2
= t.

In the limit n→∞ the resulting random walk stays finite. It has an
expectation, conditioned on a starting value of zero, of E [S(t)] = 0,
and a variance E [S(t)2] = t. The limiting process as the time step
goes to zero is called Brownian motion, and from now on will be
denoted by X (t).
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Elementary random processes

Figure: A series of coin-tossing experiments, the limit of which is a Brownian
motion. From PWQF.
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Elementary random processes

Most important properties

Continuity: The paths are continuous, there are no discontinuities.
Brownian motion is the continuous-time limit of our discrete time
random walk.

Markov: The conditional distribution of X (t) given information up
until τ < t depends only on X (τ).

Martingale: Given information up until τ < t the conditional
expectation of X (t) is X (τ).

Quadratic variation: If we divide up the time 0 to t in a partition
with n + 1 partition points tj = jt/n then

n∑
j=1

(
X (tj)− X (tj−1)2

)2 → t. (Technically “almost surely.”)

Normality: Over finite time increments tj−1 to tj , X (tj)− X (tj−1) is
Normally distributed with mean zero and variance tj − tj−1.
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Stochastic calculus

Stochastic integral

Let’s define the stochastic integral of f with respect to the Browinan
motion X by

W (t) =

∫ t

0
f (τ)dX (τ) := lim

n→∞

n∑
j=1

f (tj−1) (X (tj)− X (tj−1)) ,

with tj = jt
n .

The function f (t) which is integrated is evaluated in the summation
at the left-hand point tj−1, i.e. the integration is non anticipatory..
This choice of integration is natural in finance, ensuring that we use
no information about the future in our current actions.
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Stochastic calculus

Stochastic differential equations

Stochastic differential equations: The shorthand for a stochastic
integral comes from “differentiating” it, i.e.

dW = f (t)dX .

For now think of dX as being an increment in X , i.e. a Normal
random variable with mean zero and standard deviation dt1/2.

Moving forward, imagine what might be meant by

dW = g(t)dt + f (t)dX?

It is simply a shorthand for

W (t) =

∫ t

0
g(τ)dτ +

∫ t

0
f (τ)dX (τ).
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Stochastic calculus

The mean square limit

Examine the quantity E

[(∑n
j=1 (X (tj)− X (tj−1))2 − t

)2]
, where

tj = jt/n.

Because X (tj)− X (tj−1) is Normally distributed with mean zero and
variance t/n, i.e. E

[
(X (tj)− X (tj−1))2

]
= t/n, one can then easily

show that the above expectation behaves like O( 1n ). As n→∞ this
tends to zero.

We therefore say

n∑
j=1

(X (tj)− X (tj−1))2 = t

in the “mean square limit”.

This is often written, for obvious reasons, as∫ t

0
(dX )2 = t.
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Functions of stochastic variables and Itô’s Lemma

Functions of stochastic variables

If F = X 2 is it true that dF = 2XdX? NO! The ordinary rules of
calculus do not generally hold in a stochastic environment. Then
what are the rules of calculus?

Figure: A realization of a Brownian motion and its square. From PWQF.
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Functions of stochastic variables and Itô’s Lemma

Itô’s Lemma: A physicist’s derivation.

Let F(X) be an arbitrary function, where X (t) is a Brownian motion.
Introduce a very, very small time scale h = δt/n so that F (X (t + h))
can be approximated by a Taylor series:

F (X (t + h))− F (X (t)) =

(X (t + h)− X (t))
dF

dX
(X (t)) +

1

2
(X (t + h)− X (t))2

d2F

dX 2
(X (t)) + . . . .

From this it follows that

(F (X (t + h))− F (X (t))) + (F (X (t + 2h))− F (X (t + h))) + . . .

(F (X (t + nh))− F (X (t + (n − 1)h))) =

=
n∑

j=1

(X (t + jh)− X (t + (j − 1)h))
dF

dX
(X (t + (j − 1)h))

+
1

2

d2F

dX 2
(X (t))

n∑
j=1

(X (t + jh)− X (t + (j − 1)h))2 + . . .
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Functions of stochastic variables and Itô’s Lemma

We have used the approximation d2F
dX 2 (X (t + (j − 1)h)) = d2F

dX 2 (X (t)),
consistent with the order we require.

The first line becomes simply
F (X (t + nh))− F (X (t)) = F (X (t + δt))− F (X (t)).

The second is just the definition of
∫ t+δt
t

dF
dX dX .

Finally the last is 1
2
d2F
dX 2 (X (t))δt in the mean square sense.

Thus we have

F (X (t + δt))− F (X (t)) =∫ t+δt

t

dF

dX
(X (τ))dX (τ) +

1

2

∫ t+δt

t

d2F

dX 2
(X (τ))dτ.
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Functions of stochastic variables and Itô’s Lemma

Can extend this over longer timescales, from zero up to t, over which
F does vary substantially, to get

F (X (t)) = F (X (0)) +

∫ t

0

dF

dX
(X (τ))dX (τ) +

1

2

∫ t

0

d2F

dX 2
(X (τ))dτ.

This is the integral version of Itô’s Lemma, which is usually written in
differential form as

dF =
dF

dX
dX +

1

2

d2F

dX 2
dt.

Do a naive Taylor series expansion of F , disregarding the nature of X :

F (X + dX ) = F (X ) +
dF

dX
dX +

1

2

d2F

dX 2
dX 2.

To get Itô’s Lemma, consider that F (X + dX )− F (X ) was just the
“change in” F and replace dX 2 by dt, remembering

∫ t
0 (dX )2 = t.

This is NOT AT ALL rigorous, but has a nice intuitive feeling.
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Functions of stochastic variables and Itô’s Lemma

Coming back to F = X 2 and applying Itô’s Lemma, we see that F
satisfies the stochastic differential equation

dF = 2XdX + dt.

In integrated form

X 2 = F (X ) = F (0) +

∫ t

0
2XdX +

∫ t

0
1dτ =

∫ t

0
2XdX + t

.

Therefore ∫ t

0
XdX =

1

2
X 2 − 1

2
t.
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Example: The stock market

The lognormal random walk

A stock S is usually modelled as

dS = µSdt + σSdX ,

where µ is called the drift and σ the volatility.

Figure: A realization of dS = µSdt + σSdX . From PWQF.
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Example: The stock market

Let F (S) = log(S) and use Itô’s Lemma to get

dF =
dF

dS
dS +

1

2
σ2S2 d

2F

dS2
dt = (µ− 1

2
σ2)dt + σdX .

In integrated form,

S(t) = S(0)e(µ−
1
2
σ2)t+σ(X (t)−X (0)).

S(t) is not really a random walk, and is often called a lognormal
random walk.
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Derivatives. The Black-Scholes equation and its validity.

Derivatives

A derivative (or option) is any function V (S , t) that depends on the
underlying stock S .

The derivative market is HUGE. Are actively traded on most stock
exchanges.

Example: a call option gives you the right (not the obligation) to buy
a particular asset for an agreed amount (exercise price, or strike price)
at a specified time in the future (expiry or expiration date).

What is the price of such a contract?

At expiration, the value is clearly max(S −E , 0), where E is the strike.

But what about now? How much would you pay for such an option?
The Black-Scholes equation provides the answer.
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Derivatives. The Black-Scholes equation and its validity.

The Black-Scholes equation

Consider now a portfolio consisting of a long position (we own it) of
V and a short position (we borrow, owe money) of ∆S assets,

Π = V (S , t)−∆S .

The change in our portfolio from t to t + dt is

dΠ = dV −∆dS .

From Itô, one can easily see that V must satisfy

dV =
∂V

∂t
dt +

∂V

∂S
dS +

1

2
σ2S2∂

2V

∂S2
dt.

Hence the portfolio changes by

dΠ = (
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
)dt + (

∂V

∂S
−∆)dS .
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Derivatives. The Black-Scholes equation and its validity.

If we choose ∆ = ∂V
∂S , we eliminate the randomness in our portfolio.

This is called delta hedging. It is a dynamic hedging strategy.

After choosing the quantity ∆ as suggested above, we hold a
portfolio whose value changes by the amount

dΠ = (
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
)dt.

This change is completely riskless.

If we have a completely risk-free change dΠ in the portfolio value Π
then it must be the same (no arbitrage principle) as the growth we
would get if we put the equivalent amount of cash in a risk-free
interest-bearing account:

dΠ = rΠdt.
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Derivatives. The Black-Scholes equation and its validity.

We then get

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
)dt = rΠdt,

from which it follows (remember that Π = V −∆S = V − ∂V
∂S S)

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0.

This is the famous Black-Scholes equation, first written down in
1969, but a few years passed, with Fischer Black and Myron Scholes
justifying the model, before it was published. The derivation of the
equation was finally published in 1973 and got them a Nobel prize
(1997).

It is a linear parabolic differential equation. Can be reduced to the
heat equation.

Describes the financial instruments under normal conditions. Not
valid during market crashes!!!
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Vlad Gheorghiu (CMU) Itô calculus in a nutshell April 7, 2011 23 / 23


	Outline
	Elementary random processes
	Stochastic calculus
	Functions of stochastic variables and Itô's Lemma
	Example: The stock market
	Derivatives. The Black-Scholes equation and its validity.
	References

