Itd calculus in a nutshell

Vlad Gheorghiu

Department of Physics
Carnegie Mellon University
Pittsburgh, PA 15213, U.S.A.

April 7, 2011

Vlad Gheorghiu (CMU) 1t6 calculus in a nutshell April 7, 2011 1/23



@ Elementary random processes

© Stochastic calculus

© Functions of stochastic variables and It6’s Lemma

@ Example: The stock market

© Derivatives. The Black-Scholes equation and its validity.
@ References

A summary of this talk is available online at
http://quantum.phys.cmu.edu/QIP
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Elementary random processes

o Consider a coin-tossing experiment. Head: you win $1, tail: you give
me $1.

@ Let R; be the outcome of the /-th toss, R; = +1 or R; = —1 both
with probability 1/2.

@ R;is a random variable.

e E[R] =0, E[R?] =1, E[R;R;] = 0.

@ No memory! Same as a fair die, a balanced roulette wheel, but not
blackjack!

o Now let §; = 25:1 R; be the total amount of money you have up to
and including the i-th toss.
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Random walks

@ This is an example of a random walk.
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Figure: The outcome of a coin-tossing experiment. From PWQF.
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Elementary random processes

o If we now calculate expectations of S; it does matter what
information we have.

e E[S]=0and E[S?] = E[R? + 2RiRy +...] = i.
@ The random walk has no memory beyond where it is now. This is the
Markov property.

@ The random walk has also the martingale property:
E[Si|Sj,j < i] = Sj. That is, the conditional expectation of your
winnings at any time in the future is just the amount you already hold.

® Quadratic variation: i, (S — Sj-1)®. You either win or lose $1
after each toss, so |S; — Sj_1]| = 1. Hence the quadratic variation is

always .
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Brownian motion

@ Now change the rules of the game: allow n tosses in a time t.
Second, the size of the bet will not be $1 but $,/¢t/n.

@ Again the Markov and martingale properties are retained and the

2
quadratic variation is still 371 (Sj — §j_1)2 = (\/E) —t.

@ In the limit n — oo the resulting random walk stays finite. It has an
expectation, conditioned on a starting value of zero, of E[S(t)] =0,
and a variance E[S(t)?] = t. The limiting process as the time step
goes to zero is called Brownian motion, and from now on will be
denoted by X(t).
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Elementary random processes
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Figure: A series of coin-tossing experiments, the limit of which is a Brownian
motion. From PWQF.
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Most important properties

@ Continuity: The paths are continuous, there are no discontinuities.
Brownian motion is the continuous-time limit of our discrete time
random walk.

e Markov: The conditional distribution of X(t) given information up
until 7 < t depends only on X(7).

@ Martingale: Given information up until 7 < t the conditional
expectation of X(t) is X(7).

@ Quadratic variation: If we divide up the time 0 to ¢ in a partition
with n+ 1 partition points t; = jt/n then

n
Z (X(tj) — X(tj_l)z)2 — t.  (Technically “almost surely.”)
j=1

e Normality: Over finite time increments t;_; to t;, X(t;) — X(tj_1) is
Normally distributed with mean zero and variance t; — tj_;.
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Stochastic integral

@ Let's define the stochastic integral of f with respect to the Browinan
motion X by

wie) = [ AEax() = fim 3 () (X(5) - X(5-1).
j=1

with t; = £,
@ The function f(t) which is integrated is evaluated in the summation
at the left-hand point t;_1, i.e. the integration is non anticipatory..
This choice of integration is natural in finance, ensuring that we use

no information about the future in our current actions.
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Stochastic differential equations

@ Stochastic differential equations: The shorthand for a stochastic
integral comes from “differentiating” it, i.e.

dW = f(t)dX.

@ For now think of dX as being an increment in X, i.e. a Normal
random variable with mean zero and standard deviation dt!/2.

@ Moving forward, imagine what might be meant by
dW = g(t)dt + f(t)dX?
It is simply a shorthand for
t t
W(t) = / g(r)dr +/ f(r)dX (7).
0 0
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The mean square limit

2
e Examine the quantity E {(Zj’_l (X(t) — X(tjfl))z _ t) ] where

tj =jt/n.

@ Because X(tj) — X(tj—1) is Normally distributed with mean zero and
variance t/n, i.e. E [(X(t;) — X(tj—1))?] = t/n, one can then easily
show that the above expectation behaves like O(%). As n — oo this
tends to zero.

@ We therefore say

n
> (X() = X(4-1)* =t
j=1
in the “mean square limit".
@ This is often written, for obvious reasons, as

/0 t(dX)z =t
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Functions of stochastic variables

o If F = X?is it true that dF = 2XdX? NO! The ordinary rules of
calculus do not generally hold in a stochastic environment. Then

what are the rules of calculus?
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Figure: A realization of a Brownian motion and its square. From PWQF.
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[t6's Lemma: A physicist’s derivation.

o Let F(X) be an arbitrary function, where X(t) is a Brownian motion.
Introduce a very, very small time scale h = dt/n so that F(X(t + h))
can be approximated by a Taylor series:

F(X(t+h)) = F(X(t)) =

2
(X(t+h) - xu))%(X(t)) + %(X(t +h) - X(t)f%(x(t)) too

@ From this it follows that

(F(X(t+ h)) — F(X(t)))+ (F(X(t+2h)) — F(X(t+ h))) +
(F(X(t + nh)) — F(X(t+ (n—1)h))) =

—Z (£-440) = X(6+ (G~ DA) S (X(e+ G = 1)

* %%(X(r)) SOCX(e+ )~ X(e 4G - DR +
i=1
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Functions of stochastic variables and 1t6’s Lemma

@ We have used the approximation %(X(t%— (—1)h) = %(X(t)),

consistent with the order we require.

The first line becomes simply
F(X(t+ nh)) — F(X(t)) = F(X(t + dt)) — F(X(t)).
The second is just the definition of ft”“;t aF dX.

%%(X(t))ét in the mean square sense.

Finally the last is

Thus we have

F(X(t+0t)) — F(X(t)) =

t+dt t+dt 42
/t S X)X (7) + /t e R (X()dr
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Functions of stochastic variables and 1t6’s Lemma

@ Can extend this over longer timescales, from zero up to t, over which
F does vary substantially, to get

FOX(0) = FXO) + [ 9 (X(r)ax(r) + & / O X

@ This is the integral version of 1t6's Lemma, which is usually written in
differential form as

dF 1d?F
dF = —dX + S22

= dt.
dX

@ Do a naive Taylor series expansion of F, disregarding the nature of X:

dF 1d?F
F(X +dX) = F(X) + ZodX + S —75dX>.

e To get Itd6's Lemma, consider that F(X + dX) — F(X) was just the
“change in"” F and replace dX? by dt, remembering fot(dX)2 =t.
@ Thisis NOT AT ALL rigorous, but has a nice intuitive feeling.
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Functions of stochastic variables and 1t6’s Lemma

e Coming back to F = X? and applying Itd's Lemma, we see that F
satisfies the stochastic differential equation

dF = 2XdX + dt.

@ In integrated form

t t t
X2:F(X):F(O)+/ 2de+/ 1d7:/ 2XdX +t
0 0 0

@ Therefore

t 1 1
/ XdX = = X? — Zt.
0 2 2
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The lognormal random walk

@ A stock S is usually modelled as
dS = pSdt + 05dX,
where p is called the drift and o the volatility.
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Figure: A realization of dS = uSdt + 0SdX. From PWQF.
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Example: The stock market

o Let F(S) =log(S) and use 1td's Lemma to get

1 1
dF = —d5+§ 252d 2d —(,u—fa )dt + odX.

dS S

@ In integrated form,

S(t) = S(0)elr— 2o tH(X(D=X(0)),

@ 5(t) is not really a random walk, and is often called a lognormal
random walk.
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Derivatives. The Black-Scholes equation and its validity.
Derivatives

A derivative (or option) is any function V/(S, t) that depends on the
underlying stock S.

@ The derivative market is HUGE. Are actively traded on most stock
exchanges.

e Example: a call option gives you the right (not the obligation) to buy
a particular asset for an agreed amount (exercise price, or strike price)
at a specified time in the future (expiry or expiration date).

@ What is the price of such a contract?
@ At expiration, the value is clearly max(S — E, 0), where E is the strike.

@ But what about now? How much would you pay for such an option?
The Black-Scholes equation provides the answer.
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The Black-Scholes equation

e Consider now a portfolio consisting of a long position (we own it) of
V' and a short position (we borrow, owe money) of AS assets,

=V(S,t) - AS.

@ The change in our portfolio from t to t + dt is
dln =dV — AdS.

@ From It0, one can easily see that V must satisfy
oV ov , 0%V
dV = ——dt + —dS + =0%5%>—— dt.
ot T as + 252
@ Hence the portfolio changes by
1 0?V
dln = (— +5 0?52 F2)dt+ (5 (— — A)dS.
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Derivatives. The Black-Scholes equation and its validity.

If we choose A = 85' we eliminate the randomness in our portfolio.
This is called delta hedging. It is a dynamic hedging strategy.

After choosing the quantity A as suggested above, we hold a
portfolio whose value changes by the amount

1% 1 26202V

dn=(5+ 9529t

This change is completely riskless.

If we have a completely risk-free change dI1 in the portfolio value I
then it must be the same (no arbitrage principle) as the growth we
would get if we put the equivalent amount of cash in a risk-free
interest-bearing account:

dln = rldt.
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Derivatives. The Black-Scholes equation and its validity.

o We then get
OV 1 5, ,0%V
T T
from which it follows (remember that M=V —AS =V — %5)

)dt = rldt,

OV 1 ,,08V vV

@ This is the famous Black-Scholes equation, first written down in
1969, but a few years passed, with Fischer Black and Myron Scholes
justifying the model, before it was published. The derivation of the
equation was finally published in 1973 and got them a Nobel prize
(1997).

@ It is a linear parabolic differential equation. Can be reduced to the
heat equation.

@ Describes the financial instruments under normal conditions. Not
valid during market crashes!!!
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