IT6004 - Software Testing
Unit-1 Introduction
1.1 The Evolving Profession of Software Engineering

the development process is well understood,;

projects are planned,

life cycle models are defined and adhered to;

standards are in place for product and process;

measurements are employed to evaluate product and process quality;
e components are reused;

Chemical
engineering
Computer
engineering
Code of ethics
Body of
knowledge

Work in progress

-,

Software engineering

Elements of the engineering disciplines

The Role of Process in Software Quality

Process, in the software engineering domain, is the set of methods, practices,
standards, documents, activities, policies, and procedures that software engineers
use to develop and maintain a software system and its associated artifacts, such as
project and test plans, design documents, code, and manuals.

Standards
and documents

Activities
Policies
Plans

l‘rm - /\

_— | process, il
. version 1.0

Methods and eraion:1 Procedures
techniques

1 Process evolution

./\'crxi()n
B 11
\4 Version

=

)
S

Components of an engineering process

Testing as a Process

Validation is the process of evaluating a software system or component during, or
at the end of, the development cycle in order to determine whether it satisfies
specified requirements.

Verification is the process of evaluating a software system or component to
determine whether the products of a given development phase satisfy the
conditions imposed at the start of that phase.

- Software Development Process
Requirements

analysis
process

Product
specification
process

Diesign process

Testing process

Verification Validation
process Process

Example process embedded in the software development

Testing is generally described as a group of procedures carried out to evaluate some
aspect of a piece of software.

Testing can be described as a process used for revealing defects in software, and for
establishing that the software has attained a specified degree of quality with respect to
selected attributes.

An Overview of the Testing Maturity Model

1. There is a demand for software of high quality with low defects;

2. Process is important in the software engineering discipline;

3. Software testing is an important software development sub process;

4. Existing software evaluation and improvement models have not adequately addressed
testing issues.

In the testing domain possible benefits of test process improvement are the following:
* smarter testers
* higher quality software
« the ability to meet budget and scheduling goals
« improved planning
« the ability to meet quantifiable testing goals

TMM Levels

A set of maturity goals. The maturity goals identify testing improvement goals that must
be addressed in order to achieve maturity at that level. To be placed at a level, an
organization must satisfy the maturity goals at that level. The TMM levels and associated
maturity goals are shown in Figure.

« Supporting maturity subgoals. They define the scope, boundaries and needed
accomplishments for a particular level.

« Activities, tasks and responsibilities (ATR). The ATRs address implementation and
organizational adaptation issues at each TMM

in di;y ﬁr.ﬂn

-

.//T;;nq\x
|- it |
ey

l supported by

C.‘lj_aturit}' suhgni'_

-~

-

l achieved by

¢ Activities/tasks/responsibilities

address_~" l(:rp.mi.r.u.i by

e — /
/”Im-.‘nlemuntar:un\ — —
[and organizational) f:(_'rili;al \'iewh
- ¢ — _/
__ adaptation // —
e o

R T
@ Us-:rfcli-._*E)

The internal structure of TMM maturity levels

Level 5: Optimizatnon/Dcfecct Prevention
and Quality Control

Test process optimization
Quality control
Application of process data for defect prevention

Level 4: Management and Mcasurcment

Software quality evaluation
Establish a test measurement program
Establish an organizationwide review program

Lcvel 3: Intcgration

Control and monitor the testing process
Integrate testing into the software life cycle
Establish a technical training program
Establish a software test organization

Lcvel 2: Phasc Dcfinition

Institutionalize basic testing techniques and methods
Initiate a test planning process

Develop testing and debugging goals

Level 1: Initial |

The s-level structure of the testing maturity model

I Execute acceptance test |

/

I Execute system test |

Specify requirements

Requirements
review

System acceptance
test plan review/audit

Specify/design Code

System/acceptance tests

Execute integration
tests

Integration test plan
review/audit

Specify/design Code

Integration tests

Execute unit
tests

Unit test plan
review/audit

Specify/design Code
Unit tests

The Extended/Modified VV-model

1.2 Testing Fundamentals
Error & Faults (Defects)
* An error is a mistake, misconception, or misunderstanding on the part of a
software developer.
» A fault (defect) is introduced into the software as the result of an error. It is an
anomaly in the software that may cause it to behave incorrectly, and not according
to its specification.

Failures
« A failure is the inability of a software system or component to perform its
required functions within specified performance requirements

Test Cases
» Atest case in a practical sense is a test-related item which contains the following
information:

» Aset of test inputs. These are data items received from an external source by the
code under test. The external source can be hardware, software, or human.

» Execution conditions. These are conditions required for running the test, for
example, a certain state of a database, or a configuration of a hardware device.

» Expected outputs. These are the specified results to be produced by the code under

test.
Test
« A test is a group of related test cases, or a group of related test cases and test
procedures
Test Oracle

« A test oracle is a document, or piece of software that allows testers to determine
whether a test has been passed or failed.
Test Bed
» Atest bed is an environment that contains all the hardware and software needed to
test a software component or a software system.
Software Quality
« Quality relates to the degree to which a system, system component, or process
meets specified requirements.
« Quality relates to the degree to which a system, system component, or process
meets customer or user needs, or expectations.
« A metric is a quantitative measure of the degree to which a system, system
component, or process possesses a given attribute

» A quality metric is a quantitative measurement of the degree to which an item
possesses a given quality attribute
Software Quality Assurance Group
« The software quality assurance (SQA) group is a team of people with the
necessary training and skills to ensure that all necessary actions are taken during
the development process so hat the resulting software conforms to established
technical requirements.

Reviews
« Arreview is a group meeting whose purpose is to evaluate a software artifact or a
set of software artifacts.
13DEFECTS,HYPOTHESES,ANDTESTS

Origins of Defects

Diefect sources

Lack of Education
Poor communication

Owversight
Transcriprion
Immature process Impact on softwarc artifacts
 —
|]-.rrt]:s]
Faulrs {defects)
Impact from user's views
Pt:unr-c_'n'.it_j\.' mf!'wa:-:
User dissatisfaction
Hypotheses
L]

design test cases;
 design test procedures;
» assemble test sets;
+ select the testing levels (unit, integration, etc.)
 appropriate for the tests;
evaluate the results of the tests

Defect Classes, the Defect Repository, and Test Design
« RequirementsandSpecificationDefects
« DesignDefects
« CodingDefects
« TestingDefects

RequirementsandSpecificationDefects
« Functional Description Defects
» Feature Defects
» Feature Interaction Defects
 Interface Description Defects
DesignDefects
» Algorithmic and Processing Defects
« Control, Logic, and Sequence Defects
» Data Defects
* Module Interface Description Defects
» Functional Description Defects

« External Interface Description Defects

CodingDefects
« Algorithmic and Processing Defects
» Control, Logic and Sequence Defects
« Typographical Defects
e Initialization Defects
« Data-Flow Defects
» Data Defects
e Module Interface Defects
» Code Documentation Defects
« External Hardware, Software Interfaces Defects

TestingDefects
» Test Harness Defects
« Test Case Design and Test Procedure Defects

Reoquircment/Specification Drefect reports/analysis

Defect Classcs

Funcrional description
Feature

Feature interaction
Interface description

¥ Irefect reports/analysis
Design Defect Classes }

Algorithmic and processing
Conrrol, logic, and sequence

Drata Dicfoct Repository
Module interface description
External interface description Drefect classes
Severity
OCcurences

Coding Dcfect Classcs

-
Algorithmic and processing T
Controel, logic, and sequence
Typographical daca flow
Irata
Module interface
Code documentation
External hardware,

software

efect reports/analysis

Testing Defoect Classcs o
Defect reportsfanalysis

Test Harness
Test design
Test procedurs

Defect Examples: The Coin Problem
» A precondition is a condition that must be true in order for a software component
to operate properly.
 In this case a useful precondition would be one that states for example:
number_of _coins >0
» A postcondition is a condition that must be true when a software component
completes its operation properly.

A useful postcondition would be:
number_of_dollars, number_of cents>= 0.

Specification for Program calculate coin value

This program calculares the roral dollars and cenrs
value for a set of coins. The user mnputs the amount
of pennies, nickels, dimes, quarters, half-dollars,
and dollar coins held. There are six different
denominanons of coins, The program outpurs the
total dollar and cent values of the comns to the user.

Inpurs: number_of coins is an integer
Outputs: number of dollars is an integer
number_of cenls is an integer

A sample specification with defects.

Design Description for Program calculate_coin_wvalues

Program calculate_coin_values

number_of_coins is dinteger

total_coin_waluwe is integer

number_of_dollars is integer

number_of_cents is integer

coin_values is array of six integers representing
each coin valwe inm cents

initialired to: 1,5,10,25 26, 100

begimn

imitialire total_coin_wvalue to zero
initialire loop_counter to one
while loop_counter is less then six
begin
output "enter number of coins"
read (nuwmber_of_coins)
total _coin_walwe = total_coim_wvalus +
number_of_coins * coin_valuellloop_counter]
increment loop_ counter
end
number_dollars = total coin_wvaluwe/100
number_of_cents = total _coin_wvalwe — 100 =* pumber_of_dollars
cutput (number_of_dollars, number_of_cents)
emnd

A sample design specification with defects.

Control, logic, and sequencing defects.
The defect in this subclass arises
from an incorrect “while” loop condition (should be less than or equal
to six)

Data defects. This defect relates to an incorrect value for one of the elements of
the integer array, coin_values, which should readl,5,10,25,50,100.

/!
program calculate_coin_wvalues calculates the dollar and cents

value of a set of coins of different dominations input by the user
denominations are pennies, nickels, dimes, quarters, half dollars,
and dollars y

main)

int total_coin_value ;

int number_of_coins = 0}

int number_of_dollars = 0;

int number_of-cemts = 0}

%n‘t coin_values = {1,5,10,25,25,1007%;
int i = 1;

Ehi]_e { i< B)

printf ("input number of coins\n"};
scanf ("¥d", number_of_coins);
total_coin_walue = total_codin_wvalue +
3 {number_of_coins * coin_wvaluefil);
i=1i+=+ 1;
number_of_dollars = total_coin_wvalue/100;
number_of_cents = total _coin_wvalue - (100 * number_of_dollars);
printf{"¥dwn", number_of_dollars);
Erin‘l:f("'ﬂd\n", number_of-cents);

! o
A code example with defect

Unit-11 Test Case Design

Strategies and Methods for Test Case Design —I
Test Case Design Strategies

Test Tester's Knowledge
Strategy View Sources Methods
Requirements Equivalence class
Inputs document partitioning
Specifications Boundary value analysis
Black box Domain knowledge State transition testing
Drefect analysis Cause and effect graphing
data Error guessing
Cutpurs
High-level design Statement testing
Detailed design Branch resting
White box Control flow Path testing
graphs Data flow testing
Cyclomatic Mutation testing
complexity Loop testing

The two basic testing strategies

Using the Black Box Approach to Test Case Design
» Dblack box test strategy where we are considering only inputs and outputs as a
basis for designing test cases
» how do we choose a suitable set of inputs from the set of all possible valid and
invalid inputs
» Asaexample, suppose you tried to test a single procedure that calculates the
square root of a number.
« If you were to exhaustively test it you would have to try all positive input values.
« what about all negative numbers, fractions? These are also possible inputs.
2.1 Equivalence Class Partitioning
« A good approach to selecting test inputs is to use a method called equivalence
class partitioning.
« advantages:
— It eliminates the need for exhaustive testing, which is not feasible.
— It guides a tester in selecting a subset of test inputs with a high probability
of detecting a defect.
— It allows a tester to cover a larger domain of inputs/outputs with a smaller
subset selected from an equivalence class.
There are several important points related to equivalence class partitioning
» The tester must consider both valid and invalid equivalence classes.
« Equivalence classes may also be selected for output conditions.
« The derivation of input or outputs equivalence classes is a heuristic process.
List of Conditions
 If an input condition for the software-under-test is specified as a range of values
» ‘If an input condition for the software-under-test is specified as a number of
values

« If an input condition for the software-under-test is specified as a set of valid input

values
« ““If an input condition for the software-under-test is specified as a “must be”
condition

Function square_root
message [(x:real)
when x >= 0.0
reply [(y:real]
where y == 0.0 & approximately [y y.x)
otherwise reply exception imaginary_square__noot
end fumction

« EC1. The input variable x is real, valid.

« EC2. The input variable x is not real, invalid.
« ECS3. The value of x is greater than 0.0, valid.
» EC4. The value of x is less than 0.0, invalid.

2.2 Boundary Value Analysis

Equivalence partition

/! N

Boundary Boundary

Boundaries of an equivalence partition

An Example of the Application of Equivalence Class Partitioning and Boundary
Value Analysis

» Widget identifiers into a widget data base

« We have three separate conditions that apply to the input:
(i) it must consist of alphanumeric characters
(i) the range for the total number of characters is between 3 and 15,
(iii) the first two characters must be letters.

 First we consider condition 1, the requirement for alphanumeric characters. This
is a “must be” condition. We derive two equivalence classes.
— EC1. Part name is alphanumeric, valid.
— EC2. Part name is not alphanumeric, invalid.
« Then we treat condition 2, the range of allowed characters 3—-15.
— ECS3. The widget identifier has between 3 and 15 characters, valid.
— EC4. The widget identifier has less than 3 characters, invalid.
— ECS. The widget identifier has greater than 15 characters, invalid.

* Finally we treat the “must be” case for the first two characters.
— [ECS6. The first 2 characters are letters, valid.
— ECTY. The first 2 characters are not letters, invalid.

Valid equivalence Invalid equivalence
Condition classes classes

EC1 EC2

EC3 EC4, EC5
3 EC6 EC7

Fig 2.3 Example equivalence class reporting table

» For example:
— BLB—a value just below the lower bound
— LB—the value on the lower boundary
— ALB—a value just above the lower boundary
— BUB—a value just below the upper bound
— UB—the value on the upper bound
— AUB—a value just above the upper bound
» For our example module the values for the bounds groups are:
- BLB—2BUB—14
- LB—3UB—15
— ALB—4 AUB—16

Module name: Insert_Widget
Module identiffer: APG2-Mod4d
Date: January 31, 2000
Tester: Michelle Jordan

Valid Inwvadid
erquivalence equivalence
classes amdil classes and
Test case Input bhounds hounds
identifier values covered covered
1 abc1 EC1. EC3{ALB) ECa
2 ab1 EC1, EC3(LB), ECa
3 abcdef123456789 EC1, EC3 (UB) ECe
4 abcde123456789 EC1, EC3 (BUB) ECs
5 abc* EC3(ALB), ECs EC2
(<3 ab EC1. ECe EC4(BLB)
T abcdefg123456789 EC1, ECsa EC5({AUB)
8 al23 EC1., EC3 (ALB) EC7T
9 abcdef123 EC1. EC3, ECsa

(typical case)

Summary of test inputs using equivalence class partitioning and boundary value
analysis for sample module

* A major weakness with equivalence class partitioning is that it does not allow
testers to combine conditions.

23Cause-and-Effect Graphing

» The tester must decompose the specification of a complex software component
into lower-level units.

» For each specification unit, the tester needs to identify causes and their effects.

« From the cause-and-effect information, a Boolean cause-and-effect graph is
created. Nodes in the graph are causes and effects.

« The graph may be annotated with constraints that describe combinations of causes
and/or effects that are not possible due to environmental or syntactic constraints.

« The graph is then converted to a decision table.

» The columns in the decision table are transformed into test cases.

|/—T%\
S _F/J AT ™ 3
f/—_?_h\".
N

Effect 3 occurs if both causes 1 and 2 are present.

[} 1 } 2
A

Effect 2 oocurs if cause 1 occurs.

LN N /D
A N

Effect 2 oocurs if cause 1 does not oocur.

Fig 2.5 Sample of cause-and-effect graph notations

« The input conditions, or causes are as follows:

C1: Positive integer from 1 to 80

C2: Character to search for is in string

The output conditions, or effects are:

E1: Integer out of range

E2: Position of character in string

E3: Character not found

The rules or relationships can be described as follows:
If C1 and C2, then E2.

If C1 and not C2, then ES3.

If not C1, then E1.

Cause-and-effect graph for the character search example

A decision table will have a row for each cause and each effect.

Entries in the table can be represented by a “1” for a cause or effect that is
present, a “0” represents the absence of a cause or effect, and a “—" indicates a
“don’t care” value.

A decision table for our simple example is shown in Table 4.3 where C1, C2, C3

represent the causes, E1, E2, E3 the effects, and columns T1, T2, T3 the test
cases.

Inputs ~ Length Character to search for ~ Qutputs

Tl § C]
12 § W Not found
3 90 Integer out of range
T T2 3

ci 1 i 0
c2 1 0 —
El 0 0 1
E2 1 0 0
E3 0 i 0

Decision table for character search example

24StateTransition Testing

A state is an internal configuration of a system or component. It is defined in
terms of the values assumed at a particular time for the variables that characterize
the system or component.

A finite-state machine is an abstract machine that can be represented by a state

graph having a finite number of states and a finite number of transitions between
states.

°
|

Alact-1 Blact-3
_ Biact4 82

Cfact-5

Adact-2

Clact-6

Fig. 2.8 Simple state transition graph

For example, the transition from S1 to S2 occurs with input, or event B. Action 3
occurs as part of this state transition. This is represented by the symbol “B/act3.
For the simple state machine in Figure 4.6 and Table 4.4 the transitions to be
tested are:

* Input AinS1

* Input Ain S2

* InputBinSl

* Input B in S2

 InputCinSl

* Input Cin S2

$1 §2

Inputs
Input A §1 (act-1) 52 (act-2)
Input B 82 (act-3) S1 (act-4)
Input C 82 (act-3) 52 (act-6)

Fig 2.9 A state table for the machine

25ErrorGuessing

Designing test cases using the error guessing approach is based on the
tester’s/developer’s past experience

Strategies and Methods for Test Case Design —I1

Using the White Box Approach to Test Case Design

A test data set is statement, or branch, adequate if a test set T for program P
causes all the statements, or branches, to be executed respectively.

2.6 Coverage and Control Flow Graphs

program statements

decisions/branches (these influence the program flow of control)

conditions (expressions that evaluate to true/false, and do not contain any other
true/false-valued expressions)

combinations of decisions and conditions

paths (node sequences in flow graphs)

All structured programs can be built from three basic primes-sequential (e.qg.,
assignment statements), decision (e.g., if/then/else statements), and iterative (e.qg.,
while, for loops).

Sequence Condition Iteration

O O rO=

l True \E alse Truol‘

53 0|0

|

O -

Representation of program primes

Covering Code Logic

/* pos_sum finds the sum of &l positive nombers (greater than zern) stored in an integer
aray & Input parameters are num_of entries, an integer, and a, an array of integers with
num_of entries elements. The output parameter is the integer sume */

pos_sum(a, num_of _eniries, sum)

1
2 sum=0
1 iti=1
4 while (i <= num_of_entries)
a if afi] =0
b sum = sum + afi]
endif
T i=i+1
end while

4. end pos_sum

Code sample with branch and loop

o8

False 4 —_‘H.
i<=num_of_emtri d_P—-”

Tru-e

5 _h“'“\._
alil » 0./

True

<.
I

TN
=

A control flow graph representation for the code

False

Decision or Value of Value of Test case: Value of

hranch varinhle i predicate a, num_of entries
a=1,-453
num_of entries = 3
while 1 True
4 False
if 1 True
2 False

A test case for the code in 2.11 that satisfied the decision coverage criterion

if(age <65 and married true)

do X
doy....
else
doZ
« Condition 1: Age less than 65
» Condition 2: Married is true
Test cases for simple decision coverage
Decision outcome
Value Value for (compound predicate Test case
for age married as a whole) I
30 True True 1
75 True False 2
Test cases for condition coverage
Value Value for Condition 1 Condition 2 Test case
for age married outcome outcome D
75 True False True 2
30 False True False 3

2.7 Paths: Their Role in White Box—Based Test Design

A path is a sequence of control flow nodes usually beginning from the entry node of a
graph through to the exit node.

1-2-3-4-8

8 White Box Test Design Approaches

2.8.1 Data Flow and White Box Test Design
We say a variable is defined in a statement when its value is assigned or changed.
« For example in the statements
Y=26*X
Read (Y)
— the variable Y is defined, that is, it is assigned a new value. In data flow
notation this is indicated as a def for the variable Y.

We say a variable is used in a statement when its value is utilized in a statement. The
value of the variable is not changed.

» They describe a predicate use (p-use) for a variable that indicates its role in a
predicate. A computational use (c-use) indicates the variable’s role as a part of a
computation. In both cases the variable value is unchanged.

» For example, in the statement
Y=26*X
+ the variable X is used. Specifically it has a c-use.

* In the statement
if (X >98)
Y = max

» X has a predicate or p-use.

1 sum=10 sum, oef

2 read (n). n, def

3 i=1 i, def

4 while (i <=n) i, n p-sue

] read (number) nomber, def

B SUM = Sum + number sum, o'ef, sum, number, c-se
T i=i+1 i, def, c-use

a end while

g print (sum) S0, c-ise

Fig 2.14 Sample code with data flow information

282LoopTesting
» Loop testing strategies focus on detecting common defects associated with these
structures.
(i) zero iterations of the loop, i.e., the loop is skipped in its entirely;
(ii) one iteration of the loop;
(iii) two iterations of the loop;
(iv) k iterations of the loop where k <n;

(v) n - 1 iterations of the loop;
(vi) n + 1 iterations of the loop (if possible).

Unit-111
Levels of Testing

3.1 Unit Test: Functions, Procedures, Classes, and Methods as Units
* Aunitis the smallest possible testable software component.
It can be characterized in several ways. For example, a unit in a typical
» procedure-oriented software system:
« performs a single cohesive function;
» can be compiled separately;
» s a task in a work breakdown structure (from the manager’s point of view);
+ contains code that can fit on a single page or screen.

A £) Procedure-sized

reusable components
Procedures Classes/objects {Small-sized COTS com-

and functions and methods PONENs OF Components

from an in-house
reuse library)

\ J

some components suitable for unit test

Unit Test: The Need for Preparation
» To prepare for unit test the developer/tester must perform several tasks. These are:
(i) plan the general approach to unit testing;
(if) design the test cases, and test procedures (these will be attached to the test plan);
(iii) define relationships between the tests;
(iv) prepare the auxiliary code necessary for unit test.

Unit Test Planning
« Phase 1: Describe Unit Test Approach and Risks\

In this phase of unit testing planning the general approach to unit testing is outlined.
The test planner:.
(i) identifies test risks;
(ii) describes techniques to be used for designing the test cases for the units;
(iii) describes techniques to be used for data validation and recording of test
results;
(iv) describes the requirements for test harnesses and other software that
interfaces with the units to be tested, for example, any special objects needed for
testing object-oriented units.

* Phase 2: Identify Unit Features to be Tested
« Phase 3: Add Levels of Detail to the Plan
Designing the Unit Tests

« Part of the preparation work for unit test involves unit test design. It is important
to specify

(i) the test cases (including input data, and expected outputs for each test
case), and,
(i) the test procedures (steps required run the tests)

The Class as a Testable Unit: Special Considerations
« Issue 1: Adequately Testing Classes

Stack Class

Data for Stack

Member functions
for Stack
creatals, size)
push(s, item)
papls, item)

fullis)
enpty (s)
show_top(s)

Fig 3.2 Sample stack class with multiple methods
Issue 2: Observation of Object States and State Changes
« empty(s), push(s,item-1), show_top(s), push(s,item-2),
« show_top(s), push(s,item-3), full(s), show_top(s), pop(s,item),
» show_top(s), pop(s,item), show_top(s), empty(s), . . .
Issue 3: The Retesting of Classes—I

Issue 4: The Retesting of Classes—I|1

Class Shape

Dhata for Shape

Member functions
for Shape
createlFigure)
color(figura, color)
rotate{figure, degrees)
shrink :fiEun;, percent)
enlarge(figura, parcent)
duplicate(figure)
display(figura)

Sample shape class
The Test Harness
« The auxiliary code developed to support testing of units and components is called
a test harness. The harness consists of drivers that call the target code and stubs
that represent modules it calls.

.-/"'_ T
Draver \I

“‘x/"

Call and pass J' TH':-—*UJ_'-‘
Paramoters

| Uiz vunder test |

- T‘-'\\.n_la._n-::-q. ledge C=ll T_-'H. cknowledge
- : __‘\

Soub : Stub 2)

L i,

The test harness

|

E

For example, a driver could have the following options and combinations of options:
(1) call the target unit;

(ii) do 1, and pass inputs parameters from a table;

(iii) do 1, 2, and display parameters;

(iv) do 1, 2, 3 and display results (output parameters).

The stubs could also exhibit different levels of functionality. For example a stub could:
(i) display a message that it has been called by the target unit;

(if) do 1, and display any input parameters passed from the target unit;

(iii) do 1, 2, and pass back a result from a table;

(iv) do 1, 2, 3, and display result from table.

Running the Unit Tests and Recording Results

Unit Test Worksheet

Unit Name:
Unit Identifier:

Tester:

Date:

Test case ID Status (run/not run) Summary of results Pass/fail
Summary work sheet for unit test
3.2 Integration Test: Goals
» Integration test for procedural code has two major goals:
(i) to detect defects that occur on the interfaces of units;

(i) to assemble the individual units into working subsystems and finally a
complete system that is ready for system test.

Integration Strategies for Procedures and Functions
« For conventional procedural/functional-oriented systems there are two major
integration strategies—top-down and bottom-up.

[M1 1
|

M2 M3 M4 | M5

r ' P | r
Me M7 | ME M= M10 M11

Fig 3.6 Simple structure chart for integration test examples

{ Mi1 N|

M2 [Stuh :m] [sfuh M4 | | Stub 3-;{5]

L,

."

5 &9 (5

Fig 3.7 Top-down integration of modules M1 and M2

System Test: The Different Types
There are several types of system tests as shown on Figure. The types are as follows:

* Functional testing

* Performance testing
* Stress testing

* Configuration testing
* Security testing

* Recovery testing

Fully integraved
software system
J

(e (s)

=]l 5 .]
Bequircments System tests User \
documents i pr-:;r_:lln./f \ manuals |
, | !
Functional Stress and Security Conhguration Performance Recovery
| tests load tests L tests tests | tests Tests

Tests completed and passed

=i}
System ready for
acocptance test

Types of system test

FunctionalTesting

» All types or classes of legal inputs must be accepted by the software.
* All classes of illegal inputs must be rejected (however, the system should remain

available).

PerformanceTesting

1. Functional requirements.

All possible classes of system output must exercised and examined.
All effective system states and state transitions must be exercised and examined.
All functions must be exercised.

Users describe what functions the software should perform. We test for compliance of
these requirements at the system level with the functional-based system tests.

2. Quality requirements.

There are nonfunctional in nature but describe quality levels expected for the
software. One example of a quality requirement is performance level. The users may
have objectives for the software system in terms of memory use, response time,

throughput, and delays.

Test Bed

Load
EEnerator

E—

Probes

Event logging,
counting, sampling data from probes

Tools

Collect and process

l

l

Software under test

o Analyze data

!

| Hardware environment |

e ——
l4JI1.|..1'.|: n':iuhl
b with respect to

IL‘L{LLIFL'I'HW

Example of special resources needed for a performance test

StressTesting

* When a system is tested with a load that causes it to allocate its resources in
maximum amounts, this is called stress testing.

» For example, if an operating system is required to handle 10 interrupts / second
and the load causes 20 interrupts / second, the system is being stressed. The goal
of stress test is to try to break the system; find the circumstances under which it
will crash. This is sometimes called “breaking the system.”

ConfigurationTesting
» Typical software systems interact with hardware devices such as disc drives, tape
drives, and printers.

Configuration testing has the following objectives

» Show that all the configuration changing commands and menus work properly.

 Show that all interchangeable devices are really interchangeable, and that they each
enter the proper states for the specified conditions.

* Show that the systems’ performance level is maintained when devices are interchanged,
or when they fail.

SecurityTesting
» Designing and testing software systems to insure that they are safe and secure is a
big issue facing software developers and test specialists.

Computer software and data can be compromised by:

i) criminals intent on doing damage, stealing data and information, causing denial of
service, invading privacy;

(ii) errors on the part of honest developers/maintainers who modify, destroy, or
compromise data because of is information, misunderstandings, and/or lack of
knowledge.

Damage can be done through various means such as:
(i) viruses;
(i) trojan horses;
(iii) trap doors;
(iv) illicit channels.
» The effects of security breaches could be extensive and can cause:
(i) loss of information;
(ii) corruption of information;
(iii) misinformation;
(iv) privacy violations;
(v) denial of service.

RecoveryTesting
» Recovery testing subjects a system to losses of resources in order to determine if
it can recover properly from these losses.
» This type of testing is especially important for transaction systems, for example,
on-line banking software.

Testers focus on the following areas during recovery testing
» Restart. The current system state and transaction states are discarded. The most
recent checkpoint record is retrieved and the system initialized to the states in the
checkpoint record. Testers must insure that all transactions have been

reconstructed correctly and that all devices are in the proper state. The system
should then be able to begin to process new transactions.

« Switchover. The ability of the system to switch to a new processor must be tested.
Switchover is the result of a command or a detection of a faulty processor by a
monitor.

* In each of these testing situations all transactions and processes must be carefully
examined to detect:
(i) loss of transactions;
(if) merging of transactions;
(iii) incorrect transactions;
(iv) an unnecessary duplication of a transaction.

Regression Testing
* Regression testing is not a level of testing, but it is the retesting of software that
occurs when changes are made to ensure that the new version of the software

Unit -1V

Test Management

« Anplanis a document that provides a framework or approach for achieving a set of goals.

» Milestones are tangible events that are expected to occur at a certain time in the project’s
lifetime. Managers use them to determine project status

» Test plans for software projects are very complex and detailed documents. The planner

usually includes the following essential high-level items.

» Overall test objectives

* What to test (scope of the tests).

¢ Who will test.
« How to test.
* When to test.

» When to stop testing

| Software quality assurance (V&V} plan |

I

.

Mlaster test plan 1 |
-

Review plan: Inspections
and walkthroughs

I I I
™ s

best

~
o Integration System
[L mit test plan = i

"y e

, o~

plan test plan
S

Acceptance
test plan

Test Plan Components

Test Mlan Components

[e e

=%

(RN . NP AT

kil

Test plan identifier
Introduction

Trems to be tested

Features to be rested
Approach

Passffail criveria
Suspension and resum ption criteria
Tese deliverables

Testing Tasks

. Test environment

. Responsibilities

. Staffing and training necds
. Scheduling

. Risks and contingencies

. Testing costs

. Approvals

)

Components of a test plan

A breakdown of testing planning element

Test Plan Attachments

Example of entries in a requirements traceability matrix

Test Design Specification
» Test Design Specification Identifier
» Features to Be Tested
* Approach Refinements
» Test Case ldentification

* Pass/Fail Criteria

Test Case specification
» Test Case Specification Identifier
* Test Items
* Input Specifications
» Output Specifications
» Special Environmental Needs
» Special Procedural Requirements
» Intercase Dependencies
Test procedure specification

» A procedure in general is a sequence of steps required to carry out a specific task.

Test Procedure Specification Identifier

Purpose

Specific Requirements

Procedure Steps

i) setup: to prepare for execution of the procedure;

(ii) start: to begin execution of the procedure;

proceed: to continue the execution of the procedure;

(iv) measure: to describe how test measurements related to outputs will

be made;

(v) shut down: to describe actions needed to suspend the test when unexpected
events occur;

(vi) restart: to describe restart points and actions needed to restart the
procedure from these points;

(vii) stop: to describe actions needed to bring the procedure to an orderly

halt;
(viii) wrap up: to describe actions necessary to restore the environment;
(ix) contingencies: plans for handling anomalous events if they occur
during execution of this procedure.
Locating Test Items: The Test Item Transmittal Report
(1) version/revision number of the item;
(ii) location of the item;
(iii) persons responsible for the item (e.g., the developer);
(iv) references to item documentation and the test plan it is related to;
(v) status of the item;
(vi) approvals—space for signatures of staff who approve the transmittal.
Reporting Test Results
« Test Log
— Test Log Identifier
— Description
— Activity and Event Entries
« Execution description
* Procedure results
« Environmental information
* Anomalous events
* Incident report identifiers
» Test Incident Report
1. Test Incident Report identifier: to uniquely identify this report.
2. Summary: to identify the test items involved, the test procedures, test

cases, and test log associated with this report.

3. Incident description: this should describe time and date, testers, observers,

environment, inputs, expected outputs, actual outputs, anomalies, procedure step,
environment, and attempts to repeat.

4. Impact: what impact will this incident have on the testing effort, the test plans, the test
procedures, and the test cases

» Test Summary Report
1. Test Summary Report identifier: to uniquely identify this report.

2. Variances: these are descriptions of any variances of the test items from their original
design.

3. Comprehensiveness assessment: the document author discusses the comprehensiveness of
the test effort as compared to test objectives

Summary of results: the document author summarizes the testing results.
5. Evaluation: in this section the author evaluates each test item based on test results.
6. Summary of activities: all testing activities and events are summarized.

7. Approvals: the names of all persons who are needed to approve this document are listed
with space for signatures and dates.

Planning
Softwarc project
management plan Test case
Master test plan Dietailed test Test design specifications

plans for levels specifications L
L [2 Y |Tcs
LTP J TS]

Test procedure

\-{pﬂ:i fications
©

Test item transmittal reports

Execution

i 7

— Test incident reports
Test logs | TIR

Com pletion

Test summary report T5R

Test-related documents as recommended by IEEE[5]

The Role of the Three Critical Groups in Testing Planning and Test Policy
Development

Managers

Developers/Testers

Users/Clients

Task forces, policies,
standards

Planming

Resource allocanon

Support for education and
training

Interact with users/clients

Apply black and white box
methods

Assist with test plannimg

Test ar all levels

Train and mentor

Participate in task forces

Interact with uscrs/clicnts

Specify requirements clearly

Support with operational
profile

Particapate in useability vest

Participate in acceptance test
planning

b Test process l Evolution 1

|

Achievement ol
TMM level 2

maturnty goals

Proceed to TMM level 3 goals
- -

Improved testing process

Reaching TMM level 2; summary of critical group roles

Introducing the Test Specialist

» maintenance and application of test policies;

* development and application of test-related standards;

* participating in requirements, design, and code reviews;

* test planning;

* test design;

* test execution;

* test measurement;

* test monitoring (tasks, schedules, and costs);

» defect tracking, and maintaining the defect repository;

* acquisition of test tools and equipment;

« identifying and applying new testing techniques, tools, and methodologies;

* mentoring and training of new test personnel;

* test reporting.

Skills Needed by a Test Specialist
* organizational, and planning skills;
« the ability to keep track of, and pay attention to, details;
« the determination to discover and solve problems;
* the ability to work with others and be able to resolve conflicts;
* the ability to mentor and train others;
» the ability to work with users and clients;
* strong written and oral communication skills;
» the ability to work in a variety of environments;

» the ability to think creatively

Tester Requirements

Personal and Managerial Skills

Orrganizational, and planning skills

Track and pay attention to detail
Determination to discover and solve problems
Work with others, resolve conflicts

Mentor and train others

Work with usersficlients

Wrirten/oral communication skills

Think creatively

Technical Skills

General software engineering principles and practices
Understanding of testing principles and practices
Understanding of basic testing strategies, and methods
Abilicy to plan, design, and execute test cases
Knowledge of process issues -
Knowledge of networks, databases, and operating systems
Knowledge of configuration management

Kr'_(:u'h_'dgd: of tese-related documents

Ability to define, collece, and analyze test measurements

A oy, raining, and moovation o work with esong vools
Knowledge of qualicy issues

Test specialist skills

Building a Testing Group

Upper management
support for test funcrion

Establish vest group
organization, career paths

Define education
and skill levels

Title
Develop job Salary
description E—— Location
Qualifications
Interview candidates 1 Dhties

Select rest group
mem bers

Test specialist skills
The Structure of the Test Group
* maintain testing policy statements;
* plan the testing efforts;
 monitor and track testing efforts so that they are on time and within
budget;
» measure process and product attributes;
* provide management with independent product and process quality
information;
» design and execute tests with no duplication of effort;
* automate testing;
* participate in reviews to insure quality;
» work with analysts, designers, coders, and clients to ensure quality
goals are meet;
* maintain a repository of test-related information;
* give greater visibility to quality issues organization wide;

* support process improvement efforts.

Test manager

Tast leader

Test engineer 1,

Test engineer 2,. ..
Junior test engineer 1,
Jumior test engineer 2, ...

The test team hierarchy

The Technical Training Program

* quality issues;

» measurement identification, collection, and analysis;
* testing techniques and methodologies;
» design techniques;

» tool usage (for all life cycle phases);

» configuration management;

* planning;

* process evaluation and improvement;
* policy development;

» technical review skills;

* software acquisition;

* project management skills;

* business skills

» communication skills.

Unit -V Test Automation
Status Meetings, Reports, and Control Issues
« All the Planned Tests That Were Developed Have Been Executed and Passed.
» All Specified Coverage Goals Have Been Met.
» The Detection of a Specific Number of Defects Has Been Accomplished.

» The Rates of Defect Detection for a Certain Time Period Have Fallen Below a Specified
Level.

» Fault Seeding Ratios Are Favorable

-
All planned tests
executed and passed -
s ™ T
- All coverage goals met H'“‘--______
—-— -
Iy ~ D

Detection of specific
num ber of defects
h [Rates of defect detection] ‘/-/

fallen below a specified level

—
h - -
Fault seeding ratios
arc favorable

Software Configuration Management

* Identification of the Configuration Items
* Change Control

+ Configuration status reporting

» Configuration audits

Controlling and Monitoring: Three Critical Views

Managers

— - Testers
Policies, resources for controlling,

monitoring leadership role in
status mectings

Developing test plans

Sclecting, analyzing measurcments

Presenitations at status meoctings

Test summary reporting

Support traming program

Develop tramming plans

Hire training staff

Make policy changes to reflect the
mtegracion of testing

Developing test plans
Selecting, collecting, and
analyzing measurements and
problem reports
Participate in status mectings
Participate in tramming classes
Maintain test repository
Mentor test staff members
Recruit test staff members
Contribute to test process

im provement

Adopt a V-like modcl Participate in tech reviews Users/Clients

Provide support for intcgration Interact with QA and process

j.ﬂr']{Jﬂ]:T{.:lT. integration of testing groups Artend milestone mectings

| Acmwanes Participate in test proccss Report problems

Support for pest group I provemeni Intecract with testing staff

Hire test staff Perform required testing activitics Support development of usage

Ewvalwate tost staff throughout life cycle profile and wsability test plans
¥ Test process + Evolution l

l

Achievement o
TMM level 3
maturity goals

Proceced to TMM lovel 4 goals
- .

Improved testing process

Contributions of three critical groups to TMM level 3 maturity goals
REVIEWS AS ATESTING ACTIVITY

1) testing policies with an emphasis on defect detection and quality, and measurements for
controlling and monitoring;

(i) a test organization with staff devoted to defect detection and quality issues;
(iii) policies and standards that define requirements, design, test plan, and other documents;

(iv) organizational culture with a focus on quality products and quality processes.

Quality Checks
Testing Approach Deliverable

Eequirements

Specifications

.= —
/l;l-m'ic@— _

B —

Quality Checks
Testing Approach

Role of reviews in testing software deliverables

The many benefits of a review program are:

e higher-quality software;

e increased productivity (shorter rework time);

e closer adherence to project schedules (improved process control);
e increased awareness of quality issues;

e teaching tool for junior staff;

e opportunity to identify reusable software artifacts;

e reduced maintenance costs;

e higher customer satisfaction;

e more effective test planning;

e amore professional attitude on the part of the development staff.

Types of Reviews

 verify that a software artifact meets its specification;
* to detect defects; and
» check for compliance to standards.

* Inspectionsas a Typeof Technical Review
« Walkthroughs as a Type of

Technical Review

Inspcction policics

I Com—

and plans I_j_‘j/
G—hrxkhxt —_— Initiation
¥
Precparation
o A
o h =

Inspection mecting

| Reporting results
L. AT

-

Metric database

= J
L Rework and

Fosl b -

__1
I'/F.xi:\}
M A

-

Steps in the inspection process

The Need for Review Policies

1) testing policies with an emphasis on defect detection and quality, and measurements for
controlling and monitoring;

(ii) a test organization with staff devoted to defect detection and quality issues;
(iii) policies and standards that define requirements, design, test plan, and other documents;

(iv) organizational culture with a focus on quality products and quality processes.

EVALUATING SOFTWAREQUALITY:
AQUANTITATIVEAPPROACH

1. Quality relates to the degree to which a system, system component, or process meets
specified requirements.

2. Quality relates to the degree to which a system, system component, or process, meets
customer, or user, needs or expectations.

The software quality assurance (SQA) group is a team of people with the necessary training
and skills to ensure that all necessary actions are taken during the development process so
that the resulting software conforms to established technical requirements.

Quality Costs

* quality planning;

* test and laboratory equipment;
* training;

« formal technical reviews.
What Is Quality Control?

» Quality control consists of the procedures and practices employed to ensure that a work
product or deliverable conforms to standards or requirements.

» Quality control is the set of activities designed to evaluate the quality of developed or
manufactured products.

Quiality control includes:

* policies and standards;

* review and audit procedures;

« a training program;

* dedicated, trained, and motivated staff (for testing and quality assurance);
* a measurement program;

* a planning process (for test and quality assurance);

» effective testing techniques, statistical techniques, and tools;
* process monitoring and controlling systems;

* a test process assessment system (TMM-AM));

* a configuration management system.

The Role of Operational Profiles and Usage Models in Quality Control

1. An operational profile is a quantitative characterization of how a software system will be
used in its intended environment .

2. An operational profile is a specification of classes of inputs and the probability of their
occurrence.

(: Develop the

customer profile

Establish the

user profile

< =
(Define the
| system mode profile

7,

e
Develop the |

functional profile
Develop the

operational profile

~

p

Steps to develop an operations profile
Software Reliability

+ Software reliability is the ability of a system or component to perform its required
functions under stated conditions for a specified period of time .

» Software reliability is the probability that a software system will operate without failure
under given conditions for a given time interval.

« Auvailability is the degree to which a system or component is operational and accessible
when required for use .

* Availability is the probability that a software system will be available for use.

» Trustworthiness is the probability that there are no errors in the software that will cause
the system to fail catastrophically.

Measurements for Software Reliability
« MTBF =MTTF + MTTR

* mean time to failure, MTTF

* mean time to repair, MTTR

* mean time between failure, MTBF
* Reliability (R)

R=MTBF/1 + MTBF

» Availability (A)

A= MTBF/MTBF + MTTR

» The ease with which a software system or component can be modified to correct faults,
improve performance or other attributes, or adapt to a changing environment.

* maintainability (M)
M=1/1+ MTTR
Reliability, Quality Control, and Stop-Test Decisions

(i) setting reliability goals in the requirements document (a reliability specification is the
result);

(i) providing adequate time and resources in the test plan to allow for developing/modifying
the usage profile, running the tests, and collecting,

cataloging, and analyzing the reliability data;
(iii) developing a usage or operational profile that accurately models usage patterns;

Balance for optimal
stop-test decision

AT
-.
|
(A
Diefects remain and cause
Wasteful of resources loss of or damage to life
Dielay time to market and property
Increased costs Customer dissansfaction
Delayed schedules High costs to repair
Costs of hot line calls
. _ p.
Stop testing too late Stop testing too early

Consequences of untimely stop-test decisions

Usability Testing, and Quality Control

Usability is a quality factor that is related to the effort needed to learn, operate, prepare
input, and interpret the output of a computer program.

Usability is a complex quality factor and can be decomposed according to IEEE
standards into the sub factors

Understandability: The amount of effort required to understand the software.

Ease of learning: The degree to which user effort required to understand the software is
minimized.

Operability: The degree to which the operation of the software matches the purpose,
environment, and physiological characteristics of users; this includes ergonomic factors
such as color, shape, sound, font size, etc.

Communicativeness: The degree to which the software is designed in accordance with the
psychological characteristics of the users.

An Approach to Usability Testing

Types of usability tests Life cycle phase applied

- = | Between requirements
and detailed design

—_— After high-level design

—_ After codeftest,
close to release

Com parison |
B E— Almost any phase {in

conjunction with other
types of usability tests)

Types of usability tests.

UsabilityTesting:Resource Requirements

1. A usability testing laboratory

2. Trained personnel

3. Usability test planning.

UsabilityTests and Measurements
(1) open an existing document;

(ii) add text to the document;

(iii) modify the old text;

(iv) change the margins in selected sections;

(v) change the font size in selected sections;

(vi) print the document;

(vii) save the document.

	1.pdf (p.1-9)
	2.pdf (p.10-19)
	3.pdf (p.20-26)
	4.pdf (p.27-35)
	5.pdf (p.36-44)

