

The Role of Process in Software Quality

Process, in the software engineering domain, is the set of methods, practices,

standards, documents, activities, policies, and procedures that software engineers

use to develop and maintain a software system and its associated artifacts, such as

project and test plans, design documents, code, and manuals.

Elements of the engineering disciplines

Unit-I Introduction

1.1 The Evolving Profession of Software Engineering

IT6004 - Software Testing

 the development process is well understood;

 projects are planned;

 life cycle models are defined and adhered to;

 standards are in place for product and process;

 measurements are employed to evaluate product and process quality;

 components are reused;

Testing is generally described as a group of procedures carried out to evaluate some

aspect of a piece of software.

Testing can be described as a process used for revealing defects in software, and for

establishing that the software has attained a specified degree of quality with respect to

selected attributes.

Validation is the process of evaluating a software system or component during, or

at the end of, the development cycle in order to determine whether it satisfies

specified requirements.

Verification is the process of evaluating a software system or component to

determine whether the products of a given development phase satisfy the

conditions imposed at the start of that phase.

 Components of an engineering process

Testing as a Process

 Example process embedded in the software development

An Overview of the Testing Maturity Model

1. There is a demand for software of high quality with low defects;

2. Process is important in the software engineering discipline;

3. Software testing is an important software development sub process;

4. Existing software evaluation and improvement models have not adequately addressed

testing issues.

In the testing domain possible benefits of test process improvement are the following:

• smarter testers

• higher quality software

• the ability to meet budget and scheduling goals

• improved planning

• the ability to meet quantifiable testing goals

The internal structure of TMM maturity levels

TMM L e v e l s

A set of maturity goals. The maturity goals identify testing improvement goals that must

be addressed in order to achieve maturity at that level. To be placed at a level, an

organization must satisfy the maturity goals at that level. The TMM levels and associated

maturity goals are shown in Figure.

• Supporting maturity subgoals. They define the scope, boundaries and needed

accomplishments for a particular level.

• Activities, tasks and responsibilities (ATR). The ATRs address implementation and

organizational adaptation issues at each TMM

 The s-level structure of the testing maturity model

 The Extended/Modified V-model

1.2 Testing Fundamentals

Error & Faults (Defects)

• An error is a mistake, misconception, or misunderstanding on the part of a

software developer.

• A fault (defect) is introduced into the software as the result of an error. It is an

anomaly in the software that may cause it to behave incorrectly, and not according

to its specification.

Failures
• A failure is the inability of a software system or component to perform its

required functions within specified performance requirements

Test Cases
• A test case in a practical sense is a test-related item which contains the following

information:

• A set of test inputs. These are data items received from an external source by the

code under test. The external source can be hardware, software, or human.

• Execution conditions. These are conditions required for running the test, for

example, a certain state of a database, or a configuration of a hardware device.

• Expected outputs. These are the specified results to be produced by the code under

test.

Test
• A test is a group of related test cases, or a group of related test cases and test

procedures

Test Oracle

• A test oracle is a document, or piece of software that allows testers to determine

whether a test has been passed or failed.

Test Bed

• A test bed is an environment that contains all the hardware and software needed to

test a software component or a software system.

Software Quality

• Quality relates to the degree to which a system, system component, or process

meets specified requirements.

• Quality relates to the degree to which a system, system component, or process

meets customer or user needs, or expectations.

• A metric is a quantitative measure of the degree to which a system, system

component, or process possesses a given attribute

• A quality metric is a quantitative measurement of the degree to which an item

possesses a given quality attribute

Software Quality Assurance Group
• The software quality assurance (SQA) group is a team of people with the

necessary training and skills to ensure that all necessary actions are taken during

the development process so hat the resulting software conforms to established

technical requirements.

Reviews
• A review is a group meeting whose purpose is to evaluate a software artifact or a

set of software artifacts.

1.3 D E F E C T S , H Y P O T H E S E S ,A N D T E S T S

Origins of Defects

Hypotheses

• design test cases;

• design test procedures;

• assemble test sets;

• select the testing levels (unit, integration, etc.)

• appropriate for the tests;

• evaluate the results of the tests

Defect Classes, the Defect Repository, and Test Design

• R e q u i r e m e n t s a n d S p e c i f i c a t i o n D e f e c t s

• D e s i g n D e f e c t s

• C o d i n g D e f e c t s

• T e s t i n g D e f e c t s

R e q u i r e m e n t s a n d S p e c i f i c a t i o n D e f e c t s
• Functional Description Defects

• Feature Defects

• Feature Interaction Defects

• Interface Description Defects

D e s i g n D e f e c t s
• Algorithmic and Processing Defects

• Control, Logic, and Sequence Defects

• Data Defects

• Module Interface Description Defects

• Functional Description Defects

• External Interface Description Defects

T e s t i n g D e f e c t s
• Test Harness Defects

• Test Case Design and Test Procedure Defects

Defect Examples: The Coin Problem
• A precondition is a condition that must be true in order for a software component

to operate properly.

• In this case a useful precondition would be one that states for example:

 number_of_coins >0

• A postcondition is a condition that must be true when a software component

completes its operation properly.

C o d i n g D e f e c t s
• Algorithmic and Processing Defects

• Control, Logic and Sequence Defects

• Typographical Defects

• I n i t i a l i z a t i o n Defects

• Data-Flow Defects

• Data Defects

• Module Interface Defects

• Code Documentation Defects

• External Hardware, Software Interfaces Defects

• A useful postcondition would be:

 number_of_dollars, number_of_cents>= 0.

The defect in this subclass arises

from an incorrect “while” loop condition (should be less than or equal

to six)

• Data defects. This defect relates to an incorrect value for one of the elements of

the integer array, coin_values, which should read1,5,10,25,50,100.

 A sample specification with defects.

 A sample design specification with defects.

• Control, logic, and sequencing defects.

 A code example with defect

Strategies and Methods for Test Case Design –I

Test Case Design Strategies

Using the Black Box Approach to Test Case Design
• black box test strategy where we are considering only inputs and outputs as a

basis for designing test cases

• how do we choose a suitable set of inputs from the set of all possible valid and

invalid inputs

• As a example, suppose you tried to test a single procedure that calculates the

square root of a number.

• If you were to exhaustively test it you would have to try all positive input values.

• what about all negative numbers, fractions? These are also possible inputs.

2.1 Equivalence Class Partitioning
• A good approach to selecting test inputs is to use a method called equivalence

class partitioning.

• advantages:

– It eliminates the need for exhaustive testing, which is not feasible.

– It guides a tester in selecting a subset of test inputs with a high probability

of detecting a defect.

– It allows a tester to cover a larger domain of inputs/outputs with a smaller

subset selected from an equivalence class.

There are several important points related to equivalence class partitioning

• The tester must consider both valid and invalid equivalence classes.

• Equivalence classes may also be selected for output conditions.

• The derivation of input or outputs equivalence classes is a heuristic process.

List of Conditions

• If an input condition for the software-under-test is specified as a range of values

• ‗If an input condition for the software-under-test is specified as a number of

values

 The two basic testing strategies

 Unit-II Test Case Design

• If an input condition for the software-under-test is specified as a set of valid input

values

• ‗‗If an input condition for the software-under-test is specified as a ―must be‖

condition

• EC1. The input variable x is real, valid.

• EC2. The input variable x is not real, invalid.

• EC3. The value of x is greater than 0.0, valid.

• EC4. The value of x is less than 0.0, invalid.

2.2 Boundary Value Analysis

An Example of the Application of Equivalence Class Partitioning and Boundary

Value Analysis

• Widget identifiers into a widget data base

• We have three separate conditions that apply to the input:

 (i) it must consist of alphanumeric characters

 (ii) the range for the total number of characters is between 3 and 15,

 (iii) the first two characters must be letters.

• First we consider condition 1, the requirement for alphanumeric characters. This

is a ―must be‖ condition. We derive two equivalence classes.

– EC1. Part name is alphanumeric, valid.

– EC2. Part name is not alphanumeric, invalid.

• Then we treat condition 2, the range of allowed characters 3–15.

– EC3. The widget identifier has between 3 and 15 characters, valid.

– EC4. The widget identifier has less than 3 characters, invalid.

– EC5. The widget identifier has greater than 15 characters, invalid.

Boundaries of an equivalence partition

• Finally we treat the ―must be‖ case for the first two characters.

– EC6. The first 2 characters are letters, valid.

– EC7. The first 2 characters are not letters, invalid.

Fig 2.3 Example equivalence class reporting table

• For example:

– BLB—a value just below the lower bound

– LB—the value on the lower boundary

– ALB—a value just above the lower boundary

– BUB—a value just below the upper bound

– UB—the value on the upper bound

– AUB—a value just above the upper bound

• For our example module the values for the bounds groups are:

– BLB—2 BUB—14

– LB—3 UB—15

– ALB—4 AUB—16

analysis for sample module

• A major weakness with equivalence class partitioning is that it does not allow

testers to combine conditions.

Summary of test inputs using equivalence class partitioning and boundary value

2.3 C a u s e - a n d - E f f e c t G r a p h i n g
• The tester must decompose the specification of a complex software component

into lower-level units.

• For each specification unit, the tester needs to identify causes and their effects.

• From the cause-and-effect information, a Boolean cause-and-effect graph is

created. Nodes in the graph are causes and effects.

• The graph may be annotated with constraints that describe combinations of causes

and/or effects that are not possible due to environmental or syntactic constraints.

• The graph is then converted to a decision table.

• The columns in the decision table are transformed into test cases.

Fig 2.5 Sample of cause-and-effect graph notations

• The input conditions, or causes are as follows:

C1: Positive integer from 1 to 80

C2: Character to search for is in string

The output conditions, or effects are:

E1: Integer out of range

E2: Position of character in string

E3: Character not found

The rules or relationships can be described as follows:

If C1 and C2, then E2.

If C1 and not C2, then E3.

If not C1, then E1.

Cause-and-effect graph for the character search example

• A decision table will have a row for each cause and each effect.

• Entries in the table can be represented by a ―1‖ for a cause or effect that is

present, a ―0‖ represents the absence of a cause or effect, and a ―—‖ indicates a

―don‘t care‖ value.

• A decision table for our simple example is shown in Table 4.3 where C1, C2, C3

represent the causes, E1, E2, E3 the effects, and columns T1, T2, T3 the test

cases.

• A state is an internal configuration of a system or component. It is defined in

terms of the values assumed at a particular time for the variables that characterize

the system or component.

• A finite-state machine is an abstract machine that can be represented by a state

graph having a finite number of states and a finite number of transitions between

states.

.

Fig. 2.8 Simple state transition graph

2.4 S t a t e T r a n s i t i o n T e s t i n g

Decision table for character search example

• For example, the transition from S1 to S2 occurs with input, or event B. Action 3

occurs as part of this state transition. This is represented by the symbol ―B/act3.

• For the simple state machine in Figure 4.6 and Table 4.4 the transitions to be

tested are:

• Input A in S1

• Input A in S2

• Input B in S1

• Input B in S2

• Input C in S1

• Input C in S2

Fig 2.9 A state table for the machine

2.5 E r r o r G u e s s i n g

• Designing test cases using the error guessing approach is based on the

tester‘s/developer‘s past experience

Strategies and Methods for Test Case Design –II

Using the White Box Approach to Test Case Design
• A test data set is statement, or branch, adequate if a test set T for program P

causes all the statements, or branches, to be executed respectively.

2.6 Coverage and Control Flow Graphs
• program statements

• decisions/branches (these influence the program flow of control)

• conditions (expressions that evaluate to true/false, and do not contain any other

true/false-valued expressions)

• combinations of decisions and conditions

• paths (node sequences in flow graphs)

• All structured programs can be built from three basic primes-sequential (e.g.,

assignment statements), decision (e.g., if/then/else statements), and iterative (e.g.,

while, for loops).

Covering Code Logic

Code sample with branch and loop

Representation of program primes

A control flow graph representation for the code

if(age <65 and married true)

do X

do Y

else

do Z

• Condition 1: Age less than 65

• Condition 2: Married is true

2.7 Paths: Their Role in White Box–Based Test Design

A path is a sequence of control flow nodes usually beginning from the entry node of a

graph through to the exit node.

1-2-3-4-8

 A test case for the code in 2.11 that satisfied the decision coverage criterion

8 White Box Test Design Approaches

2.8.1 Data Flow and White Box Test Design

We say a variable is defined in a statement when its value is assigned or changed.

• For example in the statements

Y= 26 * X

Read (Y)

– the variable Y is defined, that is, it is assigned a new value. In data flow

notation this is indicated as a def for the variable Y.

We say a variable is used in a statement when its value is utilized in a statement. The

value of the variable is not changed.

• They describe a predicate use (p-use) for a variable that indicates its role in a

predicate. A computational use (c-use) indicates the variable‘s role as a part of a

computation. In both cases the variable value is unchanged.

• For example, in the statement

 Y = 26 * X

• the variable X is used. Specifically it has a c-use.

• In the statement

if (X > 98)

Y = max

• X has a predicate or p-use.

Fig 2.14 Sample code with data flow information

2.8.2 L o o p T e s t i n g
• Loop testing strategies focus on detecting common defects associated with these

structures.

(i) zero iterations of the loop, i.e., the loop is skipped in its entirely;

(ii) one iteration of the loop;

(iii) two iterations of the loop;

(iv) k iterations of the loop where k <n;

(v) n - 1 iterations of the loop;

(vi) n + 1 iterations of the loop (if possible).

Unit-III

Levels of Testing

3.1 Unit Test: Functions, Procedures, Classes, and Methods as Units

• A unit is the smallest possible testable software component.

It can be characterized in several ways. For example, a unit in a typical

• procedure-oriented software system:

• performs a single cohesive function;

• can be compiled separately;

• is a task in a work breakdown structure (from the manager’s point of view);

• contains code that can fit on a single page or screen.

Unit Test: The Need for Preparation

• Phase 1: Describe Unit Test Approach and Risks\

In this phase of unit testing planning the general approach to unit testing is outlined.

The test planner:.

(i) identifies test risks;

(ii) describes techniques to be used for designing the test cases for the units;

(iii) describes techniques to be used for data validation and recording of test

results;

(iv) describes the requirements for test harnesses and other software that

interfaces with the units to be tested, for example, any special objects needed for

testing object-oriented units.

• Phase 2: Identify Unit Features to be Tested

• Phase 3: Add Levels of Detail to the Plan

Designing the Unit Tests

• Part of the preparation work for unit test involves unit test design. It is important

to specify

some components suitable for unit test

• To prepare for unit test the developer/tester must perform several tasks. These are:

(i) plan the general approach to unit testing;

(ii) design the test cases, and test procedures (these will be attached to the test plan);

(iii) define relationships between the tests;

(iv) prepare the auxiliary code necessary for unit test.

Unit Test Planning

(i) the test cases (including input data, and expected outputs for each test

case), and,

(ii) the test procedures (steps required run the tests)

The Class as a Testable Unit: Special Considerations

• Issue 1: Adequately Testing Classes

Fig 3.2 Sample stack class with multiple methods

Issue 2: Observation of Object States and State Changes

• empty(s), push(s,item-1), show_top(s), push(s,item-2),

• show_top(s), push(s,item-3), full(s), show_top(s), pop(s,item),

• show_top(s), pop(s,item), show_top(s), empty(s), . . .

Issue 3: The Retesting of Classes—I

Issue 4: The Retesting of Classes—II

The Test Harness
• The auxiliary code developed to support testing of units and components is called

a test harness. The harness consists of drivers that call the target code and stubs

that represent modules it calls.

 Sample shape class

For example, a driver could have the following options and combinations of options:

(i) call the target unit;

(ii) do 1, and pass inputs parameters from a table;

(iii) do 1, 2, and display parameters;

(iv) do 1, 2, 3 and display results (output parameters).

The stubs could also exhibit different levels of functionality. For example a stub could:

(i) display a message that it has been called by the target unit;

(ii) do 1, and display any input parameters passed from the target unit;

(iii) do 1, 2, and pass back a result from a table;

(iv) do 1, 2, 3, and display result from table.

Running the Unit Tests and Recording Results

3.2 Integration Test: Goals

• Integration test for procedural code has two major goals:

(i) to detect defects that occur on the interfaces of units;

(ii) to assemble the individual units into working subsystems and finally a

complete system that is ready for system test.

The test harness

Summary work sheet for unit test

Integration Strategies for Procedures and Functions
• For conventional procedural/functional-oriented systems there are two major

integration strategies—top-down and bottom-up.

Fig 3.6 Simple structure chart for integration test examples

Fig 3.7 Top-down integration of modules M1 and M2

System Test: The Different Types

There are several types of system tests as shown on Figure. The types are as follows:

• Functional testing

• Performance testing

• Stress testing

• Configuration testing

• Security testing

• Recovery testing

Types of system test

F u n c t i o n a l T e s t i n g

• All types or classes of legal inputs must be accepted by the software.

• All classes of illegal inputs must be rejected (however, the system should remain

available).

• All possible classes of system output must exercised and examined.

• All effective system states and state transitions must be exercised and examined.

• All functions must be exercised.

P e r f o r m a n c e T e s t i n g

1. Functional requirements.
 Users describe what functions the software should perform. We test for compliance of

these requirements at the system level with the functional-based system tests.

2. Quality requirements.
 There are nonfunctional in nature but describe quality levels expected for the

software. One example of a quality requirement is performance level. The users may

have objectives for the software system in terms of memory use, response time,

throughput, and delays.

S t r e s s T e s t i n g

• When a system is tested with a load that causes it to allocate its resources in

maximum amounts, this is called stress testing.

• For example, if an operating system is required to handle 10 interrupts / second

and the load causes 20 interrupts / second, the system is being stressed. The goal

of stress test is to try to break the system; find the circumstances under which it

will crash. This is sometimes called “breaking the system.”

Example of special resources needed for a performance test

C o n f i g u r a t i o n T e s t i n g

• Typical software systems interact with hardware devices such as disc drives, tape

drives, and printers.

Configuration testing has the following objectives

• Show that all the configuration changing commands and menus work properly.

• Show that all interchangeable devices are really interchangeable, and that they each

enter the proper states for the specified conditions.

• Show that the systems’ performance level is maintained when devices are interchanged,

or when they fail.

S e c u r i t y T e s t i n g

• Designing and testing software systems to insure that they are safe and secure is a

big issue facing software developers and test specialists.

Computer software and data can be compromised by:

i) criminals intent on doing damage, stealing data and information, causing denial of

service, invading privacy;

(ii) errors on the part of honest developers/maintainers who modify, destroy, or

compromise data because of is information, misunderstandings, and/or lack of

knowledge.

Damage can be done through various means such as:

(i) viruses;

(ii) trojan horses;

(iii) trap doors;

(iv) illicit channels.

• The effects of security breaches could be extensive and can cause:

(i) loss of information;

(ii) corruption of information;

(iii) misinformation;

(iv) privacy violations;

(v) denial of service.

R e c o v e r y T e s t i n g

• Recovery testing subjects a system to losses of resources in order to determine if

it can recover properly from these losses.

• This type of testing is especially important for transaction systems, for example,

on-line banking software.

Testers focus on the following areas during recovery testing

• Restart. The current system state and transaction states are discarded. The most

recent checkpoint record is retrieved and the system initialized to the states in the

checkpoint record. Testers must insure that all transactions have been

reconstructed correctly and that all devices are in the proper state. The system

should then be able to begin to process new transactions.

• Switchover. The ability of the system to switch to a new processor must be tested.

Switchover is the result of a command or a detection of a faulty processor by a

monitor.

• In each of these testing situations all transactions and processes must be carefully

examined to detect:

(i) loss of transactions;

(ii) merging of transactions;

(iii) incorrect transactions;

(iv) an unnecessary duplication of a transaction.

Regression Testing

• Regression testing is not a level of testing, but it is the retesting of software that

occurs when changes are made to ensure that the new version of the software

Unit -IV

lifetime. Managers use them to determine project status

• Test plans for software projects are very complex and detailed documents. The planner

usually includes the following essential high-level items.

• Overall test objectives

• What to test (scope of the tests).

• Who will test.

• How to test.

• When to test.

• When to stop testing

Test Plan Components

Test Management

• A plan is a document that provides a framework or approach for achieving a set of goals.

• Milestones are tangible events that are expected to occur at a certain time in the project’s

Test Plan Attachments

Test Design Specification

• Test Design Specification Identifier

• Features to Be Tested

• Approach Refinements

• Test Case Identification

• Pass/Fail Criteria

Components of a test plan

A breakdown of testing planning element

Example of entries in a requirements traceability matrix

Test Case specification

• Test Case Specification Identifier

• Test Items

• Input Specifications

• Output Specifications

• Special Environmental Needs

• Special Procedural Requirements

• Intercase Dependencies

Test procedure specification

• A procedure in general is a sequence of steps required to carry out a specific task.

• Test Procedure Specification Identifier

• Purpose

• Specific Requirements

• Procedure Steps

i) setup: to prepare for execution of the procedure;

(ii) start: to begin execution of the procedure;

proceed: to continue the execution of the procedure;

(iv) measure: to describe how test measurements related to outputs will

be made;

(v) shut down: to describe actions needed to suspend the test when unexpected

events occur;

(vi) restart: to describe restart points and actions needed to restart the

procedure from these points;

(vii) stop: to describe actions needed to bring the procedure to an orderly

halt;

(viii) wrap up: to describe actions necessary to restore the environment;

(ix) contingencies: plans for handling anomalous events if they occur

during execution of this procedure.

Locating Test Items: The Test Item Transmittal Report

(i) version/revision number of the item;

(ii) location of the item;

(iii) persons responsible for the item (e.g., the developer);

(iv) references to item documentation and the test plan it is related to;

(v) status of the item;

(vi) approvals—space for signatures of staff who approve the transmittal.

Reporting Test Results

• Test Log

– Test Log Identifier

– Description

– Activity and Event Entries

• Execution description

• Procedure results

• Environmental information

• Anomalous events

• Incident report identifiers

• Test Incident Report

1. Test Incident Report identifier: to uniquely identify this report.

2. Summary: to identify the test items involved, the test procedures, test

cases, and test log associated with this report.

3. Incident description: this should describe time and date, testers, observers,

environment, inputs, expected outputs, actual outputs, anomalies, procedure step,

environment, and attempts to repeat.

 4. Impact: what impact will this incident have on the testing effort, the test plans, the test

procedures, and the test cases

• Test Summary Report

1. Test Summary Report identifier: to uniquely identify this report.

2. Variances: these are descriptions of any variances of the test items from their original

design.

3. Comprehensiveness assessment: the document author discusses the comprehensiveness of

the test effort as compared to test objectives

Summary of results: the document author summarizes the testing results.

5. Evaluation: in this section the author evaluates each test item based on test results.

6. Summary of activities: all testing activities and events are summarized.

7. Approvals: the names of all persons who are needed to approve this document are listed

with space for signatures and dates.

Test-related documents as recommended by IEEE[5]

The Role of the Three Critical Groups in Testing Planning and Test Policy

Development

Reaching TMM level 2; summary of critical group roles

Introducing the Test Specialist

• maintenance and application of test policies;

• development and application of test-related standards;

• participating in requirements, design, and code reviews;

• test planning;

• test design;

• test execution;

• test measurement;

• test monitoring (tasks, schedules, and costs);

• defect tracking, and maintaining the defect repository;

• acquisition of test tools and equipment;

• identifying and applying new testing techniques, tools, and methodologies;

• mentoring and training of new test personnel;

• test reporting.

Skills Needed by a Test Specialist

• organizational, and planning skills;

• the ability to keep track of, and pay attention to, details;

• the determination to discover and solve problems;

• the ability to work with others and be able to resolve conflicts;

• the ability to mentor and train others;

• the ability to work with users and clients;

• strong written and oral communication skills;

• the ability to work in a variety of environments;

• the ability to think creatively

Building a Testing Group

Test specialist skills

The Structure of the Test Group

• maintain testing policy statements;

• plan the testing efforts;

• monitor and track testing efforts so that they are on time and within

budget;

• measure process and product attributes;

• provide management with independent product and process quality

information;

• design and execute tests with no duplication of effort;

• automate testing;

• participate in reviews to insure quality;

• work with analysts, designers, coders, and clients to ensure quality

goals are meet;

• maintain a repository of test-related information;

• give greater visibility to quality issues organization wide;

• support process improvement efforts.

Test specialist skills

The Technical Training Program

• quality issues;

• measurement identification, collection, and analysis;

• testing techniques and methodologies;

• design techniques;

• tool usage (for all life cycle phases);

• configuration management;

• planning;

• process evaluation and improvement;

• policy development;

• technical review skills;

• software acquisition;

• project management skills;

• business skills

• communication skills.

 The test team hierarchy

Level.

• Fault Seeding Ratios Are Favorable

Software Configuration Management

• Identification of the Configuration Items

• Change Control

• Configuration status reporting

• Configuration audits

Controlling and Monitoring: Three Critical Views

Unit -V Test Automation

Status Meetings, Reports, and Control Issues

• All the Planned Tests That Were Developed Have Been Executed and Passed.

• All Specified Coverage Goals Have Been Met.

• The Detection of a Specific Number of Defects Has Been Accomplished.

• The Rates of Defect Detection for a Certain Time Period Have Fallen Below a Specified

R E V I E W S A S A T E S T I N G A C T I V I T Y

i) testing policies with an emphasis on defect detection and quality, and measurements for

controlling and monitoring;

(ii) a test organization with staff devoted to defect detection and quality issues;

(iii) policies and standards that define requirements, design, test plan, and other documents;

(iv) organizational culture with a focus on quality products and quality processes.

Contributions of three critical groups to TMM level 3 maturity goals

 higher-quality software;

 increased productivity (shorter rework time);

 closer adherence to project schedules (improved process control);

 increased awareness of quality issues;

 teaching tool for junior staff;

 opportunity to identify reusable software artifacts;

 reduced maintenance costs;

 higher customer satisfaction;

 more effective test planning;

 a more professional attitude on the part of the development staff.

Types of Reviews

• verify that a software artifact meets its specification;

• to detect defects; and

• check for compliance to standards.

• I n s p e c t i o n s a s a T y p e o f T e c h n i c a l R e v i e w

• W a l k t h r o u g h s a s a T y p e o f

T e c h n i c a l R e v i e w

Role of reviews in testing software deliverables

The many benefits of a review program are:

controlling and monitoring;

(ii) a test organization with staff devoted to defect detection and quality issues;

(iii) policies and standards that define requirements, design, test plan, and other documents;

(iv) organizational culture with a focus on quality products and quality processes.

E V A L U A T I N G S O F T W A R E Q U A L I T Y :

 A Q U A N T I T A T I V E A P P R O A C H

1. Quality relates to the degree to which a system, system component, or process meets

specified requirements.

Steps in the inspection process

The Need for Review Policies

i) testing policies with an emphasis on defect detection and quality, and measurements for

2. Quality relates to the degree to which a system, system component, or process, meets

customer, or user, needs or expectations.

The software quality assurance (SQA) group is a team of people with the necessary training

and skills to ensure that all necessary actions are taken during the development process so

that the resulting software conforms to established technical requirements.

Quality Costs

• quality planning;

• test and laboratory equipment;

• training;

• formal technical reviews.

What Is Quality Control?

• Quality control consists of the procedures and practices employed to ensure that a work

product or deliverable conforms to standards or requirements.

• Quality control is the set of activities designed to evaluate the quality of developed or

manufactured products.

Quality control includes:

• policies and standards;

• review and audit procedures;

• a training program;

• dedicated, trained, and motivated staff (for testing and quality assurance);

• a measurement program;

• a planning process (for test and quality assurance);

• effective testing techniques, statistical techniques, and tools;

• process monitoring and controlling systems;

• a test process assessment system (TMM-AM);

• a configuration management system.

The Role of Operational Profiles and Usage Models in Quality Control

1. An operational profile is a quantitative characterization of how a software system will be

used in its intended environment .

2. An operational profile is a specification of classes of inputs and the probability of their

occurrence.

Software Reliability

• Software reliability is the ability of a system or component to perform its required

functions under stated conditions for a specified period of time .

• Software reliability is the probability that a software system will operate without failure

under given conditions for a given time interval.

• Availability is the degree to which a system or component is operational and accessible

when required for use .

• Availability is the probability that a software system will be available for use.

• Trustworthiness is the probability that there are no errors in the software that will cause

the system to fail catastrophically.

M e a s u r e m e n t s f o r S o f t w a r e R e l i a b i l i t y

• MTBF = MTTF + MTTR

• mean time to failure, MTTF

 Steps to develop an operations profile

• mean time to repair, MTTR

• mean time between failure, MTBF

• Reliability (R)

R=MTBF/ 1 + MTBF

• Availability (A)

A= MTBF / MTBF + MTTR

• The ease with which a software system or component can be modified to correct faults,

improve performance or other attributes, or adapt to a changing environment.

• maintainability (M)

M= 1 / 1+ MTTR

Reliability, Quality Control, and Stop-Test Decisions

(i) setting reliability goals in the requirements document (a reliability specification is the

result);

(ii) providing adequate time and resources in the test plan to allow for developing/modifying

the usage profile, running the tests, and collecting,

cataloging, and analyzing the reliability data;

(iii) developing a usage or operational profile that accurately models usage patterns;

 Consequences of untimely stop-test decisions

Usability Testing, and Quality Control

• Usability is a quality factor that is related to the effort needed to learn, operate, prepare

input, and interpret the output of a computer program.

• Usability is a complex quality factor and can be decomposed according to IEEE

standards into the sub factors

• Understandability: The amount of effort required to understand the software.

• Ease of learning: The degree to which user effort required to understand the software is

minimized.

• Operability: The degree to which the operation of the software matches the purpose,

environment, and physiological characteristics of users; this includes ergonomic factors

such as color, shape, sound, font size, etc.

• Communicativeness: The degree to which the software is designed in accordance with the

psychological characteristics of the users.

An Approach to Usability Testing

U s a b i l i t y T e s t i n g : R e s o u r c e R e q u i r e m e n t s

1. A usability testing laboratory

2. Trained personnel

Types of usability tests.

3. Usability test planning.

U s a b i l i t y T e s t s a n d M e a s u r e m e n t s

(i) open an existing document;

(ii) add text to the document;

(iii) modify the old text;

(iv) change the margins in selected sections;

(v) change the font size in selected sections;

(vi) print the document;

(vii) save the document.

	1.pdf (p.1-9)
	2.pdf (p.10-19)
	3.pdf (p.20-26)
	4.pdf (p.27-35)
	5.pdf (p.36-44)

