
Chapter 2

Iterated, Line, and Surface

Integrals

2.1 Iterated Integrals

We must confess in all humil-
ity that, while number is a
product of our mind alone,
space has a reality beyond
the mind whose rules we can-
not completely prescribe.
-Carl Gauss

• Iterated Double Integrals • Double Integrals over General Regions •
Changing the Order of Integration • Triple Integrals • Triple Integrals
over General Regions

Iterated Double Integrals
Let f be a real-valued function of two variables x, y defined on a rectangular region

R = {(x, y) : a  x  b, c  y  d}

where a, b, c, d are real numbers. We partition [a, b] and [c, d] as follows.

Let m,n be positive integers, let a = x0, x1, . . . , xm = b be a partition of [a, b],
and let c = y0, y1, . . . , yn = d be a partition of [c, d]. For 1  i  m and 1  j  n,
consider the rectangular subregions

Ri,j = {(x, y) : xi�1  x  xi, yj�1  y  yj} .

The collection � = {Ri,j : i = 1, . . . ,m and j = 1, . . . , n} is called a partition of
R into sub-rectangles. Let �xi = xi � xi�1, �yj = yj � yj�1, and let k�k be the
norm of � which is defined as the maximum of all the �xi’s and �yj ’s. We denote
the area of rectangle Ri,j by

�Ai,j = �xi�yj .

Let L be a real number. We symbolically write

L = lim
k�k!0

nX

i=1

mX

j=1

f (xi,j , yi,j)�Ai,j

if for every " > 0 there exists � > 0 such that
������

nX

i=1

mX

j=1

f (xi,j , yi,j)�Ai,j � L

������
< "

for all (xi,j , yi,j) in Ri,j whenever k�k < �. If such a limit L exists, we say f is
Riemann integrable or integrable on R, and we write

Z Z

R
f(x, y)dA = lim

k�k!0

nX

i=1

mX

j=1

f (xi,j , yi,j)�Ai,j .

59
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We quote a theorem from advanced calculus about Riemann integrable functions.

We omit the proof of the theorem since it is beyond the scope of this book.1

Theorem 2.1 Riemann Integrable Functions

Let z = f(x, y) be a bounded real-valued function on a rectangular region

R = {(x, y) : a  x  b, c  y  d} .

If the points of discontinuities of f in R lie on a finite union of graphs of continuous
functions of one independent variable, then f is Riemann integrable on R.

In particular, every continuous real-valued function on a rectangular region R

is integrable on R. However, in order to evaluate
R R

R f(x, y)dA, we introduce the
concept of an iterated integral.

If we fix a value of y, then f(x, y) is a function of x only, and we have definite

integral
R b
a f(x, y)dx. To illustrate, we assume y is constant in the integration below:

Z 4

0
x sin y dx =

1

2
x
2 sin y

����
x=4

x=2

=

✓
1

2
(4)2 sin y

◆
�
✓
1

2
(2)2 sin y

◆

= 6 sin y.

Likewise,
R d
c f(x, y)dy is a definite integral if x is held constant. The next theorem

implies that a double integral
R R

R f(x, y)dA may be evaluated as an iterated
integral if f is continuous on R. Also, we omit the proof of the theorem that is
usually discussed in advanced calculus texts.

Theorem 2.2 Fubini’s Theorem and Iterated Integrals

If z = f(x, y) is the function in Theorem 2.1, then the identity below holds:

Z Z

R
f(x, y)dA =

Z b

a

Z d

c
f(x, y)dydx =

Z d

c

Z b

a
f(x, y)dxdy

In particular, if f is continuous on R, the above identity applies.

1A bounded real-valued function on a rectangular region R ✓ R2 whose set of discontinuities

is of measure zero is Riemann integrable. Also, if y = f(x), a  x  b, is a continuous function,

then {(x, f(x)) : a  x  b} is a set of measure zero in R2.
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Example 1 Evaluating an Iterated Integral

Evaluate the integral

Z 3

1

Z ⇡

0
x
2 cos(xy)dydx.

Solution For the inner integral, we have
Z

cos(xy)dy =
1

x
sinxy + C.

Consequently, we evaluate the iterated integral as follows:
Z 3

1

Z ⇡

0
x
2 cos(xy)dydx =

Z 3

1
x sin(xy)

����
y=⇡

y=0

dx

=

Z 3

1
x sin(⇡x)dx.

Then we integrate by parts using the substitutions:

u = x dv = sin(⇡x)dx

du = dx v = � 1

⇡
cos(⇡x)

Since
R
udv = uv �

R
vdu, we obtain

Z 3

1
x sin(⇡x)dx = �x

⇡
cos(⇡x)

����
x=3

x=1

+
1

⇡

Z 3

1
cos(⇡x)dx

=
2

⇡
+

1

⇡2
sin(⇡x)

����
x=3

x=1

=
2

⇡
.

Thus, we find

Z 3

1

Z ⇡

0
x
2 cos(xy)dydx =

2

⇡
.

2

Try This 1

Evaluate

Z 4

0

Z 9

0

p
xdydx.

Double Integrals over General Regions

Let �1,�2, 1, 2 be continuous real-valued functions satisfying �1(x)  �2(x) and
 1(y)   2(y) for all x in [a, b], and y in [c, d]. We evaluate double integrals of
a real-valued continuous function z = f(x, y) over elementary regions in the
xy-plane, see Figures 1-2. We classify these regions as either of type Rx or Ry, or
possibly of both types, depending on whether the boundary of the region are graphs
of functions of x or y, respectively:

A) Rx = {(x, y) : a  x  b, �1(x)  y  �2(x)}

B) Ry = {(x, y) : c  y  d,  1(y)  x   2(y)}
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y=f1HxL

y=f2HxL

a b x

y

x=y1HyL

x=y2HyL x
c

d

y

Figure 1 Region of type Rx Figure 2 Region of type Ry

To evaluate
R R

Rx f(x, y)dA, let R be a rectangular region that contains Rx. We
extend f to a function F on R:

F (x, y) =

(
f(x, y) if (x, y) 2 Rx

0 if (x, y) /2 Rx

Since f is bounded and continuous on Rx, the function F is bounded and possibly
discontinuous only on points in the graph of �1 or �2. Then

R R
R F (x, y)dA exists

by Theorem 2.1. Suppose we choose R such that is consists of points (x, y) satisfying
a  x  b and p  y  q. Notice, for any x in [a, b], we find F (x, y) = 0 if y does
not belong to the interval [�1(x),�2(x)]. Thus,

Z q

p
F (x, y)dy =

Z �2(x)

�1(x)
F (x, y)dy =

Z �2(x)

�1(x)
f(x, y)dy.

and the latter integral exists by the continuity of f on Rx. By Fubini’s Theorem,
we obtain

Z Z

Rx
F (x, y)dA =

Z b

a

Z q

p
F (x, y)dydx =

Z b

a

Z �2(x)

�1(x)
f(x, y)dydx.

We have a similar identity for double integrals over a type Ry region.

Theorem 2.3 Integrating over Regions of Type Rx or Ry

If z = f(x, y) is a continuous real-valued function on a region of type Rx or Ry,
then

a)

Z Z

Rx
f(x, y)dA =

Z b

a

Z �2(x)

�1(x)
f(x, y)dydx

b)

Z Z

Ry
f(x, y)dA =

Z d

c

Z  2(y)

 1(y)
f(x, y)dxdy

In Theorem 2.3, if f(x, y) = 1 for all x, y, then

Z Z

R
dA represents the area of

region R where R = Rx or R = Ry.
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Also, we may apply double integrals to define the volume of a solid.

Definition 1 Volume of a Solid and Double Integrals

Let R be a region in the xy-plane of either type Rx or Ry. Let z = f(x, y) be
a nonnegative real-valued continuous function defined on R. Let S be the solid
consisting of the points (x, y,f(x, y)) in 3-space where (x, y) 2 R. The volume of
S is defined as

Volume =

Z Z

R
f(x, y)dA.

Figure 3
A solid bounded above by a
plane, and with a triangular
base in the xy-plane

x=yê2

1 x

2

y

Figure 4
The base of the above solid
in the xy-plane.

Example 2 Evaluating the Volume of a Solid

Find the volume of the solid that lies below the plane f(x, y) =
1

3
(6� 2x� 2y) and

above the region
R = {(x, y) : 0  y  2, 0  x  y/2}

in the xy-plane, see Figure 3.

Solution The region R is both type Rx and Ry, see Figure 4. We choose to
evaluate the integral for the volume as a type Ry region.

Volume =

Z Z

R
f(x, y)dA

=

Z 2

0

Z y/2

0

1

3
(6� 2y � 2x)dxdy

=
1

3

Z 2

0
(6� 2y)x� x

2

����
x=y/2

x=0

dy

=
1

3

Z 2

0

✓
3y � y

2 � y
2

4

◆
dy

Volume =
8

9
units3

2

Figure 5
The solid for Try This 2.

Try This 2

A solid S is bounded above by the plane z = y and bounded below by the region

R = {(x, y) : 0  x  1, 0  y  1� x
2}.

Find the volume of S.
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Changing the Order of Integration

To be able to integrate
R R

R f(x, y)dA, there may be an advantage to evaluating
one iterated integral over another. The reason is the order of integration, i.e.,
integrating with respect to x then integrating with respect to y, may be easier than
integrating first with respect to y, then with respect to x secondly.

x=yê4

1 x

4

y

Figure 6
Region of integration

x

2

y

Figure 7
Region of integration
for Try This 3.

Example 3 Switching the Order of Integration

Sketch the region R of integration of

Z 4

0

Z 1

y/4
sin(⇡x2)dxdy.

Then switch the order of integration, and evaluate the resulting integral.

Solution In Figure 6, we see the triangular region R. To switch the order of
integration to dydx, we partition the interval [0, 1] in the x-axis into smaller subin-
tervals. If the order of integration is dxdy, partition [0, 4] in the y-axis.

Then draw a typical rectangle such that its base is a subinterval in the partition,
and its length extends from the lower boundary to the upper boundary of the region.
Since the order of integration is dydx, each point (x, y) in a typical rectangle satisfies
0  x  1 and 0  y  4x.

Then we integrate as follows:

Z 4

0

Z 1

y/4
sin(⇡x2)dxdy =

Z 1

0

Z 4x

0
sin(⇡x2)dydx

=

Z 1

0
y sin(⇡x2)

����
y=4x

y=0

dx

=

Z 1

0
4x sin(⇡x2)dx

= � 2

⇡
cos(⇡x2)

����
x=1

x=0

Z 4

0

Z 1

y/4
sin(⇡x2)dxdy =

4

⇡

2

Try This 3

Sketch the region R of integration of

Z 4

0

Z 2

x/2

xp
y3 + 1

dydx.

Then switch the order of integration, and evaluate the resulting integral.
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Triple Integrals

Let w = g(x, y, z) be a real-valued function that is defined on a Cartesian product

S = [a, b]⇥ [c, d]⇥ [e, f ]

= {(x, y, z) : a  x  b, c  y  d, e  z  f}

We partition each of [a, b], [c, d], and [e, f ] into finitely many subintervals. Let
[xi, xi+1], [yj , yj+1], and [zk, zk+1] be subintervals in the partitions, and we denote
their lengths by �xi, �yj , �zk, respectively. We consider a box

Sijk = [xi, xi+1]⇥ [yj , yj+1]⇥ [zk, zk+1]

whose volume is denoted by �Vijk = �xi�yj�zk. Let pijk be a point in Sijk, and
let k�k be the maximum of the norms of the partitions of [a, b], [c, d], and [e, f ].

We define g to be Riemann integrable or integrable on the box S if there
is a number L 2 R such that for each " > 0 there exists a positive number � > 0
satisfying ������

X

i

X

j

X

k

g
�
pijk

�
�Vijk � L

������
< "

for all pijk in Sijk whenever k�k < �. In the above sums, we evaluate over all the
values of i, j, k. In such a case, we write

Z Z Z

S
g(x, y, z)dV = lim

k�k!0

X

i

X

j

X

k

g
�
pijk

�
�Vijk = L.

We state an integrability condition for g similar to Theorem 2.1. Also, we state a
Fubini’s theorem for triple integrals

R R R
S g(x, y, z)dV . We omit the proofs since

they are usually discussed in advanced calculus texts.

Theorem 2.4 Riemann Integrable Functions

Let w = g(x, y, z) be a bounded real-valued function on a box

S = [a, b]⇥ [c, d]⇥ [e, f ].

If the points of discontinuities of g in S lie on a finite union of graphs of continuous
functions of two independent variables, then g is integrable on S.

Theorem 2.5 Fubini’s Theorem for Triple Integrals

If w = g(x, y, z) is the function in Theorem 2.4, then

Z Z Z

S
g(x, y, z)dV =

Z b

a

Z d

c

Z f

e
g(x, y, z)dzdydx

Also, the six iterated triple integrals exist and are equal.
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Example 4 Evaluating a Triple Integral

Evaluate the integral

Z 2

1

Z 3

0

Z 2

0

�
x+ z

2 � y
2
�
dxdydz.

Solution We integrate as follows:
Z 2

1

Z 3

0

Z 2

0

�
x+ z

2 � y
2
�
dxdydz =

Z 2

1

Z 3

0

✓
x
2

2
+ x

�
z
2 � y

2
� ����

x=2

x=0

dydz

=

Z 2

1

Z 3

0

�
2 + 2

�
z
2 � y

2
��

dydz

= 2

Z 2

1

Z 3

0

�
1 + z

2 � y
2
�
dydz

= 2

Z 2

1

✓
y
�
1 + z

2
�
� y

3

3

����
y=3

y=0

dz

= 2

Z 2

1

�
3
�
1 + z

2
�
� 9

�
dz

= 6

Z 2

1

�
z
2 � 2

�
dz

Z 2

1

Z 3

0

Z 2

0

�
x+ z

2 � y
2
�
dxdydz = 2.

2

Try This 4

Evaluate the triple integral

Z 2

0

Z 1

0

Z 1

0
yze

xy
dxdydz.

Triple Integrals over General Regions

We wish to extend and evaluate triple integrals
R R R

S g(x, y, z)dV over elementary
regions S ✓ R3 that we are about to describe. We consider an elementary region
in the xy-plane:

Rx = {(x, y) : a  x  b,�1(x)  y  �2(x)}

where �1,�2 are continuous functions of x such that �1(x)  �2(x). Then we
associate an elementary region in 3-space such as

Syx = {(x, y, z) : (x, y) 2 Rx, �1(x, y)  z  �2(x, y)}.

where �1,�2 are continuous functions on Rx satisfying �1(x, y)  �2(x, y). Using
similar ideas leading to Theorem 2.3, we have

Z Z Z

Syx
g(x, y, z)dV =

Z b

a

Z �2(x)

�1(x)

Z �2(x,y)

�1(x,y)
g(x, y, z)dzdydx

provided g is continuous on Syx.
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Similarly, if an elementary region in the xy-plane is given by

Ry = {(x, y) : c  y  d, 1(y)  x   2(y)}

where  1, 2 are continuous functions of y such that  1(y)   2(y), we associate
an elementary region

Sxy = {(x, y, z) : (x, y) 2 Ry,  1(x, y)  z   2(x, y)}.

where  1, 2 are continuous functions on Ry satisfying  1(x, y)   2(x, y). Like-
wise, we obtain

Z Z Z

Sxy
g(x, y, z)dV =

Z d

c

Z  2(y)

 1(y)

Z  2(x,y)

 1(x,y)
g(x, y, z)dzdxdy

whenever g is continuous on Sxy. There are six possible iterated triple integrals,
and another one of these is

Z Z Z

S
g(x, y, z)dV =

Z f

e

Z �2(z)

�1(z)

Z �2(y,z)

�1(y,z)
g(x, y, z)dxdydz

where �1, �2 are continuous functions of z satisfying �1(z)  �2(z), and �1,�2 are
continuous functions of (y, z) in some elementary region in the yz-plane such that
�1(y, z)  �2(y, z).

We summarize and define an elementary region S ✓ R3 in 3-space. For any
point in S, two of its coordinates lie in an elementary region in a plane such as
the xy-, yz-, or xz-plane, and the third coordinate lies between two continuous
functions of the first two variables. Specifically, let x1, x2, x3 be a permutation of
x, y, z, and let p < q be real constants. Let f1, f2, F1, F2 be continuous functions
satisfying f1(x3)  f2(x3) whenever p  x3  q, and further F1(x2, x3)  F2(x2, x3)
if f1(x3)  x2  f2(x3). A point lies in S if its coordinates satisfy p  x3  q,
f1(x3)  x2  f2(x3), and F1(x2, x3)  x1  F2(x2, x3). Following the idea of
Theorem 2.3, we have the following theorem:

Figure 8
Solid of integration
for Example 5.

Theorem 2.6 Triple Integrals over Elementary Regions

If g is a real-valued continuous function on an elementary region S ✓ R3, then
Z Z Z

S
g dV =

Z q

p

Z f2(x3)

f1(x3)

Z F2(x2,x3)

F1(x2,x3)
g dx1dx2dx3

In Theorem 2.6, if g(x, y, z) = 1 for all x, y, then

Z Z Z

S
dV is the volume of S.

Example 5 Triple Integral

Let S ✓ R3 be a region in the first octant that is bounded above by the plane

2x+ y + z = 2, and bounded below by the xy-plane. Then evaluate

Z Z Z

S
6xdV .

Solution In Figure 8, the base of solid S in the xy-plane may be expressed as

Rx = {(x, y) : 0  x  1, 0  y  2� 2x}.

Then region S is given by

Syx = {(x, y, z) : (x, y) 2 Rx, 0  z  2� 2x� y}.



68 CHAPTER 2. ITERATED, LINE, AND SURFACE INTEGRALS

We apply Theorem 2.6, and evaluate the inner-most integral.

Z Z Z

S
6xdV =

Z 1

0

Z 2�2x

0

Z 2�2x�y

0
6x dzdydx

=

Z 1

0

Z 2�2x

0
6x(2� 2x� y)dydx

=

Z 1

0

Z 2�2x

0
(12x(1� x)� 6xy) dydx

Then we evaluate the inner-integral with respect to y:

Z Z Z

S
6xdV =

Z 1

0

�
12x(1� x)y � 3xy2

����
y=2�2x

y=0

dx

=

Z 1

0

�
24x(1� x)2 � 12x(1� x)2

�
dx

=

Z 1

0
12x(1� x)2dx

Z Z Z

S
6xdV = 1.

2

Figure 9
The solid of integration
for Try This 5.

Try This 5

A solid S ✓ R3 lies in the first octant, bounded by the surfaces z = 1� x
2 and

x+ y = 1, and the coordinate planes. Then evaluate
R R R

S 10xdV .

2.1 Check-It Out

Evaluate the iterated integral.

1.

Z Z
10(2x+ y)3dxdy 2.

Z 3

0

Z 1

0
xy

2
dydx 3.

Z 2

0

Z x

0

Z y

0
(x� y)dzdydx

Rewrite the integral by switching the order of integration.

4.

Z 1

0

Z x

0
f(x, y)dydx 5.

Z 2

0

Z y/2

0
f(x, y)dxdy
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True or False. If false, revise the statement to make it true or explain.

1.

Z b

a

Z d

c
f(x, y)dydx =

Z b

a

Z d

c
f(x, y)dxdy

2.

Z 2

0

Z 2

0
(x+ y)dydx =

Z 2

0
xdx+

Z 2

0
ydy

3.

Z 1

0

Z 1

0

Z 1

0
xyz dzdydx =

1

8

4. If R = {(x, y) : x2 + y
2  r

2}, then
Z Z

R
dA = ⇡r

2.

5. The volume of the solid bounded by the hemisphere z =
p

4� x2 � y2 and

the plane z = 0 is given by

Z 2

�2

Z 2

�2

p
4� x2 � y2dydx.

Exercises for Section 2.1

In Exercises 1-8, evaluate the iterated integrals.

1.

Z ⇡/2

⇡/6

Z 1

0
6x sin(xy)dydx 2.

Z 1/3

1/4

Z 1

0
⇡y sec2(⇡xy)dxdy

3.

Z 2

1

Z 1

0

Z 3

1
(4xy + 2z)dzdxdy 4.

Z 2

0

Z z

0

Z y

0
12xdxdydz

5.

Z 1

0

Z x

�x
6ex+y

dydx 6.

Z e

1

Z y

0

dxdy

x2 + y2

7.

Z 2

1

Z z

0

Z y/2

0

4p
y2 � x2

dxdydz 8.

Z e

1

Z 4

2

Z 2x

x

y

z
p
z2 � x2

dzdydx

In Exercises 9-14, we see a region R of integration that is bounded by the graph of the indicated equation.
Express the double integral of f(x, y) over R using dydx. Then switch the order of integration to dxdy.

9. y = 3x 10. y =
p
x 11. y = x/2

1 x

3

y

4 x

2

y

2 x

1

y

For No. 9 For No. 10 For No. 11
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12. y = x
2 13. y =

p
1� x2 14. (x� 2)2 + y

2 = 4

2 x

4

y

1-1 x

y

2 x

2

y

For No. 12 For No. 13 For No. 14

In Exercises 15-26, switch the order of integration, and evaluate the integral with the new limits.

15.

Z 1

0

Z 2x

0
2xydydx 16.

Z 4

0

Z 8
p
x

x2

dydx 17.

Z 2

0

Z 1

y/2
8xydxdy

18.

Z 4

0

Z p
x

0
dydx 19.

Z 4

0

Z 2

p
x
dydx 20.

Z 2

0

Z x2

0
2xdydx

21.

Z 2

0

Z 4

x2

2xdydx 22.

Z 1

�1

Z 1

|x|
dydx 23.

Z ⇡/2

0

Z 1

sin x
cos(x)dydx

24.

Z 4

0

Z 8
p
x

x2

7
p
y

192
dydx 25.

Z 1

0

Z 2

2x
4ey

2

dydx 26.

Z 1

0

Z 1

y
cos

✓
⇡x

2

4

◆
dxdy

In Exercises 27-34, find the volume of the solid that is bounded by the coordinate planes, and the graph of
the equations in 3-space.

27. z = 1� y
2, x = 2, y = 1 28. x+ y + z = 3, x = 2, y = 1

For No. 27 For No. 28

29. z = 3, y = 4� x
2 30. x+ y + z = 1

For No. 29 For No. 30
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31. z =
p
x, x = 4, y = 3 32. 2x+ y + z = 2

For No. 31 For No. 32

33. x
2 + z

2 = 1, y2 + z
2 = 1 34. z = 1� y

2, z = 1� x
2

For No. 33 For No. 34

Miscellaneous Problems

35. Find the volume of the solid that is bounded by the plane x+ 4y + 16z = 8,

and the coordinate planes.

36. Find the volume of the solid bounded by the plane 2x+ y + z = 2,

and the coordinate planes.

37. Find the volume of the solid in the first octant bounded by the plane x+ 4y + z = 4,

and the coordinate planes.

38. Find the volume of the solid in the first octant bounded by the plane 2x+ y + z = 4,

and the coordinate planes.

39. Find the volume of a solid in the first octant that is bounded by the surfaces

z = 1� y
2 and x = 2.

40. Find the volume of a solid in the first octant that is bounded by the graphs

of z = 1� y
2, y = 2x, x = 0, and z = 0.

41. Evaluate

Z Z

R

xp
1� x2

dA where R =

⇢
(x, y) : 0  x  1

2
, arcsinx  y  ⇡

6

�
.
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42. Evaluate

Z Z

R

sinx

x
dA where R = {(x, y) : 0  y  1, y  x  1}.

43. Evaluate

Z Z Z

S
(xy � z)dV where S is the solid in 3-space that is bounded

by the graphs of x = 1, y = 4, z = 1, and the coordinate planes.

44. Evaluate

Z Z Z

S

p
xyzdV where S is the solid in 3-space that is bounded

by the graphs of x = 1, y = 1, z = 1, and the coordinate planes.

45. Find the volume of a solid that is bounded by the circular cylinder x2 + y
2 = 1,

the plane z + 2y = 2, and the xy-plane.

46. Evaluate

Z Z Z

S
16dV where S is the solid in the first octant bounded by the paraboloid z = x

2 + y
2,

the plane z = 1, and the coordinate planes.

47. A solid S consists of the points (x, y, z) satisfying 0  x, y, z  1 and 2
p
xy  z, see Figure for No. 47.

Then find the volume of S. In terms of probability, if x, y, z are independent uniform random

variables on [0, 1], then the volume of S is the probability that the solutions t of the quadratic

equation xt
2 + zt+ y = 0 are real numbers..

Figure for No. 47
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2.2 Change of Variables in Integration

• Jacobian Determinant • Cylindrical Coordinates • Spherical Coordi-
nates

Jacobian Determinant

D

a b u

c

d

v

Figure 1
Region S in the uv-plane

C

THa,cL
THb,cL

THa,dL

x

y

Figure 2
Region T (R) in the xy-plane

The substitution method is an important technique in the integration of a function
of one variable, namely,

Z x(b)

x(a)
f(x)dx =

Z b

a
f(x(u))x0(u)du.

We extend the above method to the integration of multivariable functions.

Let D = {(u, v) 2 R2 : a  u  b, c  u  d} be a rectangular region in the
uv-plane, see Figure 1. Let x = x(u, v) and y = y(u, v) be real-valued functions
on D with continuous first partial derivatives. Let T be a transformation from D

into the xy-plane defined by T (x, y) = (x(u, v), y(u, v)). Further, suppose T is a
one-to-one function on D, i.e., T maps distinct points in D to distinct points in the
xy-plane.

Let C be the image of D under the transformation T , i.e,

C = T (D) = {(x, y) 2 R2 : x = x(u, v), y = y(u, v), (u, v) 2 D}.

If the sides of rectangle D are small, we approximate the area of C. The idea2

is to use the linear approximation of T near (a, c) as described in (36), page 39.
Moreover, we use a result from linear algebra claiming that a one-to-one linear
transformation maps a rectangle to a parallelogram.

In Figure 2, let v be the vector from point T (a, c) to T (b, c), and let w be the
vector from T (a, c) to T (a, d). We may approximate v and w by the tangent vectors
along the boundary of C, respectively, i.e.,

v ⇡ �u
@T
@u

�����
(a,c)

and w ⇡ �v
@T
@v

�����
(a,c)

if �u = b� a and �v = d� c are small. The area of D is �u�v, and the area of C
is approximately the area of the parallelogram defined by v and w. Recall, the area
of a parallelogram is the magnitude of the cross product of the vectors defining the
sides of the parallelogram. Then

Area of C ⇡ kv ⇥wk

⇡

������
@T
@u

�����
(a,c)

⇥ @T
@v

�����
(a,c)

������
(Area of D)

=

�����������

Det

2

666664

i j k

@x
@u

@y
@u

0

@x
@v

@y
@v

0

3

777775

�����������

(Area of D)

2The linear approximation of T near x0 = (a, c) is defined by T 0(x) = A(x � x0) + T (x0)
where A is a 2 by 2 matrix, and x,x0 2 R2 are realized as column vectors.
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where the partial derivatives are evaluated at (a, c). Consequently, we find

Area of C ⇡
����
@(x, y)

@(u, v)

���� (Area of D)

where

@(x, y)

@(u, v)
= Det

2

664

@x

@u

@y

@u

@x

@v

@y

@v

3

775 .

The factor
@(x, y)

@(u, v)
is called the Jacobian determinant of the transformation T .

Let z = f(x, y) be a real-valued continuous function on an elementary region
R in the xy-plane. We sketch a proof of the change of variables theorem. For a
detailed proof, consult an advanced calculus textbook.

Z Z

R
f(x, y)dxdy ⇡

nX

i=1

mX

j=1

f(xi, yj)�xi�yj

⇡
nX

i=1

mX

j=1

f(x(ui, vj), y(ui, vj))

����
@(x, y)

@(u, v)

���� �u�v

=

Z Z

S
f(x(u, v), y(u, v))

����
@(x, y)

@(u, v)

���� dudv

We summarize the discussion into a theorem.

Theorem 2.7 Change of Variables

Let z = f(x, y) be a continuous real-valued function defined on an elementary
region R in the xy-plane. Let (x, y) = T (u, v) be a one-to-one function defined on
an elementary region S in the uv-plane. Suppose the components of T , namely,
x = x(u, v) and y = y(u, v) have continuous partial derivatives and T (S) = R.
Then Z Z

R
f(x, y)dxdy =

Z Z

S
f(x(u, v), y(u, v))

����
@(x, y)

@(u, v)

���� dudv.

R

1.5 x

1

-0.5

y

Figure 3
Region in xy-plane

Example 1 Applying a Change of Variables

Evaluate

Z Z

R

p
x2 � y2 dA where R is the rectangular region with vertices

at (0, 0), (1, 1), ( 32 ,
1
2 ), and ( 12 ,�

1
2 ). Let x =

1

2
(u+ v) and y =

1

2
(u� v).
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S

2 u

1

v

Figure 4
Region in uv-plane

Solution Solving for u and v, we find u = x+ y and v = x� y. The four vertices
of R correspond to four points in the uv-plane:

(x, y) (u, v)

(0, 0) (0, 0)

(1, 1) (2, 0)

( 32 ,
1
2 ) (2, 1)

( 12 ,�
1
2 ) (0, 1)

The region R is mapped to region S in the uv-plane, see Figure 2. Since x = (u+v)/2
and y = (u� v)/2. The Jacobian determinant is given by

@(x, y)

@(u, v)
= Det

" @x
@u

@x
@v

@y
@u

@y
@v

#
= Det

" 1
2

1
2

1
2 � 1

2

#
= �1

2

Notice, x2 � y
2 = uv. Applying Theorem 2.7, we obtain

Z Z

R

p
x2 � y2 dA =

Z 2

0

Z 1

0

p
uv

����
@(x, y)

@(u, v)

���� dvdu

=
1

2

✓Z 2

0

p
udu

◆✓Z 1

0

p
vdv

◆

=
4
p
2

9
2

Try This 1

Evaluate the same integral in Example 1, but let x = u+ v and y = u� v.

2 3 x

y

Figure 5
A region S between two
concentric circles.

Example 2 Applying Polar Coordinates

Evaluate

Z Z

R
e
�(x2+y2)

dA where R is the region between the circles x
2 + y

2 = 9

and x
2 + y

2 = 4, where y � 0. See Figure 5.

Solution We apply the change of variables x = r cos ✓ and y = r sin ✓, where
r � 0. These equations arise from trigonometry, as shown below.

Θ

r

x

y

Figure 6 Right triangle trigonometry
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S

1 2 3 r

p

q

Figure 7
Rectangular region S
in the r✓-plane.

Solving for r and ✓, we have r =
p

x2 + y2 and tan ✓ = y/x if x 6= 0. In
particular, r is the distance between point (x, y) and the origin. In Figure 5, we
deduce that r satisfies 2  r  3. Also, ✓ is the standard angle that the line through
the origin and point (x, y) makes with the positive x-axis. From Figure 5, we see
✓ satisfies 0  ✓  ⇡. The region S in the r✓-plane corresponding to region R is
shown in Figure 7.

Since x = r cos ✓ and y = r sin ✓, the Jacobian determinant is given by

@(x, y)

@(r, ✓)
= Det

" @x
@r

@x
@✓

@y
@r

@y
@✓

#
= Det

"
cos ✓ �r sin ✓

sin ✓ r cos ✓

#

= r
�
cos2 ✓ + sin2 ✓

�
= r.

Applying r
2 = x

2 + y
2 and the change of variables, we obtain

Z Z

R
e
�(x2+y2)

dA =

Z Z

S
e
�r2

����
@(x, y)

@(u, v)

���� drd✓

=

Z ⇡

0

Z 3

2
re

�r2
drd✓

= �1

2

Z ⇡

0
e
�r2

����
r=3

r=2

d✓

Z Z

R
e
�(x2+y2)

dA =
⇡

2

�
e
�4 � e

�9
�
.

2

Try This 2

Evaluate

Z Z

R

p
x2 + y2dA where R is the circular region bounded by x

2+ y
2 = 1.

Apply the transformation defined by x = r cos ✓ and y = r sin ✓.

Next, we discuss the change of variables for triple integrals. Let T be a one-to-
one transformation from a rectangular box

B = {(u, v, w) : a1  u  b1, a2  v  b2, a3  w  b3}

into R3 where ai < bi are real constants, i = 1, 2, 3. We investigate the e↵ect of T
on the volume of B.

Let x = x(u, v, w), y = y(u, v, w), z = z(u, v, w) be real-valued functions on B

with continuous partial derivatives such that (x, y, z) = T (u, v, w). The derivative
T

0 of T at (a1, a2, a3) provides the best linear approximation3 of T near (a1, a2, a3).

3The linear approximation of T near x0 = (a1, a2, a3) is defined by T 0(x) = A(x�x0)+T (x0)
where A is a 3 by 3 matrix, and x,x0 2 R3 are realized as column vectors. See (36), page 39.
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We apply a result from linear algebra stating that an injective linear transfor-
mation in 3-space should map B onto a parallelepiped C. If all the sides of B are
small, then the volume of T (B) is approximately the volume of the parallelepiped
T

0(B) whose three defining edges are vectors

v1 = �u
@T
@u

, v2 = �v
@T
@v

, v3 = �w
@T
@w

.

where the partial derivatives are evaluated at (a, b, c), �u = b1 � a1, �v = b2 � a2,
and �w = b3 � a3. By Theorem 1.2, the volume of T 0(B) is the absolute value of
the triple scalar product of v1, v2, and v3. Applying identity (1) in page 152, the
triple scalar product is the determinant of the 3 by 3 matrix whose rows are the
vectors. That is,

(v1 ⇥ v2) · v3 =
@(x, y, w)

@(u, v, w)
Vol(B)

where the volume of B is Vol(B) = �u�v�w, and the Jacobian determinant is

@(x, y, z)

@(u, v, w)
= Det

2

66664

@x
@u

@x
@v

@x
@w

@y
@u

@y
@v

@y
@w

@z
@u

@z
@v

@z
@w

3

77775

and the partial derivatives are evaluated at (a, b, c). Then an e↵ect of transformation
T on the volume of B is given by

Vol(T (B)) ⇡ Vol(T 0(B)) =

����
@(x, y, w)

@(u, v, w)

����Vol(B).

Furthermore, let A = F (x, y, z) be a real-valued function. We sketch a proof of the
change of variables for triple integrals.

Z Z Z

M
F (x, y, z)dV ⇡

nX

i=1

mX

j=1

pX

k=1

F (xi, yj , zk)�xi�yj�zk

⇡
nX

i=1

mX

j=1

pX

k=1

(F � T )(ui, vj , wk)

����
@(x, y, z)

@(u, v, w)

���� �u�v�w

=

Z Z Z

N
(F � T )(u, v, w)

����
@(x, y, z)

@(u, v, w)

���� dV

A detailed proof of the change of variables is found in advanced calculus books.

Theorem 2.8 Change of Variables II

Let A = F (x, y, z) be a continuous real-valued function defined on an elementary
region M in the xyz-space. Let (x, y, z) = T (u, v, w) be a one-to-one function
defined on an elementary region N in the uvw-space. Suppose the components of
T , namely, x = x(u, v, w), y = y(u, v, w) and z = y(u, v, w) have continuous partial
derivatives and T (N) = M . Then

Z Z Z

M
F (x, y, z)dV =

Z Z Z

N
(F � T )(u, v, w)

����
@(x, y, z)

@(u, v, w)

���� dV.
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Figure 8
Cylindrical solid of radius 2

Figure 9
Rectangular solid N

Figure 10
Washer M between two
cylindrical cylinders

Example 3 Triple Integral and Change of Variables

Evaluate

Z Z Z

M

p
x2 + y2 dV where M is the solid bounded by the circular

cylinder x2 + y
2 = 4, and the planes z = 0 and z = 1, see Figure 8.

Apply the transformation x = r cos ✓, y = r sin ✓, and z = z.

Solution The base of the solid M lies in the xy-plane. Notice, x2+y
2 = r

2. Then
each point (x, y, 0) in the base satisfies x2 + y

2  4, or equivalently 0  r  2 and
0  ✓  2⇡. In addition, the z-component of any point in M satisfies 0  z  1.

Then the solid defined by

N = {(r, ✓, z) : 0  r  2, 0  ✓  2⇡, 0  z  1}

is mapped into M by the transformation, see Figure 9. The Jacobian determinant
of the transformation is given by

@(x, y, z)

@(r, ✓, z)
= Det

2

66664

@x
@r

@x
@✓

@x
@z

@y
@r

@y
@✓

@y
@z

@z
@r

@z
@✓

@z
@z

3

77775
=

2

6664

cos ✓ �r sin ✓ 0

sin ✓ r cos ✓ 0

0 0 1

3

7775
= r

Applying the change of variables theorem, we obtain

Z Z Z

M

p
x2 + y2 dV =

Z Z Z

N

p
r2

����
@(x, y, z)

@(r, ✓, z)

���� dV

=

Z 1

0

Z 2⇡

0

Z 2

0
r
2
drd✓dz

=
16⇡

3
.

2

Try This 3

Evaluate

Z Z Z

M
e
z
dV where M is the solid between two circular cylinders

x
2 + y

2 = 1 and x
2 + y

2 = 4, and the planes z = 0 and z = 1. See Figure 10,

and apply the same transformations used in Example 3.
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Figure 11
Solid ball S of radius 1.

Figure 12
Rectangular solid T

Example 4 Changing the Variables in a Triple Integral

Evaluate

Z Z Z

S

dV

1 + x2 + y2 + z2
where the solid S is the unit ball bounded by

x
2 + y

2 + z
2 = 1. Apply the transformation x = ⇢ sin� cos ✓, y = ⇢ sin� sin ✓, and

z = ⇢ cos� where 0  ⇢  1, 0  �  ⇡, and 0  ✓  2⇡.

Solution We find

x
2 + y

2 + z
2 = (⇢ sin� cos ✓)2 + (⇢ sin� sin ✓)2 + (⇢ cos�)2

= (⇢ sin�)2(cos2 ✓ + sin2 ✓) + (⇢ cos�)2

= (⇢ sin�)2 + (⇢ cos�)2

= ⇢
2
.

Observe, ⇢ is the distance between (x, y, z) and the origin. Also, ✓ is the angle
between the x-axis and the vector from the origin to (x, y, 0) for tan ✓ = y/x. The
dot product of (x, y, z) with k satisfies

(⇢ sin� cos ✓, ⇢ sin� sin ✓, ⇢ cos�) · k = ⇢ cos�.

In particular, � is the angle between vector (x, y, z) and k.

The solid ball S is mapped into a rectangular solid T , see Figure 12. The
Jacobian determinant of the transformation is given below but we postpone the
proof to page 83 of the section:

@(x, y, z)

@(⇢,�, ✓)
= Det

2

66664

@x
@⇢

@x
@�

@x
@✓

@y
@⇢

@y
@�

@y
@✓

@z
@⇢

@z
@�

@z
@✓

3

77775
= ⇢

2 sin�.

Applying the change of variables, we obtain
Z Z Z

S

dV

1 + x2 + y2 + z2
=

Z Z Z

T

1

1 + ⇢2

����
@(x, y, z)

@(⇢,�, ✓)

���� d⇢d�d✓

=

Z 2⇡

0

Z ⇡

0

Z 1

0

⇢
2 sin�

1 + ⇢2
d⇢d�d✓

= 4⇡

Z 1

0

⇢
2

1 + ⇢2
d⇢

= 4⇡

Z 1

0

✓
1� 1

1 + ⇢2

◆
d⇢

= 4⇡(⇢� arctan ⇢

����
⇢=1

⇢=0

Z Z Z

S

dV

1 + x2 + y2 + z2
= ⇡(4� ⇡)

2
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Try This 4

Evaluate

Z Z Z

S
dV where S is the unit ball that is bounded by the sphere

x
2 + y

2 + z
2 = 1. Apply the transformation x = ⇢ sin� cos ✓, y = ⇢ sin� sin ✓, and

z = ⇢ cos� where 0  ⇢  1, 0  �  ⇡, and 0  ✓  2⇡.

Cylindrical Coordinates

Figure 13
Cylindrical coordinates
(r, ✓, z) of point P .

Figure 14
Cylindrical point

(r, ✓, z) =
⇣
4,�⇡

3
, 4
⌘
.

The cylindrical coordinates of a point (x, y, z) 2 R3 in Cartesian coordinates are
(r, ✓, z) where

r
2 = x

2 + y
2
, tan ✓ =

y

x
if x 6= 0.

In particular, ✓ is the angle between the positive x-axis and the line segment joining
the origin to (x, y, 0). Usually, we require 0  ✓ < 2⇡. Also, (r, ✓) represent the polar
coordinates of (x, y). Note, r is a real number representing the directed distance
from the origin to (x, y). The cylindrical coordinates of a point are not unique.
For instance, the cylindrical coordinates (2,⇡/6, 3), (2, 13⇡/6, 3), and (�2, 7⇡/6, 3)
represent the same point in 3-space. The identities below

x = r cos ✓, y = r sin ✓, z = z.

are helpful when converting to Cartesian coordinates from cylindrical coordinates.

Example 5 Switching between Cartesian and Cylindrical Coordinates

Find the cylindrical coordinates of the point P (x, y, z) = (2,�2
p
3, 4) in Cartesian

coordinates. Then find the Cartesian coordinates of the point Q(r, ✓, z) =
�
4, 5⇡

6 , 1
�

given in cylindrical coordinates.

Solution Since P (x, y, z) = (2,�2
p
3, 4), we find

r =
p

x2 + y2 =
p
4 + 12 = 4.

From the identity tan ✓ = y/x = �
p
3, we may choose ✓ = �⇡

3 , see Figure 14. Then
the cylindrical coordinates of point P are

(r, ✓, z) =
⇣
4,�⇡

3
+ 2k⇡, 4

⌘
,

✓
�4,

2⇡

3
+ 2k⇡, 4

◆

where k is an integer.

Using the cylindrical coordinates Q(r, ✓, z) =
�
4, 5⇡

6 , 1
�
, we find

x = r cos ✓ = 4 cos
5⇡

6
= �2

p
3

y = r sin ✓ = 4 sin
5⇡

6
= 2.

Thus, the Cartesian coordinates of Q are

Q(x, y, z) = (�2
p
3, 2, 1)

since z = 1.
2
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Figure 15
Solid S bounded between
a cone and a sphere.

Figure 16
Solid T between z = r2,
r2 + z2 = 2, and ✓ = 2⇡
in the first octant.

Figure 17
The ellipsoid

x2 + y2 + 4z2 = 4.

Try This 5

Find the cylindrical coordinates of point P (x, y, z) = (�1, 1, 2). Also, find the

Cartesian coordinates of point
�
3, 3⇡

2 , 1
�
given in cylindrical coordinates.

Example 6 Finding the Volume of a Solid

Find the volume of the solid S bounded by the cone x
2 + y

2 = z
2 and the

sphere x
2 + y

2 + z
2 = 2 where z � 0, see Figure 15.

Solution The volume of S is
R R R

S dV . In cylindrical coordinates, we have the
identity x

2 + y
2 = r

2. Then an equation of the cone x
2 + y

2 = z
2 in cylindrical

coordinates is z = r. The cylindrical coordinates for the sphere is r2 + z
2 = 2.

To find where the surfaces intersect, substitute the former equation into the later
one. Then 2z2 = 2 and z = 1 for z � 0. Thus, every point (x, y, z) in S satisfies
x
2 + y

2  1 and
p
x2 + y2  z 

p
2� x2 � y2.

Since x
2 + y

2  1, we have 0  r  1 and 0  ✓  2⇡, see the base of the solid in
Figure 16. The solid T corresponds to solid S under the change in coordinates from
rectangular to cylindrical coordinates. In Example 3, the Jacobian determinant
associated to the change of variables is

@(x, y, z)

@(r, ✓, z)
= r.

From
p
x2 + y2  z 

p
2� x2 � y2, we obtain r  z 

p
2� r2. Applying the

change of variables theorem for integration, we find
Z Z Z

S
dV =

Z Z Z

T

����
@(x, y, z)

@(r, ✓, z)

���� dV

=

Z 2⇡

0

Z 1

0

Z p
2�r2

r
rdzdrd✓

=

Z 2⇡

0

Z 1

0

⇣
r

p
2� r2 � r

2
⌘
drd✓

Volume =
4⇡

3
(
p
2� 1).

2

Try This 6

Find the volume of the solid bounded by the ellipsoid x
2 + y

2 + 4z2 = 4.

Express the volume as a triple integral that uses cylindrical coordinates.

See Figure 17.
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Figure 18
Spherical coordinates
(⇢, ✓,�) of point P .

Figure 19
Spherical coordinates
of point A

�
2, ⇡

6 ,
⇡
3

�
.

Spherical Coordinates

The spherical coordinates of a point (x, y, z) 2 R3 in Cartesian coordinates are
(⇢, ✓,�) where

⇢ =
p
x2 + y2 + z2, tan ✓ =

y

x
if x 6= 0, and ⇢ cos� = (x, y, z) · k.

The coordinate 0  ✓ < 2⇡ is the angle between the positive x-axis and a vector
from the origin to point (x, y, 0), see Figure 18. The coordinate ⇢ � 0 is the distance
between (x, y, z) and the origin. Further, we require 0  �  ⇡ and � is the angle
between the positive z-axis and the line segment joining the origin to (x, y, z). The
identities below

x = ⇢ sin� cos ✓, y = ⇢ sin� sin ✓, z = ⇢ cos�

are useful when converting to Cartesian coordinates from spherical coordinates.

Example 7 Switching between Cartesian and Spherical Coordinates

Find the spherical coordinates of point A(x, y, z) =
⇣

3
2 ,

p
3
2 , 1

⌘
.

Then find the Cartesian coordinates of the point B(⇢, ✓,�) =
�
8, 7⇡

4 ,
⇡
6

�
.

Solution Since A(x, y, z) =
⇣

3
2 ,

p
3
2 , 1

⌘
, we find

⇢ =
p
x2 + y2 + z2 =

r
9

4
+

3

4
+ 1 = 2.

Using the identity tan ✓ = y
x = 1p

3
, we choose ✓ = ⇡

6 , see Figure 19. Also, we find

⇢ cos� = (x, y, z) · k

2 cos� =

 
3

2
,

p
3

2
, 1

!
· k = 1

� =
⇡

3
.

Then the spherical coordinates of point A are

A(⇢, ✓,�) =
⇣
2,
⇡

6
,
⇡

3

⌘
.

Next, we determine the Cartesian coordinates of B(⇢, ✓,�) =
�
8, 7⇡

4 ,
⇡
6

�
.

x = ⇢ sin� cos ✓ = 8 sin
⇡

6
cos

7⇡

4
= 2

p
2

y = ⇢ sin� sin ✓ = 8 sin
⇡

6
sin

7⇡

4
= �2

p
2

z = ⇢ cos� = 8 cos
⇡

6
= 4

p
3

Thus, the Cartesian coordinates are B(x, y, z) = (2
p
2,�2

p
2, 4

p
3).

2
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Try This 7

Find the spherical coordinates of point C(x, y, z) = (3, 3
p
3, 6). Also, find

the rectangular (or Cartesian) coordinates of D (⇢, ✓,�) =

✓
2
p
2,

3⇡

4
,
⇡

3

◆
.

For the purpose of evaluating triple integrals, we evaluate the Jacobian determi-
nant of the transformation to Cartesian from spherical coordinates. The spherical
coordinates (⇢,�, ✓) of a point (x, y, z) satisfy

x = ⇢ sin� cos ✓, y = ⇢ sin� sin ✓, z = ⇢ cos�.

We compute the determinant below by expanding the minors in the third row, i.e.,

@(x, y, z)

@(⇢,�, ✓)
= Det

2

66664

@x
@⇢

@x
@�

@x
@✓

@y
@⇢

@y
@�

@y
@✓

@z
@⇢

@z
@�

@z
@✓

3

77775
=

2

6664

sin� cos ✓ ⇢ cos� cos ✓ �⇢ sin� sin ✓

sin� sin ✓ ⇢ cos� sin ✓ ⇢ sin� cos ✓

cos� �⇢ sin� 0

3

7775

= Det[A3,1] cos��Det [A3,2] (�⇢ sin�)

where the 2 by 2 matrices A3,j are obtained from the above 3 by 3 matrix by crossing
out the third row and jth column, j = 1, 2. Namely, the matrices A3,j are

A3,1 =

2

4
⇢ cos� cos ✓ �⇢ sin� sin ✓

⇢ cos� sin ✓ ⇢ sin� cos ✓

3

5 , A3,2 =

2

4
sin� cos ✓ �⇢ sin� sin ✓

sin� sin ✓ ⇢ sin� cos ✓

3

5

Then

Det[A3,1] = ⇢
2 sin� cos� cos2 ✓ + ⇢

2 sin� cos� sin2 ✓

= ⇢
2 sin� cos�(cos2 ✓ + sin2 ✓) = ⇢

2 sin� cos�.

Using a similar calculation, we find

Det[A3,2] = ⇢ sin2 �.

Consequently, the Jacobian determinant for the change of variables to Cartesian
coordinates from spherical coordinates is given by

@(x, y, z)

@(⇢,�, ✓)
= Det[A3,1] cos��Det [A3,2] (�⇢ sin�)

= (⇢2 sin� cos�) cos�� (⇢ sin2 �)(�⇢ sin�)

= ⇢
2 sin�. (1)
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Figure 20
A solid S bounded by
two hemispheres.

Figure 21
The solid S in
spherical coordinates.

Example 8 Triple Integral and Spherical Coordinates

Evaluate

Z Z Z

S
zdV where S is the solid between the two

spheres of radii 1 and 2, and centered at the origin. See Figure 20.

Solution In spherical coordinates, we have z = ⇢ cos�. Also, the Jacobian
determinant for spherical coordinates is ⇢2 sin�, see (1).

Analyzing Figure 20, the spherical coordinate ⇢ satisfies 1  ⇢  2 since the
distance between a point in S and the origin is a value between 1 and 2, inclusive.
The coordinate � satisfies 0  �  ⇡/2 for the angle between vector k and a vector
from the origin to a point in S is a value from 0 to ⇡/2 radians. Also, the polar
angle of any point is S satisfies 0  ✓ < 2⇡. In Figure 21, we see that the spherical
coordinates of S describe a rectangular box.

Then by the change of variables theorem, we obtain

Z Z Z

S
zdV =

Z 2⇡

0

Z ⇡/2

0

Z 2

1
⇢
3 sin� cos� d⇢ d� d✓

=

Z 2⇡

0

Z ⇡/2

0

⇢
4

4

����
⇢=2

⇢=1

sin� cos� d� d✓

=
15

4

Z 2⇡

0

Z ⇡/2

0
sin� cos� d� d✓

=
15

4

Z 2⇡

0

1

2
sin2(�)

����
�=⇡/2

�=0

d✓

=
15

8

Z 2⇡

0
d✓

Z Z Z

S
zdV =

15⇡

4
.

2

Try This 8

Set up a triple integral in spherical coordinates for the volume of the part of

solid S in Figure 20 that lies in the first octant. Then evaluate the integral.
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2.2 Check-It Out

Evaluate the integral by applying the indicated transformation.

1.

Z Z

R
e
x2+y2

dA where R is the circular region of radius 1 and centered at the origin.

Apply the transformations x = r cos ✓ and y = r sin ✓.

2.

Z Z Z

S

p
x2 + y2 + z2dV where S is the unit ball, i.e., the solid bounded by the unit

sphere x
2 + y

2 + z
2 = 1. Apply a change of variables by using spherical coordinates, see Example 8.

True or False. If false, revise the statement to make it true or explain.

1. If x = u� v and y = u+ v, the Jacobian determinant satisfies
@(x, y)

@(u, v)
= 2.

2. If x = r cos ✓ and y = r sin ✓, the Jacobian determinant satisfies
@(x, y)

@(r, ✓)
= r

2.

3. If R = {(x, y) : x2 + y
2  25}, then

Z Z

R
e

p
x2+y2

dA =

Z 2⇡

0

Z 5

0
re

r
drd✓.

4. The Jacobian determinant for spherical coordinates satisfies
@(x, y, z)

@(⇢,�, ✓)
= ⇢ sin�.

5. If x = 2u and y = 3v, then by the change of variables we haveZ 3

0

Z 2

0
f(x, y)dxdy =

Z 1

0

Z 1

0
f(2u, 3v)dudv.

Exercises for Section 2.2

In Exercises 1-8, evaluate the integral by applying the indicated change of variables. The region of integration
R in Cartesian coordinates is shown. The region S to where R is mapped by the change of variables is shown,
too. In addition, state the Jacobian determinant of the change of variables.

1.

Z Z

R
ydA where R is the quadrilateral region with vertices at (0, 0), (4, 0), (1, 2), and (5, 2).

Let x =
v � u

2
and y = v.

R

1 4 5 x

2

y

S

2

-8 u

v

Figure for 1



86 CHAPTER 2. ITERATED, LINE, AND SURFACE INTEGRALS

2.

Z Z

R
(y�x)dA where R is the quadrilateral region bounded by the lines y = x+1, y = x+2, y = 2x�1,

and y = 2x+ 2. Let x = u� v and y = 2u� v.

R

-1 2 3 x

5

2

y

21
u

2

-1

v

Figure for 2

3.

Z Z

R

x� y

x+ y
dA where R is the quadrilateral region with vertices at (1, 0), (2, 0), (1, 1), and ( 12 ,

1
2 ).

Let x =
u+ v

2
and y =

u� v

2
.

R
1
2 1 2 x

1
2

1

y

S

21 u

2

1

v

Figure for 3

4.

Z Z

R

�
x
2 + y

2
�2

dA where R is the circular unit circle centered at the origin.

Let x = r cos ✓ and y = r sin ✓.

R

1
x

y

S

1 r

2p

q

Figure for 4
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5.

Z Z Z

R
zdV where R is the solid in the first octant bounded by the surfaces z = x

2 + y
2,

x
2 + y

2 = 1, and the coordinate planes. Let x = r cos ✓, y = r sin ✓, and z = z.

Figure for 5

6.

Z Z Z

R
e
(x2+y2+z2)3/2

dV where R is the solid bounded by the spheres x2 + y
2 + z

2 = 1 and

x
2 + y

2 + z
2 = 4. Change the variables to spherical coordinates.

Figure for 6

7.

Z Z Z

R
2zdV where R is the solid bounded by the surfaces z =

p
4� x2 � y2, z =

p
2� x2 � y2,

x = 1, y = x, and y = 0. Change the variables to cylindrical coordinates.

Figure for 7
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8.

Z Z Z

R
zdV where R is the solid bounded by the surfaces z =

p
x2 + y2,

x
2 + y

2 = 1, and z = 0. Change the variables to spherical coordinates.

Figure for 8

In Exercises 9-14, if a point is defined in Cartesian coordinates, express the point in cylindrical coordinates.

If the point is given in cylindrical coordinates, change to Cartesian coordinates.

9. (x, y, z) = (2
p
3, 2, 1) 10. (r, ✓, z) =

✓
2,

5⇡

3
, 3

◆
11. (x, y, z) = (�6, 2

p
3, 2)

12. (r, ✓, z) =

✓
2,

3⇡

2
, 4

◆
13. (r, ✓, z) =

✓p
2,

2⇡

3
,�2

◆
14. (x, y, z) =

 
�
p
3

2
,�3

2
,�3

!

In Exercises 15-20, if a point is given in Cartesian coordinates, express the point in spherical coordinates.

If the point is expressed in spherical coordinates, convert to Cartesian coordinates.

15. (x, y, z) = (1,
p
3, 2

p
3) 16. (⇢, ✓,�) =

✓
4,

2⇡

3
,
5⇡

6

◆
17. (x, y, z) =

 
3

2
,�

p
3

2
,�1

!

18. (⇢, ✓,�) =

✓
2,

7⇡

6
,
2⇡

3

◆
19. (⇢, ✓,�) =

✓
2,⇡,

3⇡

4

◆
20. (x, y, z) =

�
6
p
3,�6, 4

p
3
�

In Exercises 21-24, evaluate the integral by applying the indicated change of variables. Sketch the indicated

region R. Also, sketch the image S of the transformation defined by the change of variables.

21.

Z Z

R
(x� y)dA where R is a quadrilateral region with vertices (0, 0), (1, 1), (�5, 1), and (�6, 0).

Apply the change of variables x = 2u+ v and y = v.

22.
R R

R(y � x)dA where R is a quadrilateral region with vertices (0, 0), (2, 0), (3, 1), and (1, 1).

Apply the change of variables x = �u+ v and y = v.

23.

Z Z

R
dA where R is the region bounded by the lines y = x, y = x+ 1, y = �x, and y = �x+ 1.

Let x =
�u+ v

2
and y =

u+ v

2
.
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24.

Z Z

R

p
y + 2x dA where R is the region bounded by the lines y = 4x+ 2, y = 4x+ 5,

y = �2x+ 3, and y = �2x+ 1. Let x =
�u+ v

6
and y =

u+ 2v

3
.

In Exercises 25-28, solve for x and y in the given substitution. Then evaluate the integral by applying a
change of variables. Sketch the region R in the Cartesian plane, and the image S of the transformation
defined by the change of variables.

25.

Z Z

R

p
x� y dA where R is a trapezoid with vertices (1, 0), (2, 0), (0,�2) and (0,�1).

Substitute u = x+ y and v = x� y.

26.

Z Z

R
xy dA where R is the region in the first quadrant that is bounded by the graphs of y = x, y = 3x,

xy = 1, and xy = 3. Substitute u = xy and v = y.

27.

Z Z

R
(x+ y) dA where R is the triangular region with vertices (0, 0), (2, 1), and (1, 2).

Substitute u = �x+ 2y and v = x+ y.

28.

Z Z

R
(x� y)(1 + x+ y)dA where R is the triangular region with vertices (0, 0), (1, 0), and (1, 1).

Substitute u = x+ y and v = x� y.

29.

Z Z

R
(x2 � y

2)dA where R is a quadrilateral region bounded by the lines y = x, y = x� 2, y = �x,

and y = �x+ 3. Substitute x =
u+ v

2
and y =

�u+ v

2
.

30. Verify the identity

Z Z

Rn

e
�x2�y2

dA = ⇡

⇣
1� e

�n2
⌘
where Rn = {(x, y) : x2 + y

2  n
2}, n � 1.

31. We adopt the notation of Exercise 30. Applying the Monotone Convergence Theorem4, we have
Z Z

R2

e
�x2�y2

dA = lim
n!1

Z Z

Rn

e
�x2�y2

dA.

Moreover, by Fubini’s theorem, we have

Z Z

R2

e
�x2�y2

dA =

Z 1

�1

Z 1

�1
e
�x2�y2

dxdy.

Then verify the identity

Z 1

�1
e
�x2

dx =
p
⇡

4The Monotone Convergence Theorem and a version of Fubini’s Theorem used in Exercise 31
are proved in a course such as integration theory or real analysis. The proof is beyond the scope
of this text.
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32. A solid is bounded by the surfaces x2 + y
2 = 1, z = 0, and z = 2. Sketch the solid.

Then find the volume of the solid by evaluating a triple integral in cylindrical coordinates.

In Exercises 33-36, evaluate the integral by changing the variables to spherical coordinates.

Include a graph of solid R.

33.

Z Z Z

R

�
1� x

2 � y
2 � z

2
�
dV where R is the unit ball of radius 1 and centered at the origin.

34.

Z Z Z

R
z dV where R is a solid in the first octant that lies inside the sphere x

2 + y
2 + z

2 = 4.

35.

Z Z Z

R
dV which is the volume of the solid R inside the sphere ⇢ = 1 and above the cone � = ⇡

3 .

36.

Z Z Z

R
dV which is the volume of the solid R inside the sphere ⇢ = 2, above the plane z = 0, and

below the cone � = ⇡
4 .

In Exercises 37-38, evaluate the integral by changing the variables to cylindrical coordinates.

Also, sketch the solid R.

37.

Z Z Z

R
xy dV where R is the solid in the first octant bounded by x

2 + y
2 = 4, z = 0, and z = 1.

38.

Z Z Z

R

z

1 + x2 + y2
dV where R is the solid bounded by z =

p
x2 + y2 and z = 1.
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2.3 Line Integrals and a Fundamental Theorem

• The Arc Length Function • Line Integral • Re-parametrizing a Curve
• Fundamental Theorem for Line Integrals • Path Integrals

The Arc Length Function

x
y

z

r!t"
r'!t"

Figure 1
A position vector r(t) and
a tangent vector r0(t)

Geometrically, a curve is an arc of a graph such as a parabola, circle, line, and

others. In this section we study integrals of functions that are defined on curves.

We begin with a definition of the parametrization of a curve.

Definition 2 Parametrization of a Curve

Let r be a continuous function from a closed interval [a, b] to Rn where n = 2, 3.

Suppose r satisfies the two conditions below.

a) r is one-to-one on [a, b], or r is one-to-one on [a, b) and r(a) = r(b).

b) r
0(t) is continuous on (a, b) such that kr0(t)k and 1

kr0(t)k are bounded.

In such a case, r parametrizes the smooth curve C defined by

C = {r(t) | a  t  b}.

For simplicity, we may write that a smooth curve is a curve. If r is one-to-one

on [a, b], we say C is a non-intersecting curve. If r is one-to-one on [a, b) and

r(a) = r(b), we say C is a simple closed curve.

Suppose n = 3 and r(t) = (x(t), y(t), z(t)) is a vector in standard position, i.e.,

the initial point of r(t) is the origin, and the terminal point is (x(t), y(t), z(t)).

If a < t < b and �t > 0 is a small, the di↵erence quotient

r (t+�t)� r(t)

�t

is a vector whose initial point is the terminal point of r(t). As �t ! 0, the limit

r
0(t) is a vector that is tangent to the curve C at point r(t), see Figure 1.

To define the arc length of C, partition [a, b] into m subintervals. Let t0 = a,

�t = (b� a)/m, and tk = tk�1 +�t for k = 1, . . . ,m� 1. Using the partition,

subdivide C into m subarcs, and find the sum of the distances between the initial

and terminal points of each subarc.

The distance between the endpoints of r(tk) and r(tk�1) satisfies

kr (tk)� r(tk�1)k =
q
x0 (pk)

2 + y0 (qk)
2 + z0 (vk)

2 �t

because of the Mean Value Theorem, where tk�1 < pk, qk, vk < tk. We recall

kr0(t)k =
p
(x0(t))2 + (y0(t))2 + (z0(t))2.

Since x
0
, y

0
, z

0 are continuous, we estimate each of pk, qk, vk by a single value t
⇤
k

in (tk�1, tk). Consequently,

kr (tk)� r(tk�1)k ⇡ kr0(t⇤k)k �t.
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Then a reasonable approximation for the arc length of C is the Riemann sum

m�1X

k=0

kr (tk)� r(tk�1)k ⇡
m�1X

k=0

kr0(t⇤k)k �t.

By definition, kr0k is bounded and continuous, and consequently, integrable.

We let m ! 1, and define the limit of the Riemann sums as the arc length of C.

Length(C) =

Z b

a
kr0(t)k dt.

The arc length of C is independent of the parametrization; this follows from a

modification of Theorem 2.9 to be discussed later in the section. Moreover, the

arc length function is defined by

s(t) =

Z t

a
kr0(w)k dw. (2)

x

y

z

Figure 2
A curve emanating
from the origin.

Example 1 Arc Length Function

Find the arc length function for the curve parametrized by

r(t) =

✓
t
3/2

, 2t3/2,
3t

2

◆
, 0  t  3

5
.

Then find the arc length from r(0) to r(3/5), see Figure 2.

Solution The derivative is

r
0(t) =

✓
3

2

p
t, 3

p
t,

3

2

◆
.

Then the magnitude of derivative is

kr0(t)k =

r
9

4
t+ 9t+

9

4
=

r
45

4
t+

9

4

=
3

2

p
5t+ 1.

Thus, the arc length function satisfies

s(t) =

Z t

0
kr0(w)k dw =

Z t

0

3

2

p
5w + 1dw

=
3

10
(5w + 1)3/2

2

3

����
w=t

w=0

=
1

5

⇣
(5t+ 1)3/2 � 1

⌘

Hence, the arc length from r(0) to r(3/5) is given by

s

✓
3

5

◆
=

1

5

⇣
43/2 � 1

⌘
v =

7

5
.

2
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Figure 3
The helix r lies on a
circular cylinder of radius 1.

Try This 1

Find the arc length function for

r(✓) = (cos ✓, sin ✓, ✓), 0  ✓  2⇡.

The graph of r is a helix, see Figure 3.

The Line Integral

A line integral generalizes the concept of an integral
R b
a f(x)dx of a real-valued

function f defined on [a, b]. In a line integral, we integrate a vector field F that is

defined on a curve.

Definition 3 Line Integral

Let C ✓ Rn be a curve parametrized by a function r defined on I = [a, b] where

n = 2, 3. Let F be a vector field defined on C such that F � r is continuous from I

to Rn. The line integral of F along C is denoted by
R
C F · dr, and defined by

Z

C
F · dr =

Z b

a
F (r(t)) · r0(t)dt

Later in the section, we show the line integral of a vector field along a curve is

independent of the parametrization provided the parameterization is orientation

preserving, see Theorem 2.10.

We discuss an application of line integrals. Suppose a vector field F represents

a force that causes a particle to move along a curve C parametrized by r. That is,

the particle is at position r(t) at time t. We show the line integral
R
C F · dr

represents the work done by the force on the particle.

The unit tangent vector to r(t) is defined by

T (t) =
1

kr0(t)kr
0(t). (3)

Since the di↵erential of the arc length function is ds = kr0(t)k dt, we write

Z

C
F · dr =

Z b

a
F (r(t)) · r

0(t)

kr0(t)kkr
0(t)kdt

=

Z b

a
F (r(t)) · T (t) ds. (4)
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Recall, the projection of vector v = F (r(t)) onto unit vector w = T (t) satisfies

Projw(v) = (F (r(t)) · T (t))T (t)

see identity (15) in page 15. The scalar F (r(t)) · T (t) ds in the integrand of (4)

represents the work done by the force F along the tangential component T (t),

as the particle moves through an arc length of ds. Then the line integral (4) is

the work done by a force F acting on a particle that is moving along curve C.

x

y

z

Figure 4
The curve r(t) =

�
t, t2, t3

�
,

0  t  1

x
y

z

Figure 5
For Try This 2

Example 2 Evaluating a Line Integral

Let F (x, y, z) = (yz, x, 2x) be a vector field. Let C be the curve parametrized by

r(t) =
�
t, t

2
, t

3
�
, 0  t  1, see Figure 4. Then evaluate

R
C F · dr.

Solution Let r(t) = (x(t), y(t), z(t)) where x(t) = t, y(t) = t
2, and z(t) = t

3.

Evaluating the vector field, we obtain

F (r(t)) = F (x(t), y(t), z(t))

= (y(t)z(t), x(t), 2x(t))

=
�
t
5
, t, 2t

�
.

Also, the derivative of the curve is

r
0(t) =

�
1, 2t, 3t2

�
.

Applying Definition 3, the line integral is given by

Z

C
F · dr =

Z 1

0
F (r(t)) · r0(t)dt

=

Z 1

0

�
t
5
, t, 2t

�
·
�
1, 2t, 3t2

�
dt

=

Z 1

0

�
t
5 + 2t2 + 6t3

�
dt

=

✓
t
6

6
+

2t3

3
+

3t4

2

����
t=1

t=0

Z

C
F · dr =

7

3
.

2

Try This 2

Let F (x, y, z) = (x, z, y) be a vector field. Let r(t) =
�
t, 2t, t2

�
, 0  t  2, be a

parametrization of curve C. Then evaluate the line integral
R
C F · dr.
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Re-parametrizing a Curve

We study the e↵ect of re-parametrizing a curve has on a line integral. Let C be a

curve that is parametrized by a function r defined on [a, b]. The orientation of C

with respect to r is the direction along C that the points r(t) trace as t increases.

For instance, the orientation may be counter clockwise on a simple closed curve.

Let ↵ be a one-to-one continuous function from [c, d] onto [a, b] such that the

derivative ↵0 and 1
↵0 are bounded and continuous on (c, d). We say the composite

function r � ↵ is a re-parametrization of r.

Notice, r � ↵ parametrizes C. We say r � ↵ is orientation preserving if the

orientations of C with respect to r and to r � ↵ are the same. Otherwise, we

say r � ↵ is orientation reversing.

The line integral of vector field F using the parametrization r1 = r � ↵ satisfies
Z d

c

F (r1(t)) · r1
0(t) dt =

Z d

c

F (r(↵(t)) · r0(↵(t)) ↵0(t) dt Chain Rule

=

Z ↵(d)

↵(c)

F (r(w)) · r0(w) dw where w = ↵(t), dw = ↵0(t)dt

= ±
Z b

a

F (r(w)) · r0(w) dw (5)

for
R b
a f(x)dx = �

R a
b f(x)dx. The sign in (5) depends on whether ↵(c) = a or

↵(c) = b. We choose the plus sign if ↵(c) = a, i.e., r1 is orientation preserving.

Otherwise, we choose the negative sign if r1 is orientation reversing.

Moreover, any two parametrizations of a curve C with the same initial points are

re-parametrizations of each other, see theorem below.

Theorem 2.9 Parametrization of Curves

Let r1 and r2 be functions defined on I1 = [a, b] and I2 = [c, d], respectively, that

parametrize a curve C. If r1(a) = r2(c), then r1 is a re-parametrization of r2.

Proof Let t 2 (a, b), and choose s 2 (c, d) such that r1(t) = r2(s). Then the

function given by s = f(t), f(a) = c, and f(b) = d is a bijection from I1 onto I2.

By definition, r1 = r2 � f . We show f is di↵erentiable. If �t 6= 0 is small enough,

choose �s 6= 0 such that r1(t+�t) = r2(s+�s). Then

r1(t+�t)� r1(t) = r2(s+�s)� r2(s).

By definition, we have f (t+�t) = s+�s.
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Then

f 0(t) = lim
�t!0

f (t+�t)� f (t)
�t

= lim
�t!0

�s
�t

= lim
�t!0

kr1(t+�t)� r1(t)k
�t

kr2(s+�s)� r2(s)k
�s

.

By the continuity of the curves, �t ! 0 if and only if �s ! 0. Consequently,

f 0(t) =
kr1

0(t)k
kr2

0(s)k . (6)

By definition, ri0 and
1
ri0

are bounded for i = 1, 2. Then f
0 and 1

f 0 are bounded

on (a, b). Hence, r1 = r2 � f , i.e., r1 is a re-parametrization of r2.
2

A curve C has exactly two orientations. If we fix an orientation for C, the other

orientation is called the opposite orientation and which we denote by �C.

Let C be a non-intersecting oriented curve, and let F be a continuous vector field

on C. Applying identity (5) and Theorem 2.9, the line integral of F along C is

independent of any orientation preserving parametrization r of C.

r1HwL
r2HvL
=r1HaL
=r1HbL

r2HdL=
r2HcL=

x

y

Figure 6
Parametrizations r1

and r2 with di↵erent
initial points.

Next, we analyze the line integral on a simple closed curve C. Note, the initial

points of two functions r1 and r2 that parametrize C may not be the same. We

assume the orientations of C with respect to r1 and r2 are the same.

Suppose r1 is defined on [a, b], and r2 is defined on [c, d]. Choose w, v such that

r1(w) = r2(c) = r2(d), and r2(v) = r1(a) = r1(b), as in Figure 6. Then
Z b

a

F (r1(t)) · r1
0(t)dt =

Z w

a

F (r1(t)) · r1
0(t)dt+

Z b

w

F (r1(t)) · r1
0(t)dt

=

Z d

v

F (r2(t)) · r2
0(t)dt+

Z v

c

F (r2(t)) · r2
0(t)dt

=

Z d

c

F (r2(t)) · r2
0(t)dt

where in the middle equation we applied identity (5) with the plus sign. Thus, the

line integral of a vector field along an oriented simple closed curve is independent

of the orientation preserving parametrization of the curve. We summarize below.

Theorem 2.10 Line Integrals and Re-parametrization of Curves

Let C be an oriented curve, and let F be a continuous vector field defined on C.

Then the line integral
R
C F · dr is independent of the orientation preserving

parametrization of C. Also,
Z

�C
F · dr = �

Z

C
F · dr.

Moreover, the lengths of curves C and �C are the same.
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Proof We only have to prove the last statement. Let r be a parametrization

of C, and let r1 = r � ↵ be a re-parametrization where ↵ is a one-to-one function

from [c, d] onto [a, b] such that ↵0 and 1/↵0 are continuous and bounded on (a, b).

Since ↵ is one-to-one, ↵0 is entirely nonpositive or entirely nonnegative. Then
Z d

c

kr1
0(t)k dt =

Z d

c

kr0(↵(t))k |↵0(t)| dt

=

8
>>><

>>>:

Z d

c

kr0(↵(t))k ↵0(t) dt if ↵ is increasing

�
Z d

c

kr0(↵(t))k ↵0(t) dt if ↵ is decreasing

=

8
>>><

>>>:

Z b

a

kr0(w)k dw if w = ↵(t), and ↵ is increasing

�
Z a

b

kr0(w)k dw if ↵ is decreasing

Z d

c

kr1
0(t)k dt =

Z b

a

kr0(t)k dt

Hence, the arc lengths of C and �C are equal.
2

Given a parametrization r of a curve C defined on [a, b], there is a natural orientation-
reversing parametrization r

⇤ of �C. Namely, r⇤ is defined on [a, b] and

r
⇤(t) = r (a+ b� t) . (7)

x
y

z

21

1

Figure 7
Line segment from
A(1, 0, 0) to B(0, 2, 1).

Example 3 Evaluating a Line Integral

Let F (x, y, z) = (sin⇡x, cos⇡z, y) be a vector field. Let C be the oriented line

segment from A(1, 0, 0) to B(0, 2, 1), see Figure 7. Then evaluate
R
C F · dr.

Solution The vector from A to B is (�1, 2, 1). Then a parametric equation of

the line segment from A to B is

r(t) = (�1, 2, 1)t+ (1, 0, 0) = (1� t, 2t, t) , 0  t  1.

Since r
0(t) = (�1, 2, 1), we obtain

Z

C
F · dr =

Z 1

0
(sin⇡(1� t), cos⇡t, 2t) · (�1, 2, 1)dt

=

Z 1

0
(� sin⇡(1� t) + 2 cos⇡t+ 2t) dt

= � 1

⇡
cos(⇡(1� t)) +

2

⇡
sin(⇡t) + t

2

����
1

0

Z

C
F · dr = 1� 2

⇡
.

2
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Try This 3

Evaluate the line integral in Example 3 where C is the oriented line segment

from A(2, 0, 0) to B(0, 4, 2).

2
x

y

Figure 8
A counter-clockwise path
around a circle of radius 2

Example 4 Evaluating a Line Integral

Let F (x, y) = (�y, x) be a vector field. Let C be a circle of radius 2, centered at

the origin, and oriented counter clockwise. Then evaluate the line integral
R
C F ·dr.

Solution The standard equation of circle C is x2 + y
2 = 4, see Figure 8. Using

the identity cos2 ✓ + sin2 ✓ = 1, the parametrization

r(✓) = (2 cos ✓, 2 sin ✓) , 0  ✓  2⇡

traces the circle in a counter clockwise motion. The derivative is

r
0(✓) = (�2 sin ✓, 2 cos ✓) .

According to Theorem 2.10, the line integral is independent of the orientation

preserving parametrization. Thus,
Z

C
F · dr =

Z 2⇡

0
F (2 cos ✓, 2 sin ✓) · (�2 sin ✓, 2 cos ✓) d✓

=

Z 2⇡

0
(�2 sin ✓, 2 cos ✓) · (�2 sin ✓, 2 cos ✓) d✓

=

Z 2⇡

0

�
4 sin2 ✓ + 4 cos2 ✓

�
d✓ =

Z 2⇡

0
4 d✓

Z

C
F · dr = 8⇡.

2

Try This 4

Let F (x, y) = (�y, 1) be a vector field. Let C be the unit circle oriented counter

clockwise. Then evaluate the line integral
R
C F · dr.

We extend the definition of a line integral of a vector field. Let C be a finite union
of smooth curves Ci , i = 1, . . . , n.

C = C1 [ · · · [ Cn

We denote the line integral of F along C by
R
C F · ds, and define it by

Z

C
F · dr =

Z

C1

F · dr + · · ·+
Z

Cn

F · dr. (8)
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Using Theorem 2.10, it can be shown that the left side is independent of the finite

union of smooth curves Ci. We say C is a piecewise-smooth curve.

Example 5 Line Integral Along a Triangular Image

Let F (x, y, z) = (xz, 2y, yz) be a vector field. Let C be a simple closed triangular

path that bounds the plane 2x+ 2y + z = 4, and the coordinate planes. The

orientation is counter clockwise as shown in Figure 9. Then evaluate
R
C F · dr.

x
y

z

4

2
2

r1

r2r3

Figure 9
A triangular path in the
plane 2x+ 2y + z = 4.

Solution We parametrize the segment C1 from (2, 0, 0) to (0, 2, 0). Since y is

increasing from y = 0 to y = 2, let y = t where 0  t  2. Notice, the plane

x+ y = 2 contains C1. Then x = 2� t, and we obtain a parametrization of C1:

r1(t) = (2� t, t, 0), 0  t  2.

Applying Definition 3 and F (x, y, z) = (xz, 2y, yz), we find
Z

C1

F · dr =

Z 2

0
(0, 2t, 0) · (�1, 1, 0) dt = 4.

Secondly, consider the segment C2 from (0, 2, 0) to (0, 0, 4). Then z is increasing

z = 0 to z = 4. Let z = t for 0  t  4. Note, the plane 2y + z = 4 contains C2.

Then y = (4� t)/2, and we have a parametrization for C2:

r2(t) =

✓
0,

4� t

2
, t

◆
, 0  t  4.

The line integral along C2 satisfies
Z

C2

F · dr =

Z 4

0

✓
0, 4� t,

4t� t
2

2

◆
·
✓
0,�1

2
, 1

◆
dt

=
1

2

Z 4

0

�
�t

2 + 5t� 4
�
dt =

4

3
.

Similarly, a parametrization of the segment C3 from (0, 0, 4) to (2, 0, 0) is given by

r3(t) = (t, 0, 4� 2t) , 0  t  2.

Then the line integral along C3 satisfies
Z

C3

F · dr =

Z 2

0
F (t, 0, 4� 2t) · (1, 0,�2) dt

=

Z 2

0

�
4t� 2t2, 0, 0

�
· (1, 0,�2) dt =

8

3
.

Finally, we obtain
Z

C
F · dr =

Z

C1

F · dr +

Z

C2

F · dr +

Z

C3

F · dr

= 4 +
4

3
+

8

3

= 8.

2
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1 x

1

y

Figure 10
An oriented closed path
along y = x2 and y = x.

Try This 5

Let F (x, y) = (2y, 1) be a vector field. Let C be a counter clockwise closed curve

bounded y = x
2 and y = x, see Figure 10. Then evaluate the line integral

R
C F ·dr.

Fundamental Theorem for Line Integrals

If a vector field F is conservative, the line integral
R
C F · dr depends only on F ,

and the initial and terminal points of C, as the next theorem shows.

Theorem 2.11 Fundamental Theorem for Line Integrals

Let F be a continuous vector field satisfying F = rf for some real-valued

function f . Let C be an oriented curve that is parametrized by a function r

with initial point r(a) and terminal point r(b). Then

Z

C
F · dr = f (r(b))� f (r(a)) .

Proof For simplicity, let F be a function of two variables. Let F =

✓
@f

@x
,
@f

@y

◆
.

By the chain rule and the Fundamental Theorem of Calculus, we find

Z

C
F · dr =

Z b

a

 
@f

@x

����
r(t)

,
@f

@y

����
r(t)

!
· r0(t)dt

=

Z b

a
(f � r)0 (t) dt

= f (r(b))� f (r(a)) .

2

We recall a characterization of conservative vector fields, see Theorem 1.10.

Let G be a vector field defined on R3 with continuous first partial derivatives

except for finitely many points. Then curl(G) = 0 if and only if G = rg for

some real-valued function g.

If G = (M,N,P ) where M,N,P are real-valued functions of x, y, z, then the

proof of Theorem 1.10 shows

curl G =

✓
@P

@y
� @N

@z

◆
i�

✓
@P

@x
� @M

@z

◆
j +

✓
@N

@x
� @M

@y

◆
k.
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Thus, curl(G) = 0 if and only if

@P

@y
=
@N

@z
,
@P

@x
=
@M

@z
,
@N

@x
=
@M

@y
(9)

Often, we may denote the line integral of G = (M,N,P ) along C by
Z

C
G · dr =

Z

C
(Mdx+Ndy + Pdz) .

For vector fields F = (M,N) of two variables x and y, we may denote the line

integral by Z

C
F · dr =

Z

C
(Mdx+Ndy) .

Example 6 Fundamental Theorem for Line Integrals

Let C be a curve that is parametrized by r(t) = (2 sin t, 2 cos t), 0  t  ⇡
2 . Then

evaluate
R
C (ydx+ (x� 1)dy) by the Fundamental Theorem for Line Integrals.

Solution We apply (9) to show that F is the gradient of a real-valued function.

We write F = (M,N,P ) where M = y, N = x� 1, and P = 0. Since M,N are

functions of x and y only, we find curl(F ) = 0 exactly when

@N

@x
=
@M

@y
.

Clearly, the above statement is true. Then curl(F ) = 0. Now, we may eyeball and

directly find a function f whose gradient is F . In fact,

r(xy � y) = (y, x� 1) = F

and we let f(x, y) = xy � y + C where C is a constant.

We present a di↵erent method for finding f . Notice, @f@x = y and @f
@y = x� 1.

Integrating with respect to x, we find

f(x, y) = xy + �(y)

where � is a function of y only. Since @f
@y = x+ �

0(y), we obtain

x+ �
0(y) = x� 1

�
0(y) = �1

�(y) = �y + C.

In any case, we have

f(x, y) = xy + �(y) = xy � y + C.

Hence, by the Fundamental Theorem for Line Integrals we find
Z

C
F · dr = f (r(⇡/2))� f (r(0)) = f (2, 0)� f (0, 2) = 2.

2
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Try This 6

Let C be an oriented curve with initial point (1, 0) and terminal point (2, 2).

Then evaluate
R
C

�
y
2
dx+ 2xydy

�
by the Fundamental Theorem for Line Integrals.

Example 7 Fundamental Theorem for Line Integrals

Let C be an oriented path from point A(3, 1, 1) to B(1, 1, 2) where y 6= 0. If

F (x, y, z) =

✓
z

y
, �xz

y2
,
x

y
� 1

◆

is a vector field, evaluate
R
C F ·dr by the Fundamental Theorem for Line Integrals.

Solution We find a function f satisfying rf = F , but we omit the details in

verifying (9). We may eyeball f and choose f(x, y, z) = xz/y � z.

Alternatively, since @f/@x = z/y, we integrate with respect to x. Then

f(x, y, z) =
xz

y
+ �(y, z)

where � is a function of y and z only. Note, @f@z = x
y + @�

@z . Also, @f@z = x
y � 1

for rf = F . Thus,

x

y
+
@�

@z
=

x

y
� 1

@�

@z
= �1.

Then �(y, z) = �z +  (y) where  is a function of y only. Thus,

f(x, y, z) =
xz

y
� z +  (y). (10)

Observe, @f@y = �xz
y2 +  

0(y) and @f
@y = �xz

y2 for rf = F . Combining, we obtain

�xz

y2
+  

0(y) = �xz

y2

 (y) = C

where C is a constant. Then we rewrite (10) as follows:

f(x, y, z) =
xz

y
� z + C.

Hence, by the Fundamental Theorem for Line Integrals we find
Z

C
F · dr = f (1, 1, 2)� f (3, 1, 1) = 2� 0

= 2.

2
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Try This 7

Apply the Fundamental Theorem for Line Integrals in evaluating

Z

C

✓
dx+

1

z
dy � y

z2
dz

◆

where C is an oriented smooth path from A(2, 2, 2) to B(4, 4, 2) where z 6= 0.

x y

z

Figure 11
If f(x) � 0, the path integralR
C
f(x)ds is the area of a

fence built on a curve.

Path Integrals

Let C be a curve parametrized by a function r. Recall, the di↵erential of the arc

length function in (2) satisfies

ds = kr0(t)k dt.

Next, we define the path integral of real-valued function f along C.

Definition 4 Path Integral

Let C be a smooth curve parametrized by a function r defined on [a, b]. Let f be

a real-valued function such that f � r is continuous on [a, b]. The path integral of

f along C is denoted by
R
C f(x)ds, and defined by

Z

C
f(x)ds =

Z b

a
f(r(t)) kr0(t)k dt.

The line integral of f along C is independent of the parametrization r of C.

The proof of which is similar to that of Theorem 2.10. That is, if r1 and r2 are

two functions that parametrize C, and defined on [a1, b1], [a2, b2], respectively, then

Z b1

a1

f(r1(t)) kr10(t)k dt =

Z b2

a2

f(r2(t)) kr20(t)k dt.

The above identity holds even if r1 is orientation reversing of r2.

Geometrically, if f(r(t)) � 0 represents the height of a fence at r(t), the path

integral
R
C f(x)ds is the area of the fence, see Figure 11. The product f(x)ds is

the area of a rectangle with base ds and height f(x).

A parameter s for a parametrizing function r is called arc length parameter

if kr0(s)k = 1 for all s except possibly at the endpoints. Consequently, the arc

length of r in subinterval [c, d] is d� c. To re-parametrize r(t) by using the arc

length parameter s, we suggest the following guidelines.
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Parametrizing by the Arc Length Parameter

Let r be a smooth curve on [a, b].

1. Evaluate the arc length function, s = �(t) =

Z t

a
kr0(t)k dt.

2. Since s = �(t) is an increasing function, solve for the inverse function t = �
�1(s).

3. The arc length parametrization is r1(s) = r
�
�
�1(s)

�
.

Let C be a curve parametrized by r(s) where s is the arc length parameter.

From definition (3), the unit tangent vector to the curve C at r(s) satisfies

T (s) =
r
0(s)

kr0(s)k = r
0(s)

see (3). The curvature  of C is a function that is defined on C where

(x) = kT 0(s)k (11)

and x = r(s). The curvature  is independent of the parametrization of C.

In particular, let r1(s1) and r2(s2) be two functions that parametrize C where s1

and s2 are the arc length parameters. If r1 and r2 have the same orientations,

then r1 = r2 � f where f
0(s1) = 1, see identity (6). By the chain rule, we find

dr1

ds1
=

dr2

ds2
f
0(s1) =

dr2

ds2
.

If r1 and r2 have opposite orientations, r1 and r2
⇤ have the same orientations

where r2
⇤(s2) = r2(a2 + b2 � s2), see (7). Similarly, r1 = r2

⇤ � f and

dr1

ds1
=

dr2
⇤

ds2

����
s2=f(s1)

f
0(s1) =

dr2
⇤

ds2

����
s2=f(s1)

= �dr2

ds2

����
a2+b2�s2

.

Thus, we find
dr1

ds1
= ±dr2

ds2
.

where the sign depends on whether r1 and r2 are orientation preserving or

reversing. In any case, the magnitudes of the second derivatives are equal, i.e.,

����
d
2
r1

ds
2
1

���� =

����
d
2
r2

ds
2
2

���� .

Thus, the curvature  is independent of the parametrization.
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Example 8 Evaluating a Path Integral

Find the curvature function  of the curve C parametrized by

r(s) =
1p
2
(cos s, sin s, s)

where 0  s  2⇡. Then evaluate the path integral
R
C ds.

Solution Indeed, s is the arc length parameter for

r
0(s) =

1p
2
(� sin s, cos s, 1)

and

kr0(s)k =
1p
2
k (� sin s, cos s, 1) k =

1p
2

⇣p
2
⌘
= 1.

Since T (s) = r
0(s), the curvature  at x = r(s) satisfies

(x) = kT 0(s)k = kr00(s)k =

����
1p
2
(� cos s,� sin s, 0)

����

=
1p
2
.

Applying Definition 4 and since kr0(s)k = 1, the path integral of  along C

is given by

Z

C
(x)ds =

Z 2⇡

0
(r(t)) kr0(t)k dt =

Z 2⇡

0

1p
2
dt

=
p
2⇡.

2

Try This 8

Find the curvature function  for the circle C defined by

r(s) = R

⇣
cos

⇣
s

R

⌘
, sin

⇣
s

R

⌘⌘

where 0  s  2⇡R, and R > 0. Then evaluate the path integral
R
C ds.

2.3 Check-It Out

1. Find the arc length function for the curve r(t) = (t,mt+ b).

2. Let F (x, y) = (�y, 3x) be a vector field. Let C be the curve parametrized

by r(t) = (cos t, sin t), 0  t  ⇡
2 . Then evaluate

R
C F · dr.
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3. Let F (x, y) = (y, x+ 1) be a vector field. Let C be the curve parametrized by r(t) = (3 cos t, 3 sin t),

0  t  ⇡
3 . Then evaluate

R
C F · dr by the Fundamental Theorem for Line Integrals.

4. Let G(x, y, z) = (x+ y, y, z) be a vector field, and let C be the line segment that joins point

A(2, 1, 0) to B(1, 2, 2). Then evaluate
R
C F · dr.

True or False. If false, revise the statement to make it true or explain.

1. A parametrization of the unit circle that is oriented in the counter clockwise direction is given by

r(✓) = (sin ✓, cos ✓), 0  ✓  2⇡.

2. The line segment from (1, 0, 0) to (0, 1, 1) is parametrized by r(t) = (1� t, t, t) where 0  t  1.

3. The unit tangent vector to a curve parametrized by r(t), a  t  b, is given by r
0(t).

4. If C is a curve parametrized by r(t) = (t, 0, 1) where 0  t  1, then the line integral of a vector

field F on C satisfies

Z

C
F · dr =

Z 1

0
F (t, 0, 1) · i dt

5. A definite integral

Z b

a
f(x)dx is a line integral.

6. If C is a curve parametrized by r(t) = (t, 0, 1) where 0  t  1, then the line integral of a vector field

F on C satisfies

Z

C
F · dr =

Z 1

0
F (t, 0, 1) · i dt

7. If F (x, y) = (y, 2x), the Fundamental Theorem for Line Integrals applies to

Z

C
F · dr.

8. Let r(t) be a parametrization of a curve where a  t  b . Then t is the arc length parameter if there

is a constant c > 0 satisfying kr0(t)k = c for all a < t < b.

9. Let r(t) be a parametrization of a curve where t is the arc length parameter. Then the curvature of

the curve is kr00(t)k.

10. Let C be an oriented curve with initial point (a, b) and terminal point (c, d). If F (x, y) = (y, x),

then

Z

C
F · dr = cd� ab.

Exercises for Section 2.3

In Exercises 1-4, evaluate the line integral of the vector field along the curve C parametrized by r.

1.

Z

C
F · dr where F (x, y) = (2x, y), and r(t) = (sin t, cos t), 0  t  ⇡

6
.

2.

Z

C
(xdx+ xydy) where r(t) = (2 sin t, cos t), 0  t  ⇡

6
.
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3.

Z

C
G · dr where G(x, y, z) = (y, y + z, x), and r(t) = (2� t, t+ 1, t), 0  t  2.

4.

Z

C
(sin y dx+ cos z dy � sinx dz) where r(t) = (t, 2t, t), 0  t  ⇡

3
.

In Exercises 5-12, parametrize the path C by a curve r that is one-to-one except possibly at the endpoints.

Then evaluate the line integral of the indicated vector field F or G along the path C.

5.

Z

C
F · dr where F (x, y) = (�y, x), and C is the directed line segment from (1, 0) to (3, 4).

6.

Z

C
F · dr where F (x, y) = (y, x), and C is the directed line segment from (1, 1) to (2, 3).

7.

Z

C
(dx+ xdy) where C is the oriented line segment from the origin to (2, 4).

8.

Z

C
(3xdx+ (x+ y)dy) where C is the line segment from the point (2, 2) to (0, 4).

9.

Z

C
F · dr where F (x, y) = (�4y, 4x), C is a path along the unit circle that joins (1, 0) to

⇣
1p
2
,

1p
2

⌘

in the counter clockwise direction.

10.

Z

C
F · dr where F (x, y) = (x+ y, x� y), and C is a path along a circle of radius 2, centered

at the origin, and joining (2, 0) to (1,
p
3) in the counter clockwise direction.

11.

Z

C
G · dr where G(x, y, z) = (x+2y, y� 2z, x+ z), and C is the line segment from (1, 2, 3) to (3, 6, 5).

12.

Z

C
(ydx+ z

2
dy + xdz) where C is the line segment from (0, 1, 1) to ( 12 , 2, 0).

In Exercises 13-26, evaluate the line integral by the Fundamental Theorem for Line Integrals. State the

function f such that the gradient rf is the conservative vector field in the integral.

13.

Z

C
(y2dx+ 2xydy) where C is a path from the origin to (�1, 3).

14.

Z

C
(x2

dx� y

2
dy) where C is an oriented path from the (1, 2) to (3, 6).

15.

Z

C
(cosx cos y dx� sinx sin y dy) where C is the path defined by r(t) =

✓
t,
t

2

◆
, 0  t  ⇡

3 .

16.

Z

C
F · dr where C is a path from point A(1, 0) to B(0, 1), and F (x, y) = (yexy + 1, xexy).

17.

Z

C
F ·dr where C is the image of the curve r(t) = (arccos t, arcsin t), 0  t  1, F (x, y) = (ey cosx, ey sinx).
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18.

Z

C
6ye2xdx+ 3e2xdy where C is the path defined by r(t) =

�
t, t

2 + 2
�
, 0  t  1.

19.

Z

C
3 cos(2y)dx� 6x sin(2y)dy where C is the path defined by r(t) = (t, (t� 1)⇡), 1  t  2.

20.

Z

C
F · dr where F (x, y) = (�2ey sin(x), 2ey cosx), and C is defined by r(t) = (t, 6t/⇡), 0  t  ⇡

3
.

21.

Z

C
F · dr where F (x, y) =

�
y cos(x)ey sin x

, sin(x)ey sin x
�
, and C is defined by r(t) = (t, 2t), 0  t  ⇡

3
.

22.

Z

C

 
arcsin

⇣
y

2

⌘
dx+

xp
4� y2

dy

!
where C is a path joining point (1, 0) to (

p
3, 1) with y 6= ±2.

23.

Z

C

�
yz

2
dx+ xz

2
dy + 2xyzdz

�
where C is a path from point P (2, 2, 1) to Q (3, 1, 2).

24.

Z

C
(ey cosx dx+ e

y sinx dy + dz) where C is a path from point A
�
⇡
2 , 0, 1

�
to B

�
⇡
3 , 1, 2

�
.

25.

Z

C
F ·dr where C is a path from point P (0, 2, 1) toQ(2, 1, 2), and F (x, y, z) = (yexy�z

, xe
xy�z

.� e
xy�z).

26.

Z

C
F ·dr where C is a path from point P (1, 0, 1) to Q(

p
3, 2, 1), and F (x, y, z) =

✓
z

1 + x2
, 1, arctanx

◆
.

In Exercises 27-34, evaluate the path integral of the given real-valued function along the smooth curve C

parametrized by r. See Definition 4.

27.

Z

C
f(x, y)ds where f(x, y) = xy � x

2, r(t) = (3t, 4t), 0  t  1

3
.

28.

Z

C
f(x, y)ds where f(x, y) =

4

13
(x� y), r(t) = (12t, 5t), 0  t  1

2
.

29.

Z

C
(x+ y)ds where r(t) = (4 sin 2t, 4 cos 2t), 0  t  ⇡

8
.

30.

Z

C
f(x, y, z)ds where f(x, y, z) = x� y + z, r(t) = (cos t, sin t,

p
3 t), 0  t  ⇡

2
.

31.

Z

C
f(x, y, z)ds where f(x, y, z) = xy, r(t) = (2 cos t, 2 sin t,

p
5 t), 0  t  ⇡

6
.

32.

Z

C
f(x, y, z)ds where f(x, y, z) =

2 cosx

16 + y
, r(t) =

�
8t, 2t2, t3/3

�
, 0  t  ⇡

16
.

33.

Z

C
g(x, y, z)ds where g(x, y, z) = yz � x

2, r(t) = (t, 2t, 2t), 0  t  2.

34.

Z

C
g(x, y, z)ds where g(x, y, z) = xyz, r(t) =

�p
t, 2

p
t, 2

p
t
�
, 0  t  3.
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In Exercises 35-40, find the unit tangent vector T (t) to the smooth curve

parametrized by r. See identity (3) in page 93.

35. r(t) =
�
t, t

2
�

36. r(t) = (8t, 4t, 8t)

37. r(t) = (a cos t, a sin t), a > 0 38. r(t) = (b cos t, b sin t, t), b > 0

39. r(t) =
⇣
t,

q
3
2 t

2
, t

3
⌘

40. r(t) =
�p

2 t, e
t
, e

�t
�

In Exercises 41-44, find the curvature of the curve parametrized by r at the

indicated point P . By the chain rule, the curvature  satisfies

 = kT 0(s)k =
kdT/dtk
ds/dt

=
kT 0(t)k
kr0(t)k .

41. r(t) =
�
t, t

2
�
, P (0, 0) 42. r(t) = (t,mt), P (t,mt)

43. r(t) = (3 cos t, 4 sin t), P (0, 4) 44. r(t) =
�
t, 2

p
t
�
, P (1, 2)

In Exercises 45-46, a fence is built on a curve C parametrized by r. The height of the fence at r(t) is given
by f(r(t)) where f is the indicated real-valued function. Find the area of the fence.

45. r(t) = (cos t, sin t), 0  t  2⇡, f(x, y) = 2 + xy 46. r(t) = (t, 3t), 0  t  1, f(x, y) = 1 + y � x

x y

z

Figure for 45 Figure for 46

In Exercises 47-48, a curve C is parametrized by a function r. Find the work

done by the given force F on a particle that is moving along C.

47. r(t) =
�
t
2
, t
�
, 0  t  1, F (x, y) = (y,�x) 48. r(t) = (et, t), 0  t  2, F (x, y) =

✓
lnx

y
, x+ y

2

◆

49. Let r be a smooth curve defined on [a, b], and let T (t) be the unit tangent vector at r(t),

see definition (3). Let s be the arc length parameter where ds/dt = kr0(t)k.

a) Verify the identities r0(t) =
ds

dt
T (t), and

r
00(t) =

d
2
s

dt2
T (t) +

ds

dt
T

0(t).
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b) Using the fact that T (t)⇥ T (t) = 0, prove

r
0(t)⇥ r

00(t) =

✓
ds

dt

◆2 �
T (t)⇥ T

0(t)
�
.

c) Using the fact that T (t) · T (t) = 1, prove T (t) is perpendicular to T
0(t).

d) Show

kr0(t)⇥ r
00(t)k =

✓
ds

dt

◆2 ��T 0(t)
�� .

e) Using the fact that curvature satisfies (t) =
kT 0(t)k
kr0(t)k , prove the identity

(t) =
kr0(t)⇥ r

00(t)k
kr0(t)k3

. (12)

50. Let C be a parabolic curve parametrized by r =
�
0, t, t2

�
.

a) Applying the curvature identity (12), verify (t) =
2

(1 + 4t2)3/2
.

b) Evaluate

Z 1

�1
(t)dt.

c) Evaluate the path integral

Z

C
ds.

51. Let C be a hyperboloid curve parametrized by r = (sinh t, cosh t, 0).

a) Applying the curvature identity (12), verify (t) = (sech 2t)3/2.

b) Evaluate the path integral

Z

C
ds.

52. Let r be a smooth curve defined on [a, b], and let T (t) be the unit tangent vector at r(t).

a) The normal vector to the curve at r(t) is defined by

N(t) =
T

0(t)��T 0(t)
�� . (13)

b) Using the fact that T (t) · T (t) = 1, prove N(t) is perpendicular to T (t).

c) The binormal vector to the curve at r(t) is defined by

B(t) = T (t)⇥N(t). (14)

Using the fact that B(t) ·B(t) = 1, show B
0(t) ·B(t) = 0.

d) Using the fact that B(t) · T (t) = 0 = B(t) · T 0(t), prove B
0(t) · T (t) = 0.

e) Applying c) and d), prove B
0(t) is multiple of N(t).

53. If r(t) = (t, t2, t2), find the unit tangent vector T (t), the normal vector N(t), and the binormal

vector B(t) at r(t).
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2.4 Surface Integrals

• Area of a Surface • Surface Integrals of Vector Fields • Surface Integrals
of Real-Valued Functions

Area of a Surface

Figure 1
Surface parametrized by two
independent variables.

In Section 2.3, we discussed line integrals along smooth curves. In this section, we

study surface integrals, or integrals of vector fields defined on surfaces. When the

surface is a subset of the xy-plane, the surface integral is a double integral as we

will see. We begin with the definition of a parametrized surface.

Definition 5 Parametrization of a Surface

Let R ✓ R2 be an elementary region5. Let r be a continuous function from R to

R3 that satisfies the two conditions below except possibly on the boundary of R.

a) r is one-to-one with continuous partial derivatives, and

b) the functions

�(u, v) =

����
@r

@u
⇥ @r

@v

���� (15)

and
1

�(u, v)
are nonzero and bounded.

In such a case, we say r parametrizes the surface defined by

M = {r(u, v) | (u, v) 2 R}.

The function � in (15) is integrable on R, and we omit its proof since it is

similar to the application of Theorem 2.1 to Theorem 2.3 in pages 60 and 62.

Next, we define the surface area of M . For the moment, let R be a rectangular

region. Partition R into sub-rectangles Rij with uniform width �u and uniform

height �v. Let (ui, vj) be the vertex of Rij nearest the origin, as in Figure 1.

We approximate the image r(Rij) by a rectangular region Aij whose sides are the

vectors �u
@r
@u

��
(ui,vj)

and �v
@r
@v

��
(ui,vj)

. The area of rectangle Aij is the magnitude

of the cross product of the vectors that define the rectangle. That is,

Area (Aij) =

�����

✓
�u

@r

@u

��
(ui,vj)

◆
⇥
 
�v

@r

@v

����
(ui,vj)

!�����

=

�����
@r

@u

����
(ui,vj)

⇥ @r

@v

����
(ui,vj)

������u�v

5Elementary regions are discussed in page 61



112 CHAPTER 2. ITERATED, LINE, AND SURFACE INTEGRALS

The Riemann sum of the areas of rectangles Aij approaches a limit as the norm of

the partition of R approaches zero, due to the boundedness and continuity in (15).

The limit which is an integral is a reasonable definition for the surface area of M .

Notice, the integral of
��@r
@u ⇥ @r

@v

�� over R exists even if R is an elementary region.

In general, let r be a function satisfying Definition 5. Let M be the corresponding

surface parametrized by r. We define the surface area of M as follows:

(Surface Area of M) =

Z Z

R

����
@r

@u
⇥ @r

@v

���� dA (16)

where dA = dudv or dA = dvdu. The surface area of M is independent of the

parametrization r in Definition 5; the proof is left as an exercise and depends

on the change of variables theorem.

We consider a special case where a surface M is the graph of a real-valued

function z = f(x, y) with continuous partial derivatives. We parametrize M by

the one-to-one function
r(x, y) = (x, y, f(x, y)).

The cross product of the partial derivatives of r is given by

@r

@x
⇥ @r

@y
=

�������

i j k

1 0 @f
@x

0 1 @f
@y

�������

=

✓
�@f
@x

, �@f
@y

, 1

◆
.

Applying (16), the area of the surface defined by z = f(x, y), (x, y) 2 R, satisfies

(Surface Area of M) =

Z Z

R

����
@r

@x
⇥ @r

@y

���� dA

=

Z Z

R

s

1 +

✓
@f

@x

◆2

+

✓
@f

@y

◆2

dA. (17)

x
y

z

2
1

Figure 2
The plane x+ 2y + z = 2
in the first octant.

Example 1 Evaluating a Surface Area

Find the surface area of the portion of the plane x+2y+ z = 2 in the first octant,

see Figure 2.

Solution Solving for z, we find and write

z = f(x, y) = 2� x� 2y.

Let M be the triangular region in the first octant defined by z = f(x, y). The

subset R of the xy-plane below the triangular region satisfies

R =

⇢
(x, y)

�� 0  x  2, 0  y  2� x

2

�
.
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We apply identity (17) to find the surface area of M . Notice,

s

1 +

✓
@f

@x

◆2

+

✓
@f

@y

◆2

=
p
1 + (�1)2 + (�2)2 =

p
6.

Then the surface area of M is given by

(Surface Area of M) =

Z Z

R

s

1 +

✓
@f

@x

◆2

+

✓
@f

@y

◆2

dA

=
p
6

Z 2

0

Z (2�x)/2

0
dydx

=
p
6 (Area of R)

=
p
6 sq. units

since the area of triangle R is 1 square unit. 2

Try This 1

Find the surface area of the portion of the plane 2x + 2y + z = 4 in the first
octant above the triangular region in the xy-plane with vertices (0, 0, 0), (1, 0, 0),
and (1, 1, 0).

Figure 3
A dome above a circle
of radius 4.

Example 2 Surface Area

Find the surface area of the part of the sphere

x
2 + y

2 + z
2 = 25

where x
2 + y

2  16 and z � 0, see Figure 3.

Solution We solve for z and write

z = f(x, y) =
p
25� x2 � y2.

Evaluating the partial derivatives, we find

a)
@f

@x
=

�xp
25� x2 � y2

b)
@f

@y
=

�yp
25� x2 � y2

Then we obtain
s

1 +

✓
@f

@x

◆2

+

✓
@f

@y

◆2

=
5p

25� x2 � y2
.
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Let M be the upper part of the sphere that lies above circular region

R =
�
(x, y)

�� x2 + y
2  16

 
.

We apply identity (17) to find the surface area of M .

(Surface Area of M) =

Z Z

R

s

1 +

✓
@f

@x

◆2

+

✓
@f

@y

◆2

dA

=

Z Z

R

5 dAp
25� x2 � y2

.

We apply a change of variables to polar coordinates. Let

a) x = r cos ✓ b) y = r sin ✓, c) dA = rdrd✓

where 0  r  4 and 0  ✓  2⇡. Since x
2 + y

2 = r
2, we obtain

(Surface Area of M) =

Z 4

0

Z 2⇡

0

5r d✓drp
25� r2

= 10⇡

Z 4

0

rdrp
25� r2

= �10⇡
p
25� r2

����
r=4

r=0

(Surface Area of M) = 20⇡ sq. units

2

Figure 4
For Try This 2

Try This 2

Find the area of the surface z =
1

2

�
x
2 + y

2
�
that lies below the plane z = 2.

See Figure 4.

Figure 5
The curve z = f(y) is
revolved about the z-axis.

Next, we evaluate the area of a surface of revolution. Let C1 be a curve in the

yz-plane that is parametrized by

r1(t) = (0, y(t), z(t)), a  t  b (18)

where y(t) � 0, as in Figure 5. A surface of revolution M is generated when C1

is revolved about the z-axis. Then surface M is parametrized by

r(✓, t) = (y(t) cos ✓, y(t) sin ✓, z(t)) (19)

where 0  ✓ < 2⇡, t 2 [a, b]. We leave the verification of (19) as an exercise.
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Moreover, the cross product of the partial derivatives of r satisfies

@r

@✓
⇥ @r

@t
=

��������

i j k

�y(t) sin ✓ y(t) cos ✓ 0

y
0(t) cos ✓ y

0(t) sin ✓ z
0(t)

��������

= (y(t)z0(t) cos ✓, y(t)z0(t) sin ✓, �y(t)y0(t)) .

Since y(t) � 0, we find
����
@r

@✓
⇥ @r

@t

���� = y(t)
p
[y0(t)]2 + [z0(t)]2

= y(t) kr10(t)k (20)

Applying (16), the area of the surface of revolution M defined by (18) and (19) is

(Area of Surface of Revolution) =

Z b

a

Z 2⇡

0

����
@r

@✓
⇥ @r

@t

���� d✓dt

= 2⇡

Z b

a
y(t) kr10(t)k dt. (21)

Figure 6
Semicircle generates
a sphere by a rotation.

Example 3 Surface Area of a Sphere

Parametrize the sphere S of radius 2 that is centered at the origin.

Then find the surface area of S.

Solution Let C1 be the semicircle of radius 2 in the yz-plane given by

r1( ) = (0, 2 cos , 2 sin ), �⇡
2
   ⇡

2
.

The sphere S is generated when C1 is revolved about the z-axis, see Figure 6.

Applying (19) we parametrize S as follows

r(✓, ) = (2 cos cos ✓, 2 cos sin ✓, 2 sin )

where 0  ✓ < 2⇡. From the definition of r1( ), we find kr10( )k = 2 and let

y( ) = 2 cos be the y-component of r1( ). Using (21), we obtain

(Surface Area of S) = 2⇡

Z b

a
y( ) kr10( )k d 

= 2⇡

Z ⇡/2

�⇡/2
(2 cos )(2) d 

= 8⇡ sin 

����
⇡/2

�⇡/2

= 16⇡ sq. units

2
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Figure 7
Right circular cone with
radius 2 and height 2 units.

Try This 3

Parametrize a right circular cone S whose base is a circle of radius 2 and the height
is 2 units. Assume the base lies on the xy-plane and is centered at the origin, see
Figure 7. Then find the surface area of the cone S.

Surface Integrals of Vector Fields

Let r be a function from an elementary region R ✓ R2 into R3 as in Definition 5.

Let M ✓ R3 be the surface that is parametrized by r. Let F be a vector-valued

function defined on M with values in R3 such that F � r is continuous. In such

a case, we say F is a continuous vector field defined on M .

Definition 6 Surface Integral of a Vector Field

Let M ✓ R3 be a surface parametrized by a function r satisfying Definition 5.

Let F be a continuous vector field defined on M , where the values of F lie in

R3. The surface integral of F on M denoted by
R R

M F · dS is defined by

Z Z

M
F · dS =

Z Z

R
F (r(u, v)) ·

✓
@r

@u
⇥ @r

@v

◆
dA

where dA = dudv or dA = dvdu, and R is the domain of definition of r.

An orientation on a surface M is a continuous function that assigns to each

interior point p of M a unit vector N(p) that is perpendicular to the tangent plane

at p. We claim the surface integral
R R

M F · dS is independent of the orientation

preserving parametrization r of M , as we briefly explain below.

By Definition 5, r is defined on an elementary region R. Given p = r(u, v) where

(u, v) lies in the interior of R, the unit vector below

Nr(p) =
1��@r

@u ⇥ @r
@v

��

✓
@r

@u
⇥ @r

@v

◆

is normal to the tangent plane at p, where the partial derivatives are evaluated at

(u, v). For the details, see Exercise 25. We say r is orientation preserving if

Nr(p) = N(p)

for all interior points p 2 M . While r is orientation reversing if

Nr(p) = �N(p)

for all interior points p 2 M .
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y=2x

1 x

2

y

Figure 8
Triangular region R

Figure 9
Surface M above
region R in Figure 8

Example 4 Evaluating a Surface Integral

Let F (x, y, z) = (0, 0, y) be a vector field. Let R be a triangular region in the

xy-plane with vertices at (1, 2), (0, 2), and the origin, see Figure 8. Let M be

the surface that is oriented, and parametrized by

r(x, y) =
⇣
x, y,

p
x2 + y2 + 1

⌘
, (x, y) 2 R.

Then evaluate the surface integral
R R

M F · dS.

Solution The surface M is a portion of the larger surface z =
p

x2 + y2 + 1 that

lies above the region R in the xy-plane, see Figure 9. The cross product of the

partial derivatives of r satisfies

@r

@x
⇥ @r

@y
=

����������

i j k

1 0
xp

x2 + y2 + 1

0 1
yp

x2 + y2 + 1

����������

=

 
�xp

x2 + y2 + 1
,

�yp
x2 + y2 + 1

, 1

!
.

We apply Definition 6 to evaluate the surface integral. Notice, F (r(x, y)) = (0, 0, y).
Z Z

M
F · dS =

Z Z

R
F (r(x, y)) ·

✓
@r

@x
⇥ @r

@y

◆
dA

=

Z 1

0

Z 2

2x
(0, 0, y) ·

 
�xp

x2 + y2 + 1
,

�yp
x2 + y2 + 1

, 1

!
dydx

=

Z 1

0

Z 2

2x
ydydx =

Z 1

0

y
2

2

����
y=2

y=2x

dx =

Z 1

0

�
2� 2x2

�
dx

Z Z

M
F · dS =

4

3
.

2

Try This 4

Let F (x, y, z) = (0, 0, 1) be a vector field. Let R be a triangular region in the

xy-plane with vertices at (0, 1
2 ), (

1
2 , 0), and the origin. Let M be the surface

parametrized by

r(x, y) =
⇣
x, y,

p
1� x2 � y2

⌘
, (x, y) 2 R.

Then evaluate the surface integral
R R

M F · dS.
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Example 5 Evaluating a Surface Integral

Let F (x, y, z) = (x, y, z) be a vector field on the unit sphere centered at (0, 0, 0).

Assume the sphere is oriented by unit vectors that point away from the origin.

Then evaluate the surface integral
R R

M F · dS.

Solution In Example 3, we parametrized a sphere of radius 2 centered at the
origin. Likewise, we obtain a parametrization r of the unit sphere, namely,

r(✓, ) = (cos cos ✓, cos sin ✓, sin )

where 0  ✓ < 2⇡ and �⇡
2    ⇡

2 . For the cross product, we simplify and find

@r

@✓
⇥ @r

@ 
=

��������

i j k

� cos sin ✓ cos cos ✓ 0

� sin cos ✓ � sin sin ✓ cos 

��������

=
�
cos2  cos ✓, cos2  sin ✓, cos sin 

�
.

Analyzing the third component of @r@✓ ⇥ @r
@ , we observe the cross product vector

points away from the origin. In particular, r is orientation preserving.

Moreover, we find

F (r(✓, )) ·
✓
@r

@✓
⇥ @r

@ 

◆
=

(cos cos ✓, cos sin ✓, sin ) ·
�
cos2  cos ✓, cos2  sin ✓, cos sin 

�
=

cos3  (cos2 ✓ + sin2 ✓) + cos sin2  =

cos3  + cos sin2  =

cos (cos2 ✓ + sin2 ✓) = cos .

Applying Definition 6, we evaluate the surface integral as follows:

Z Z

M
F · dS =

Z Z

R
F (r(✓, )) ·

✓
@r

@✓
⇥ @r

@ 

◆
dA

=

Z ⇡/2

�⇡/2

Z 2⇡

0
cos d✓d 

= 2⇡

Z ⇡/2

�⇡/2
cos d 

Z Z

M
F · dS = 4⇡.

2
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Try This 5

The orientation on the unit sphere M are unit vectors that point away from the

origin. If F (x, y, z) = (0, 0, z), evaluate the surface integral
R R

M F · dS.

In the short sequel, we give a geometric interpretation of a surface integralR R
M F · dS. Suppose a fluid is flowing through a surface M such that the fluid’s

direction and velocity at point p in S is given by vector F (p) ft/sec. The component
of F (p) in the vector @r

@x ⇥ @r
@y normal to S at p is given by the dot product

F (p) · 1

k@r@x ⇥ @r
@y k

✓
@r

@x
⇥ @r

@y

◆
ft/sec

We partition M into rectangular-like subregions where k@r@x ⇥ @r
@y kdxdy ft2 is the

area of a subregion. When we multiply the above dot product to the area of a
subregion, we obtain

F (p) ·
✓
@r

@x
⇥ @r

@y

◆
dxdy ft3/sec

that describes the volume of fluid flowing through the subregion per second. Sum-
ming up and taking the limit as the norm of the partition approaches zero, we
obtain the surface integral

R R
M F · dS that is the volume of fluid flowing through

surface M per second.

Surface Integrals of Real-Valued Functions

Definition 7 The Integral of a Real-Valued Function Defined on a Surface

Let f be a real-valued function on a surface M . Suppose M is parametrized by a

function r, as in Definition 5, such that f � r is continuous. We denote the integral

of f on M by
R R

M fdS, and define it by

Z Z

M
fdS =

Z Z

R
f(r(x, y))

����
@r

@x
⇥ @r

@y

���� dA (22)

where R is an elementary region in the xy-plane on which r is defined.

The surface integral of a real-valued function f on M is independent of the

parametrization r of M . That is, whether r is orientation preserving or reversing,

the integral (22) is invariant. See Exercise 25 for a proof.

In particular, if f is a nonnegative function, the surface integral of f describes

the volume of a solid. Moreover, the base of the solid is the surface M and the

height of the solid at point r(x, y) is f(r(x, y)). The integrand in (22) represents

the volume of a rectangular box whose base has area
���@r@x ⇥ @r

@y

��� dA and the height

of the box is f(r(x, y)).
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Figure 10
The base of a solid is
the surface M in the
plane z = 1� y.

Example 6 Evaluating a Surface Integral

Let M be the rectangular region in the plane z = 1� y where 0  x, y  1.

Let f(x, y, z) = x be a real-valued function that is defined on M .

Then evaluate the surface integral
R R

M fdS.

Solution To parametrize M where z = 1� y, we let

r(x, y) = (x, y, 1� y)

where (x, y) lies in a rectangular region R in the xy-plane defined by 0  x, y  1.
For the cross product of the partial derivatives of r, we find

@r

@x
⇥ @r

@y
=

��������

i j k

1 0 0

0 1 �1

��������

= (0, 1, 1) .

Using the given function f , we obtain

f(r(x, y)) = f (x, y, 1� y) = x.

Applying Definition 7, the surface integral satisfies

Z Z

M
fdS =

Z Z

R
f(r(x, y))

����
@r

@x
⇥ @r

@y

���� dA

=

Z 1

0

Z 1

0
x

p
2 dxdy

=

p
2

2
.

The surface integral
R R

M fdS represents the volume of a solid in Figure 10. The

base of the solid is the surface M , and the height at (x, y, z) 2 M of the solid is

f(x, y, z).
2

Try This 6

Let M be the rectangular region in the plane z = 1� y where 0  x, y  1, i.e., M

is the base of the solid in Figure 10. If f(x, y, z) = y+ z is defined on M , evaluate

the surface integral
R R

M fdS.
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2.4 Check-It Out

In Exercises 1-3, let M be the triangular part of the plane x+ y + z = 1 in the first octant.

Suppose M is oriented by unit vectors normal to M that point away from the origin.

1. Find the surface area of M .

2. If F (x, y, z) = (0, 0, y + z), evaluate the surface integral
R R

M F · dS

3. If f(x, y, z) = y + z, then evaluate the surface integral
R R

M fdS

True or False. If false, revise the statement to make it true or explain.

1. The plane x+ y + z = 4 in the first octant is parametrized by r(x, y) = (x, y, 4� x� y)

where 0  x, y  4.

2. Let M be a surface parametrized by r(s, t) = (s, t, 1) where 0  s, t  1.

If F is vector field on M , then

Z Z

M
F · dS =

Z 1

0

Z 1

0
F (s, t, 1) · k dsdt

3. The surface area of z = f(x, y) is given by

Z Z

R

s

1 +

✓
@f

@x

◆2

+

✓
@f

@y

◆2

dA

for some region R in the xy-plane.

4. The surface area of M is given by

Z Z

R
kr(s, t)k dA where r is a function that

parametrizes M , and r is defined on some region R in the st-plane.

5. If F (x, y, z) = (x, y, z), and M is parametrized by r(x, y) = (x, y, 1� x� y),

then

Z Z

M
F · dS =

Z Z

R
(1 + x+ y)dA for some region R in the xy-plane.

6. If f(x, y, z) = x
2 + y

2 + z, and M is parametrized by r(s, t) = (s, t, s2 + t
2),

then

Z Z

M
fdS =

Z Z

R
(s2 + t

2)
p
1 + 4s2 + 4t2 dA for some region R in the st-plane.

7. If F is a vector field on a surface M defined by z = f(x, y), then
Z Z

M
F · dS =

Z Z

R
F (x, y, f(x, y)) ·

✓
�@f
@x

,�@f
@y

, 1

◆
dA for some region R in the xy-plane.
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Exercises for Section 2.4

In Exercises 1-6, find a parametrization of the indicated surface. Then find the area of the surface.

1. The quadrilateral region defined by 2x+ y + z = 4 where 0  x  1 and 0  y  2.

Figure for 1 Figure for 2

2. The surface in the parabolic cylinder z =
p
3
2 x

2 where 0  x  1 and 0  y  x.

3. The elliptical-shaped surface x+ y + z = 3 such that x2 + y
2  1.

Figure for 3 Figure for 4

4. The dome-shaped surface x
2 + y

2 + z
2 = 4 such that x2 + y

2  1 and z > 0.

5. The surface consisting of points (x, y, z) satisfying x
2 + y

2 = 1 and 0  z  1� y.

Figure for 5 Figure for 6

6. The cone defined by z =
p
x2 + y2 where x

2 + y
2  16. The top is not included.
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In Exercises 7-16, evaluate the surface integral
R R

M F · dS for the indicated vector field F defined on

the oriented surface M . Assume M is oriented by unit vectors pointing upward.

7. Let F (x, y, z) = (y, 0, z), and let M be parametrized by r(t, ✓) = (2t cos ✓, 2t sin ✓, 1) where

0  ✓  2⇡ and 0  t  1.

8. Let F (x, y, z) = (0, y + z, x), and let M be parametrized by r(t, ✓) = (t cos ✓, t sin ✓, 1� t sin ✓)

where 0  ✓  2⇡ and 0  t  1.

9. Let F (x, y, z) = (y,�x, z), and let M be parametrized by r( , ✓) = (sin cos ✓, sin sin ✓, cos )

where 0    ⇡ and 0  ✓  2⇡. Note, M is the unit sphere.

10. Let F (x, y, z) =
�
�x/z,�y/z, 1/z2

�
, and let M be parametrized by r(x, y) =

⇣
x, y,

p
1 + x2 + y2

⌘

where 0  x  a, 0  y  b.

11. Let F (x, y, z) = (0,�x, 2y), and let M be the triangular planar region defined by x+ y+2z = 2 in the

first octant.

12. Let F (x, y, z) = (0, 0, 2), and let M be upper unit hemisphere z =
p
1� x2 � y2.

13. Let F (x, y, z) = (2y � 2z,�1, 2x), and let M be the triangular planar region defined by x� y + z = 1

in the octant where x, z > 0 and y < 0.

14. Let F = (0, z, 0), and let M be the portion of the plane 2x+ 2y + z = 4 in the first octant.

15. Let F = curl(0, 0, y), and let M be the portion of the sphere x
2 + y

2 + z
2 = 25 in the first octant.

16. Let F = curl(0, x2
, 0), and let M be the hemisphere z =

p
4� x2 � y2.

In Exercises 17-24, evaluate the surface integral
R R

M fdS for the indicated real-valued function f

defined on the given surface M .

17. Let f(x, y, z) = 3z, and let M be the surface parametrized by r(✓, t) = (t cos ✓, t sin ✓, t)

where 0  t 
p
2 and 0  ✓  2⇡.

18. Let f(x, y, z) = x
2, and let M be the surface parametrized by r(✓, t) = (t cos ✓, t sin ✓, t+ 1)

where 0  t  2 and 0  ✓  2⇡.

19. Let f(x, y, z) = x
2 + y

2, and let M be the surface parametrized by r(x, y) = (x, y,
p
x2 + y2)

such that x2 + y
2  1.

20. Let f(x, y, z) = z

p
x2 + y2, and let M be the disk of radius 2 defined by x

2 + y
2  4 and z = 3.
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21. Let f(x, y, z) = 2x+ y + z, and let M be the plane 2x+ y + z = 4 in the first octant.

22. Let f(x, y, z) = 2y, and let M be the plane x+ y + z = 3 in the first octant.

23. Let f(x, y, z) = 6xy, and let M be the triangular region with vertices (1, 0, 0), (0, 2, 0), and (0, 0, 2).

24. Let f(x, y, z) = 6z, and let M be the triangular region with vertices (2, 0, 0), (0, 0, 4), and (1, 1, 1).

The E↵ects of Re-parametrizations on Surface Integrals

25. Let r1, r2 be two functions that parametrize a surface M ✓ R3, as in Definition 5. Suppose r1, r2 are

defined on elementary regions R1, R2 ✓ R2, respectively. To each interior point (s, t) in R2, choose an

interior point (u, v) in R1 such that
r1 (u, v) = r2(s, t).

a) Prove there exists a function h that is one-to-one and di↵erentiable in the interior of R2 such that

(u, v) = h(s, t). We sketch a proof below.

Let r2(s0, t0) = r1(u0, v0) = (x0, y0, z0) 2 M . Since the cross product @r2
@s

��
(s0,t0)

⇥ @r2
@t

��
(s0,t0)

is

nonzero, without loss of generality we assume the third component of the cross product is nonzero,

Det

2

4
@x2
@s

@x2
@t

@y2

@s
@y2

@t

3

5 =
@x2

@s

@y2

@t
� @x2

@t

@y2

@s
6= 0

where r2(s, t) = (x2, y2, z2). We apply the Inverse Function Theorem to the system of equations:
⇢

x2(s, t) = x

y2(s, t) = y

Since the above determinant is nonzero, it is possible to express (s, t) as a di↵erentiable function

of (x, y) near (x0, y0). That is, (s, t) = f(x, y) for some invertible function f defined on an open

disk containing (x0, y0) with continuous partial derivatives.

Similarly, since @r1
@u

��
(u0,v0)

⇥ @r1
@v

��
(u0,v0)

is nonzero, we write (u, v) = g(x, y), (u, v) = g(x, z), or

(u, v) = g(y, z) for some function g with continuous partial derivatives in an open disk containing

(x0, y0), (x0, z0), or (y0, z0), respectively. In any case, we obtain (s, t) = f � g�1(u, v).

b) Apply the Chain Rule to verify

@r2

@s
⇥ @r2

@t
=

✓
@x

@s

@y

@t
� @x

@t

@y

@s

◆✓
@r1

@x
⇥ @r1

@y

◆

=
@(x, y)

@(s, t)

✓
@r1

@x
⇥ @r1

@y

◆

where @(x,y)
@(s,t) is the Jacobian determinant of the transformation from (s, t) 2 R1 to (x, y) 2 R2.

Thus, the tangent plane to the surface M is well-defined since the cross-products @r2
@s ⇥ @r2

@t

and @r1
@x ⇥ @r1

@y are parallel.
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c) Let F be a continuous vector field defined on M and with values in R3.
Applying part a) and the change of variables theorem, we find
Z Z

R2

F (r2(s, t)) ·
✓
@r2

@s
⇥ @r2

@t

◆
dsdt =

Z Z

R1

F (r1(x, y)) ·
✓
@(x, y)
@(s, t)

✓
@r1

@x
⇥ @r1

@y

◆◆ ����
@(s, t)
@(x, y)

���� dxdy

=

Z Z

R1

F (r1(x, y)) ·
✓
@r1

@x
⇥ @r1

@y

◆
@(x, y)
@(s, t)

����
@(s, t)
@(x, y)

���� dxdy

= ±
Z Z

R1

F (r1(x, y)) ·
✓
@r1

@x
⇥ @r1

@y

◆
dxdy

where the sign is positive if the Jacobian determinant @(x,y)
@(s,t) is positive, and

the sign is negative if the Jacobian determinant is negative.

The Jacobian determinant is positive when r1 and r2 are orientation preserv-
ing. Then the integral of F on surface M is independent of the orientation-
preserving parametrization r of M .

d) Applying the change of variable theorem, we find
Z Z

R2

f (r2(s, t))

����
@r2

@s
⇥ @r2

@t

���� dsdt =

Z Z

R1

f (r1(x, y))

����
@(x, y)
@(s, t)

✓
@r1

@x
⇥ @r1

@y

◆����

����
@(s, t)
@(x, y)

���� dxdy

=

Z Z

R1

f (r1(x, y))

����

✓
@r1

@x
⇥ @r1

@y

◆���� dxdy.

In particular, the integral of the scalar-valued function f over M , namely,R R
M fdS, is independent of the parametrization r of M . Moreover, the path

integral is independent of the orientation of r, i.e., the orientation may be
preserving or reversing.
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2.5 Integral Theorems of Green, Stokes, and Gauss

• Stokes’ Theorem • Stokes’ Theorem Applied to Surfaces that are Graphs
of Functions • Green’s Theorem • Gauss’ Divergence Theorem • Proofs
of the Integral Theorems

Stokes’ Theorem

Figure 1
An oriented surface M , and
its boundary @M is oriented
positively.

Stokes’ Theorem relates a surface integral to a line integral along the boundary of

the surface. In the short sequel, we develop the relationship.

Let M be an oriented surface parametrized by a function r satisfying Definition 5

in page 111. Consequently, there are unit vectors N(p) that are normal to M at

p such that N(p) varies continuously as a function of p. Furthermore, suppose the

boundary @M of M is a simple closed curve. We define a positive orientation for

the curve @M using the orientation of M , see Figure 1. That is, using your right

hand, let your thumb point to the direction of the unit vectors N(p), and the

direction along the curve @M as you curl your fingers is the positive orientation

for @M .

In words, Stokes’ Theorem states that the line integral of a di↵erentiable vector

field F in 3-space along a positively oriented boundary @M is the equal to the

surface integral of the curlF on the surface M .

Theorem 2.12 Stokes’ Theorem

Let M be an oriented surface such that its boundary @M is a simple closed curve.

Suppose @M has the positive orientation. Let F be a vector field defined on M

with values in R3. If F has continuous partial derivatives, then
Z

@M
F · dr =

Z Z

M
curlF · dS.

y

x

z

2

2

2

N

Figure 2
The boundary is oriented
positively.

Example 1 Illustrating Stokes’ Theorem

Verify Stokes’ Theorem if F (x, y, z) = (y,�z,�x), M is the plane x+ y + z = 2

in the first octant, and M is oriented by unit vectors that point away from the

origin. Notice, the boundary of M is oriented counter-clockwise, see Figure 2.

Solution Let r1 parametrize the straight path C1 from (2, 0, 0) to (0, 2, 0).

r1(t) = (2� t, t, 0), 0  t  2.

Likewise, let r2 parametrize the straight path C2 from (0, 2, 0) to (0, 0, 2).

r2(t) = (0, 2� t, t), 0  t  2.

Similarly, let r3 parametrize the straight path from (0, 0, 2) to (2, 0, 0).

r3(t) = (t, 0, 2� t), 0  t  2.
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x=2-y

R

2 x

2

y

Figure 2a
The region R in the
xy-plane below M .

The boundary of M is the union of the oriented lines, i.e., @M = C1 [ C2 [ C3.
Then the line integral of F along @M satisfies

Z

@M
F · dr =

Z

C1

F · dr +

Z

C2

F · dr +

Z

C3

F · dr (23)

Since F (x, y, z) = (y,�z,�x), the line integral along r1 is given by
Z

C1

F · dr =

Z 2

0
F (r1(t)) · r01(t)dt

=

Z 2

0
(t, 0, t� 2) · (�1, 1, 0)dt

= �
Z 2

0
tdt = �2.

Similarly, the line integral along r2 satisfies
Z

C2

F · dr =

Z 2

0
F (r2(t)) · r02(t)dt

=

Z 2

0
(2� t,�t, 0) · (0,�1, 1)dt =

Z 2

0
tdt = 2.

Likewise, we find
R
C3

F ·dr = 2. Applying (24), the sum of the line integrals equals
Z

@M
F · dr = 2. (24)

Since the plane is z = 2� x� y, we parametrize M by

r(x, y) = (x, y, 2� x� y)

where (x, y) lies in the xy-plane directly below M , see Figure 2a. Then

@r

@x
⇥ @r

@y
=

��������

i j k

1 0 �1

0 1 �1

��������
= (1, 1, 1).

The curl of F satisfies

curlF = r⇥ F =

��������

i j k

@
@x

@
@y

@
@z

y �z �x

��������
= (1, 1,�1).

Using the region of integration R in Figure 2a, the surface integral is given by
Z Z

M
curlF · dS =

Z 2

0

Z 2�y

0
(1,�1,�1) · (1, 1, 1)dxdy

=

Z 2

0

Z 2�y

0
dxdy = (Area of R) = 2.

Hence, the surface integral agrees with the line integral (24), thereby, verifying

Stokes’ Theorem.
2
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y

x

z
Nz�2

1

Figure 2b
A unit disk centered at
(0, 0, 2), and oriented by
vector N = k.

Try This 1

Let M be a circular region of radius 1 in the plane z = 2, and centered at (0, 0, 2).

Assume M is oriented by unit vectors N that point upward, as seen in

Figure 2b. Verify Stokes’ Theorem for the vector field F (x, y, z) = (�y/2, x/2, 0).

Stokes’ Theorem Applied to Surfaces that are Graphs of Functions

Let M be a surface that is the graph of a function, i.e., M is parametrized by

r(x, y) = (x, y, f(x, y)) (25)

where f is a function on an elementary region R in the xy-plane with continuous

partial derivatives. Suppose the boundary @M of M is a simple closed curve.

Notice, M is oriented by unit vectors pointing away from the origin. Then the

positive orientation on @M is the counter clockwise direction in the xy-plane.

In Section 2.4, we have seen

@r

@x
⇥ @r

@y
= Det

2

6664

i j k

1 0 @f
@x

0 1 @f
@y

3

7775
=

✓
�@f
@x

,�@f
@y

, 1

◆

Let F (x, y, z) be a vector field defined on M and with values in R3. Suppose

curlF (r(x, y)) = (L,N, P ) where L,N, P are functions of (x, y).

Then the surface integral of curlF on M satisfies

Z Z

M
curlF · dS =

Z Z

R
curlF (r(x, y)) ·

✓
@r

@x
⇥ @r

@y

◆
dA

=

Z Z

R

✓
�L

@f

@x
�N

@f

@y
+ P

◆
dA (26)

where dA = dxdy or dA = dydx. Thus, if M is a surface parametrized by (25),

@M is a simple closed curve oriented in the counter clockwise motion, and

curlF = (L,N, P ), then we may rewrite Stokes’ Theorem as follows:

Z

@M
F · ds =

Z Z

M
curlF · dS

=

Z Z

R

✓
�L

@f

@x
�N

@f

@y
+ P

◆
dA (27)
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x
y

z

1

N

Figure 3
The region R in the
xy-plane below M .

Example 2 Surfaces Defined by Functions

Let C be the intersection of the surfaces x2 + y
2 = 1 and z = 3� x� y, as in

Figure 3. Assume curve C is oriented by the counterclockwise direction on the

xy-plane. Apply Stokes’ Theorem in evaluating the line integral
Z

C
y
3
dx+ x

3
dy + (y3 + z)dz.

Solution
The vector field in the line integral is

F (x, y, z) =
�
y
3
, x

3
, y

3 + z
�
.

We evaluate the curl of F :

curlF = r⇥ F =

��������

i j k

@
@x

@
@y

@
@z

y
3

x
3

y
3 + z

��������
=

�
3y2, 0, 3x2 � 3y2

�
.

Notice, the surface M that is enclosed by C is the graph of f(x, y) = 3� x� y

where x
2 + y

2  1. If (L,N, P ) = curlF , then
✓
�L

@f

@x
�N

@f

@y
+ P

◆
=
�
3y2 � 0 + (3x2 � 3y2)

�
= 3x2

.

In applying Stokes’ Theorem, we use the special case (27).
Z

C
y
3
dx+ x

3
dy + (y3 + z)dz =

Z Z

M
curlF · dS

=

Z Z

R

✓
�L

@f

@x
�N

@f

@y
+ P

◆
dA

=

Z Z

R
3x2

dA.

The region of integration R is the unit disk of radius 1 centered at the origin.

Using a change of variables to polar coordinates with x = r cos ✓ and dA = rdrd✓,

we obtain
Z Z

R
3x2

dA =

Z 2⇡

0

Z 1

0
3r3 cos2 ✓ drd✓

=
3

4

Z 2⇡

0
cos2 ✓ d✓

=
3⇡

4
.

Hence, by Stokes’ Theorem we obtain
Z

C
y
3
dx+ x

3
dy + (y3 + z)dz =

3⇡

4
.

2
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yx

z

N

21

Figure 4
A 2 by 1 rectangular region
and a normal vector N .

Try This 2

Let M be an oriented rectangular region with vertices (0, 0, 1), (1, 0, 1), (1, 2, 0),

and (0, 2, 0), see Figure 4. Let the boundary @M of M be oriented positively.

Then apply Stokes’ Theorem in evaluating the line integral
R
@M (xzdx+ ydz).

x

y

z

k

M

Figure 5
A surface M in the xy-plane
oriented by the unit vector k.

Green’s Theorem

We analyze a special case of Stokes’ Theorem. In the parametrization (25), let

f(x, y) = 0. In particular, each point in M has the form (x, y, 0) where the set of

of (x, y)’s lie in an elementary region R in the xy-plane, see Figure 5.

We assume M is oriented by the unit vector k, and the boundary @M is a simple

closed curve oriented with the counter clockwise direction.

Moreover, we consider vector fields of the form F (x, y, 0) = (f1(x, y), f2(x, y), 0)

where f1, f2 are real-valued functions defined on R. Then the curl is given by

curlF = r⇥ F =

��������

i j k

@
@x

@
@y

@
@z

f1(x, y) f2(x, y) 0

��������

=

✓
0, 0,

@f2

@x
� @f1

@y

◆
.

Applying a special case of Stokes’ Theorem, i.e., (27), we obtain

Z

@M
(f1(x, y), f2(x, y), 0) · ds =

Z Z

R

✓
@f2

@x
� @f1

@y

◆
dA.

Since z = 0, the vector field F may be realized as having values in R2.

Then Stokes’ Theorem reduces to the following:

Theorem 2.13 Green’s Theorem

Let M be an elementary region in the xy-plane whose boundary @M is a simple

closed curve, oriented by the counter clockwise motion. If f1, f2 are real-valued

functions defined on M with continuous partial derivatives, then
Z

@M
(f1(x, y)dx+ f2(x, y)dy) =

Z Z

M

✓
@f2

@x
� @f1

@y

◆
dA.

Notice, the line integral
R
@M (f1(x, y)dx+ f2(x, y)dy) reduces to the area of M

if @f2@x � @f1
@y = 1 for all (x, y) 2 M .
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y=2x

M

1 x

2

y

Figure 6
Triangular region with
hypotenuse y = 2x.

y=xê2M

2 x

1

y

Figure 7
Triangular path with
hypotenuse y = x/2.

Example 3 Applying Green’s Theorem

Apply Green’s Theorem in evaluating the line integral

Z

C
y
2
dx+3xydy where C is

a triangular path from the origin to point (1, 0) to point (1, 2) and to the origin.

Solution Let M be the triangular region enclosed by C, see Figure 6. Notice,

C = @M , i.e, the boundary of M , is oriented in the counter clockwise direction.

Applying Green’s Theorem, we obtain

Z

C
y
2
dx+ 3xydy =

Z Z

M

✓
@(3xy)

@x
� @(y2)

@y

◆
dA

=

Z Z

M
(3y � 2y) dA

=

Z 1

0

Z 2x

0
ydydx

=

Z 1

0

1

2
y
2

����
y=2x

y=0

dx

=

Z 1

0
2x2

dx

Z

C
y
2
dx+ 3xydy =

2

3
.

2

Try This 3

Apply Green’s Theorem in evaluating the line integral

Z

C
sinx dx+3xy2dy where

C is a triangular path from (0, 0) to (2, 1) to (0, 1) to (0, 0). See Figure 7.

M
1

x

y

Figure 8
Counter clockwise
circular path

Example 4 Illustrating Green’s Theorem

Verify Green’s Theorem if F (x, y) =
�
� 1

3y
3
,
1
3x

3
�
and M is a circular region of

radius 1 and centered at the origin. Suppose the unit circle @M , i.e., boundary

of M , is oriented in the counter clockwise direction. See Figure 8.

Solution The unit circle @M is parametrized in the counter clockwise motion by

r(t) = (cos t, sin t)

where 0  t  2⇡. We evaluate the line integral of F along @M as follows:
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Z

@M
F · dr =

Z 2⇡

0
F (r(t)) · r0(t) dt

=
1

3

Z 2⇡

0

�
� sin3 t, cos3 t

�
· (� sin t, cos t) dt

=
1

3

Z 2⇡

0

�
cos4 t+ sin4 t

�
dt

=
1

3

Z 2⇡

0

 ✓
1 + cos 2t

2

◆2

+

✓
1� cos 2t

2

◆2
!
dt

=
1

3

Z 2⇡

0

✓
2 + 2 cos2 2t

4

◆
dt

=
1

12

Z 2⇡

0
(3 + cos 4t) dt

=
1

12

✓
3t+

sin 4t

4

����
t=2⇡

t=0

Z

@M
F · dr =

⇡

2
.

To verify Green’s Theorem, we evaluate a double integral as in Theorem 2.13.

We apply a change of variables by changing from Cartesian to polar coordinates.

Notice, M is the circular region centered at the origin and radius 1.

Z Z

M

✓
@

@x


1

3
x
3

�
� @

@y


�1

3
y
3

�◆
dA =

Z Z

M

�
x
2 + y

2
�
dA

=

Z 2⇡

0

Z 1

0
r
3
drd✓

=

Z 2⇡

0

1

4
d✓ =

⇡

2
.

since x
2 + y

2 = r
2 and dA = rdrd✓. Then the double integral and line integral

have the same values. This completes the verification of Green’s Theorem.
2

Try This 4

Verify Green’s Theorem if F (x, y) =
�
�y

2 ,
x
2

�
and M is the circular region of

radius 1 and centered at (1, 1). Assume circle @M , i.e., the boundary of M

is oriented in the counter clockwise direction.
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Gauss’ Divergence Theorem

x
y

z
N

N

Figure 9
A cube oriented by unit
vectors pointing outward.

We consider a solid M in R3 whose boundary @M consists of finitely many surfaces
that are oriented by unit vectors pointing outward from the solid. An example
of such a solid is a cube, and its boundary consists of six planar faces. Another
example of a solid is the ball x2 + y

2 + z
2  r

2, and its boundary is the sphere
x
2 + y

2 + z
2 = r

2 where r > 0. See Figures 9 and 10.

Theorem 2.14 Gauss’ Divergence Theorem

Let M be a solid region in R3 such that its boundary @M consists of finitely many
surfaces oriented by unit vectors pointing outward from M . Let F be a vector field
defined on M and with values in R3. If F has continuous partial derivatives, then

Z Z

@M
F · dS =

Z Z Z

M
div(F ) dV.

Figure 10
Sphere of radius r and
outward pointing vectors.

� ⇤

⌅
r

⇥

2⇥
Figure 11
Rectangular solid T

Example 5 Illustrating Gauss’ Divergence Theorem

Let M be the ball x2+y
2+z

2  r
2 of radius r > 0. Verify the Divergence Theorem

for F (x, y, z) = (0, 0, z). Assume the boundary @M of M is oriented by unit vectors
pointing outward from the ball, see Figure 10.

Solution We parametrize @M using spherical coordinates, i.e.,

r(�, ✓) = (r sin� cos ✓, r sin� sin ✓, r cos�)

where 0  �  ⇡ and 0  ✓ < 2⇡, see Section 2.2. Furthermore, we find

@r

@�
⇥ @r

@✓
=

��������

i j k

r cos� cos ✓ r cos� sin ✓ �r sin�

�r sin� sin ✓ r sin� cos ✓ 0

��������

=
�
r
2 sin2 � cos ✓, r2 sin2 � sin ✓, r2 sin� cos�

�

Notice, the above cross product is a vector that points away from the ball.

Applying Definition 6 in Section 2.4, the surface integral of F on @M satisfies
Z Z

@M
F · dS =

Z ⇡

0

Z 2⇡

0
F (r(�, ✓)) ·

✓
@r

@�
⇥ @r

@✓

◆
d✓d�

=

Z ⇡

0

Z 2⇡

0
(0, 0, r cos�) ·

✓
@r

@�
⇥ @r

@✓

◆
d✓d�

=

Z ⇡

0

Z 2⇡

0
r
3 cos2 � sin� d✓d�

= 2⇡r3
Z ⇡

0
cos2 � sin� d�

Z Z

@M
F · dS =

4⇡r3

3
.
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Next, we evaluate the triple integral as in Theorem 2.14. Since div(F ) = 1, we find
Z Z Z

M
div(F ) dV =

Z Z Z

M
dV.

We apply a change of variables and use the spherical coordinates x = ⇢ sin� cos ✓,

y = ⇢ sin� sin ✓, and z = ⇢ cos� where 0  ⇢  r, 0  �  ⇡, and 0  ✓ < 2⇡.

The ball M is mapped into a rectangular solid T , see Figure 11, by the trans-
formation that sends (x, y, z) 2 M into (�, ✓, ⇢) 2 T . In page 83, the Jacobian
determinant of the transformation is given by

@(x, y, z)

@(⇢,�, ✓)
= Det

2

66664

@x
@⇢

@x
@�

@x
@✓

@y
@⇢

@y
@�

@y
@✓

@z
@⇢

@z
@�

@z
@✓

3

77775
= ⇢

2 sin�.

Applying the change of variables, we obtain

Z Z Z

M
dV =

Z Z Z

T

����
@(x, y, z)

@(⇢,�, ✓)

���� d⇢d�d✓

=

Z 2⇡

0

Z ⇡

0

Z r

0
⇢
2 sin� d⇢d�d✓

=
2⇡r3

3

Z ⇡

0
sin� d� =

4⇡r3

3

Hence, in the case of Example 5, we have verified
Z

@M
F · dS =

Z Z Z

M
div(F ) dV.

2

Try This 5

Let M be the cube in the first octant bounded by x = s, y = s, z = s where s > 0

as in Figure 9. Let @M be oriented by unit vectors that point away from M . If

F (x, y, z) = (2x, 0, 0), evaluate
R R

@M F · dS by Gauss’ Divergence Theorem.

Example 6 Applying Gauss’ Divergence Theorem

Let M be the solid circular cylinder bounded by x
2 + y

2 = 4, z = 0 and z = 1.
Let the boundary @M of M be oriented by unit vectors that point away from M ,
see Figure 12. If F (x, y, z) =

�
x
3
, 2x2

y, x
2
z
�
, apply Gauss’ Divergence Theorem in

evaluating the surface integral
Z Z

@M
F · dS.
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Figure 12
A disk oriented by unit
vectors pointing outward.

Solution The divergence of F is given by

div
�
x
3
, 2x2

y, x
2
z
�

=
@

@x
(x3) +

@

@y
(2x2

y) +
@

@z
(x2

z)

= 3x2 + 2x2 + x
2 = 6x2

.

Applying the Gauss’ Divergence Theorem, we rewrite the surface integral.
Z Z

@M
F · dS =

Z Z Z

M
div(F ) dV =

Z Z Z

M
6x2

dV.

To evaluate the above triple integral, we use cylindrical coordinates

x = r cos ✓, y = r sin ✓, z = z

as discussed in Section 2.2. Notice, 0  r  2, 0  ✓  2⇡, and 0  z  1.

The Jacobian determinant of the transformation from cartesian to cylindrical

coordinates is given by

@(x, y, z)

@(r, ✓, z)
= Det

2

66664

@x
@r

@x
@✓

@x
@z

@y
@r

@y
@✓

@y
@z

@z
@r

@z
@✓

@z
@z

3

77775
=

2

6664

cos ✓ �r sin ✓ 0

sin ✓ r cos ✓ 0

0 0 1

3

7775
= r

Consequently, we obtain

Z Z Z

M
6x2

dV =

Z 1

0

Z 2⇡

0

Z 2

0
6(r cos ✓)2

����
@(x, y, z)

@(r, ✓, z)

���� drd✓dz

=

Z 1

0

Z 2⇡

0

Z 2

0
6r3 cos2 ✓ drd✓dz

=

Z 1

0

Z 2⇡

0

3r4

2

����
r=2

r=0

cos2 ✓ d✓dz

= 24

Z 1

0

Z 2⇡

0
cos2 ✓ d✓dz

= 12

Z 1

0

Z 2⇡

0
(1 + cos 2✓) d✓dz

= 12

Z 1

0

✓
✓ +

1

2
sin 2✓

����
✓=2⇡

✓=0

dz

= 12

Z 1

0
2⇡ dz

Z Z

M
6x2

dV = 24⇡.

Hence, we have Z Z

@M
F · dS = 24⇡.

2
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Try This 6

Let M be the solid bounded by x
2 + y

2 = 1, z = �2 and z = 2. Suppose the
boundary @M is oriented by unit vectors pointing away from M . If F (x, y, z) =�
z, y

3
, x
�
, apply Gauss’ Divergence Theorem in evaluating the surface integral

Z Z

@M
F · dS.

Proof of Green’s Theorem

C1

C2

M

a b x

y

Figure 13a
g(x)  f(x) for a  x  b

C4

C3

M

x

d

c

y

Figure 13b
m(y)  n(y) for c  y  d

We prove Green’s Theorem for the case when M ⇢ R2 is an elementary region

that is both of type Rx and Ry, see page 61. That is, we may express M as

M = {(x, y) : a  x  b, g(x)  y  f(x)} Type Rx

= {(c, d) : c  y  d, m(y)  x  n(y)} Type Ry

where f, g and m,n are continuous real-valued functions on [a, b] and [c, d],

respectively. Assume the boundary @M is a simple closed curve oriented by

the counter clockwise motion. In Figure 13a, let @M = C1 [ C2 where C1 and

�C2 are parametrized by
r1(x, y) = (x, g(x))

r
⇤
2(x, y) = (x, f(x))

and a  x  b. If f1 is a real-valued function defined on M , the line integral of

the vector field (f1, 0) along @M satisfies
Z

@M
f1dx =

Z

C1

f1dx�
Z

�C2

f1dx

=

Z b

a
f1(x, g(x))dx�

Z b

a
f1(x, f(x))dx

=

Z b

a

Z f(x)

g(x)
�@f1
@y

dydx

Z

@M
f1dx =

Z Z

M
�@f1
@y

dA.

Similarly, if f2 is defined on M , the line integral of (0, f2) along @M satisfies
Z

@M
f2dy =

Z Z

M

@f2

@x
dA.

Adding the last two line integrals, we obtain
Z

@M
f1dx+ f2dy =

Z Z

M

✓
@f2

@x
� @f1

@y

◆
dA.

This proves Green’s Theorem when M is an elementary region that is of both

type Rx and Ry.
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Proof of Stokes’ Theorem

We prove Stokes’ Theorem for surfaces M that are graphs of functions. Following

(25), we parametrize M by

r(x, y) = (x, y, f(x, y))

where f is a function with continuous partial derivatives defined on an elementary

region R in the xy-plane . In Section 2.4, we proved

@r
@x

⇥ @r
@y

=

✓
�@f
@x

,�@f
@y

, 1

◆
. (28)

Notice, M is oriented by unit vectors pointing away from the origin. Assume the

boundary @M of M is a simple closed curve. Then the positive orientation on @M

is the counter clockwise direction in the xy-plane.

Let F be a vector field defined on M such that the values of F lie in R3. We write

F = (P,Q,R) where P,Q,R are real-valued functions with continuous partial

derivatives defined on R. Then the curl is given by

curlF =

✓
@R
@y

� @Q
@z

◆
i�

✓
@R
@x

� @P
@z

◆
j +

✓
@Q
@x

� @P
@y

◆
k (29)

see (30) in Section 1.3.

On the other hand, the boundary @M of M is parametrized by

c(t) = (x(t), y(t), f(x(t), y(t))

where x(t), y(t) are certain real-valued function defined on [a, b]. Then the line

integral of F along the boundary @M satisfies
Z

@M

F · dr =

Z b

a

(F � c)(t) · c0(t)dt

=

Z b

a

((P,Q,R) � c)(t) ·

0

@x0(t), y0(t),
@f
@x

�����
c(t)

x0(t) +
@f
@y

�����
c(t)

y0(t)

1

A dt

where the chain rule is used in the last line. Evaluating the dot product, we find

Z

@M

F · dr =

Z b

a

0

@P (c(t))x0(t) +R(c(t))
@f
@x

�����
c(t)

x0(t)

1

A dt +

Z b

a

0

@Q(c(t))y0(t) +R(c(t))
@f
@y

�����
c(t)

y0(t)

1

A dt

=

Z

@M

✓
P +R

@f
@x

◆
dx+

✓
Q+R

@f
@y

◆
dy

where we used the definition of the line integral in the previous line.
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By Green’s Theorem, chain rule, and the product rule, we obtain

Z

@M

F · dr =

Z Z

R

✓
@
@x


Q+R

@f
@y

�
� @

@y


P +R

@f
@x

�◆
dA

=

Z Z

R

✓
@Q
@x

+
@Q
@z

@f
@x

+
@R
@x

@f
@y

+
@R
@z

@f
@x

@f
@y

+R
@2f
@x@y

◆
dA

�
Z Z

R

✓
@P
@y

+
@P
@z

@f
@y

+
@R
@y

@f
@x

+
@R
@z

@f
@y

@f
@x

+R
@2f
@y@x

◆
dA

=

Z Z

R

✓
@Q
@x

+
@Q
@z

@f
@x

+
@R
@x

@f
@y

◆
dA

�
Z Z

R

✓
@P
@y

+
@P
@z

@f
@y

+
@R
@y

@f
@x

◆
dA.

Grouping and factoring @f
@x and @f

@y , we find

Z

@M

F · dr =

Z Z

R

✓
@R
@y

� @Q
@z

◆✓
�@f
@x

◆
+

✓
@P
@z

� @R
@x

◆✓
�@f
@y

◆
+

✓
@Q
@x

� @P
@y

◆�
dA

=

Z Z

R

✓
@R
@y

� @Q
@z

,
@P
@z

� @R
@x

,
@Q
@x

� @P
@y

◆
·
✓
�@f
@x

,�@f
@y

, 1

◆
dA

=

Z Z

R

(curlF ) ·
✓
@r
@x

⇥ @r
@y

◆
dA

where in the last line we used the curl of F in (29), and the cross product in (28).

Note, the right side of the last line is the definition of the surface integral of curlF

on surface M . Finally, we obtain
Z

@M

F · dr =

Z Z

M

curlF · dS.

This completes the proof of Stokes’ Theorem for the case when the surface M is

the graph of a function z = f(x, y).

Proof of Gauss’ Divergence Theorem

Let M be an elementary solid in 3-space, see page 66 in Section 2.1. Assume M

is oriented by unit vectors pointing away from M . Let F = (P,Q,R) be a vector

field where P,Q,R are real-valued functions on M . We express the surface

integral of F on the boundary @M of M as a sum:
Z Z

@M
F · dS =

Z Z

@M
(P i) · dS +

Z Z

@M
(Qj) · dS +

Z Z

@M
(Rk) · dS.
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Figure 14
Solid with three faces
F1, F2, F3, and outward
pointing vectors.

Using the definition of the divergence, we obtain
Z Z Z

M
divF dV =

Z Z Z

M

@P

@x
dV +

Z Z Z

M

@Q

@y
dV +

Z Z Z

M

@R

@z
dV.

The Gauss’ Divergence Theorem will follow if the three statements below are true.
Z Z

@M
(P i) · dS =

Z Z Z

M

@P

@x
dV (30)

Z Z

@M
(Qj) · dS =

Z Z Z

M

@Q

@y
dV (31)

Z Z

@M
(Rk) · dS =

Z Z Z

M

@R

@z
dV (32)

We only prove (32), and in a special case. Suppose @M consists of three faces

Fi for i = 1, 2, 3 such that F3 is a lateral surface, and k is perpendicular to the

normal vectors to F3, see Figure 14.

If r3 is an orientation preserving parametrization of F3 defined on D3 ✓ R2, then

k ·
✓
@r3

@x
⇥ @r3

@y

◆
= 0.

Consequently, by the definition of the surface integral we obtain

Z Z

F3

Rk · dS =

Z Z

D3

Rk ·
✓
@r3

@x
⇥ @r3

@y

◆
dA = 0. (33)

Also, we know the surface integral of Rk on @M is the sum of the surface integrals

on F1, F2, F3. Combined with (33), we obtain

Z Z

@M
Rk · dS =

Z Z

F1

Rk · dS +

Z Z

F2

Rk · dS. (34)

Let D be an elementary region in the xy-plane, and let �1,�2 be continuous real-
valued functions on D satisfying

M = {(x, y, z) : (x, y) 2 D, �1(x, y)  z  �2(x, y)}.

For i = 1, 2, we parametrize Fi as follows:

ri(x, y) = (x, y,�i(x, y)), (x, y) 2 D.

Since F1 is oriented by upward pointing unit vectors, we have

Z Z

F1

Rk · dS =

Z Z

D
Rk ·

✓
@r1

@x
⇥ @r1

@y

◆
dA

=

Z Z

D
Rk ·

✓
�@�1

@x
,�@�1

@y
, 1

◆
dA

=

Z Z

D
R(x, y,�1(x, y))dA.
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We have oriented F2 by downward pointing unit vectors. Notice, the cross product

�@r2
@x

⇥ @r2

@y
=

✓
@�2

@x
,
@�2

@y
,�1

◆

is downward pointing and normal to F2. Then we obtain

Z Z

F2

Rk · dS =

Z Z

D
Rk ·

✓
�@r2
@x

⇥ @r2

@y

◆
dA

= �
Z Z

D
R(x, y,�2(x, y))dA.

Then we rewrite (34) as follows:

Z Z

@M
Rk · dS =

Z Z

D

@R(x, y, z)

@z

����
z=�1(x,y))

z=�2(x,y))

dA

=

Z Z Z

M

@R

@z
dV.

Thus, we have proved (32). The proofs of (30)-(31) are similar when we assume M

has a symmetry in its parametrizations:

M = {(x, y, z) : (x, z) 2 R
0
, �0

1(x, z)  y  �0
2(x, z)}

= {(x, y, z) : (y, z) 2 R
00
, �00

1(y, z)  x  �00
2(y, z)}

where �0
1,�

0
2 and �00

1 ,�
00
2 are defined on subsets of the xz-plane and yz-plane,

respectively. This completes a sketch of the proof of Gauss’ Divergence Theorem.

Theorem 2.15 Path Independence and Conservative Vector Fields

Let F be a vector field from R3 into R3 with continuous partial derivatives

except at finitely many points. Then F is a conservative vector field if and

only if
R
C F · ds = 0 for all simple closed curves C in R3.

Proof Let M be an oriented surface in R3 such that C = @M has the positive

orientation. By definition, if F is a conservative vector field then curlF = 0, see

page 37. Applying Stokes’ Theorem, we obtain
Z

C
F · dr =

Z Z

M
curlF · dS

=

Z Z

M
0 · dS = 0.
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To prove the converse, suppose
R
C F · dr = 0 for any simple closed curve C. Let

C1 and C2 be two paths from points P to Q such that C = C1 [ (�C2) is a simple

closed path. Since
R
C F · dr =

R
C1

F · dr �
R
C2 F · dr, we find

Z

C1

F · dr =

Z

C2
F · dr.

That is, the line integral of F is independent of the path from P to Q. Let

f(x, y, z) denote the value of the line integral of F from (0, 0, 0) to point (x, y, z).

For simplicity, suppose x, y, z > 0. Let r1(t1) = (t1, 0, 0), r2(t2) = (x, t2, 0), and

r3(t2) = (x, y, t3).

Notice, the union or the sum r = r1 + r2 + r3 is a path from the origin to

(x, y, z). If F = (F1, F2, F3), then

f(x, y, z) =

Z

r

F · dr

=

Z

r1

F · dr +

Z

r2

F · dr +

Z

r3

F · dr

=

Z x

0
F1(t1, 0, 0)dt1 +

Z y

0
F2(x, t2, 0)dt2 +

Z z

0
F3(x, y, t3)dt3.

Applying the Fundamental Theorem of Calculus, we obtain

@f

@z
= F3.

Similarly, by choosing di↵erent paths, we find @f
@x = F1 and @f

@y = F2. Thus,

rf = F . From the identity curl(rf) = 0, we find F is a conservative vector field.

2

2.5 Check-It Out

1. Apply Stokes’ Theorem in evaluating the line integral

Z

@M
F ·dr where M is

the part of the plane 2x+y+z = 2 in the first octant, and F (x, y, z) = (z, y, 0).

2. Apply Green’s Theorem in evaluating the line integral

Z

C
F · dr. where C is

the boundary of the rectangular region 0  x  2, 0  y  1, and F = (ey, ex).

3. Apply Gauss’ Divergence Theorem in evaluating the surface integral
Z Z

@M
F · dS where F (x, y, z) = (x,�y, z), and M is the solid cube bounded

by the planes x = 1, y = 1, z = 1, and the coordinate planes.
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True or False. If false, revise the statement to make it true or explain.

1. The line integral of a vector field F along the boundary @M of surface M is equal

to the surface integral of the curlF on M .

2. The surface integral of a vector field F along the boundary @M of a solid M is equal

to the triple integral of divF on M .

3. Let R be a region that is enclosed by a simple closed curve C that is oriented in the counter

clockwise direction. If F (x, y) = (�x
2
, xy), then

Z

C
F · dr =

Z Z

R
(y � 2x)dA.

4. Let M be parametrized by r(x, y) = (x, y, x2 + y
2) where (x, y) lies in a region R. Assume

the boundary @M is oriented in the counter clockwise motion as seen from above the z-axis.

If curlF (x, y, z) = (x,�y,�1), then

Z

C
F · dr =

Z Z

R
(x,�y,�1) · (2x, 2y, 1)dA.

5. Let F (x, y, z) = (x, y, z), and let M be the ball defined x
2 + y

2 + z
2  r

2 and oriented by

unit vectors that point away from the origin. Applying Gauss’ Divergence Theorem, we find
Z Z

@M
F · dS is equal to the volume of M .

Exercises for Section 2.5

In Exercises 1-8, apply Stokes’ Theorem in evaluating a line integral of a vector field F along the

boundary @M of a surface M . Assume M is oriented by upward pointing unit normal vectors, and

@M is oriented positively by the counter clockwise direction.

1.

Z

@M
F · dr where F (x, y, z) = (0, z, x), M is the part of the surface z = y

2 in the first octant

above the rectangular region in the xy-plane with vertices at the origin, (2, 0, 0), (2, 1, 0) and (0, 1, 0).

2.

Z

@M
(ez � 2y)dx+ e

y
dy + e

x
dz where M is the part of the plane z = 2 that lies above the rectangular

region in the xy-plane satisfying 0  x  2, 0  y  3.

3.

Z

@M
F · dr where F (x, y, z) = (y, z,�4x), and M is the part of the plane 2x+ 3y + 3z = 6 in

the first octant.

4.

Z

@M
F · dr where M is the plane 2x+ 2y + z = 2 in the first octant, and F (x, y, z) = (�x,�z

2
,�y).
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5.

Z

@M
F ·dr where F (x, y, z) = (0, ex, ey), and M is the part of the plane x+y+z = 1 in the first octant.

6.

Z

@M
h�xy, z � y, z

2i · dr where M is the part of the plane z = 4 in the first octant that lies above

the interior of the quarter of the unit circle in the xy-plane centered at the origin.

7.

Z

@M
F · dr where M is the upper hemisphere z =

p
1� x2 � y2 and F (x, y, z) = (�x

2
y, 0, 0).

8.

Z

@M
F · dr where F (x, y, z) = (1, y + x

3
, z), and M is the part of the hemisphere z =

p
4� x2 � y2

that is bounded by the cylinder x2 + y
2 = 1.

In Exercises 9-16, apply Green’s Theorem in evaluating the line integral of F along the indicated curve C

oriented in the counter clockwise direction.

9.

Z

C
y
2
dx+ 4xydy where C is a triangular path from the origin to point (1, 0) to point (1, 4)

and to the origin.

10.

Z

C
F · dr where F (x, y) = (x� y

2
, 2x+ y), C is a triangular path from the origin to point (1, 1)

to point (0, 2) and to the origin.

11.

Z

C

�
�y

3
dx+ x

3
dy
�
where C is the circle of radius 2, and centered at the origin.

12.

Z

C

�
x
3 + y

�
dy where C is the unit circle centered at the origin.

13.

Z

C
F · dr where F (x, y) =

�
x
2
, 20xy

�
, and C is a closed curve formed by y =

p
x and y = x

2.

14.

Z

C
F · dr where F (x, y) = (x� y, x+ y), and C is a closed curve formed by y = 4 and y = x

2.

15.

Z

C
F · dr where F (x, y) =

1

2

�
y
2
, x

2
�
, C is the parallelogram with vertices

(0, 0), (2, 0), (3, 1), and (1, 1).

16.

Z

C
F · dr where F (x, y) =

�
x
2
, e

x�y
�
, and C is a parallelogram with vertices

(0, 0), (1, 0), (2, 1), and (1, 1).
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In Exercises 17-24, apply Gauss’ Divergence Theorem in evaluating the surface integral of F on the

boundary @M of a solid M that is oriented by unit vectors that point away from M .

17.

Z Z

@M
F · dS where F (x, y, z) = (x, y2, z3) and M is the solid bounded by the planes x = 3, y = 2,

z = 1, and the coordinate planes.

18.

Z Z

@M
F · dS where F (x, y, z) = (z, y, x) and M is the solid bounded by the cylinder x2 + y

2 = 9,

the planes z = 0, and z = 2.

19.

Z Z

@M
F · dS where F (x, y, z) = (x, x2

y, y
2
z) and M is the solid bounded by the cylinder x2+ y

2 = 1,

the planes z = 1, and z = 2.

20.

Z Z

@M
F · dS where F (x, y, z) = (xz2, x2

z, xy
2), and M is the sphere x

2 + y
2 + z

2 = 1.

21.

Z Z

@M
F · dS where F (x, y, z) = (x3

, y
3
, z

3), and M is the sphere x
2 + y

2 + z
2 = r

2 with r > 0.

22.

Z Z

@M
F · dS where F (x, y, z) = (y, x, z2), and M is the solid bounded by the cylinder x2 + y

2 = 4,

the hemisphere z =
p
16� x2 � y2, and the plane z = 0.

23.

Z Z

@M
F · dS where F (x, y, z) = (y, x2

, z
3), and M is the solid bounded

by the ellipsoid x
2 + y

2 + 4z2 = 4.

24.

Z Z

@M
F · dS where F (x, y, z) =

✓
z,

y
3

18
, x

◆
, and M is the solid bounded

by the ellipsoid x
2 + 9y2 + 4z2 = 36.

25. Let r(x, y, z) = (x, y, z) be the position vector field, and let

F (x, y, z) =
r(x, y, z)

kr(x, y, z)k3 .

If M is a solid that does not contain (0, 0, 0) and for which Gauss’ Divergence

Theorem applies, verify

Z Z

@M
F · dS = 0.
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26. One of Gauss’ Several Lemmas Let F be the vector field in Exercise 25.

Let M be a sphere centered at (0, 0, 0), and of any radius " > 0. Prove

Z Z

M
F · dS = 4⇡.

27. If F is the vector field in Exercise 25, show F 6= curlG for any vector field G.

28. Let F be a vector field from R3 to R3 with continuous first partial

derivatives. If divF = 0, prove F = curlG for some vector field G.

Notice, F should be defined on all of R3, see Exercise 27.
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Chapter 2 Multiple Choice Test

1. A unit tangent vector to the curve r(t) =
�
t, t

2
,�t

2
�
at the origin is given by

A. i� k B. i+ k C. j � k D. �i

2. The curvature to r(t) = (cos t, sin t, 2t) at point P (1, 0, 0) is equal to

A.
1

5
B.

p
5

5
C.

p
5 D. 5

3. Let C be a triangular path from the origin to point (1, 0) to point (1, 2) and

to the origin. Then the line integral

Z

C
ydx+ 3xdy equals

A. 1 B. 2 C. 4 D. 8

4. If u = x+ y and v = x� y, the absolute value of the Jacobian determinant

@(x,y)
@(u,v) is equal to

A. 4 B. 2 C.
1

4
D.

1

2

5. Let C be directed line segment from the origin to point (1, 3). Then the line

integral

Z

C
dx+ dy equals

A. 2 B. 3 C. 4 D. 5

6. The iterated integral

Z 2

0

Z 3

0
(2x+ y

2)dydx equals

A. 30 B. 21 C. 13 D. 7

7. The iterated integral

Z 4

0

Z p
x

x/2
f(x, y)dydx equals

A.

Z 4

0

Z 2y

p
y
f(x, y)dxdy B.

Z 2

0

Z p
y

2y
f(x, y)dxdy

C.

Z 2

0

Z 2y

y2

f(x, y)dxdy D.

Z 4

0

Z y2

p
y
f(x, y)dxdy
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8. Let C be a rectangular path that joins the points from (0, 0) to (2, 0) to

(2, 1) to (0, 1), and to (0, 0). Applying Green’s Theorem, the line integral
Z

C
(xy, x2) · dr is equal to

A.

Z 2

0

Z 1

0
(2x+ y)dydx B.

Z 2

0

Z 1

0
(2x� y)dydx

C.

Z 2

0

Z 1

0
(y + 2x)dydx D.

Z 2

0

Z 1

0
(y � 2x)dydx

9. Let C be a path from point (0, 1) to (⇡4 , 2). Applying the Fundamental

Theorem of Line Integrals,

Z

C
6y cos(2x)dx+ 3 sin(2x)dy is equal to

A. 12 B. 9 C. 6 D. 3

10. If R = {(x, y) : x2 + y
2  4}, the double integral

Z Z

R

p
x2 + y2 dA equals

A.

Z 2⇡

0

Z 4

0
r
3
drd✓ B.

Z 2⇡

0

Z 4

0
r
2
drd✓

C.

Z 2⇡

0

Z 2

0
rdrd✓ D.

Z 2⇡

0

Z 2

0
r
2
drd✓

11. Let M be the portion of the plane x+ y + z = 2 that lies in the fist octant.

If F (x, y, z) = (x, y, z), then the surface integral

Z Z

M
F (x, y, z) · dS equals

A. 2 B. 4 C. 8 D. None of the given

12. Let S be the solid in the first octant that is bounded by the surfaces

z = 1� y
2, y = 1, x = 0, z = 0, and y = x. The volume of S equals

A.
2

3
B.

1

3
C.

5

12
D. None of the given
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13. Let M be the planar surface x+ y + z = 1 in the first octant. Assume M is

oriented by unit vectors that point away from the origin, and the boundary

@M has the positive orientation. By Stokes’ Theorem,

Z

@M
F · dr is equal to

A.

Z 1

0

Z 1�x

0
curlF · (�1,�1, 1)dydx B.

Z 1

0

Z 1

0
curlF · (�1,�1, 1)dxdy

C.

Z 1

0

Z 1

0
curlF · (1, 1, 1)dxdy D.

Z 1

0

Z 1�x

0
curlF · (1, 1, 1)dydx

14. Let F (x, y, z) = (x, y, z), let M be the disk x
2 + y

2 + z
2  1, and let @M be

the sphere x
2 + y

2 + z
2 = 1. Assume @M is oriented by unit vectors that

point away from the origin. By Gauss’ Divergence Theorem, the surface

integral

Z Z

@M
F · dS is equal to

A.

Z 1

0

Z 2⇡

0

Z ⇡

0
3⇢2 sin� d�d✓d⇢ B.

Z 1

0

Z 2⇡

0

Z ⇡

0
3⇢ sin� d�d✓d⇢

C.

Z 1

0

Z 2⇡

0

Z ⇡

0
2⇢2 sin� d�d✓d⇢ D.

Z 1

0

Z 2⇡

0

Z ⇡

0
2⇢ sin� d�d✓d⇢

15. A point (x, y, z) = (
p
3,�1, 2) is given in Cartesian coordinates.

The cylindrical coordinates of the point are equal to

A. (2, 7⇡
6 , 2) B. (2,�⇡

6 , 2) C. (4, 11⇡
6 , 2) D. (4,�⇡

6 , 2)

16. A point (⇢, ✓,�) = (4, ⇡3 ,
⇡
6 ) is given in spherical coordinates.

The Cartesian coordinates (x, y, z) of the point are equal to

A. (1,
p
3, 2

p
3) B. (4, 4

p
3, 8

p
3) C. (12, 4

p
3, 8) D. (3,

p
3, 2)
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Investigation Projects

Maxwell’s Equations

Let E, H, and J be vector-valued functions of (x, y, z, t) such that the values of

E, H, and J lie in R3. Let ⇢ be a real-valued function of (x, y, z, t). In [1], a set of

Maxwell’s equations is given as follows:

divE = ⇢ (Gauss’ law) (35)

divH = 0 (36)

curlE +
@H

@t
= 0 (Faraday’s law) (37)

curlH � @E

@t
= J (Ampere’s law) (38)

The divergence and curl of a vector field is evaluated by fixing t. If in component

form, we write E(x, y, z, t) = (E1(x, y, z, t), E2(x, y, z, t), E3(x, y, z, t)), the

divergence is defined in the usual way:

divE(x, y, z, t) =
@E1

@x
+
@E2

@y
+
@E3

@z
.

For each t, the curl of E is

curlE(x, y, z, t) = Det

0

BB@

i j k

@
@x

@
@y

@
@z

E1 E2 E3

1

CCA .

If � is a real-valued function of (x, y, z, t), the Laplacian of � is denoted r2
�,

and defined by

r2
� = div(r�) = @

2
�

@x2
+
@
2
�

@y2
+
@
2
�

@z2
.

Likewise, if A = (A1, A2, A3) is a vector-valued function of (x, y, z, t) with values in
R3, the Laplacian of A is defined by

r2
A =

�
r2

A1,r2
A2,r2

A3

�
.

Let J and ⇢ be given, and suppose A and � satisfy

divA+
@�

@t
= 0 (39)

r2
� =

@
2
�

@t2
� ⇢ (40)

r2
A =

@
2
A

@t2
� J . (41)

We assume t lies in an open interval I, and A, H, J are defined for all (x, y, z) in

R3. Also, for each t 2 I, assume E, ⇢, � are everywhere in R3 except for finitely

many (x, y, z)’s. We assume A and � have continuous second partial derivatives.
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In Exercises 1-5, we outline a proof that the vector-valued functions defined by

E = �r�� @A

@t
and H = curlA (42)

satisfy Maxwell’s equations (35)-(38).

1. Verify divE = ⇢. Hint: Apply (39) and div
�
@
@tA

�
= @

@t (divA).

2. Prove divH = 0. Hint: div(curlA) = 0.

3. Show curlE + @H
@t = 0. Hint: curl(r�) = 0 and curl

�
@
@tA

�
= @

@t (curlA).

4. Prove curl(curlA) = r(divA)�r2
A.

5. Verify curlH � @
@tE = J . Hint: Apply Exercise 4.

In Exercises 6-7, let fi(x) and gj(x) be functions that are selected

from {sinx, cosx} for i, j = 1, 2, 3. We consider the following functions:

�(x, y, z, t) = f1(nx)g1(nt) (43)

A(x, y, z, t) =
�
f
0
1(nx)g

0
1(nt), f2(mz)g2(mt), f3(py)g3(pt)

�
(44)

where n,m, p 2 R are constants.

6. If J ⌘ 0 and ⇢ ⌘ 0 are the zero functions, prove � and A as defined

by (43)-(44) satisfy (39), (40), and (41).

7. Let J ⌘ 0 and ⇢ ⌘ 0. If � and A are defined by (43)-(44), evaluate

the functions E and H in (42). Notice, E and H satisfy Maxwell’s

equations because of Exercises 1-5.


