
4
Iterative Methods for Solving Linear
Systems

Iterative methods formally yield the solution x of a linear system after an
infinite number of steps. At each step they require the computation of the
residual of the system. In the case of a full matrix, their computational
cost is therefore of the order of n2 operations for each iteration, to be
compared with an overall cost of the order of 2

3n
3 operations needed by

direct methods. Iterative methods can therefore become competitive with
direct methods provided the number of iterations that are required to con-
verge (within a prescribed tolerance) is either independent of n or scales
sublinearly with respect to n.

In the case of large sparse matrices, as discussed in Section 3.9, direct
methods may be unconvenient due to the dramatic fill-in, although ex-
tremely efficient direct solvers can be devised on sparse matrices featuring
special structures like, for example, those encountered in the approximation
of partial differential equations (see Chapters 12 and 13).

Finally, we notice that, when A is ill-conditioned, a combined use of direct
and iterative methods is made possible by preconditioning techniques that
will be addressed in Section 4.3.2.

4.1 On the Convergence of Iterative Methods

The basic idea of iterative methods is to construct a sequence of vectors
x(k) that enjoy the property of convergence

x = lim
k→∞

x(k), (4.1)
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where x is the solution to (3.2). In practice, the iterative process is stopped
at the minimum value of n such that ∥x(n) − x∥ < ε, where ε is a fixed
tolerance and ∥ · ∥ is any convenient vector norm. However, since the exact
solution is obviously not available, it is necessary to introduce suitable
stopping criteria to monitor the convergence of the iteration (see Section
4.6).

To start with, we consider iterative methods of the form

x(0) given, x(k+1) = Bx(k) + f , k ≥ 0, (4.2)

having denoted by B an n × n square matrix called the iteration matrix
and by f a vector that is obtained from the right hand side b.

Definition 4.1 An iterative method of the form (4.2) is said to be consis-
tent with (3.2) if f and B are such that x = Bx + f . Equivalently,

f = (I − B)A−1b.

!

Having denoted by

e(k) = x(k) − x (4.3)

the error at the k-th step of the iteration, the condition for convergence
(4.1) amounts to requiring that lim

k→∞
e(k) = 0 for any choice of the initial

datum x(0) (often called the initial guess).
Consistency alone does not suffice to ensure the convergence of the iter-

ative method (4.2), as shown in the following example.

Example 4.1 To solve the linear system 2Ix = b, consider the iterative method

x(k+1) = −x(k) + b,

which is obviously consistent. This scheme is not convergent for any choice of
the initial guess. If, for instance, x(0) = 0, the method generates the sequence
x(2k) = 0, x(2k+1) = b, k = 0, 1, . . . .

On the other hand, if x(0) = 1
2b the method is convergent. •

Theorem 4.1 Let (4.2) be a consistent method. Then, the sequence of vec-
tors

{
x(k)} converges to the solution of (3.2) for any choice of x(0) iff

ρ(B) < 1.

Proof. From (4.3) and the consistency assumption, the recursive relation e(k+1) =
Be(k) is obtained. Therefore,

e(k) = Bke(0), ∀k = 0, 1, . . . (4.4)
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Thus, thanks to Theorem 1.5, it follows that lim
k→∞

Bke(0) = 0 for any e(0) iff

ρ(B) < 1.
Conversely, suppose that ρ(B) > 1, then there exists at least one eigenvalue

λ(B) with module greater than 1. Let e(0) be an eigenvector associated with λ;
then Be(0) = λe(0) and, therefore, e(k) = λke(0). As a consequence, e(k) cannot
tend to 0 as k → ∞, since |λ| > 1. ✸

From (1.23) and Theorem 1.5 it follows that a sufficient condition for con-
vergence to hold is that ∥B∥ < 1, for any matrix norm. It is reasonable
to expect that the convergence is faster when ρ(B) is smaller so that an
estimate of ρ(B) might provide a sound indication of the convergence of
the algorithm. Other remarkable quantities in convergence analysis are con-
tained in the following definition.

Definition 4.2 Let B be the iteration matrix. We call:

1. ∥Bm∥ the convergence factor after m steps of the iteration;

2. ∥Bm∥1/m the average convergence factor after m steps;

3. Rm(B) = − 1
m log ∥Bm∥ the average convergence rate after m steps.

!

These quantities are too expensive to compute since they require evaluating
Bm. Therefore, it is usually preferred to estimate the asymptotic conver-
gence rate, which is defined as

R(B) = lim
k→∞

Rk(B) = − log ρ(B) (4.5)

where Property 1.13 has been accounted for. In particular, if B were sym-
metric, we would have

Rm(B) = − 1
m

log ∥Bm∥2 = − log ρ(B).

In the case of nonsymmetric matrices, ρ(B) sometimes provides an overop-
timistic estimate of ∥Bm∥1/m (see [Axe94], Section 5.1). Indeed, although
ρ(B) < 1, the convergence to zero of the sequence ∥Bm∥ might be non-
monotone (see Exercise 1). We finally notice that, due to (4.5), ρ(B) is
the asymptotic convergence factor. Criteria for estimating the quantities
defined so far will be addressed in Section 4.6.

Remark 4.1 The iterations introduced in (4.2) are a special instance of
iterative methods of the form

x(0) = f0(A,b),

x(n+1) = fn+1(x(n),x(n−1), . . . ,x(n−m),A,b), for n ≥ m,
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where fi and x(m), . . . ,x(1) are given functions and vectors, respectively.
The number of steps which the current iteration depends on is called the
order of the method. If the functions fi are independent of the step index i,
the method is called stationary, otherwise it is nonstationary. Finally, if fi
depends linearly on x(0), . . . ,x(m), the method is called linear, otherwise
it is nonlinear.

In the light of these definitions, the methods considered so far are there-
fore stationary linear iterative methods of first order. In Section 4.3, exam-
ples of nonstationary linear methods will be provided. !

4.2 Linear Iterative Methods

A general technique to devise consistent linear iterative methods is based
on an additive splitting of the matrix A of the form A=P−N, where P
and N are two suitable matrices and P is nonsingular. For reasons that
will be clear in the later sections, P is called preconditioning matrix or
preconditioner.

Precisely, given x(0), one can compute x(k) for k ≥ 1, solving the systems

Px(k+1) = Nx(k) + b, k ≥ 0. (4.6)

The iteration matrix of method (4.6) is B = P−1N, while f = P−1b. Alter-
natively, (4.6) can be written in the form

x(k+1) = x(k) + P−1r(k), (4.7)

where

r(k) = b − Ax(k) (4.8)

denotes the residual vector at step k. Relation (4.7) outlines the fact that
a linear system, with coefficient matrix P, must be solved to update the
solution at step k+1. Thus P, besides being nonsingular, ought to be easily
invertible, in order to keep the overall computational cost low. (Notice that,
if P were equal to A and N=0, method (4.7) would converge in one iteration,
but at the same cost of a direct method).

Let us mention two results that ensure convergence of the iteration (4.7),
provided suitable conditions on the splitting of A are fulfilled (for their
proof, we refer to [Hac94]).

Property 4.1 Let A = P − N, with A and P symmetric and positive def-
inite. If the matrix 2P − A is positive definite, then the iterative method
defined in (4.7) is convergent for any choice of the initial datum x(0) and

ρ(B) = ∥B∥A = ∥B∥P < 1.
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Moreover, the convergence of the iteration is monotone with respect to the
norms ∥ · ∥P and ∥ · ∥A (i.e., ∥e(k+1)∥P < ∥e(k)∥P and ∥e(k+1)∥A < ∥e(k)∥A
k = 0, 1, . . . ).

Property 4.2 Let A = P − N with A symmetric and positive definite. If
the matrix P+PT −A is positive definite, then P is invertible, the iterative
method defined in (4.7) is monotonically convergent with respect to norm
∥ · ∥A and ρ(B) ≤ ∥B∥A < 1.

4.2.1 Jacobi, Gauss-Seidel and Relaxation Methods
In this section we consider some classical linear iterative methods.

If the diagonal entries of A are nonzero, we can single out in each equation
the corresponding unknown, obtaining the equivalent linear system

xi =
1
aii

⎡

⎢⎣bi −
n∑

j=1
j ̸=i

aijxj

⎤

⎥⎦ , i = 1, . . . , n. (4.9)

In the Jacobi method, once an arbitrarily initial guess x0 has been chosen,
x(k+1) is computed by the formulae

x(k+1)
i =

1
aii

⎡

⎢⎣bi −
n∑

j=1
j ̸=i

aijx
(k)
j

⎤

⎥⎦ , i = 1, . . . , n. (4.10)

This amounts to performing the following splitting for A

P = D, N = D − A = E + F,

where D is the diagonal matrix of the diagonal entries of A, E is the lower
triangular matrix of entries eij = −aij if i > j, eij = 0 if i ≤ j, and F is
the upper triangular matrix of entries fij = −aij if j > i, fij = 0 if j ≤ i.
As a consequence, A=D-(E+F).

The iteration matrix of the Jacobi method is thus given by

BJ = D−1(E + F) = I − D−1A. (4.11)

A generalization of the Jacobi method is the over-relaxation method
(or JOR), in which, having introduced a relaxation parameter ω, (4.10) is
replaced by

x(k+1)
i =

ω

aii

⎡

⎢⎣bi −
n∑

j=1
j ̸=i

aijx
(k)
j

⎤

⎥⎦ + (1 − ω)x(k)
i , i = 1, . . . , n.
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The corresponding iteration matrix is

BJω = ωBJ + (1 − ω)I. (4.12)

In the form (4.7), the JOR method corresponds to

x(k+1) = x(k) + ωD−1r(k).

This method is consistent for any ω ̸= 0 and for ω = 1 it coincides with
the Jacobi method.

The Gauss-Seidel method differs from the Jacobi method in the fact that
at the k+ 1-th step the available values of x(k+1)

i are being used to update
the solution, so that, instead of (4.10), one has

x(k+1)
i =

1
aii

⎡

⎣bi −
i−1∑

j=1

aijx
(k+1)
j −

n∑

j=i+1

aijx
(k)
j

⎤

⎦ , i = 1, . . . , n. (4.13)

This method amounts to performing the following splitting for A

P = D − E, N = F,

and the associated iteration matrix is

BGS = (D − E)−1F. (4.14)

Starting from Gauss-Seidel method, in analogy to what was done for
Jacobi iterations, we introduce the successive over-relaxation method (or
SOR method)

x(k+1)
i =

ω

aii

⎡

⎣bi −
i−1∑

j=1

aijx
(k+1)
j −

n∑

j=i+1

aijx
(k)
j

⎤

⎦ + (1 − ω)x(k)
i , (4.15)

for i = 1, . . . , n. The method (4.15) can be written in vector form as

(I − ωD−1E)x(k+1) = [(1 − ω)I + ωD−1F]x(k) + ωD−1b (4.16)

from which the iteration matrix is

B(ω) = (I − ωD−1E)−1[(1 − ω)I + ωD−1F]. (4.17)

Multiplying by D both sides of (4.16) and recalling that A = D − (E + F)
yields the following form (4.7) of the SOR method

x(k+1) = x(k) +
(

1
ω

D − E
)−1

r(k).

It is consistent for any ω ̸= 0 and for ω = 1 it coincides with Gauss-Seidel
method. In particular, if ω ∈ (0, 1) the method is called under-relaxation,
while if ω > 1 it is called over-relaxation.
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4.2.2 Convergence Results for Jacobi and Gauss-Seidel
Methods

There exist special classes of matrices for which it is possible to state a
priori some convergence results for the methods examined in the previous
section. The first result in this direction is the following.

Theorem 4.2 If A is a strictly diagonally dominant matrix by rows, the
Jacobi and Gauss-Seidel methods are convergent.

Proof. Let us prove the part of the theorem concerning the Jacobi method, while
for the Gauss-Seidel method we refer to [Axe94]. Since A is strictly diagonally
dominant by rows, |aii| >

∑n
j=1 |aij | for j ̸= i and i = 1, . . . , n. As a consequence,

∥BJ∥∞ = max
i=1,... ,n

n∑

j=1,j ̸=i

|aij |/|aii| < 1, so that the Jacobi method is convergent.

✸

Theorem 4.3 If A and 2D−A are symmetric and positive definite matri-
ces, then the Jacobi method is convergent and ρ(BJ) = ∥BJ∥A = ∥BJ∥D.

Proof. The theorem follows from Property 4.1 taking P=D. ✸

In the case of the JOR method, the assumption on 2D−A can be removed,
yielding the following result.

Theorem 4.4 If A if symmetric positive definite, then the JOR method is
convergent if 0 < ω < 2/ρ(D−1A).

Proof. The result immediately follows from (4.12) and noting that A has real
positive eigenvalues. ✸

Concerning the Gauss-Seidel method, the following result holds.

Theorem 4.5 If A is symmetric positive definite, the Gauss-Seidel method
is monotonically convergent with respect to the norm ∥ · ∥A.

Proof. We can apply Property 4.2 to the matrix P=D−E, upon checking that
P + PT − A is positive definite. Indeed

P + PT − A = 2D − E − F − A = D,

having observed that (D − E)T = D − F. We conclude by noticing that D is
positive definite, since it is the diagonal of A. ✸

Finally, if A is positive definite and tridiagonal, it can be shown that also
the Jacobi method is convergent and

ρ(BGS) = ρ2(BJ). (4.18)
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In this case, the Gauss-Seidel method is more rapidly convergent than the
Jacobi method. Relation (4.18) holds even if A enjoys the following A-
property.

Definition 4.3 A consistently ordered matrix M ∈ Rn×n (that is, a matrix
such that αD−1E+α−1D−1F, for α ̸= 0, has eigenvalues that do not depend
on α, where M=D-E-F, D = diag(m11, . . . ,mnn), E and F are strictly lower
and upper triangular matrices, respectively) enjoys the A-property if it can
be partitioned in the 2 × 2 block form

M =
[

D̃1 M12

M21 D̃2

]
,

where D̃1 and D̃2 are diagonal matrices. !

When dealing with general matrices, no a priori conclusions on the conver-
gence properties of the Jacobi and Gauss-Seidel methods can be drawn, as
shown in Example 4.2.

Example 4.2 Consider the 3× 3 linear systems of the form Aix = bi, where bi

is always taken in such a way that the solution of the system is the unit vector,
and the matrices Ai are

A1 =

⎡

⎣
3 0 4
7 4 2

−1 1 2

⎤

⎦ , A2 =

⎡

⎣
−3 3 −6
−4 7 −8

5 7 −9

⎤

⎦ ,

A3 =

⎡

⎣
4 1 1
2 −9 0
0 −8 −6

⎤

⎦ , A4 =

⎡

⎣
7 6 9
4 5 −4

−7 −3 8

⎤

⎦ .

It can be checked that the Jacobi method does fail to converge for A1 (ρ(BJ) =
1.33), while the Gauss-Seidel scheme is convergent. Conversely, in the case of
A2, the Jacobi method is convergent, while the Gauss-Seidel method fails to
converge (ρ(BGS) = 1.1̄). In the remaining two cases, the Jacobi method is more
slowly convergent than the Gauss-Seidel method for matrix A3 (ρ(BJ) = 0.44
against ρ(BGS) = 0.018), and the converse is true for A4 (ρ(BJ) = 0.64 while
ρ(BGS) = 0.77). •

We conclude the section with the following result.

Theorem 4.6 If the Jacobi method is convergent, then the JOR method
converges if 0 < ω ≤ 1.

Proof. From (4.12) we obtain that the eigenvalues of BJω are

µk = ωλk + 1 − ω, k = 1, . . . , n,
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where λk are the eigenvalues of BJ . Then, recalling the Euler formula for the
representation of a complex number, we let λk = rke

iθk and get

|µk|2 = ω2r2
k + 2ωrk cos(θk)(1 − ω) + (1 − ω)2 ≤ (ωrk + 1 − ω)2,

which is less than 1 if 0 < ω ≤ 1. ✸

4.2.3 Convergence Results for the Relaxation Method
The following result provides a necessary condition on ω in order the SOR
method to be convergent.

Theorem 4.7 For any ω ∈ R we have ρ(B(ω)) ≥ |ω − 1|; therefore, the
SOR method fails to converge if ω ≤ 0 or ω ≥ 2.

Proof. If {λi} denote the eigenvalues of the SOR iteration matrix, then
∣∣∣∣∣

n∏

i=1

λi

∣∣∣∣∣ =
∣∣det

[
(1 − ω)I + ωD−1F

]∣∣ = |1 − ω|n.

Therefore, at least one eigenvalue λi must exist such that |λi| ≥ |1−ω| and thus,
in order for convergence to hold, we must have |1 − ω| < 1, that is 0 < ω < 2. ✸

Assuming that A is symmetric and positive definite, the condition 0 < ω <
2, besides being necessary, becomes also sufficient for convergence. Indeed
the following result holds (for the proof, see [Hac94]).

Property 4.3 (Ostrowski) If A is symmetric and positive definite, then
the SOR method is convergent iff 0 < ω < 2. Moreover, its convergence is
monotone with respect to ∥ · ∥A.

Finally, if A is strictly diagonally dominant by rows, the SOR method
converges if 0 < ω ≤ 1.

The results above show that the SOR method is more or less rapidly
convergent, depending on the choice of the relaxation parameter ω. The
question of how to determine the value ωopt for which the convergence rate
is the highest possible can be given a satisfactory answer only in special
cases (see, for instance, [Axe94], [You71], [Var62] or [Wac66]). Here we limit
ourselves to quoting the following result (whose proof is in [Axe94]).

Property 4.4 If the matrix A enjoys the A-property and if BJ has real
eigenvalues, then the SOR method converges for any choice of x(0) iff
ρ(BJ) < 1 and 0 < ω < 2. Moreover,

ωopt =
2

1 +
√

1 − ρ(BJ)2
(4.19)
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and the corresponding asymptotic convergence factor is

ρ(B(ωopt)) =
1 −

√
1 − ρ(BJ)2

1 +
√

1 − ρ(BJ)2
.

4.2.4 A priori Forward Analysis
In the previous analysis we have neglected the rounding errors. However, as
shown in the following example (taken from [HW76]), they can dramatically
affect the convergence rate of the iterative method.

Example 4.3 Let A be a lower bidiagonal matrix of order 100 with entries
aii = 1.5 and ai,i−1 = 1, and let b ∈ R100 be the right-side with bi = 2.5. The
exact solution of the system Ax = b has components xi = 1 − (−2/3)i. The
SOR method with ω = 1.5 should be convergent, working in exact arithmetic,
since ρ(B(1.5)) = 0.5 (far below one). However, running Program 16 with x(0) =
fl(x)+ϵM , which is extremely close to the exact value, the sequence x(k) diverges
and after 100 iterations the algorithm yields a solution with ∥x(100)∥∞ = 1013.
The flaw is due to rounding error propagation and must not be ascribed to a
possible ill-conditioning of the matrix since K∞(A) ≃ 5. •

To account for rounding errors, let us denote by x̂(k) the solution (in finite
arithmetic) generated by an iterative method of the form (4.6) after k steps.
Due to rounding errors, x̂(k) can be regarded as the exact solution to the
problem

Px̂(k+1) = Nx̂(k) + b − ζk, (4.20)

with

ζk = δPk+1x̂(k+1) − gk.

The matrix δPk+1 accounts for the rounding errors in the solution of (4.6),
while the vector gk includes the errors made in the evaluation of N̂x(k) +b.
From (4.20), we obtain

x̂(k+1) = Bk+1x(0) +
k∑

j=0

BjP−1(b − ζk−j)

and for the absolute error ê(k+1) = x − x̂(k+1)

ê(k+1) = Bk+1e(0) +
k∑

j=0

BjP−1ζk−j .

The first term represents the error that is made by the iterative method
in exact arithmetic; if the method is convergent, this error is negligible for
sufficiently large values of k. The second term refers instead to rounding
error propagation; its analysis is quite technical and is carried out, for
instance, in [Hig88] in the case of Jacobi, Gauss-Seidel and SOR methods.
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4.2.5 Block Matrices
The methods of the previous sections are also referred to as point (or line)
iterative methods, since they act on single entries of matrix A. It is possible
to devise block versions of the algorithms, provided that D denotes the block
diagonal matrix whose entries are the m×m diagonal blocks of matrix A
(see Section 1.6).

The block Jacobi method is obtained taking again P=D and N=D-A. The
method is well-defined only if the diagonal blocks of D are nonsingular. If
A is decomposed in p× p square blocks, the block Jacobi method is

Aiix
(k+1)
i = bi −

p∑

j=1
j ̸=i

Aijx
(k)
j , i = 1, . . . , p,

having also decomposed the solution vector and the right side in blocks of
size p, denoted by xi and bi, respectively. As a result, at each step, the block
Jacobi method requires solving p linear systems of matrices Aii. Theorem
4.3 is still valid, provided that D is substituted by the corresponding block
diagonal matrix.

In a similar manner, the block Gauss-Seidel and block SOR methods can
be introduced.

4.2.6 Symmetric Form of the Gauss-Seidel and SOR Methods
Even if A is a symmetric matrix, the Gauss-Seidel and SOR methods gen-
erate iteration matrices that are not necessarily symmetric. For that, we
introduce in this section a technique that allows for symmetrizing these
schemes. The final aim is to provide an approach for generating symmetric
preconditioners (see Section 4.3.2).

Firstly, let us remark that an analogue of the Gauss-Seidel method can
be constructed, by simply exchanging E with F. The following iteration
can thus be defined, called the backward Gauss-Seidel method

(D − F)x(k+1) = Ex(k) + b

with iteration matrix given by BGSb = (D − F)−1E.
The symmetric Gauss-Seidel method is obtained by combining an itera-
tion of Gauss-Seidel method with an iteration of backward Gauss-Seidel
method. Precisely, the k-th iteration of the symmetric Gauss-Seidel method
is

(D − E)x(k+1/2) = Fx(k) + b, (D − F)x(k+1) = Ex(k+1/2) + b.
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Eliminating x(k+1/2), the following scheme is obtained

x(k+1) = BSGSx(k) + bSGS ,

BSGS = (D − F)−1E(D − E)−1F,

bSGS = (D − F)−1[E(D − E)−1 + I]b.

(4.21)

The preconditioning matrix associated with (4.21) is

PSGS = (D − E)D−1(D − F).

The following result can be proved (see [Hac94]).

Property 4.5 If A is a symmetric positive definite matrix, the symmet-
ric Gauss-Seidel method is convergent, and, moreover, BSGS is symmetric
positive definite.

In a similar manner, defining the backward SOR method

(D − ωF)x(k+1) = [ωE + (1 − ω)D]x(k) + ωb,

and combining it with a step of SOR method, the following symmetric SOR
method or SSOR, is obtained

x(k+1) = Bs(ω)x(k) + bω

where

Bs(ω) = (D − ωF)−1(ωE + (1 − ω)D)(D − ωE)−1(ωF + (1 − ω)D),

bω = ω(2 − ω)(D − ωF)−1D(D − ωE)−1b.

The preconditioning matrix of this scheme is

PSSOR(ω) =
(

1
ω

D − E
)

ω

2 − ω
D−1

(
1
ω

D − F
)
. (4.22)

If A is symmetric and positive definite, the SSOR method is convergent if
0 < ω < 2 (see [Hac94] for the proof). Typically, the SSOR method with an
optimal choice of the relaxation parameter converges more slowly than the
corresponding SOR method. However, the value of ρ(Bs(ω)) is less sensitive
to a choice of ω around the optimal value (in this respect, see the behavior
of the spectral radii of the two iteration matrices in Figure 4.1). For this
reason, the optimal value of ω that is chosen in the case of SSOR method
is usually the same used for the SOR method (for further details, we refer
to [You71]).
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FIGURE 4.1. Spectral radius of the iteration matrix of SOR and SSOR methods,
as a function of the relaxation parameter ω for the matrix tridiag10(−1, 2,−1)

4.2.7 Implementation Issues
We provide the programs implementing the Jacobi and Gauss-Seidel meth-
ods in their point form and with relaxation.

In Program 15 the JOR method is implemented (the Jacobi method is
obtained as a special case setting omega = 1). The stopping test monitors
the Euclidean norm of the residual at each iteration, normalized to the
value of the initial residual.
Notice that each component x(i) of the solution vector can be computed
independently; this method can thus be easily parallelized.

Program 15 - JOR : JOR method

function [x, iter]= jor ( a, b, x0, nmax, toll, omega)
[n,n]=size(a);
iter = 0; r = b - a * x0; r0 = norm(r); err = norm (r); x = x0;
while err > toll & iter < nmax
iter = iter + 1;
for i=1:n
s = 0;
for j = 1:i-1, s = s + a (i,j) * x (j); end
for j = i+1:n, s = s + a (i,j) * x (j); end
x (i) = omega * ( b(i) - s) / a(i,i) + (1 - omega) * x(i);

end
r = b - a * x; err = norm (r) / r0;
end

Program 16 implements the SOR method. Taking omega=1 yields the
Gauss-Seidel method.
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Unlike the Jacobi method, this scheme is fully sequential. However, it can
be efficiently implemented without storing the solution of the previous step,
with a saving of memory storage.

Program 16 - SOR : SOR method

function [x, iter]= sor ( a, b, x0, nmax, toll, omega)
[n,n]=size(a);
iter = 0; r = b - a * x0; r0 = norm (r); err = norm (r); xold = x0;
while err > toll & iter < nmax
iter = iter + 1;
for i=1:n
s = 0;
for j = 1:i-1, s = s + a (i,j) * x (j); end
for j = i+1:n
s = s + a (i,j) * xold (j);

end
x (i) = omega * ( b(i) - s) / a(i,i) + (1 - omega) * xold (i);

end
x = x’; xold = x; r = b - a * x; err = norm (r) / r0;
end

4.3 Stationary and Nonstationary Iterative
Methods

Denote by

RP = I − P−1A

the iteration matrix associated with (4.7). Proceeding as in the case of
relaxation methods, (4.7) can be generalized introducing a relaxation (or
acceleration) parameter α. This leads to the following stationary Richard-
son method

x(k+1) = x(k) + αP−1r(k), k ≥ 0. (4.23)

More generally, allowing α to depend on the iteration index, the nonsta-
tionary Richardson method or semi-iterative method given by

x(k+1) = x(k) + αkP−1r(k), k ≥ 0. (4.24)

The iteration matrix at the k-th step for these methods (depending on k)
is

R(αk) = I − αkP−1A,
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with αk = α in the stationary case. If P=I, the methods will be called
nonpreconditioned. The Jacobi and Gauss-Seidel methods can be regarded
as stationary Richardson methods with α = 1, P = D and P = D − E,
respectively.

We can rewrite (4.24) (and, thus, also (4.23)) in a form of greater inter-
est for computation. Letting z(k) = P−1r(k) (the so-called preconditioned
residual), we get x(k+1) = x(k) + αkz(k) and r(k+1) = b − Ax(k+1) =
r(k)−αkAz(k). To summarize, a nonstationary Richardson method requires
at each k + 1-th step the following operations:

solve the linear system Pz(k) = r(k);

compute the acceleration parameter αk;

update the solution x(k+1) = x(k) + αkz(k);

update the residual r(k+1) = r(k) − αkAz(k).

(4.25)

4.3.1 Convergence Analysis of the Richardson Method
Let us first consider the stationary Richardson methods for which αk = α
for k ≥ 0. The following convergence result holds.

Theorem 4.8 For any nonsingular matrix P, the stationary Richardson
method (4.23) is convergent iff

2Reλi

α|λi|2
> 1 ∀i = 1, . . . , n, (4.26)

where λi ∈ C are the eigenvalues of P−1A.

Proof. Let us apply Theorem 4.1 to the iteration matrix Rα = I−αP−1A. The
condition |1 − αλi| < 1 for i = 1, . . . , n yields the inequality

(1 − αReλi)2 + α2(Imλi)2 < 1

from which (4.26) immediately follows. ✸

Let us notice that, if the sign of the real parts of the eigenvalues of P−1A
is not constant, the stationary Richardson method cannot converge.

More specific results can be obtained provided that suitable assumptions
are made on the spectrum of P−1A.

Theorem 4.9 Assume that P is a nonsingular matrix and that P−1A has
positive real eigenvalues, ordered in such a way that λ1 ≥ λ2 ≥ . . . ≥
λn > 0. Then, the stationary Richardson method (4.23) is convergent iff
0 < α < 2/λ1. Moreover, letting

αopt =
2

λ1 + λn
(4.27)
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the spectral radius of the iteration matrix Rα is minimum if α = αopt, with

ρopt = min
α

[ρ(Rα)] =
λ1 − λn

λ1 + λn
. (4.28)

Proof. The eigenvalues of Rα are given by λi(Rα) = 1 − αλi, so that (4.23) is
convergent iff |λi(Rα)| < 1 for i = 1, . . . , n, that is, if 0 < α < 2/λ1. It follows
(see Figure 4.2) that ρ(Rα) is minimum when 1 − αλn = αλ1 − 1, that is, for
α = 2/(λ1 + λn), which furnishes the desired value for αopt. By substitution, the
desired value of ρopt is obtained. ✸

1
λn

1
λ1

αopt
2
λ1

ρ = 1
|1 − αλ1|

|1 − αλn|

ρopt

|1 − αλk|

α

FIGURE 4.2. Spectral radius of Rα as a function of the eigenvalues of P−1A

If P−1A is symmetric positive definite, it can be shown that the convergence
of the Richardson method is monotone with respect to either ∥·∥2 and ∥·∥A.
In such a case, using (4.28), we can also relate ρopt to K2(P−1A) as follows

ρopt =
K2(P−1A) − 1
K2(P−1A) + 1

, αopt =
2∥A−1P∥2

K2(P−1A) + 1
. (4.29)

The choice of a suitable preconditioner P is, therefore, of paramount im-
portance for improving the convergence of a Richardson method. Of course,
such a choice should also account for the need of keeping the computational
effort as low as possible. In Section 4.3.2, some preconditioners of common
use in practice will be described.

Corollary 4.1 Let A be a symmetric positive definite matrix. Then, the
non preconditioned stationary Richardson method is convergent and

∥e(k+1)∥A ≤ ρ(Rα)∥e(k)∥A, k ≥ 0. (4.30)
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The same result holds for the preconditioned Richardson method, provided
that the matrices P, A and P−1A are symmetric positive definite.

Proof. The convergence is a consequence of Theorem 4.8. Moreover, we notice
that

∥e(k+1)∥A = ∥Rαe(k)∥A = ∥A1/2Rαe(k)∥2 ≤ ∥A1/2RαA−1/2∥2∥A1/2e(k)∥2.

The matrix Rα is symmetric positive definite and is similar to A1/2RαA−1/2.
Therefore,

∥A1/2RαA−1/2∥2 = ρ(Rα).

The result (4.30) follows by noting that ∥A1/2e(k)∥2 = ∥e(k)∥A. A similar proof
can be carried out in the preconditioned case, provided we replace A with P−1A.
✸

Finally, the inequality (4.30) holds even if only P and A are symmetric
positive definite (for the proof, see [QV94], Chapter 2).

4.3.2 Preconditioning Matrices
All the methods introduced in the previous sections can be cast in the form
(4.2), so that they can be regarded as being methods for solving the system

(I − B)x = f = P−1b.

On the other hand, since B=P−1N, system (3.2) can be equivalently refor-
mulated as

P−1Ax = P−1b. (4.31)

The latter is the preconditioned system, being P the preconditioning matrix
or left preconditioner. Right and centered preconditioners can be introduced
as well, if system (3.2) is transformed, respectively, as

AP−1y = b, y = Px,

or

P−1
L AP−1

R y = P−1
L b, y = PRx.

There are point preconditioners or block preconditioners, depending on
whether they are applied to the single entries of A or to the blocks of
a partition of A. The iterative methods considered so far correspond to
fixed-point iterations on a left-preconditioned system. As stressed by (4.25),
computing the inverse of P is not mandatory; actually, the role of P is to
“preconditioning” the residual r(k) through the solution of the additional
system Pz(k) = r(k).
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Since the preconditioner acts on the spectral radius of the iteration ma-
trix, it would be useful to pick up, for a given linear system, an optimal
preconditioner, i.e., a preconditioner which is able to make the number of
iterations required for convergence independent of the size of the system.
Notice that the choice P=A is optimal but, trivially, “inefficient”; some
alternatives of greater computational interest will be examined below.

There is a lack of general theoretical results that allow to devise optimal
preconditioners. However, an established “rule of thumb” is that P is a
good preconditioner for A if P−1A is near to being a normal matrix and if
its eigenvalues are clustered within a sufficiently small region of the com-
plex field. The choice of a preconditioner must also be guided by practical
considerations, noticeably, its computational cost and its memory require-
ments.

Preconditioners can be divided into two main categories: algebraic and
functional preconditioners, the difference being that the algebraic precon-
ditioners are independent of the problem that originated the system to
be solved, and are actually constructed via algebraic procedure, while the
functional preconditioners take advantage of the knowledge of the problem
and are constructed as a function of it. In addition to the preconditioners
already introduced in Section 4.2.6, we give a description of other algebraic
preconditioners of common use.

1. Diagonal preconditioners: choosing P as the diagonal of A is generally
effective if A is symmetric positive definite. A usual choice in the non
symmetric case is to set

pii =

⎛

⎝
n∑

j=1

a2
ij

⎞

⎠
1/2

.

Block diagonal preconditioners can be constructed in a similar man-
ner. We remark that devising an optimal diagonal preconditioner is
far from being trivial, as previously noticed in Section 3.12.1 when
dealing with the scaling of a matrix.

2. Incomplete LU factorization (shortly ILU) and Incomplete Cholesky
factorization (shortly IC).
An incomplete factorization of A is a process that computes P =
LinUin, where Lin is a lower triangular matrix and Uin is an upper
triangular matrix. These matrices are approximations of the exact
matrices L, U of the LU factorization of A and are chosen in such a
way that the residual matrix R = A−LinUin satisfies some prescribed
requirements, such as having zero entries in specified locations.
For a given matrix M, the L-part (U-part) of M will mean henceforth
the lower (upper) triangular part of M. Moreover, we assume that the
factorization process can be carried out without resorting to pivoting.
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The basic approach to incomplete factorization, consists of requiring
the approximate factors Lin and Uin to have the same sparsity pat-
tern as the L-part and U-part of A, respectively. A general algorithm
for constructing an incomplete factorization is to perform Gauss elim-
ination as follows: at each step k, compute mik = a(k)

ik /a(k)
kk only if

aik ̸= 0 for i = k + 1, . . . , n. Then, compute for j = k + 1, . . . , n
a(k+1)
ij only if aij ̸= 0. This algorithm is implemented in Program 17

where the matrices Lin and Uin are progressively overwritten onto
the L-part and U-part of A.

Program 17 - basicILU : Incomplete LU factorization

function [a] = basicILU(a)
[n,n]=size(a);
for k=1:n-1, for i=k+1:n,

if a(i,k) ˜= 0
a(i,k) = a(i,k) / a(k,k);
for j=k+1:n
if a(i,j) ˜= 0
a(i,j) = a(i,j) -a(i,k)*a(k,j);

end
end

end
end, end

We notice that having Lin and Uin with the same patterns as the
L and U-parts of A, respectively, does not necessarily imply that R
has the same sparsity pattern as A, but guarantees that rij = 0 if
aij ̸= 0, as is shown in Figure 4.3.

The resulting incomplete factorization is known as ILU(0), where “0”
means that no fill-in has been introduced in the factorization process.
An alternative strategy might be to fix the structure of Lin and Uin

irrespectively of that of A, in such a way that some computational
criteria are satisfied (for example, that the incomplete factors have
the simplest possible structure).

The accuracy of the ILU(0) factorization can obviously be improved
by allowing some fill-in to arise, and thus, by accepting nonzero entries
in the factorization whereas A has elements equal to zero. To this
purpose, it is convenient to introduce a function, which we call fill-
in level, that is associated with each entry of A and that is being
modified during the factorization process. If the fill-in level of an
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FIGURE 4.3. The sparsity pattern of the original matrix A is represented by the
squares, while the pattern of R = A−LinUin, computed by Program 17, is drawn
by the bullets

element is greater than an admissible value p ∈ N, the corresponding
entry in Uin or Lin is set equal to zero.

Let us explain how this procedure works, assuming that the matri-
ces Lin and Uin are progressively overwritten to A (as happens in
Program 4). The fill-in level of an entry a(k)

ij is denoted by levij ,
where the dependence on k is understood, and it should provide a
reasonable estimate of the size of the entry during the factorization
process. Actually, we are assuming that if levij = q then |aij | ≃ δq

with δ ∈ (0, 1), so that q is greater when |a(k)
ij | is smaller.

At the starting step of the procedure, the level of the nonzero entries
of A and of the diagonal entries is set equal to 0, while the level of
the null entries is set equal to infinity. For any row i = 2, . . . , n, the
following operations are performed: if levik ≤ p, k = 1, . . . , i− 1, the
entry mik of Lin and the entries a(k+1)

ij of Uin, j = i + 1, . . . , n, are
updated. Moreover, if a(k+1)

ij ̸= 0 the value levij is updated as being
the minimum between the available value of levij and levik+levkj+1.
The reason of this choice is that |a(k+1)

ij | = |a(k)
ij −mika

(k)
kj | ≃ |δlevij −

δlevik+levkj+1|, so that one can assume that the size of |a(k+1)
ij | is the

maximum between δlevij and δlevik+levkj+1.

The above factorization process is called ILU(p) and turns out to be
extremely efficient (with p small) provided that it is coupled with a
suitable matrix reordering (see Section 3.9).

Program 18 implements the ILU(p) factorization; it returns in out-
put the approximate matrices Lin and Uin (overwritten to the input
matrix a), with the diagonal entries of Lin equal to 1, and the ma-
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trix lev containing the fill-in level of each entry at the end of the
factorization.

Program 18 - ilup : ILU(p) factorization

function [a,lev] = ilup (a,p)
[n,n]=size(a);
for i=1:n, for j=1:n

if (a(i,j) ˜= 0) | (i==j)
lev(i,j)=0;

else
lev(i,j)=Inf;

end
end, end
for i=2:n,
for k=1:i-1
if lev(i,k) <= p
a(i,k)=a(i,k)/a(k,k);
for j=k+1:n
a(i,j)=a(i,j)-a(i,k)*a(k,j);
if a(i,j) ˜= 0
lev(i,j)=min(lev(i,j),lev(i,k)+lev(k,j)+1);

end
end

end
end
for j=1:n, if lev(i,j) > p, a(i,j) = 0; end, end

end

Example 4.4 Consider the matrix A ∈ R46×46 associated with the finite
difference approximation of the Laplace operator ∆· = ∂2·

∂x2 + ∂2·
∂y2 (see

Section 12.6). This matrix can be generated with the following MATLAB
commands: G=numgrid(’B’,10); A=delsq(G) and corresponds to the dis-
cretization of the differential operator on a domain having the shape of the
exterior of a butterfly and included in the square [−1, 1]2 (see Section 12.6).
The number of nonzero entries of A is 174. Figure 4.4 shows the pattern of
matrix A (drawn by the bullets) and the entries in the pattern added by
the ILU(1) and ILU(2) factorizations due to fill-in (denoted by the squares
and the triangles, respectively). Notice that these entries are all contained
within the envelope of A since no pivoting has been performed. •

The ILU(p) process can be carried out without knowing the actual
values of the entries of A, but only working on their fill-in levels.
Therefore, we can distinguish between a symbolic factorization (the
generation of the levels) and an actual factorization (the computation
of the entries of ILU(p) starting from the informations contained in
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FIGURE 4.4. Pattern of the matrix A in Example 4.4 (bullets); entries added by
the ILU(1) and ILU(2) factorizations (squares and triangles, respectively)

the level function). The scheme is thus particularly effective when
several linear systems must be solved, with matrices having the same
structure but different entries.
On the other hand, for certain classes of matrices, the fill-in level
does not always provide a sound indication of the actual size attained
by the entries. In such cases, it is better to monitor the size of the
entries of R by neglecting each time the entries that are too small.
For instance, one can drop out the entries a(k+1)

ij such that

|a(k+1)
ij | ≤ c|a(k+1)

ii a(k+1)
jj |1/2, i, j = 1, . . . , n,

with 0 < c < 1 (see [Axe94]).

In the strategies considered so far, the entries of the matrix that are
dropped out can no longer be recovered in the incomplete factoriza-
tion process. Some remedies exist for this drawback: for instance, at
the end of each k-th step of the factorization, one can sum, row by
row, the discarded entries to the diagonal entries of Uin. By doing
so, an incomplete factorization known as MILU (Modified ILU) is
obtained, which enjoys the property of being exact with respect to
the constant vectors, i.e., such that R1T = 0T (see [Axe94] for other
formulations). In the practice, this simple trick provides, for a wide
class of matrices, a better preconditioner than obtained with the ILU
method. In the case of symmetric positive definite matrices one can
resort to the Modified Incomplete Cholesky Factorization (MICh).
We conclude by mentioning the ILUT factorization, which collects the
features of ILU(p) and MILU. This factorization can also include par-
tial pivoting by columns with a slight increase of the computational
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cost. For an efficient implementation of incomplete factorizations, we
refer to the MATLAB function luinc in the toolbox sparfun.

The existence of the ILU factorization is not guaranteed for all non-
singular matrices (see for an example [Elm86]) and the process stops
if zero pivotal entries arise. Existence theorems can be proved if A is
an M-matrix [MdV77] or diagonally dominant [Man80]. It is worth
noting that sometimes the ILU factorization turns out to be more
stable than the complete LU factorization [GM83].

3. Polynomial preconditioners: the preconditioning matrix is defined as

P−1 = p(A),

where p is a polynomial in A, usually of low degree.
A remarkable example is given by Neumann polynomial precondi-
tioners. Letting A = D − C, we have A = (I − CD−1)D, from which

A−1 = D−1(I − CD−1)−1 = D−1(I + CD−1 + (CD−1)2 + . . . ).

A preconditioner can then be obtained by truncating the series above
at a certain power p. This method is actually effective only if ρ(CD−1)
< 1, which is the necessary condition in order the series to be con-
vergent.

4. Least-squares preconditioners: A−1 is approximated by a least-squares
polynomial ps(A) (see Section 3.13). Since the aim is to make ma-
trix I − P−1A as close as possible to the null matrix, the least-
squares approximant ps(A) is chosen in such a way that the function
ϕ(x) = 1−ps(x)x is minimized. This preconditioning technique works
effectively only if A is symmetric and positive definite.

For further results on preconditioners, see [dV89] and [Axe94].

Example 4.5 Consider the matrix A∈ R324×324 associated with the finite differ-
ence approximation of the Laplace operator on the square [−1, 1]2. This matrix
can be generated with the following MATLAB commands: G=numgrid(’N’,20);
A=delsq(G). The condition number of the matrix is K2(A) = 211.3. In Table
4.1 we show the values of K2(P−1A) computed using the ILU(p) and Neumann
preconditioners, with p = 0, 1, 2, 3. In the last case D is the diagonal part of A. •

Remark 4.2 Let A and P be real symmetric matrices of order n, with P
positive definite. The eigenvalues of the preconditioned matrix P−1A are
solutions of the algebraic equation

Ax = λPx, (4.32)
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p ILU(p) Neumann
0 22.3 211.3
1 12 36.91
2 8.6 48.55
3 5.6 18.7

TABLE 4.1. Spectral condition numbers of the preconditioned matrix A of Ex-
ample 4.5 as a function of p

where x is an eigenvector associated with the eigenvalue λ. Equation (4.32)
is an example of generalized eigenvalue problem (see Section 5.9 for a thor-
ough discussion) and the eigenvalue λ can be computed through the fol-
lowing generalized Rayleigh quotient

λ =
(Ax,x)
(Px,x)

.

Applying the Courant-Fisher Theorem (see Section 5.11) yields

λmin(A)
λmax(P)

≤ λ ≤ λmax(A)
λmin(P)

. (4.33)

Relation (4.33) provides a lower and upper bound for the eigenvalues of the
preconditioned matrix as a function of the extremal eigenvalues of A and
P, and therefore it can be profitably used to estimate the condition number
of P−1A. !

4.3.3 The Gradient Method
The expression of the optimal parameter that has been provided in Theo-
rem 4.9 is of limited usefulness in practical computations, since it requires
the knowledge of the extremal eigenvalues of the matrix P−1A. In the spe-
cial case of symmetric and positive definite matrices, however, the optimal
acceleration parameter can be dynamically computed at each step k as
follows.

We first notice that, for such matrices, solving system (3.2) is equivalent
to finding the minimizer x ∈ Rn of the quadratic form

Φ(y) =
1
2
yTAy − yTb,

which is called the energy of system (3.2). Indeed, the gradient of Φ is given
by

∇Φ(y) =
1
2
(AT + A)y − b = Ay − b. (4.34)

As a consequence, if ∇Φ(x) = 0 then x is a solution of the original system.
Conversely, if x is a solution, then

Φ(y) = Φ(x + (y − x)) = Φ(x) +
1
2
(y − x)TA(y − x), ∀y ∈ Rn
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and thus, Φ(y) > Φ(x) if y ̸= x, i.e. x is a minimizer of the functional Φ.
Notice that the previous relation is equivalent to

1
2
∥y − x∥2

A = Φ(y) − Φ(x) (4.35)

where ∥ · ∥A is the A-norm or energy norm, defined in (1.28).
The problem is thus to determine the minimizer x of Φ starting from a

point x(0) ∈ Rn and, consequently, to select suitable directions along which
moving to get as close as possible to the solution x. The optimal direction,
that joins the starting point x(0) to the solution point x, is obviously un-
known a priori. Therefore, we must take a step from x(0) along another
direction d(0), and then fix along this latter a new point x(1) from which
to iterate the process until convergence.

Thus, at the generic step k, x(k+1) is computed as

x(k+1) = x(k) + αkd(k), (4.36)

where αk is the value which fixes the length of the step along d(k). The most
natural idea is to take the descent direction of maximum slope ∇Φ(x(k)),
which yields the gradient method or steepest descent method.

On the other hand, due to (4.34), ∇Φ(x(k)) = Ax(k)−b = −r(k), so that
the direction of the gradient of Φ coincides with that of residual and can
be immediately computed using the current iterate. This shows that the
gradient method, as well as the Richardson method, moves at each step k
along the direction d(k) = r(k).

To compute the parameter αk let us write explicitly Φ(x(k+1)) as a func-
tion of a parameter α

Φ(x(k+1)) =
1
2
(x(k) + αr(k))TA(x(k) + αr(k)) − (x(k) + αr(k))Tb.

Differentiating with respect to α and setting it equal to zero, yields the
desired value of αk

αk =
r(k)T r(k)

r(k)TAr(k)
(4.37)

which depends only on the residual at the k-th step. For this reason, the
nonstationary Richardson method employing (4.37) to evaluate the acceler-
ation parameter, is also called the gradient method with dynamic parameter
(shortly, gradient method), to distinguish it from the stationary Richardson
method (4.23) or gradient method with constant parameter, where αk = α
is a constant for any k ≥ 0.

Summarizing, the gradient method can be described as follows:
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given x(0) ∈ Rn, for k = 0, 1, . . . until convergence, compute

r(k) = b − Ax(k)

αk =
r(k)T r(k)

r(k)TAr(k)

x(k+1) = x(k) + αkr(k).

Theorem 4.10 Let A be a symmetric and positive definite matrix; then
the gradient method is convergent for any choice of the initial datum x(0)

and

∥e(k+1)∥A ≤ K2(A) − 1
K2(A) + 1

∥e(k)∥A, k = 0, 1, . . . , (4.38)

where ∥ · ∥A is the energy norm defined in (1.28).

Proof. Let x(k) be the solution generated by the gradient method at the k-th
step. Then, let x(k+1)

R be the vector generated by taking one step of the non
preconditioned Richardson method with optimal parameter starting from x(k),
i.e., x(k+1)

R = x(k) + αoptr(k).
Due to Corollary 4.1 and (4.28), we have

∥e(k+1)
R ∥A ≤ K2(A) − 1

K2(A) + 1
∥e(k)∥A,

where e(k+1)
R = x(k+1)

R −x. Moreover, from (4.35) we have that the vector x(k+1),
generated by the gradient method, is the one that minimizes the A-norm of
the error among all vectors of the form x(k) + θr(k), with θ ∈ R. Therefore,
∥e(k+1)∥A ≤ ∥e(k+1)

R ∥A which is the desired result. ✸

We notice that the line through x(k) and x(k+1) is tangent at the point
x(k+1) to the ellipsoidal level surface

{
x ∈ Rn : Φ(x) = Φ(x(k+1))

}
(see

also Figure 4.5).

Relation (4.38) shows that convergence of the gradient method can be
quite slow if K2(A) = λ1/λn is large. A simple geometric interpretation of
this result can be given in the case n = 2. Suppose that A=diag(λ1, λ2),
with 0 < λ2 ≤ λ1 and b = (b1, b2)T .

In such a case, the curves corresponding to Φ(x1, x2) = c, as c varies
in R+, form a sequence of concentric ellipses whose semi-axes have length
inversely proportional to the values λ1 and λ2. If λ1 = λ2, the ellipses
degenerate into circles and the direction of the gradient crosses the center
directly, in such a way that the gradient method converges in one iteration.
Conversely, if λ1 ≫ λ2, the ellipses become strongly eccentric and the
method converges quite slowly, as shown in Figure 4.5, moving along a
“zig-zag” trajectory.
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FIGURE 4.5. The first iterates of the gradient method on the level curves of Φ

Program 19 provides an implementation of the gradient method with dy-
namic parameter. Here and in the programs reported in the remainder of
the section, the input parameters A, x, b, M, maxit and tol respectively
represent the coefficient matrix of the linear system, the initial datum x(0),
the right side, a possible preconditioner, the maximum number of admis-
sible iterations and a tolerance for the stopping test. This stopping test
checks if the ratio ∥r(k)∥2/∥b∥2 is less than tol. The output parameters of
the code are the the number of iterations niter required to fulfill the stop-
ping test, the vector x with the solution computed after niter iterations
and the normalized residual error = ∥r(niter)∥2/∥b∥2. A null value of the
parameter flag warns the user that the algorithm has actually satisfied
the stopping test and it has not terminated due to reaching the maximum
admissible number of iterations.

Program 19 - gradient : Gradient method with dynamic parameter

function [x, error, niter, flag] = gradient(A, x, b, M, maxit, tol)
flag = 0; niter = 0; bnrm2 = norm( b );
if ( bnrm2 == 0.0 ), bnrm2 = 1.0; end
r = b - A*x; error = norm( r ) / bnrm2;
if ( error < tol ) return, end
for niter = 1:maxit

z = M \ r; rho = (r’*z);
q = A*z; alpha = rho / (z’*q );
x = x + alpha * z; r = r - alpha*q;
error = norm( r ) / bnrm2;
if ( error <= tol ), break, end

end
if ( error > tol ) flag = 1; end
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Example 4.6 Let us solve with the gradient method the linear system with ma-
trix Am ∈ Rm×m generated with the MATLAB commands G=numgrid(’S’,n);
A=delsq(G) where m = (n − 2)2. This matrix is associated with the discretiza-
tion of the differential Laplace operator on the domain [−1, 1]2. The right-hand
side bm is selected in such a way that the exact solution is the vector 1T ∈ Rm.
The matrix Am is symmetric and positive definite for any m and becomes ill-
conditioned for large values of m. We run Program 19 in the cases m = 16 and
m = 400, with x(0) = 0T , tol=10−10 and maxit=200. If m = 400, the method
fails to satisfy the stopping test within the admissible maximum number of it-
erations and exhibits an extremely slow reduction of the residual (see Figure
4.6). Actually, K2(A400) ≃ 258. If, however, we precondition the system with the
matrix P = RT

inRin, where Rin is the lower triangular matrix in the Cholesky
incomplete factorization of A, the algorithm fulfills the convergence within the
maximum admissible number of iterations (indeed, now K2(P−1A400) ≃ 38). •
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FIGURE 4.6. The residual normalized to the starting one, as a function of the
number of iterations, for the gradient method applied to the systems in Example
4.6. The curves labelled (a) and (b) refer to the case m = 16 with the non precon-
ditioned and preconditioned method, respectively, while the curves labelled (c)
and (d) refer to the case m = 400 with the non preconditioned and preconditioned
method, respectively

4.3.4 The Conjugate Gradient Method
The gradient method consists essentially of two phases: choosing a descent
direction (the one of the residual) and picking up a point of local minimum
for Φ along that direction. The second phase is independent of the first one
since, for a given direction p(k), we can determine αk as being the value
of the parameter α such that Φ(x(k) +αp(k)) is minimized. Differentiating
with respect to α and setting to zero the derivative at the minimizer, yields

αk =
p(k)T r(k)

p(k)TAp(k)
, (4.39)
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instead of (4.37). The question is how to determine p(k). A different ap-
proach than the one which led to identify p(k) with r(k) is suggested by the
following definition.

Definition 4.4 A direction x(k) is said to be optimal with respect to a
direction p ̸= 0 if

Φ(x(k)) ≤ Φ(x(k) + λp), ∀λ ∈ R. (4.40)

If x(k) is optimal with respect to any direction in a vector space V, we say
that x(k) is optimal with respect to V. !

From the definition of optimality, it turns out that p must be orthogonal
to the residual r(k). Indeed, from (4.40) we conclude that Φ admits a local
minimum along p for λ = 0, and thus the partial derivative of Φ with
respect to λ must vanish at λ = 0. Since

∂Φ
∂λ

(x(k) + λp) = pT (Ax(k) − b) + λpTAp,

we therefore have

∂Φ
∂λ

(x(k))|λ=0 = 0 iff pT (r(k)) = 0,

that is, p ⊥ r(k). Notice that the iterate x(k+1) of the gradient method
is optimal with respect to r(k) since, due to the choice of αk, we have
r(k+1) ⊥ r(k), but this property no longer holds for the successive iterate
x(k+2) (see Exercise 12). It is then natural to ask whether there exist descent
directions that maintain the optimality of iterates. Let

x(k+1) = x(k) + q,

and assume that x(k) is optimal with respect to a direction p (thus, r(k) ⊥
p). Let us impose that x(k+1) is still optimal with respect to p, that is,
r(k+1) ⊥ p. We obtain

0 = pT r(k+1) = pT (r(k) − Aq) = −pTAq.

The conclusion is that, in order to preserve optimality between succes-
sive iterates, the descent directions must be mutually A-orthogonal or A-
conjugate, i.e.

pTAq = 0.

A method employing A-conjugate descent directions is called conjugate.
The next step is how to generate automatically a sequence of conjugate
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directions. This can be done as follows. Let p(0) = r(0) and search for the
directions of the form

p(k+1) = r(k+1) − βkp(k), k = 0, 1, . . . (4.41)

where βk ∈ R must be determined in such a way that

(Ap(j))Tp(k+1) = 0, j = 0, 1, . . . , k. (4.42)

Requiring that (4.42) is satisfied for j = k, we get from (4.41)

βk =
(Ap(k))T r(k+1)

(Ap(k))Tp(k) , k = 0, 1, . . .

We must now verify that (4.42) holds also for j = 0, 1, . . . , k−1. To do this,
let us proceed by induction on k. Due to the choice of β0, relation (4.42)
holds for k = 0; let us thus assume that the directions p(0), . . . ,p(k−1) are
mutually A-orthogonal and, without losing generality, that

(p(j))T r(k) = 0, j = 0, 1, . . . , k − 1, k ≥ 1. (4.43)

Then, from (4.41) it follows that

(Ap(j))Tp(k+1) = (Ap(j))T r(k+1), j = 0, 1, . . . , k − 1.

Moreover, due to (4.43) and by the assumption of of A-orthogonality we
get

(p(j))T r(k+1) = (p(j))T r(k) − αk(p(j))TAp(k) = 0, j = 0, . . . , k − 1(4.44)

i.e., we conclude that r(k+1) is orthogonal to every vector of the space Vk =
span(p(0), . . . ,p(k−1)). Since p(0) = r(0), from (4.41) it follows that Vk is
also equal to span(r(0), . . . , r(k−1)). Then, (4.41) implies that Ap(j) ∈ Vj+1
and thus, due to (4.44)

(Ap(j))T r(k+1) = 0, j = 0, 1, . . . , k − 1.

As a consequence, (4.42) holds for j = 0, . . . , k.

The conjugate gradient method (CG) is the method obtained by choosing
the descent directions p(k) given by (4.41) and the acceleration parameter
αk as in (4.39). As a consequence, setting r(0) = b−Ax(0) and p(0) = r(0),
the k-th iteration of the conjugate gradient method takes the following
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FIGURE 4.7. Descent directions for the conjugate gradient method (denoted by
CG, dashed line) and the gradient method (denoted by G, solid line). Notice that
the CG method reaches the solution after two iterations

form

αk =
p(k)T r(k)

p(k)TAp(k)

x(k+1) = x(k) + αkp(k)

r(k+1) = r(k) − αkAp(k)

βk =
(Ap(k))T r(k+1)

(Ap(k))Tp(k)

p(k+1) = r(k+1) − βkp(k).

It can also be shown (see Exercise 13) that the two parameters αk and βk

may be alternatively expressed as

αk =
∥r(k)∥2

2

p(k)TAp(k)
, βk =

∥r(k+1)∥2
2

∥r(k)∥2
2

. (4.45)

We finally notice that, eliminating the descent directions from r(k+1) =
r(k) − αkAp(k), the following recursive three-terms relation is obtained for
the residuals (see Exercise 14)

Ar(k) = − 1
αk

r(k+1) +
(

1
αk

− βk−1

αk−1

)
r(k) +

βk

αk−1
r(k−1). (4.46)

As for the convergence of the CG method, we have the following results.

Theorem 4.11 Let A be a symmetric and positive definite matrix. Any
method which employs conjugate directions to solve (3.2) terminates after
at most n steps, yielding the exact solution.
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Proof. The directions p(0),p(1), . . . ,p(n−1) form an A-orthogonal basis in Rn.
Moreover, since x(k) is optimal with respect to all the directions p(j), j =
0, . . . , k−1, it follows that r(k) is orthogonal to the space Sk−1 = span(p(0),p(1),

. . . ,p(k−1)). As a consequence, r(n) ⊥ Sn−1 = Rn and thus r(n) = 0 which
implies x(n) = x. ✸

Theorem 4.12 Let A be a symmetric and positive definite matrix and
let λ1, λn be its maximum and minimum eigenvalues, respectively. The
conjugate gradient method for solving (3.2) converges after at most n steps.
Moreover, the error e(k) at the k-th iteration (with k < n) is orthogonal to
p(j), for j = 0, . . . , k − 1 and

∥e(k)∥A ≤ 2ck

1 + c2k
∥e(0)∥A, with c =

√
K2(A) − 1

√
K2(A) + 1

. (4.47)

Proof. The convergence of the CG method in n steps is a consequence of The-
orem 4.11.

Let us prove the error estimate, assuming for simplicity that x(0) = 0. Notice
first that, for fixed k

x(k+1) =
k∑

j=0

γjAjb,

for suitable γj ∈ R. Moreover, by construction, x(k+1) is the vector which min-
imizes the A-norm of the error at step k + 1, among all vectors of the form
z =

∑k
j=0 δjA

jb = pk(A)b, where pk(ξ) =
∑k

j=0 δjξ
j is a polynomial of degree

k and pk(A) denotes the corresponding matrix polynomial. As a consequence

∥e(k+1)∥2
A ≤ (x − z)TA(x − z) = xT qk+1(A)Aqk+1(A)x, (4.48)

where qk+1(ξ) = 1 − pk(ξ)ξ ∈ P
0,1
k+1, being P

0,1
k+1 = {q ∈ Pk+1 : q(0) = 1} and

qk+1(A) the associated matrix polynomial. From (4.48) we get

∥e(k+1)∥2
A = min

qk+1∈P
0,1
k+1

xT qk+1(A)Aqk+1(A)x. (4.49)

Since A is symmetric positive definite, there exists an orthogonal matrix Q
such that A = QΛQT with Λ = diag(λ1, . . . ,λn). Noticing that qk+1(A) =
Qqk+1(Λ)QT , we get from (4.49)

∥e(k+1)∥2
A = min

qk+1∈P
0,1
k+1

xTQqk+1(Λ)QTQΛQTQqk+1(Λ)QTx

= min
qk+1∈P

0,1
k+1

xTQqk+1(Λ)Λqk+1(Λ)QTx

= min
qk+1∈P

0,1
k+1

yTdiag(qk+1(λi)λiqk+1(λi))y

= min
qk+1∈P

0,1
k+1

n∑

i=1

y2
i λi(qk+1(λi))2
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having set y = Qx. Thus, we can conclude that

∥e(k+1)∥2
A ≤

[

min
qk+1∈P

0,1
k+1

max
λi∈σ(A)

(qk+1(λi))2
]

n∑

i=1

y2
i λi.

Recalling that
n∑

i=1

y2
i λi = ∥e(0)∥2

A, we have

∥e(k+1)∥A

∥e(0)∥A
≤ min

qk+1∈P
0,1
k+1

max
λi∈σ(A)

|qk+1(λi)|.

Let us now recall the following property

Property 4.6 The problem of minimizing max
λn≤z≤λ1

|q(z)| over the space

P
0,1
k+1([λn,λ1]) admits a unique solution, given by the polynomial

pk+1(ξ) = Tk+1

(
λ1 + λn − 2ξ

λ1 − λn

)
/Ck+1, ξ ∈ [λn,λ1],

where Ck+1 = Tk+1(λ1+λn
λ1−λn

) and Tk+1 is the Chebyshev polynomial of degree k+1
(see Section 10.10). The value of the minimum is 1/Ck+1.

Using this property we get

∥e(k+1)∥A

∥e(0)∥A
≤ 1

Tk+1

(
λ1 + λn

λ1 − λn

)

from which the thesis follows since in the case of a symmetric positive definite
matrix

1
Ck+1

=
2ck+1

1 + c2(k+1) .

✸

The generic k-th iteration of the conjugate gradient method is well defined
only if the descent direction p(k) is non null. Besides, if p(k) = 0, then the
iterate x(k) must necessarily coincide with the solution x of the system.
Moreover, irrespectively of the choice of the parameters βk, one can show
(see [Axe94], p. 463) that the sequence x(k) generated by the CG method
is such that either x(k) ̸= x, p(k) ̸= 0, αk ̸= 0 for any k, or there must exist
an integer m such that x(m) = x, where x(k) ̸= x, p(k) ̸= 0 and αk ̸= 0 for
k = 0, 1, . . . ,m− 1.

The particular choice made for βk in (4.45) ensures that m ≤ n. In ab-
sence of rounding errors, the CG method can thus be regarded as being a
direct method, since it terminates after a finite number of steps. However,
for matrices of large size, it is usually employed as an iterative scheme,
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where the iterations are stopped when the error gets below a fixed toler-
ance. In this respect, the dependence of the error reduction factor on the
condition number of the matrix is more favorable than for the gradient
method. We also notice that estimate (4.47) is often overly pessimistic and
does not account for the fact that in this method, unlike what happens for
the gradient method, the convergence is influenced by the whole spectrum
of A, and not only by its extremal eigenvalues.

Remark 4.3 (Effect of rounding errors) The termination property of
the CG method is rigorously valid only in exact arithmetic. The cumulating
rounding errors prevent the descent directions from being A-conjugate and
can even generate null denominators in the computation of coefficients αk

and βk. This latter phenomenon, known as breakdown, can be avoided by
introducing suitable stabilization procedures; in such an event, we speak
about stabilized gradient methods.

Despite the use of these strategies, it may happen that the CG method
fails to converge (in finite arithmetic) after n iterations. In such a case,
the only reasonable possibility is to restart the iterative process, taking
as residual the last computed one. By so doing, the cyclic CG method or
CG method with restart is obtained, for which, however, the convergence
properties of the original CG method are no longer valid. !

4.3.5 The Preconditioned Conjugate Gradient Method
If P is a symmetric and positive definite preconditioning matrix, the pre-
conditioned conjugate gradient method (PCG) consists of applying the CG
method to the preconditioned system

P−1/2AP−1/2y = P−1/2b, with y = P1/2x.

In practice, the method is implemented without explicitly requiring the
computation of P1/2 or P−1/2. After some algebra, the following scheme is
obtained:
given x(0) and setting r(0) = b − Ax(0), z(0) = P−1r(0) e p(0) = z(0), the
k-th iteration reads
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αk =
p(k)T r(k)

p(k)TAp(k)

x(k+1) = x(k) + αkp(k)

r(k+1) = r(k) − αkAp(k)

Pz(k+1) = r(k+1)

βk =
(Ap(k))T z(k+1)

(Ap(k))Tp(k)

p(k+1) = z(k+1) − βkp(k).

The computational cost is increased with respect to the CG method, as
one needs to solve at each step the linear system Pz(k+1) = r(k+1). For this
system the symmetric preconditioners examined in Section 4.3.2 can be
used. The error estimate is the same as for the nonpreconditioned method,
provided to replace the matrix A by P−1A.

In Program 20 an implementation of the PCG method is reported. For
a description of the input/output parameters, see Program 19.

Program 20 - conjgrad : Preconditioned conjugate gradient method

function [x, error, niter, flag] = conjgrad(A, x, b, P, maxit, tol)
flag = 0; niter = 0; bnrm2 = norm( b );
if ( bnrm2 == 0.0 ), bnrm2 = 1.0; end
r = b - A*x; error = norm( r ) / bnrm2;
if ( error < tol ) return, end
for niter = 1:maxit

z = P \ r; rho = (r’*z);
if niter > 1

beta = rho / rho1; p = z + beta*p;
else

p = z;
end
q = A*p; alpha = rho / (p’*q );
x = x + alpha * p; r = r - alpha*q;
error = norm( r ) / bnrm2;
if ( error <= tol ), break, end
rho1 = rho;

end
if ( error > tol ) flag = 1; end
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Example 4.7 Let us consider again the linear system of Example 4.6. The CG
method has been run with the same input data as in the previous example. It
converges in 3 iterations for m = 16 and in 45 iterations for m = 400. Using the
same preconditioner as in Example 4.6, the number of iterations decreases from
45 to 26, in the case m = 400. •
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FIGURE 4.8. Behavior of the residual, normalized to the right-hand side, as a
function of the number of iterations for the conjugate gradient method applied
to the systems of Example 4.6 in the case m = 400. The curve in dashed line
refers to the non preconditioned method, while the curve in solid line refers to
the preconditioned one

4.3.6 The Alternating-Direction Method
Assume that A = A1+A2, with A1 and A2 symmetric and positive definite.
The alternating direction method (ADI), as introduced by Peaceman and
Rachford [PJ55], is an iterative scheme for (3.2) which consists of solving
the following systems ∀k ≥ 0

(I + α1A1)x(k+1/2) = (I − α1A2)x(k) + α1b,

(I + α2A2)x(k+1) = (I − α2A1)x(k+1/2) + α2b
(4.50)

where α1 and α2 are two real parameters. The ADI method can be cast in
the form (4.2) setting

B = (I + α2A2)−1(I − α2A1)(I + α1A1)−1(I − α1A2),

f =
[
α1(I − α2A1)(I + α1A1)−1 + α2I

]
b.

Both B and f depend on α1 and α2. The following estimate holds

ρ(B) ≤ max
i=1,... ,n

∣∣∣∣∣
1 − α2λ

(1)
i

1 + α1λ
(1)
i

∣∣∣∣∣ max
i=1,... ,n

∣∣∣∣∣
1 − α1λ

(2)
i

1 + α2λ
(2)
i

∣∣∣∣∣ ,
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where λ(i)
1 and λ(i)

2 , for i = 1, . . . , n, are the eigenvalues of A1 and A2,
respectively. The method converges if ρ(B) < 1, which is always verified if
α1 = α2 = α > 0. Moreover (see [Axe94]) if γ ≤ λ(j)

i ≤ δ ∀i = 1, . . . , n,
∀j = 1, 2, for suitable γ and δ then the ADI method converges with the
choice α1 = α2 = 1/

√
δγ, provided that γ/δ tends to 0 as the size of A

grows. In such an event the corresponding spectral radius satisfies

ρ(B) ≤
(

1 −
√
γ/δ

1 +
√
γ/δ

)2

.

4.4 Methods Based on Krylov Subspace Iterations

In this section we introduce iterative methods based on Krylov subspace
iterations. For the proofs and further analysis, we refer to [Saa96], [Axe94]
and [Hac94].

Consider the Richardson method (4.24) with P=I; the residual at the
k-th step can be related to the initial residual as

r(k) =
k−1∏

j=0

(I − αjA)r(0) (4.51)

so that r(k) = pk(A)r(0), where pk(A) is a polynomial in A of degree k. If
we introduce the space

Km(A;v) = span
{
v,Av, . . . ,Am−1v

}
, (4.52)

it immediately appears from (4.51) that r(k) ∈ Kk+1(A; r(0)). The space
defined in (4.52) is called the Krylov subspace of order m. It is a subspace
of the set spanned by all the vectors u ∈ Rn that can be written as u =
pm−1(A)v, where pm−1 is a polynomial in A of degree ≤ m− 1.

In an analogous manner as for (4.51), it is seen that the iterate x(k) of
the Richardson method is given by

x(k) = x(0) +
k−1∑

j=0

αjr(j)

so that x(k) belongs to the following space

Wk =
{
v = x(0) + y, y ∈ Kk(A; r(0))

}
. (4.53)

Notice also that
∑k−1

j=0 αjr(j) is a polynomial in A of degree less than k−1.
In the non preconditioned Richardson method we are thus looking for an
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approximate solution to x in the space Wk. More generally, we can think
of devising methods that search for approximate solutions of the form

x(k) = x(0) + qk−1(A)r(0), (4.54)

where qk−1 is a polynomial selected in such a way that x(k) be, in a sense
that must be made precise, the best approximation of x in Wk. A method
that looks for a solution of the form (4.54) with Wk defined as in (4.53) is
called a Krylov method.

A first question concerning Krylov subspace iterations is whether the
dimension of Km(A;v) increases as the order m grows. A partial answer is
provided by the following result.

Property 4.7 Let A ∈ Rn×n and v ∈ Rn. The Krylov subspace Km(A;v)
has dimension equal to m iff the degree of v with respect to A, denoted by
degA(v), is not less than m, where the degree of v is defined as the minimum
degree of a monic non null polynomial p in A, for which p(A)v = 0.

The dimension of Km(A;v) is thus equal to the minimum between m and
the degree of v with respect to A and, as a consequence, the dimension
of the Krylov subspaces is certainly a nondecreasing function of m. Notice
that the degree of v cannot be greater than n due to the Cayley-Hamilton
Theorem (see Section 1.7).

Example 4.8 Consider the matrix A = tridiag4(−1, 2,−1). The vector v =
(1, 1, 1, 1)T has degree 2 with respect to A since p2(A)v = 0 with p2(A) = I4 −
3A+A2, while there is no monic polynomial p1 of degree 1 for which p1(A)v = 0.
As a consequence, all Krylov subspaces from K2(A;v) on, have dimension equal
to 2. The vector w = (1, 1,−1, 1)T has, instead, degree 4 with respect to A. •

For a fixed m, it is possible to compute an orthonormal basis for Km(A;v)
using the so-called Arnoldi algorithm.

Setting v1 = v/∥v∥2, this method generates an orthonormal basis {vi}
for Km(A;v1) using the Gram-Schmidt procedure (see Section 3.4.3). For
k = 1, . . . ,m, the Arnoldi algorithm computes

hik = vT
i Avk, i = 1, 2, . . . , k,

wk = Avk −
k∑

i=1

hikvi, hk+1,k = ∥wk∥2.
(4.55)

If wk = 0 the process terminates and in such a case we say that a breakdown
of the algorithm has occurred; otherwise, we set vk+1 = wk/∥wk∥2 and the
algorithm restarts, incrementing k by 1.
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It can be shown that if the method terminates at the step m then the
vectors v1, . . . ,vm form a basis for Km(A;v). In such a case, if we denote
by Vm ∈ Rn×m the matrix whose columns are the vectors vi, we have

VT
mAVm = Hm, VT

m+1AVm = Ĥm, (4.56)

where Ĥm ∈ R(m+1)×m is the upper Hessenberg matrix whose entries hij

are given by (4.55) and Hm ∈ Rm×m is the restriction of Ĥm to the first m
rows and m columns.

The algorithm terminates at an intermediate step k < m iff degA(v1) =
k. As for the stability of the procedure, all the considerations valid for the
Gram-Schmidt method hold. For more efficient and stable computational
variants of (4.55), we refer to [Saa96].

The functions arnoldi alg and GSarnoldi, invoked by Program 21, pro-
vide an implementation of the Arnoldi algorithm. In output, the columns
of V contain the vectors of the generated basis, while the matrix H stores
the coefficients hik computed by the algorithm. If m steps are carried out,
V = Vm and H(1 : m, 1 : m) = Hm.

Program 21 - arnoldi alg : The Arnoldi algorithm

function [V,H]=arnoldi alg(A,v,m)
v=v/norm(v,2); V=[v1]; H=[]; k=0;
while k <= m-1

[k,V,H] = GSarnoldi(A,m,k,V,H);
end

function [k,V,H]=GSarnoldi(A,m,k,V,H)
k=k+1; H=[H,V(:,1:k)’*A*V(:,k)];
s=0; for i=1:k, s=s+H(i,k)*V(:,i); end
w=A*V(:,k)-s; H(k+1,k)=norm(w,2);
if ( H(k+1,k) <= eps ) & ( k < m )

V=[V,w/H(k+1,k)];
else

k=m+1;
end

Having introduced an algorithm for generating the basis for a Krylov sub-
space of any order, we can now solve the linear system (3.2) by a Krylov
method. As already noticed, for all of these methods the iterate x(k) is
always of the form (4.54) and, for a given r(0), the vector x(k) is selected as
being the unique element in Wk which satisfies a criterion of minimal dis-
tance from x. Thus, the feature distinguishing two different Krylov methods
is the criterion for selecting x(k).

The most natural idea consists of searching for x(k) ∈ Wk as the vector
which minimizes the Euclidean norm of the error. This approach, how-
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ever, does not work in practice since x(k) would depend on the (unknown)
solution x.

Two alternative strategies can be pursued:

1. compute x(k) ∈ Wk enforcing that the residual r(k) is orthogonal to
any vector in Kk(A; r(0)), i.e., we look for x(k) ∈ Wk such that

vT (b − Ax(k)) = 0 ∀v ∈ Kk(A; r(0)); (4.57)

2. compute x(k) ∈ Wk minimizing the Euclidean norm of the residual
∥r(k)∥2, i.e.

∥b − Ax(k)∥2 = min
v∈Wk

∥b − Av∥2. (4.58)

Satisfying (4.57) leads to the Arnoldi method for linear systems (more
commonly known as FOM, full orthogonalization method), while satisfying
(4.58) yields the GMRES (generalized minimum residual) method.

In the two forthcoming sections we shall assume that k steps of the
Arnoldi algorithm have been carried out, in such a way that an orthonormal
basis for Kk(A; r(0)) has been generated and stored into the column vectors
of the matrix Vk with v1 = r(0)/∥r(0)∥2. In such a case the new iterate x(k)

can always be written as

x(k) = x(0) + Vkz(k), (4.59)

where z(k) must be selected according to a fixed criterion.

4.4.1 The Arnoldi Method for Linear Systems
Let us enforce that r(k) be orthogonal to Kk(A; r(0)) by requiring that
(4.57) holds for all the basis vectors vi, i.e.

VT
k r(k) = 0. (4.60)

Since r(k) = b−Ax(k) with x(k) of the form (4.59), relation (4.60) becomes

VT
k (b − Ax(0)) − VT

k AVkz(k) = VT
k r(0) − VT

k AVkz(k) = 0. (4.61)

Due to the orthonormality of the basis and the choice of v1, VT
k r(0) =

∥r(0)∥2e1, e1 being the first unit vector of Rm. Recalling (4.56), from (4.61)
it turns out that z(k) is the solution to the linear system

Hkz(k) = ∥r(0)∥2e1. (4.62)

Once z(k) is known, we can compute x(k) from (4.59). Since Hk is an upper
Hessenberg matrix, the linear system in (4.62) can be easily solved, for
instance, resorting to the LU factorization of Hk.
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We notice that the method, if working in exact arithmetic, cannot execute
more than n steps and that it terminates after m < n steps only if a
breakdown in the Arnoldi algorithm occurs. As for the convergence of the
method, the following result holds.

Theorem 4.13 In exact arithmetic the Arnoldi method yields the solution
of (3.2) after at most n iterations.

Proof. If the method terminates at the n-th iteration, then it must necessarily
be x(n) = x since Kn(A; r(0)) = Rn. Conversely, if a breakdown occurs after m
iterations, for a suitable m < n, then x(m) = x. Indeed, inverting the first relation
in (4.56), we get

x(m) = x(0) + Vmz(m) = x(0) + VmH−1
m VT

mr(0) = A−1b.

✸

In its naive form, FOM does not require an explicit computation of the
solution or the residual, unless a breakdown occurs. Therefore, monitoring
its convergence (by computing, for instance, the residual at each step) might
be computationally expensive. The residual, however, is available without
explicitly requiring to compute the solution since at the k-th step we have

∥b − Ax(k)∥2 = hk+1,k|eTk zk|

and, as a consequence, one can decide to stop the method if

hk+1,k|eTk zk|/∥r(0)∥2 ≤ ε (4.63)

ε > 0 being a fixed tolerance.

The most relevant consequence of Theorem 4.13 is that FOM can be
regarded as a direct method, since it yields the exact solution after a finite
number of steps. However, this fails to hold when working in floating point
arithmetic due to the cumulating rounding errors. Moreover, if we also
account for the high computational effort, which, for a number of m steps
and a sparse matrix of order n with nz nonzero entries, is of the order of
2(nz + mn) flops, and the large memory occupation needed to store the
matrix Vm, we conclude that the Arnoldi method cannot be used in the
practice, except for small values of m.

Several remedies to this drawback are available, one of which consisting
of preconditioning the system (using, for instance, one of the precondition-
ers proposed in Section 4.3.2). Alternatively, we can also introduce some
modified versions of the Arnoldi method following two approaches:

1. no more than m consecutive steps of FOM are taken, m being a small
fixed number (usually, m ≃ 10). If the method fails to converge, we set
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x(0) = x(m) and FOM is repeated for other m steps. This procedure
is carried out until convergence is achieved. This method, known as
FOM(m) or FOM with restart, reduces the memory occupation, only
requiring to store matrices with m columns at most;

2. a limitation is set on the number of directions involved in the orthog-
onalization procedure in the Arnoldi algorithm, yielding the incom-
plete orthogonalization method or IOM. In the practice, the k-th step
of the Arnoldi algorithm generates a vector vk+1 which is orthonor-
mal, at most, to the q preceding vectors, where q is fixed according
to the amount of available memory.

It is worth noticing that Theorem 4.13 does no longer hold for the methods
stemming from the two strategies above.

Program 22 provides an implementation of the FOM algorithm with a
stopping criterion based on the residual (4.63). The input parameter m is
the maximum admissible size of the Krylov subspace that is being gener-
ated and represents, as a consequence, the maximum admissible number of
iterations.

Program 22 - arnoldi met : The Arnoldi method for linear systems

function [x,k]=arnoldi met(A,b,m,x0,toll)
r0=b-A*x0; nr0=norm(r0,2);
if nr0 ˜= 0

v1=r0/nr0; V=[v1]; H=[]; k=0; istop=0;
while (k <= m-1) & (istop == 0)
[k,V,H] = GSarnoldi(A,m,k,V,H);
[nr,nc]=size(H); e1=eye(nc);
y=(e1(:,1)’*nr0)/H(1:nc,:);
residual = H(nr,nc)*abs(y*e1(:,nc));
if residual <= toll
istop = 1; y=y’;

end
end
if istop==0
[nr,nc]=size(H); e1=eye(nc);
y=(e1(:,1)’*nr0)/H(1:nc,:); y=y’;

end
x=x0+V(:,1:nc)*y;

else
x=x0;

end

Example 4.9 Let us solve the linear system Ax = b with A = tridiag100(−1, 2,
−1) and b such that the solution is x = 1T . The initial vector is x(0) = 0T

and toll=10−10. The method converges in 50 iterations and Figure 4.9 reports
its convergence history. Notice the sudden, dramatic, reduction of the residual,
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which is a typical warning that the last generated subspace Wk is sufficiently rich
to contain the exact solution of the system. •
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FIGURE 4.9. The behavior of the residual as a function of the number of itera-
tions for the Arnoldi method applied to the linear system in Example 4.9

4.4.2 The GMRES Method
This method is characterized by selecting x(k) in such a way to minimize
the Euclidean norm of the residual at each k-th step. Recalling (4.59) we
have

r(k) = r(0) − AVkz(k), (4.64)

but, since r(0) = v1∥r(0)∥2 and (4.56) holds, relation (4.64) becomes

r(k) = Vk+1(∥r(0)∥2e1 − Ĥkz(k)), (4.65)

where e1 is the first unit vector of Rk+1. Therefore, in the GMRES method
the solution at step k can be computed through (4.59) as

z(k) chosen in such a way to minimize ∥ ∥r(0)∥2e1 − Ĥkz(k)∥2 (4.66)

(the matrix Vk+1 appearing in (4.65) does not change the value of ∥ · ∥2
since it is orthogonal). Having to solve at each step a least-squares problem
of size k, the GMRES method will be the more effective the smaller is
the number of iterations. Exactly as for the Arnoldi method, the GMRES
method terminates at most after n iterations, yielding the exact solution.
Premature stops are due to a breakdown in the orthonormalization Arnoldi
algorithm. More precisely, we have the following result.

Property 4.8 A breakdown occurs for the GMRES method at a step m
(with m < n) iff the computed solution x(m) coincides with the exact solu-
tion to the system.
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A basic implementation of the GMRES method is provided in Program 23.
This latter requires in input the maximum admissible size m for the Krylov
subspace and the tolerance toll on the Euclidean norm of the residual
normalized to the initial residual. This implementation of the method com-
putes the solution x(k) at each step in order to evaluate the residual, with
a consequent increase of the computational effort.

Program 23 - GMRES : The GMRES method for linear systems

function [x,k]=gmres(A,b,m,toll,x0)
r0=b-A*x0; nr0=norm(r0,2);
if nr0 ˜= 0
v1=r0/nr0; V=[v1]; H=[]; k=0; residual=1;
while k <= m-1 & residual > toll,
[k,V,H] = GSarnoldi(A,m,k,V,H);
[nr,nc]=size(H); y=(H’*H) \ (H’*nr0*[1;zeros(nr-1,1)]);
x=x0+V(:,1:nc)*y; residual = norm(b-A*x,2)/nr0;

end
else
x=x0;

end

To improve the efficiency of the GMRES algorithm it is necessary to devise
a stopping criterion which does not require the explicit evaluation of the
residual at each step. This is possible, provided that the linear system with
upper Hessenberg matrix Ĥk is appropriately solved.

In practice, Ĥk is transformed into an upper triangular matrix Rk ∈
R(k+1)×k with rk+1,k = 0 such that QT

k Rk = Ĥk, where Qk is a matrix
obtained as the product of k Givens rotations (see Section 5.6.3). Then,
since Qk is orthogonal, it can be seen that minimizing ∥∥r(0)∥2e1−Ĥkz(k)∥2
is equivalent to minimize ∥fk − Rkz(k)∥2, with fk = Qk∥r(0)∥2e1. It can
also be shown that the k + 1-th component of fk is, in absolute value, the
Euclidean norm of the residual at the k-th step.

As FOM, the GMRES method entails a high computational effort and
a large amount of memory, unless convergence occurs after few iterations.
For this reason, two variants of the algorithm are available, one named
GMRES(m) and based on the restart after m steps, the other named Quasi-
GMRES or QGMRES and based on stopping the Arnoldi orthogonalization
process. It is worth noting that these two methods do not enjoy Property
4.8.

Remark 4.4 (Projection methods) Denoting by Yk and Lk two generic
m-dimensional subspaces of Rn, we call projection method a process which
generates an approximate solution x(k) at step k, enforcing that x(k) ∈ Yk
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and that the residual r(k) = b−Ax(k) be orthogonal to Lk. If Yk = Lk, the
projection process is said to be orthogonal, oblique otherwise (see [Saa96]).

The Krylov subspace iterations can be regarded as being projection
methods. For instance, the Arnoldi method is an orthogonal projection
method where Lk = Yk = Kk(A; r(0)), while the GMRES method is an
oblique projection method with Yk = Kk(A; r(0)) and Lk = AYk. It is
worth noticing that some classical methods introduced in previous sections
fall into this category. For example, the Gauss-Seidel method is an orthogo-
nal projection method where at the k-th step Kk(A; r(0)) = span(ek), with
k = 1, . . . , n. The projection steps are carried out cyclically from 1 to n
until convergence. !

4.4.3 The Lanczos Method for Symmetric Systems
The Arnoldi algorithm simplifies considerably if A is symmetric since the
matrix Hm is tridiagonal and symmetric (indeed, from (4.56) it turns out
that Hm must be symmetric, so that, being upper Hessenberg by construc-
tion, it must necessarily be tridiagonal). In such an event the method is
more commonly known as the Lanczos algorithm. For ease of notation, we
henceforth let αi = hii and βi = hi−1,i.

An implementation of the Lanczos algorithm is provided in Program 24.
Vectors alpha and beta contain the coefficients αi and βi computed by the
scheme.

Program 24 - Lanczos : The Lanczos method for linear systems

function [V,alpha,beta]=lanczos(A,m)
n=size(A); V=[0*[1:n]’,[1,0*[1:n-1]]’];
beta(1)=0; normb=1; k=1;
while k <= m & normb >= eps
vk = V(:,k+1); w = A*vk-beta(k)*V(:,k);
alpha(k)= w’*vk; w = w - alpha(k)*vk
normb = norm(w,2);
if normb ˜= 0
beta(k+1)=normb; V=[V,w/normb]; k=k+1;

end
end
[n,m]=size(V); V=V(:,2:m-1);
alpha=alpha(1:n); beta=beta(2:n);

The algorithm, which is far superior to Arnoldi’s one as far as memory
saving is concerned, is not numerically stable since only the first generated
vectors are actually orthogonal. For this reason, several stable variants have
been devised.

As in previous cases, also the Lanczos algorithm can be employed as a
solver for linear systems, yielding a symmetric form of the FOM method. It
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can be shown that r(k) = γkvk+1, for a suitable γk (analogously to (4.63))
so that the residuals are all mutually orthogonal.

Remark 4.5 (The conjugate gradient method) If A is symmetric and
positive definite, starting from the Lanczos method for linear systems it is
possible to derive the conjugate gradient method already introduced in Sec-
tion 4.3.4 (see [Saa96]). The conjugate gradient method is a variant of the
Lanczos method where the orthonormalization process remains incomplete.

As a matter of fact, the A-conjugate directions of the CG method can
be characterized as follows. If we carry out at the generic k-th step the
LU factorization Hk = LkUk, with Lk (Uk) lower (upper) bidiagonal, the
iterate x(k) of the Lanczos method for systems reads

x(k) = x(0) + PkL−1
k ∥r(0)∥2e1,

with Pk = VkU−1
k . The column vectors of Pk are mutually A-conjugate.

Indeed, PT
k APk is symmetric and bidiagonal since

PT
k APk = U−T

k HkU−1
k = U−T

k Lk,

so that it must necessarily be diagonal. As a result, pT
j Api = 0 if i ̸= j,

having denoted by pi the i-th column vector of matrix Pk. !

As happens for the FOM method, also the GMRES method simplifies
if A is symmetric. The resulting scheme is called conjugate residuals or
CR method since it enjoys the property that the residuals are mutually
A-conjugate. Variants of this method are the generalized conjugate resid-
uals method (GCR) and the method commonly known as ORTHOMIN
(obtained by truncation of the orthonormalization process as done for the
IOM method).

4.5 The Lanczos Method for Unsymmetric Systems

The Lanczos orthogonalization process can be extended to deal with un-
symmetric matrices through a bi-orthogonalization procedure as follows.
Two bases, {vi}mi=1 and {zi}mi=1, are generated for the subspaces Km(A;v1)
and Km(AT ; z1), respectively, with zT1 v1 = 1, such that

zTi vj = δij , i, j = 1, . . . ,m. (4.67)

Two sets of vectors satisfying (4.67) are said to be bi-orthogonal and can
be obtained through the following algorithm: setting β1 = γ1 = 0 and z0 =
v0 = 0T , at the generic k-th step, with k = 1, . . . ,m, we set αk = zTk Avk,
then we compute

ṽk+1 = Avk − αkvk − βkvk−1, z̃k+1 = AT zk − αkzk − γkzk−1.
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If γk+1 =
√
|z̃Tk+1ṽk+1| = 0 the algorithm is stopped, otherwise we set

βk+1 = z̃Tk+1ṽk+1/γk+1 and generate two new vectors in the basis as

vk+1 = ṽk+1/γk+1, zk+1 = z̃k+1/βk+1.

If the process terminates after m steps, denoting by Vm and Zm the ma-
trices whose columns are the vectors of the basis that has been generated,
we have

ZT
mAVm = Tm,

Tm being the following tridiagonal matrix

Tm =

⎡

⎢⎢⎢⎢⎢⎣

α1 β2 0
γ2 α2

. . .
. . . . . . βm

0 γm αm

⎤

⎥⎥⎥⎥⎥⎦
.

As in the symmetric case, the bi-orthogonalization Lanczos algorithm can
be utilized to solve the linear system (3.2). For this purpose, for m fixed,
once the bases {vi}mi=1 and {zi}mi=1 have been constructed, it suffices to set

x(m) = x(0) + Vmy(m),

where y(m) is the solution to the linear system Tmy(m) = ∥r(0)∥2e1. It
is also possible to introduce a stopping criterion based on the residual,
without computing it explicitly, since

∥r(m)∥2 = |γm+1eTmym| ∥vm+1∥2.

An implementation of the Lanczos method for unsymmetric systems is
given in Program 25. If a breakdown of the algorithm occurs, i.e., if γk+1 =
0, the method stops returning in output a negative value of the variable
niter which denotes the number of iterations necessary to reduce the initial
residual by a factor toll.
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Program 25 - Lanczosnosym : The Lanczos method for unsymmetric
systems
function [xk,nres,niter]=lanczosnosym(A,b,x0,m,toll)
r0=b-A*x0; nres0=norm(r0,2);
if nres0 ˜= 0
V=r0/nres0; Z=V; gamma(1)=0; beta(1)=0; k=1; nres=1;
while k <= m & nres > toll

vk=V(:,k); zk=Z(:,k);
if k==1, vk1=0*vk; zk1=0*zk;
else, vk1=V(:,k-1); zk1=Z(:,k-1); end
alpha(k)=zk’*A*vk;
tildev=A*vk-alpha(k)*vk-beta(k)*vk1;
tildez=A’*zk-alpha(k)*zk-gamma(k)*zk1;
gamma(k+1)=sqrt(abs(tildez’*tildev));
if gamma(k+1) == 0, k=m+2;
else
beta(k+1)=tildez’*tildev/gamma(k+1);
Z=[Z,tildez/beta(k+1)];
V=[V,tildev/gamma(k+1)];

end
if k˜=m+2
if k==1
Tk = alpha;

else
Tk=diag(alpha)+diag(beta(2:k),1)+diag(gamma(2:k),-1);

end
yk=Tk \ (nres0*[1,0*[1:k-1]]’);
xk=x0+V(:,1:k)*yk;
nres=abs(gamma(k+1)*[0*[1:k-1],1]*yk)*norm(V(:,k+1),2)/nres0;
k=k+1;

end
end
else
x=x0;

end
if k==m+2, niter=-k; else, niter=k-1; end

Example 4.10 Let us solve the linear system with matrix A = tridiag100(−0.5, 2,
−1) and right-side b selected in such a way that the exact solution is x = 1T .
Using Program 25 with toll= 10−13 and a randomly generated x0, the algorithm
converges in 59 iterations. Figure 4.10 shows the convergence history reporting
the graph of ∥r(k)∥2/∥r(0)∥2 as a function of the number of iterations. •

We conclude recalling that some variants of the unsymmetric Lanczos
method have been devised, that are characterized by a reduced compu-
tational cost. We refer the interested reader to the bibliography below for a
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FIGURE 4.10. Graph of the residual normalized to the initial residual as a func-
tion of the number of iterations for the Lanczos method applied to the system in
Example 4.10

complete description of the algorithms and to the programs included in the
MATLAB version of the public domain library templates for their efficient
implementation [BBC+94].

1. The bi-conjugate gradient method (BiCG): it can be derived by the
unsymmetric Lanczos method in the same way as the conjugate gra-
dient method is obtained from the FOM method [Fle75];

2. the Quasi-Minimal Residual method (QMR): it is analogous to the
GMRES method, the only difference being the fact that the Arnoldi
orthonormalization process is replaced by the Lanczos bi-orthogona-
lization;

3. the conjugate gradient squared method (CGS): the matrix-vector prod-
ucts involving the transposed matrix AT are removed. A variant of
this method, known as BiCGStab, is characterized by a more reg-
ular convergence than provided by the CGS method (see [Son89],
[vdV92]).

4.6 Stopping Criteria

In this section we address the problem of how to estimate the error intro-
duced by an iterative method and the number kmin of iterations needed to
reduce the initial error by a factor ε.
In practice, kmin can be obtained by estimating the convergence rate of
(4.2), i.e. the rate at which ∥e(k)∥ → 0 as k tends to infinity. From (4.4),
we get

∥e(k)∥
∥e(0)∥

≤ ∥Bk∥,
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so that ∥Bk∥ is an estimate of the reducing factor of the norm of the error
after k steps. Typically, the iterative process is continued until ∥e(k)∥ has
reduced with respect to ∥e(0)∥ by a certain factor ε < 1, that is

∥e(k)∥ ≤ ε∥e(0)∥. (4.68)

If we assume that ρ(B) < 1, then Property 1.13 implies that there exists
a suitable matrix norm ∥ · ∥ such that ∥B∥ < 1. As a consequence, ∥Bk∥
tends to zero as k tends to infinity, so that (4.68) can be satisfied for a
sufficiently large k such that ∥Bk∥ ≤ ε holds. However, since ∥Bk∥ < 1, the
previous inequality amounts to requiring that

k ≥ log(ε)/
(

1
k

log ∥Bk∥
)

= − log(ε)/Rk(B), (4.69)

where Rk(B) is the average convergence rate introduced in Definition 4.2.
From a practical standpoint, (4.69) is useless, being nonlinear in k; if, how-
ever, the asymptotic convergence rate is adopted, instead of the average
one, the following estimate for kmin is obtained

kmin ≃ − log(ε)/R(B). (4.70)

This latter estimate is usually rather optimistic, as confirmed by Example
4.11.

Example 4.11 For the matrix A3 of Example 4.2, in the case of Jacobi method,
letting ε = 10−5, condition (4.69) is satisfied with kmin = 16, while (4.70) yields
kmin = 15, with a good agreement between the two estimates. Instead, on the
matrix A4 of Example 4.2, we find that (4.69) is satisfied with kmin = 30, while
(4.70) yields kmin = 26. •

4.6.1 A Stopping Test Based on the Increment
From the recursive error relation e(k+1) = Be(k), we get

∥e(k+1)∥ ≤ ∥B∥∥e(k)∥. (4.71)

Using the triangular inequality we get

∥e(k+1)∥ ≤ ∥B∥(∥e(k+1)∥ + ∥x(k+1) − x(k)∥),

from which it follows that

∥x − x(k+1)∥ ≤ ∥B∥
1 − ∥B∥∥x

(k+1) − x(k)∥. (4.72)

In particular, taking k = 0 in (4.72) and applying recursively (4.71) we also
get

∥x − x(k+1)∥ ≤ ∥B∥k+1

1 − ∥B∥∥x
(1) − x(0)∥,
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which can be used to estimate the number of iterations necessary to fulfill
the condition ∥e(k+1)∥ ≤ ε, for a given tolerance ε.

In the practice, ∥B∥ can be estimated as follows: since

x(k+1) − x(k) = −(x − x(k+1)) + (x − x(k)) = B(x(k) − x(k−1)),

a lower bound of ∥B∥ is provided by c = δk+1/δk, where δj+1 = ∥x(j+1) −
x(j)∥, with j = k − 1, k. Replacing ∥B∥ by c, the right-hand side of (4.72)
suggests using the following indicator for ∥e(k+1)∥

ϵ(k+1) =
δ2
k+1

δk − δk+1
. (4.73)

Due to the kind of approximation of ∥B∥ that has been used, the reader is
warned that ϵ(k+1) should not be regarded as an upper bound for ∥e(k+1)∥.
However, often ϵ(k+1) provides a reasonable indication about the true error
behavior, as we can see in the following example.

Example 4.12 Consider the linear system Ax=b with

A =

⎡

⎣
4 1 1
2 −9 0
0 −8 −6

⎤

⎦ , b =

⎡

⎣
6

−7
−14

⎤

⎦ ,

which admits the unit vector as exact solution. Let us apply the Jacobi method
and estimate the error at each step by using (4.73). Figure 4.11 shows an ac-
ceptable agreement between the behavior of the error ∥e(k+1)∥∞ and that of its
estimate ϵ(k+1). •
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FIGURE 4.11. Absolute error (in solid line) versus the error estimated by (4.73)
(dashed line). The number of iterations is indicated on the x-axis
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4.6.2 A Stopping Test Based on the Residual
A different stopping criterion consists of continuing the iteration until
∥r(k)∥ ≤ ε, ε being a fixed tolerance. Note that

∥x − x(k)∥ = ∥A−1b − x(k)∥ = ∥A−1r(k)∥ ≤ ∥A−1∥ ε.

Considering instead a normalized residual, i.e. stopping the iteration as
soon as ∥r(k)∥/∥b∥ ≤ ε, we obtain the following control on the relative
error

∥x − x(k)∥
∥x∥ ≤ ∥A−1∥ ∥r(k)∥

∥x∥ ≤ K(A)∥∥r
(k)∥
∥b∥ ≤ εK(A).

In the case of preconditioned methods, the residual is replaced by the pre-
conditioned residual, so that the previous criterion becomes

∥P−1r(k)∥
∥P−1r(0)∥

≤ ε,

where P is the preconditioning matrix.

4.7 Applications

In this section we consider two examples arising in electrical network anal-
ysis and structural mechanics which lead to the solution of large sparse
linear systems.

4.7.1 Analysis of an Electric Network
We consider a purely resistive electric network (shown in Figure 4.12, left)
which consists of a connection of n stages S (Figure 4.12, right) through
the series resistances R. The circuit is completed by the driving current
generator I0 and the load resistance RL. As an example, a purely resistive
network is a model of a signal attenuator for low-frequency applications
where capacitive and inductive effects can be neglected. The connecting
points between the electrical components will be referred to henceforth as
nodes and are progressively labeled as drawn in the figure. For n ≥ 1, the
total number of nodes is 4n. Each node is associated with a value of the
electric potential Vi, i = 0, . . . , 4n, which are the unknowns of the problem.

The nodal analysis method is employed to solve the problem. Precisely,
the Kirchhoff current law is written at any node of the network leading
to the linear system ỸṼ = Ĩ, where Ṽ ∈ RN+1 is the vector of nodal
potentials, Ĩ ∈ RN+1 is the load vector and the entries of the matrix Ỹ ∈
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FIGURE 4.12. Resistive electric network (left) and resistive stage S (right)

R(N+1)×(N+1), for i, j = 0, . . . , 4n, are given by

Ỹij =

⎧
⎪⎨

⎪⎩

∑

j∈k(i)

Gij , for i = j,

−Gij , for i ̸= j,

where k(i) is the index set of the neighboring nodes of node i and Gij =
1/Rij is the admittance between node i and node j, provided Rij denotes
the resistance between the two nodes i and j. Since the potential is defined
up to an additive constant, we arbitrarily set V0 = 0 (ground potential). As
a consequence, the number of independent nodes for potential difference
computations is N = 4n − 1 and the linear system to be solved becomes
YV = I, where Y ∈ RN×N , V ∈ RN and I ∈ RN are obtained eliminating
the first row and column in Ỹ and the first entry in Ṽ and Ĩ, respectively.
The matrix Y is symmetric, diagonally dominant and positive definite. This
last property follows by noting that

ṼT ỸṼ =
N∑

i=1

GiiV
2
i +

N∑

i,j=1

Gij(Vi − Vj)2,

which is always a positive quantity, being equal to zero only if Ṽ = 0. The
sparsity pattern of Y in the case n = 3 is shown in Figure 4.13 (left) while
the spectral condition number of Y as a function of the number of blocks n
is reported in Figure 4.13 (right). Our numerical computations have been
carried out setting the resistance values equal to 1 Ω while I0 = 1A.

In Figure 4.14 we report the convergence history of several non precondi-
tioned iterative methods in the case n = 5 corresponding to a matrix size of
19× 19. The plots show the Euclidean norms of the residual normalized to
the initial residual. The dashed curve refers to the Gauss-Seidel method, the
dash-dotted line refers to the gradient method, while the solid and circled
lines refer respectively to the conjugate gradient (CG) and SOR method
(with an optimal value of the relaxation parameter ω ≃ 1.76 computed
according to (4.19) since Y is block tridiagonal symmetric positive defi-
nite). The SOR method converges in 109 iterations, while the CG method
converges in 10 iterations.

We have also considered the solution of the system at hand by the conju-
gate gradient (CG) method using the Cholesky version of the ILU(0) and
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FIGURE 4.13. Sparsity pattern of Y for n = 3 (left) and spectral condition
number of Y as a function of n (right)
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FIGURE 4.14. Convergence history of several non preconditioned iterative meth-
ods

MILU(0) preconditioners, where drop tolerances equal to ε = 10−2, 10−3

have been chosen for the MILU(0) preconditioner (see Section 4.3.2). Cal-
culations with both preconditioners have been done using the MATLAB
functions cholinc and michol. Table 4.2 shows the convergence iterations
of the method for n = 5, 10, 20, 40, 80, 160 and for the considered values of
ε. We report in the second column the number of nonzero entries in the
Cholesky factor of matrix Y, in the third column the number of iterations
for the CG method without preconditioning to converge, while the columns
ICh(0) and MICh(0) with ε = 10−2 and ε = 10−3 show the same infor-
mation for the CG method using the incomplete Cholesky and modified
incomplete Cholesky preconditioners, respectively.
The entries in the table are the number of iterations to converge and the
number in the brackets are the nonzero entries of the L-factor of the cor-
responding preconditioners. Notice the decrease of the iterations as ε de-
creases, as expected. Notice also the increase of the number of iterations
with respect to the increase of the size of the problem.
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n nz CG ICh(0) MICh(0) ε = 10−2 MICh(0) ε = 10−3

5 114 10 9 (54) 6 (78) 4 (98)
10 429 20 15 (114) 7 (173) 5 (233)
20 1659 40 23 (234) 10 (363) 6 (503)
40 6519 80 36 (474) 14 (743) 7 (1043)
80 25839 160 62 (954) 21 (1503) 10 (2123)
160 102879 320 110 (1914) 34 (3023) 14 (4283)

TABLE 4.2. Convergence iterations for the preconditioned CG method

4.7.2 Finite Difference Analysis of Beam Bending
Consider the beam clamped at the endpoints that is drawn in Figure 4.15
(left). The structure, of length L, is subject to a distributed load P , varying
along the free coordinate x and expressed in [Kgm−1]. We assume hence-
forth that the beam has uniform rectangular section, of width r and depth
s, momentum of inertia J = rs3/12 and Young’s module E, expressed in
[m4] and [Kgm−2], respectively.
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FIGURE 4.15. Clamped beam (left); convergence histories for the preconditioned
conjugate gradient method in the solution of system (4.76) (right)

The transverse bending of the beam, under the assumption of small dis-
placements, is governed by the following fourth-order differential equation

(EJu′′)′′(x) = P (x), 0 < x < L, (4.74)

where u = u(x) denotes the vertical displacement. The following boundary
conditions (at the endpoints x = 0 and x = L)

u(0) = u(L) = 0, u′(0) = u′(L) = 0, (4.75)

model the effect of the two clampings (vanishing displacements and rota-
tions). To solve numerically the boundary-value problem (4.74)-(4.75), we
use the finite difference method (see Section 10.10.1 and Exercise 11 of
Chapter 12).



178 4. Iterative Methods for Solving Linear Systems

With this aim, let us introduce the discretization nodes xj = jh, with
h = L/Nh and j = 0, . . . , Nh, and substitute at each node xj the fourth-
order derivative with an approximation through centered finite differences.
Letting f(x) = P (x)/(EJ), fj = f(xj) and denoting by ηj the (approx-
imate) nodal displacement of the beam at node xj , the finite difference
discretization of (4.74)-(4.75) is

{
ηj−2 − 4ηj−1 + 6ηj − 4ηj+1 + ηj+2 = h4fj , ∀j = 2, . . . , Nh − 2,

η0 = η1 = ηNh−1 = ηNh = 0.
(4.76)

The null displacement boundary conditions in (4.76) that have been im-
posed at the first and the last two nodes of the grid, require that Nh ≥ 4.
Notice that a fourth-order scheme has been used to approximate the fourth-
order derivative, while, for sake of simplicity, a first-order approximation
has been employed to deal with the boundary conditions (see Section
10.10.1).

The Nh − 3 discrete equations (4.76) yield a linear system of the form
Ax = b where the unknown vector x ∈ RNh−3 and the load vector
b ∈ RNh−3 are given respectively by x = (η2, η3, . . . , ηNh−2)T and b =
(f2, f3, . . . , fNh−2)T , while the coefficient matrix A ∈ R(Nh−3)×(Nh−3) is
pentadiagonal and symmetric, given by A = pentadiagNh−3(1,−4, 6,−4, 1).

The matrix A is symmetric and positive definite. Therefore, to solve
system Ax = b, the SSOR preconditioned conjugated gradient method (see
Section 4.21) and the Cholesky factorization method have been employed.
In the remainder of the section, the two methods are identified by the
symbols (CG) and (CH).

The convergence histories of CG are reported in Figure 4.15 (right),
where the sequences ∥r(k)∥2/∥b(k)∥2, for the values n = 10, 60, 110, are
plotted, r(k) = b − Ax(k) being the residual at the k-th step. The results
have been obtained using Program 20, with toll=10−15 and ω = 1.8 in
(4.22). The initial vector x(0) has been set equal to the null vector.
As a comment to the graphs, it is worth noting that CG has required 7, 33
and 64 iterations to converge, respectively, with a maximum absolute error
of 5 ·10−15 with respect to the solution produced by CH. This latter has an
overall computational cost of 136, 1286 and 2436 flops respectively, to be
compared with the corresponding 3117, 149424 and 541647 flops of method
CG. As for the performances of the SSOR preconditioner, we remark that
the spectral condition number of matrix A is equal to 192, 3.8 · 105 and
4.5 · 106, respectively, while the corresponding values in the preconditioned
case are 65, 1.2 · 104 and 1.3 · 105.
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4.8 Exercises
1. The spectral radius of the matrix

B =
[

a 4
0 a

]

is ρ(B) = a. Check that if 0 < a < 1, then ρ(B) < 1, while ∥Bm∥1/m
2 can

be greater than 1.
2. Let A ∈ Rn×n be a strictly diagonally dominant matrix by rows. Show

that the Gauss-Seidel method for the solution of the linear system (3.2) is
convergent.

3. Check that the matrix A = tridiag(−1,α,−1), with α ∈ R, has eigenvalues
given by

λj = α− 2 cos(jθ), j = 1, . . . , n

where θ = π/(n + 1) and the corresponding eigenvectors are

qj = [sin(jθ), sin(2jθ), . . . , sin(njθ)]T .

Under which conditions on α is the matrix positive definite?
[Solution : α ≥ 2.]

4. Consider the pentadiagonal matrix A = pentadiagn(−1,−1, 10,−1,−1).
Assume n = 10 and A = M + N + D, with D = diag(8, . . . , 8) ∈ R10×10,
M = pentadiag10(−1,−1, 1, 0, 0) and N = MT . To solve Ax = b, analyze
the convergence of the following iterative methods

(a) (M + D)x(k+1) = −Nx(k) + b,

(b) Dx(k+1) = −(M + N)x(k) + b,

(c) (M + N)x(k+1) = −Dx(k) + b.

[Solution : denoting respectively by ρa, ρb and ρc the spectral radii of the
iteration matrices of the three methods, we have ρa = 0.1450, ρb = 0.5
and ρc = 12.2870 which implies convergence for methods (a) and (b) and
divergence for method (c).]

5. For the solution of the linear system Ax = b with

A =
[

1 2
2 3

]
, b =

[
3
5

]
,

consider the following iterative method

x(k+1) = B(θ)x(k) + g(θ), k ≥ 0, with x(0) given,

where θ is a real parameter and

B(θ) =
1
4

[
2θ2 + 2θ + 1 −2θ2 + 2θ + 1
−2θ2 + 2θ + 1 2θ2 + 2θ + 1

]
, g(θ) =

[ 1
2 − θ
1
2 − θ

]
.
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Check that the method is consistent ∀ θ ∈ R. Then, determine the values
of θ for which the method is convergent and compute the optimal value
of θ (i.e., the value of the parameter for which the convergence rate is
maximum).
[Solution : the method is convergent iff −1 < θ < 1/2 and the convergence
rate is maximum if θ = (1 −

√
3)/2.]

6. To solve the following block linear system
[

A1 B
B A2

] [
x
y

]
=

[
b1

b2

]
,

consider the two methods

(1) A1x(k+1) + By(k) = b1, Bx(k) + A2y(k+1) = b2;

(2) A1x(k+1) + By(k) = b1, Bx(k+1) + A2y(k+1) = b2.

Find sufficient conditions in order for the two schemes to be convergent for
any choice of the initial data x(0), y(0).
[Solution : method (1) is a decoupled system in the unknowns x(k+1) and
y(k+1). Assuming that A1 and A2 are invertible, method (1) converges if
ρ(A−1

1 B) < 1 and ρ(A−1
2 B) < 1. In the case of method (2) we have a coupled

system to solve at each step in the unknowns x(k+1) and y(k+1). Solving
formally the first equation with respect to x(k+1) (which requires A1 to be
invertible) and substituting into the second one we see that method (2) is
convergent if ρ(A−1

2 BA−1
1 B) < 1 (again A2 must be invertible).]

7. Consider the linear system Ax = b with

A =

⎡

⎢⎢⎢⎢⎣

62 24 1 8 15
23 50 7 14 16
4 6 58 20 22
10 12 19 66 3
11 18 25 2 54

⎤

⎥⎥⎥⎥⎦
, b =

⎡

⎢⎢⎢⎢⎣

110
110
110
110
110

⎤

⎥⎥⎥⎥⎦
.

(1) Check if the Jacobi and Gauss-Seidel methods can be applied to solve
the system. (2) Check if the stationary Richardson method with optimal
parameter can be applied with P = I and P = D, where D is the diagonal
part of A, and compute the corresponding values of αopt and ρopt.
[Solution : (1): matrix A is neither diagonally dominant nor symmetric
positive definite, so that we must compute the spectral radii of the itera-
tion matrices of the Jacobi and Gauss-Seidel methods to verify if they are
convergent. It turns out that ρJ = 0.9280 and ρGS = 0.3066 which implies
convergence for both methods. (2): in the case P = I all the eigenvalues
of A are positive so that the Richardson method can be applied yielding
αopt = 0.015 and ρopt = 0.6452. If P = D the method is still applicable
and αopt = 0.8510, ρopt = 0.6407.]

8. Consider the linear system Ax = b with

A =

⎡

⎢⎢⎣

5 7 6 5
7 10 8 7
6 8 10 9
5 7 9 10

⎤

⎥⎥⎦ , b =

⎡

⎢⎢⎣

23
32
33
31

⎤

⎥⎥⎦ .
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Analyze the convergence properties of the Jacobi and Gauss-Seidel methods
applied to the system above in their point and block forms (for a 2×2 block
partition of A).
[Solution : both methods are convergent, the block form being the faster
one. Moreover, ρ2(BJ) = ρ(BGS).]

9. To solve the linear system Ax = b, consider the iterative method (4.6),
with P = D + ωF and N = −βF − E, ω and β being real numbers. Check
that the method is consistent only if β = 1 − ω. In such a case, express
the eigenvalues of the iteration matrix as a function of ω and determine for
which values of ω the method is convergent, as well as the value of ωopt,
assuming that A = tridiag10(−1, 2,−1).
[Hint : Take advantage of the result in Exercise 3.]

10. Let A ∈ Rn×n be such that A = (1+ω)P−(N+ωP), with P−1N nonsingular
and with real eigenvalues 1 > λ1 ≥ λ2 ≥ . . . ≥ λn. Find the values of ω ∈ R

for which the following iterative method

(1 + ω)Px(k+1) = (N + ωP)x(k) + b, k ≥ 0,

converges ∀x(0) to the solution of the linear system (3.2). Determine also
the value of ω for which the convergence rate is maximum.
[Solution : ω > −(1 + λn)/2; ωopt = −(λ1 + λn)/2.]

11. Consider the linear system

Ax = b with A =
[

3 2
2 6

]
, b =

[
2

−8

]
.

Write the associated functional Φ(x) and give a graphical interpretation of
the solution of the linear system. Perform some iterations of the gradient
method, after proving convergence for it.

12. Check that in the gradient method x(k+2) is not an optimal direction with
respect to r(k).

13. Show that the coefficients αk and βk in the conjugate gradient method can
be written in the alternative form (4.45).
[Solution: notice Ap(k) = (r(k) − r(k+1))/αk and thus (Ap(k))T r(k+1) =
−∥r(k+1)∥2

2/αk. Moreover, αk(Ap(k))Tp(k) = −∥r(k)∥2
2.]

14. Prove the three-terms recursive relation (4.46) for the residual in the con-
jugate gradient method.
[Solution: subtract from both sides of Ap(k) = (r(k)−r(k+1))/αk the quan-
tity βk−1/αkr(k) and recall that Ap(k) = Ar(k) − βk−1Ap(k−1). Then, ex-
pressing the residual r(k) as a function of r(k−1) one immediately gets the
desired relation.]


