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Original idea: 

Making a device (‘smart pen’) which will enable us to convert handwritten 
scripts into editable text format in real time. The writer should get a soft copy 
of whatever he/she writes on the paper in the form of a text document without 
the requirement of scanning the paper. 

On-line vs Off-line recognition: 

In general, handwriting recognition is classified into two types: off-line and on-
line. In off-line recognition, the user feeds the computer a scanned copy of the 
handwritten document. The recognition system uses several algorithms and 
finally outputs the recognised text. On-line character recognition (also called 
dynamic character recognition) uses information about the characters written 
by a person to identify which characters have been written. The information 
generated by the handwriting process is captured by the computer in real-
time, via the use of a digitising tablet, and is usually presented to the recogni-
tion system in the form of a time ordered sequence of x and y co-ordinates. 

Why we choose this project: 

On-line handwriting recognition is considered superior to off-line character 
recognition for many reasons. One major reason being that it is a real-time 
recogniser and outputs the recognised character immediately after the user 
writes it. Moreover, the segmentation of letters is not a problem in on-line 
recognition since we can use ‘PenUP’ and ‘PenDOWN’ information. However, 
one major drawback in most existing systems is that the writer cannot use or-
dinary paper for writing, but instead requires a tablet or some kind of a pres-
sure sensitive surface. We wanted to overcome this problem and enable the 
user to write on any kind of paper.  



Original Approach: 

After consulting numerous research papers (see References 1,2) we decided 
that using an IMU sensor, specifically MPU 6050, in combination with a Recur-
rent Neural Network would be an ideal solution for our task.  

MPU 6050 is an IMU sensor which has both an accelerometer and a gyro-
scope embedded in the chip. The plan was to detect the position of the tip of 
the pen using accelerometer measurements along x and y axis. We don’t 
need measurement along z axis since the movement is only in the 2-dimen-
sional plane of the paper. These measurements would then be double inte-
grated with respect to time to get the displacement. The formula is- 

!  

Before the double integration, some filters had to be applied in order to reduce 
the noise. Also, a pressure switch was required to detect ‘PenUP’, ’Pen-
DOWN’ states. 

Once we had the displacement readings, they were to be fed to a trained 
RNN. The RNN performs the task of recognising the written character. The fol-
lowing flowchart depicts the working of our original plan: 

!  

 

Flowchart depicting the control loop of our proposed program



Where it all went wrong: 

The above approach, especially the MPU6050 chip, had sounded very 
promising in the beginning because many research papers had claimed that it 
was feasible. However, after three weeks into our ITSP, we decided to discard 
it altogether as were unable to make any reasonable progress. 

We hooked up the MPU to an Arduino UNO using the I2C protocol. We used 
the I2C library made by Jeff Rowberg (See Reference 5) to get the raw values 
of accelerometer. These values were exported from serial monitor to an Excel 
sheet using an excel add-on called ‘PLX-DAQ’. To get the values in SI units 
we performed some calibration, that is, calculating the Scale Factor and Bias. 
Once we have those, Calibrated Value = (Original Value – Bias)/Scale Factor . 

We wrote a python program which imported the calibrated values from the ex-
cel sheet using the XLRD module. We applied a moving average filter to these 
readings. A ‘Moving Average’ filter replaces a particular sample by the mean of 
it’s neighbouring values. We used 5 preceding and 5 succeeding values, thus 
reducing the high-frequency noise in the raw data. The filtered plots are strik-
ingly smooth as compared to the raw acceleration-time plots. Here is a com-
parison of the ‘Before’ and ‘After’ plots, plotted using Matplotlib: 

 

!  

To further increase the accuracy and reduce noise, we also implemented a 
‘Kalman smoother’. This resulted in substantial noise reduction. 

Although the acceleration-time plots looked satisfactory, this was not reflected 
in the displacement-y vs displacement-x plots. We believe that this might have 
been due to fact that on integrating over time there is significant ‘drift’ (devia-

Before applying filter After applying filter



tion from true value), which is caused due to accumulation of small deviations 
over a long time. Double integration must have further increased this. So even 
small errors in acceleration values led to incorrect displacement values. Fol-
lowing is a Y vs X plot when we moved the sensor along the trajectory of letter 
‘b’: 

!  

And that’s the best we got. Most plots simply resembled a y = x or y = -x line. 
So we had no choice but to abandon this approach. 

Time for CHANGE: 

After experimenting with sensors which gave inaccurate readings, we decided 
it was time that we changed our approach. We decided to use image process-
ing to track the nib of the pen. While this adds some constraints to our project, 
the tracking was so accurate that we felt the pros far outweigh the cons. To 
name a few: 

• Training a CNN model for character recognition is a matter of a few lines of 
codes, thanks to an abundance of machine learning libraries such as Keras 
and PyTorch.  

• There was no need of any constraints on the tilt of the pen. A user could now 
naturally hold the pen.  

The Y vs X plot of the letter ‘b’. Clearly, it is not 
even close to the actual trajectory of the letter ‘b’



Here’s what we came up with: 

In this section, we describe our completely revamped approach. It can be 
broadly classified into two sections - Hardware and Software. We describe 
each in detail below: 

Hardware: 

For the pressure switch, our first approach was to use an Infrared or Ul-
trasonic sensor to detect a change in the distance between the receiver 
and the paper. But the required precision could not be attained using 
such sensors. The distance between the paper and the pen during the 
‘PenUP’ state is in the range of a few millimetres while the IR/Ultrasonic 
sensors could detect a change only in the range of centimetres. As a re-
sult, we had to resort to a mechanical alternative. 

Our hardware setup consists of an LED mounted on a specially de-
signed 3D-printed pen and a webcam placed in a plastic enclosure. We 
describe each of the components in more detail below: 

Our prediction model uses keystroke data to plot the letter. As a result, 
we had to devise a mechanism which could distinguish between 2 dis-
tinct states - ‘PenUP’ and ‘PenDOWN’. It is mandatory because keeping 

The plastic cuboidal enclosure has a webcam placed on 
the bottom surface. Three cardboard slits at the top en-
sure that the paper does not shake while the user is 
writing. White chart-paper is used to prevent light com-
posed of unwanted colours from reaching the webcam.



the LED always on would lead to two issues. Firstly, it would quickly 
drain the battery but more importantly, the OpenCV program would also 
detect random keystrokes when the pen is not in use, say for example 
when the user is simply holding the pen in his/her hand. To overcome 
this issue, we tried various methods. We came up with a simple yet ef-
fective solution when our first approach of IR/Ultrasonic sensors failed. 

!  

We 3D-printed a pen whose refill housing was a fraction longer than the 
length of the refill. At the top, a push-button was housed in an enclosure 
with the button facing downward. The LED was connected to the battery 
with the push-button acting as a switch. When the pen was not in con-
tact with the paper, the refill did not press against the button and the cir-
cuit was open. As soon as the pen was pressed against paper, the refill 
pushed the button, the circuit was complete and the LED glowed! Pre-
existing pen bodies couldn't be modified to house the pressure switch. 
As a result, we had no option but to 3D print the pen. After the pen was 
printed, we inserted a standard ball point pen refill into the chamber. The 
battery and the LED were taped to the body of the pen and the connec-
tions were soldered to ensure proper functioning. 

! !  

Our pen being 3D-printed using the Flash-
forge Gider II. It took around 2 hours 13 
minutes to print. 12 grams of ABS plastic 
was required for the entire assembly.

The body of the pen which houses the refill The cap of our pen which acts as a compartment for the 
pressure switch



For detecting the LED movement above the paper, we use a Logitech 
webcam. For mechanical support, the paper is kept on the top surface of 
a transparent plastic cuboid with the webcam placed on the bottom sur-
face. It can accurately track the centre of the LED glow as the pen 
moves across the surface.  

 

!  

Software: 

We now reach the final step which is predicting the letter which was just 
drawn by the user. Since we had collected the (x,y) coordinates of the 
keystroke data, plotting it using Matplotlib was a simple task. And once 
an image was generated, using a Convolution Neural Network (CNN) 
was a no-brainer, considering its high accuracy when it comes to classi-
fying images. Other approaches such as Dynamic Time Warping (DTW) 
were ruled out due to large variation in the keystroke data generated by 
different users. 

The EMNIST dataset, which is available at https://www.nist.gov/itl/iad/
image-group/emnist-dataset , is a gigantic collection of 15 lakh training 
examples. We hoped that a deep network trained on this dataset would 
give accurate predictions. But we ran into a few problems as described 
below. 

• Firstly, the training data folder for most examples had both upper-case 
and lower-case samples in the same folder and separating them man-

The final assembly consists of the pressure switch resting 
against the refill. A green LED and a 3V battery is taped to 
the body of the pen and the connections are soldered. The 
battery is connected to the appropriate terminals of the LED 
through the switch. As described previously, the circuit gets 
completed when the refill is pressed against any surface and 
the LED lights up

https://www.nist.gov/itl/iad/image-group/emnist-dataset
https://www.nist.gov/itl/iad/image-group/emnist-dataset


ually was not feasible, considering each folder had approximately 
(15,00,000/26 ~ ) 57,000 examples.  

• Secondly, the images generated by the keystroke data of 
our pen had minor noise issues which we were not able to 
eliminate. Such peculiar noise was not present in the EM-
NIST dataset and hence the letters differed considerably in 
their shapes and curves. (Check example on the right) 

• Thirdly, all the EMNIST samples had a thick border on all four sides 
and the actual size of the letter varied greatly. Centre-cropping the 
samples would sometimes chop off the extremes of some examples. 
On the other hand, the images generated by our pen were centred, of 
the same size, with a thin border on all four sides. 

 

Considering the above issues, we decided to generate our own dataset. 
Thanks to an accurate ball-tracking 
program written by Adrian Rose-
brock (See Reference 3), we simply 
tweaked the script to our own speci-
fications. We added a few lines of 
code which resulted in a pickle file, 
which was dumped after every 
batch consisting of say 30 exam-
ples. Once all the examples were 
stored as lists of (x,y) coordinates 
data, the next script took these co-
ordinates and plotted them using 
Matplotlib. Each image was resized 
to 28x28 since most of the pre-exist-
ing architectures have been imple-
mented for the mentioned size. 
Each example was stored under a 
subdirectory for that particular letter, 

under a folder named ‘Train’. Each 
folder contained around 300 examples. 30 
samples for each letter were randomly chosen 

and moved to a directory named ‘Test’ which had the same hierarchy as 
that of the Train folder. 

Shape generated 
using our pen

An example 
from the EM-
NISTdataset

The Validation folder hierarchy



But 300-30=270 samples per class is insufficient for any neural network 
to learn the true features of any letter. It may result in overfitting even in 
case of a simple feed-forward network. To tackle this issue, we used a 
python package called ‘Augmentor’. It added random distortions and 
small rotations to each example and in the end, increased the number of 
training examples from 270 to 5,000 per class. 

Once our training and testing datasets were ready, we explored various 
CNN architectures. We experimented with the kernel size, number of 
feature maps in every Convolution layer, Dropout methods and the num-
ber of neurons in the fully-connected layers at the end of our network. 
After training around 8 different models, we finalised the following model 
due to its high test accuracy and a monotonous decrease of the cost 
function which indicates minimal overfitting: 

!  

The final architecture of our CNN model

The Augmentor package which helped us generate more training data



The ‘Master’ script starts an infinite loop. Inside the loop, OpenCV de-
tects the LED glow and saves the keystroke data to a file. This file is fur-
ther read by a script and converted into a jpeg, each jpeg consisting of 
the drawn letter. Here are a few examples of the jpegs which were plot-
ted using keystroke data generated by the pen: 

! ! ! ! !              ! ! ! ! !  

This image is then fed to the above model and the predicted letter is ap-
pended to a string called ‘finalstring’. Spaces and line breaks are also 
described. A package called Tkinter is used to update the label of a GUI 
window.  

For more details, please go through the code. 

Possible improvements and future scope: 

Owing to time constraints, we couldn’t implement a few features which could 
have made the writing experience more natural. To name a few: 

1. Add capital letters, digits and punctuation characters to our dataset. 

2. Add one more physical switch near the grip of the pen. This switch can 
be used to delete the previous predicted character in case of an incor-
rect prediction or if the user changed his/her mind.  

3. Make a compartment for the battery and the LED so that replacing them 
becomes easy. 

4. Improve the design of the enclosure so as to allow maximum field of 
view for the camera. A perfectly designed enclosure can act as a substi-
tute for foldable study tables which are so popular these days. 

Future students are more than welcome to pick up right where we left off and 
enhance the writing experience by adding their own features. 

Letters generated using our pen
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