
Project Scribble

-By Team Four-Play 

Acknowledgments

1. The Tech council for giving us this wonderful opportunity to utilise our
summers productively.

2. Mayank Kumar Singh, our mentor who guided us throughout our jour-
ney.

3. All the developers of open-source libraries without which this project
would have been inconceivable.

A special mention for our friend, Rohan Chandratre, who not only pro-
duced all the 3D CAD models of our pen, but also gave us some inter-
esting ideas which we ended up implementing in our project!  

Index

Acknowledgments 2 ...

Index 3 ..

Original idea: 4 ...

On-line vs Off-line recognition: 4 ..

Why we choose this project: 4 ..

Original Approach: 5 ...

Where it all went wrong: 6 ..

Time for CHANGE: 7 ..

Here’s what we came up with: 8 ...

Hardware: 8 ..

Software: 10 ...

Possible improvements and future scope: 13 ...

References: 14...

Original idea:

Making a device (‘smart pen’) which will enable us to convert handwritten
scripts into editable text format in real time. The writer should get a soft copy
of whatever he/she writes on the paper in the form of a text document without
the requirement of scanning the paper.

On-line vs Off-line recognition:

In general, handwriting recognition is classified into two types: off-line and on-
line. In off-line recognition, the user feeds the computer a scanned copy of the
handwritten document. The recognition system uses several algorithms and
finally outputs the recognised text. On-line character recognition (also called
dynamic character recognition) uses information about the characters written
by a person to identify which characters have been written. The information
generated by the handwriting process is captured by the computer in real-
time, via the use of a digitising tablet, and is usually presented to the recogni-
tion system in the form of a time ordered sequence of x and y co-ordinates.

Why we choose this project:

On-line handwriting recognition is considered superior to off-line character
recognition for many reasons. One major reason being that it is a real-time
recogniser and outputs the recognised character immediately after the user
writes it. Moreover, the segmentation of letters is not a problem in on-line
recognition since we can use ‘PenUP’ and ‘PenDOWN’ information. However,
one major drawback in most existing systems is that the writer cannot use or-
dinary paper for writing, but instead requires a tablet or some kind of a pres-
sure sensitive surface. We wanted to overcome this problem and enable the
user to write on any kind of paper.

Original Approach:

After consulting numerous research papers (see References 1,2) we decided
that using an IMU sensor, specifically MPU 6050, in combination with a Recur-
rent Neural Network would be an ideal solution for our task.

MPU 6050 is an IMU sensor which has both an accelerometer and a gyro-
scope embedded in the chip. The plan was to detect the position of the tip of
the pen using accelerometer measurements along x and y axis. We don’t
need measurement along z axis since the movement is only in the 2-dimen-
sional plane of the paper. These measurements would then be double inte-
grated with respect to time to get the displacement. The formula is-

!

Before the double integration, some filters had to be applied in order to reduce
the noise. Also, a pressure switch was required to detect ‘PenUP’, ’Pen-
DOWN’ states.

Once we had the displacement readings, they were to be fed to a trained
RNN. The RNN performs the task of recognising the written character. The fol-
lowing flowchart depicts the working of our original plan:

!

Flowchart depicting the control loop of our proposed program

Where it all went wrong:

The above approach, especially the MPU6050 chip, had sounded very
promising in the beginning because many research papers had claimed that it
was feasible. However, after three weeks into our ITSP, we decided to discard
it altogether as were unable to make any reasonable progress.

We hooked up the MPU to an Arduino UNO using the I2C protocol. We used
the I2C library made by Jeff Rowberg (See Reference 5) to get the raw values
of accelerometer. These values were exported from serial monitor to an Excel
sheet using an excel add-on called ‘PLX-DAQ’. To get the values in SI units
we performed some calibration, that is, calculating the Scale Factor and Bias.
Once we have those, Calibrated Value = (Original Value – Bias)/Scale Factor .

We wrote a python program which imported the calibrated values from the ex-
cel sheet using the XLRD module. We applied a moving average filter to these
readings. A ‘Moving Average’ filter replaces a particular sample by the mean of
it’s neighbouring values. We used 5 preceding and 5 succeeding values, thus
reducing the high-frequency noise in the raw data. The filtered plots are strik-
ingly smooth as compared to the raw acceleration-time plots. Here is a com-
parison of the ‘Before’ and ‘After’ plots, plotted using Matplotlib:

!

To further increase the accuracy and reduce noise, we also implemented a
‘Kalman smoother’. This resulted in substantial noise reduction.

Although the acceleration-time plots looked satisfactory, this was not reflected
in the displacement-y vs displacement-x plots. We believe that this might have
been due to fact that on integrating over time there is significant ‘drift’ (devia-

Before applying filter After applying filter

tion from true value), which is caused due to accumulation of small deviations
over a long time. Double integration must have further increased this. So even
small errors in acceleration values led to incorrect displacement values. Fol-
lowing is a Y vs X plot when we moved the sensor along the trajectory of letter
‘b’:

!

And that’s the best we got. Most plots simply resembled a y = x or y = -x line.
So we had no choice but to abandon this approach.

Time for CHANGE:

After experimenting with sensors which gave inaccurate readings, we decided
it was time that we changed our approach. We decided to use image process-
ing to track the nib of the pen. While this adds some constraints to our project,
the tracking was so accurate that we felt the pros far outweigh the cons. To
name a few:

• Training a CNN model for character recognition is a matter of a few lines of
codes, thanks to an abundance of machine learning libraries such as Keras
and PyTorch.

• There was no need of any constraints on the tilt of the pen. A user could now
naturally hold the pen.

The Y vs X plot of the letter ‘b’. Clearly, it is not
even close to the actual trajectory of the letter ‘b’

Here’s what we came up with:

In this section, we describe our completely revamped approach. It can be
broadly classified into two sections - Hardware and Software. We describe
each in detail below:

Hardware:

For the pressure switch, our first approach was to use an Infrared or Ul-
trasonic sensor to detect a change in the distance between the receiver
and the paper. But the required precision could not be attained using
such sensors. The distance between the paper and the pen during the
‘PenUP’ state is in the range of a few millimetres while the IR/Ultrasonic
sensors could detect a change only in the range of centimetres. As a re-
sult, we had to resort to a mechanical alternative.

Our hardware setup consists of an LED mounted on a specially de-
signed 3D-printed pen and a webcam placed in a plastic enclosure. We
describe each of the components in more detail below:

Our prediction model uses keystroke data to plot the letter. As a result,
we had to devise a mechanism which could distinguish between 2 dis-
tinct states - ‘PenUP’ and ‘PenDOWN’. It is mandatory because keeping

The plastic cuboidal enclosure has a webcam placed on
the bottom surface. Three cardboard slits at the top en-
sure that the paper does not shake while the user is
writing. White chart-paper is used to prevent light com-
posed of unwanted colours from reaching the webcam.

the LED always on would lead to two issues. Firstly, it would quickly
drain the battery but more importantly, the OpenCV program would also
detect random keystrokes when the pen is not in use, say for example
when the user is simply holding the pen in his/her hand. To overcome
this issue, we tried various methods. We came up with a simple yet ef-
fective solution when our first approach of IR/Ultrasonic sensors failed.

!

We 3D-printed a pen whose refill housing was a fraction longer than the
length of the refill. At the top, a push-button was housed in an enclosure
with the button facing downward. The LED was connected to the battery
with the push-button acting as a switch. When the pen was not in con-
tact with the paper, the refill did not press against the button and the cir-
cuit was open. As soon as the pen was pressed against paper, the refill
pushed the button, the circuit was complete and the LED glowed! Pre-
existing pen bodies couldn't be modified to house the pressure switch.
As a result, we had no option but to 3D print the pen. After the pen was
printed, we inserted a standard ball point pen refill into the chamber. The
battery and the LED were taped to the body of the pen and the connec-
tions were soldered to ensure proper functioning.

! !

Our pen being 3D-printed using the Flash-
forge Gider II. It took around 2 hours 13
minutes to print. 12 grams of ABS plastic
was required for the entire assembly.

The body of the pen which houses the refill The cap of our pen which acts as a compartment for the
pressure switch

For detecting the LED movement above the paper, we use a Logitech
webcam. For mechanical support, the paper is kept on the top surface of
a transparent plastic cuboid with the webcam placed on the bottom sur-
face. It can accurately track the centre of the LED glow as the pen
moves across the surface.

!

Software:

We now reach the final step which is predicting the letter which was just
drawn by the user. Since we had collected the (x,y) coordinates of the
keystroke data, plotting it using Matplotlib was a simple task. And once
an image was generated, using a Convolution Neural Network (CNN)
was a no-brainer, considering its high accuracy when it comes to classi-
fying images. Other approaches such as Dynamic Time Warping (DTW)
were ruled out due to large variation in the keystroke data generated by
different users.

The EMNIST dataset, which is available at https://www.nist.gov/itl/iad/
image-group/emnist-dataset , is a gigantic collection of 15 lakh training
examples. We hoped that a deep network trained on this dataset would
give accurate predictions. But we ran into a few problems as described
below.

• Firstly, the training data folder for most examples had both upper-case
and lower-case samples in the same folder and separating them man-

The final assembly consists of the pressure switch resting
against the refill. A green LED and a 3V battery is taped to
the body of the pen and the connections are soldered. The
battery is connected to the appropriate terminals of the LED
through the switch. As described previously, the circuit gets
completed when the refill is pressed against any surface and
the LED lights up

https://www.nist.gov/itl/iad/image-group/emnist-dataset
https://www.nist.gov/itl/iad/image-group/emnist-dataset

ually was not feasible, considering each folder had approximately
(15,00,000/26 ~) 57,000 examples.

• Secondly, the images generated by the keystroke data of
our pen had minor noise issues which we were not able to
eliminate. Such peculiar noise was not present in the EM-
NIST dataset and hence the letters differed considerably in
their shapes and curves. (Check example on the right)

• Thirdly, all the EMNIST samples had a thick border on all four sides
and the actual size of the letter varied greatly. Centre-cropping the
samples would sometimes chop off the extremes of some examples.
On the other hand, the images generated by our pen were centred, of
the same size, with a thin border on all four sides.

Considering the above issues, we decided to generate our own dataset.
Thanks to an accurate ball-tracking
program written by Adrian Rose-
brock (See Reference 3), we simply
tweaked the script to our own speci-
fications. We added a few lines of
code which resulted in a pickle file,
which was dumped after every
batch consisting of say 30 exam-
ples. Once all the examples were
stored as lists of (x,y) coordinates
data, the next script took these co-
ordinates and plotted them using
Matplotlib. Each image was resized
to 28x28 since most of the pre-exist-
ing architectures have been imple-
mented for the mentioned size.
Each example was stored under a
subdirectory for that particular letter,

under a folder named ‘Train’. Each
folder contained around 300 examples. 30
samples for each letter were randomly chosen

and moved to a directory named ‘Test’ which had the same hierarchy as
that of the Train folder.

Shape generated
using our pen

An example
from the EM-
NISTdataset

The Validation folder hierarchy

But 300-30=270 samples per class is insufficient for any neural network
to learn the true features of any letter. It may result in overfitting even in
case of a simple feed-forward network. To tackle this issue, we used a
python package called ‘Augmentor’. It added random distortions and
small rotations to each example and in the end, increased the number of
training examples from 270 to 5,000 per class.

Once our training and testing datasets were ready, we explored various
CNN architectures. We experimented with the kernel size, number of
feature maps in every Convolution layer, Dropout methods and the num-
ber of neurons in the fully-connected layers at the end of our network.
After training around 8 different models, we finalised the following model
due to its high test accuracy and a monotonous decrease of the cost
function which indicates minimal overfitting:

!

The final architecture of our CNN model

The Augmentor package which helped us generate more training data

The ‘Master’ script starts an infinite loop. Inside the loop, OpenCV de-
tects the LED glow and saves the keystroke data to a file. This file is fur-
ther read by a script and converted into a jpeg, each jpeg consisting of
the drawn letter. Here are a few examples of the jpegs which were plot-
ted using keystroke data generated by the pen:

! ! ! ! ! ! ! ! ! !

This image is then fed to the above model and the predicted letter is ap-
pended to a string called ‘finalstring’. Spaces and line breaks are also
described. A package called Tkinter is used to update the label of a GUI
window.

For more details, please go through the code.

Possible improvements and future scope:

Owing to time constraints, we couldn’t implement a few features which could
have made the writing experience more natural. To name a few:

1. Add capital letters, digits and punctuation characters to our dataset.

2. Add one more physical switch near the grip of the pen. This switch can
be used to delete the previous predicted character in case of an incor-
rect prediction or if the user changed his/her mind.

3. Make a compartment for the battery and the LED so that replacing them
becomes easy.

4. Improve the design of the enclosure so as to allow maximum field of
view for the camera. A perfectly designed enclosure can act as a substi-
tute for foldable study tables which are so popular these days.

Future students are more than welcome to pick up right where we left off and
enhance the writing experience by adding their own features.

Letters generated using our pen

References:

1. Maria Atiq Mirza and Nayab Gul Warraich, “Application of Motion Sensors in
Hand Writing Conversion”, Student Research Paper Conference Vol-2, No-3,
Department of Electrical Engineering Institute of Space Technology, Islam-
abad, July 2015.

2. Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre van Schaik,
“EMNIST: an extension of MNIST to handwritten letters”,The MARCS Institute
for Brain, Behaviour and Development, February 2017.

3. Adrian Rosebrock, https://www.pyimagesearch.com/, “OpenCV Track Object
Movement”.

4. Sung-Do Choi, Alexander S. Lee, and Soo-Young Lee, “On-Line Handwritten
Character Recognition with 3D Accelerometer”, Proceedings of the 2006 IEEE
International Conference on Information Acquisition August 20 - 23, 2006,
Weihai, Shandong, China.

5. Jeff Rowberg, I2C device class (I2Cdev) demonstration Arduino sketch for
MPU6050 class.

https://www.pyimagesearch.com/

	Acknowledgments
	Index
	Original idea:
	On-line vs Off-line recognition:
	Why we choose this project:
	Original Approach:
	Where it all went wrong:
	Time for CHANGE:
	Here’s what we came up with:
	Hardware:
	Software:
	Possible improvements and future scope:
	References:

