
© Copyright Khronos Group 2017 - Page 1

OpenCL
State of the Nation

Neil Trevett | Khronos President
NVIDIA Vice President Developer Ecosystem

OpenCL Working Group Chair
ntrevett@nvidia.com | @neilt3d

Toronto, May 2017

© Copyright Khronos Group 2017 - Page 2

Topics

1 2 3

The Good
The amazing
progress of OpenCL

The Bad
Lessons Learned from
the first eight years

The Exciting
Where do we go
from here?

© Copyright Khronos Group 2017 - Page 3

OpenCL 2.2 Finalized Here at IWOCL!

2011
OpenCL 1.2

Becomes
industry
baseline

OpenCL 2.1
SPIR-V 1.0

SPIR-V in Core

Kernel Language
Flexibility

OpenCL 2.2
SPIR-V 1.2

OpenCL C++ Kernel Language
Static subset of C++14

Templates and Lambdas

SPIR-V 1.2
OpenCL C++ support

Pipes
Efficient device-scope

communication between kernels

Code Generation Optimizations
- Specialization constants at

SPIR-V compilation time
- Constructors and destructors of

program scope global objects
- User callbacks can be set at

program release time

201720152013
OpenCL 2.0

Enables new
class of

hardware

SVM
Generic Addresses
On-device dispatch

https://www.khronos.org/opencl/

© Copyright Khronos Group 2017 - Page 4

New Open Source Engagement Model
• Khronos is open sourcing specification sources,

conformance tests, tools
- Merge requests welcome from the community

(subject to review by OpenCL working group)

• Deeper Community Enablement
- Mix your own documentation!
- Contribute and fix conformance tests
- Fix the specification, headers, ICD etc.
- Contribute new features (carefully)

Khronos builds and Ratifies
Canonical Specification under

Khronos IP Framework.
No changes or re-hosting allowed

Spec and Ref Language Source and
derivative materials.

Re-mixable under CC-BY by the
industry and community

Source Materials for Specifications and Reference
Documentation CONTRIBUTED Under Khronos IP Framework

(you won’t assert patents against conformant implementations,
and license copyright for Khronos use)

Contributions and
Distribution under
Apache 2.0 Spec Build

System and
Scripts

Spec and
Ref Language

Source Redistribution
under CC-BY 4.0

Conformance
Test Suite

Source

Community built
documentation and

tools

Contributions and
Distribution under

Apache 2.0

Anyone can test any
implementation at

any time

Khronos Adopters
Program

Conformant Implementations can
use trademark and are covered

by Khronos IP Framework

© Copyright Khronos Group 2017 - Page 5

Shout Out to University of Windsor

The Windsor Testing Framework, also released today,
enables developers to quickly install and configure the
OpenCL Conformance Test Suite on their own systems.

© Copyright Khronos Group 2017 - Page 6

SPIR-V Ecosystem

LLVM

Third party kernel and
shader languages

SPIR-V
• Khronos defined and controlled
cross-API intermediate language
• Native support for graphics

and parallel constructs
• 32-bit Word Stream

• Extensible and easily parsed
• Retains data object and control

flow information for effective
code generation and translation

OpenCL C++
Front-end

OpenCL C
Front-end

glslangKhronos has open sourced
these tools and translators

IHV Driver
Runtimes

Other
Intermediate

Forms

SPIR-V Validator

SPIR-V (Dis)Assembler

LLVM to SPIR-V
Bi-directional

Translator

https://github.com/KhronosGroup/SPIRV-Tools

GLSL HLSL

Khronos coordinating liaison with
Clang/LLVM Community

E.g. discussing SPIR-V as
supported Clang target

SPIR-V Cross
GLSL

HLSL

MSL

© Copyright Khronos Group 2017 - Page 7

SYCL Ecosystem
• Single-source heterogeneous programming using STANDARD C++
- Use C++ templates and lambda functions for host & device code
- Layerered over OpenCL

• Fast and powerful path for bring C++ apps and libraries to OpenCL
- C++ Kernel Fusion - better performance on complex software than hand-coding
- Halide, Eigen, Boost.Compute, SYCLBLAS, SYCL Eigen, SYCL TensorFlow, SYCL GTX
- triSYCL, ComputeCpp, VisionCpp, ComputeCpp SDK …

• More information at http://sycl.tech

C++ Kernel Language
Low Level Control

‘GPGPU’-style separation of
device-side kernel source

code and host code

Single-source C++
Programmer Familiarity
Approach also taken by
C++ AMP and OpenMP

Developer Choice
The development of the two specifications are aligned so
code can be easily shared between the two approaches

© Copyright Khronos Group 2017 - Page 8

OpenCL Adoption
• 100s of applications using OpenCL acceleration
- Rendering, visualization, video editing,

simulation, image processing

• Over 4,000 GitHub repositories using OpenCL
- Tools, applications, libraries, languages
- Up form 2,000 two years ago

• Multiple silicon and open source implementations
- Increasingly used for embedded vision and

neural network inferencing

• Khronos Resource Hub

Basemark® CL

https://www.khronos.org/opencl/resources/opencl-applications-using-opencl

© Copyright Khronos Group 2017 - Page 9

OpenCL as Language/Library Backend

C++ based
Neural

network
framework

MulticoreWare
open source
project on
Bitbucket

Compiler
directives for

Fortran,
C and C++

Java language
extensions

for
parallelism

Language for
image

processing and
computational
photography

Single
Source C++

Programming
for OpenCL

Hundreds of languages, frameworks
and projects using OpenCL to access
vendor-optimized, heterogeneous

compute runtimes

Vision
processing

open source
project

Open source
software library

for machine
learning

© Copyright Khronos Group 2017 - Page 10

Safety Critical APIs

New Generation APIs for safety
certifiable vision, graphics and

compute
e.g. ISO 26262 and DO-178B/C

OpenGL ES 1.0 - 2003
Fixed function graphics

OpenGL ES 2.0 - 2007
Shader programmable pipeline

OpenGL SC 1.0 - 2005
Fixed function graphics subset

OpenGL SC 2.0 - April 2016
Shader programmable pipeline subset

Experience and Guidelines

OpenCL SC TSG Formed
Working on OpenCL SC 1.2

Eliminate Undefined Behavior
Eliminate Callback Functions
Static Pool of Event Objects

OpenVX SC 1.1 Released 1st May 2017
Restricted “deployment” implementation

executes on the target hardware by reading the
binary format and executing the pre-compiled

graphs

Khronos SCAP
‘Safety Critical Advisory Panel’

Guidelines for designing APIs that ease
system certification.

Open to Khronos member AND
industry experts

© Copyright Khronos Group 2017 - Page 11

OpenCL Conformant Implementations

OpenCL 1.0
Specification

Dec08 Jun10
OpenCL 1.1
Specification

Nov11
OpenCL 1.2
Specification

OpenCL 2.0
Specification

Nov13

1.0|Jul13

1.0|Aug09

1.0|May09

1.0|May10

1.0 | Feb11

1.0|May09

1.0|Jan10

1.1|Aug10

1.1|Jul11

1.2|May12

1.2|Jun12

1.1|Feb11

1.1|Mar11

1.1|Jun10

1.1|Aug12

1.1|Nov12

1.1|May13

1.1|Apr12

1.2|Apr14

1.2|Sep13

1.2|Dec12
Desktop

Mobile

FPGA

2.0|Jul14

OpenCL 2.1
Specification

Nov15

1.2|May15

2.0|Dec14

1.0|Dec14

1.2|Dec14

1.2|Sep14

Vendor timelines are
first conformant

submission for each spec
generation

1.2|May15

Embedded

1.2|Aug15

1.2|Mar16

2.0|Nov15

2.0|Apr17

2.1 | Jun16

© Copyright Khronos Group 2017 - Page 12

OpenCL - 1000s Man Years Effort

OpenCL 1.0
Specification

Dec08 Jun10
OpenCL 1.1

Specification

Nov11
OpenCL 1.2

Specification
OpenCL 2.0

Specification

Nov13

Device partitioning
Separate compilation and linking

Enhanced image support
Built-in kernels / custom devices
Enhanced DX and OpenGL Interop

Shared Virtual Memory
On-device dispatch

Generic Address Space
Enhanced Image Support

C11 Atomics
Pipes

Android ICD

3-component vectors
Additional image formats
Multiple hosts and devices
Buffer region operations

Enhanced event-driven execution
Additional OpenCL C built-ins

Improved OpenGL data/event interop

18 months 18 months 24 months

OpenCL 2.1
Specification

Nov1524 months

SPIR-V in Core
Subgroups into core

Subgroup query operations
clCloneKernel

Low-latency device
timer queries

OpenCL 2.2
Specification

May1718 months

Single Source C++ Programming
Full support for features in C++14-based Kernel Language

API and Language Specs
Brings C++14-based Kernel Language into core specification

Portable Kernel Intermediate Language
Support for C++14-based kernel language e.g.
constructors/destructors

OpenCL C++ Kernel Language
Static subset of C++14

Templates and Lambdas

SPIR-V 1.2 with C++ support
SYCL 2.2 single source C++

Pipes
Efficient device-scope

communication between kernels

Multiple Code Generation
Optimizations

© Copyright Khronos Group 2017 - Page 13

Google Trends

© Copyright Khronos Group 2017 - Page 14

Embrace the Layered Ecosystem

Hardware

Rich Middleware Ecosystem
Libraries, languages, tools, engines

Applications
OpenCL mixed

providing low-level
hardware access

with ‘ease-of-use’

Didn’t make it
clear that low-

level performance
portability is
impossible

Did not focus on
rapidly porting

efficient libraries

Middleware just
needs direct access
to hardware. Driver

should ‘get out of the
way’

Middleware can
provide ease of use

Middleware has the
system/domain

context to try to
provide performance

portability

Run-time abstraction hardware is needed:
- Software vendors can’t afford to port to every type/generation hardware

- Hardware vendors want to keep innovating under an abstraction

© Copyright Khronos Group 2017 - Page 15

Market Segments Need Deployment Flexibility

Embedded
Use cases: Vison, Signal and Pixel Processing, Neural Network and Inferencing

Roadmap: arbitrary precision for power efficiency, hard real-time
scheduling, asynch DMA

FPGAs
Use cases: Network and Stream Processing

Roadmap: enhanced execution model, self-synchronized and self-scheduled
graphs, fine-grained synchronization between kernels, DSL in C++

HPC
Use case: Numerical Simulation, Neural Network Training, Virtualization

Roadmap: enhanced streaming processing, enhanced library support

Desktop (actual and cloud)
Use cases: Video Image Processing, Gaming Compute, Rendering, Neural Network

Training and Inferencing
Roadmap: Vulkan interop, dialable precision, pre-emption, collective programming and

improved execution model, dynamic parallelism, pre-emption

Mobile
Use case: Photo and Vision Processing, Neural Network Inferencing

Roadmap: SVM, dialable precision for inference engine and pixel processing
efficiency, pre-emption and QoS scheduling for power efficiencyOpenCL has been

over-monolithic

E.g. DSP inferencing should not
be forced to ship IEEE FP32

Solution: feature sets – enabling
toggling capabilities within a
coherent framework without

losing conformance

© Copyright Khronos Group 2017 - Page 16

Other Lessons
Lessons

Language flexibility is good!
Enable language innovation!

Lack of tools and libraries

Needs to be adopted/available on
key platforms

Middleware and application insights
and prototyping are essential during

standards design

How We Do Better!

Ingest SPIR-V!
BUT Vendors need to support it!

‘Hard launches’ i.e. simultaneous
availability of spec, libraries,
implementations and engines

Add value to key platforms
and/or develop viable portability

solutions

Encourage ISVs to join Khronos to
help steer the industry!

AND
OpenCL Advisory Panels

How We Learned Them

OpenCL WG spent way too long
designing OpenCL C and C++

Assumption that the Working Group’s
job is done once the specification is

shipped

Apple are focused on Metal
OpenCL/RenderScript Confusion

NVIDIA not pushing to 2.0

The OpenCL Working Group has lacked
active software developer participation

© Copyright Khronos Group 2017 - Page 17

Khronos Advisory Panels

Working
Group

Advisory
Panel

Shared Email
list and

Repository

Members
Pay membership Fee

Sign NDA and IP Framework
Directly participate in working groups

Advisors
Pay $0

Sign Advisors Agreement = NDA and IP Framework
Provide requirements and feedback on specification

drafts to the working group

The Working Group invites input and shares
draft specifications and other WG materials

Advisory Panel membership is
‘By Invitation’ and renewed annually.

No ‘minimum workload’ commitment – but we love input and feedback!
Please reach out if you wish to participate!

© Copyright Khronos Group 2017 - Page 18

Requirements for ‘OpenCL Next’

Low-level explicit API as
Foundation of multi-layer ecosystem

Features set for
Market Deployment Flexibility

SPIR-V Ingestion for
Language flexibility

Widely Adopted
No market barriers to deployment

Installable tools architecture for
Development flexibility

Low-latency, multi-threaded dispatch
For fine-grained, high-performance

At least OpenCL 2.X-class
compute capabilities

Support for
diverse processor types

Working Group Decision!
Converge with and leverage

Vulkan design!
Expand on Vulkan supported

processors types and
compute capabilities

© Copyright Khronos Group 2017 - Page 19

Vulkan Explicit GPU Control

GPU

High-level Driver
Abstraction

Layered GPU Control
Context management

Memory allocation
Full GLSL compiler

Error detection

Application
Single thread per context

GPU

Thin Driver
Explicit GPU Control

Application
Memory allocation

Thread management
Synchronization

Multi-threaded generation
of command buffers

Multiple Front-end
Compilers

GLSL, HLSL etc.

Loadable debug and
validation layers

Vulkan 1.0 provides access to
OpenGL ES 3.1 / OpenGL 4.X-class GPU functionality

but with increased performance and flexibility

SPIR-V
pre-compiled shaders

Complex drivers
cause overhead
and inconsistent
behavior across

vendors

Always active
error handling

Full GLSL
preprocessor and

compiler in
driver

OpenGL vs.
OpenGL ES

Resource management
offloaded to app:

low-overhead, low-latency
driver

Consistent behavior:
no ‘fighting with driver

heuristics’

Validation and debug layers
loaded only when needed

SPIR-V intermediate
language: shading language

flexibility

Multi-threaded command
creation. Multiple graphics,
command and DMA queues

Unified API across all
platforms with feature set

flexibility

© Copyright Khronos Group 2017 - Page 20

Vulkan Adoption

Cross Platform

7

All Major GPU Companies shipping Vulkan Drivers – for Desktop and Mobile Platforms

Mobile, Embedded and Console Platforms Supporting Vulkan

Embedded LinuxAndroid TVAndroid 7.0 Nintendo Switch

© Copyright Khronos Group 2017 - Page 21

GPU Portability – Call For Participation
‘WebGL Next’
- Lift ‘Portability API’ to
JavaScript and use in
WebAssembly natve code
- Nexgen graphics and
GPU compute for the Web

API
Overlap
Analysis

Portable ‘Vulkan
Subset’ API

Specification

A Portability Solution needs to address
APIs and shading languages

Open source compilers/translators for
shading and intermediate languages

MIR

DX IL

GLSL

MSL

HLSL

Vulkan Portability Solution
C/C++ Portability API Library

+ Shading Language tools
All open source

Use Feature
Sets to remove
non-portable
functionality

Use Extensions
to add

functionality
e.g. security and

robustness for
the Web

Vulkan is non-proprietary and is
already designed to be portable

No single API
on all systems

© Copyright Khronos Group 2017 - Page 22

‘OpenCL–V’ - OpenCL and Vulkan Convergence
• Converge OpenCL roadmap over time with Vulkan API and run-time
- Support more processor types, e.g. DSPs and FPGAs (graphics optional)

• Layered ecosystem for backwards-compatibility and market flexibility
- Feature sets for target market agility

• Single runtime stack for graphics and compute
- Streamline development, adoption and deployment for the entire industry

Thin, explicit Vulkan run-time with
rigorous memory/execution model.

Low-latency and predictable

Dialable
types and
precision

Feature Sets can be enabled for particular target markets

Real-time Pre-
emption and

QoS scheduling

Explicit
Asynch

DMA

Self-synchronized,
self-scheduled

graphs

Stream
Processing …

Math
Libraries

Vendor-supplied
and open source

middleware

Language
Front-ends

Tool
Layers

Installable
tool &

validation
layers

Applications

Vulkan
API

OpenCL 1.X/2.X
Compatibility

© Copyright Khronos Group 2017 - Page 23

OpenCL Evolution
Discussions

2011
OpenCL 1.2 OpenCL 2.1

SPIR-V in Core

2015

SYCL 1.2
C++11 Single source

programming

OpenCL 2.2
C++ Kernel Language

2017

SYCL 2.2
C++14 Single source

programming

Industry working to bring
Heterogeneous compute to

standard ISO C++
C++17 Parallel STL hosted by Khronos

Executors – for scheduling work
“Managed pointers” or “channels” –

for sharing data
Hoping to target C++ 20 but

timescales are tight

OpenCL 1.2++?
Focus on embedded imaging,

vision and inferencing
Make FP32 optional for DSPs and

general power efficiency

Single source C++ programming.
Great for supporting C++ apps,

libraries and frameworks

‘OpenCL-V’
Converge Vulkan

and OpenCL

Your Input!

© Copyright Khronos Group 2017 - Page 24

Get Involved!
• OpenCL is driving to new level of community engagement
- Learning from the Vulkan experience
- We need to know what you need from OpenCL
- IWOCL is the perfect opportunity to find out!

• Any company or organization is welcome to join Khronos
- For a voice and a vote in any of these standards
- www.khronos.org

• If joining is not possible – ask about the OpenCL Advisory Panel
- Free of charge – enables design reviews, requirements and contributions

• Neil Trevett
- ntrevett@nvidia.com
- @neilt3d

