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Abstract. We study the ancestral recombination graph for a pair of sites in a geographically
structured population. In particular, we consider the limiting behavior of the graph, under
Wright’s island model, as the number of subpopulations, or demes, goes to infinity. After an
instantaneous sample-size adjustment, the graph becomes identical to the two-locus graph
in an unstructured population, but with a time scale that depends on the migration rate and
the deme size. Interestingly, when migration is gametic, this rescaling of time increases the
population mutation rate but does not affect the population recombination rate. We compare
this to the case of a partially-selfing population, in which both mutation and recombination
depend on the selfing rate. Our result for gametic migration holds both for finite-sized demes,
and in the limit as the deme size goes to infinity. However, when migration occurs during the
diploid phase of the life cycle and demes are finite in size, the population recombination rate
does depend on the migration rate, in a way that is reminiscent of partial selfing. Simulations
imply that convergence to a rescaled panmictic ancestral recombination graph occurs for
any number of sites as the number of demes approaches infinity.

1. Introduction

It is of great biological interest to understand the dynamics of recombination within
genomes and the effects these can have on patterns of genetic variation. Restricted
recombination between loci causes their fates to be correlated, slowing the break-
down of gametic associations (Lewontin and Kojima 1960) and reducing the effec-
tiveness of natural selection (Hill and Robertson 1968). There is a correlation
between rates of recombination and levels of polymorphism in humans
(Nachman 2001) and in Drosophila (Begun and Aquadro 1992), and the rate and
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pattern of recombination have important consequences for linkage studies of hu-
man diseases (Kruglyak 1999; Reich et al. 2001). In addition, several methods of
estimating the population recombination rate have been developed (Hudson 1987;
Hey and Wakeley 1997; Wall 1999; Fearnhead and Donnelly 2001; Hudson 2001).
An understanding of recombination in populations is also important in gene map-
ping studies using linkage disequilibrium (Jorde 1995; Risch and Merikangas 1996;
Lander 1996).

The bulk of theoretical studies of recombination have assumed a panmictic
Wright-Fisher model (Fisher 1930; Wright 1931), while studies of recombination
in structured populations have been rare. A structured population is a population
that is subdivided into groups which contain one or more individuals, and the hall-
mark of subdivision is greater relatedness within groups than between groups. We
present results for the two-locus ancestral process in the island model of popu-
lation subdivision (Wright 1931; Moran 1959; Maruyama 1970; Latter 1973), in
which groups are local populations (demes) and structure is mediated by restricted
migration. The island model may not adequately represent the geographic structure
of some species as it does not predict a pattern of “isolation by distance” (Wright
1943). Still, it is the most frequently applied migration model in empirical popu-
lation genetic studies. Our results for the island model can be compared to those
obtained for a population structured by partial selfing, in which case the groups are
diploid individuals. In both models, the inbreeding coefficient F (Wright 1943) is
important in determining the effects of structure, but results for the two models can
be quite different.

In the context of the ancestral process for a sample, F is defined to be the prob-
ability that two lineages currently in the same group will coalesce before one or the
other of them moves to a different group. In a partially selfing population, the effect
of structure is to increase the rate of coalescence/drift by the factor 1+F relative to a
panmictic population of the same total size (Pollack 1987; Nordborg and Donnelly
1997). By contrast, in the island migration model with a large number of large de-
mes, analysis of dynamics at a single locus shows that the rate of coalescence/drift
is decreased by the factor 1 − F (Wakeley 1998; Wright 1943). This difference is
explained by the fact that even strictly selfing individuals can produce more than
one offspring, whereas if no migration occurs in the island migration model demes
cannot replace other demes. We extend the results for the island model to a pair of
loci and also show that, if demes are small and migration occurs during the diploid
phase of the life cycle, the effects of island model structure can be similar to those
of partial selfing.

In particular, we show that, in the limit of a large number of demes, the ancestral
process for a pair of selectively neutral loci in an island-model population can be
described analogously to a panmictic population, as is possible in the single-locus
case (Wakeley 1998). The effective size of the limiting ancestral process is given by
2ND/(MF), where N is the deme size, D is the number of demes and M = 4Nm,
where m is the proportion of each deme replaced by migrants every generation.
When migration occurs during the haploid, or gametic, phase of the life cycle, or
if the deme size is large, then MF = 1 − F , whereas under diploid migration
and small deme size MF is close to 1 + F . Note that these effective sizes hold
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when each lineage is in a separate deme. If some demes contain multiple lineages,
a much faster process of migration and within-deme coalescence occurs until each
remaining lineage is in a separate deme (Wakeley 1998).

In a population with neutral mutation rate u per generation at some locus, the
effective size of the ancestral process sets the scaled population mutation rate —
here, for the island model θ = 4NDu/(MF) — which in turn determines the
rate at which polymorphisms will be found in a sample of DNA sequences at the
locus. However, population structure affects the rate of recombination differently.
Under both partial selfing and island model migration, and likely under any model
of structure with F appropriately defined, a fraction F of recombination events
are repaired by within-deme coalescent events. This is true because, looking back-
wards in time, the two chromosomal segments that result from a recombination
event are initially present in the same group (deme or individual) and thus have a
chance to coalesce before migration or outcrossing makes the recombination event
potentially observable.Alternatively, looking forward in time, higher levels of relat-
edness within than between groups in a structured population increase the chance
that a recombination event will involve homozygotes at one or both loci and thus
be unobservable.

Under gametic migration, we find that R = 4NDr is the appropriate popula-
tion recombination rate in the island model with a large number of demes, where
r is the per-generation rate of recombination between two loci. In this case, the
opportunity for recombination is at once increased by the factor 1 − F , due to
the lengthening of coalescent times, and decreased by the same factor, due to the
fact that only a fraction 1 − F of recombination events are observable. This result
holds both when demes are finite in size and in the limit of large demes size (with
limN→∞ 4Nm = M) as long as migration is gametic.

When migration occurs during the diploid phase of the life cycle and demes
are finite in size, the fraction of recombination events that are repaired by coales-
cent events is not identical to the factor by which coalescent times are scaled. In
the limit of a large number of demes, we find that levels of polymorphism will
depend on 4NDu/(MF1(N)) and the population recombination rate is given by
4NDr(1 − F1(N))/(MF1(N)), where 1 − F1(N) ≤ MF1(N) ≤ 1 + F1(N) and
F1(N) is the inbreeding coefficient for an individual. Thus, the results for diploid
migration are intermediate between those for gametic migration and the analogous
results of Nordborg (2000) for partial selfing. The similarity to partial selfing is
due to the fact that a pair of chromosomes can travel together via diploid migration
if they are in the same individual. A proof of Nordborg’s (2000) result, at least in
the case of two loci, which Nordborg and Krone (2002) point out is lacking, could
follow along the same lines as the one we give here for the island model.

In this paper, we consider changes backward in time in the distribution of the
ancestral material of sampled chromosomal segments at two sites with recombi-
nation in a variety of island models and show convergence of the discrete-time
transition matrices to continuous-time approximations as the number of demes D

tends to infinity and 2ND generations are taken as unit of time where N is the deme
size. Our convergence results are essentially based on a theorem for Markov chains
due to Möhle (1998) and originally used to study the coalescent with partial selfing,
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the number of ancestral genes as well as the different identity classes at a single
locus without recombination backward in time as in Kingman’s (1982) coalescent.
They are applied in the same way and under the same conditions.

In the first part of the paper (Sections 2 and 3), we let N tend to infinity and then
D tend to infinity, which is less cumbersome and more intuitive than the opposite
case or the case N finite, to introduce the notation and illustrate the method. In the
second part (Section 4 for the case of gametic migration and Section 5 for the case
of diploid migration), we let D go to infinity for N fixed, which has an interest on
its own, and we further check that this result is consistent with the previous one
when we let N go to infinity in the limit. In Section 7, we explain that convergence
must actually occur in all cases, irrespectively of the way N and D tend to infinity,
and we discuss some biological applications.

2. The ancestral recombination graph for pairs of sites in a structured
population

Assume discrete, non-overlapping generations in a diploid population structured
into D demes with Ncµ individuals in deme µ. Under gametic migration, at the
beginning of every generation, each individual in the population produces the same
very large number of gametes, which then disperse independently. Let mµν be
the proportion of gametes in deme µ that come from deme ν. These backward
migration rates per generation are assumed to be constant over time. After migra-
tion there is random union of gametes and population regulation within demes to
form the diploid individuals of the next generation. The genealogical process for
this model for a single locus, or site, is known as the structured Wright-Fisher
coalescent (Wilkinson-Herbots 1998; Nordborg 2001). We consider two chromo-
somal sites and assume a recombination rate r per generation between them.

Looking backward in time at the genealogy of a sample of chromosomal seg-
ments at the two sites, the number and location of the ancestral segments in a given
generation can be described by the vector

n = (n1, ..., nD),

where
nµ = (n(1)

µ , n(2)
µ , n(3)

µ ),

for µ = 1, ..., D. That is, deme µ contains n
(1)
µ segments ancestral at site 1, n

(2)
µ

ancestral at site 2 and n
(3)
µ ancestral at both sites, for µ = 1, ..., D.

Here we make the usual coalescent assumption that N is large and mµν is corre-
spondingly small. Then, measuring time in units of 2ND generations, any segment
in deme µ may migrate to deme ν at a rate DMµν/2, where Mµν = 4Nmµν is a
scaled migration rate, or recombine at a rate R/2, where R = 4NDr is a scaled
recombination rate. Recombination will change the sample configuration only if it
occurs on a segment that is ancestral at both sites, thus creating two new segments
that are each ancestral at one site. A segment may coalesce with another ancestral
segment in the same deme at a rate (nµ − 1)D/cµ, where

nµ = n(1)
µ + n(2)

µ + n(3)
µ
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is the total number of ancestral segments in deme µ. When two segments ancestral
at the same site coalesce, the number of ancestral segments (at that site) decreases
by one. Coalescent events can also change the linkage patterns in the sample by
joining together two segments that are not both ancestral at both sites.

As N goes to infinity, only one of these events can occur at a time according to
a continuous-time Markov chain. The chain remains in state n for an exponentially
distributed length of time with parameter

λn =
∑

µ

{
nµDMµ

2
+ n

(3)
µ R

2
+ nµ(nµ − 1)D

2cµ

}
,

where
Mµ =

∑

ν �=µ

Mµν.

Then, there is a transition to another state n′ with probability Qnn′ given by

n
(k)
µ DMµν

2λn
if n′ = n − e(k)

µ + e(k)
ν , for ν �= µ and k = 1, 2, 3,

n
(3)
µ R

2λn
if n′ = n + e(1)

µ + e(2)
µ − e(3)

µ ,

n
(1)
µ n

(2)
µ D

cµλn
if n′ = n − e(1)

µ − e(2)
µ + e(3)

µ ,

2n
(k)
µ n

(3)
µ D+n

(k)
µ (n

(k)
µ −1)D

2cµλn
if n′ = n − e(k)

µ , for k = 1, 2,

n
(3)
µ (n

(3)
µ −1)D

2cµλn
if n′ = n − e(3)

µ ,

where e(k)
µ designates a vector of all zero D triplets except the µ-th, which is (1, 0, 0)

if k = 1, (0, 1, 0) if k = 2 and (0, 0, 1) if k = 3.
The above formulation describes the structured ancestral recombination graph

at two neutral sites. Notice that such a graph is symmetric with respect to the
two sites. It is a generalization of the structured coalescent at a single neutral site
(Wilkinson-Herbots 1998; Nordborg 2001), which in turn generalized Kingman’s
(1982) coalescent. Recombination was first incorporated in the (unstructured) coa-
lescent by Hudson (1983) and Hudson and Kaplan (1985), and was considered
later on in a context of selection, which shares some similarity with geographic
subdivision (Hudson and Kaplan 1988; Kaplan, Darden and Hudson 1988; Kaplan,
Hudson and Iizuka 1991). The terminology ‘ancestral recombination graph’ was
introduced by Griffiths and Marjoram (1996) to describe the lineages of chromo-
somal segments at a continuum of neutral sites with recombination in a random
mating population.

3. The ancestral recombination graph for pairs of sites in the island model
with a large number of demes

In the island model, the D demes are assumed to be of the same size and the back-
ward migration rates to other demes all equal. Therefore, we have cµ = 1 for all
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µ and Mµν = M/(D − 1) for all ν �= µ. Now the state of the ancestral material at

two sites, given by the vector n = (n1, ..., nD), where nµ = (n
(1)
µ , n

(2)
µ , n

(3)
µ ), for

deme µ = 1, ..., D, is the same by symmetry under any permutation of the demes.
Moreover, only the ancestral demes matter, that is, the demes that contain ancestral
segments. In the following, segments that are ancestral at site 1 will be said of type
1, those ancestral at site 2 of type 2 and those ancestral at both sites of type 3. When
a deme contains only one ancestral segment, it is said of the type of the ancestral
segment that it contains.

If we order the demes in such a way that the number of ancestral segments is
decreasing, and then the number of segments of type 3, 2, 1 in this order in case of
equalities, we find a standard state ñ that is equivalent to n and we note n ∼= ñ. If
d = d(n) = d(ñ) is the number of ancestral demes, then ñµ ≥ 1 for µ ≤ d and
ñµ = 0 for µ > d, where

ñµ = ñ(1)
µ + ñ(2)

µ + ñ(3)
µ

is the number of ancestral segments in deme µ with demes ordered such that µ < ν

if
ñµ > ñν

or
ñµ = ñν and ñ(3)

µ > ñ(3)
ν

or
ñµ = ñν and ñ(3)

µ = ñ(3)
ν and ñ(2)

µ > ñ(2)
ν

or
ñµ = ñν and ñ(3)

µ = ñ(3)
ν and ñ(2)

µ = ñ(2)
ν and ñ(1)

µ ≥ ñ(1)
ν .

Notice that the standard state ñ does not actually depend on D, since the number
of positive entries is always bounded by twice the number of ancestral segments in
the original sample.

Let S be the set of all possible standard states of the ancestral material, ordered
by convention such that the states with at most one ancestral segment in each deme
(ñµ = 1 for µ ≤ d and 0 for µ > d) come first, those with two ancestral segments
in one deme and at most one in each other (ñ1 = 2 and ñµ = 1 for 2 ≤ µ ≤ d and
0 for µ > d) come next, and all other states come last. Let us denote by S1, S2 and
S3 the corresponding subsets of states.

Since every ancestral demes describing a state in S1 contains only one ancestral
segment, such a state can be described by a vector d = (d(1), d(2), d(3)), where
d(k) is the number of demes containing one segment of type k for k = 1, 2, 3 and
d(1) + d(2) + d(3) = d . Furthermore, a state in S2 can be represented by a vector
d = (d(1), d(2), d(3), d(11), d(12), d(13), d(22), d(23), d(33)), where d(kl) = 1 if one
deme contains a segment of type k and another of type l for k, l = 1, 2, 3 and only
one is equal to 1 with

∑3
k=1(d

(k) + ∑3
l=k d(kl)) = d.

Taking 2ND as the unit of time where N is the deme size and letting N go to
infinity, the transition matrix of the Markov chain on S over a period of time t in
the past can be written in the form

P(t) = exp

{[
A + B(D)

D

]
Dt

}
,
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where the element Aññ′ of the matrix A is given by

∑
µ∈�

(k)
1

{
ñ

(k)
µ M

2

}
if one migration of a segment of type k
from a deme with 2 or more ancestral
segments to a non ancestral deme,
for k = 1, 2, 3,

∑
µ∈�2

{
ñ

(1)
µ ñ

(2)
µ

}
if one coalescence between segments
of type 1 and 2, respectively,

∑
µ∈�

(k)
3

{
ñ

(k)
µ ñ

(3)
µ + ñ

(k)
µ (ñ

(k)
µ −1)

2

}
if one coalescence between one segment
of type k and one of type k or 3,
for k = 1, 2,

∑
µ∈�

(3)
3

{
ñ

(3)
µ (ñ

(3)
µ −1)

2

}
if one coalescence between two segments
of type 3,

− ∑
µ∈�4

{
ñµM+ñµ(ñµ−1)

2

}
if the same standard state,

and 0 otherwise, while the element Bññ′(D) of B(D) is given by

− ∑
µ∈�

(k)
1

{
ñ

(k)
µ MD(d−1)

2(D−1)

}
if one migration of a segment of type k
from a deme with 2 or more ancestral
segments to a non ancestral deme,
for k = 1, 2, 3,

∑
µ∈�

(k)
5

{
ñ

(k)
µ MD

2(D−1)

}
if one migration of a segment of type k
to an ancestral deme, for k = 1, 2, 3,

∑
µ∈�6

{
ñ

(3)
µ R

2

}
if one recombination of a segment
of type 3,

− ∑
µ∈�7

{
ñ

(3)
µ R

2

}
− ∑

µ∈�8

{
ñµMD(d−1)

2(D−1)

}
if the same standard state,

and 0 otherwise, with

�
(k)
1 =

{
µ : ñ − e(k)

µ + e(k)
d+1

∼= ñ′ and ñ
(k)
µ ≥ 1 with ñµ ≥ 2

}
,

�2 =
{
µ : ñ − e(1)

µ − e(2)
µ + e(3)

µ
∼= ñ′ and ñ

(1)
µ , ñ

(2)
µ ≥ 1

}
,

�
(k)
3 =

{
µ : ñ − e(k)

µ
∼= ñ′ and ñ

(k)
µ ≥ 1

}
,

�4 = {
µ : ñµ ≥ 2

}
,

�
(k)
5 =

{
µ : ñ − e(k)

µ + e(k)
ν

∼= ñ′ different from ñ

with ñ
(k)
µ ≥ 1 and ñν ≥ 1 for some ν �= µ

}
,
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�6 =
{
µ : ñ − e(3)

µ + e(1)
µ + e(2)

µ
∼= ñ′ and ñ

(3)
µ ≥ 1

}
,

�7 = {
µ : ñµ ≥ 1

}
,

�8 = {
µ : ñµ = 1

}
.

Notice that the matrix A is an infinitesimal generator, actually D times the infin-
itesimal generator of the Markov chain on S when there is no recombination and
migration occurs only to non ancestral demes, with time measured in units of 2N

generations and N going to infinity. For this chain, the states in S1 are absorbing and
all others are transient. Therefore, the infinitesimal generator A is in the block form

A =





0 0 0

A21 A22 A23

A31 A32 A33





with respect to the subsets of states S1, S2 and S3 in this order, where 0 denotes a
null matrix, while

P = lim
t→∞ exp{At}

is in the block form

P =





I 0 0

P21 0 0

P31 0 0




,

where I is an identity matrix, and the elements of P21 and P31 are probabilities of
fixation from states in S2 and S3, respectively, into states in S1. The elements of
P21 will be 0 or F or 1 − F , where F = 1/(1 + M) is the probability that two
segments in the same deme coalesce before migrating. Actually, from a state d in
S2 with d(kl) = 1 for k ≤ l, we will have absorption either to the state with d(k)

and d(l) increased by 1 (d(l) increased by 2 in the case k = l) with probability
1 − F , or to the state in S1 with d(l) increased by 1 (d(3) increased by 1 in the
case k = 1 and l = 2) with probability F . Similarly, the elements of P31 can be
obtained by looking at the number of segments of each type that can migrate from
each ancestral deme as in Wakeley (2001).

On the other hand, B(D) converges to a matrix B as D goes to infinity, whose
element Bññ′ is given by

− ∑
µ∈�

(k)
1

{
ñ

(k)
µ M(d−1)

2

}
if one migration of a segment of type k
from a deme with 2 or more ancestral
segments to a non ancestral deme,
for k = 1, 2, 3,

∑
µ∈�

(k)
5

{
ñ

(k)
µ M

2

}
if one migration of a segment of type k
to an ancestral deme, for k = 1, 2, 3,
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∑
µ∈�6

{
ñ

(3)
µ R

2

}
if one recombination of a segment
of type 3,

− ∑
µ∈�7

{
ñ

(3)
µ R

2

}
− ∑

µ∈�8

{
ñµM(d−1)

2

}
if the same standard state,

and 0 otherwise. This matrix can be written in the block form

B =





D B12 0

B21 B22 B23

B31 B32 B33





with respect to the subsets of states S1, S2 and S3 in this order, where D is a diagonal
matrix with −[d(3)R + d(d − 1)M]/2 on the main diagonal for a state in S1 in
the form (d(1), d(2), d(3)) with d = d(1) + d(2) + d(3), while B12 contains rates of
recombination and rates of migration to ancestral demes from states in S1 to states
in S2, actually, d(3)R/2 for a recombination, decreasing d(3) by 1 and leading to
d(12) = 1, d(1)d(2)M for a migration from a deme of type 1 to a deme of type 2 or
the opposite, decreasing d(1) and d(2) by 1 and leading to d(12) = 1, d(k)d(3)M for a
migration from a deme of type k to a deme of type 3 or the opposite, decreasing d(k)

by 1 and leading to d(k3) = 1, for k = 1, 2, and d(k)(d(k) − 1)M/2 for a migration
from a deme of type k to another deme of type k, decreasing d(k) by 1 and leading
to d(kk) = 1, for k = 1, 2, 3. These correspond to rates of recombination and M

times rates of coalescence in a random mating population of size D when D is
taken as the unit of time and let to go to infinity.

Moreover, we have

exp

{
A + B(D)

D

}
=

∑

n≥0

(
A + B(D)

D

)n

n!
= exp{A} + C(D)

D
,

where exp{A} is a stochastic matrix and

C(D) =
∑

n≥1

{∑n−1
k=0 AkB(D)An−k−1

n!

}
+ O(1/D)

converges to the matrix

C =
∑

n≥1

{∑n−1
k=0 AkBAn−k−1

n!

}

as D goes to infinity. Then, a lemma due to Möhle (1998) guarantees that

lim
D→∞

exp

{[
A + B(D)

D

]
Dt

}
= P exp{tG},



284 S. Lessard, J. Wakeley

where
G = PCP.

But actually, we have
G = PBP,

since
PA = AP = 0.

We get

G =





D + B12P21 0 0

P21D + P21B12P21 0 0

P31D + P31B12P21 0 0




.

Therefore, we have instantaneous transitions from states in S2 and S3 to states in
S1 and, once in S1, a Markov chain with infinitesimal generator D + B12P21.

From a state (d(1), d(2), d(3)) in S1, there is recombination or migration to
ancestral demes according to the rates given by the elements of B12, but then the
two ancestral segments that happen to coexist momentarily in the same deme either
coalesce with probability F or end up in different demes with probability 1 − F ,
which are the non zero elements of P21. There will be a change in the former case
only if the two segments in the same deme were the result of migration, and in the
latter only if they were the result of recombination. Notice that the factor M in the
rates of migration times F gives M/(1 + M) = 1 − F . Then, we get the rates of
change

d(3)R(1 − F)/2 to (d(1) + 1, d(2) + 1, d(3) − 1),

d(1)d(2)(1 − F) to (d(1) − 1, d(2) − 1, d(3) + 1),

(d(1)d(3) + d(1)(d(1) − 1)/2)(1 − F) to (d(1) − 1, d(2), d(3)),

(d(2)d(3) + d(2)(d(2) − 1)/2)(1 − F) to (d(1), d(2) − 1, d(3)),

d(3)(d(3) − 1)(1 − F)/2 to (d(1), d(2), d(3) − 1).

These are 1−F times the rates of change in a random mating population. If the unit
of time is divided by 1 − F , we get the generator for a random mating population
with the same coalescence rates and the scaled recombination rate R.

4. The case of small deme size

In this section, we consider the island model with a large number of demes in
the case where the deme size N is small and the backward migration rate per
generation m is not necessarily small, and we define M = 2Nm(2 − m), where
m(2 − m) = 1 − (1 − m)2 is the probability that at least one of two segments in
the same deme comes from another deme in the previous generation. Looking at
the ancestral material at two sites for a given sample of segments, there may be
migration, coalescence and recombination events and some of these events may



The two-locus ancestral graph in the island model 285

occur simultaneously. Nevertheless, the transition matrix on S from one generation
to the previous one can still be written in the form

I + A(N)

2N
+ B(N, D)

2ND
,

where I+A(N)/(2N) is the transition matrix that we would get assuming no recom-
bination and migration only to different non ancestral demes, and B(N, D)/(2ND)

contains all other transition probabilities minus terms added to get A(N). Defining
S1, S2 and S3 as previously, the states in S1 are absorbing for I + A(N)/(2N) and

lim
t→∞

[
I + A(N)

2N

]t

= P(N),

where P(N) can be written in the block form

P(N) =





I 0 0

P21(N) 0 0

P31(N) 0 0





with the non null entries of P21(N) being

F(N) = (1 − m)2

(1 − m)2 + M

or 1 − F(N). Notice that F(N) is the probability that two lineages starting in the
same deme coalesce before one or the other migrates. On the other hand, we have

lim
D→∞

B(N, D) = B(N),

where

B(N) =





B11(N) B12(N) 0

B21(N) B22(N) B23(N)

B31(N) B32(N) B33(N)




.

The entries of B12(N) on the line corresponding to the state (d(1), d(2), d(3)) in S1
are d(3)R/2 for a recombination, decreasing d(3) by 1 and leading to d(12) = 1,
d(1)d(2)M(2N − 1)/(2N) for a migration from a deme of type 1 to a deme of type
2 without coalescence, or the opposite, decreasing d(1) and d(2) by 1 and leading
to d(12) = 1, d(k)d(3)M(2N − 1)/(2N) for a migration from a deme of type k to a
deme of type 3 without coalescence, or the opposite, decreasing d(k) by 1 and lead-
ing to d(k3) = 1, for k = 1, 2, and d(k)(d(k) − 1)M(2N − 1)/(4N) for a migration
from a deme of type k to another deme of type k without coalescence, decreasing
d(k) by 1 and leading to d(kk) = 1, for k = 1, 2, 3. On the other hand, the entries of
B11(N) off the main diagonal are d(1)d(2)M/(2N) for a migration from a deme of
type 1 to a deme of type 2 with coalescence, or the opposite, decreasing d(1) and
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d(2) by 1 and increasing to d(3) by 1, d(k)d(3)M/(2N) for a migration from a deme
of type k to a deme of type 3 with coalescence, or the opposite, decreasing d(k) by
1 and increasing d(3) by 1, for k = 1, 2, and d(k)(d(k) − 1)M/(4N) for a migration
from a deme of type k to another deme of type k with coalescence, decreasing d(k)

by 1, for k = 1, 2, 3. The entries of B11(N) on the main diagonal are simply minus
the sums of all other entries on the same rows in B11(N) and B12(N).

Taking 2ND as the unit of time, the transition matrix from 0 to time t in the
past as D goes to infinity is

lim
D→∞

[
I + A(N)

2N
+ B(N, D)

2ND

][2NDt]

= P(N) exp{tG(N)},

where
G(N) = P(N)B(N)P(N)

and [2NDt] designates the integer of 2NDt . We find

G(N) =





B11(N) + B12(N)P21(N) 0 0

P21(N)B11(N) + P21(N)B12(N)P21(N) 0 0

P31(N)B11(N) + P31(N)B12(N)P21(N) 0 0




.

After instantaneous transitions from states in S2 and S3 to states in S1, we get the
rates of change in a random mating population multiplied by

1 − F(N) = M(2N − 1)F (N)

2N
+ M

2N
.

As N goes to infinity, F(N) goes to F and P(N) goes to P, and the above result is
in agreement with the previous one.

5. The case of diploid migration

When the deme size is small, there is a difference between diploid migration and
gametic migration even in the case of a large number of demes. Assume that migra-
tion occurs after mating within demes, but before reproduction. In this case, the
states in S2 can be of two possible kinds: those with the two ancestral segments
in one deme in the same individual and those with these segments in two individ-
uals. Then, the non null entries of P21(N) will be F1(N), 1 − F1(N), F2(N) or
1 − F2(N), where F1(N) and F2(N) are the probabilities of coalescence before
migration when we consider two segments at a single site in the same individual
and in two individuals in the same deme, respectively. We find easily, assuming
N ≥ 2, that

F2(N) = (1 − m)2F1(N)

and

F1(N) = 1

M + 1 − 4m + 2m2 ,
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Fig. 1. Plot of MF1(N), the factor by which coalescent times are scaled under diploid
migration, as a function of the migration rate and the deme size.

where again M = 2Nm(2 − m). That is, M is equal to 2N times the probability
that at least one of two individuals in the same deme comes from another deme in
the previous generation.

Moreover, the entries of B12(N) corresponding to migration events have the
factor M(N − 1)/N in the case of segments originating from separate individuals
in the same deme and the factor M/(2N) in the case of segments that are copies of
the two segments in the same individual, while the entries of B11(N) off the main
diagonal have the same factor M/(2N) as in the case of gametic migration. As a
result, after instantaneous transitions from states in S2 and S3 to states in S1, we
get the rates of change in a random mating population multiplied by (1 − F1(N))

in the case of recombination and

MF1(N) = M(N − 1)F2(N)

N
+ MF1(N)

2N
+ M

2N

in the case of coalescence. We have the inequalities

1 − F1(N) ≤ MF1(N) ≤ 1 + F1(N)

with equalities in the cases m = 0 (or when N goes to infinity) and m = 1,
respectively.

Figure 1 shows MF1(N) over a range of values of the migration rate and the
deme size. When deme sizes are small and migration rates large, MF1(N) is close
to 1 + F1(N), and coalescent times are shortened relative to those in a panmictic
population. When migration rates are smaller and deme sizes larger, MF1(N) is
close to 1 − F1(N), and the effect of subdivision under diploid migration is to
lengthen coalescent times, similar to the case of gametic migration.

6. Simulations

To provide an additional check of our results and to investigate the convergence
properties of the ancestral recombination graph for multiple sites, we performed
coalescent simulations using software developed for Hudson et al. (1992), which
Dick Hudson has kindly made available. These simulations assume that N is large,
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but allow for an arbitrary number of sites and level of recombination. Importantly,
they also allow D to be varied. We assumed a genetic locus composed of ten thou-
sand sites (10Kb) between which recombination events could occur, and considered
a range of recombination rates, sample sizes, and values of M . Most of the results
are not shown, but all of them were completely consistent with our analytical pre-
dictions. In addition, they imply that the rescaled ancestral recombination graph,
in which the rate of coalescence is rescaled by MF but the rate of recombination
is not, holds for any number of sites.

Figure 2 presents the results of two sets of simulations for a pair of sequences
taken from two different demes in a population with migration parameter M = 1.
The two sets of simulations assumed different values of the recombination parame-
ter, R = 0 and R = 10, between the two ends of the 10Kb locus. In each simulation
replicate, the total length of the genealogy (the sum of the tree lengths for all ten
thousand sites) was recorded, and in one million replicates these were compiled
into the histograms shown in figure 2 for each value of D. Time is measured in
units of 2ND generations, and on this timescale the expected total tree length is

Fig. 2. The left and right panels give two alternative views of the distribution of the total
length of the genealogy in simulations of a pair of sequences sampled from an island-model
population, over a range of D, with M = 1.0, and R = 0.0 ((a) and (b)) or R = 10.0 ((c)
and (d)).
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E[T ] = 2(1 + 1/M), or 4 when M = 1. The number of demes was varied from
its minimum value of D = 2 for this kind of sample up to 1024 on a log scale. The
values for D = ∞ in the figure were obtained by simulating the genealogy for a pair
of sequences sampled from a single panmictic population that had exactly those
properties predicted for the limiting ancestral process described above, namely,
with a coalescent rate rescaled by MF = M/(1 +M). Clearly, the probability dis-
tribution of genealogical tree lengths approaches the large-D limiting result quite
rapidly as the number of demes increases.

7. Discussion

In this paper, we have shown convergence of the discrete-time transition matrices,
backward in time, for the distribution of the ancestral material of a sample of genes
at two linked loci assuming an island model with either gametic or diploid migra-
tion and letting the total number of demes D go to infinity while measuring time
in units of 2ND generations where N is any fixed deme size. Moreover, as N goes
to infinity, before or after D goes to infinity, there is still convergence and the limit
is the same in both cases. Actually, there is convergence to the same limit as N and
D tend simultaneously to infinity, since the convergence as N goes to infinity is
uniform with respect to D. As a matter of fact, the transition matrix on the state
space S from one generation to the previous one given in Section 4 can also be
written in the form

I + A
2N

+ B(D)

2ND
+ O(N, D),

where the matrices A and B(D) are as defined in Section 3 and the entries of
O(N, D) are the transition probabilities involving two or more events of coales-
cence, migration or recombination. Since the number of such events is bounded
and the probability of any two of these events, keeping M = 4Nm and R = 4NDr

fixed, is also bounded by some constant times (1/N2), we have that NO(N, D)

tends to zero uniformly with respect to D as N tends to infinity. Moreover, [2NDt]/
(2N) converges to Dt uniformly with respect to D as N tends to infinity, and
therefore,

lim
N→∞

[
I + A

2N
+ B(D)

2ND
+ O(N, D)

][2NDt]

= exp

{[
A + B(D)

D

]
Dt

}
,

the convergence being uniform with respect to D.
Numerical studies on linkage disequilibrium at two linked loci in the island

model were performed and reported in a companion paper submitted to Genetics
(Wakeley and Lessard 2003). These are in agreement with our convergence results
and can explain some genomic data in humans.

The results presented in the present paper imply that methods developed for
panmictic populations, for instance to estimate the population recombination rate
(Hudson 1987; Hey and Wakeley 1997; Wall 1999; Fearnhead and Donnelly 2001;
Hudson 2001), can be applied to samples in which each sequence comes from a dif-
ferent deme as long as an island model with a large number of demes remains a good
approximation. It is only necessary to realize that estimates from these “scattered”



290 S. Lessard, J. Wakeley

samples will depend on whether migration is gametic or demes are finite in size and
migration occurs in the diploid phase of the life cycle. Under gametic migration,
the only effect of population structure is to lengthen genealogies, and thus increase
levels of polymorphism. The above methods will estimate the population rate of
recombination R = 4NDr , which does not depend on the migration rate. However,
under diploid migration it is possible (see figure 3) that these methods will esti-
mate something substantially smaller than R. When demes are small and migration
rates relatively high, diploid migration is similar to partial selfing, in which case
the effective recombination rate is given by R(1 − F)/(1 + F) (Nordborg 2000;
Golding and Strobeck 1980). Although we have not proven convergence for the
ancestral recombination graph of an entire linked sequence of sites (but only for a
pair), simulations suggest that the same result holds for any number of sites.

In the case where multiple samples come from the same deme, it will be neces-
sary to consider the instantaneous, stochastic adjustment to the sample size called
the scattering phase (Wakeley 1999). The previous description of the scattering
phase (Wakeley 1998) assumed that the deme size was large and the migration rate
small, so that M = 4Nm served as the migration parameter. Under this assump-
tion, events within a deme cannot co-occur in the same generation. However, when
N is not large and m not necessarily small, it is possible that several coalescent
events and/or migration events will occur in the same generation. The description
of the scattering phase would need to be modified accordingly. We note that such
a description will not be as simple as it is in the case of large N , and that it will
depend upon the order in which events take place in the life cycle and upon whether
migration occurs in the diploid or the haploid phase.

Even without an analytical description of the scattering phase, our results sug-
gest an efficient method of simulating genealogies of samples when there is recom-
bination and the population is divided into a large number of demes. First, the
scattering phase would be simulated and the descendants in the sample would be
recorded for each remaining lineage (which are all in different demes at the end
of the scattering phase). Next the remaining lineages would be fed into any stan-
dard coalescent simulation algorithm that includes recombination, such as that of
Hudson (1983). Of course, the appropriate effective population rates of mutation
and recombination would have to be computed and used as input in the simulation.
Whenever the assumption of a large number of demes is appropriate, this method
would give the desired distribution of genealogies and would be much more efficient
than simulations in which all the demes in the population are represented.
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