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A few words about words

A big difficulty in communication between Mathematicians and
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Examples:

• to divide -
• to differentiate -
• a PDE -
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• to differentiate -
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A few words about words

A big difficulty in communication between Mathematicians and
Biologists is because of different vocabulary.

Examples:
• to divide - replicate the contents of a cell and split into two

(Biologist)
• to differentiate - find the slope of a function (Mathematician)
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A big difficulty in communication between Mathematicians and
Biologists is because of different vocabulary.
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• to divide - replicate the contents of a cell and split into two
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A few words about words

A big difficulty in communication between Mathematicians and
Biologists is because of different vocabulary.

Examples:
• to divide - replicate the contents of a cell and split into two

(Biologist)
• to differentiate - change the function of a cell (Biologist)
• a PDE - Pennsylvania Department of Education

And so it goes with words like germs and fiber bundles
(topologist or microbiologist), cells (numerical analyst or
physiologist), complex (analysts or molecular biologists),
domains (functional analysts or biochemists), and rings
(algebraists or protein structure chemists).
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Basic challenges and goals:
• To discover general principles underlying biological

complexity; to organize and describe the data in more
comprehensible ways.

• To provide quantitative theories for how biological processes
work.

Why is Math Biology hard? – p.3/33
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The Problem

All living organisms make decisions (when to divide, when to
differentiate, when to grow, when to die)

Basic questions:
• What information is available and how is it assessed?
• How is that information transduced into chemistry?

Outline: Two Examples
• Quorum sensing in P. aeruginosa
• Filament length regulation in Salmonella.

To grow or not to grow? That is the question. – p.4/33
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Quantitative Thinking

Biology is characterized by change. A major goal of
mathematical modeling is to quantify how things change.

Fundamental Law:

rate of change of ”stuff” in the region Ω =
rate of movement (flux J) + rate of production(f)

JFlux

production

f

Ω

The questions to address are:

1. What is the "stuff" that matters?

2. How does it move?

3. How is it produced?

It’s just counting – p.5/33
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I - Quorum Sensing

Quorum sensing: The ability of a bacterium to sense the size of
its colony and to regulate its activity in response.
Examples:

• Pseudomonas Aeruginosa: Major cause of infection in hospitals
and in Cystic Fibrosis patients. In planktonic form, they are
readily cleared, but in biofilm they are well-protected by the
polymer gel in which they reside. However, they do not form
the gel until the colony is of sufficient size, i.e., quorum
sensing.

• Vibrio fisheri: Populate the light organs of certain squids, and
when the colony is large enough they become luminescent.

Question: How do bacteria measure the size of their colony?

BAMC06 – p.6/33
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Quorum Sensing

1: What stuff matters?

Wild Type Biofilm Mutant Mutant with autoinducer

Autoinducer (HSL): a molecule that is made by the cell and can
freely diffuse across the membrane of the cell.

BAMC06 – p.7/33
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Quorum Sensing

2: How does autoinducer move?

Small molecules undergo a random walk.
However, when there are a large number of molecules, their
average motion is well-described by Fick’s Law

J =
AD

L
(C1 − C2)
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L
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    Space

C1

Flux is proportional to concentration difference .
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Quorum Sensing

2: How does autoinducer move?

Small molecules undergo a random walk.
However, when there are a large number of molecules, their
average motion is well-described by Fick’s Law

J =
AD

L
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Flux is proportional to concentration difference .

Key Observation! Flux provides a quantitative measure of
extracellular quantities.
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Autoinducer

3. How is autoinducer produced?
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Biochemistry of Quorum Sensing

lasI

lasR
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Modeling Biochemical Reactions

Bimolecular reaction A + R←→ P

LasR

3−oxo−C12−HSL

A

A

LasR

dP

dt
= k+AR− k−P

Production of mRNA P
−→ l

LasR A lasI

dl

dt
=

VmaxP

Kl + P
− k−ll

Enzyme production l → L
LasIlasI

dL

dt
= kll −KLL
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Full system of ODE’s

dP
dt

= kRARA− kP P

dR
dt

= −kRARA + kP P − kRR + k1r,

dA
dt

= −kRARA + kP P + k2L− kAA,

dL
dt

= k3l − klL,

dS
dt

= k4s− kSS,

ds
dt

= Vs
P

KS+P
− kss,

dr
dt

= Vr
P

Kr+P
− krr + r0,

dl
dt

= Vl
P

Kl+P
1

KS+S
− kll + l0

rsaL

LasI
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A

A

3−oxo−C12−HSL
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Diffusion

E

A

dA

dt
= F (A,R, P ) + δ(E −A)

dE

dt
= − kEE + δ(A− E)
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Diffusion

E
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dA
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= F (A,R, P ) + δ(E −A)

dE

dt
= − kEE + δ(A− E)

rate of change, production or degradation rate, diffusive
exchange,
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Diffusion

E

A

dA

dt
= F (A,R, P ) + δ(E −A)

(1− ρ) (
dE

dt
+ KEE) = ρ δ(A− E)

rate of change, production or degradation rate, diffusive
exchange, density dependence.
Main point reiterated!!! Flux of A out of the cell is related to the
amount of E in the extracellular space.
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Simplified Model

dA

dt
= F (A) + δ(E −A),

(1− ρ)(
dE

dt
+ kEE) = ρδ(A−E),

where F (A) = F0 + V A2

K2

A
+A2

. 0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 A

 F
(A

)

BAMC06 – p.14/33



University of Utah
Mathematical Biology

theImagine 
Possibilities

Two Variable Phase Portrait
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Result

A density dependent switch (like a thermostat).
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Summary: Part I

• Rate at which something can be dumped is an indicator of
the size of the space into which it is being dumped.

• Diffusion coupled with positive feedback enables hysteretic
switches.

• This generic behavior remains the same, even with much
more complicated (PDE) models.
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II - Length Detection

Salmonella: The "critters" that cause food poisoning.

• Flagella grow at a velocity that
decreases as they get longer.

• If a flagellum is broken off, it will
regrow at the same velocity as
when it first grew.

Question: How does the bacterium measure flagellar length?

BAMC06 – p.18/33
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Rotary Flagellar Motors
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How Do Flagella Grow?

• Step 1: Secretion
• Step 2: Diffusion
• Step 3: Polymerization

� � � � � � �	 	 	 	 	 	 	
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How Do Flagella Grow?

• Step 1: Secretion
• Step 2: Diffusion
• Step 3: Polymerization
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How Do Flagella Grow?

• Step 1: Secretion
• Step 2: Diffusion
• Step 3: Polymerization
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Modelling Flagellar Growth

Step 2: Diffusion

Important Fact: Filament is a hollow tube, so movement
(diffusion) is single file.

Let p(x, t) be the probability that a molecule is at position x at
time t. Then,

∂p

∂t
+

∂J

∂x
= 0

where

J = −D
∂p

∂x
.

Remark: J
l

= flux in molecules per unit time.
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Modelling Flagellar Growth

Step 1: Secretion

Step 1

FliI

FliJ

� � �� � �� � �� � �� � �� � �
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membrane
components
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Modelling Flagellar Growth

Step 1: Secretion
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Modelling Flagellar Growth

Step 1: Secretion
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Modelling Flagellar Growth
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Rate of Secretion

Let P (t) be the probability that ATP-ase is bound

� �� �� �� �� �� �
� �� �� �� �� �� �

            
! !! !! !! !! !! !

N

C

Step 3

C
ring

MS ring

CM FlhA FlhB

FliJ

ATP ADP+Pi

FliH

membrane
components

FliI

dP
dt

=

Thus,
J
l

= koff (1− p(0, t))P at x = 0 (A Robin boundary condition).
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Rate of Polymerization

Stage 3: Polymerization

J

l
= kpp

at the polymerizing end x = L.

6 6 6 6 6 6 66 6 6 6 6 6 67 7 7 7 7 7 77 7 7 7 7 7 7

Then, the growth velocity is

dL

dt
= β

J

l
≡ V

where β =length of filament per monomer (0.5nm/monomer)

· · · a moving boundary problem.
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Diffusion Model

After some work, it can be shown that

λ =
1

j
−

Ka

1− j
−Kb

where j = J
lKon

, λ = lLKon

D
, Ka = Kon

koff
, Kb = Kon

kp
.

A good approximation J ≈ 1
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D
L

for large L
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So, why is growth length dependent? – p.25/33
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Control of Flagellar Growth

• Step 1: Basal Body

• Step 2: Hook (FlgE secretion)

• Step 3: Filament (FliC secretion)
Basal Body
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Filament Length Control

Introducing FlgM and σ28:
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FlgM-σ28 Chemistry

28

σ

E
28

FliC
J(L)

*Eσ∗

FlgM FlgM

FlgMσ σ

• FlgM inhibits σ28 activity, by binding σ28 and by destabilizing
Eσ28;

• Therefore, during stage 3, FlgM inhibits its own production
(negative feedback);

• And, FlgM inhibits the production of Flagellin (FliC).
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FlgM-σ28 Secretion Dynamics

• FlgM is not secreted during hook
growth.

• FlgM is secreted during filament
growth.

FlgE

Hook

Basal Body

So, how fast is FlgM secreted, and why does it matter?

BAMC06 – p.29/33
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Tracking Concentrations

FlgM (M ):

dM

dt
= rate of production− rate of secretion

Flagellin (FliC) (F ):

dF

dt
= rate of production− rate of secretion

Filament Length (L):

dL

dt
= β ∗ rate of FliC secretion

with (remember the main point!) J = 1

KJ+
L
D

.
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Filament Growth
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• FlgM concentration is initially large. When secretion begins,
FlgM concentration drops, producing FliC and more FlgM.

• As filament length grows, secretion slows, FlgM
concentration increases, shutting off FliC and FlgM
production.

• If filament is suddenly shortened, secretion suddenly
increases, reinitiating the growth phase.
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Summary

• The rate of diffusion contains quantifiable information.
• When coupled with positive feedback, environmental

decisions are possible (as in quorum sensing);
• When coupled with negative feedback, regulation of

mechanical structures is possible (as with length of flagella).

The list of places where these mechanisms are used is probably

vast, but they are just beginning to be uncovered.

Almost done. – p.32/33
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