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Abstra
t

The theory of L-fun
tions of automorphi
 forms (or modular forms) via integral

representations has its origin in the paper of Riemann on the �-fun
tion. However the

theory was really developed in the 
lassi
al 
ontext of L-fun
tions of modular forms

for 
ongruen
e subgroups of SL

2

(Z) by He
ke and his s
hool. Mu
h of our 
urrent

theory is a dire
t outgrowth of He
ke's. L-fun
tions of automorphi
 representations

were �rst developed by Ja
quet and Langlands for GL

2

. Their approa
h followed He
ke


ombined with the lo
al-global te
hniques of Tate's thesis. The theory for GL

n

was

then developed along the same lines in a long series of papers by various 
ombinations

of Ja
quet, Piatetski-Shapiro, and Shalika. In addition to asso
iating an L-fun
tion

to an automorphi
 form, He
ke also gave a 
riterion for a Diri
hlet series to 
ome

from a modular form, the so 
alled Converse Theorem of He
ke. In the 
ontext of

automorphi
 representations, the Converse Theorem for GL

2

was developed by Ja
quet

and Langlands, extended and signi�
antly strengthened to GL

3

by Ja
quet, Piatetski-

Shapiro, and Shalika, and then extended to GL

n

.

What we have attempted to present here is a synopsis of this work and in doing so

present the paradigm for the analysis of automorphi
 L-fun
tions via integral represen-

tations. We begin with the Fourier expansion of a 
usp form and results on Whittaker

models sin
e these are essential for de�ning Eulerian integrals. We then develop inte-

gral representations for L-fun
tions for GL

n

�GL

m

whi
h have ni
e analyti
 properties

(meromorphi
 
ontinuation, �nite order of growth, fun
tional equations) and have Eu-

lerian fa
torization into produ
ts of lo
al integrals. We next turn to the lo
al theory

of L-fun
tions for GL

n

, in both the ar
himedean and non-ar
himedean lo
al 
ontexts,

whi
h 
omes out of the Euler fa
tors of the global integrals. We �nally 
ombine the

global Eulerian integrals with the de�nition and analysis of the lo
al L-fun
tions to

de�ne the global L-fun
tion of an automorphi
 representation and derive their major

analyti
 properties. We next turn to the various Converse Theorems for GL

n

and their

appli
ations to Langlands liftings.
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1

Introdu
tion

The purpose of these notes is to develop the analyti
 theory of L-fun
tions for 
uspidal

automorphi
 representations of GL

n

over a global �eld. There are two approa
hes to L-

fun
tions of GL

n

: via integral representations or through analysis of Fourier 
oeÆ
ients of

Eisenstein series. In these notes we develop the theory via integral representations.

The theory of L-fun
tions of automorphi
 forms (or modular forms) via integral repre-

sentations has its origin in the paper of Riemann on the �-fun
tion [53℄. However the theory

was really developed in the 
lassi
al 
ontext of L-fun
tions of modular forms for 
ongruen
e

subgroups of SL

2

(Z) by He
ke and his s
hool [25℄. Mu
h of our 
urrent theory is a dire
t

outgrowth of He
ke's. L-fun
tions of automorphi
 representations were �rst developed by

Ja
quet and Langlands for GL

2

[21,28,30℄. Their approa
h followed He
ke 
ombined with the

lo
al-global te
hniques of Tate's thesis [64℄. The theory for GL

n

was then developed along the

same lines in a long series of papers by various 
ombinations of Ja
quet, Piatetski-Shapiro,

and Shalika [31{38, 47, 48, 62℄. In addition to asso
iating an L-fun
tion to an automorphi


form, He
ke also gave a 
riterion for a Diri
hlet series to 
ome from a modular form, the

so 
alled Converse Theorem of He
ke [26℄. In the 
ontext of automorphi
 representations,

the Converse Theorem for GL

2

was developed by Ja
quet and Langlands [30℄, extended and

signi�
antly strengthened to GL

3

by Ja
quet, Piatetski-Shapiro, and Shalika [31℄, and then

extended to GL

n

[7, 9℄.

What we have attempted to present here is a synopsis of this work and in doing so

present the paradigm for the analysis of automorphi
 L-fun
tions via integral representations.

Se
tion 1 deals with the Fourier expansion of automorphi
 forms on GL

n

and the related

Multipli
ity One and Strong Multipli
ity One theorems. Se
tion 2 then develops the theory

of Eulerian integrals for GL

n

. In Se
tion 3 we turn to the lo
al theory of L-fun
tions for GL

n

,

in both the ar
himedean and non-ar
himedean lo
al 
ontexts, whi
h 
omes out of the Euler

fa
tors of the global integrals. In Se
tion 4 we �nally 
ombine the global Eulerian integrals

with the de�nition and analysis of the lo
al L-fun
tions to de�ne the global L-fun
tion of

an automorphi
 representation and derive their major analyti
 properties. In Se
tion 5 we

turn to the various Converse Theorems for GL

n

.

We have tried to keep the tone of the notes informal for the most part. We have tried to

provide 
omplete proofs where feasible, at least sket
hes of most major results, and referen
es

for te
hni
al fa
ts.

There is another body of work on integral representations of L-fun
tions for GL

n

whi
h

developed out of the 
lassi
al work on zeta fun
tions of algebras. This is the theory of

prin
ipal L-fun
tions for GL

n

as developed by Godement and Ja
quet [22,28℄. This approa
h

is related to the one pursued here, but we have not attempted to present it here.

The other approa
h to these L-fun
tions is via the Fourier 
oeÆ
ients of Eisenstein series.

This approa
h also has a 
lassi
al history. In the 
ontext of automorphi
 representations,

and in a broader 
ontext than GL

n

, this approa
h was originally laid out by Langlands [43℄

but then most fruitfully pursued by Shahidi. Some of the major papers of Shahidi on this

subje
t are [55{61℄. In parti
ular, in [58℄ he shows that the two approa
hes give the same

L-fun
tions for GL

n

. We will not pursue this approa
h in these notes.

For a balan
ed presentation of all three methods we re
ommend the book of Gelbart

and Shahidi [16℄. They treat not only L-fun
tions for GL

n

but L-fun
tions of automorphi


representations of other groups as well.



2 L-fun
tions for GL

n

We have not dis
ussed the arithmeti
 theory of automorphi
 representations and L-

fun
tions. For the 
onne
tions with motives, we re
ommend the surveys of Clozel [5℄ and

Ramakrishnan [50℄.

1 Fourier expansions and multipli
ity one theorems

In this se
tion we let k denote a global �eld, A , its ring of adeles, and  will denote a


ontinuous additive 
hara
ter of A whi
h is trivial on k. For the basi
s on adeles, 
hara
ters,

et
. we refer the reader to Weil [68℄ or the book of Gelfand, Graev, and Piatetski-Shapiro [18℄.

We begin with a 
uspidal automorphi
 representation (�; V

�

) of GL

n

(A ). For us, auto-

morphi
 forms are assumed to be smooth (of uniform moderate growth) but not ne
essarily

K

1

{�nite at the ar
himedean pla
es. This is most suitable for the analyti
 theory. For

simpli
ity, we assume the 
entral 
hara
ter !

�

of � is unitary. Then V

�

is the spa
e of

smooth ve
tors in an irredu
ible unitary representation of GL

n

(A ). We will always use


uspidal in this sense: the smooth ve
tors in an irredu
ible unitary 
uspidal automorphi


representation. (Any other smooth 
uspidal representation � of GL

n

(A ) is ne
essarily of

the form � = �

Æ


 j det j

t

with �

Æ

unitary and t real, so there is really no loss of generality

in the unitarity assumption. It merely provides us with a 
onvenient normalization.) By

a 
usp form on GL

n

(A ) we will mean a fun
tion lying in a 
uspidal representation. By a


uspidal fun
tion we will simply mean a smooth fun
tion ' on GL

n

(k)nGL

n

(A ) satisfying

R

U(k)nU(A )

'(ug) du � 0 for every unipotent radi
al U of standard paraboli
 subgroups of

GL

n

.

The basi
 referen
es for this se
tion are the papers of Piatetski-Shapiro [47, 48℄ and

Shalika [62℄.

1.1 Fourier Expansions

Let '(g) 2 V

�

be a 
usp form in the spa
e of �. For arithmeti
 appli
ations, and parti
ularly

for the theory of L-fun
tions, we will need the Fourier expansion of '(g).

If f(�) is a holomorphi
 
usp form on the upper half plane H, say with respe
t to SL

2

(Z),

then f is invariant under integral translations, f(� + 1) = f(�) and thus has a Fourier

expansion of the form

f(�) =

1

X

n=1

a

n

e

2�in�

:

If '(g) is a smooth 
usp form on GL

2

(A ) then the translations 
orrespond to the maximal

unipotent subgroup N

2

=

�

n =

�

1 x

0 1

��

and '(ng) = '(g) for n 2 N

2

(k). So, if  is any


ontinuous 
hara
ter of knA we 
an de�ne the  -Fourier 
oeÆ
ient or  -Whittaker fun
tion

by

W

'; 

(g) =

Z

knA

'

��

1 x

0 1

�

g

�

 

�1

(x) dx:



3

We have the 
orresponding Fourier expansion

'(g) =

X

 

W

'; 

(g):

(A
tually from abelian Fourier theory, one has

'

��

1 x

0 1

�

g

�

=

X

 

W

'; 

(g) (x)

as a periodi
 fun
tion of x 2 A . Now set x = 0.)

If we �x a single non-trivial 
hara
ter  of knA , they by standard duality theory [18,68℄

the additive 
hara
ters of the 
ompa
t group knA are isomorphi
 to k via the map 
 2 k 7!  




where  




is the 
hara
ter  




(x) =  (
x). Now, an elementary 
al
ulation shows that

W

'; 




(g) = W

': 

��




1

�

g

�

if 
 6= 0. If we set W

'

= W

'; 

for our �xed  , then the

Fourier expansion of ' be
omes

'(g) = W

'; 

0

(g) +

X


2k

�

W

'

��




1

�

g

�

:

Sin
e ' is 
uspidal

W

'; 

0

(g) =

Z

knA

'

��

1 x

0 1

�

g

�

dx � 0

and the Fourier expansion for a 
usp form ' be
omes simply

'(g) =

X


2k

�

W

'

��




1

�

g

�

:

We will need a similar expansion for 
usp forms ' on GL

n

(A ). The translations still


orrespond to the maximal unipotent subgroup

N

n

=

8

>

>

>

>

>

<

>

>

>

>

>

:

n =

0

B

B

B

B

B

�

1 x

1;2

�

1

.

.

.

.

.

.

.

.

.

1 x

n�1;n

0 1

1

C

C

C

C

C

A

9

>

>

>

>

>

=

>

>

>

>

>

;

;

but now this is non-abelian. This diÆ
ulty was solved independently by Piatetski-Shapiro

[47℄ and Shalika [62℄. We �x our non-trivial 
ontinuous 
hara
ter  of knA as above. Extend

it to a 
hara
ter of N

n

by setting  (n) =  (x

1;2

+ � � � + x

n�1;n

) and de�ne the asso
iated

Fourier 
oeÆ
ient or Whittaker fun
tion by

W

'

(g) = W

'; 

(g) =

Z

N

n

(k)nN

n

(A )

'(ng) 

�1

(n) dn:

Sin
e ' is 
ontinuous and the integration is over a 
ompa
t set this integral is absolutely


onvergent, uniformly on 
ompa
t sets. The Fourier expansion takes the following form.



4 L-fun
tions for GL

n

Theorem 1.1 Let ' 2 V

�

be a 
usp form on GL

n

(A ) and W

'

its asso
iated  -Whittaker

fun
tion. Then

'(g) =

X


2N

n�1

(k)nGL

n�1

(k)

W

'

��




1

�

g

�

with 
onvergen
e absolute and uniform on 
ompa
t subsets.

The proof of this fa
t is an indu
tion. It utilizes the miraboli
 subgroup P

n

of GL

n

whi
h

seems to be ubiquitous in the study of automorphi
 forms on GL

n

. Abstra
tly, a miraboli


subgroup of GL

n

is simply the stabilizer of a non-zero ve
tor in (either) standard representa-

tion of GL

n

on k

n

. We denote by P

n

the stabilizer of the row ve
tor e

n

= (0; : : : ; 0; 1) 2 k

n

.

So

P

n

=

�

p =

�

h y

1

�

�

�

h 2 GL

n�1

; y 2 k

n�1

�

' GL

n�1

nY

n

where

Y

n

=

�

y =

�

I

n�1

y

1

�

�

�

y 2 k

n�1

�

' k

n�1

:

Simply by restri
tion of fun
tions, a 
usp form on GL

n

(A ) restri
ts to a smooth 
uspidal

fun
tion on P

n

(A ) whi
h remains left invariant under P

n

(k). (A smooth fun
tion ' on

P

n

(A ) whi
h is left invariant under P

n

(k) is 
alled 
uspidal if

R

U(k)nU(A )

'(up) du � 0 for

every standard unipotent subgroup U � P

n

.) Sin
e P

n

� N

n

we may de�ne a Whittaker

fun
tion atta
hed to a 
uspidal fun
tion ' on P

n

(A ) by the same integral as on GL

n

(A ),

namely

W

'

(p) =

Z

N

n

(k)nN

n

(A )

'(np) 

�1

(n) dn:

We will prove by indu
tion that for a 
uspidal fun
tion ' on P

n

(A ) we have

'(p) =

X


2N

n�1

(k)nGL

n�1

(k)

W

'

��


 0

0 1

�

p

�

with 
onvergen
e absolute and uniform on 
ompa
t subsets.

The fun
tion on Y

n

(A ) given by y 7! '(yp) is invariant under Y

n

(k) sin
e Y

n

(k) � P

n

(k)

and ' is automorphi
 on P

n

(A ). Hen
e by standard abelian Fourier analysis for Y

n

' k

n�1

we have as before

'(p) =

X

�2

\

(k

n�1

nA

n�1

)

'

�

(p)

where

'

�

(p) =

Z

Y

n

(k)nY

n

(A )

'(yp)�

�1

(y) dy:

Now, by duality theory [68℄,

\

(k

n�1

nA

n�1

) ' k

n�1

. In fa
t, if we let h ; i denote the

pairing k

n�1

� k

n�1

! k by hx; yi =

P

x

i

y

i

we have

'(p) =

X

x2k

n�1

'

x

(p)



5

where now we write

'

x

(p) =

Z

k

n�1

nA

n�1

'(yp) 

�1

(hx; yi) dy:

GL

n�1

(k) a
ts on k

n�1

with two orbits: f0g and k

n�1

� f0g = GL

n�1

(k) �

t

e

n�1

where

e

n�1

= (0; : : : ; 0; 1). The stabilizer of

t

e

n�1

in GL

n�1

(k) is

t

P

n�1

. Therefore, we may write

'(p) = '

0

(p) +

X


2GL

n�1

(k)=

t

P

n�1

(k)

'


�

t

e

n�1

(p):

Sin
e '(p) is 
uspidal and Y

n

is a standard unipotent subgroup of GL

n

, we see that

'

0

(p) =

Z

Y

n

(k)nY

n

(A )

'(yp) dy � 0:

On the other hand an elementary 
al
ulation as before gives

'


�

t

e

n�1

(p) = '

t

e

n�1

��

t


 0

0 1

�

p

�

:

Hen
e we have

'(p) =

X


2P

n�1

(k)nGL

n�1

(k)

'

t

e

n�1

��


 0

0 1

�

p

�

and the 
onvergen
e is still absolute and uniform on 
ompa
t subsets.

Note that if n = 2 this is exa
tly the fa
t we used previously for GL

2

. This then begins

our indu
tion.

Next, let us write the above in a form more suitable for indu
tion. Stru
turally, we have

P

n

= GL

n�1

nY

n

and N

n

= N

n�1

nY

n

. Therefore, N

n�1

nGL

n�1

' N

n

nP

n

. Furthermore,

if we let

e

P

n�1

= P

n�1

nY

n

� P

n

, then P

n�1

nGL

n�1

'

e

P

n�1

nP

n

. Next, note that the

fun
tion '

t

e

n�1

(p) satis�es, for y 2 Y

n

(A ) ' A

n�1

,

'

t

e

n�1

(yp) =  (y

n�1

)'

t

e

n�1

(p):

Sin
e  is trivial on k we see that '

t

e

n�1

(p) is left invariant under Y

n

(k). Hen
e

'(p) =

X


2P

n�1

(k)nGL

n�1

(k)

'

t

e

n�1

��


 0

0 1

�

p

�

=

X

Æ2

e

P

n�1

(k)nP

n

(k)

'

t

e

n�1

(Æp):

To pro
eed with the indu
tion, �x p 2 P

n

(A ) and 
onsider the fun
tion '

0

(p

0

) = '

0

p

(p

0

)

on P

n�1

(A ) given by

'

0

(p

0

) = '

t

e

n�1

��

p

0

0

0 1

�

p

�

:

'

0

is a smooth fun
tion on P

n�1

(A ) sin
e ' was smooth. One 
he
ks that '

0

is left invariant

by P

n�1

(k) and 
uspidal on P

n�1

(A ). Then we may apply our indu
tive assumption to


on
lude that

'

0

(p

0

) =

X




0

2N

n�2

nGL

n�2

W

'

0

��




0

0

0 1

�

p

0

�

=

X

Æ

0

2N

n�1

nP

n�1

W

'

0

(Æ

0

p

0

):
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n

If we substitute this into the expansion for '(p) we see

'(p) =

X

Æ2

e

P

n�1

(k)nP

n

(k)

'

t

e

n�1

(Æp)

=

X

Æ2

e

P

n�1

(k)nP

n

(k)

'

0

Æp

(1)

=

X

Æ2

e

P

n�1

(k)nP

n

(k)

X

Æ

0

2N

n�1

nP

n�1

W

'

0

Æp

(Æ

0

):

Now, as before, N

n�1

nP

n�1

' N

n

n

e

P

n�1

and N

n

' N

n�1

nY

n�1

. Thus

W

'

0

Æp

(Æ

0

) =

Z

N

n�1

(k)nN

n�1

(A )

'

0

Æp

(n

0

Æ

0

) 

�1

(n

0

) dn

0

=

Z

N

n�1

(k)nN

n�1

(A )

Z

Y

n

(k)nY

n

(A )

'(yn

0

Æ

0

Æp) 

�1

(y

n�1

) 

�1

(n

0

) dy dn

0

=

Z

N

n

(k)nN

n

(A )

'(nÆ

0

Æp) 

�1

(n) dn

=W

'

(Æ

0

Æp)

and so

'(p) =

X

Æ2

e

P

n�1

(k)nP

n

(k)

X

Æ

0

2N

n

n

e

P

n�1

W

'

(Æ

0

Æp)

=

X

Æ2N

n

(k)nP

n

(k)

W

'

(Æp)

=

X


2N

n�1

(k)nGL

n�1

(k)

W

'

��


 0

0 1

�

p

�

whi
h was what we wanted.

To obtain the Fourier expansion on GL

n

from this, if ' is a 
usp form on GL

n

(A ), then

for g 2 
 a 
ompa
t subset the fun
tions '

g

(p) = '(pg) form a 
ompa
t family of 
uspidal

fun
tions on P

n

(A ). So we have

'

g

(1) =

X


2N

n�1

(k)nGL

n�1

(k)

W

'

g

��


 0

0 1

��

with 
onvergen
e absolute and uniform. Hen
e

'(g) =

X


2N

n�1

(k)nGL

n�1

(k)

W

'

��


 0

0 1

�

g

�

again with absolute 
onvergen
e, uniform for g 2 
.
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1.2 Whittaker Models and the Multipli
ity One Theorem

Consider now the fun
tions W

'

appearing in the Fourier expansion of a 
usp form '. These

are all smooth fun
tions W (g) on GL

n

(A ) whi
h satisfy W (ng) =  (n)W (g) for n 2 N

n

(A ).

If we let W(�;  ) = fW

'

j ' 2 V

�

g then GL

n

(A ) a
ts on this spa
e by right translation and

the map ' 7!W

'

intertwines V

�

with W(�;  ). W(�;  ) is 
alled the Whittaker model of �.

The notion of a Whittaker model of a representation makes perfe
t sense over a lo
al

�eld or even a �nite �eld. Mu
h insight 
an be gained by pursuing these ideas over a �nite

�eld [20,49℄, but that would take us too far a�eld. So let k

v

be a lo
al �eld (a 
ompletion of

k for example [18,68℄) and let (�

v

; V

�

v

) be an irredu
ible admissible smooth representation of

GL

n

(k

v

). Fix a non-trivial 
ontinuous additive 
hara
ter  

v

of k

v

. Let W( 

v

) be the spa
e

of all smooth fun
tions W (g) on GL

n

(k

v

) satisfying W (ng) =  (n)W (g) for all n 2 N

k

(k

v

),

that is, the spa
e of all smooth Whittaker fun
tions on GL

n

(k

v

) with respe
t to  

v

. This

is also the spa
e of the smooth indu
ed representation Ind

GL

n

N

v

( 

v

). GL

n

(k

v

) a
ts on this

by right translation. If we have a non-trivial 
ontinuous intertwining V

�

v

! W( 

v

) we will

denote its image by W(�

v

;  

v

) and 
all it a Whittaker model of �

v

.

Whittaker models for a representation (�

v

; V

�

v

) are equivalent to 
ontinuous Whittaker

fun
tionals on V

�

v

, that is, 
ontinuous fun
tionals �

v

satisfying �

v

(�

v

(n)�

v

) =  

v

(n)�

v

(�

v

)

for all n 2 N

n

(k

v

). To obtain a Whittaker fun
tional from a model, set �

v

(�

v

) = W

�

v

(e),

and to obtain a model from a fun
tional, set W

�

v

(g) = �

v

(�

v

(g)�

v

). This is a form of

Frobenius re
ipro
ity, whi
h in this 
ontext is the isomorphism between Hom

N

n

(V

�

v

; C

 

v

)

and Hom

GL

n

(V

�

v

; Ind

GL

n

N

n

( 

v

)) 
onstru
ted above.

The fundamental theorem on the existen
e and uniqueness of Whittaker fun
tionals and

models is the following.

Theorem 1.2 Let (�

v

; V

�

v

) be a smooth irredu
ible admissible representation of GL

n

(k

v

).

Let  

v

be a non-trivial 
ontinuous additive 
hara
ter of k

v

. Then the spa
e of 
ontinuous

 

v

{Whittaker fun
tionals on V

�

v

is at most one dimensional. That is, Whittaker models, if

they exist, are unique.

This was �rst proven for non-ar
himedean �elds by Gelfand and Kazhdan [19℄ and their

results were later extended to ar
himedean lo
al �elds by Shalika [62℄. The method of proof

is roughly the following. It is enough to show that W(�

v

) = Ind

GL

n

N

n

( 

v

) is multipli
ity

free, i.e., any irredu
ible representation of GL

n

(k

v

) o

urs in W( 

v

) with multipli
ity at

most one. This in turn is a 
onsequen
e of the 
ommutativity of the endomorphism algebra

End(Ind( 

v

)). Any intertwining map from Ind( 

v

) to itself is given by 
onvolution with

a so-
alled Bessel distribution, that is, a distribution B on GL

n

(k

v

) satisfying B(n

1

gn

2

) =

 

v

(n

1

)B(g) 

v

(n

2

) for n

1

; n

2

2 N

n

(k

v

). Su
h quasi-invariant distributions are analyzed via

Bruhat theory. By the Bruhat de
omposition for GL

n

, the double 
osets N

n

nGL

n

=N

n

are parameterized by the monomial matri
es. The only double 
osets that 
an support

Bessel distributions are asso
iated to permutation matri
es of the form

0

�

I

r

k

.

.

.

I

r

1

1

A

and

the resulting distributions are then stable under the involution g 7! g

�

= w

n

t

g w

n

with

w

n

=

0

�

1

.

.

.

1

1

A

the long Weyl element of GL

n

. Thus for the 
onvolution of Bessel
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distributions we have B

1

� B

2

= (B

1

� B

2

)

�

= B

�

2

� B

�

1

= B

2

� B

1

. Hen
e the algebra of

intertwining Bessel distributions is 
ommutative and hen
e W( 

v

) is multipli
ity free.

A smooth irredu
ible admissible representation (�

v

; V

�

v

) of GL

n

(k

v

) whi
h possesses a

Whittaker model is 
alled generi
 or non-degenerate. Gelfand and Kazhdan in addition

show that �

v

is generi
 i� its 
ontragredient e�

v

is generi
, in fa
t that e� ' �

�

where � is the

outer automorphism g

�

=

t

g

�1

, and in this 
ase the Whittaker model for e�

v


an be obtained

as W(e�

v

;  

�1

v

) = f

f

W (g) = W (w

n

t

g

�1

) jW 2 W(�;  

v

)g.

As a 
onsequen
e of the lo
al uniqueness of the Whittaker model we 
an 
on
lude a

global uniqueness. If (�; V

�

) is an irredu
ible smooth admissible representation of GL

n

(A )

then � fa
tors as a restri
ted tensor produ
t of lo
al representations � ' 


0

�

v

taken over all

pla
es v of k [14,18℄. Consequently we have a 
ontinuous embedding V

�

v

,! V

�

for ea
h lo
al


omponent. Hen
e any Whittaker fun
tional � on V

�

determines a family of lo
al Whittaker

fun
tionals �

v

on ea
h V

�

v

and 
onversely su
h that � = 


0

�

v

. Hen
e global uniqueness

follows from the lo
al uniqueness. Moreover, on
e we �x the isomorphism of V

�

with 


0

V

�

v

and de�ne global and lo
al Whittaker fun
tions via � and the 
orresponding family �

v

we

have a fa
torization of global Whittaker fun
tions

W

�

(g) =

Y

v

W

�

v

(g

v

)

for � 2 V

�

whi
h are fa
torizable in the sense that � = 


0

�

v


orresponds to a pure tensor.

As we will see, this fa
torization, whi
h is a dire
t 
onsequen
e of the uniqueness of the

Whittaker model, plays a most important role in the development of Eulerian integrals for

GL

n

.

Now let us see what this means for our 
uspidal representations (�; V

�

) of GL

n

(A ). We

have seen that for any smooth 
usp form ' 2 V

�

we have the Fourier expansion

'(g) =

X


2N

n�1

(k)nGL

n�1

(k)

W

'

��




1

�

g

�

:

We 
an thus 
on
lude that W(�;  ) 6= 0 and that � is (globally) generi
 with Whittaker

fun
tional

�(') = W

'

(e) =

Z

'(ng) 

�1

(n) dn:

Thus ' is 
ompletely determined by its asso
iated Whittaker fun
tionW

'

. From the unique-

ness of the global Whittaker model we 
an derive the Multipli
ity One Theorem of Piatetski-

Shapiro [48℄ and Shalika [62℄.

Theorem (Multipli
ity One) Let (�; V

�

) be an irredu
ible smooth admissible represen-

tation of GL

n

(A ). Then the multipli
ity of � in the spa
e of 
usp forms on GL

n

(A ) is at

most one.

Proof: Suppose that � has two realizations (�

1

; V

�

1

) and (�

2

; V

�

2

) in the spa
e of 
usp forms

on GL

n

(A ). Let '

i

2 V

�

i

be the two 
usp forms asso
iated to the ve
tor � 2 V

�

. Then we

have two nonzero Whittaker fun
tionals on V

�

, namely �

i

(�) = W

'

i

(e). By the uniqueness



9

of Whittaker models, there is a nonzero 
onstant 
 su
h that �

1

= 
�

2

. But then we have

W

'

1

(g) = �

1

(�(g)�) = 
�

2

(�(g)�) = 
W

'

2

(g) for all g 2 GL

n

(A ). Thus

'

1

(g) =

X


2N

n�1

(k)nGL

n�1

(k)

W

'

1

��




1

�

g

�

= 


X


2N

n�1

(k)nGL

n�1

(k)

W

'

2

��




1

�

g

�

= 
'

2

(g):

But then V

�

1

and V

�

2

have a non-trivial interse
tion. Sin
e they are irredu
ible representa-

tions, they must then 
oin
ide. �

1.3 Kirillov models and the Strong Multipli
ity One Theorem

The Multipli
ity One Theorem 
an be signi�
antly strengthened. The Strong Multipli
ity

One Theorem is the following.

Theorem (Strong Multipli
ity One) Let (�

1

; V

�

1

) and (�

2

; V

�

2

) be two 
uspidal repre-

sentations of GL

n

(A ). Suppose there is a �nite set of pla
es S su
h that for all v =2 S we

have �

1;v

' �

2;v

. Then �

1

= �

2

.

There are two proofs of this theorem. One is based on the theory of L-fun
tions and

we will 
ome to it in Se
tion 4. The original proof of Piatetski-Shapiro [48℄ is based on the

Kirillov model of a lo
al generi
 representation.

Let k

v

be a lo
al �eld and let (�

v

; V

�

v

) be an irredu
ible admissible smooth generi


representation of GL

n

(k

v

), su
h as a lo
al 
omponent of a 
uspidal representation �. Sin
e �

v

is generi
 it has its Whittaker model W(�

v

;  

v

). Ea
h Whittaker fun
tion W 2 W(�

v

;  

v

),

sin
e it is a fun
tion on GL

n

(k

v

), 
an be restri
ted to the miraboli
 subgroup P

n

(k

v

). A

fundamental result of Bernstein and Zelevinsky in the non-ar
himedean 
ase [1℄ and Ja
quet

and Shalika in the ar
himedean 
ase [36℄ says that the map �

v

7! W

�

v

j

P

n

(k

v

)

is inje
tive.

Hen
e the representation has a realization on a spa
e of fun
tions on P

n

(k

v

). This is the

Kirillov model

K(�

v

;  

v

) = fW (p)jW 2 W(�

v

;  

v

)g:

P

n

(k

v

) a
ts naturally by right translation on K(�

v

;  

v

) and the a
tion of all of GL

n

(k

v

) 
an

be obtained by transport of stru
ture. But for now, it is the stru
ture of K(�

v

;  

v

) as a

representation of P

n

(k

v

) whi
h is of interest.

For k

v

a non-ar
himedean �eld, let (�

v

; V

�

v

) be the 
ompa
tly indu
ed representation

�

v

= ind

P

n

(k

v

)

N

n

(k

v

)

( 

v

). Then Bernstein and Zelevinsky have analyzed the representations of

P

n

(k

v

) and shown that whenever �

v

is an irredu
ible admissible generi
 representation of

GL

n

(k

v

) then K(�

v

;  

v

) 
ontains V

�

v

as a P

n

(k

v

) sub-representation and if �

v

is super
uspidal

then K(�

v

;  

v

) = V

�

v

[1℄.

For k

v

ar
himedean, then we let (�

v

; V

�

v

) be the smooth ve
tors in the irredu
ible smooth

unitarily indu
ed representation Ind

P

n

(k

v

)

N

n

(k

v

)

( 

v

). Then Ja
quet and Shalika have shown that

as long as �

v

is an irredu
ible admissible smooth unitary representation of GL

n

(k

v

) then in

fa
t K(�

v

;  

v

) = V

�

v

as representations of P

n

(k

v

) [36, Remark 3.15℄.
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Therefore, for a given pla
e v the lo
al Kirillov models of any two irredu
ible admissible

generi
 smooth unitary representations have a 
ertain P

n

(k

v

)-submodule in 
ommon, namely

V

�

v

.

Let us now return to Piatetski-Shapiro's proof of the Strong Multipli
ity One Theorem

[48℄.

Proof: We begin with our 
uspidal representations �

1

and �

2

. Sin
e �

1

and �

2

are irredu
ible,

it suÆ
es to �nd a 
usp form ' 2 V

�

1

\V

�

2

. If we let B

n

denote the Borel subgroup of upper

triangular matri
es in GL

n

, then B

n

(k)nB

n

(A ) is dense in GL

n

(k)nGL

n

(A ) and so it suÆ
es

to �nd two 
usp forms '

i

2 V

�

i

whi
h agree on B

n

(A ). But B

n

� P

n

Z

n

with Z

n

the 
enter.

If we let !

i

be the 
entral 
hara
ter of �

i

then by assumption !

1;v

= !

2;v

for v =2 S and the

weak approximation theorem then implies !

1

= !

2

. So it suÆ
es to �nd two '

i

whi
h agree

on P

n

(A ). But as in the proof of the Multipli
ity One Theorem, via the Fourier expansion,

to show that '

1

(p) = '

2

(p) for p 2 P

n

(A ) it suÆ
es to show that W

'

1

(p) = W

'

2

(p). Sin
e

we 
an take ea
h W

'

i

to be of the form

Q

v

W

'

i;v

then this redu
es to a question about the

lo
al Kirillov models. For v =2 S we have by assumption that K(�

1;v

;  

v

) = K(�

2;v

;  

v

) and

for v 2 S we have seen that V

�

v

� K(�

1;v

;  

v

) \ K(�

2;v

;  

v

). So we 
an 
onstru
t a 
ommon

Whittaker fun
tion in the restri
tion of W(�

i

;  ) to P

n

(A ). This 
ompletes the proof. �

2 Eulerian integrals for GL

n

Let f(�) again be a holomorphi
 
usp form of weight k on H for the full modular group with

Fourier expansion

f(�) =

X

a

n

e

2�in�

:

Then He
ke [25℄ asso
iated to f an L-fun
tion

L(s; f) =

X

a

n

n

�s

and analyzed its analyti
 properties, namely 
ontinuation, order of growth, and fun
tional

equation, by writing it as the Mellin transform of f

�(s; f) = (2�)

�s

�(s)L(s; f) =

Z

1

0

f(iy)y

s

d

�

y:

An appli
ation of the modular transformation law for f(�) under the transformation � 7!

�1=� gives the fun
tional equation

�(s; f) = (�1)

k=2

�(k � s; f):

Moreover, if f was an eigenfun
tion of all He
ke operators then L(s; f) had an Euler produ
t

expansion

L(s; f) =

Y

p

(1� a

p

p

�s

+ p

k�1�2s

)

�1

:

We will present a similar theory for 
uspidal automorphi
 representations (�; V

�

) of

GL

n

(A ). For appli
ations to fun
toriality via the Converse Theorem (see Le
ture 5) we
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will need not only the standard L-fun
tions L(s; �) but the twisted L-fun
tions L(s; �� �

0

)

for (�

0

; V

�

0

) a 
uspidal automorphi
 representation of GL

m

(A ) for m < n as well. One point

to noti
e from the outset is that we want to asso
iate a single L-fun
tion to an in�nite

dimensional representation (or pair of representations). The approa
h we will take will be

that of integral representations, but it will broadened in the sense of Tate's thesis [64℄.

The basi
 referen
es for this se
tion are Ja
quet-Langlands [30℄, Ja
quet, Piatetski-

Shapiro, and Shalika [31℄, and Ja
quet and Shalika [36℄.

2.1 Eulerian integrals for GL

2

Let us �rst 
onsider the L-fun
tions for 
uspidal automorphi
 representations (�; V

�

) of

GL

2

(A ) with twists by an idele 
lass 
hara
ter �, or what is the same, a (
uspidal) automor-

phi
 representation of GL

1

(A ), as in Ja
quet-Langlands [30℄.

Following Ja
quet and Langlands, who were following He
ke, for ea
h ' 2 V

�

we 
onsider

the integral

I(s;'; �) =

Z

k

�

nA

�

'

�

a

1

�

�(a)jaj

s�1=2

d

�

a:

Sin
e a 
usp form on GL

2

(A ) is rapidly de
reasing upon restri
tion to A

�

as in the integral, it

follows that the integral is absolutely 
onvergent for all s, uniformly for Re(s) in an interval.

Thus I(s;'; �) is an entire fun
tion of s, bounded in any verti
al strip a � Re(s) � b.

Moreover, if we let e'(g) = '(

t

g

�1

) = '(w

n

t

g

�1

) then e' 2 V

e�

and the simple 
hange of

variables a 7! a

�1

in the integral shows that ea
h integral satis�es a fun
tional equation of

the form

I(s;'; �) = I(1� s; e'; �

�1

):

So these integrals individually enjoy rather ni
e analyti
 properties.

If we repla
e ' by its Fourier expansion from Le
ture 1 and unfold, we �nd

I(s;'; �) =

Z

k

�

nA

�

X


2k

�

W

'

�


a

1

�

�(a)jaj

s�1=2

d

�

a

=

Z

A

�

W

'

�

a

1

�

�(a)jaj

s�1=2

d

�

a

where we have used the fa
t that the fun
tion �(a)jaj

s�1=2

is invariant under k

�

. By stan-

dard gauge estimates on Whittaker fun
tions [31℄ this 
onverges for Re(s) >> 0 after the

unfolding. As we have seen in Le
ture 1, if W

'

2 W(�;  ) 
orresponds to a de
omposable

ve
tor ' 2 V

�

' 


0

V

�

v

then the Whittaker fun
tion fa
tors into a produ
t of lo
al Whittaker

fun
tions

W

'

(g) =

Y

v

W

'

v

(g

v

):

Sin
e the 
hara
ter � and the adeli
 absolute value fa
tor into lo
al 
omponents and the

domain of integration A

�

also fa
tors we �nd that our global integral naturally fa
tors into

a produ
t of lo
al integrals

Z

A

�

W

'

�

a

1

�

�(a)jaj

s�1=2

d

�

a =

Y

v

Z

k

�

v

W

'

v

�

a

v

1

�

�

v

(a

v

)ja

v

j

s�1=2

d

�

a

v

;
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n

with the in�nite produ
t still 
onvergent for Re(s) >> 0, or

I(s;'; �) =

Y

v

	

v

(s;W

'

v

; �

v

)

with the obvious de�nition of the lo
al integrals

	

v

(s;W

'

v

; �

v

) =

Z

k

�

v

W

'

v

�

a

v

1

�

�

v

(a

v

)ja

v

j

s�1=2

d

�

a

v

:

Thus ea
h of our global integrals is Eulerian.

In this way, to � and � we have asso
iated a family of global Eulerian integrals with

ni
e analyti
 properties as well as for ea
h pla
e v a family of lo
al integrals 
onvergent for

Re(s) >> 0.

2.2 Eulerian integrals for GL

n

�GL

m

with m < n

Now let (�; V

�

) be a 
uspidal representation of GL

n

(A ) and (�

0

; V

�

0

) a 
uspidal representation

of GL

m

(A ) with m < n. Take ' 2 V

�

and '

0

2 V

�

0

. At �rst blush, a natural analogue of the

integrals we 
onsidered for GL

2

with GL

1

twists would be

Z

GL

m

(k)nGL

m

(A )

'

�

h

I

n�m

�

'

0

(h)j det(h)j

s�(n�m)=2

dh:

This family of integrals would have all the ni
e analyti
 properties as before (entire fun
tions

of �nite order satisfying a fun
tional equation), but they would not be Eulerian ex
ept in

the 
ase m = n� 1, whi
h pro
eeds exa
tly as in the GL

2


ase.

The problem is that the restri
tion of the form ' to GL

m

is too brutal to allow a ni
e

unfolding when the Fourier expansion of ' is inserted. Instead we will introdu
e proje
tion

operators from 
usp forms on GL

n

(A ) to 
uspidal fun
tions on on P

m+1

(A ) whi
h are given

by part of the unipotent integration through whi
h the Whittaker fun
tion is de�ned.

2.2.1 The proje
tion operator

In GL

n

, let Y

n;m

be the unipotent radi
al of the standard paraboli
 subgroup atta
hed to

the partition (m+1; 1; : : : ; 1). If  is our standard additive 
hara
ter of knA , then  de�nes

a 
hara
ter of Y

n;m

(A ) trivial on Y

n;m

(k) sin
e Y

n;m

� N

n

. The group Y

n;m

is normalized

by GL

m+1

� GL

n

and the miraboli
 subgroup P

m+1

� GL

m+1

is the stabilizer in GL

m+1

of

the 
hara
ter  .

De�nition If '(g) is a 
usp form on GL

n

(A ) de�ne the proje
tion operator P

n

m

from 
usp

forms on GL

n

(A ) to 
uspidal fun
tions on P

m+1

(A ) by

P

n

m

'(p) = j det(p)j

�

�

n�m�1

2

�

Z

Y

n;m

(k)nY

n;m

(A )

'

�

y

�

p

I

n�m�1

��

 

�1

(y) dy

for p 2 P

m+1

(A ).
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As the integration is over a 
ompa
t domain, the integral is absolutely 
onvergent. We

�rst analyze the behavior on P

m+1

(A ).

Lemma The fun
tion P

n

m

'(p) is a 
uspidal fun
tion on P

m+1

(A ).

Proof: Let us let '

0

(p) denote the non-normalized proje
tion, i.e., for p 2 P

m+1

(A ) set

'

0

(p) = j det(p)j

�

n�m�1

2

�

P

n

m

'(p):

It suÆ
es to show this fun
tion is 
uspidal. Sin
e '(g) was a smooth fun
tion on GL

n

(A ),

'

0

(p) will remain smooth on P

m+1

(A ). To see that '

0

(p) is automorphi
, let 
 2 P

m+1

(k).

Then

'

0

(
p) =

Z

Y

n;m

(k)nY

n;m

(A )

'

�

y

�


 0

0 1

��

p 0

0 1

��

 

�1

(y) dy:

Sin
e 
 2 P

m+1

(k) and P

m+1

normalizes Y

n;m

and stabilizes  we may make the 
hange of

variable y 7!

�


 0

0 1

�

y

�


 0

0 1

�

�1

in this integral to obtain

'

0

(
p) =

Z

Y

n;m

(k)nY

n;m

(A )

'

��


 0

0 1

�

y

�

p 0

0 1

��

 

�1

(y) dy:

Sin
e '(g) is automorphi
 on GL

n

(A ) it is left invariant under GL

n

(k) and we �nd that

'

0

(
p) = '

0

(p) so that '

0

is indeed automorphi
 on P

m+1

(A ).

We next need to see that '

0

is 
uspidal on P

m+1

(A ). To this end, let U � P

m+1

be the

standard unipotent subgroup asso
iated to the partition (n

1

; : : : ; n

r

) of m+1. Then we must


ompute the integral

Z

U(k)nU(A )

'

0

(up) du:

Inserting the de�nition of '

0

we �nd

Z

U(k)nU(A )

'

0

(up) du =

Z

U(k)nU(A )

Z

Y

n;m

(k)nY

n;m

(A )

'

�

y

�

u 0

0 1

��

p 0

0 1

��

 

�1

(y) dy du:

The group U

0

= UnY

n;m

is the standard unipotent subgroup of GL

n

asso
iated to the

partition (n

1

; : : : ; n

r

; 1; : : : ; 1) of n. We may de
ompose this group in a se
ond manner. If we

let U

00

be the standard unipotent subgroup of GL

n

asso
iated to the partition (n

1

; : : : ; n

r

; n�

m � 1) of n and let

e

N

n�m�1

be the subgroup of GL

n

obtained by embedding N

n�m�1

into

GL

n

by

n 7!

�

I

m+1

0

0 n

�

then U

0

=

e

N

n�m�1

n U

00

. If we extend the 
hara
ter  of Y

m;n

to U

0

by making it trivial

on U, then in the de
omposition U

0

=

e

N

n�m�1

n U

00

,  is dependent only on the

e

N

n�m�1
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n


omponent and there it is the standard 
hara
ter  on N

n�m�1

. Hen
e we may rearrange

the integration to give

Z

U(k)nU(A )

'

0

(up) du

=

Z

N

n�m�1

(k)nN

n�m�1

(A )

Z

U

00

(k)nU

00

(A )

'

�

u

00

�

1 0

0 n

��

p 0

0 1

��

du

00

 

�1

(n) dy:

But sin
e ' is 
uspidal on GL

n

and U

00

is a standard unipotent subgroup of GL

n

then

Z

U

00

(k)nU

00

(A )

'

�

u

00

�

1 0

0 n

��

p 0

0 1

��

du

00

� 0

from whi
h it follows that

Z

U(k)nU(A )

'

0

(up) du � 0

so that '

0

is a 
uspidal fun
tion on P

m+1

(A ). �

From Le
ture 1, we know that 
uspidal fun
tions on P

m+1

(A ) have a Fourier expansion

summed over N

m

(k)nGL

m

(A ). Applying this expansion to our proje
ted 
usp form on

GL

n

(A ) we are led to the following result.

Lemma Let ' be a 
usp form on GL

n

(A ). Then for h 2 GL

m

(A ), P

n

m

'

�

h

1

�

has the

Fourier expansion

P

n

m

'

�

h

1

�

= j det(h)j

�

�

n�m�1

2

�

X


2N

m

(k)nGL

m

(k)

W

'

��


 0

0 I

n�m

��

h

I

n�m

��

with 
onvergen
e absolute and uniform on 
ompa
t subsets.

Proof: On
e again let

'

0

(p) = j det(p)j

�

n�m�1

2

�

P

n

m

'(p)

with p 2 P

m+1

(A ). Sin
e we have veri�ed that '

0

(p) is a 
uspidal fun
tion on P

m+1

(A ) we

know that it has a Fourier expansion of the form

'

0

(p) =

X


2N

m

(k)nGL

m

(k)

W

'

0

��


 0

0 1

�

p

�

where

W

'

0

(p) =

Z

N

m+1

(k)nN

m+1

(A )

'

0

(np) 

�1

(n) dn:

To obtain our expansion for P

n

m

' we need to express the right hand side in terms of ' rather

than '

0

.
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We have

W

'

0

(p) =

Z

N

m+1

(k)nN

m+1

(A )

'

0

(n

0

p) 

�1

(n

0

) dn

0

=

Z

N

m+1

(k)nN

m+1

(A )

Z

Y

n;m

(k)nY

n;m

(A )

'

�

y

�

n

0

p 0

0 1

�

g

�

 

�1

(y) dy  

�1

(n

0

) dn

0

:

It is elementary to see that the maximal unipotent subgroup N

n

of GL

n


an be fa
tored as

N

n

= N

m+1

nY

n;m

and if we write n = n

0

y with n

0

2 N

m+1

and y 2 Y

n;m

then  (n) =

 (n

0

) (y). Hen
e the above integral may be written as

W

'

0

(p) =

Z

N

n

(k)nN

n

(A )

'

�

n

�

p 0

0 I

n�m�1

��

 

�1

(n) dn = W

'

�

p 0

0 I

n�m�1

�

:

Substituting this expression into the above we �nd that

P

n

m

'

�

h

1

�

= j det(h)j

�

�

n�m�1

2

�

X


2N

m

(k)nGL

m

(k)

W

'

��


 0

0 I

n�m

��

h

I

n�m

��

and the 
onvergen
e is absolute and uniform for h in 
ompa
t subsets of GL

m

(A ). �

2.2.2 The global integrals

We now have the prerequisites for writing down a family of Eulerian integrals for 
usp forms

' on GL

n

twisted by automorphi
 forms on GL

m

for m < n. Let ' 2 V

�

be a 
usp form on

GL

n

(A ) and '

0

2 V

�

0

a 
usp form on GL

m

(A ). (A
tually, we 
ould take '

0

to be an arbitrary

automorphi
 form on GL

m

(A ).) Consider the integrals

I(s;'; '

0

) =

Z

GL

m

(k)nGL

m

(A )

P

n

m

'

�

h 0

0 1

�

'

0

(h)j det(h)j

s�1=2

dh:

The integral I(s;'; '

0

) is absolutely 
onvergent for all values of the 
omplex parameter s,

uniformly in 
ompa
t subsets, sin
e the 
usp forms are rapidly de
reasing. Hen
e it is entire

and bounded in any verti
al strip as before.

Let us now investigate the Eulerian properties of these integrals. We �rst repla
e P

n

m

'

by its Fourier expansion.

I(s;'; '

0

) =

Z

GL

m

(k)nGL

m

(A )

P

n

m

'

�

h 0

0 I

n�m

�

'

0

(h)j det(h)j

s�1=2

dh

=

Z

GL

m

(k)nGL

m

(A )

X


2N

m

(k)nGL

m

(k)

W

'

��


 0

0 I

n�m

��

h 0

0 I

n�m

��

'

0

(h)j det(h)j

s�(n�m)=2

dh:

Sin
e '

0

(h) is automorphi
 on GL

m

(A ) and j det(
)j = 1 for 
 2 GL

m

(k) we may inter
hange

the order of summation and integration for Re(s) >> 0 and then re
ombine to obtain

I(s;'; '

0

) =

Z

N

m

(k)nGL

m

(A )

W

'

�

h 0

0 I

n�m

�

'

0

(h)j det(h)j

s�(n�m)=2

dh:
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n

This integral is absolutely 
onvergent for Re(s) >> 0 by the gauge estimates of [31, Se
tion

13℄ and this justi�es the inter
hange.

Let us now integrate �rst over N

m

(k)nN

m

(A ). Re
all that for n 2 N

m

(A ) � N

n

(A ) we

have W

'

(ng) =  (n)W

'

(g). Hen
e we have

I(s;'; '

0

) =

Z

N

m

(A )n GL

m

(A )

Z

N

m

(k)nN

m

(A )

W

'

��

n 0

0 I

n�m

��

h 0

0 I

n�m

��

'

0

(nh) dn j det(h)j

s�(n�m)=2

dh

=

Z

N

m

(A )n GL

m

(A )

W

'

�

h 0

0 I

n�m

�

Z

N

m

(k)nN

m

(A )

 (n)'

0

(nh) dn j det(h)j

s�(n�m)=2

dh

=

Z

N

m

(A )n GL

m

(A )

W

'

�

h 0

0 I

n�m

�

W

0

'

0

(h)j det(h)j

s�(n�m)=2

dh

= 	(s;W

'

;W

0

'

0

)

where W

0

'

0

(h) is the  

�1

-Whittaker fun
tion on GL

m

(A ) asso
iated to '

0

, i.e.,

W

0

'

0

(h) =

Z

N

m

(k)nN

m

(A )

'

0

(nh) (n) dn;

and we retain absolute 
onvergen
e for Re(s) >> 0.

From this point, the fa
t that the integrals are Eulerian is a 
onsequen
e of the uniqueness

of the Whittaker model for GL

n

. Take ' a smooth 
usp form in a 
uspidal representation �

of GL

n

(A ). Assume in addition that ' is fa
torizable, i.e., in the de
omposition � = 


0

�

v

of

� into a restri
ted tensor produ
t of lo
al representations, ' = 
'

v

is a pure tensor. Then

as we have seen there is a 
hoi
e of lo
al Whittaker models so that W

'

(g) =

Q

W

'

v

(g

v

).

Similarly for de
omposable '

0

we have the fa
torization W

0

'

0

(h) =

Q

W

0

'

0

v

(h

v

).

If we substitute these fa
torizations into our integral expression, then sin
e the domain of

integration fa
tors N

m

(A )nGL

m

(A ) =

Q

N

m

(k

v

)nGL

m

(k

v

) we see that our integral fa
tors

into a produ
t of lo
al integrals

	(s;W

'

;W

0

'

0

) =

Y

v

Z

N

m

(k

v

)nGL

m

(k

v

)

W

'

v

�

h

v

0

0 I

n�m

�

W

0

'

0

v

(h

v

)j det(h

v

)j

s�(n�m)=2

v

dh

v

:

If we denote the lo
al integrals by

	

v

(s;W

'

v

;W

0

'

0

v

) =

Z

N

m

(k

v

)nGL

m

(k

v

)

W

'

v

�

h

v

0

0 I

n�m

�

W

0

'

0

v

(h

v

)j det(h

v

)j

s�(n�m)=2

v

dh

v

;

whi
h 
onverges for Re(s) >> 0 by the gauge estimate of [31, Prop. 2.3.6℄, we see that we

now have a family of Eulerian integrals.

Now let us return to the question of a fun
tional equation. As in the 
ase of GL

2

, the

fun
tional equation is essentially a 
onsequen
e of the existen
e of the outer automorphism

g 7! �(g) = g

�

=

t

g

�1

of GL

n

. If we de�ne the a
tion of this automorphism on automorphi


forms by setting e'(g) = '(g

�

) = '(w

n

g

�

) and let

e

P

n

m

= � ÆP

n

m

Æ � then our integrals naturally

satisfy the fun
tional equation

I(s;'; '

0

) =

e

I(1� s; e'; e'

0

)
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where

e

I(s;'; '

0

) =

Z

GL

m

(k)nGL

m

(A )

e

P

n

m

'

�

h

1

�

'

0

(h)j det(h)j

s�1=2

dh:

We have established the following result.

Theorem 2.1 Let ' 2 V

�

be a 
usp form on GL

n

(A ) and '

0

2 V

�

0

a 
usp form on GL

m

(A )

with m < n. Then the family of integrals I(s;'; '

0

) de�ne entire fun
tions of s, bounded in

verti
al strips, and satisfy the fun
tional equation

I(s;'; '

0

) =

e

I(1� s; e'; e'

0

):

Moreover the integrals are Eulerian and if ' and '

0

are fa
torizable, we have

I(s;'; '

0

) =

Y

v

	

v

(s;W

'

v

;W

0

'

0

v

)

with 
onvergen
e absolute and uniform for Re(s) >> 0.

The integrals o

urring in the right hand side of our fun
tional equation are again Eule-

rian. One 
an unfold the de�nitions to �nd �rst that

e

I(1� s; e'; e'

0

) =

e

	(1� s; �(w

n;m

)

f

W

'

;

f

W

0

'

0

)

where the unfolded global integral is

e

	(s;W;W

0

) =

Z Z

W

0

�

h

x I

n�m�1

1

1

A

dx W

0

(h)j det(h)j

s�(n�m)=2

dh

with the h integral over N

m

(A )nGL

m

(A ) and the x integral over M

n�m�1;m

(A ), the spa
e of

(n�m� 1)�m matri
es, � denoting right translation, and w

n;m

the Weyl element w

n;m

=

�

I

m

w

n�m

�

with w

n�m

=

0

�

1

.

.

.

1

1

A

the standard long Weyl element in GL

n�m

. Also,

for W 2 W(�;  ) we set

f

W (g) = W (w

n

g

�

) 2 W(e�;  

�1

). The extra unipotent integration

is the remnant of

e

P

n

m

. As before,

e

	(s;W;W

0

) is absolutely 
onvergent for Re(s) >> 0. For

' and '

0

fa
torizable as before, these integrals

e

	(s;W

'

;W

0

'

0

) will fa
tor as well. Hen
e we

have

e

	(s;W

'

;W

0

'

0

) =

Y

v

e

	

v

(s;W

'

v

;W

0

'

0

v

)

where

e

	

v

(s;W

v

;W

0

v

) =

Z Z

W

v

0

�

h

v

x

v

I

n�m�1

1

1

A

dx

v

W

0

v

(h

v

)j det(h

v

)j

s�(n�m)=2

dh

v

where now with the h

v

integral is over N

m

(k

v

)nGL

m

(k

v

) and the x

v

integral is over the

matrix spa
e M

n�m�1;m

(k

v

). Thus, 
oming ba
k to our fun
tional equation, we �nd that the

right hand side is Eulerian and fa
tors as

e

I(1� s; e'; e'

0

) =

e

	(1� s; �(w

n;m

)

f

W

'

;

f

W

0

'

0

) =

Y

v

e

	

v

(1� s; �(w

n;m

)

f

W

'

v

;

f

W

0

'

0

v

):
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2.3 Eulerian integrals for GL

n

�GL

n

The paradigm for integral representations of L-fun
tions for GL

n

�GL

n

is not He
ke but

rather the 
lassi
al papers of Rankin [52℄ and Selberg [54℄. These were �rst interpreted in the

framework of automorphi
 representations by Ja
quet for GL

2

�GL

2

[28℄ and then Ja
quet

and Shalika in general [36℄.

Let (�; V

�

) and (�

0

; V

�

0

) be two 
uspidal representations of GL

n

(A ). Let ' 2 V

�

and

'

0

2 V

�

0

be two 
usp forms. The analogue of the 
onstru
tion above would be simply

Z

GL

n

(k)nGL

n

(A )

'(g)'

0

(g)j det(g)j

s

dg:

This integral is essentially the L

2

-inner produ
t of ' and '

0

and is not suitable for de�ning

an L-fun
tion, although it will o

ur as a residue of our integral at a pole. Instead, follow-

ing Rankin and Selberg, we use an integral representation that involves a third fun
tion:

an Eisenstein series on GL

n

(A ). This family of Eisenstein series is 
onstru
ted using the

miraboli
 subgroup on
e again.

2.3.1 The miraboli
 Eisenstein series

To 
onstru
t our Eisenstein series we return to the observation that P

n

nGL

n

' k

n

� f0g.

If we let S(A

n

) denote the S
hwartz{Bruhat fun
tions on A

n

, then ea
h � 2 S de�nes a

smooth fun
tion on GL

n

(A ), left invariant by P

n

(A ), by g 7! �((0; : : : ; 0; 1)g) = �(e

n

g). Let

� be a unitary idele 
lass 
hara
ter. (For our appli
ation � will be determined by the 
entral


hara
ters of � and �

0

.) Consider the fun
tion

F (g;�; s; �) = j det(g)j

s

Z

A

�

�(ae

n

g)jaj

ns

�(a) d

�

a:

If we let P

0

n

= Z

n

P

n

be the paraboli
 of GL

n

asso
iated to the partition (n� 1; 1) then one


he
ks that for p

0

=

�

h y

0 d

�

2 P

0

n

(A ) with h 2 GL

n�1

(A ) and d 2 A

�

we have,

F (p

0

g;�; s; �) = j det(h)j

s

jdj

�(n�1)s

�(d)

�1

F (g;�; s; �) = Æ

s

P

0

n

(p

0

)�

�1

(d)F (g;�; s; �);

with the integral absolutely 
onvergent for Re(s) > 1=n, so that if we extend � to a 
hara
ter

of P

0

n

by �(p

0

) = �(d) in the above notation we have that F (g;�; s; �) is a smooth se
tion

of the normalized indu
ed representation Ind

GL

n

(A )

P

0

n

(A )

(Æ

s�1=2

P

0

n

�). Sin
e the indu
ing 
hara
ter

Æ

s�1=2

P

0

n

� of P

0

n

(A ) is invariant under P

0

n

(k) we may form Eisenstein series from this family of

se
tions by

E(g;�; s; �) =

X


2P

0

n

(k)nGL

n

(k)

F (
g;�; s; �):

If we repla
e F in this sum by its de�nition we 
an rewrite this Eisenstein series as

E(g;�; s; �) = j det(g)j

s

Z

k

�

nA

�

X

�2k

n

�f0g

�(a�g)jaj

ns

�(a) d

�

a

= j det(g)j

s

Z

k

�

nA

�

�

0

�

(a; g)jaj

ns

�(a) d

�

a
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and this �rst expression is 
onvergent absolutely for Re(s) > 1 [36℄.

The se
ond expression essentially gives the Eisenstein series as the Mellin transform of

the Theta series

�

�

(a; g) =

X

�2k

n

�(a�g);

where in the above we have written

�

0

�

(a; g) =

X

�2k

n

�f0g

�(a�g) = �

�

(a; g)� �(0):

This allows us to obtain the analyti
 properties of the Eisenstein series from the Poisson

summation formula for �

�

, namely

�

�

(a; g) =

X

�2k

n

�(a�g) =

X

�2k

n

�

a;g

(�)

=

X

�2k

n

d

�

a;g

(�) =

X

�2k

n

jaj

�n

j det(g)j

�1

b

�(a

�1

�

t

g

�1

)

= jaj

�n

j det(g)j

�1

�

^

�

(a

�1

;

t

g

�1

)

where the Fourier transform

^

� on S(A

n

) is de�ned by

^

�(x) =

Z

A

�

�(y) (y

t

x) dy:

This allows us to write the Eisenstein series as

E(g;�; s; �) = j det(g)j

s

Z

jaj�1

�

0

�

(a; g)jaj

ns

�(a) d

�

a

+ j det(g)j

s�1

Z

jaj�1

�

0

^

�

(a;

t

g

�1

)jaj

n(1�s)

�

�1

(a) d

�

a+ Æ(s)

where

Æ(s) =

(

0 if � is rami�ed

�
�(0)

j det(g)j

s

s+i�

+ 


^

�(0)

jdet(g)j

s�1

s�1+i�

if �(a) = jaj

in�

with � 2 R

with 
 a non-zero 
onstant. From this we derive easily the basi
 properties of our Eisenstein

series [36, Se
tion 4℄.

Proposition 2.1 The Eisenstein series E(g;�; s; �) has a meromorphi
 
ontinuation to all

of C with at most simple poles at s = �i�; 1 � i� when � is unrami�ed of the form �(a) =

jaj

in�

. As a fun
tion of g it is smooth of moderate growth and as a fun
tion of s it is bounded

in verti
al strips (away from the possible poles), uniformly for g in 
ompa
t sets. Moreover,

we have the fun
tional equation

E(g;�; s; �) = E(g

�

;

^

�; 1� s; �

�1

)

where g

�

=

t

g

�1

.

Note that under the 
enter the Eisenstein series transforms by the 
entral 
hara
ter �

�1

.
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2.3.2 The global integrals

Now let us return to our Eulerian integrals. Let � and �

0

be our irredu
ible 
uspidal rep-

resentations. Let their 
entral 
hara
ters be ! and !

0

. Set � = !!

0

. Then for ea
h pair of


usp forms ' 2 V

�

and '

0

2 V

�

0

and ea
h S
hwartz-Bruhat fun
tion � 2 S(A

n

) set

I(s;'; '

0

;�) =

Z

Z

n

(A ) GL

n

(k)nGL

n

(A )

'(g)'

0

(g)E(g;�; s; �) dg:

Sin
e the two 
usp forms are rapidly de
reasing on Z

n

(A )GL

n

(k)nGL

n

(A ) and the Eisenstein

is only of moderate growth, we see that the integral 
onverges absolutely for all s away from

the poles of the Eisenstein series and is hen
e meromorphi
. It will be bounded in verti
al

strips away from the poles and satis�es the fun
tional equation

I(s;'; '

0

;�) = I(1� s; e'; e'

0

;

^

�);


oming from the fun
tional equation of the Eisenstein series, where we still have e'(g) =

'(g

�

) = '(w

n

g

�

) 2 V

e�

and similarly for e'

0

.

These integrals will be entire unless we have �(a) = !(a)!

0

(a) = jaj

in�

is unrami�ed. In

that 
ase, the residue at s = �i� will be

Res

s=�i�

I(s;'; '

0

;�) = �
�(0)

Z

Z

n

(A ) GL

n

(A )n GL

n

(A )

'(g)'

0

(g)j det(g)j

�i�

dg

and at s = 1� i� we 
an write the residue as

Res

s=1�i�

I(s;'; '

0

;�) = 


^

�(0)

Z

Z

n

(A ) GL

n

(k)nGL

n

(A )

e'(g)e'

0

(g)j det(g)j

i�

dg:

Therefore these residues de�ne GL

n

(A ) invariant pairings between � and �

0


 j det j

�i�

or

equivalently between e� and e�

0


 j det j

i�

. Hen
e a residues 
an be non-zero only if � '

e�

0


 j det j

i�

and in this 
ase we 
an �nd ', '

0

, and � su
h that indeed the residue does not

vanish.

We have yet to 
he
k that our integrals are Eulerian. To this end we take the integral,

repla
e the Eisenstein series by its de�nition, and unfold:

I(s;'; '

0

;�) =

Z

Z

n

(A ) GL

n

(k)nGL

n

(A )

'(g)'

0

(g)E(g;�; s; �) dg

=

Z

Z

n

(A ) P

0

n

(k)nGL

n

(A )

'(g)'

0

(g)F (g;�; s; �) dg

=

Z

Z

n

(A ) P

n

(k)nGL

n

(A )

'(g)'

0

(g)j det(g)j

s

Z

A

�

�(ae

n

g)jaj

ns

�(a) da dg

=

Z

P

n

(k)nGL

n

(A )

'(g)'

0

(g)�(e

n

g)j det(g)j

s

dg:

We next repla
e ' by its Fourier expansion in the form

'(g) =

X


2N

n

(k)nP

n

(k)

W

'

(
g)
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and unfold to �nd

I(s;'; '

0

;�) =

Z

N

n

(k)nGL

n

(A )

W

'

(g)'

0

(g)�(e

n

g)j det(g)j

s

dg

=

Z

N

n

(A )n GL

n

(A )

W

'

(g)

Z

N

n

(k)nN

n

(A )

'

0

(ng) (n) dn �(e

n

g)j det(g)j

s

dg

=

Z

N

n

(A )n GL

n

(A )

W

'

(g)W

0

'

0

(g)�(e

n

g)j det(g)j

s

dg

= 	(s;W

'

;W

0

'

0

;�):

This expression 
onverges for Re(s) >> 0 by the gauge estimates as before.

To 
ontinue, we assume that ', '

0

and � are de
omposable tensors under the isomor-

phisms � ' 


0

�

v

, �

0

' 


0

�

0

v

, and S(A

n

) ' 


0

S(k

n

v

) so that we have W

'

(g) =

Q

v

W

'

v

(g

v

),

W

0

'

0

(g) =

Q

v

W

0

'

0

v

(g

v

) and �(g) =

Q

v

�

v

(g

v

). Then, sin
e the domain of integration also

naturally fa
tors we 
an de
ompose this last integral into an Euler produ
t and now write

	(s;W

'

;W

0

'

0

;�) =

Y

v

	

v

(s;W

'

v

;W

0

'

0

v

;�

v

);

where

	

v

(s;W

'

v

;W

0

'

0

v

;�

v

) =

Z

N

n

(k

v

)nGL

n

(k

v

)

W

'

v

(g

v

)W

0

'

0

v

(g

v

)�

v

(e

n

g

v

)j det(g

v

)j

s

dg

v

;

still with 
onvergen
e for Re(s) >> 0 by the lo
al gauge estimates. On
e again we see that

the Euler fa
torization is a dire
t 
onsequen
e of the uniqueness of the Whittaker models.

Theorem 2.2 Let ' 2 V

�

and '

0

2 V

�

0


usp forms on GL

n

(A ) and let � 2 S(A

n

). Then

the family of integrals I(s;'; '

0

;�) de�ne meromorphi
 fun
tions of s, bounded in verti
al

strips away from the poles. The only possible poles are simple and o

ur i� � ' e�

0


 j det j

i�

with � real and are then at s = �i� and s = 1� i� with residues as above. They satisfy the

fun
tional equation

I(s;'; '

0

;�) = I(1� s;

f

W

'

;

f

W

0

'

0

;

^

�):

Moreover, for ', '

0

, and � fa
torizable we have that the integrals are Eulerian and we have

I(s;'; '

0

;�) =

Y

v

	

v

(s;W

'

v

;W

0

'

0

v

;�

v

)

with 
onvergen
e absolute and uniform for Re(s) >> 0.

We remark in passing that the right hand side of the fun
tional equation also unfolds as

I(1� s; e'; e'

0

;

^

�) =

Z

N

n

(A )n GL

n

(A )

f

W

'

(g)

f

W

0

'

0

(g)

^

�(e

n

g)j det(g)j

1�s

dg

=

Y

v

	

v

(1� s;

f

W

'

;

f

W

0

'

0

;

^

�)

with 
onvergen
e for Re(s) << 0.

We note again that if these integrals are not entire, then the residues give us invariant

pairings between the 
uspidal representations and hen
e tell us stru
tural fa
ts about the

relation between these representations.
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3 Lo
al L-fun
tions

If (�; V

�

) is a 
uspidal representation of GL

n

(A ) and (�

0

; V

�

0

) is a 
uspidal representation of

GL

m

(A ) we have asso
iated to the pair (�; �

0

) a family of Eulerian integrals fI(s;'; '

0

)g (or

fI(s;'; '

0

;�)g if m = n) and through the Euler fa
torization we have for ea
h pla
e v of

k a family of lo
al integrals f	

v

(s;W

v

;W

0

v

)g (or f	

v

(s;W

v

;W

0

v

;�

v

)g) atta
hed to the pair

of lo
al 
omponents (�

v

; �

0

v

). In this le
ture we would like to atta
h a lo
al L-fun
tion (or

lo
al Euler fa
tor) L(s; �

v

� �

0

v

) to su
h a pair of lo
al representations through the family of

lo
al integrals and analyze its basi
 properties, in
luding the lo
al fun
tional equation. The

paradigm for su
h an analysis of lo
al L-fun
tions is Tate's thesis [64℄. The me
hani
s of

the ar
himedean and non-ar
himedean theories are slightly di�erent so we will treat them

separately, beginning with the non-ar
himedean theory.

3.1 The non-ar
himedean lo
al fa
tors

For this se
tion we will let k denote a non-ar
himedean lo
al �eld. We will let o denote the

ring of integers of k and p the unique prime ideal of o. Fix a generator $ of p. We let q be the

residue degree of k, so q = jo=pj = j$j

�1

. We �x a non-trivial 
ontinuous additive 
hara
ter

 of k. (�; V

�

) and (�

0

; V

�

0

) will now be the smooth ve
tors in irredu
ible admissible unitary

generi
 representations of GL

n

(k) and GL

m

(k) respe
tively, as is true for lo
al 
omponents

of 
uspidal representations. We will let ! and !

0

denote their 
entral 
hara
ters.

The basi
 referen
e for this se
tion is the paper of Ja
quet, Piatetski-Shapiro, and Shalika

[33℄.

3.1.1 The lo
al L-fun
tion

For ea
h pair of Whittaker fun
tions W 2 W(�;  ) and W

0

2 W(�

0

;  

�1

) and in the 
ase

n = m ea
h S
hwartz-Bruhat fun
tion � 2 S(k

n

) we have de�ned lo
al integrals

	(s;W;W

0

) =

Z

N

m

(k)nGL

m

(k)

W

�

h

I

n�m

�

W

0

(h)j det(h)j

s�(n�m)=2

dh

e

	(s;W;W

0

) =

Z

N

m

(k)nGL

m

(k)

Z

M

n�m�1;m

(k)

W

0

�

h

x I

n�m�1

1

1

A

dx W

0

(h)j det(h)j

s�(n�m)=2

dh

in the 
ase m < n and

	(s;W;W

0

;�) =

Z

N

n

(k)nGL

n

(k)

W (g)W

0

(g)�(e

n

g)j det(g)j

s

dg

in the 
ase n = m, both 
onvergent for Re(s) >> 0. To make the notation more 
onvenient

for what follows, in the 
ase m < n for any 0 � j � n�m� 1 let us set

	

j

(s : W;W

0

) =

Z

N

m

(k)nGL

m

(k)

Z

M

j;m

(k)

W

0

�

h

x I

j

I

n�m�j

1

A

dx W

0

(h)j det(h)j

s�(n�m)=2

dh;
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so that 	(s;W;W

0

) = 	

0

(s;W;W

0

) and

e

	(s;W;W

0

) = 	

n�m�1

(s;W;W

0

), whi
h is still

absolutely 
onvergent for Re(s) >> 0.

We need to understand what type of fun
tions of s these lo
al integrals are. To this

end, we need to understand the lo
al Whittaker fun
tions. So let W 2 W(�;  ). Sin
e W

is smooth, there is a 
ompa
t open subgroup K, of �nite index in the maximal 
ompa
t

subgroup K

n

= GL

n

(o), so that W (gk) = W (g) for all k 2 K. If we let fk

i

g be a set of 
oset

representatives of GL

n

(o)=K, using thatW transforms on the left under N

n

(k) via  and the

Iwasawa de
omposition on GL

n

(k) we see that W (g) is 
ompletely determined by the values

ofW (ak

i

) =W

i

(a) for a 2 A

n

(k), the maximal split (diagonal) torus of GL

n

(k). So it suÆ
es

to understand a general Whittaker fun
tion on the torus. Let �

i

, i = 1; : : : ; n�1, denote the

standard simple roots of GL

n

, so that if a =

0

B

�

a

1

.

.

.

a

n

1

C

A

2 A

n

(k) then �

i

(a) = a

i

=a

i+1

.

By a �nite fun
tion on A

n

(k) we mean a 
ontinuous fun
tion whose translates span a �nite

dimensional ve
tor spa
e [30, 31, Se
tion 2.2℄. (For the �eld k

�

itself the �nite fun
tions

are spanned by produ
ts of 
hara
ters and powers of the valuation map.) The fundamental

result on the asymptoti
s of Whittaker fun
tions is then the following [31, Prop. 2.2℄.

Proposition 3.1 Let � be a generi
 representation of GL

n

(k). Then there is a �nite set of

�nite fun
tions X(�) = f�

i

g on A

n

(k), depending only on �, so that for every W 2 W(�;  )

there are S
hwartz {Bruhat fun
tions �

i

2 S(k

n�1

) su
h that for all a 2 A

n

(k) with a

n

= 1

we have

W (a) =

X

X(�)

�

i

(a)�

i

(�

1

(a); : : : ; �

n�1

(a)):

The �nite set of �nite fun
tions X(�) whi
h o

ur in the asymptoti
s near 0 of the Whit-

taker fun
tions 
ome from analyzing the Ja
quet module W(�;  )=h�(n)W � W jn 2 N

n

i

whi
h is naturally an A

n

(k){module. Note that due to the S
hwartz-Bruhat fun
tions, the

Whittaker fun
tions vanish whenever any simple root �

i

(a) be
omes large. The gauge esti-

mates alluded to in Se
tion 2 are a 
onsequen
e of this expansion and the one in Proposition

3.6.

Several ni
e 
onsequen
es follow from inserting these formulas for W and W

0

into the

lo
al integrals 	

j

(s;W;W

0

) or 	(s;W;W

0

;�) [31, 33℄.

Proposition 3.2 The lo
al integrals 	

j

(s;W;W

0

) or 	(s;W;W

0

;�) satisfy the following

properties.

1. Ea
h integral 
onverges for Re(s) >> 0. For � and �

0

unitary, as we have assumed,

they 
onverge absolutely for Re(s) � 1. For � and �

0

tempered, we have absolute


onvergen
e for Re(s) > 0.

2. Ea
h integral de�nes a rational fun
tion in q

�s

and hen
e meromorphi
ally extends to

all of C .

3. Ea
h su
h rational fun
tion 
an be written with a 
ommon denominator whi
h depends

only on the �nite fun
tions X(�) and X(�

0

) and hen
e only on � and �

0

.
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n

In deriving these when m < n� 1 note that one has that

W

0

�

h

x I

j

I

n�m�j�1

1

A

6= 0

implies that x lies in a 
ompa
t set independent of h 2 GL

m

(k) [33℄.

Let I

j

(�; �

0

) denote the 
omplex linear span of the lo
al integrals 	

j

(s;W;W

0

) if m < n

and I(�; �

0

) the 
omplex linear span of the 	(s;W;W

0

;�) if m = n. These are then all

subspa
es of C (q

�s

) whi
h have \bounded denominators" in the sense of (3). In fa
t, these

subspa
es have more stru
ture { they are modules for C [q

s

; q

�s

℄ � C (q

�s

). To see this, note

that for any h 2 GL

m

(k) we have

	

j

�

s; �

�

h

I

n�m

�

W;�

0

(h)W

0

�

= j det(h)j

�s�j+(n�m)=2

	

j

(s;W;W

0

)

and

	(s; �(h)W;�

0

(h)W

0

; �(h)�) = j det(h)j

�s

	(s;W;W

0

;�):

So by varying h and multiplying by s
alars, we see that ea
h I

j

(�; �

0

) and I(�; �

0

) is 
losed

under multipli
ation by C [q

s

; q

�s

℄. Sin
e we have bounded denominators, we 
an 
on
lude:

Proposition 3.3 Ea
h I

j

(�; �

0

) and I(�; �

0

) is a fra
tional C [q

s

; q

�s

℄{ideal of C (q

�s

).

Note that C [q

s

; q

�s

℄ is a prin
ipal ideal domain, so that ea
h fra
tional ideal I

j

(�; �

0

) has

a single generator, whi
h we 
all Q

j;�;�

0

(q

�s

), as does I(�; �

0

), whi
h we 
all Q

�;�

0

(q

�s

).

However, we 
an say more. In the 
ase m < n re
all that from what we have said about

the Kirillov model that when we restri
t Whittaker fun
tions in W(�;  ) to the embedded

GL

m

(k) � P

n

(k) we get all fun
tions of 
ompa
t support on GL

m

(k) transforming by  .

Using this freedom for our 
hoi
e of W 2 W(�;  ) one 
an show that in fa
t the 
onstant

fun
tion 1 lies in I

j

(�; �

0

). In the 
ase m = n one 
an redu
e to a sum of integrals over

P

n

(k) and then use the freedom one has in the Kirillov model, plus the 
omplete freedom

in the 
hoi
e of � to show that on
e again 1 2 I(�; �

0

). The 
onsequen
e of this is that

our generator 
an be taken to be of the form Q

j;�;�

0

(q

�s

) = P

j;�;�

0

(q

s

; q

�s

)

�1

for m < n or

Q

�;�

0

(q

�s

) = P

�;�

0

(q

s

; q

�s

)

�1

for appropriate polynomials in C [q

s

; q

�s

℄. Moreover, sin
e q

s

and q

�s

are units in C [q

s

; q

�s

℄ we 
an always normalize our generator to be of the form

P

j;�;�

0

(q

�s

)

�1

or P

�;�

0

(q

�s

)

�1

where the polynomial P (X) satis�es P (0) = 1.

Finally, in the 
ase m < n one 
an show by a rather elementary although somewhat

involved manipulation of the integrals that all of the ideals I

j

(�; �

0

) are the same [33, Se
tion

2.7℄. We will write this ideal as I(�; �

0

) and its generator as P

�;�

0

(q

�s

)

�1

.

This gives us the de�nition of our lo
al L-fun
tion.

De�nition Let � and �

0

be as above. Then L(s; � � �

0

) = P

�;�

0

(q

�s

)

�1

is the normalized

generator of the fra
tional ideal I(�; �

0

) formed by the family of lo
al integrals. If �

0

= 1 is

the trivial representation of GL

1

(k) then we write L(s; �) = L(s; � � 1).
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One 
an show easily that the ideal I(�; �

0

) is independent of the 
hara
ter  used in

de�ning the Whittaker models, so that L(s; � � �

0

) is independent of the 
hoi
e of  . So it

is not in
luded in the notation. Also, note that for �

0

= � an automorphi
 representation

(
hara
ter) of GL

1

(A ) we have the identity L(s; � � �) = L(s; � 
 �) where � 
 � is the

representation of GL

n

(A ) on V

�

given by � 
 �(g)� = �(det(g))�(g)�.

We summarize the above in the following Theorem.

Theorem 3.1 Let � and �

0

be as above. The family of lo
al integrals form a C [q

s

; q

�s

℄{

fra
tional ideal I(�; �

0

) in C (q

�s

) with generator the lo
al L-fun
tion L(s; � � �

0

).

Another useful way of thinking of the lo
al L-fun
tion is the following. L(s; � � �

0

) is

the minimal (in terms of degree) fun
tion of the form P (q

�s

)

�1

, with P (X) a polynomial

satisfying P (0) = 1, su
h that the ratios

	(s;W;W

0

)

L(s; � � �

0

)

(resp.

	(s;W;W

0

;�)

L(s; � � �

0

)

) are entire for

all W 2 W(�;  ) and W

0

2 W(�

0

;  

�1

), and if ne
essary � 2 S(k

n

). That is, L(s; � � �

0

) is

the standard Euler fa
tor determined by the poles of the fun
tions in I(�; �

0

).

One should note that sin
e the L-fa
tor is a generator of the ideal I(�; �

0

), then in

parti
ular it lies in I(�; �

0

). Sin
e this ideal is spanned by our lo
al integrals, we have the

following useful Corollary.

Corollary There are a �nite 
olle
tion of W

i

2 W(�;  ), W

0

i

2 W(�

0

;  

�1

), and if ne
es-

sary �

i

2 S(k

n

) su
h that

L(s; � � �

0

) =

X

i

	(s;W

i

;W

0

i

) or L(s; � � �

0

) =

X

i

	(s;W

i

;W

0

i

;�

i

):

For future referen
e, let us set

e(s;W;W

0

) =

	(s;W;W

0

)

L(s; � � �

0

)

; e

j

(s;W;W

0

) =

	

j

(s;W;W

0

)

L(s; � � �

0

)

; ~e(s;W;W

0

) =

e

	(s;W;W

0

)

L(s; � � �

0

)

;

and

e(s;W;W

0

;�) =

	(s;W;W

0

;�)

L(s; � � �

0

)

:

Then all of these fun
tions are Laurent polynomials in q

�s

, i.e., elements of C [q

s

; q

�s

℄. As

su
h they are entire and bounded in verti
al strips. As above, there are 
hoi
es of W

i

, W

0

i

,

and if ne
essary �

i

su
h that

P

e(s;W

i

;W

0

i

) � 1 or

P

e(s;W

i

;W

0

i

;�

i

) � 1. In parti
ular we

have the following result.

Corollary The fun
tions e(s;W;W

0

) and e(s;W;W

0

;�) are entire fun
tions, bounded in

verti
al strips, and for ea
h s

0

2 C there is a 
hoi
e of W , W

0

, and if ne
essary � su
h that

e(s

0

;W;W

0

) 6= 0 or e(s

0

;W;W

0

;�) 6= 0.



26 L-fun
tions for GL

n

3.1.2 The lo
al fun
tional equation

Either by analogy with Tate's thesis or from the 
orresponding global statement, we would

expe
t our lo
al integrals to satisfy a lo
al fun
tional equation. From the fun
tional equa-

tions for our global integrals, we would expe
t these to relate the integrals 	(s;W;W

0

) and

e

	(1�s; �(w

n;m

)

f

W;

f

W

0

) whenm < n and 	(s;W;W

0

;�) and 	(1�s;

f

W;

f

W

0

;

^

�) whenm = n.

This will indeed be the 
ase. These fun
tional equations will 
ome from interpreting the lo-


al integrals as families (in s) of quasi-invariant bilinear forms on W(�;  )�W(�

0

;  

�1

) or

trilinear forms on W(�;  )�W(�

0

;  

�1

)� S(k

n

) depending on the 
ase.

First, 
onsider the 
ase when m < n. In this 
ase we have seen that

	

�

s; �

�

h

I

n�m

�

W;�

0

(h)W

0

�

= j det(h)j

�s+(n�m)=2

	(s;W;W

0

)

and one 
he
ks that 	(1�s; �(w

n;m

)

f

W;

f

W

0

) has the same quasi-invarian
e as a bilinear form

on W(�;  ) � W(�

0

;  

�1

). In addition, if we let Y

n;m

denote the unipotent radi
al of the

standard paraboli
 subgroup asso
iated to the partition (m + 1; 1; : : : ; 1) as before then we

have the quasi-invarian
e

	(s; �(y)W;W

0

) =  (y)	(s;W;W

0

)

for all y 2 Y

n;m

. One again 
he
ks that

e

	(1 � s; �(w

n;m

)

f

W;

f

W

0

) satis�es the same quasi-

invarian
e as a bilinear form on W(�;  )�W(�

0

;  

�1

).

For n = m we have seen that

	(s; �(h)W;�

0

(h)W

0

; �(h)�) = j det(h)j

�s

	(s;W;W

0

;�)

and it is elementary to 
he
k that 	(1� s;

f

W;

f

W

0

;

^

�) satis�es the same quasi-invarian
e as

a trilinear form on W(�;  )�W(�

0

;  

�1

)� S(k

n

). Our lo
al fun
tional equations will now

follow from the following result [33, Propositions 2.10 and 2.11℄.

Proposition 3.4 (i) If m < n, then ex
ept for a �nite number of ex
eptional values of q

�s

there is a unique bilinear form B

s

on W(�;  )�W(�

0

;  

�1

) satisfying

B

s

�

�

�

h

I

n�m

�

W;�

0

(h)W

0

�

= j det(h)j

�s+(n�m)=2

B

s

(W;W

0

)

and B

s

(�(y)W;W

0

) =  (y)B

s

(W;W

0

)

for all h 2 GL

m

(k) and y 2 Y

n;m

(k).

(ii) If n = m, then ex
ept for a �nite number of ex
eptional values of q

�s

there is a

unique trilinear form T

s

on W(�;  )�W(�

0

;  

�1

)� S(k

n

) satisfying

T

s

(�(h)W;�

0

(h)W

0

; �(h)�) = j det(h)j

�s

T

s

(W;W

0

;�)

for all h 2 GL

n

(k).
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Let us say a few words about the proof of this proposition, be
ause it is another appli-


ation of the analysis of the restri
tion of representations of GL

n

to the miraboli
 subgroup

P

n

[33, Se
tions 2.10 and 2.11℄. In the 
ase where m < n the lo
al integrals involve the

restri
tion of the Whittaker fun
tions in W(�;  ) to GL

m

(k) � P

n

, that is, the Kirillov

model K(�;  ) of �. In the 
ase m = n one notes that S

0

(k

n

) = f� 2 S(k

n

) j �(0) = 0g,

whi
h has 
o-dimension one in S(k

n

), is isomorphi
 to the 
ompa
tly indu
ed represen-

tation ind

GL

n

(k)

P

n

(k)

(Æ

�1=2

P

n

) so that by Frobenius re
ipro
ity a GL

n

(k) quasi-invariant trilinear

form on W(�;  )�W(�

0

;  

�1

)� S

0

(k

n

) redu
es to a P

n

(k)-quasi-invariant bilinear form on

K(�;  )�K(�

0

;  

�1

). So in both 
ases we are naturally working in the restri
tion to P

n

(k).

The restri
tions of irredu
ible representations of GL

n

(k) to P

n

(k) are no longer irredu
ible,

but do have 
omposition series of �nite length. One of the tools for analyzing the restri
-

tions of representations of GL

n

to P

n

, or analyzing the irredu
ible representations of P

n

, are

the derivatives of Bernstein and Zelevinsky [2, 11℄. These derivatives �

(n�r)

are naturally

representations of GL

r

(k) for r � n. �

(0)

= � and sin
e � is generi
 the highest derivative

�

(n)


orresponds to the irredu
ible 
ommon submodule (�; V

�

) of all Kirillov models, and is

hen
e the non-zero irredu
ible representation of GL

0

(k). The poles of our lo
al integrals 
an

be interpreted as giving quasi-invariant pairings between derivatives of � and �

0

[11℄. The s

for whi
h su
h pairings exist for all but the highest derivatives are the ex
eptional s of the

proposition. There is always a unique pairing between the highest derivatives �

(n)

and �

0(m)

,

whi
h are ne
essarily non-zero sin
e they sin
e these 
orrespond to the 
ommon irredu
ible

subspa
e (�; V

�

) of any Kirillov model, and this is the unique B

s

or T

s

of the proposition.

As a 
onsequen
e of this Proposition, we 
an de�ne the lo
al 
-fa
tor whi
h gives the

lo
al fun
tional equation for our integrals.

Theorem 3.2 There is a rational fun
tion 
(s; � � �

0

;  ) 2 C (q

�s

) su
h that we have

e

	(1� s; �(w

n;m

)

f

W;

f

W

0

) = !

0

(�1)

n�1


(s; � � �

0

;  )	(s;W;W

0

) if m < n

or

	(1� s;

f

W;

f

W

0

;

^

�) = !

0

(�1)

n�1


(s; � � �

0

;  )	(s;W;W

0

;�) if m = n

for all W 2 W(�;  ), W

0

2 W(�

0

;  

�1

), and if ne
essary all � 2 S(k

n

).

Again, if �

0

= 1 is the trivial representation of GL

1

(k) we write 
(s; �;  ) = 
(s; ��1;  ).

The fa
t that 
(s; ���

0

;  ) is rational follows from the fa
t that it is a ratio of lo
al integrals.

An equally important lo
al fa
tor, whi
h o

urs in the 
urrent formulations of the lo
al

Langlands 
orresponden
e [23, 26℄, is the lo
al "-fa
tor.

De�nition The lo
al fa
tor "(s; � � �

0

;  ) is de�ned as the ratio

"(s; � � �

0

;  ) =


(s; � � �

0

;  )L(s; � � �

0

)

L(1� s; e� � e�

0

)

:

With the lo
al "-fa
tor the lo
al fun
tional equation 
an be written in the form

e

	(1� s; �(w

n;m

)

f

W;

f

W

0

)

L(1� s; e� � e�

0

)

= !

0

(�1)

n�1

"(s; � � �

0

;  )

	(s;W;W

0

)

L(s; � � �

0

)

if m < n
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n

or

	(1� s;

f

W;

f

W

0

;

^

�)

L(1� s; e� � e�

0

)

= !

0

(�1)

n�1

"(s; � � �

0

;  )

	(s;W;W

0

;�)

L(s; � � �

0

)

if m = n :

This 
an also be expressed in terms of the e(s;W;W

0

), et
.. In fa
t, sin
e we know we 
an


hoose a �nite set of W

i

, W

0

i

, and if ne
essary �

i

so that

X

i

	(s; ;W

i

;W

0

i

)

L(s; � � �

0

)

=

X

i

e(s;W

i

;W

0

i

) = 1

or

X

i

	(s;W

i

;W

0

i

;�

i

)

L(s; � � �

0

)

=

X

i

e(s;W

i

;W

0

i

;�

i

) = 1

we see that we 
an write either

"(s; � � �

0

;  ) = !

0

(�1)

n�1

X

i

~e(1� s; �(w

n;m

)

f

W

i

;

f

W

0

i

)

or

"(s; � � �

0

;  ) = !

0

(�1)

n�1

X

i

e(1� s;

f

W

i

;

f

W

0

i

;

^

�

i

)

and hen
e "(s; � � �

0

;  ) 2 C [q

s

; q

�s

℄. On the other hand, applying the fun
tional equation

twi
e we get

"(s; � � �

0

;  )"(1� s; e� � e�

0

;  

�1

) = 1

so that "(s; � � �

0

;  ) is a unit in C [q

s

; q

�s

℄. This 
an be restated as:

Proposition 3.5 "(s; � � �

0

;  ) is a monomial fun
tion of the form 
q

�fs

.

Let us make a few remarks on the meaning of the number f o

urring in the "{fa
tor

in the 
ase of a single representation. Assume that  is unrami�ed. In this 
ase write

"(s; �;  ) = "(0; �;  )q

�f(�)s

. In [34℄ it is shown that f(�) is a non-negative integer, f(�) = 0

i� � is unrami�ed, that in general the spa
e of ve
tors in V

�

whi
h is �xed by the 
ompa
t

open subgroup

K

1

(p

f(�)

) =

8

>

>

>

<

>

>

>

:

g 2 GL

n

(o)

�

�

g �

0

B

B

B

�

�

�

.

.

.

�

0 � � � 0 1

1

C

C

C

A

(mod p

f(�)

)

9

>

>

>

=

>

>

>

;

has dimension exa
tly 1, and that if t < f(�) then the dimension of the spa
e of �xed ve
tors

for K

1

(p

t

) is 0. Depending on the 
ontext, either the integer f(�) or the ideal f(�) = p

f(�)

is 
alled the 
ondu
tor of �. Note that the analyti
ally de�ned "-fa
tor 
arries stru
tural

information about �.
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3.1.3 The unrami�ed 
al
ulation

Let us now turn to the 
al
ulation of the lo
al L-fun
tions. The �rst 
ase to 
onsider is

that where both � and �

0

are unrami�ed. Sin
e they are assumed generi
, they are both

full indu
ed representations from unrami�ed 
hara
ters of the Borel subgroup [69℄. So let

us write � ' Ind

GL

n

B

n

(�

1


 � � � 
 �

n

) and �

0

' Ind

GL

m

B

m

(�

0

1


 � � � 
 �

0

m

) with the �

i

and �

0

j

unrami�ed 
hara
ters of k

�

. The Satake parameterization of unrami�ed representations

asso
iates to ea
h of these representation the semi-simple 
onjuga
y 
lasses [A

�

℄ 2 GL

n

(C )

and [A

�

0

℄ 2 GL

m

(C ) given by

A

�

=

0

B

�

�

1

($)

.

.

.

�

n

($)

1

C

A

A

�

0

=

0

B

�

�

0

1

($)

.

.

.

�

0

m

($)

1

C

A

:

(Re
all that $ is a uniformizing parameter for k, that is, a generator of p.)

In the Whittaker models there will be unique normalized K = GL(o){ �xed Whittaker

fun
tions, W

Æ

2 W(�;  ) and W

0

Æ

2 W(�

0

;  

�1

), normalized by W

Æ

(e) = W

0

Æ

(e) = 1. Let us


on
entrate on W

Æ

for the moment. Sin
e this fun
tion is right K

n

{invariant and transforms

on the left by  under N

n

we have that its values are 
ompletely determined by its values

on diagonal matri
es of the form

$

J

=

0

B

�

$

j

1

.

.

.

$

j

n

1

C

A

for J = (j

1

; : : : ; j

n

) 2 Z

n

. There is an expli
it formula for W

Æ

($

J

) in terms of the Satake

parameter A

�

due to Shintani [63℄ for GL

n

and generalized to arbitrary redu
tive groups by

Casselman and Shalika [4℄.

Let T

+

(n) be the set of n{tuples J = (j

1

; : : : ; j

n

) 2 Z

n

with j

1

� � � � � j

n

. Let �

J

be the

rational representation of GL

n

(C ) with dominant weight �

J

de�ned by

�

J

0

B

�

t

1

.

.

.

t

n

1

C

A

= t

j

1

1

� � � t

j

n

n

:

Then the formula of Shintani says that

W

Æ

($

J

) =

(

0 if J =2 T

+

(n)

Æ

1=2

B

n

($

J

) tr(�

J

(A

�

)) if J 2 T

+

(n)

under the assumption that  is unrami�ed. This is proved by analyzing the re
ursion

relations 
oming from the a
tion of the unrami�ed He
ke algebra on W

Æ

.

We have a similar formula for W

0

Æ

($

J

) for J 2 Z

m

.
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If we use these formulas in our lo
al integrals, we �nd [36, I, Prop. 2.3℄

	(s;W

Æ

;W

0

Æ

) =

X

J2T

+

(m); j

m

�0

W

Æ

�

$

J

I

n�m

�

W

0

Æ

($

J

)j det($

J

)j

s�(n�m)=2

Æ

�1

B

m

($

J

)

=

X

J2T

+

(m); j

m

�0

tr(�

(J;0)

(A

�

)) tr(�

J

(A

�

0

))q

�jJjs

=

X

J2T

+

(m); j

m

�0

tr(�

(J;0)

(A

�

)
 �

J

(A

�

0

))q

�jJjs

where we let jJ j = j

1

+ � � � + j

m

and we embed Z

m

,! Z

n

by J = (j

1

; � � � ; j

m

) 7! (J; 0) =

(j

1

; � � � ; j

m

; 0; � � � ; 0). We now use the invariant theory fa
ts that

X

J2T

+

(m); j

m

�0; jJj=r

tr(�

(J;0)

(A

�

)
 �

J

(A

�

0

)) = tr(S

r

(A

�


 A

�

0

));

where S

r

(A) is the r

th

-symmetri
 power of the matrix A, and

1

X

r=0

tr(S

r

(A))z

r

= det(I � Az)

�1

for any matrix A. Then we qui
kly arrive at

	(s;W

Æ

;W

0

Æ

) = det(I � q

�s

A

�


 A

�

0

)

�1

=

Y

i;j

(1� �

i

($)�

0

j

($)q

�s

)

�1

a standard Euler fa
tor of degree mn. Sin
e the L-fun
tion 
an
els all poles of the lo
al

integrals, we know at least that det(I � q

�s

A

�


 A

�

0

) divides L(s; � � �

0

)

�1

. Either of the

methods dis
ussed below for the general 
al
ulation of lo
al fa
tors then shows that in fa
t

these are equal.

There is a similar 
al
ulation when n = m and � = �

Æ

is the 
hara
teristi
 fun
tion of the

latti
e o

n

� k

n

. Also, sin
e � unrami�ed implies that its 
ontragredient e� is also unrami�ed,

with

f

W

Æ

as its normalized unrami�ed Whittaker fun
tion, then from the fun
tional equation

we 
an 
on
lude that in this situation we have "(s; � � �

0

;  ) � 1.

Theorem 3.3 If �, �

0

, and  are all unrami�ed, then

L(s; � � �

0

) = det(I � q

�s

A

�


 A

�

0

)

�1

=

(

	(s;W

Æ

;W

0

Æ

) m < n

	(s;W

Æ

;W

0

Æ

;�

Æ

) m = n

and "(s; � � �

0

;  ) � 1.

For future use, let us re
all a 
onsequen
e of this 
al
ulation due to Ja
quet and Shalika

[36℄.

Corollary Suppose � is irredu
ible unitary generi
 admissible (our usual assumptions on

�) and unrami�ed. The the eigenvalues �

i

($) of A

�

all satisfy q

�1=2

< j�

i

($)j < q

1=2

.
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To see this, we apply the above 
al
ulation to the 
ase where �

0

= �� the 
omplex 
onjugate

representation. Then A

�

0

= A

�

, the 
omplex 
onjugate matrix, and we have from the above

det(I � q

�s

A

�


 A

�

)	(s;W

Æ

;W

Æ

;�

Æ

) = 1:

The lo
al integral in this 
ase is absolutely 
onvergent for Re(s) � 1 and so the fa
tor

det(I � q

�s

A

�


 A

�

) 
annot vanish for Re(s) � 1. If �

i

($) is an eigenvalue of A

�

then we

have 1� q

��

j�

i

($)j

2

6= 0 for � � 1. Hen
e j�

i

($)j < q

1=2

. Note that if we apply this to the


ontragredient representation e� as well we 
on
lude that q

�1=2

< j�

i

($)j < q

1=2

.

3.1.4 The super
uspidal 
al
ulation

The other basi
 
ase is when both � and �

0

are super
uspidal. In this 
ase the restri
tion of

W to P

n

orW

0

to P

m

lies in the Kirillov model and is hen
e 
ompa
tly supported mod N . In

the 
ase of m < n we �nd that in our integral we have W evaluated along GL

m

(k) � P

n

(k).

Sin
e W is smooth, and hen
e stabilized by some 
ompa
t open subgroup, we �nd that the

lo
al integral always redu
es to a �nite sum and and hen
e lies in C [q

s

; q

�s

℄. In parti
ular

it is always entire. Thus in this 
ase L(s; � � �

0

) � 1. In the 
ase n = m the 
al
ulation

is a bit more involved and 
an be found in [11, 15℄. In essen
e, in the family of integrals

	(s;W;W

0

;�), if �(0) = 0 then the integral will again redu
e to a �nite sum and hen
e be

entire. If �(0) 6= 0 and if s

0

is a pole of 	(s;W;W

0

;�) then the residue of the pole at s = s

0

will be of the form


�(0)

Z

Z

n

(k) N

n

(k)nGL

n

(k)

W (g)W

0

(g)j det(g)j

s

0

dg

whi
h is the Whittaker form of an invariant pairing between � and �

0


 j det j

s

0

. Thus we

must have s

0

is pure imaginary and e� ' �

0


 j det j

s

0

for the residue to be nonzero. This


ondition is also suÆ
ient.

Theorem 3.4 If � and �

0

are both (unitary) super
uspidal, then L(s; � � �

0

) � 1 if m < n

and if m = n we have

L(s; � � �

0

) =

Y

(1� �q

�s

)

�1

with the produ
t over all � = q

s

0

with e� ' �

0


 j det j

s

0

.

3.1.5 Remarks on the general 
al
ulation

In the other 
ases, we must rely on the Bernstein{Zelevinsky 
lassi�
ation of generi
 represen-

tations of GL

n

(k) [69℄. All generi
 representations 
an be realized as pres
ribed 
onstituents

of representations paraboli
ally indu
ed from super
uspidals. One 
an pro
eed by analyzing

the Whittaker fun
tions of indu
ed representations in terms of Whittaker fun
tions of the

indu
ing data as in [33℄ or by analyzing the poles of the lo
al integrals in terms of quasi

invariant pairings of derivatives of � and �

0

as in [11℄ to 
ompute L(s; � � �

0

) in terms of

L-fun
tions of pairs of super
uspidal representations. We refer you to those papers or [42℄

for the expli
it formulas.
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3.1.6 Multipli
ativity and stability of 
{fa
tors

To 
on
lude this se
tion, let us mention two results on the 
-fa
tors. One is used in the


omputations of L-fa
tors in the general 
ase. This is the multipli
ativity of 
-fa
tors [33℄.

The se
ond is the stability of 
-fa
tors [37℄. Both of these results are ne
essary in appli
ations

of the Converse Theorem to liftings, whi
h we dis
uss in Se
tion 5.

Proposition (Multipli
ativity of 
-fa
tors) If � = Ind(�

1


�

2

), with �

i

and irredu
ible

admissible representation of GL

r

i

(k), then


(s; � � �

0

;  ) = 
(s; �

1

� �

0

;  )
(s; �

2

� �

0

;  )

and similarly for �

0

. Moreover L(s; � � �

0

)

�1

divides [L(s; �

1

� �

0

)L(s; �

2

� �

0

)℄

�1

.

Proposition (Stability of 
-fa
tors) If �

1

and �

2

are two irredu
ible admissible generi


representations of GL

n

(k), having the same 
entral 
hara
ter, then for every suÆ
iently

highly rami�ed 
hara
ter � of GL

1

(k) we have


(s; �

1

� �;  ) = 
(s; �

2

� �;  )

and

L(s; �

1

� �) = L(s; �

2

� �) � 1:

More generally, if in addition �

0

is an irredu
ible generi
 representation of GL

m

(k) then for

all suÆ
iently highly rami�ed 
hara
ters � of GL

1

(k) we have


(s; (�

1


 �)� �

0

;  ) = 
(s; (�

2


 �)� �

0

;  )

and

L(s; (�

1


 �)� �

0

) = L(s; (�

2


 �)� �

0

) � 1:

3.2 The ar
himedean lo
al fa
tors

We now take k to be an ar
himedean lo
al �eld, i.e., k = R or C . We take (�; V

�

) to be

the spa
e of smooth ve
tors in an irredu
ible admissible unitary generi
 representation of

GL

n

(k) and similarly for the representation (�

0

; V

�

0

) of GL

m

(k). We take  a non-trivial


ontinuous additive 
hara
ter of k.

The treatment of the ar
himedean lo
al fa
tors parallels that of the non-ar
himedean

in many ways, but there are some signi�
ant di�eren
es. The major work on these fa
tors

is that of Ja
quet and Shalika in [38℄, whi
h we follow for the most part without further

referen
e, and in the ar
himedean parts of [36℄.

One signi�
ant di�eren
e in the development of the ar
himedean theory is that the lo
al

Langlands 
orresponden
e was already in pla
e when the theory was developed [45℄. The


orresponden
e is very expli
it in terms of the usual Langlands 
lassi�
ation. Thus to � is

asso
iated an n dimensional semi-simple representation � = �(�) of the Weil group W

k

of k

and to �

0

an m-dimensional semi-simple representation �

0

= �(�

0

) of W

k

. Then �(�)
 �(�

0

)
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is an nm dimensional representation of W

k

and to this representation of the Weil group is

atta
hed Artin-Weil L{ and "{fa
tors [65℄, denoted L(s; �
�

0

) and "(s; �
�

0

;  ). In essen
e,

Ja
quet and Shalika de�ne

L(s; � � �

0

) = L(s; �(�)
 �(�

0

)) and "(s; � � �

0

;  ) = "(s; �(�)
 �(�

0

);  )

and then set


(s; � � �

0

;  ) =

"(s; � � �

0

;  )L(1� s; e� � e�

0

)

L(s; � � �

0

)

:

For example, if � is unrami�ed, and hen
e of the form � ' Ind(�

1


 � � � 
 �

n

) with

unrami�ed 
hara
ters of the form �

i

(x) = jxj

r

i

then

L(s; �) = L(s; �(�)) =

n

Y

i=1

�

v

(s+ r

i

)

is a standard ar
himedean Euler fa
tor of degree n, where

�

v

(s) =

(

�

�s=2

�(

s

2

) if k

v

= R

2(2�)

�s

�(s) if k

v

= C

:

They then pro
eed to show that these fun
tions have the expe
ted relation to the lo
al

integrals. Their methods of analyzing the lo
al integrals 	

j

(s;W;W

0

) and 	(s;W;W

0

;�),

de�ned as in the non-ar
himedean 
ase for W 2 W(�;  ), W

0

2 W(�

0

;  

�1

), and � 2 S(k

n

),

are dire
t analogues of those used in [33℄ for the non-ar
himedean 
ase. On
e again, a most

important fa
t is [38, Proposition 2.2℄

Proposition 3.6 Let � be a generi
 representation of GL

n

(k). Then there is a �nite set of

�nite fun
tions X(�) = f�

i

g on A

n

(k), depending only on �, so that for every W 2 W(�;  )

there are S
hwartz fun
tions �

i

2 S(k

n�1

� K

n

) su
h that for all a 2 A

n

(k) with a

n

= 1 we

have

W (nak) =  (n)

X

X(�)

�

i

(a)�

i

(�

1

(a); : : : ; �

n�1

(a); k):

Now the �nite fun
tions are related to the exponents of the representation � and through

the Langlands 
lassi�
ation to the representation �(�) of W

k

. We retain the same 
onver-

gen
e statements as in the non-ar
himedean 
ase [36, I, Proposition 3.17; II, Proposition

2.6℄, [38, Proposition 5.3℄.

Proposition 3.7 The integrals 	

j

(s;W;W

0

) and 	(s;W;W

0

;�) 
onverge absolutely in the

half plane Re(s) � 1 under the unitarity assumption and for Re(s) > 0 if � and �

0

are

tempered.

The meromorphi
 
ontinuation and \bounded denominator" statement in the 
ase of a

non-ar
himedean lo
al �eld is now repla
ed by the following. De�neM(���

0

) to be the spa
e

of all meromorphi
 fun
tions �(s) with the property that if P (s) is a polynomial fun
tion

su
h that P (s)L(s; ���

0

) is holomorphi
 in a verti
al strip S[a; b℄ = fs a � Re(s) � bg then

P (s)�(s) is bounded in S[a; b℄. Note in parti
ular that if � 2 M(� � �

0

) then the quotient

�(s)L(s; � � �

0

)

�1

is entire.
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Theorem 3.5 The integrals 	

j

(s;W;W

0

) or 	(s;W;W

0

;�) extend to meromorphi
 fun
-

tions of s whi
h lie in M(� � �

0

). In parti
ular, the ratios

e

j

(s;W;W

0

) =

	

j

(s;W;W

0

)

L(s; � � �

0

)

or e(s;W;W

0

;�) =

	(s;W;W

0

;�)

L(s; � � �

0

)

are entire and in fa
t are bounded in verti
al strips.

This statement has more 
ontent than just the 
ontinuation and \bounded denominator"

statements in the non-ar
himedean 
ase. Sin
e it pres
ribes the \denominator" to be the L

fa
tor L(s; � � �

0

)

�1

it is bound up with the a
tual 
omputation of the poles of the lo
al

integrals. In fa
t, a signi�
ant part of the paper of Ja
quet and Shalika [38℄ is taken up with

the simultaneous proof of this and the lo
al fun
tional equations:

Theorem 3.6 We have the lo
al fun
tional equations

	

n�m�j�1

(1� s; �(w

n;m

)

f

W;

f

W

0

) = !

0

(�1)

n�1


(s; � � �

0

;  )	

j

(s;W;W

0

)

or

	(1� s;

f

W;

f

W

0

;

^

�) = !

0

(�1)

n�1


(s; � � �

0

;  )	(s;W;W

0

;�):

The one fa
t that we are missing is the statement of \minimality" of the L-fa
tor. That

is, we know that L(s; � � �

0

) is a standard ar
himedean Euler fa
tor (i.e., a produ
t of �-

fun
tions of the standard type) and has the property that the poles of all the lo
al integrals

are 
ontained in the poles of the L-fa
tor, even with multipli
ity. But we have not established

that the L-fa
tor 
annot have extraneous poles. In parti
ular, we do know that we 
an a
hieve

the lo
al L-fun
tion as a �nite linear 
ombination of lo
al integrals.

Towards this end, Ja
quet and Shalika enlarge the allowable spa
e of lo
al integrals.

Let � and �

0

be the Whittaker fun
tionals on V

�

and V

�

0

asso
iated with the Whittaker

modelsW(�;  ) and W(�

0

;  

�1

). Then

^

� = �
�

0

de�nes a 
ontinuous linear fun
tional on

the algebrai
 tensor produ
t V

�


 V

�

0

whi
h extends 
ontinuously to the topologi
al tensor

produ
t V

�
�

0

= V

�

^


V

�

0

, viewed as representations of GL

n

(k)�GL

m

(k).

Before pro
eeding, let us make a few remarks on smooth representations. If (�; V

�

) is the

spa
e of smooth ve
tors in an irredu
ible admissible unitary representation, then the under-

lying Harish-Chandra module is the spa
e of K

n

-�nite ve
tors V

�;K

. V

�

then 
orresponds to

the (Casselman-Walla
h) 
anoni
al 
ompletion of V

�;K

[66℄. The 
ategory of Harish-Chandra

modules is appropriate for the algebrai
 theory of representations, but it is useful to work in

the 
ategory of smooth admissible representations for automorphi
 forms. If in our 
ontext

we take the underlying Harish-Chandra modules V

�;K

and V

�

0

;K

then their algebrai
 tensor

produ
t is an admissible Harish-Chandra module for GL

n

(k) � GL

m

(k). The asso
iated

smooth admissible representation is the 
anoni
al 
ompletion of this tensor produ
t, whi
h

is in fa
t V

�
�

0

, the topologi
al tensor produ
t of the smooth representations � and �

0

. It is

also the spa
e of smooth ve
tors in the unitary tensor produ
t of the unitary representations

asso
iated to � and �

0

. So this 
ompletion is a natural pla
e to work in the 
ategory of

smooth admissible representations.

Now let

W(� 
 �

0

;  ) = fW (g; h) =

^

�(�(g)
 �

0

(h)�)j� 2 V

�
�

0

g:
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Then W(�
�

0

;  ) 
ontains the algebrai
 tensor produ
tW(�;  )
W(�

0

;  

�1

) and is again

equal to the topologi
al tensor produ
t. Now we 
an extend all out lo
al integrals to the

spa
e W(� 
 �

0

;  ) by setting

	

j

(s;W ) =

Z Z

W

0

�

0

�

h

x I

j

I

n�m�j

1

A

; h

1

A

dx j det(h)j

s�(n�m)=2

dh

and

	(s;W;�) =

Z

W (g; g)�(e

n

g)j det(g)j

s

dh

for W 2 W(� 
 �

0

;  ). Sin
e the lo
al integrals are 
ontinuous with respe
t to the topology

on the topologi
al tensor produ
t, all of the above fa
ts remain true, in parti
ular the


onvergen
e statements, the lo
al fun
tional equations, and the fa
t that these integrals

extend to fun
tions in M(� � �

0

).

At this point, let I

j

(�; �

0

) = f	

j

(s;W )jW 2 W(� 
 �

0

)g and let I(�; �

0

) be the span

of the lo
al integrals f	(s;W;�)jW 2 W(� 
 �

0

;  ); � 2 S(k

n

)g. On
e again, in the 
ase

m < n we have that the spa
e I

j

(�; �

0

) is independent of j and we denote it also by I(�; �

0

).

These are still independent of  . So we know from above that I(�; �

0

) � M(� � �

0

). The

remainder of [38℄ is then devoted to showing the following.

Theorem 3.7 I(�; �

0

) =M(� � �

0

).

As a 
onsequen
e of this, we draw the following useful Corollary.

Corollary There is a Whittaker fun
tion W in W(� 
 �

0

;  ) su
h that L(s; � � �

0

) =

	(s;W ) if m < n or �nite 
olle
tionof fun
tions W

i

2 W(� 
 �

0

;  ) and �

i

2 S(k

n

) su
h

that L(s; � � �

0

) =

P

i

	(s;W

i

;�

i

) if m = n.

In the 
ases of m = n � 1 or m = n, Ja
quet and Shalika 
an indeed get the lo
al

L-fun
tion as a �nite linear 
ombination of integrals involving only K-�nite fun
tions in

W(�;  ) and W(�

0

;  

�1

), that is, without going to the 
ompletion of W(�;  )
W(�

0

;  

�1

),

but this has not been published.

As a �nal result, let us note that in [12℄ it is established that the linear fun
tionals

e(s;W ) = 	(s;W )L(s; � � �

0

)

�1

and e(s;W;�) = 	(s;W;�)L(s; � � �

0

)

�1

are 
ontinuous

onW(�
�

0

;  ), uniformly for s in 
ompa
t sets. Sin
e there is a 
hoi
e ofW 2 W(�
�

0

;  )

su
h that e(s;W ) � 1 orW

i

2 W(�
�

0

;  ) and �

i

2 S(k

n

) su
h that

P

e(s;W

i

;�

i

) � 1, as a

result of this 
ontinuity and the fa
t that the algebrai
 tensor produ
tW(�;  )
W(�

0

;  

�1

)

is dense in W(� 
 �

0

;  ) we have the following result.

Proposition 3.8 For any s

0

2 C there are 
hoi
es of W 2 W(�;  ), W

0

2 W(�

0

;  

�1

) and

if ne
essary � su
h that e(s

0

;W;W

0

) 6= 0 or e(s

0

;W;W

0

;�) 6= 0.
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4 Global L-fun
tions

On
e again, we let k be a global �eld, A its ring of adeles, and �x a non-trivial 
ontinuous

additive 
hara
ter  = 
 

v

of A trivial on k.

Let (�; V

�

) be an 
uspidal representation of GL

n

(A ) (see Se
tion 1 for all the implied as-

sumptions in this terminology) and (�

0

; V

�

0

) a 
uspidal representation of GL

m

(A ). Sin
e they

are irredu
ible we have restri
ted tensor produ
t de
ompositions � ' 


0

�

v

and �

0

' 


0

�

0

v

with (�

v

; V

�

v

) and (�

0

v

; V

�

0

v

) irredu
ible admissible smooth generi
 unitary representations of

GL

n

(k

v

) and GL

m

(k

v

) [14, 18℄. Let ! = 


0

!

v

and !

0

= 


0

!

0

v

be their 
entral 
hara
ters.

These are both 
ontinuous 
hara
ters of k

�

nA

�

.

Let S be the �nite set of pla
es of k, 
ontaining the ar
himedean pla
es S

1

, su
h that

for all v =2 S we have that �

v

, �

0

v

, and  

v

are unrami�ed.

For ea
h pla
e v of k we have de�ned the lo
al fa
tors L(s; �

v

� �

0

v

) and "(s; �

v

� �

0

v

;  

v

).

Then we 
an at least formally de�ne

L(s; � � �

0

) =

Y

v

L(s; �

v

� �

0

v

) and "(s; � � �

0

) =

Y

v

"(s; �

v

� �

0

v

;  

v

):

We need to dis
uss 
onvergen
e of these produ
ts. Let us �rst 
onsider the 
onvergen
e of

L(s; ���

0

). For those v =2 S, so �

v

, �

0

v

, and  

v

are unrami�ed, we know that L(s; �

v

��

0

v

) =

det(I � q

�s

v

A

�

v


 A

�

0

v

)

�1

and that the eigenvalues of A

�

v

and A

�

0

v

are all of absolute value

less than q

1=2

v

. Thus the partial (or in
omplete) L-fun
tion

L

S

(s; � � �

0

) =

Y

v=2S

L(s; �

v

� �

0

v

) =

Y

v=2S

det(I � q

�s

A

�

v


 A

�

0

v

)

�1

is absolutely 
onvergent for Re(s) >> 0. Thus the same is true for L(s; � � �

0

).

For the "{fa
tor, we have seen that "(s; �

v

� �

0

v

;  

v

) � 1 for v =2 S so that the produ
t is

in fa
t a �nite produ
t and there is no problem with 
onvergen
e. The fa
t that "(s; �� �

0

)

is independent of  
an either be 
he
ked by analyzing how the lo
al "{fa
tors vary as you

vary  , as is done in [7, Lemma 2.1℄, or it will follow from the global fun
tional equation

presented below.

4.1 The basi
 analyti
 properties

Our �rst goal is to show that these L-fun
tions have ni
e analyti
 properties.

Theorem 4.1 The global L{fun
tions L(s; � � �

0

) are ni
e in the sense that

1. L(s; � � �

0

) has a meromorphi
 
ontinuation to all of C ,

2. the extended fun
tion is bounded in verti
al strips (away from its poles),

3. they satisfy the fun
tional equation

L(s; � � �

0

) = "(s; � � �

0

)L(1� s; e� � e�

0

):
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To do so, we relate the L-fun
tions to the global integrals.

Let us begin with 
ontinuation. In the 
ase m < n for every ' 2 V

�

and '

0

2 V

�

0

we

know the integral I(s;'; '

0

) 
onverges absolutely for all s. From the unfolding in Se
tion

2 and the lo
al 
al
ulation of Se
tion 3 we know that for Re(s) >> 0 and for appropriate


hoi
es of ' and '

0

we have

I(s;'; '

0

) =

Y

v

	

v

(s;W

'

v

;W

'

0

v

)

=

 

Y

v2S

	

v

(s;W

'

v

;W

'

0

v

)

!

L

S

(s; � � �

0

)

=

 

Y

v2S

	

v

(s;W

'

v

;W

'

0

v

)

L(s; �

v

� �

0

v

)

!

L(s; � � �

0

)

=

 

Y

v2S

e

v

(s;W

'

v

;W

'

0

v

)

!

L(s; � � �

0

)

We know that ea
h e

v

(s;W

v

;W

0

v

) is entire. Hen
e L(s; � � �

0

) has a meromorphi
 
ontinua-

tion. If m = n then for appropriate ' 2 V

�

, '

0

2 V

�

0

, and � 2 S(A

n

) we again have

I(s;'; '

0

;�) =

 

Y

v2S

e

v

(s;W

'

v

;W

0

'

0

v

;�

v

)

!

L(s; � � �

0

):

On
e again, sin
e ea
h e

v

(s;W

v

;W

0

v

;�

v

) is entire, L(s; � � �

0

) has a meromorphi
 
ontinua-

tion.

Let us next turn to the fun
tional equation. This will follow from the fun
tional equation

for the global integrals and the lo
al fun
tional equations. We will 
onsider only the 
ase

where m < n sin
e the other 
ase is entirely analogous. The fun
tional equation for the

global integrals is simply

I(s;'; '

0

) =

~

I(1� s; e'; e'

0

):

On
e again we have for appropriate ' and '

0

I(s;'; '

0

) =

 

Y

v2S

e

v

(s;W

'

v

;W

0

'

0

v

)

!

L(s; � � �

0

)

while on the other side

~

I(1� s; e'; e'

0

) =

 

Y

v2S

~e

v

(1� s; �(w

n;m

)

f

W

'

v

;

f

W

0

'

0

v

)

!

L(1� s; e� � e�

0

):
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However, by the lo
al fun
tional equations, for ea
h v 2 S we have

~e

v

(1� s; �(w

n;m

)

f

W

v

;

f

W

0

v

) =

e

	(1� s; �(w

n;m

)

f

W

v

;

f

W

0

v

)

L(1� s; e� � e�

0

)

= !

0

v

(�1)

n�1

"(s; �

v

� �

0

v

;  

v

)

	(s;W

v

;W

0

v

)

L(s; � � �

0

)

= !

0

v

(�1)

n�1

"(s; �

v

� �

0

v

;  

v

)e

v

(s;W

v

;W

0

v

)

Combining these, we have

L(s; � � �

0

) =

 

Y

v2S

!

0

v

(�1)

n�1

"(s; �

v

� �

0

v

;  

v

)

!

L(1� s; e� � e�

0

):

Now, for v =2 S we know that �

0

v

is unrami�ed, so !

0

v

(�1) = 1, and also that "(s; �

v

��

0

v

;  

v

) �

1. Therefore

Y

v2S

!

0

v

(�1)

n�1

"(s; �

v

� �

0

v

;  

v

) =

Y

v

!

0

v

(�1)

n�1

"(s; �

v

� �

0

v

;  

v

)

= !

0

(�1)

n�1

"(s; � � �

0

)

= "(s; � � �

0

)

and we indeed have

L(s; � � �

0

) = "(s; � � �

0

)L(1� s; e� � e�

0

):

Note that this implies that "(s; � � �

0

) is independent of  as well.

Let us now turn to the boundedness in verti
al strips. For the global integrals I(s;'; '

0

)

or I(s;'; ';�) this simply follows from the absolute 
onvergen
e. For the L-fun
tion itself,

the paradigm is the following. For every �nite pla
e v 2 S we know that there is a 
hoi
e of

W

v;i

, W

0

v;i

, and �

v;i

if ne
essary su
h that

L(s; �

v

� �

0

v

) =

X

	(s;W

v;i

;W

0

v

0

i

) or L(s; �

v

� �

0

v

) =

X

	(s;W

v;i

;W

0

v

0

i

;�

v;i

):

If m = n � 1 or m = n then by the unpublished work of Ja
quet and Shalika mentioned

toward the end of Se
tion 3 we know that we have similar statements for v 2 S

1

. Hen
e if

m = n� 1 or m = n there are global 
hoi
es '

i

, '

0

i

, and if ne
essary �

i

su
h that

L(s; � � �

0

) =

X

I(s;'

i

; '

0

i

) or L(s; � � �

0

) =

X

I(s;'

i

; '

0

i

;�

i

):

Then the boundedness in verti
al strips for the L-fun
tions follows from that of the global

integrals.

However, if m < n � 1 then all we know at those v 2 S

1

is that there is a fun
tion

W

v

2 W(�

v


 �

0

v

;  

v

) = W(�

v

;  

v

)

^


W(�

0

v

;  

�1

v

) or a �nite 
olle
tion of su
h fun
tions W

v;i

and of �

v;i

su
h that

L(s; �

v

� �

0

v

) = I(s;W

v

) or L(s; �

v

� �

0

v

) =

X

I(s;W

v;i

;�

v;i

):
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To make the above paradigm work for m < n � 1 we would need to rework the theory of

global Eulerian integrals for 
usp forms in V

�

^


V

�

0

. This is naturally the spa
e of smooth

ve
tors in an irredu
ible unitary 
uspidal representation of GL

n

(A )�GL

m

(A ). So we would

need extend the global theory of integrals parallel to Ja
quet and Shalika's extension of the

lo
al integrals in the ar
himedean theory. There seems to be no obstru
tion to 
arrying this

out, and then we obtain boundedness in verti
al strips for L(s; � � �

0

) in general.

We should point out that if one approa
hes these L-fun
tion by the method of 
onstant

terms and Fourier 
oeÆ
ients of Eisenstein series, then Gelbart and Shahidi have shown a

wide 
lass of automorphi
 L-fun
tions, in
luding ours, to be bounded in verti
al strips [17℄.

4.2 Poles of L-fun
tions

Let us determine where the global L-fun
tions 
an have poles. The poles of the L-fun
tions

will be related to the poles of the global integrals. Re
all from Se
tion 2 that in the 
ase

of m < n we have that the global integrals I(s;'; '

0

) are entire and that when m = n then

I(s;'; '

0

;�) 
an have at most simple poles and they o

ur at s = �i� and s = 1 � i�

for � real when � ' e�

0


 j det j

i�

. As we have noted above, the global integrals and global

L-fun
tions are related, for appropriate ', '

0

, and �, by

I(s;'; '

0

) =

 

Y

v2S

e

v

(s;W

'

v

;W

0

'

0

v

)

!

L(s; � � �

0

)

or

I(s;'; '

0

;�) =

 

Y

v2S

e

v

(s;W

'

v

;W

0

'

0

v

;�

v

)

!

L(s; � � �

0

):

On the other hand, we have seen that for any s

0

2 C and any v there is a 
hoi
e of lo
alW

v

,

W

0

v

, and �

v

su
h that the lo
al fa
tors e

v

(s

0

;W

v

;W

0

v

) 6= 0 or e

v

(s

0

;W

v

;W

0

v

;�

v

) 6= 0. So as

we vary ', '

0

and � at the pla
es v 2 S we see that division by these fa
tors 
an introdu
e

no extraneous poles in L(s; �� �

0

), that is, in keeping with the lo
al 
hara
terization of the

L-fa
tor in terms of poles of lo
al integrals, globally the poles of L(s; ���

0

) are pre
isely the

poles of the family of global integrals fI(s;'; '

0

)g or fI(s;'; '

0

;�)g. Hen
e from Theorems

2.1 and 2.2 we have.

Theorem 4.2 If m < n then L(s; �� �

0

) is entire. If m = n, then L(s; �� �

0

) has at most

simple poles and they o

ur i� � ' e�

0


 j det j

i�

with � real and are then at s = �i� and

s = 1� i�.

If we apply this with �

0

= e� we obtain the following useful 
orollary.

Corollary L(s; � � e�) has simple poles at s = 0 and s = 1.

4.3 Strong Multipli
ity One

Let us return to the Strong Multipli
ity One Theorem for 
uspidal representations. First,

re
all the statement:
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Theorem (Strong Multipli
ity One) Let (�; V

�

) and (�

0

; V

�

0

) be two 
uspidal represen-

tations of GL

n

(A ). Suppose there is a �nite set of pla
es S su
h that for all v =2 S we have

�

v

' �

0

v

. Then � = �

0

.

We will now present Ja
quet and Shalika's proof of this statement via L-fun
tions [36℄. First

note the following observation, whi
h follows from our analysis of the lo
ation of the poles

of the L-fun
tions.

Observation For � and �

0


uspidal representations of GL

n

(A ), L(s; � � e�

0

) has a pole at

s = 1 i� � ' �

0

.

Thus the L-fun
tion gives us an analyti
 method of testing when two 
uspidal representations

are isomorphi
, and so by the Multipli
ity One Theorem, the same.

Proof: If we take � and �

0

as in the statement of Strong Multipli
ity One, we have that

�

v

' �

0

v

for v =2 S and hen
e

L

S

(s; � � e�) =

Y

v=2S

L(s; �

v

� e�

v

) =

Y

v=2S

L(s; �

v

� e�

0

v

) = L

S

(s; � � e�

0

)

Sin
e the lo
al L-fa
tors never vanish and for unitary representations they have no poles in

Re(s) � 1 (sin
e the lo
al integrals have no poles in this region) we see that for s = 1 that

L(s; � � e�

0

) has a pole at s = 1 i� L

S

(s; � � e�

0

) does. Hen
e we have that sin
e L(s; � � e�)

has a pole at s = 1, so does L

S

(s; � � e�). But L

S

(s; � � e�) = L

S

(s; � � e�

0

), so that both

L

S

(s; � � e�

0

) and then L(s; � � e�

0

) have poles at s = 1. But then the L-fun
tion 
riterion

above gives that � ' �

0

. Now apply Multipli
ity One. �

In fa
t, Ja
quet and Shalika push this method mu
h further. If � is an irredu
ible

automorphi
 representation of GL

n

(A ), but not ne
essarily 
uspidal, then it is a theorem

of Langlands [44℄ that there are 
uspidal representations, say �

1

; : : : ; �

r

of GL

n

1

; : : : ;GL

n

r

with n = n

1

+ � � � + n

r

, su
h that � is a 
onstituent of Ind(�

1


 � � � 
 �

r

). Similarly, �

0

is

a 
onstituent of Ind(�

0

1


 � � � 
 �

0

r

0

). Then the generalized version of the Strong Multipli
ity

One theorem that Ja
quet and Shalika establish in [36℄ is the following.

Theorem (Generalized Strong Multipli
ity One) Given � and �

0

irredu
ible auto-

morphi
 representations of GL

n

(A ) as above, suppose that there is a �nite set of pla
es

S su
h that �

v

' �

0

v

for all v =2 S. Then r = r

0

and there is a permutation � of the set

f1; : : : ; rg su
h that n

i

= n

0

�(i)

and �

i

= �

0

�(i)

.

Note, the 
uspidal representations �

i

and �

0

i

need not be unitary in this statement.

4.4 Non-vanishing results

Of interest for questions from analyti
 number theory, for example questions of equidistribu-

tion, are results on the non-vanishing of L-fun
tions. The fundamental non-vanishing result

for GL

n

is the following theorem of Ja
quet and Shalika [35℄ and Shahidi [56, 57℄.
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Theorem 4.3 Let � and �

0

be 
uspidal representations of GL

n

(A ) and GL

m

(A ). Then the

L-fun
tion L(s; � � �

0

) is non-vanishing for Re(s) � 1.

The proof of non-vanishing for Re(s) > 1 is in keeping with the spirit of these notes [36, I,

Theorem 5.3℄. Sin
e the lo
al L-fun
tions are never zero, to establish the non-vanishing of

the Euler produ
t for Re(s) > 1 it suÆ
es to show that the Euler produ
t is absolutely


onvergent for Re(s) > 1, and for this it is suÆ
ient to work with the in
omplete L-fun
tion

L

S

(s; � � �

0

) where S is as at the beginning of this Se
tion. Then we 
an write

L

S

(s; � � �

0

) =

Y

v=2S

L(s; �

v

� �

0

v

) =

Y

v=2S

det(I � q

�s

v

A

�

v


 A

�

0

v

)

�1

with absolute 
onvergen
e for Re(s) >> 0.

Re
all that an in�nite produ
t

Q

(1+a

n

) is absolutely i� the asso
iated series

P

log(1+a

n

)

is absolutely 
onvergent.

Let us write

A

�

v

=

0

B

�

�

v;1

.

.

.

�

v;n

1

C

A

and A

�

0

v

=

0

B

�

�

0

v;1

.

.

.

�

0

v;m

1

C

A

:

We have seen that j�

v;i

j < q

1=2

v

and j�

0

v;j

j < q

1=2

v

. Then

logL(s; �

v

� �

0

v

) = �

X

i;j

log(1� �

v;i

�

0

v;j

q

�s

v

) =

X

i;j

1

X

d=1

(�

v;i

�

0

v;j

)

d

dq

ds

v

=

1

X

d=1

tr(A

d

�

v

) tr(A

d

�

0

v

)

dq

ds

v

with the sum absolutely 
onvergent for Re(s) >> 0. Then, still for Re(s) >> 0,

log(L

S

(s; � � �

0

)) =

X

v=2S

1

X

d=1

tr(A

d

�

v

) tr(A

d

�

0

v

)

dq

ds

v

:

If we apply this to �

0

= � = e� we �nd

log(L

S

(s; � � �)) =

X

v=2S

1

X

d=1

j tr(A

d

�

v

)j

2

dq

ds

v

whi
h is a Diri
hlet series with non-negative 
oeÆ
ients. By Landau's Lemma this will be

absolutely 
onvergent up to the its �rst pole, whi
h we know is at s = 1. Hen
e this series,

and the asso
iated Euler produ
t L(s; � � e�), is absolutely 
onvergent for Re(s) > 1.

An appli
ation of the Cau
hy{S
hwatrz inequality then implies that the series

log(L

S

(s; � � �

0

)) =

X

v=2S

1

X

d=1

tr(A

d

�

v

) tr(A

d

�

0

v

)

dq

ds

v

is also absolutely 
onvergent for Re(s) > 1. Thus L(s; � � �

0

) is absolutely 
onvergent and

hen
e non-vanishing for Re(s) > 1.

To obtain the non-vanishing on the line Re(s) = 1 requires the te
hnique of analyzing

L-fun
tions via their o

urren
e in the 
onstant terms and Fourier 
oeÆ
ients of Eisenstein

series, whi
h we have not dis
ussed. They 
an be found in the referen
es [35℄ and [56, 57℄

mentioned above.
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4.5 The Generalized Ramanujan Conje
ture (GRC)

The 
urrent version of the GRC is a 
onje
ture about the stru
ture of 
uspidal representa-

tions.

Conje
ture (GRC) Let � be a (unitary) 
uspidal representation of GL

n

(A ) with de
om-

position � ' 


0

�

v

. Then the lo
al 
omponents �

v

are tempered representations.

However, it has an interesting interpretation in terms of L-fun
tions whi
h is more in keep-

ing with the origins of the 
onje
ture. If � is 
uspidal, then at every �nite pla
e v where �

v

is unrami�ed we have asso
iated a semisimple 
onjuga
y 
lass, say A

�

v

=

0

B

�

�

v;1

.

.

.

�

v;n

1

C

A

so that

L(s; �

v

) = det(I � q

�s

v

A

�

v

)

�1

=

n

Y

i=1

(1� �

v;i

q

�s

v

)

�1

:

If v is an ar
himedean pla
e where �

v

is unrami�ed, then we 
an similarly write

L(s; �) =

n

Y

i=1

�

v

(s+ �

v;i

)

where

�

v

(s) =

(

�

�s=2

�(

s

2

) if k

v

' R

2(2�)

�s

�(s) if k

v

' C

:

Then the statement of the GRC in these terms is

Conje
ture (GRC for L-fun
tions) If � is a 
uspidal representation of GL

n

(A ) and if

v is a pla
e where �

v

is unrami�ed, then j�

v;i

j = 1 for v non-ar
himedean and Re(�

v;i

) = 0

for v ar
himedean.

Note that by in
luding the ar
himedean pla
es, this 
onje
ture en
ompasses not only

the 
lassi
al Ramanujan 
onje
tures but also the various versions of the Selberg eigenvalue


onje
ture [27℄.

Re
all that by the Corollary to Theorem 3.3 we have the bounds q

�1=2

v

< j�

v;i

j < q

1=2

v

for

v non-ar
himedean, and a similar lo
al analysis for v ar
himedean would give jRe(�

v;i

)j <

1

2

.

The best bound for general GL

n

is due to Luo, Rudni
k, and Sarnak [46℄. They are the

uniform bounds

q

�(

1

2

�

1

n

2

+1

)

v

� j�

v;i

j � q

1

2

�

1

n

2

+1

v

if v is non-ar
himedean

and

jRe(�

v;i

)j �

1

2

�

1

n

2

+ 1

for v ar
himedean:

Their te
hniques are global and rely on the theory of Rankin{Selberg L-fun
tions as presented

here, a te
hnique of persisten
e of zeros in families of L-fun
tions, and a positivity argument.
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For GL

2

there has been mu
h re
ent progress. The best general estimates I am aware of

at present are due to Kim and Shahidi [41℄, who use the holomorphy of the symmetri
 ninth

power L-fun
tion for Re(s) > 1 to obtain

q

�

1

9

v

< j�

v;i

j < q

1

9

v

for i = 1; 2, and v non-ar
himedean,

and Kim and Sarnak, who obtain the analogous estimate for v ar
himedean (with possible

equality) in the appendix to [39℄.

For some appli
ations, the notion of weakly Ramanujan [8℄ 
an repla
e knowing the full

GRC.

De�nition A 
uspidal representation � of GL

n

(A ) is 
alled weakly Ramanujan if for every

� > 0 there is a 
onstant 


�

> 0 and an in�nite sequen
e of pla
es fv

m

g with the property

that ea
h �

v

m

is unrami�ed and the Satake parameters �

v

m

;i

satisfy




�1

�

q

��

v

m

< j�

v

m

;i

j < 


�

q

�

v

m

:

For example, if we knew that all 
uspidal representations on GL

n

(A ) were weakly Ra-

manujan, then we would know that under Langlands liftings between general linear groups,

the property of o

urren
e in the spe
tral de
omposition is preserved [8℄.

For n = 2; 3 our te
hniques let us show the following.

Proposition 4.1 For n = 2 or n = 3 all 
uspidal representations are weakly Ramanujan.

Proof: First, let � be a 
uspidal representation or GL

n

(A ). Re
all that from the absolute


onvergen
e of the Euler produ
t for L(s; � � �) we know that the series

X

v=2S

X

d

j tr(A

d

�

v

)j

2

dq

ds

v

is absolutely 
onvergent for Re(s) > 1, so that in parti
ular we have that

X

v=2S

j tr(A

�

v

)j

2

q

s

v

is absolutely 
onvergent for Re(s) > 1. Thus, for a set of pla
es of positive density, we

have the estimate j tr(A

�

v

)j

2

< q

�

v

for ea
h �. Sin
e A

�

v

= A

�1

�

v

for 
omponents of 
uspidal

representations, we have the same estimate for j tr(A

�1

�

v

)j.

In the 
ase of n = 2 and n = 3, these estimates and the fa
t that j detA

�

v

j = j!

v

($

v

)j = 1

give us estimates on the 
oeÆ
ients of the 
hara
teristi
 polynomial for A

�

v

. For example,

if n = 3 and the 
hara
teristi
 polynomial of A

�

v

is X

3

+ aX

2

+ bX + 
 then we know

jaj = j tr(A

�

v

)j < q

�=2

v

, jbj = j tr(A

�1

�

v

) det(A

�

v

)j < q

�=2

v

, and j
j = j det(A

�

v

)j = 1. Then an

appli
ation of Rou
he's theorem gives that the roots of this polynomial all lie in the 
ir
le

of radius q

�

v

as long as q

v

> 3. Applying this to both A

�

v

and A

�1

�

v

we �nd that for our set

primes of positive density above we have the estimate q

��

v

< j�

v

m

;i

j < q

�

v

. Thus we �nd that

for n = 2; 3 
uspidal representations of GL

n

are weakly Ramanujan. �
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4.6 The Generalized Riemann Hypothesis (GRH)

This is one of the most important 
onje
tures in the analyti
 theory of L-fun
tions. Simply

stated, it is

Conje
ture (GRH) For any 
uspidal representation �, all the zeros of the L-fun
tion

L(s; �) lie on the line Re(s) =

1

2

.

Even in the simplest 
ase of n = 1 and � = 1 the trivial representation this redu
es to the

Riemann hypothesis for the Riemann zeta fun
tion!

For an interesting survey on these and other 
onje
tures on L-fun
tions and their relation

to number theoreti
 problems, we refer the reader to the survey of Iwanie
 and Sarnak [27℄.

5 Converse Theorems

Let us return �rst to He
ke. Re
all that to a modular form

f(�) =

1

X

n�1

a

n

e

2�in�

for say SL

2

(Z) He
ke atta
hed an L fun
tion L(s; f) and they were related via the Mellin

transform

�(s; f) = (2�)

�s

�(s)L(s; f) =

Z

1

0

f(iy)y

s

d

�

y

and derived the fun
tional equation for L(s; f) from the modular transformation law for f(�)

under the modular transformation law for the transformation � 7! �1=� . In his fundamental

paper [24℄ he inverted this pro
ess by taking a Diri
hlet series

D(s) =

1

X

n=1

a

n

n

s

and assuming that it 
onverged in a half plane, had an entire 
ontinuation to a fun
tion

of �nite order, and satis�ed the same fun
tional equation as the L-fun
tion of a modular

form of weight k, then he 
ould a
tually re
onstru
t a modular form from D(s) by Mellin

inversion

f(iy) =

X

i

a

n

e

�2�ny

=

1

2�i

Z

2+i1

2�i1

(2�)

�s

�(s)D(s)y

s

ds

and obtain the modular transformation law for f(�) under � 7! �1=� from the fun
tional

equation for D(s) under s 7! k � s. This is He
ke's Converse Theorem.

In this Se
tion we will present some analogues of He
ke's theorem in the 
ontext of L-

fun
tions for GL

n

. Surprisingly, the te
hnique is exa
tly the same as He
ke's, i.e., inverting

the integral representation. This was �rst done in the 
ontext of automorphi
 representation

for GL

2

by Ja
quet and Langlands [30℄ and then extended and signi�
antly strengthened for

GL

3

by Ja
quet, Piatetski-Shapiro, and Shalika [31℄. For a more extensive bibliography and

history, see [10℄.

This se
tion is taken mainly from our survey [10℄. Further details 
an be found in [7, 9℄.



45

5.1 The results

On
e again, let k be a global �eld, A its adele ring, and  a �xed non-trivial 
ontinuous

additive 
hara
ter of A whi
h is trivial on k. We will take n � 3 to be an integer.

To state these Converse Theorems, we begin with an irredu
ible admissible representation

� of GL

n

(A ). In keeping with the 
onventions of these notes, we will assume that � is unitary

and generi
, but this is not ne
essary. It has a de
omposition � = 


0

�

v

, where �

v

is an

irredu
ible admissible generi
 representation of GL

n

(k

v

). By the lo
al theory of Se
tion 3,

to ea
h �

v

is asso
iated a lo
al L-fun
tion L(s;�

v

) and a lo
al "-fa
tor "(s;�

v

;  

v

). Hen
e

formally we 
an form

L(s;�) =

Y

v

L(s;�

v

) and "(s;�;  ) =

Y

v

"(s;�

v

;  

v

):

We will always assume the following two things about �:

1. L(s;�) 
onverges in some half plane Re(s) >> 0,

2. the 
entral 
hara
ter !

�

of � is automorphi
, that is, invariant under k

�

.

Under these assumptions, "(s;�;  ) = "(s;�) is independent of our 
hoi
e of  [7℄.

Our Converse Theorems will involve twists by 
uspidal automorphi
 representations

of GL

m

(A ) for 
ertain m. For 
onvenien
e, let us set A(m) to be the set of automor-

phi
 representations of GL

m

(A ), A

0

(m) the set of 
uspidal representations of GL

m

(A ), and

T (m) =

m

a

d=1

A

0

(d).

Let �

0

= 


0

�

0

v

be a 
uspidal representation of GL

m

(A ) with m < n. Then again we 
an

formally de�ne

L(s;�� �

0

) =

Y

v

L(s;�

v

� �

0

v

) and "(s;�� �

0

) =

Y

v

"(s;�

v

� �

0

v

;  

v

)

sin
e again the lo
al fa
tors make sense whether � is automorphi
 or not. A 
onsequen
e

of (1) and (2) above and the 
uspidality of �

0

is that both L(s;� � �

0

) and L(s;

e

� �

e

�

0

)


onverge absolutely for Re(s) >> 0, where

e

� and

e

�

0

are the 
ontragredient representations,

and that "(s;�� �

0

) is independent of the 
hoi
e of  .

We say that L(s;�� �

0

) is ni
e if it satis�es the same analyti
 properties it would if �

were 
uspidal, i.e.,

1. L(s;�� �

0

) and L(s;

e

��

e

�

0

) have analyti
 
ontinuations to entire fun
tions of s,

2. these entire 
ontinuations are bounded in verti
al strips of �nite width,

3. they satisfy the standard fun
tional equation

L(s;�� �

0

) = "(s;�� �

0

)L(1� s;

e

��

e

�

0

):

The basi
 Converse Theorem for GL

n

is the following.
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Theorem 5.1 Let � be an irredu
ible admissible representation of GL

n

(A ) as above. Sup-

pose that L(s;� � �

0

) is ni
e for all �

0

2 T (n � 1). Then � is a 
uspidal automorphi


representation.

In this theorem we twist by the maximal amount and obtain the strongest possible


on
lusion about �. The proof of this theorem essentially follows that of He
ke [24℄ and

Weil [67℄ and Ja
quet{Langlands [30℄. It is of 
ourse valid for n = 2 as well.

For appli
ations, it is desirable to twist by as little as possible. There are essentially two

ways to restri
t the twisting. One is to restri
t the rank of the groups that the twisting

representations live on. The other is to restri
t rami�
ation.

When we restri
t the rank of our twists, we 
an obtain the following result.

Theorem 5.2 Let � be an irredu
ible admissible representation of GL

n

(A ) as above. Sup-

pose that L(s;� � �

0

) is ni
e for all �

0

2 T (n � 2). Then � is a 
uspidal automorphi


representation.

This result is stronger than Theorem 5.1, but its proof is a bit more deli
ate.

The theorem along these lines that is most useful for appli
ations is one in whi
h we also

restri
t the rami�
ation at a �nite number of pla
es. Let us �x a �nite set of S of �nite pla
es

and let T

S

(m) denote the subset of T (m) 
onsisting of representations that are unrami�ed

at all pla
es v 2 S.

Theorem 5.3 Let � be an irredu
ible admissible representation of GL

n

(A ) as above. Let S

be a �nite set of �nite pla
es. Suppose that L(s;�� �

0

) is ni
e for all �

0

2 T

S

(n� 2). Then

� is quasi-automorphi
 in the sense that there is an automorphi
 representation �

0

su
h that

�

v

' �

0

v

for all v =2 S.

Note that as soon as we restri
t the rami�
ation of our twisting representations we lose

information about � at those pla
es. In appli
ations we usually 
hoose S to 
ontain the set

of �nite pla
es v where �

v

is rami�ed.

The se
ond way to restri
t our twists is to restri
t the rami�
ation at all but a �nite

number of pla
es. Now �x a non-empty �nite set of pla
es S whi
h in the 
ase of a number

�eld 
ontains the set S

1

of all ar
himedean pla
es. Let T

S

(m) denote the subset 
onsisting

of all representations �

0

in T (m) whi
h are unrami�ed for all v =2 S. Note that we are pla
ing

a grave restri
tion on the rami�
ation of these representations.

Theorem 5.4 Let � be an irredu
ible admissible representation of GL

n

(A ) as above. Let

S be a non-empty �nite set of pla
es, 
ontaining S

1

, su
h that the 
lass number of the ring

o

S

of S-integers is one. Suppose that L(s;� � �

0

) is ni
e for all �

0

2 T

S

(n � 1). Then �

is quasi-automorphi
 in the sense that there is an automorphi
 representation �

0

su
h that

�

v

' �

0

v

for all v 2 S and all v =2 S su
h that both �

v

and �

0

v

are unrami�ed.

There are several things to note here. First, there is a 
lass number restri
tion. However,

if k = Q then we may take S = S

1

and we have a Converse Theorem with \level 1" twists.

As a pra
ti
al 
onsideration, if we let S

�

be the set of �nite pla
es v where �

v

is rami�ed,

then for appli
ations we usually take S and S

�

to be disjoint. On
e again, we are losing all
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information at those pla
es v =2 S where we have restri
ted the rami�
ation unless �

v

was

already unrami�ed there.

The proof of Theorem 5.1 essentially follows the lead of He
ke, Weil, and Ja
quet{

Langlands. It is based on the integral representations of L-fun
tions, Fourier expansions,

Mellin inversion, and �nally a use of the weak form of Langlands spe
tral theory. For

Theorems 5.2, 5.3, and 5.4, where we have restri
ted our twists, we must impose 
ertain

lo
al 
onditions to 
ompensate for our limited twists. For Theorem 5.2 and 5.3 there are a

�nite number of lo
al 
onditions and for Theorem 5.4 an in�nite number of lo
al 
onditions.

We must then work around these by using results on generation of 
ongruen
e subgroups

and either weak or strong approximation.

5.2 Inverting the integral representation

Let � be as above and let � 2 V

�

be a de
omposable ve
tor in the spa
e V

�

of �. Sin
e � is

generi
, then �xing lo
al Whittaker models W(�

v

;  

v

) at all pla
es, 
ompatibly normalized

at the unrami�ed pla
es, we 
an asso
iate to � a non-zero fun
tion W

�

(g) =

Q

W

�

v

(g

v

)

on GL

n

(A ) whi
h transforms by the global 
hara
ter  under left translation by N

n

(A ),

i.e., W

�

(ng) =  (n)W

�

(g). Sin
e  is trivial on rational points, we see that W

�

(g) is left

invariant under N

n

(k). We would like to use W

�

to 
onstru
t an embedding of V

�

into the

spa
e of (smooth) automorphi
 forms on GL

n

(A ). The simplest idea is to average W

�

over

N

n

(k)nGL

n

(k), but this will not be 
onvergent. However, if we average over the rational

points of the miraboli
 P = P

n

then the sum

U

�

(g) =

X

N

n

(k)nP(k)

W

�

(pg)

is absolutely 
onvergent. For the relevant growth properties of U

�

see [7℄. Sin
e � is assumed

to have automorphi
 
entral 
hara
ter, we see that U

�

(g) is left invariant under both P(k)

and the 
enter Z

n

(k).

Suppose now that we know that L(s;� � �

0

) is ni
e for all �

0

2 T (m). Then we will

hope to obtain the remaining invarian
e of U

�

from the GL

n

�GL

m

fun
tional equation by

inverting the integral representation for L(s;� � �

0

). With this in mind, let Q = Q

m

be

the miraboli
 subgroup of GL

n

whi
h stabilizes the standard unit ve
tor

t

e

m+1

, that is the


olumn ve
tor all of whose entries are 0 ex
ept the (m + 1)

th

, whi
h is 1. Note that if

m = n� 1 then Q is nothing more than the opposite miraboli
 P =

t

P

�1

to P. If we let �

m

be the permutation matrix in GL

n

(k) given by

�

m

=

0

�

1

I

m

I

n�m�1

1

A

then Q

m

= �

�1

m

�

n�1

P�

�1

n�1

�

m

is a 
onjugate of P and for any m we have that P(k) and Q(k)

generate all of GL

n

(k). So now set

V

�

(g) =

X

N

0

(k)nQ(k)

W

�

(�

m

qg)
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n

where N

0

= �

�1

m

N

n

�

m

� Q. This sum is again absolutely 
onvergent and is invariant on the

left by Q(k) and Z(k). Thus, to embed � into the spa
e of automorphi
 forms it suÆ
es to

show U

�

= V

�

, for the we get invarian
e of U

�

under all of GL

n

(k). It is this that we will

attempt to do using the integral representations.

Now let (�

0

; V

�

0

) be an irredu
ible subrepresentation of the spa
e of automorphi
 forms

on GL

m

(A ) and assume '

0

2 V

�

0

is also fa
torizable. Let

I(s;U

�

; '

0

) =

Z

GL

m

(k)nGL

m

(A )

P

n

m

U

�

�

h

1

�

'

0

(h)j det(h)j

s�1=2

dh:

This integral is always absolutely 
onvergent for Re(s) >> 0, and for all s if �

0

is 
uspidal.

As with the usual integral representation we have that this unfolds into the Euler produ
t

I(s;U

�

; '

0

) =

Z

N

m

(A )n GL

m

(A )

W

�

�

h 0

0 I

n�m

�

W

0

'

0

(h)j det(h)j

s�(n�m)=2

dh

=

Y

v

Z

N

m

(k

v

)nGL

m

(k

v

)

W

�

v

�

h

v

0

0 I

n�m

�

W

0

'

0

v

(h

v

)j det(h

v

)j

s�(n�m)=2

v

dh

v

=

Y

v

	

v

(s;W

�

v

;W

0

'

0

v

):

Note that unless �

0

is generi
, this integral vanishes.

Assume �rst that �

0

is 
uspidal. Then from the lo
al theory of L-fun
tions from Se
tion

3, for almost all �nite pla
es we have 	

v

(s;W

�

v

;W

0

'

0

v

) = L(s;�

v

� �

0

v

) and for the other

pla
es 	

v

(s;W

�

v

;W

0

'

0

v

) = e

v

(s;W

�

v

;W

0

'

0

v

)L(s;�

v

� �

0

v

) with the e

v

(s;W

�

v

;W

0

'

0

v

) entire and

bounded in verti
al strips. So in this 
ase we have I(s;U

�

; '

0

) = e(s)L(s;� � �

0

) with e(s)

entire and bounded in verti
al strips. Sin
e L(s; � � �

0

) is assumed ni
e we may 
on
lude

that I(s;U

�

; '

0

) has an analyti
 
ontinuation to an entire fun
tion whi
h is bounded in

verti
al strips. When �

0

is not 
uspidal, it is a subrepresentation of a representation that

is indu
ed from (possibly non-unitary) 
uspidal representations �

i

of GL

r

i

(A ) for r

i

< m

with

P

r

i

= m and is in fa
t, if our integral doesn't vanish, the unique generi
 
onstituent

of this indu
ed representation. Then we 
an make a similar argument using this indu
ed

representation and the fa
t that the L(s;� � �

i

) are ni
e to again 
on
lude that for all �

0

,

I(s;U

�

; '

0

) = e(s)L(s;�� �

0

) = e

0

(s)

Q

L(s;�� �

i

) is entire and bounded in verti
al strips.

(See [7℄ for more details on this point.)

Similarly, 
onsider I(s;V

�

; '

0

) for '

0

2 V

�

0

with �

0

an irredu
ible subrepresentation of the

spa
e of automorphi
 forms on GL

m

(A ), still with

I(s;V

�

; '

0

) =

Z

GL

m

(k)nGL

m

(A )

P

n

m

V

�

�

h

1

�

'

0

(h)j det(h)j

s�1=2

dh:

Now this integral 
onverges for Re(s) << 0. However, when we unfold, we �nd

I(s;V

�

; '

0

) =

Y

e

	

v

(1� s; �(w

n;m

)

f

W

�

v

;

f

W

0

'

0

v

) = ~e(1� s)L(1� s;

e

��

e

�

0

)

as above. Thus I(s;V

�

; '

0

) also has an analyti
 
ontinuation to an entire fun
tion of s whi
h

is bounded in verti
al strips.
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Now, utilizing the assumed global fun
tional equation for L(s;�� �

0

) in the 
ase where

�

0

is 
uspidal, or for the L(s;� � �

i

) in the 
ase �

0

is not 
uspidal, as well as the lo
al

fun
tional equations at v 2 S

1

[ S

�

[ S

�

0

[ S

 

as in Se
tion 3 one �nds

I(s;U

�

; '

0

) = e(s)L(s;�� �

0

) = ~e(1� s)L(1� s;

e

��

e

�

0

) = I(s;V

�

; '

0

)

for all '

0

in all irredu
ible subrepresentations �

0

of GL

m

(A ), in the sense of analyti
 
ontin-

uation. This 
on
ludes our use of the L-fun
tion.

We now rewrite our integrals I(s;U

�

; '

0

) and I(s;V

�

; '

0

) as follows. We �rst stratify

GL

m

(A ). For ea
h a 2 A

�

let GL

a

m

(A ) = fg 2 GL

m

(A ) j det(g) = ag. We 
an, and will,

always take GL

a

m

(A ) = SL

m

(A ) �

�

a

I

m�1

�

. Let

hP

n

m

U

�

; '

0

i

a

=

Z

SL

m

(k)nGL

a

m

(A )

P

n

m

U

�

�

h

1

�

'

0

(h) dh

and similarly for hP

n

m

V

�

; '

0

i

a

. These are both absolutely 
onvergent for all a and de�ne


ontinuous fun
tions of a on k

�

nA

�

. We now have that I(s;U

�

; '

0

) is the Mellin transform

of hP

n

m

U

�

; '

0

i

a

,

I(s;U

�

; '

0

) =

Z

k

�

nA

�

hP

n

m

U

�

; '

0

i

a

jaj

s�1=2

d

�

a;

similarly for I(s;V

�

; '

0

), and that these two Mellin transforms are equal in the sense of

analyti
 
ontinuation. By Mellin inversion as in Lemma 11.3.1 of Ja
quet-Langlands [30℄,

we have that hP

n

m

U

�

; '

0

i

a

= hP

n

m

V

�

; '

0

i

a

for all a, and in parti
ular for a = 1. Sin
e this is

true for all '

0

in all irredu
ible subrepresentations of automorphi
 forms on GL

m

(A ), then

by the weak form of Langlands' spe
tral theory for SL

m

we may 
on
lude that P

n

m

U

�

= P

n

m

V

�

as fun
tions on P

m+1

(A ). More spe
i�
ally, we have the following result.

Proposition 5.1 Let � be an irredu
ible admissible representation of GL

n

(A ) as above.

Suppose that L(s;� � �

0

) is ni
e for all �

0

2 T (m). Then for ea
h � 2 V

�

we have

P

n

m

U

�

(I

m+1

) = P

n

m

V

�

(I

m+1

).

This proposition is the key 
ommon ingredient for all our Converse Theorems.

5.3 Remarks on the proofs

All of our Converse Theorems take Proposition 5.1 as their starting point. Theorem 5.1

follows almost immediately. In Theorems 5.2, 5.3, and 5.4 we must add lo
al 
onditions to


ompensate for the fa
t that we do not have the full family of twists from Theorem 5.1 and

then work around them. We will sket
h these arguments here. Details for Theorems 5.1 and

5.4 
an be found in [7℄ and for Theorems 5.2 and 5.3 
an be found in [9℄.

5.3.1 Theorem 5.1

Let us �rst look at the proof of Theorem 5.1. So we now assume that � is as above and that

L(s;� � �

0

) is ni
e for all �

0

2 T (n � 1). Then we have that for all � 2 V

�

, P

n

n�1

U

�

(I

n

) =
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n

P

n

n�1

V

�

(I

n

). But for m = n�1 the proje
tion operator P

n

n�1

is nothing more than restri
tion

to P

n

. Hen
e we have U

�

(I

n

) = V

�

(I

n

) for all � 2 V

�

. Then for ea
h g 2 GL

n

(A ), we have

U

�

(g) = U

�(g)�

(I

n

) = V

�(g)�

(I

n

) = V

�

(g). So the map � 7! U

�

(g) gives our embedding of �

into the spa
e of automorphi
 forms on GL

n

(A ), sin
e now U

�

is left invariant under P(k),

Q(k), and hen
e all of GL

n

(k). Sin
e we still have

U

�

(g) =

X

N

n

(k)nP(k)

W

�

(pg)

we 
an 
ompute that U

�

is 
uspidal along any paraboli
 subgroup of GL

n

. Hen
e � embeds

in the spa
e of 
usp forms on GL

n

(A ) as desired.

5.3.2 Theorem 5.2

Next 
onsider Theorem 5.2, so now suppose that n � 3, and that L(s;�� �

0

) is ni
e for all

�

0

2 T (n�2). Then from Proposition 5.1 we may 
on
lude that P

n

n�2

U

�

(I

n�1

) = P

n

n�2

V

�

(I

n�1

)

for all � 2 V

�

. Sin
e the proje
tion operator P

n

n�2

now involves a non-trivial integration over

k

n�1

nA

n�1

we 
an no longer argue as in the proof of Theorem 5.1. To get to that point we

will have to impose a lo
al 
ondition on the ve
tor � at one pla
e.

Before we pla
e our lo
al 
ondition, let us write F

�

= U

�

� V

�

. Then F

�

is rapidly

de
reasing as a fun
tion on P

n�1

. We have P

n

n�2

F

�

(I

n�1

) = 0 and we would like to have

simply that F

�

(I

n

) = 0. Let u = (u

1

; : : : ; u

n�1

) 2 A

n�1

and 
onsider the fun
tion

f

�

(u) = F

�

�

I

n�1

t

u

1

�

:

Now f

�

(u) is a fun
tion on k

n�1

nA

n�1

and as su
h has a Fourier expansion

f

�

(u) =

X

�2k

n�1

^

f

�

(�) 

�

(u)

where  

�

(u) =  (� �

t

u) and

^

f

�

(�) =

Z

k

n�1

nA

n�1

f

�

(u) 

��

(u) du:

In this language, the statement P

n

n�2

F

�

(I

n�1

) = 0 be
omes

^

f

�

(e

n�1

) = 0, where as always, e

k

is the standard unit ve
tor with 0's in all pla
es ex
ept the k

th

where there is a 1.

Note that F

�

(g) = U

�

(g)� V

�

(g) is left invariant under (Z(k) P(k)) \ (Z(k)Q(k)) where

Q = Q

n�2

. This 
ontains the subgroup

R(k) =

8

<

:

r =

0

�

I

n�2

�

0

�

n�1

�

n

1

1

A

�

�

�

0

2 k

n�2

; �

n�1

6= 0

9

=

;

:

Using this invarian
e of F

�

, it is now elementary to 
ompute that, with this notation,

^

f

�(r)�

(e

n�1

) =

^

f

�

(�) where � = (�

0

; �

n�1

) 2 k

n�1

. Sin
e

^

f

�

(e

n�1

) = 0 for all �, and in
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parti
ular for �(r)�, we see that for every � we have

^

f

�

(�) = 0 whenever �

n�1

6= 0. Thus

f

�

(u) =

X

�2k

n�1

^

f

�

(�) 

�

(u) =

X

�

0

2k

n�2

^

f

�

(�

0

; 0) 

(�

0

;0)

(u):

Hen
e f

�

(0; : : : ; 0; u

n�1

) =

P

�

0

2k

n�2

^

f

�

(�

0

; 0) is 
onstant as a fun
tion of u

n�1

. Moreover,

this 
onstant is f

�

(e

n�1

) = F

�

(I

n

), whi
h we want to be 0. This is what our lo
al 
ondition

will guarantee.

If v is a �nite pla
e of k, let o

v

denote the ring of integers of k

v

, and let p

v

denote the

prime ideal of o

v

. We may assume that we have 
hosen v so that the lo
al additive 
hara
ter

 

v

is normalized, i.e., that  

v

is trivial on o

v

and non-trivial on p

�1

v

. Given an integer n

v

� 1

we 
onsider the open 
ompa
t group

K

00;v

(p

n

v

v

) = fg = (g

i;j

) 2 GL

n

(o

v

) j(i) g

i;n�1

2 p

n

v

v

for 1 � i � n� 2;

(ii) g

n;j

2 p

n

v

v

for 1 � j � n� 2;

(iii) g

n;n�1

2 p

2n

v

v

g:

(As usual, g

i;j

represents the entry of g in the i-th row and j-th 
olumn.)

Lemma Let v be a �nite pla
e of k as above and let (�

v

; V

�

v

) be an irredu
ible admissible

generi
 representation of GL

n

(k

v

). Then there is a ve
tor �

0

v

2 V

�

v

and a non-negative

integer n

v

su
h that

1. for any g 2 K

00;v

(p

n

v

v

) we have �

v

(g)�

0

v

= !

�

v

(g

n;n

)�

0

v

2.

R

p

�1

v

�

v

0

�

I

n�2

1 u

1

1

A

�

0

v

du = 0.

The proof of this Lemma is simply an exer
ise in the Kirillov model of �

v

and 
an be

found in [9℄.

If we now �x su
h a pla
e v

0

and assume that our ve
tor � is 
hosen so that �

v

0

= �

0

v

0

,

then we have

F

�

(I

n

) = f

�

(e

n�1

) = Vol(p

�1

v

0

)

�1

Z

p

�1

v

0

f

�

(0; : : : ; 0; u

v

0

) du

v

0

= Vol(p

�1

v

0

)

�1

Z

p

�1

v

0

F

�

0

�

I

n�2

1 u

v

0

1

1

A

du

v

0

= 0

for su
h �.

Hen
e we now have U

�

(I

n

) = V

�

(I

n

) for all � 2 V

�

su
h that �

v

0

= �

0

v

0

at our �xed

pla
e. If we let G

0

= K

00;v

0

(p

n

v

0

v

0

)G

v

0

, where we set G

v

0

=

Q

0

v 6=v

0

GL

n

(k

v

), then we have this

group preserves the lo
al 
omponent �

0

v

0

up to a 
onstant fa
tor so that for g 2 G

0

we have

U

�

(g) = U

�(g)�

(I

n

) = V

�(g)�

(I

n

) = V

�

(g).

We now use a fa
t about generation of 
ongruen
e type subgroups. Let �

1

= (P(k) Z(k))\

G

0

, �

2

= (Q(k) Z(k)) \G

0

, and � = GL

n

(k) \G

0

. Then U

�

(g) is left invariant under �

1

and
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n

V

�

(g) is left invariant under �

2

. It is essentially a matrix 
al
ulation that together �

1

and

�

2

generate �. So, as a fun
tion on G

0

, U

�

(g) = V

�

(g) is left invariant under �. So if we

let �

v

0

= 


0

v 6=v

0

�

v

then the map �

v

0

7! U

�

0

v

o


�

v

0

(g) embeds V

�

v

0

into A(�nG

0

), the spa
e of

automorphi
 forms on G

0

relative to �. Now, by weak approximation, GL

n

(A ) = GL

n

(k) �G

0

and � = GL

n

(k) \ G

0

, so we 
an extend �

v

0

to an automorphi
 representation of GL

n

(A ).

Let �

0

be an irredu
ible 
omponent of the extended representation. Then �

0

is automorphi


and 
oin
ides with � at all pla
es ex
ept possible v

0

.

One now repeats the entire argument using a se
ond pla
e v

1

6= v

0

. Then we have two

automorphi
 representations �

1

and �

0

of GL

n

(A ) whi
h agree at all pla
es ex
ept possibly

v

0

and v

1

. By the generalized Strong Multipli
ity One for GL

n

we know that �

0

and �

1

are

both 
onstituents of the same indu
ed representation � = Ind(�

1


� � �
�

r

) where ea
h �

i

is

a 
uspidal representation of some GL

m

i

(A ), ea
h m

i

� 1 and

P

m

i

= n. We 
an write ea
h

�

i

= �

Æ

i


 j det j

t

i

with �

Æ

i

unitary 
uspidal and t

i

2 R and assume t

1

� � � � � t

r

. If r > 1,

then either m

1

� n � 2 or m

r

� n � 2 (or both). For simpli
ity assume m

r

� n � 2. Let

S be a �nite set of pla
es 
ontaining all ar
himedean pla
es, v

0

, v

1

, S

�

, and S

�

i

for ea
h i.

Taking �

0

= e�

r

2 T (n� 2), we have the equality of partial L-fun
tions

L

S

(s;�� �

0

) = L

S

(s;�

0

� �

0

) = L

S

(s;�

1

� �

0

)

=

Y

i

L

S

(s; �

i

� �

0

) =

Y

i

L

S

(s+ t

i

� t

r

; �

Æ

i

� e�

Æ

r

):

Now L

S

(s; �

r

�e�

r

) has a pole at s = 1 and all other terms are non-vanishing at s = 1. Hen
e

L(s;�� �

0

) has a pole at s = 1 
ontradi
ting the fa
t that L(s;�� �

0

) is ni
e. If m

1

� 2,

then we 
an make a similar argument using L(s;

e

�� �

1

). So in fa
t we must have r = 1 and

�

0

= �

1

= � is 
uspidal. Sin
e �

0

agrees with � at v

1

and �

1

agrees with � at v

0

we see

that in fa
t � = �

0

= �

1

and � is indeed 
uspidal automorphi
.

5.3.3 Theorem 5.3

Now 
onsider Theorem 5.3. Sin
e we have restri
ted our rami�
ation, we no longer know

that L(s;���

0

) is ni
e for all �

0

2 T (n�2) and so Proposition 5.1 above is not immediately

appli
able. In this 
ase, for ea
h pla
e v 2 S we �x a ve
tor �

0

v

2 V

�

v

as in the above

Lemma. (So we must assume we have 
hosen  so it is unrami�ed at the pla
es in S.) Let

�

0

S

=

Q

v2S

�

0

v

2 �

S

. Consider now only ve
tors � of the form �

S


 �

0

S

with �

S

arbitrary

in V

�

S
and �

0

S

�xed. For these ve
tors, the fun
tions P

n

n�2

U

�

�

h

1

�

and P

n

n�2

V

�

�

h

1

�

are unrami�ed at the pla
es v 2 S, so that the integrals I(s;U

�

; '

0

) and I(s;V

�

; '

0

) vanish

unless '

0

(h) is also unrami�ed at those pla
es in S. In parti
ular, if �

0

2 T (n � 2) but

�

0

=2 T

S

(n � 2) these integrals will vanish for all '

0

2 V

�

0

. So now, for this �xed 
lass of �

we a
tually have I(s;U

�

; '

0

) = I(s;V

�

; '

0

) for all '

0

2 V

�

0

for all �

0

2 T (n � 2). Hen
e, as

before, P

n

n�2

U

�

(I

n�1

) = P

n

n�2

V

�

(I

n�1

) for all su
h �.

Now we pro
eed as before. Our Fourier expansion argument is a bit more subtle sin
e

we have to work around our lo
al 
onditions, whi
h now have been imposed before this step,

but we do obtain that U

�

(g) = V

�

(g) for all g 2 G

0

= (

Q

v2S

K

00;v

(p

n

v

v

))G

S

. The generation

of 
ongruen
e subgroups goes as before. We then use weak approximation as above, but
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then take for �

0

any 
onstituent of the extension of �

S

to an automorphi
 representation of

GL

n

(A ).There no use of strong multipli
ity one nor any further use of the L-fun
tion in this


ase. More details 
an be found in [9℄.

5.3.4 Theorem 5.4

Let us now sket
h the proof of Theorem 5.4. We �x a non-empty �nite set of pla
es S,


ontaining all ar
himedean pla
es, su
h that the ring o

S

of S-integer has 
lass number one.

Re
all that we are now twisting by all 
uspidal representations �

0

2 T

S

(n � 1), that is, �

0

whi
h are unrami�ed at all pla
es v =2 S. Sin
e we have not twisted by all of T (n�1) we are

not in a position to apply Proposition 5.1. To be able to apply that, we will have to pla
e

lo
al 
onditions at all v =2 S.

We begin by re
alling the de�nition of the 
ondu
tor of a representation �

v

of GL

n

(k

v

)

and the 
ondu
tor (or level) of � itself. Let K

v

= GL

n

(o

v

) be the standard maximal 
ompa
t

subgroup of GL

n

(k

v

). Let p

v

� o

v

be the unique prime ideal of o

v

and for ea
h integerm

v

� 0

set

K

0;v

(p

m

v

v

) =

8

>

>

>

<

>

>

>

:

g 2 GL

n

(o

v

)

�

�

�

�

g �

0

B

B

B

�

�

�

.

.

.

�

0 � � � 0 �

1

C

C

C

A

(mod p

m

v

)

9

>

>

>

=

>

>

>

;

and K

1;v

(p

m

v

v

) = fg 2 K

0;v

(p

m

v

v

) j g

n;n

� 1 (mod p

m

v

v

))g. Note that for m

v

= 0 we have

K

1;v

(p

0

v

) = K

0;v

(p

0

v

) = K

v

. Then for ea
h lo
al 
omponent �

v

of � there is a unique integer

m

v

� 0 su
h that the spa
e of K

1;v

(p

m

v

v

){�xed ve
tors in �

v

is exa
tly one. For almost

all v, m

v

= 0. We take the ideal p

m

v

v

= f(�

v

) as the 
ondu
tor of �

v

. Then the ideal

n = f(�) =

Q

v

p

m

v

v

� o is 
alled the 
ondu
tor of �. For ea
h pla
e v we �x a non-zero

ve
tor �

Æ

v

2 �

v

whi
h is �xed by K

1;v

(p

m

v

v

), whi
h at the unrami�ed pla
es is taken to be the

ve
tor with respe
t to whi
h the restri
ted tensor produ
t � = 


0

�

v

is taken. Note that for

g 2 K

0;v

(p

m

v

v

) we have �

v

(g)�

Æ

v

= !

�

v

(g

n;n

)�

Æ

v

.

Now �x a non-empty �nite set of pla
es S, 
ontaining the ar
himedean pla
es if there are

any. As is standard, we will let G

S

=

Q

v2S

GL

n

(k

v

), G

S

=

Q

v=2S

GL

n

(k

v

), �

S

= 


v2S

�

v

,

�

S

= 


0

v=2S

�

v

, et
. The the 
ompa
t subring n

S

=

Q

v=2S

p

m

v

v

� k

S

or the ideal it determines

n

S

= k \ k

S

n

S

� o

S

is 
alled the S{
ondu
tor of �. Let K

S

1

(n) =

Q

v=2S

K

1;v

(p

m

v

v

) and

similarly for K

S

0

(n). Let �

Æ

= 


v=2S

�

Æ

v

2 �

S

. Then this ve
tor is �xed by K

S

1

(n) and

transforms by a 
hara
ter under K

S

0

(n). In parti
ular, sin
e

Q

v=2S

GL

n�1

(o

v

) embeds in K

S

1

(n)

via h 7!

�

h

1

�

we see that when we restri
t �

S

to GL

n�1

the ve
tor �

Æ

is unrami�ed.

Now let us return to the proof of Theorem 5.4 and in parti
ular the version of Proposition

5.1 we 
an salvage. For every ve
tor �

S

2 �

S


onsider the fun
tions U

�

S


�

Æ

and V

�

S


�

Æ

. When

we restri
t these fun
tions to GL

n�1

they be
ome unrami�ed for all pla
es v =2 S. Hen
e

we see that the integrals I(s;U

�

S


�

Æ

; '

0

) and I(s;V

�

S


�

Æ

; '

0

) vanish identi
ally if the fun
tion

'

0

2 V

�

0

is not unrami�ed for v =2 S, and in parti
ular if '

0

2 V

�

0

for �

0

2 T (n � 1)

but �

0

=2 T

S

(n � 1). Hen
e, for ve
tors of the form � = �

S


 �

Æ

we do indeed have that

I(s;U

�

S


�

Æ

; '

0

) = I(s;V

�

S


�

Æ

; '

0

) for all '

0

2 V

�

0

and all �

0

2 T (n � 1). Hen
e, as in

Proposition 5.1 we may 
on
lude that U

�

S


�

Æ

(I

n

) = V

�

S


�

Æ

(I

n

) for all �

S

2 V

�

S

. Moreover,



54 L-fun
tions for GL

n

sin
e �

S

was arbitrary in V

�

S

and the �xed ve
tor �

Æ

transforms by a 
hara
ter of K

S

0

(n) we

may 
on
lude that U

�

S


�

Æ

(g) = V

�

S


�

Æ

(g) for all �

S

2 V

�

S

and all g 2 G

S

K

S

0

(n).

What invarian
e properties of the fun
tion U

�

S


�

Æ

have we gained from our equality

with V

�

S


�

Æ

. Let us let �

i

(n

S

) = GL

n

(k) \ G

S

K

S

i

(n) whi
h we may view naturally as


ongruen
e subgroups of GL

n

(o

S

). Now, as a fun
tion on G

S

K

S

0

(n), U

�

S


�

Æ

(g) is naturally

left invariant under �

0;P

(n

S

) = Z(k) P(k)\G

S

K

S

0

(n) while V

�

S


�

Æ

(g) is naturally left invariant

under �

0;Q

(n

S

) = Z(k)Q(k) \ G

S

K

S

0

(n) where Q = Q

n�1

. Similarly we set �

1;P

(n

S

) =

Z(k) P(k)\G

S

K

S

1

(n) and �

1;Q

(n

S

) = Z(k)Q(k)\G

S

K

S

1

(n). The 
ru
ial observation for this

Theorem is the following result.

Proposition The 
ongruen
e subgroup �

i

(n

S

) is generated by �

i;P

(n

S

) and �

i;Q

(n

S

) for

i = 0; 1.

This proposition is a 
onsequen
e of results in the stable algebra of GL

n

due to Bass

whi
h were 
ru
ial to the solution of the 
ongruen
e subgroup problem for SL

n

by Bass,

Milnor, and Serre. This is reason for the restri
tion to n � 3 in the statement of Theorem

5.4.

From this we get not an embedding of � into a spa
e of automorphi
 forms on GL

n

(A ),

but rather an embedding of �

S

into a spa
e of 
lassi
al automorphi
 forms on G

S

. To this

end, for ea
h �

S

2 V

�

S

let us set

�

�

S

(g

S

) = U

�

S


�

Æ

((g

S

; 1

S

)) = V

�

S


�

Æ

((g

S

; 1

S

))

for g

S

2 G

S

. Then �

�

S

will be left invariant under �

1

(n

S

) and transform by a Nebentypus


hara
ter �

S

under �

0

(n

S

) determined by the 
entral 
hara
ter !

�

S of �

S

. Furthermore, it

will transform by a 
hara
ter !

S

= !

�

S

under the 
enter Z(k

S

) of G

S

. The requisite growth

properties are satis�ed and hen
e the map �

S

7! �

�

S

de�nes an embedding of �

S

into the

spa
e A(�

0

(n

S

)nG

S

;!

S

; �

S

) of 
lassi
al automorphi
 forms on G

S

relative to the 
ongruen
e

subgroup �

0

(n

S

) with Nebentypus �

S

and 
entral 
hara
ter !

S

.

We now need to lift our 
lassi
al automorphi
 representation ba
k to an adeli
 one and

hopefully re
over the rest of �. By strong approximation for GL

n

and our 
lass num-

ber assumption we have the isomorphism between the spa
e of 
lassi
al automorphi
 forms

A(�

0

(n

S

)nG

S

;!

S

; �

S

) and the K

S

1

(n) invariants in A(GL

n

(k)nGL

n

(A );!) where ! is the


entral 
hara
ter of �. Hen
e �

S

will generate an automorphi
 subrepresentation of the

spa
e of automorphi
 forms A(GL

n

(k)nGL

n

(A );!). To 
ompare this to our original �, we

must 
he
k that, in the spa
e of 
lassi
al forms, the �

�

S


�

Æ

are He
ke eigenforms for a 
las-

si
al He
ke algebra and that their He
ke eigenvalues agree with those from �. We do this

only for those v =2 S whi
h are unrami�ed, where it is a rather standard 
al
ulation. As we

have not talked about He
ke algebras, we refer the reader to [7℄ for the details.

Now if we let �

0

be any irredu
ible subrepresentation of the representation generated by

the image of �

S

in A(GL

n

(k)nGL

n

(A );!), then �

0

is automorphi
 and we have �

0

v

' �

v

for all v 2 S by 
onstru
tion and �

0

v

' �

v

for all v =2 S

0

by the He
ke algebra 
al
ulation.

Thus we have proven Theorem 5.4.

5.4 Converse Theorems and liftings

In this se
tion we would like to make some general remarks on how to apply these Converse

Theorems to the problem of fun
torial liftings [3℄.
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In order to apply these these theorems, you must be able to 
ontrol the global properties

of the L-fun
tion. However, for the most part, the way we have of 
ontrolling global L-

fun
tions is to asso
iate them to automorphi
 forms or representations. A minute's thought

will then lead one to the 
on
lusion that the primary appli
ation of these results will be to

the lifting of automorphi
 representations from some group H to GL

n

.

Suppose that H is a split 
lassi
al group, � an automorphi
 representation of H, and �

a representation of the L-group of H. Then we should be able to asso
iate an L-fun
tion

L(s; �; �) to this situation [3℄. Let us assume that � :

L

H ! GL

n

(C ) so that to � should be

asso
iated an automorphi
 representation � of GL

n

(A ). What should � be and why should

it be automorphi
.

We 
an see what �

v

should be at almost all pla
es. Sin
e we have the (arithmeti
)

Langlands (or Langlands-Satake) parameterization of representations for all ar
himedean

pla
es and those �nite pla
es where the representations are unrami�ed [3℄, we 
an use these

to asso
iate to �

v

and the map �

v

:

L

H

v

! GL

n

(C ) a representation �

v

of GL

n

(k

v

). If H

happens to be GL

m

then we in prin
iple know how to asso
iate the representation �

v

at

all pla
es now that the lo
al Langlands 
onje
ture has been solved for GL

m

[23, 26℄, but

in pra
ti
e this is still not feasible. For other situations, we do not know what �

v

should

be at the rami�ed pla
es. We will return to this diÆ
ulty momentarily. But for now, lets

assume we 
an �nesse this lo
al problem and arrive at a representation � = 


0

�

v

su
h that

L(s; �; �) = L(s;�). � should then be the Langlands lifting of � to GL

n

asso
iated to �.

For simpli
ity of exposition, let us now assume that � is simply the standard embedding

of

L

H into GL

n

(C ) and write L(s; �; �) = L(s; �) = L(s;�). We have our 
andidate � for

the lift of � to GL

n

, but how to tell whether � is automorphi
. This is what the Converse

Theorem lets us do. But to apply them we must �rst be able to de�ne and 
ontrol the

twisted L-fun
tions L(s; � � �

0

) for �

0

2 T with an appropriate twisting set T from one of

our Converse Theorems. This is one reason it is always 
ru
ial to de�ne not only the standard

L-fun
tions for H, but also the twisted versions. If we know, from the theory of L-fun
tions

of H twisted by GL

m

for appropriate �

0

, that L(s; ���

0

) is ni
e and L(s; ���

0

) = L(s;���

0

)

for twists, then we 
an use Theorem 5.1 or 5.2 to 
on
lude that � is 
uspidal automorphi


or Theorem 5.3 or 5.4 to 
on
lude that � is quasi-automorphi
 and at least obtain a weak

automorphi
 lifting �

0

whi
h is veri�ably the 
orre
t representation at almost all pla
es. At

this point this relies on the state of our knowledge of the theory of twisted L-fun
tions for

H.

Let us return now to the (lo
al) problem of not knowing the appropriate lo
al lifting

�

v

7! �

v

at the rami�ed pla
es. We 
an 
ir
umvent this by a 
ombination of global and

lo
al means. The global tool is simply the following observation.

Observation Let � be as in Theorem 5.3 or 5.4. Suppose that � is a �xed (highly rami�ed)


hara
ter of k

�

nA

�

. Suppose that L(s;���

0

) is ni
e for all �

0

2 T 
�, where T is either of

the twisting sets of Theorem 5.3 or 5.4. Then � is quasi-automorphi
 as in those theorems.

The only thing to observe, say by looking at the lo
al or global integrals, is that if �

0

2 T

then L(s;� � (�

0


 �)) = L(s; (� 
 �) � �

0

) so that applying the Converse Theorem for

� with twisting set T 
 � is equivalent to applying the Converse Theorem for � 
 � with

the twisting set T . So, by either Theorem 5.3 or 5.4, whi
hever is appropriate, � 
 � is

quasi-automorphi
 and hen
e � is as well.
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n

Now, if we begin with � automorphi
 on H(A ), we will take T to be the set of �nite

pla
es where �

v

is rami�ed. For applying Theorem 5.3 we want S = T and for Theorem 5.4

we want S\T = ;. We will now take � to be highly rami�ed at all pla
es v 2 T . So at v 2 T

our twisting representations are all lo
ally of the form (unrami�ed prin
ipal series)
(highly

rami�ed 
hara
ter).

We now need to know the following two lo
al fa
ts about the lo
al theory of L-fun
tions

for H.

1. Multipli
ativity of 
-fa
tors: If �

0

v

= Ind(�

0

1;v


 �

0

2;v

), with �

0

i;v

and irredu
ible ad-

missible representation of GL

r

i

(k

v

), then


(s; �

v

� �

0

v

;  

v

) = 
(s; �

v

� �

0

1;v

;  

v

)
(s; �

v

� �

0

2;v

;  

v

)

and L(s; �

v

� �

0

v

)

�1

should divide [L(s; �

v

� �

0

1;v

)L(s; � � �

0

2;v

)℄

�1

.

If �

v

= Ind(�

v


 �

0

v

) with �

v

an irredu
ible admissible representation of GL

r

(k

v

) and

�

0

v

an irredu
ible admissible representation of H

0

(k

v

) with H

0

� H su
h that GL

r

�H

0

is the Levi of a paraboli
 subgroup of H, then


(s; �

v

� �

0

v

;  

v

) = 
(s; �

v

� �

0

v

;  

v

)
(s; �

0

v

� �

0

v

;  

v

)
(s; e�

v

� �

0

v

;  

v

):

2. Stability of 
-fa
tors: If �

1;v

and �

2;v

are two irredu
ible admissible representations of

H(k

v

), then for every suÆ
iently highly rami�ed 
hara
ter �

v

of GL

1

(k

v

) we have


(s; �

1;v

� �

v

;  

v

) = 
(s; �

2;v

� �

v

;  

v

)

and

L(s; �

1;v

� �

v

) = L(s; �

2;v

� �

v

) � 1:

On
e again, for these appli
ations it is 
ru
ial that the lo
al theory of L-fun
tions is

suÆ
iently developed to establish these results on the lo
al 
-fa
tors. As we have seen in

Se
tion 3, both of these fa
ts are known for GL

n

.

To utilize these lo
al results, what one now does is the following. At the pla
es where �

v

is rami�ed, 
hoose �

v

to be arbitrary, ex
ept that it should have the same 
entral 
hara
ter

as �

v

. This is both to guarantee that the 
entral 
hara
ter of � is the same as that of �

and hen
e automorphi
 and to guarantee that the stable forms of the 
{fa
tors for �

v

and

�

v

agree. Now form � = 


0

�

v

. Choose our 
hara
ter � so that at the pla
es v 2 T we have

that the L{ and 
{fa
tors for both �

v


 �

v

and �

v


 �

v

are in their stable form and agree.

We then twist by T 
 � for this �xed 
hara
ter �. If �

0

2 T 
 �, then for v 2 T , �

0

v

is of the

form �

0

v

= Ind(�

v;1


 � � � 
 �

v;m

) 
 �

v

with ea
h �

v;i

an unrami�ed 
hara
ter of k

�

v

. So at

the pla
es v 2 T we have


(s; �

v

� �

0

v

) = 
(s; �

v

� (Ind(�

v;1


 � � � 
 �

v;m

)
 �

v

))

=

Y


(s; �

v


 (�

v;i

�

v

)) (by multipli
ativity)

=

Y


(s;�

v


 (�

v;i

�

v

)) (by stability)

= 
(s;�

v

� (Ind(�

v;1


 � � � 
 �

v;m

)
 �

v

)) (by multipli
ativity)

= 
(s;�

v

� �

0

v

)
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and similarly for the L-fa
tors. From this it follows that globally we will have L(s; ���

0

) =

L(s;�� �

0

) for all �

0

2 T 
 � and the global fun
tional equation for L(s; � � �

0

) will yield

the global fun
tional equation for L(s;�� �

0

). So L(s;�� �

0

) is ni
e and we may pro
eed

as before. We have, in essen
e, twisted all information about � and � at those v 2 T away.

The pri
e we pay is that we also lose this information in our 
on
lusion sin
e we only know

that � is quasi-automorphi
. In essen
e, the Converse Theorem �lls in a 
orre
t set of data

at those pla
es in T to make the resulting global representation automorphi
.

5.5 Some liftings

To 
on
lude, let us make a list of some of the liftings that have been a

omplished using

these Converse Theorems. Some have used the above tri
k of multipli
ativity and stability

of 
{fa
tors to handle the rami�ed pla
es. Others, prin
ipally those that involve GL

2

, have

adopted a te
hnique of Ramakrishnan [51℄ involving a sequen
e of base 
hanges and des
ents

to get a more 
omplete handle on the rami�ed pla
es.

1. The symmetri
 square lifting from GL

2

to GL

3

by Gelbart and Ja
quet [15℄.

2. Non-normal 
ubi
 base 
hange for GL

2

by Ja
quet, Piatetski-Shapiro, and Shalika [32℄.

3. The tensor produ
t lifting from GL

2

�GL

2

to GL

4

by Ramakrishnan [51℄.

4. The lifting of generi
 
usp forms from SO

2n+1

to GL

2n

, with Kim, Piatetski-Shapiro,

and Shahidi [6℄.

5. The tensor produ
t lifting from GL

2

�GL

3

to GL

6

and the symmetri
 
ube lifting from

GL

2

to GL

4

by Kim and Shahidi [40℄.

6. The exterior square lifting from GL

4

to GL

6

and the symmetri
 fourth power lift from

GL

2

to GL

5

by Kim [39℄.

For the most part, it was Theorem 5.3 that was used in ea
h 
ase, with the ex
eption of (4),

where a simpler variant was used requiring twists by T

S

(n� 1). For the non-normal 
ubi


base 
hange both Theorem 5.3 with n = 3 and Theorem 5.1 with n = 2 were used.
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