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Abstrat

The theory of L-funtions of automorphi forms (or modular forms) via integral

representations has its origin in the paper of Riemann on the �-funtion. However the

theory was really developed in the lassial ontext of L-funtions of modular forms

for ongruene subgroups of SL

2

(Z) by Heke and his shool. Muh of our urrent

theory is a diret outgrowth of Heke's. L-funtions of automorphi representations

were �rst developed by Jaquet and Langlands for GL

2

. Their approah followed Heke

ombined with the loal-global tehniques of Tate's thesis. The theory for GL

n

was

then developed along the same lines in a long series of papers by various ombinations

of Jaquet, Piatetski-Shapiro, and Shalika. In addition to assoiating an L-funtion

to an automorphi form, Heke also gave a riterion for a Dirihlet series to ome

from a modular form, the so alled Converse Theorem of Heke. In the ontext of

automorphi representations, the Converse Theorem for GL

2

was developed by Jaquet

and Langlands, extended and signi�antly strengthened to GL

3

by Jaquet, Piatetski-

Shapiro, and Shalika, and then extended to GL

n

.

What we have attempted to present here is a synopsis of this work and in doing so

present the paradigm for the analysis of automorphi L-funtions via integral represen-

tations. We begin with the Fourier expansion of a usp form and results on Whittaker

models sine these are essential for de�ning Eulerian integrals. We then develop inte-

gral representations for L-funtions for GL

n

�GL

m

whih have nie analyti properties

(meromorphi ontinuation, �nite order of growth, funtional equations) and have Eu-

lerian fatorization into produts of loal integrals. We next turn to the loal theory

of L-funtions for GL

n

, in both the arhimedean and non-arhimedean loal ontexts,

whih omes out of the Euler fators of the global integrals. We �nally ombine the

global Eulerian integrals with the de�nition and analysis of the loal L-funtions to

de�ne the global L-funtion of an automorphi representation and derive their major

analyti properties. We next turn to the various Converse Theorems for GL

n

and their

appliations to Langlands liftings.



Contents

1 Fourier expansions and multipliity one theorems 2

1.1 Fourier Expansions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Whittaker Models and the Multipliity One Theorem . . . . . . . . . . . . . 7

1.3 Kirillov models and the Strong Multipliity One Theorem . . . . . . . . . . . 9

2 Eulerian integrals for GL

n

10

2.1 Eulerian integrals for GL

2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Eulerian integrals for GL

n

�GL

m

with m < n . . . . . . . . . . . . . . . . . 12

2.2.1 The projetion operator . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 The global integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Eulerian integrals for GL

n

�GL

n

. . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 The miraboli Eisenstein series . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 The global integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Loal L-funtions 22

3.1 The non-arhimedean loal fators . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 The loal L-funtion . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.2 The loal funtional equation . . . . . . . . . . . . . . . . . . . . . . 26

3.1.3 The unrami�ed alulation . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.4 The superuspidal alulation . . . . . . . . . . . . . . . . . . . . . . 31

3.1.5 Remarks on the general alulation . . . . . . . . . . . . . . . . . . . 31

3.1.6 Multipliativity and stability of {fators . . . . . . . . . . . . . . . . 32

3.2 The arhimedean loal fators . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Global L-funtions 36

4.1 The basi analyti properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Poles of L-funtions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 Strong Multipliity One . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.4 Non-vanishing results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 The Generalized Ramanujan Conjeture (GRC) . . . . . . . . . . . . . . . . 42

4.6 The Generalized Riemann Hypothesis (GRH) . . . . . . . . . . . . . . . . . 44

5 Converse Theorems 44

5.1 The results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Inverting the integral representation . . . . . . . . . . . . . . . . . . . . . . . 47

5.3 Remarks on the proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3.1 Theorem 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3.2 Theorem 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.3.3 Theorem 5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3.4 Theorem 5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Converse Theorems and liftings . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.5 Some liftings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Referenes 58



1

Introdution

The purpose of these notes is to develop the analyti theory of L-funtions for uspidal

automorphi representations of GL

n

over a global �eld. There are two approahes to L-

funtions of GL

n

: via integral representations or through analysis of Fourier oeÆients of

Eisenstein series. In these notes we develop the theory via integral representations.

The theory of L-funtions of automorphi forms (or modular forms) via integral repre-

sentations has its origin in the paper of Riemann on the �-funtion [53℄. However the theory

was really developed in the lassial ontext of L-funtions of modular forms for ongruene

subgroups of SL

2

(Z) by Heke and his shool [25℄. Muh of our urrent theory is a diret

outgrowth of Heke's. L-funtions of automorphi representations were �rst developed by

Jaquet and Langlands for GL

2

[21,28,30℄. Their approah followed Heke ombined with the

loal-global tehniques of Tate's thesis [64℄. The theory for GL

n

was then developed along the

same lines in a long series of papers by various ombinations of Jaquet, Piatetski-Shapiro,

and Shalika [31{38, 47, 48, 62℄. In addition to assoiating an L-funtion to an automorphi

form, Heke also gave a riterion for a Dirihlet series to ome from a modular form, the

so alled Converse Theorem of Heke [26℄. In the ontext of automorphi representations,

the Converse Theorem for GL

2

was developed by Jaquet and Langlands [30℄, extended and

signi�antly strengthened to GL

3

by Jaquet, Piatetski-Shapiro, and Shalika [31℄, and then

extended to GL

n

[7, 9℄.

What we have attempted to present here is a synopsis of this work and in doing so

present the paradigm for the analysis of automorphi L-funtions via integral representations.

Setion 1 deals with the Fourier expansion of automorphi forms on GL

n

and the related

Multipliity One and Strong Multipliity One theorems. Setion 2 then develops the theory

of Eulerian integrals for GL

n

. In Setion 3 we turn to the loal theory of L-funtions for GL

n

,

in both the arhimedean and non-arhimedean loal ontexts, whih omes out of the Euler

fators of the global integrals. In Setion 4 we �nally ombine the global Eulerian integrals

with the de�nition and analysis of the loal L-funtions to de�ne the global L-funtion of

an automorphi representation and derive their major analyti properties. In Setion 5 we

turn to the various Converse Theorems for GL

n

.

We have tried to keep the tone of the notes informal for the most part. We have tried to

provide omplete proofs where feasible, at least skethes of most major results, and referenes

for tehnial fats.

There is another body of work on integral representations of L-funtions for GL

n

whih

developed out of the lassial work on zeta funtions of algebras. This is the theory of

prinipal L-funtions for GL

n

as developed by Godement and Jaquet [22,28℄. This approah

is related to the one pursued here, but we have not attempted to present it here.

The other approah to these L-funtions is via the Fourier oeÆients of Eisenstein series.

This approah also has a lassial history. In the ontext of automorphi representations,

and in a broader ontext than GL

n

, this approah was originally laid out by Langlands [43℄

but then most fruitfully pursued by Shahidi. Some of the major papers of Shahidi on this

subjet are [55{61℄. In partiular, in [58℄ he shows that the two approahes give the same

L-funtions for GL

n

. We will not pursue this approah in these notes.

For a balaned presentation of all three methods we reommend the book of Gelbart

and Shahidi [16℄. They treat not only L-funtions for GL

n

but L-funtions of automorphi

representations of other groups as well.



2 L-funtions for GL

n

We have not disussed the arithmeti theory of automorphi representations and L-

funtions. For the onnetions with motives, we reommend the surveys of Clozel [5℄ and

Ramakrishnan [50℄.

1 Fourier expansions and multipliity one theorems

In this setion we let k denote a global �eld, A , its ring of adeles, and  will denote a

ontinuous additive harater of A whih is trivial on k. For the basis on adeles, haraters,

et. we refer the reader to Weil [68℄ or the book of Gelfand, Graev, and Piatetski-Shapiro [18℄.

We begin with a uspidal automorphi representation (�; V

�

) of GL

n

(A ). For us, auto-

morphi forms are assumed to be smooth (of uniform moderate growth) but not neessarily

K

1

{�nite at the arhimedean plaes. This is most suitable for the analyti theory. For

simpliity, we assume the entral harater !

�

of � is unitary. Then V

�

is the spae of

smooth vetors in an irreduible unitary representation of GL

n

(A ). We will always use

uspidal in this sense: the smooth vetors in an irreduible unitary uspidal automorphi

representation. (Any other smooth uspidal representation � of GL

n

(A ) is neessarily of

the form � = �

Æ


 j det j

t

with �

Æ

unitary and t real, so there is really no loss of generality

in the unitarity assumption. It merely provides us with a onvenient normalization.) By

a usp form on GL

n

(A ) we will mean a funtion lying in a uspidal representation. By a

uspidal funtion we will simply mean a smooth funtion ' on GL

n

(k)nGL

n

(A ) satisfying

R

U(k)nU(A )

'(ug) du � 0 for every unipotent radial U of standard paraboli subgroups of

GL

n

.

The basi referenes for this setion are the papers of Piatetski-Shapiro [47, 48℄ and

Shalika [62℄.

1.1 Fourier Expansions

Let '(g) 2 V

�

be a usp form in the spae of �. For arithmeti appliations, and partiularly

for the theory of L-funtions, we will need the Fourier expansion of '(g).

If f(�) is a holomorphi usp form on the upper half plane H, say with respet to SL

2

(Z),

then f is invariant under integral translations, f(� + 1) = f(�) and thus has a Fourier

expansion of the form

f(�) =

1

X

n=1

a

n

e

2�in�

:

If '(g) is a smooth usp form on GL

2

(A ) then the translations orrespond to the maximal

unipotent subgroup N

2

=

�

n =

�

1 x

0 1

��

and '(ng) = '(g) for n 2 N

2

(k). So, if  is any

ontinuous harater of knA we an de�ne the  -Fourier oeÆient or  -Whittaker funtion

by

W

'; 

(g) =

Z

knA

'

��

1 x

0 1

�

g

�

 

�1

(x) dx:
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We have the orresponding Fourier expansion

'(g) =

X

 

W

'; 

(g):

(Atually from abelian Fourier theory, one has

'

��

1 x

0 1

�

g

�

=

X

 

W

'; 

(g) (x)

as a periodi funtion of x 2 A . Now set x = 0.)

If we �x a single non-trivial harater  of knA , they by standard duality theory [18,68℄

the additive haraters of the ompat group knA are isomorphi to k via the map  2 k 7!  



where  



is the harater  



(x) =  (x). Now, an elementary alulation shows that

W

'; 



(g) = W

': 

��



1

�

g

�

if  6= 0. If we set W

'

= W

'; 

for our �xed  , then the

Fourier expansion of ' beomes

'(g) = W

'; 

0

(g) +

X

2k

�

W

'

��



1

�

g

�

:

Sine ' is uspidal

W

'; 

0

(g) =

Z

knA

'

��

1 x

0 1

�

g

�

dx � 0

and the Fourier expansion for a usp form ' beomes simply

'(g) =

X

2k

�

W

'

��



1

�

g

�

:

We will need a similar expansion for usp forms ' on GL

n

(A ). The translations still

orrespond to the maximal unipotent subgroup

N

n

=

8

>

>

>

>

>

<

>

>

>

>

>

:

n =

0

B

B

B

B

B

�

1 x

1;2

�

1

.

.

.

.

.

.

.

.

.

1 x

n�1;n

0 1

1

C

C

C

C

C

A

9

>

>

>

>

>

=

>

>

>

>

>

;

;

but now this is non-abelian. This diÆulty was solved independently by Piatetski-Shapiro

[47℄ and Shalika [62℄. We �x our non-trivial ontinuous harater  of knA as above. Extend

it to a harater of N

n

by setting  (n) =  (x

1;2

+ � � � + x

n�1;n

) and de�ne the assoiated

Fourier oeÆient or Whittaker funtion by

W

'

(g) = W

'; 

(g) =

Z

N

n

(k)nN

n

(A )

'(ng) 

�1

(n) dn:

Sine ' is ontinuous and the integration is over a ompat set this integral is absolutely

onvergent, uniformly on ompat sets. The Fourier expansion takes the following form.
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n

Theorem 1.1 Let ' 2 V

�

be a usp form on GL

n

(A ) and W

'

its assoiated  -Whittaker

funtion. Then

'(g) =

X

2N

n�1

(k)nGL

n�1

(k)

W

'

��



1

�

g

�

with onvergene absolute and uniform on ompat subsets.

The proof of this fat is an indution. It utilizes the miraboli subgroup P

n

of GL

n

whih

seems to be ubiquitous in the study of automorphi forms on GL

n

. Abstratly, a miraboli

subgroup of GL

n

is simply the stabilizer of a non-zero vetor in (either) standard representa-

tion of GL

n

on k

n

. We denote by P

n

the stabilizer of the row vetor e

n

= (0; : : : ; 0; 1) 2 k

n

.

So

P

n

=

�

p =

�

h y

1

�

�

�

h 2 GL

n�1

; y 2 k

n�1

�

' GL

n�1

nY

n

where

Y

n

=

�

y =

�

I

n�1

y

1

�

�

�

y 2 k

n�1

�

' k

n�1

:

Simply by restrition of funtions, a usp form on GL

n

(A ) restrits to a smooth uspidal

funtion on P

n

(A ) whih remains left invariant under P

n

(k). (A smooth funtion ' on

P

n

(A ) whih is left invariant under P

n

(k) is alled uspidal if

R

U(k)nU(A )

'(up) du � 0 for

every standard unipotent subgroup U � P

n

.) Sine P

n

� N

n

we may de�ne a Whittaker

funtion attahed to a uspidal funtion ' on P

n

(A ) by the same integral as on GL

n

(A ),

namely

W

'

(p) =

Z

N

n

(k)nN

n

(A )

'(np) 

�1

(n) dn:

We will prove by indution that for a uspidal funtion ' on P

n

(A ) we have

'(p) =

X

2N

n�1

(k)nGL

n�1

(k)

W

'

��

 0

0 1

�

p

�

with onvergene absolute and uniform on ompat subsets.

The funtion on Y

n

(A ) given by y 7! '(yp) is invariant under Y

n

(k) sine Y

n

(k) � P

n

(k)

and ' is automorphi on P

n

(A ). Hene by standard abelian Fourier analysis for Y

n

' k

n�1

we have as before

'(p) =

X

�2

\

(k

n�1

nA

n�1

)

'

�

(p)

where

'

�

(p) =

Z

Y

n

(k)nY

n

(A )

'(yp)�

�1

(y) dy:

Now, by duality theory [68℄,

\

(k

n�1

nA

n�1

) ' k

n�1

. In fat, if we let h ; i denote the

pairing k

n�1

� k

n�1

! k by hx; yi =

P

x

i

y

i

we have

'(p) =

X

x2k

n�1

'

x

(p)
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where now we write

'

x

(p) =

Z

k

n�1

nA

n�1

'(yp) 

�1

(hx; yi) dy:

GL

n�1

(k) ats on k

n�1

with two orbits: f0g and k

n�1

� f0g = GL

n�1

(k) �

t

e

n�1

where

e

n�1

= (0; : : : ; 0; 1). The stabilizer of

t

e

n�1

in GL

n�1

(k) is

t

P

n�1

. Therefore, we may write

'(p) = '

0

(p) +

X

2GL

n�1

(k)=

t

P

n�1

(k)

'

�

t

e

n�1

(p):

Sine '(p) is uspidal and Y

n

is a standard unipotent subgroup of GL

n

, we see that

'

0

(p) =

Z

Y

n

(k)nY

n

(A )

'(yp) dy � 0:

On the other hand an elementary alulation as before gives

'

�

t

e

n�1

(p) = '

t

e

n�1

��

t

 0

0 1

�

p

�

:

Hene we have

'(p) =

X

2P

n�1

(k)nGL

n�1

(k)

'

t

e

n�1

��

 0

0 1

�

p

�

and the onvergene is still absolute and uniform on ompat subsets.

Note that if n = 2 this is exatly the fat we used previously for GL

2

. This then begins

our indution.

Next, let us write the above in a form more suitable for indution. Struturally, we have

P

n

= GL

n�1

nY

n

and N

n

= N

n�1

nY

n

. Therefore, N

n�1

nGL

n�1

' N

n

nP

n

. Furthermore,

if we let

e

P

n�1

= P

n�1

nY

n

� P

n

, then P

n�1

nGL

n�1

'

e

P

n�1

nP

n

. Next, note that the

funtion '

t

e

n�1

(p) satis�es, for y 2 Y

n

(A ) ' A

n�1

,

'

t

e

n�1

(yp) =  (y

n�1

)'

t

e

n�1

(p):

Sine  is trivial on k we see that '

t

e

n�1

(p) is left invariant under Y

n

(k). Hene

'(p) =

X

2P

n�1

(k)nGL

n�1

(k)

'

t

e

n�1

��

 0

0 1

�

p

�

=

X

Æ2

e

P

n�1

(k)nP

n

(k)

'

t

e

n�1

(Æp):

To proeed with the indution, �x p 2 P

n

(A ) and onsider the funtion '

0

(p

0

) = '

0

p

(p

0

)

on P

n�1

(A ) given by

'

0

(p

0

) = '

t

e

n�1

��

p

0

0

0 1

�

p

�

:

'

0

is a smooth funtion on P

n�1

(A ) sine ' was smooth. One heks that '

0

is left invariant

by P

n�1

(k) and uspidal on P

n�1

(A ). Then we may apply our indutive assumption to

onlude that

'

0

(p

0

) =

X



0

2N

n�2

nGL

n�2

W

'

0

��



0

0

0 1

�

p

0

�

=

X

Æ

0

2N

n�1

nP

n�1

W

'

0

(Æ

0

p

0

):
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If we substitute this into the expansion for '(p) we see

'(p) =

X

Æ2

e

P

n�1

(k)nP

n

(k)

'

t

e

n�1

(Æp)

=

X

Æ2

e

P

n�1

(k)nP

n

(k)

'

0

Æp

(1)

=

X

Æ2

e

P

n�1

(k)nP

n

(k)

X

Æ

0

2N

n�1

nP

n�1

W

'

0

Æp

(Æ

0

):

Now, as before, N

n�1

nP

n�1

' N

n

n

e

P

n�1

and N

n

' N

n�1

nY

n�1

. Thus

W

'

0

Æp

(Æ

0

) =

Z

N

n�1

(k)nN

n�1

(A )

'

0

Æp

(n

0

Æ

0

) 

�1

(n

0

) dn

0

=

Z

N

n�1

(k)nN

n�1

(A )

Z

Y

n

(k)nY

n

(A )

'(yn

0

Æ

0

Æp) 

�1

(y

n�1

) 

�1

(n

0

) dy dn

0

=

Z

N

n

(k)nN

n

(A )

'(nÆ

0

Æp) 

�1

(n) dn

=W

'

(Æ

0

Æp)

and so

'(p) =

X

Æ2

e

P

n�1

(k)nP

n

(k)

X

Æ

0

2N

n

n

e

P

n�1

W

'

(Æ

0

Æp)

=

X

Æ2N

n

(k)nP

n

(k)

W

'

(Æp)

=

X

2N

n�1

(k)nGL

n�1

(k)

W

'

��

 0

0 1

�

p

�

whih was what we wanted.

To obtain the Fourier expansion on GL

n

from this, if ' is a usp form on GL

n

(A ), then

for g 2 
 a ompat subset the funtions '

g

(p) = '(pg) form a ompat family of uspidal

funtions on P

n

(A ). So we have

'

g

(1) =

X

2N

n�1

(k)nGL

n�1

(k)

W

'

g

��

 0

0 1

��

with onvergene absolute and uniform. Hene

'(g) =

X

2N

n�1

(k)nGL

n�1

(k)

W

'

��

 0

0 1

�

g

�

again with absolute onvergene, uniform for g 2 
.



7

1.2 Whittaker Models and the Multipliity One Theorem

Consider now the funtions W

'

appearing in the Fourier expansion of a usp form '. These

are all smooth funtions W (g) on GL

n

(A ) whih satisfy W (ng) =  (n)W (g) for n 2 N

n

(A ).

If we let W(�;  ) = fW

'

j ' 2 V

�

g then GL

n

(A ) ats on this spae by right translation and

the map ' 7!W

'

intertwines V

�

with W(�;  ). W(�;  ) is alled the Whittaker model of �.

The notion of a Whittaker model of a representation makes perfet sense over a loal

�eld or even a �nite �eld. Muh insight an be gained by pursuing these ideas over a �nite

�eld [20,49℄, but that would take us too far a�eld. So let k

v

be a loal �eld (a ompletion of

k for example [18,68℄) and let (�

v

; V

�

v

) be an irreduible admissible smooth representation of

GL

n

(k

v

). Fix a non-trivial ontinuous additive harater  

v

of k

v

. Let W( 

v

) be the spae

of all smooth funtions W (g) on GL

n

(k

v

) satisfying W (ng) =  (n)W (g) for all n 2 N

k

(k

v

),

that is, the spae of all smooth Whittaker funtions on GL

n

(k

v

) with respet to  

v

. This

is also the spae of the smooth indued representation Ind

GL

n

N

v

( 

v

). GL

n

(k

v

) ats on this

by right translation. If we have a non-trivial ontinuous intertwining V

�

v

! W( 

v

) we will

denote its image by W(�

v

;  

v

) and all it a Whittaker model of �

v

.

Whittaker models for a representation (�

v

; V

�

v

) are equivalent to ontinuous Whittaker

funtionals on V

�

v

, that is, ontinuous funtionals �

v

satisfying �

v

(�

v

(n)�

v

) =  

v

(n)�

v

(�

v

)

for all n 2 N

n

(k

v

). To obtain a Whittaker funtional from a model, set �

v

(�

v

) = W

�

v

(e),

and to obtain a model from a funtional, set W

�

v

(g) = �

v

(�

v

(g)�

v

). This is a form of

Frobenius reiproity, whih in this ontext is the isomorphism between Hom

N

n

(V

�

v

; C

 

v

)

and Hom

GL

n

(V

�

v

; Ind

GL

n

N

n

( 

v

)) onstruted above.

The fundamental theorem on the existene and uniqueness of Whittaker funtionals and

models is the following.

Theorem 1.2 Let (�

v

; V

�

v

) be a smooth irreduible admissible representation of GL

n

(k

v

).

Let  

v

be a non-trivial ontinuous additive harater of k

v

. Then the spae of ontinuous

 

v

{Whittaker funtionals on V

�

v

is at most one dimensional. That is, Whittaker models, if

they exist, are unique.

This was �rst proven for non-arhimedean �elds by Gelfand and Kazhdan [19℄ and their

results were later extended to arhimedean loal �elds by Shalika [62℄. The method of proof

is roughly the following. It is enough to show that W(�

v

) = Ind

GL

n

N

n

( 

v

) is multipliity

free, i.e., any irreduible representation of GL

n

(k

v

) ours in W( 

v

) with multipliity at

most one. This in turn is a onsequene of the ommutativity of the endomorphism algebra

End(Ind( 

v

)). Any intertwining map from Ind( 

v

) to itself is given by onvolution with

a so-alled Bessel distribution, that is, a distribution B on GL

n

(k

v

) satisfying B(n

1

gn

2

) =

 

v

(n

1

)B(g) 

v

(n

2

) for n

1

; n

2

2 N

n

(k

v

). Suh quasi-invariant distributions are analyzed via

Bruhat theory. By the Bruhat deomposition for GL

n

, the double osets N

n

nGL

n

=N

n

are parameterized by the monomial matries. The only double osets that an support

Bessel distributions are assoiated to permutation matries of the form

0

�

I

r

k

.

.

.

I

r

1

1

A

and

the resulting distributions are then stable under the involution g 7! g

�

= w

n

t

g w

n

with

w

n

=

0

�

1

.

.

.

1

1

A

the long Weyl element of GL

n

. Thus for the onvolution of Bessel
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n

distributions we have B

1

� B

2

= (B

1

� B

2

)

�

= B

�

2

� B

�

1

= B

2

� B

1

. Hene the algebra of

intertwining Bessel distributions is ommutative and hene W( 

v

) is multipliity free.

A smooth irreduible admissible representation (�

v

; V

�

v

) of GL

n

(k

v

) whih possesses a

Whittaker model is alled generi or non-degenerate. Gelfand and Kazhdan in addition

show that �

v

is generi i� its ontragredient e�

v

is generi, in fat that e� ' �

�

where � is the

outer automorphism g

�

=

t

g

�1

, and in this ase the Whittaker model for e�

v

an be obtained

as W(e�

v

;  

�1

v

) = f

f

W (g) = W (w

n

t

g

�1

) jW 2 W(�;  

v

)g.

As a onsequene of the loal uniqueness of the Whittaker model we an onlude a

global uniqueness. If (�; V

�

) is an irreduible smooth admissible representation of GL

n

(A )

then � fators as a restrited tensor produt of loal representations � ' 


0

�

v

taken over all

plaes v of k [14,18℄. Consequently we have a ontinuous embedding V

�

v

,! V

�

for eah loal

omponent. Hene any Whittaker funtional � on V

�

determines a family of loal Whittaker

funtionals �

v

on eah V

�

v

and onversely suh that � = 


0

�

v

. Hene global uniqueness

follows from the loal uniqueness. Moreover, one we �x the isomorphism of V

�

with 


0

V

�

v

and de�ne global and loal Whittaker funtions via � and the orresponding family �

v

we

have a fatorization of global Whittaker funtions

W

�

(g) =

Y

v

W

�

v

(g

v

)

for � 2 V

�

whih are fatorizable in the sense that � = 


0

�

v

orresponds to a pure tensor.

As we will see, this fatorization, whih is a diret onsequene of the uniqueness of the

Whittaker model, plays a most important role in the development of Eulerian integrals for

GL

n

.

Now let us see what this means for our uspidal representations (�; V

�

) of GL

n

(A ). We

have seen that for any smooth usp form ' 2 V

�

we have the Fourier expansion

'(g) =

X

2N

n�1

(k)nGL

n�1

(k)

W

'

��



1

�

g

�

:

We an thus onlude that W(�;  ) 6= 0 and that � is (globally) generi with Whittaker

funtional

�(') = W

'

(e) =

Z

'(ng) 

�1

(n) dn:

Thus ' is ompletely determined by its assoiated Whittaker funtionW

'

. From the unique-

ness of the global Whittaker model we an derive the Multipliity One Theorem of Piatetski-

Shapiro [48℄ and Shalika [62℄.

Theorem (Multipliity One) Let (�; V

�

) be an irreduible smooth admissible represen-

tation of GL

n

(A ). Then the multipliity of � in the spae of usp forms on GL

n

(A ) is at

most one.

Proof: Suppose that � has two realizations (�

1

; V

�

1

) and (�

2

; V

�

2

) in the spae of usp forms

on GL

n

(A ). Let '

i

2 V

�

i

be the two usp forms assoiated to the vetor � 2 V

�

. Then we

have two nonzero Whittaker funtionals on V

�

, namely �

i

(�) = W

'

i

(e). By the uniqueness
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of Whittaker models, there is a nonzero onstant  suh that �

1

= �

2

. But then we have

W

'

1

(g) = �

1

(�(g)�) = �

2

(�(g)�) = W

'

2

(g) for all g 2 GL

n

(A ). Thus

'

1

(g) =

X

2N

n�1

(k)nGL

n�1

(k)

W

'

1

��



1

�

g

�

= 

X

2N

n�1

(k)nGL

n�1

(k)

W

'

2

��



1

�

g

�

= '

2

(g):

But then V

�

1

and V

�

2

have a non-trivial intersetion. Sine they are irreduible representa-

tions, they must then oinide. �

1.3 Kirillov models and the Strong Multipliity One Theorem

The Multipliity One Theorem an be signi�antly strengthened. The Strong Multipliity

One Theorem is the following.

Theorem (Strong Multipliity One) Let (�

1

; V

�

1

) and (�

2

; V

�

2

) be two uspidal repre-

sentations of GL

n

(A ). Suppose there is a �nite set of plaes S suh that for all v =2 S we

have �

1;v

' �

2;v

. Then �

1

= �

2

.

There are two proofs of this theorem. One is based on the theory of L-funtions and

we will ome to it in Setion 4. The original proof of Piatetski-Shapiro [48℄ is based on the

Kirillov model of a loal generi representation.

Let k

v

be a loal �eld and let (�

v

; V

�

v

) be an irreduible admissible smooth generi

representation of GL

n

(k

v

), suh as a loal omponent of a uspidal representation �. Sine �

v

is generi it has its Whittaker model W(�

v

;  

v

). Eah Whittaker funtion W 2 W(�

v

;  

v

),

sine it is a funtion on GL

n

(k

v

), an be restrited to the miraboli subgroup P

n

(k

v

). A

fundamental result of Bernstein and Zelevinsky in the non-arhimedean ase [1℄ and Jaquet

and Shalika in the arhimedean ase [36℄ says that the map �

v

7! W

�

v

j

P

n

(k

v

)

is injetive.

Hene the representation has a realization on a spae of funtions on P

n

(k

v

). This is the

Kirillov model

K(�

v

;  

v

) = fW (p)jW 2 W(�

v

;  

v

)g:

P

n

(k

v

) ats naturally by right translation on K(�

v

;  

v

) and the ation of all of GL

n

(k

v

) an

be obtained by transport of struture. But for now, it is the struture of K(�

v

;  

v

) as a

representation of P

n

(k

v

) whih is of interest.

For k

v

a non-arhimedean �eld, let (�

v

; V

�

v

) be the ompatly indued representation

�

v

= ind

P

n

(k

v

)

N

n

(k

v

)

( 

v

). Then Bernstein and Zelevinsky have analyzed the representations of

P

n

(k

v

) and shown that whenever �

v

is an irreduible admissible generi representation of

GL

n

(k

v

) then K(�

v

;  

v

) ontains V

�

v

as a P

n

(k

v

) sub-representation and if �

v

is superuspidal

then K(�

v

;  

v

) = V

�

v

[1℄.

For k

v

arhimedean, then we let (�

v

; V

�

v

) be the smooth vetors in the irreduible smooth

unitarily indued representation Ind

P

n

(k

v

)

N

n

(k

v

)

( 

v

). Then Jaquet and Shalika have shown that

as long as �

v

is an irreduible admissible smooth unitary representation of GL

n

(k

v

) then in

fat K(�

v

;  

v

) = V

�

v

as representations of P

n

(k

v

) [36, Remark 3.15℄.
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n

Therefore, for a given plae v the loal Kirillov models of any two irreduible admissible

generi smooth unitary representations have a ertain P

n

(k

v

)-submodule in ommon, namely

V

�

v

.

Let us now return to Piatetski-Shapiro's proof of the Strong Multipliity One Theorem

[48℄.

Proof: We begin with our uspidal representations �

1

and �

2

. Sine �

1

and �

2

are irreduible,

it suÆes to �nd a usp form ' 2 V

�

1

\V

�

2

. If we let B

n

denote the Borel subgroup of upper

triangular matries in GL

n

, then B

n

(k)nB

n

(A ) is dense in GL

n

(k)nGL

n

(A ) and so it suÆes

to �nd two usp forms '

i

2 V

�

i

whih agree on B

n

(A ). But B

n

� P

n

Z

n

with Z

n

the enter.

If we let !

i

be the entral harater of �

i

then by assumption !

1;v

= !

2;v

for v =2 S and the

weak approximation theorem then implies !

1

= !

2

. So it suÆes to �nd two '

i

whih agree

on P

n

(A ). But as in the proof of the Multipliity One Theorem, via the Fourier expansion,

to show that '

1

(p) = '

2

(p) for p 2 P

n

(A ) it suÆes to show that W

'

1

(p) = W

'

2

(p). Sine

we an take eah W

'

i

to be of the form

Q

v

W

'

i;v

then this redues to a question about the

loal Kirillov models. For v =2 S we have by assumption that K(�

1;v

;  

v

) = K(�

2;v

;  

v

) and

for v 2 S we have seen that V

�

v

� K(�

1;v

;  

v

) \ K(�

2;v

;  

v

). So we an onstrut a ommon

Whittaker funtion in the restrition of W(�

i

;  ) to P

n

(A ). This ompletes the proof. �

2 Eulerian integrals for GL

n

Let f(�) again be a holomorphi usp form of weight k on H for the full modular group with

Fourier expansion

f(�) =

X

a

n

e

2�in�

:

Then Heke [25℄ assoiated to f an L-funtion

L(s; f) =

X

a

n

n

�s

and analyzed its analyti properties, namely ontinuation, order of growth, and funtional

equation, by writing it as the Mellin transform of f

�(s; f) = (2�)

�s

�(s)L(s; f) =

Z

1

0

f(iy)y

s

d

�

y:

An appliation of the modular transformation law for f(�) under the transformation � 7!

�1=� gives the funtional equation

�(s; f) = (�1)

k=2

�(k � s; f):

Moreover, if f was an eigenfuntion of all Heke operators then L(s; f) had an Euler produt

expansion

L(s; f) =

Y

p

(1� a

p

p

�s

+ p

k�1�2s

)

�1

:

We will present a similar theory for uspidal automorphi representations (�; V

�

) of

GL

n

(A ). For appliations to funtoriality via the Converse Theorem (see Leture 5) we
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will need not only the standard L-funtions L(s; �) but the twisted L-funtions L(s; �� �

0

)

for (�

0

; V

�

0

) a uspidal automorphi representation of GL

m

(A ) for m < n as well. One point

to notie from the outset is that we want to assoiate a single L-funtion to an in�nite

dimensional representation (or pair of representations). The approah we will take will be

that of integral representations, but it will broadened in the sense of Tate's thesis [64℄.

The basi referenes for this setion are Jaquet-Langlands [30℄, Jaquet, Piatetski-

Shapiro, and Shalika [31℄, and Jaquet and Shalika [36℄.

2.1 Eulerian integrals for GL

2

Let us �rst onsider the L-funtions for uspidal automorphi representations (�; V

�

) of

GL

2

(A ) with twists by an idele lass harater �, or what is the same, a (uspidal) automor-

phi representation of GL

1

(A ), as in Jaquet-Langlands [30℄.

Following Jaquet and Langlands, who were following Heke, for eah ' 2 V

�

we onsider

the integral

I(s;'; �) =

Z

k

�

nA

�

'

�

a

1

�

�(a)jaj

s�1=2

d

�

a:

Sine a usp form on GL

2

(A ) is rapidly dereasing upon restrition to A

�

as in the integral, it

follows that the integral is absolutely onvergent for all s, uniformly for Re(s) in an interval.

Thus I(s;'; �) is an entire funtion of s, bounded in any vertial strip a � Re(s) � b.

Moreover, if we let e'(g) = '(

t

g

�1

) = '(w

n

t

g

�1

) then e' 2 V

e�

and the simple hange of

variables a 7! a

�1

in the integral shows that eah integral satis�es a funtional equation of

the form

I(s;'; �) = I(1� s; e'; �

�1

):

So these integrals individually enjoy rather nie analyti properties.

If we replae ' by its Fourier expansion from Leture 1 and unfold, we �nd

I(s;'; �) =

Z

k

�

nA

�

X

2k

�

W

'

�

a

1

�

�(a)jaj

s�1=2

d

�

a

=

Z

A

�

W

'

�

a

1

�

�(a)jaj

s�1=2

d

�

a

where we have used the fat that the funtion �(a)jaj

s�1=2

is invariant under k

�

. By stan-

dard gauge estimates on Whittaker funtions [31℄ this onverges for Re(s) >> 0 after the

unfolding. As we have seen in Leture 1, if W

'

2 W(�;  ) orresponds to a deomposable

vetor ' 2 V

�

' 


0

V

�

v

then the Whittaker funtion fators into a produt of loal Whittaker

funtions

W

'

(g) =

Y

v

W

'

v

(g

v

):

Sine the harater � and the adeli absolute value fator into loal omponents and the

domain of integration A

�

also fators we �nd that our global integral naturally fators into

a produt of loal integrals

Z

A

�

W

'

�

a

1

�

�(a)jaj

s�1=2

d

�

a =

Y

v

Z

k

�

v

W

'

v

�

a

v

1

�

�

v

(a

v

)ja

v

j

s�1=2

d

�

a

v

;
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n

with the in�nite produt still onvergent for Re(s) >> 0, or

I(s;'; �) =

Y

v

	

v

(s;W

'

v

; �

v

)

with the obvious de�nition of the loal integrals

	

v

(s;W

'

v

; �

v

) =

Z

k

�

v

W

'

v

�

a

v

1

�

�

v

(a

v

)ja

v

j

s�1=2

d

�

a

v

:

Thus eah of our global integrals is Eulerian.

In this way, to � and � we have assoiated a family of global Eulerian integrals with

nie analyti properties as well as for eah plae v a family of loal integrals onvergent for

Re(s) >> 0.

2.2 Eulerian integrals for GL

n

�GL

m

with m < n

Now let (�; V

�

) be a uspidal representation of GL

n

(A ) and (�

0

; V

�

0

) a uspidal representation

of GL

m

(A ) with m < n. Take ' 2 V

�

and '

0

2 V

�

0

. At �rst blush, a natural analogue of the

integrals we onsidered for GL

2

with GL

1

twists would be

Z

GL

m

(k)nGL

m

(A )

'

�

h

I

n�m

�

'

0

(h)j det(h)j

s�(n�m)=2

dh:

This family of integrals would have all the nie analyti properties as before (entire funtions

of �nite order satisfying a funtional equation), but they would not be Eulerian exept in

the ase m = n� 1, whih proeeds exatly as in the GL

2

ase.

The problem is that the restrition of the form ' to GL

m

is too brutal to allow a nie

unfolding when the Fourier expansion of ' is inserted. Instead we will introdue projetion

operators from usp forms on GL

n

(A ) to uspidal funtions on on P

m+1

(A ) whih are given

by part of the unipotent integration through whih the Whittaker funtion is de�ned.

2.2.1 The projetion operator

In GL

n

, let Y

n;m

be the unipotent radial of the standard paraboli subgroup attahed to

the partition (m+1; 1; : : : ; 1). If  is our standard additive harater of knA , then  de�nes

a harater of Y

n;m

(A ) trivial on Y

n;m

(k) sine Y

n;m

� N

n

. The group Y

n;m

is normalized

by GL

m+1

� GL

n

and the miraboli subgroup P

m+1

� GL

m+1

is the stabilizer in GL

m+1

of

the harater  .

De�nition If '(g) is a usp form on GL

n

(A ) de�ne the projetion operator P

n

m

from usp

forms on GL

n

(A ) to uspidal funtions on P

m+1

(A ) by

P

n

m

'(p) = j det(p)j

�

�

n�m�1

2

�

Z

Y

n;m

(k)nY

n;m

(A )

'

�

y

�

p

I

n�m�1

��

 

�1

(y) dy

for p 2 P

m+1

(A ).
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As the integration is over a ompat domain, the integral is absolutely onvergent. We

�rst analyze the behavior on P

m+1

(A ).

Lemma The funtion P

n

m

'(p) is a uspidal funtion on P

m+1

(A ).

Proof: Let us let '

0

(p) denote the non-normalized projetion, i.e., for p 2 P

m+1

(A ) set

'

0

(p) = j det(p)j

�

n�m�1

2

�

P

n

m

'(p):

It suÆes to show this funtion is uspidal. Sine '(g) was a smooth funtion on GL

n

(A ),

'

0

(p) will remain smooth on P

m+1

(A ). To see that '

0

(p) is automorphi, let  2 P

m+1

(k).

Then

'

0

(p) =

Z

Y

n;m

(k)nY

n;m

(A )

'

�

y

�

 0

0 1

��

p 0

0 1

��

 

�1

(y) dy:

Sine  2 P

m+1

(k) and P

m+1

normalizes Y

n;m

and stabilizes  we may make the hange of

variable y 7!

�

 0

0 1

�

y

�

 0

0 1

�

�1

in this integral to obtain

'

0

(p) =

Z

Y

n;m

(k)nY

n;m

(A )

'

��

 0

0 1

�

y

�

p 0

0 1

��

 

�1

(y) dy:

Sine '(g) is automorphi on GL

n

(A ) it is left invariant under GL

n

(k) and we �nd that

'

0

(p) = '

0

(p) so that '

0

is indeed automorphi on P

m+1

(A ).

We next need to see that '

0

is uspidal on P

m+1

(A ). To this end, let U � P

m+1

be the

standard unipotent subgroup assoiated to the partition (n

1

; : : : ; n

r

) of m+1. Then we must

ompute the integral

Z

U(k)nU(A )

'

0

(up) du:

Inserting the de�nition of '

0

we �nd

Z

U(k)nU(A )

'

0

(up) du =

Z

U(k)nU(A )

Z

Y

n;m

(k)nY

n;m

(A )

'

�

y

�

u 0

0 1

��

p 0

0 1

��

 

�1

(y) dy du:

The group U

0

= UnY

n;m

is the standard unipotent subgroup of GL

n

assoiated to the

partition (n

1

; : : : ; n

r

; 1; : : : ; 1) of n. We may deompose this group in a seond manner. If we

let U

00

be the standard unipotent subgroup of GL

n

assoiated to the partition (n

1

; : : : ; n

r

; n�

m � 1) of n and let

e

N

n�m�1

be the subgroup of GL

n

obtained by embedding N

n�m�1

into

GL

n

by

n 7!

�

I

m+1

0

0 n

�

then U

0

=

e

N

n�m�1

n U

00

. If we extend the harater  of Y

m;n

to U

0

by making it trivial

on U, then in the deomposition U

0

=

e

N

n�m�1

n U

00

,  is dependent only on the

e

N

n�m�1
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n

omponent and there it is the standard harater  on N

n�m�1

. Hene we may rearrange

the integration to give

Z

U(k)nU(A )

'

0

(up) du

=

Z

N

n�m�1

(k)nN

n�m�1

(A )

Z

U

00

(k)nU

00

(A )

'

�

u

00

�

1 0

0 n

��

p 0

0 1

��

du

00

 

�1

(n) dy:

But sine ' is uspidal on GL

n

and U

00

is a standard unipotent subgroup of GL

n

then

Z

U

00

(k)nU

00

(A )

'

�

u

00

�

1 0

0 n

��

p 0

0 1

��

du

00

� 0

from whih it follows that

Z

U(k)nU(A )

'

0

(up) du � 0

so that '

0

is a uspidal funtion on P

m+1

(A ). �

From Leture 1, we know that uspidal funtions on P

m+1

(A ) have a Fourier expansion

summed over N

m

(k)nGL

m

(A ). Applying this expansion to our projeted usp form on

GL

n

(A ) we are led to the following result.

Lemma Let ' be a usp form on GL

n

(A ). Then for h 2 GL

m

(A ), P

n

m

'

�

h

1

�

has the

Fourier expansion

P

n

m

'

�

h

1

�

= j det(h)j

�

�

n�m�1

2

�

X

2N

m

(k)nGL

m

(k)

W

'

��

 0

0 I

n�m

��

h

I

n�m

��

with onvergene absolute and uniform on ompat subsets.

Proof: One again let

'

0

(p) = j det(p)j

�

n�m�1

2

�

P

n

m

'(p)

with p 2 P

m+1

(A ). Sine we have veri�ed that '

0

(p) is a uspidal funtion on P

m+1

(A ) we

know that it has a Fourier expansion of the form

'

0

(p) =

X

2N

m

(k)nGL

m

(k)

W

'

0

��

 0

0 1

�

p

�

where

W

'

0

(p) =

Z

N

m+1

(k)nN

m+1

(A )

'

0

(np) 

�1

(n) dn:

To obtain our expansion for P

n

m

' we need to express the right hand side in terms of ' rather

than '

0

.
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We have

W

'

0

(p) =

Z

N

m+1

(k)nN

m+1

(A )

'

0

(n

0

p) 

�1

(n

0

) dn

0

=

Z

N

m+1

(k)nN

m+1

(A )

Z

Y

n;m

(k)nY

n;m

(A )

'

�

y

�

n

0

p 0

0 1

�

g

�

 

�1

(y) dy  

�1

(n

0

) dn

0

:

It is elementary to see that the maximal unipotent subgroup N

n

of GL

n

an be fatored as

N

n

= N

m+1

nY

n;m

and if we write n = n

0

y with n

0

2 N

m+1

and y 2 Y

n;m

then  (n) =

 (n

0

) (y). Hene the above integral may be written as

W

'

0

(p) =

Z

N

n

(k)nN

n

(A )

'

�

n

�

p 0

0 I

n�m�1

��

 

�1

(n) dn = W

'

�

p 0

0 I

n�m�1

�

:

Substituting this expression into the above we �nd that

P

n

m

'

�

h

1

�

= j det(h)j

�

�

n�m�1

2

�

X

2N

m

(k)nGL

m

(k)

W

'

��

 0

0 I

n�m

��

h

I

n�m

��

and the onvergene is absolute and uniform for h in ompat subsets of GL

m

(A ). �

2.2.2 The global integrals

We now have the prerequisites for writing down a family of Eulerian integrals for usp forms

' on GL

n

twisted by automorphi forms on GL

m

for m < n. Let ' 2 V

�

be a usp form on

GL

n

(A ) and '

0

2 V

�

0

a usp form on GL

m

(A ). (Atually, we ould take '

0

to be an arbitrary

automorphi form on GL

m

(A ).) Consider the integrals

I(s;'; '

0

) =

Z

GL

m

(k)nGL

m

(A )

P

n

m

'

�

h 0

0 1

�

'

0

(h)j det(h)j

s�1=2

dh:

The integral I(s;'; '

0

) is absolutely onvergent for all values of the omplex parameter s,

uniformly in ompat subsets, sine the usp forms are rapidly dereasing. Hene it is entire

and bounded in any vertial strip as before.

Let us now investigate the Eulerian properties of these integrals. We �rst replae P

n

m

'

by its Fourier expansion.

I(s;'; '

0

) =

Z

GL

m

(k)nGL

m

(A )

P

n

m

'

�

h 0

0 I

n�m

�

'

0

(h)j det(h)j

s�1=2

dh

=

Z

GL

m

(k)nGL

m

(A )

X

2N

m

(k)nGL

m

(k)

W

'

��

 0

0 I

n�m

��

h 0

0 I

n�m

��

'

0

(h)j det(h)j

s�(n�m)=2

dh:

Sine '

0

(h) is automorphi on GL

m

(A ) and j det()j = 1 for  2 GL

m

(k) we may interhange

the order of summation and integration for Re(s) >> 0 and then reombine to obtain

I(s;'; '

0

) =

Z

N

m

(k)nGL

m

(A )

W

'

�

h 0

0 I

n�m

�

'

0

(h)j det(h)j

s�(n�m)=2

dh:
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n

This integral is absolutely onvergent for Re(s) >> 0 by the gauge estimates of [31, Setion

13℄ and this justi�es the interhange.

Let us now integrate �rst over N

m

(k)nN

m

(A ). Reall that for n 2 N

m

(A ) � N

n

(A ) we

have W

'

(ng) =  (n)W

'

(g). Hene we have

I(s;'; '

0

) =

Z

N

m

(A )n GL

m

(A )

Z

N

m

(k)nN

m

(A )

W

'

��

n 0

0 I

n�m

��

h 0

0 I

n�m

��

'

0

(nh) dn j det(h)j

s�(n�m)=2

dh

=

Z

N

m

(A )n GL

m

(A )

W

'

�

h 0

0 I

n�m

�

Z

N

m

(k)nN

m

(A )

 (n)'

0

(nh) dn j det(h)j

s�(n�m)=2

dh

=

Z

N

m

(A )n GL

m

(A )

W

'

�

h 0

0 I

n�m

�

W

0

'

0

(h)j det(h)j

s�(n�m)=2

dh

= 	(s;W

'

;W

0

'

0

)

where W

0

'

0

(h) is the  

�1

-Whittaker funtion on GL

m

(A ) assoiated to '

0

, i.e.,

W

0

'

0

(h) =

Z

N

m

(k)nN

m

(A )

'

0

(nh) (n) dn;

and we retain absolute onvergene for Re(s) >> 0.

From this point, the fat that the integrals are Eulerian is a onsequene of the uniqueness

of the Whittaker model for GL

n

. Take ' a smooth usp form in a uspidal representation �

of GL

n

(A ). Assume in addition that ' is fatorizable, i.e., in the deomposition � = 


0

�

v

of

� into a restrited tensor produt of loal representations, ' = 
'

v

is a pure tensor. Then

as we have seen there is a hoie of loal Whittaker models so that W

'

(g) =

Q

W

'

v

(g

v

).

Similarly for deomposable '

0

we have the fatorization W

0

'

0

(h) =

Q

W

0

'

0

v

(h

v

).

If we substitute these fatorizations into our integral expression, then sine the domain of

integration fators N

m

(A )nGL

m

(A ) =

Q

N

m

(k

v

)nGL

m

(k

v

) we see that our integral fators

into a produt of loal integrals

	(s;W

'

;W

0

'

0

) =

Y

v

Z

N

m

(k

v

)nGL

m

(k

v

)

W

'

v

�

h

v

0

0 I

n�m

�

W

0

'

0

v

(h

v

)j det(h

v

)j

s�(n�m)=2

v

dh

v

:

If we denote the loal integrals by

	

v

(s;W

'

v

;W

0

'

0

v

) =

Z

N

m

(k

v

)nGL

m

(k

v

)

W

'

v

�

h

v

0

0 I

n�m

�

W

0

'

0

v

(h

v

)j det(h

v

)j

s�(n�m)=2

v

dh

v

;

whih onverges for Re(s) >> 0 by the gauge estimate of [31, Prop. 2.3.6℄, we see that we

now have a family of Eulerian integrals.

Now let us return to the question of a funtional equation. As in the ase of GL

2

, the

funtional equation is essentially a onsequene of the existene of the outer automorphism

g 7! �(g) = g

�

=

t

g

�1

of GL

n

. If we de�ne the ation of this automorphism on automorphi

forms by setting e'(g) = '(g

�

) = '(w

n

g

�

) and let

e

P

n

m

= � ÆP

n

m

Æ � then our integrals naturally

satisfy the funtional equation

I(s;'; '

0

) =

e

I(1� s; e'; e'

0

)
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where

e

I(s;'; '

0

) =

Z

GL

m

(k)nGL

m

(A )

e

P

n

m

'

�

h

1

�

'

0

(h)j det(h)j

s�1=2

dh:

We have established the following result.

Theorem 2.1 Let ' 2 V

�

be a usp form on GL

n

(A ) and '

0

2 V

�

0

a usp form on GL

m

(A )

with m < n. Then the family of integrals I(s;'; '

0

) de�ne entire funtions of s, bounded in

vertial strips, and satisfy the funtional equation

I(s;'; '

0

) =

e

I(1� s; e'; e'

0

):

Moreover the integrals are Eulerian and if ' and '

0

are fatorizable, we have

I(s;'; '

0

) =

Y

v

	

v

(s;W

'

v

;W

0

'

0

v

)

with onvergene absolute and uniform for Re(s) >> 0.

The integrals ourring in the right hand side of our funtional equation are again Eule-

rian. One an unfold the de�nitions to �nd �rst that

e

I(1� s; e'; e'

0

) =

e

	(1� s; �(w

n;m

)

f

W

'

;

f

W

0

'

0

)

where the unfolded global integral is

e

	(s;W;W

0

) =

Z Z

W

0

�

h

x I

n�m�1

1

1

A

dx W

0

(h)j det(h)j

s�(n�m)=2

dh

with the h integral over N

m

(A )nGL

m

(A ) and the x integral over M

n�m�1;m

(A ), the spae of

(n�m� 1)�m matries, � denoting right translation, and w

n;m

the Weyl element w

n;m

=

�

I

m

w

n�m

�

with w

n�m

=

0

�

1

.

.

.

1

1

A

the standard long Weyl element in GL

n�m

. Also,

for W 2 W(�;  ) we set

f

W (g) = W (w

n

g

�

) 2 W(e�;  

�1

). The extra unipotent integration

is the remnant of

e

P

n

m

. As before,

e

	(s;W;W

0

) is absolutely onvergent for Re(s) >> 0. For

' and '

0

fatorizable as before, these integrals

e

	(s;W

'

;W

0

'

0

) will fator as well. Hene we

have

e

	(s;W

'

;W

0

'

0

) =

Y

v

e

	

v

(s;W

'

v

;W

0

'

0

v

)

where

e

	

v

(s;W

v

;W

0

v

) =

Z Z

W

v

0

�

h

v

x

v

I

n�m�1

1

1

A

dx

v

W

0

v

(h

v

)j det(h

v

)j

s�(n�m)=2

dh

v

where now with the h

v

integral is over N

m

(k

v

)nGL

m

(k

v

) and the x

v

integral is over the

matrix spae M

n�m�1;m

(k

v

). Thus, oming bak to our funtional equation, we �nd that the

right hand side is Eulerian and fators as

e

I(1� s; e'; e'

0

) =

e

	(1� s; �(w

n;m

)

f

W

'

;

f

W

0

'

0

) =

Y

v

e

	

v

(1� s; �(w

n;m

)

f

W

'

v

;

f

W

0

'

0

v

):
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n

2.3 Eulerian integrals for GL

n

�GL

n

The paradigm for integral representations of L-funtions for GL

n

�GL

n

is not Heke but

rather the lassial papers of Rankin [52℄ and Selberg [54℄. These were �rst interpreted in the

framework of automorphi representations by Jaquet for GL

2

�GL

2

[28℄ and then Jaquet

and Shalika in general [36℄.

Let (�; V

�

) and (�

0

; V

�

0

) be two uspidal representations of GL

n

(A ). Let ' 2 V

�

and

'

0

2 V

�

0

be two usp forms. The analogue of the onstrution above would be simply

Z

GL

n

(k)nGL

n

(A )

'(g)'

0

(g)j det(g)j

s

dg:

This integral is essentially the L

2

-inner produt of ' and '

0

and is not suitable for de�ning

an L-funtion, although it will our as a residue of our integral at a pole. Instead, follow-

ing Rankin and Selberg, we use an integral representation that involves a third funtion:

an Eisenstein series on GL

n

(A ). This family of Eisenstein series is onstruted using the

miraboli subgroup one again.

2.3.1 The miraboli Eisenstein series

To onstrut our Eisenstein series we return to the observation that P

n

nGL

n

' k

n

� f0g.

If we let S(A

n

) denote the Shwartz{Bruhat funtions on A

n

, then eah � 2 S de�nes a

smooth funtion on GL

n

(A ), left invariant by P

n

(A ), by g 7! �((0; : : : ; 0; 1)g) = �(e

n

g). Let

� be a unitary idele lass harater. (For our appliation � will be determined by the entral

haraters of � and �

0

.) Consider the funtion

F (g;�; s; �) = j det(g)j

s

Z

A

�

�(ae

n

g)jaj

ns

�(a) d

�

a:

If we let P

0

n

= Z

n

P

n

be the paraboli of GL

n

assoiated to the partition (n� 1; 1) then one

heks that for p

0

=

�

h y

0 d

�

2 P

0

n

(A ) with h 2 GL

n�1

(A ) and d 2 A

�

we have,

F (p

0

g;�; s; �) = j det(h)j

s

jdj

�(n�1)s

�(d)

�1

F (g;�; s; �) = Æ

s

P

0

n

(p

0

)�

�1

(d)F (g;�; s; �);

with the integral absolutely onvergent for Re(s) > 1=n, so that if we extend � to a harater

of P

0

n

by �(p

0

) = �(d) in the above notation we have that F (g;�; s; �) is a smooth setion

of the normalized indued representation Ind

GL

n

(A )

P

0

n

(A )

(Æ

s�1=2

P

0

n

�). Sine the induing harater

Æ

s�1=2

P

0

n

� of P

0

n

(A ) is invariant under P

0

n

(k) we may form Eisenstein series from this family of

setions by

E(g;�; s; �) =

X

2P

0

n

(k)nGL

n

(k)

F (g;�; s; �):

If we replae F in this sum by its de�nition we an rewrite this Eisenstein series as

E(g;�; s; �) = j det(g)j

s

Z

k

�

nA

�

X

�2k

n

�f0g

�(a�g)jaj

ns

�(a) d

�

a

= j det(g)j

s

Z

k

�

nA

�

�

0

�

(a; g)jaj

ns

�(a) d

�

a
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and this �rst expression is onvergent absolutely for Re(s) > 1 [36℄.

The seond expression essentially gives the Eisenstein series as the Mellin transform of

the Theta series

�

�

(a; g) =

X

�2k

n

�(a�g);

where in the above we have written

�

0

�

(a; g) =

X

�2k

n

�f0g

�(a�g) = �

�

(a; g)� �(0):

This allows us to obtain the analyti properties of the Eisenstein series from the Poisson

summation formula for �

�

, namely

�

�

(a; g) =

X

�2k

n

�(a�g) =

X

�2k

n

�

a;g

(�)

=

X

�2k

n

d

�

a;g

(�) =

X

�2k

n

jaj

�n

j det(g)j

�1

b

�(a

�1

�

t

g

�1

)

= jaj

�n

j det(g)j

�1

�

^

�

(a

�1

;

t

g

�1

)

where the Fourier transform

^

� on S(A

n

) is de�ned by

^

�(x) =

Z

A

�

�(y) (y

t

x) dy:

This allows us to write the Eisenstein series as

E(g;�; s; �) = j det(g)j

s

Z

jaj�1

�

0

�

(a; g)jaj

ns

�(a) d

�

a

+ j det(g)j

s�1

Z

jaj�1

�

0

^

�

(a;

t

g

�1

)jaj

n(1�s)

�

�1

(a) d

�

a+ Æ(s)

where

Æ(s) =

(

0 if � is rami�ed

��(0)

j det(g)j

s

s+i�

+ 

^

�(0)

jdet(g)j

s�1

s�1+i�

if �(a) = jaj

in�

with � 2 R

with  a non-zero onstant. From this we derive easily the basi properties of our Eisenstein

series [36, Setion 4℄.

Proposition 2.1 The Eisenstein series E(g;�; s; �) has a meromorphi ontinuation to all

of C with at most simple poles at s = �i�; 1 � i� when � is unrami�ed of the form �(a) =

jaj

in�

. As a funtion of g it is smooth of moderate growth and as a funtion of s it is bounded

in vertial strips (away from the possible poles), uniformly for g in ompat sets. Moreover,

we have the funtional equation

E(g;�; s; �) = E(g

�

;

^

�; 1� s; �

�1

)

where g

�

=

t

g

�1

.

Note that under the enter the Eisenstein series transforms by the entral harater �

�1

.
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2.3.2 The global integrals

Now let us return to our Eulerian integrals. Let � and �

0

be our irreduible uspidal rep-

resentations. Let their entral haraters be ! and !

0

. Set � = !!

0

. Then for eah pair of

usp forms ' 2 V

�

and '

0

2 V

�

0

and eah Shwartz-Bruhat funtion � 2 S(A

n

) set

I(s;'; '

0

;�) =

Z

Z

n

(A ) GL

n

(k)nGL

n

(A )

'(g)'

0

(g)E(g;�; s; �) dg:

Sine the two usp forms are rapidly dereasing on Z

n

(A )GL

n

(k)nGL

n

(A ) and the Eisenstein

is only of moderate growth, we see that the integral onverges absolutely for all s away from

the poles of the Eisenstein series and is hene meromorphi. It will be bounded in vertial

strips away from the poles and satis�es the funtional equation

I(s;'; '

0

;�) = I(1� s; e'; e'

0

;

^

�);

oming from the funtional equation of the Eisenstein series, where we still have e'(g) =

'(g

�

) = '(w

n

g

�

) 2 V

e�

and similarly for e'

0

.

These integrals will be entire unless we have �(a) = !(a)!

0

(a) = jaj

in�

is unrami�ed. In

that ase, the residue at s = �i� will be

Res

s=�i�

I(s;'; '

0

;�) = ��(0)

Z

Z

n

(A ) GL

n

(A )n GL

n

(A )

'(g)'

0

(g)j det(g)j

�i�

dg

and at s = 1� i� we an write the residue as

Res

s=1�i�

I(s;'; '

0

;�) = 

^

�(0)

Z

Z

n

(A ) GL

n

(k)nGL

n

(A )

e'(g)e'

0

(g)j det(g)j

i�

dg:

Therefore these residues de�ne GL

n

(A ) invariant pairings between � and �

0


 j det j

�i�

or

equivalently between e� and e�

0


 j det j

i�

. Hene a residues an be non-zero only if � '

e�

0


 j det j

i�

and in this ase we an �nd ', '

0

, and � suh that indeed the residue does not

vanish.

We have yet to hek that our integrals are Eulerian. To this end we take the integral,

replae the Eisenstein series by its de�nition, and unfold:

I(s;'; '

0

;�) =

Z

Z

n

(A ) GL

n

(k)nGL

n

(A )

'(g)'

0

(g)E(g;�; s; �) dg

=

Z

Z

n

(A ) P

0

n

(k)nGL

n

(A )

'(g)'

0

(g)F (g;�; s; �) dg

=

Z

Z

n

(A ) P

n

(k)nGL

n

(A )

'(g)'

0

(g)j det(g)j

s

Z

A

�

�(ae

n

g)jaj

ns

�(a) da dg

=

Z

P

n

(k)nGL

n

(A )

'(g)'

0

(g)�(e

n

g)j det(g)j

s

dg:

We next replae ' by its Fourier expansion in the form

'(g) =

X

2N

n

(k)nP

n

(k)

W

'

(g)
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and unfold to �nd

I(s;'; '

0

;�) =

Z

N

n

(k)nGL

n

(A )

W

'

(g)'

0

(g)�(e

n

g)j det(g)j

s

dg

=

Z

N

n

(A )n GL

n

(A )

W

'

(g)

Z

N

n

(k)nN

n

(A )

'

0

(ng) (n) dn �(e

n

g)j det(g)j

s

dg

=

Z

N

n

(A )n GL

n

(A )

W

'

(g)W

0

'

0

(g)�(e

n

g)j det(g)j

s

dg

= 	(s;W

'

;W

0

'

0

;�):

This expression onverges for Re(s) >> 0 by the gauge estimates as before.

To ontinue, we assume that ', '

0

and � are deomposable tensors under the isomor-

phisms � ' 


0

�

v

, �

0

' 


0

�

0

v

, and S(A

n

) ' 


0

S(k

n

v

) so that we have W

'

(g) =

Q

v

W

'

v

(g

v

),

W

0

'

0

(g) =

Q

v

W

0

'

0

v

(g

v

) and �(g) =

Q

v

�

v

(g

v

). Then, sine the domain of integration also

naturally fators we an deompose this last integral into an Euler produt and now write

	(s;W

'

;W

0

'

0

;�) =

Y

v

	

v

(s;W

'

v

;W

0

'

0

v

;�

v

);

where

	

v

(s;W

'

v

;W

0

'

0

v

;�

v

) =

Z

N

n

(k

v

)nGL

n

(k

v

)

W

'

v

(g

v

)W

0

'

0

v

(g

v

)�

v

(e

n

g

v

)j det(g

v

)j

s

dg

v

;

still with onvergene for Re(s) >> 0 by the loal gauge estimates. One again we see that

the Euler fatorization is a diret onsequene of the uniqueness of the Whittaker models.

Theorem 2.2 Let ' 2 V

�

and '

0

2 V

�

0

usp forms on GL

n

(A ) and let � 2 S(A

n

). Then

the family of integrals I(s;'; '

0

;�) de�ne meromorphi funtions of s, bounded in vertial

strips away from the poles. The only possible poles are simple and our i� � ' e�

0


 j det j

i�

with � real and are then at s = �i� and s = 1� i� with residues as above. They satisfy the

funtional equation

I(s;'; '

0

;�) = I(1� s;

f

W

'

;

f

W

0

'

0

;

^

�):

Moreover, for ', '

0

, and � fatorizable we have that the integrals are Eulerian and we have

I(s;'; '

0

;�) =

Y

v

	

v

(s;W

'

v

;W

0

'

0

v

;�

v

)

with onvergene absolute and uniform for Re(s) >> 0.

We remark in passing that the right hand side of the funtional equation also unfolds as

I(1� s; e'; e'

0

;

^

�) =

Z

N

n

(A )n GL

n

(A )

f

W

'

(g)

f

W

0

'

0

(g)

^

�(e

n

g)j det(g)j

1�s

dg

=

Y

v

	

v

(1� s;

f

W

'

;

f

W

0

'

0

;

^

�)

with onvergene for Re(s) << 0.

We note again that if these integrals are not entire, then the residues give us invariant

pairings between the uspidal representations and hene tell us strutural fats about the

relation between these representations.
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3 Loal L-funtions

If (�; V

�

) is a uspidal representation of GL

n

(A ) and (�

0

; V

�

0

) is a uspidal representation of

GL

m

(A ) we have assoiated to the pair (�; �

0

) a family of Eulerian integrals fI(s;'; '

0

)g (or

fI(s;'; '

0

;�)g if m = n) and through the Euler fatorization we have for eah plae v of

k a family of loal integrals f	

v

(s;W

v

;W

0

v

)g (or f	

v

(s;W

v

;W

0

v

;�

v

)g) attahed to the pair

of loal omponents (�

v

; �

0

v

). In this leture we would like to attah a loal L-funtion (or

loal Euler fator) L(s; �

v

� �

0

v

) to suh a pair of loal representations through the family of

loal integrals and analyze its basi properties, inluding the loal funtional equation. The

paradigm for suh an analysis of loal L-funtions is Tate's thesis [64℄. The mehanis of

the arhimedean and non-arhimedean theories are slightly di�erent so we will treat them

separately, beginning with the non-arhimedean theory.

3.1 The non-arhimedean loal fators

For this setion we will let k denote a non-arhimedean loal �eld. We will let o denote the

ring of integers of k and p the unique prime ideal of o. Fix a generator $ of p. We let q be the

residue degree of k, so q = jo=pj = j$j

�1

. We �x a non-trivial ontinuous additive harater

 of k. (�; V

�

) and (�

0

; V

�

0

) will now be the smooth vetors in irreduible admissible unitary

generi representations of GL

n

(k) and GL

m

(k) respetively, as is true for loal omponents

of uspidal representations. We will let ! and !

0

denote their entral haraters.

The basi referene for this setion is the paper of Jaquet, Piatetski-Shapiro, and Shalika

[33℄.

3.1.1 The loal L-funtion

For eah pair of Whittaker funtions W 2 W(�;  ) and W

0

2 W(�

0

;  

�1

) and in the ase

n = m eah Shwartz-Bruhat funtion � 2 S(k

n

) we have de�ned loal integrals

	(s;W;W

0

) =

Z

N

m

(k)nGL

m

(k)

W

�

h

I

n�m

�

W

0

(h)j det(h)j

s�(n�m)=2

dh

e

	(s;W;W

0

) =

Z

N

m

(k)nGL

m

(k)

Z

M

n�m�1;m

(k)

W

0

�

h

x I

n�m�1

1

1

A

dx W

0

(h)j det(h)j

s�(n�m)=2

dh

in the ase m < n and

	(s;W;W

0

;�) =

Z

N

n

(k)nGL

n

(k)

W (g)W

0

(g)�(e

n

g)j det(g)j

s

dg

in the ase n = m, both onvergent for Re(s) >> 0. To make the notation more onvenient

for what follows, in the ase m < n for any 0 � j � n�m� 1 let us set

	

j

(s : W;W

0

) =

Z

N

m

(k)nGL

m

(k)

Z

M

j;m

(k)

W

0

�

h

x I

j

I

n�m�j

1

A

dx W

0

(h)j det(h)j

s�(n�m)=2

dh;



23

so that 	(s;W;W

0

) = 	

0

(s;W;W

0

) and

e

	(s;W;W

0

) = 	

n�m�1

(s;W;W

0

), whih is still

absolutely onvergent for Re(s) >> 0.

We need to understand what type of funtions of s these loal integrals are. To this

end, we need to understand the loal Whittaker funtions. So let W 2 W(�;  ). Sine W

is smooth, there is a ompat open subgroup K, of �nite index in the maximal ompat

subgroup K

n

= GL

n

(o), so that W (gk) = W (g) for all k 2 K. If we let fk

i

g be a set of oset

representatives of GL

n

(o)=K, using thatW transforms on the left under N

n

(k) via  and the

Iwasawa deomposition on GL

n

(k) we see that W (g) is ompletely determined by the values

ofW (ak

i

) =W

i

(a) for a 2 A

n

(k), the maximal split (diagonal) torus of GL

n

(k). So it suÆes

to understand a general Whittaker funtion on the torus. Let �

i

, i = 1; : : : ; n�1, denote the

standard simple roots of GL

n

, so that if a =

0

B

�

a

1

.

.

.

a

n

1

C

A

2 A

n

(k) then �

i

(a) = a

i

=a

i+1

.

By a �nite funtion on A

n

(k) we mean a ontinuous funtion whose translates span a �nite

dimensional vetor spae [30, 31, Setion 2.2℄. (For the �eld k

�

itself the �nite funtions

are spanned by produts of haraters and powers of the valuation map.) The fundamental

result on the asymptotis of Whittaker funtions is then the following [31, Prop. 2.2℄.

Proposition 3.1 Let � be a generi representation of GL

n

(k). Then there is a �nite set of

�nite funtions X(�) = f�

i

g on A

n

(k), depending only on �, so that for every W 2 W(�;  )

there are Shwartz {Bruhat funtions �

i

2 S(k

n�1

) suh that for all a 2 A

n

(k) with a

n

= 1

we have

W (a) =

X

X(�)

�

i

(a)�

i

(�

1

(a); : : : ; �

n�1

(a)):

The �nite set of �nite funtions X(�) whih our in the asymptotis near 0 of the Whit-

taker funtions ome from analyzing the Jaquet module W(�;  )=h�(n)W � W jn 2 N

n

i

whih is naturally an A

n

(k){module. Note that due to the Shwartz-Bruhat funtions, the

Whittaker funtions vanish whenever any simple root �

i

(a) beomes large. The gauge esti-

mates alluded to in Setion 2 are a onsequene of this expansion and the one in Proposition

3.6.

Several nie onsequenes follow from inserting these formulas for W and W

0

into the

loal integrals 	

j

(s;W;W

0

) or 	(s;W;W

0

;�) [31, 33℄.

Proposition 3.2 The loal integrals 	

j

(s;W;W

0

) or 	(s;W;W

0

;�) satisfy the following

properties.

1. Eah integral onverges for Re(s) >> 0. For � and �

0

unitary, as we have assumed,

they onverge absolutely for Re(s) � 1. For � and �

0

tempered, we have absolute

onvergene for Re(s) > 0.

2. Eah integral de�nes a rational funtion in q

�s

and hene meromorphially extends to

all of C .

3. Eah suh rational funtion an be written with a ommon denominator whih depends

only on the �nite funtions X(�) and X(�

0

) and hene only on � and �

0

.
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In deriving these when m < n� 1 note that one has that

W

0

�

h

x I

j

I

n�m�j�1

1

A

6= 0

implies that x lies in a ompat set independent of h 2 GL

m

(k) [33℄.

Let I

j

(�; �

0

) denote the omplex linear span of the loal integrals 	

j

(s;W;W

0

) if m < n

and I(�; �

0

) the omplex linear span of the 	(s;W;W

0

;�) if m = n. These are then all

subspaes of C (q

�s

) whih have \bounded denominators" in the sense of (3). In fat, these

subspaes have more struture { they are modules for C [q

s

; q

�s

℄ � C (q

�s

). To see this, note

that for any h 2 GL

m

(k) we have

	

j

�

s; �

�

h

I

n�m

�

W;�

0

(h)W

0

�

= j det(h)j

�s�j+(n�m)=2

	

j

(s;W;W

0

)

and

	(s; �(h)W;�

0

(h)W

0

; �(h)�) = j det(h)j

�s

	(s;W;W

0

;�):

So by varying h and multiplying by salars, we see that eah I

j

(�; �

0

) and I(�; �

0

) is losed

under multipliation by C [q

s

; q

�s

℄. Sine we have bounded denominators, we an onlude:

Proposition 3.3 Eah I

j

(�; �

0

) and I(�; �

0

) is a frational C [q

s

; q

�s

℄{ideal of C (q

�s

).

Note that C [q

s

; q

�s

℄ is a prinipal ideal domain, so that eah frational ideal I

j

(�; �

0

) has

a single generator, whih we all Q

j;�;�

0

(q

�s

), as does I(�; �

0

), whih we all Q

�;�

0

(q

�s

).

However, we an say more. In the ase m < n reall that from what we have said about

the Kirillov model that when we restrit Whittaker funtions in W(�;  ) to the embedded

GL

m

(k) � P

n

(k) we get all funtions of ompat support on GL

m

(k) transforming by  .

Using this freedom for our hoie of W 2 W(�;  ) one an show that in fat the onstant

funtion 1 lies in I

j

(�; �

0

). In the ase m = n one an redue to a sum of integrals over

P

n

(k) and then use the freedom one has in the Kirillov model, plus the omplete freedom

in the hoie of � to show that one again 1 2 I(�; �

0

). The onsequene of this is that

our generator an be taken to be of the form Q

j;�;�

0

(q

�s

) = P

j;�;�

0

(q

s

; q

�s

)

�1

for m < n or

Q

�;�

0

(q

�s

) = P

�;�

0

(q

s

; q

�s

)

�1

for appropriate polynomials in C [q

s

; q

�s

℄. Moreover, sine q

s

and q

�s

are units in C [q

s

; q

�s

℄ we an always normalize our generator to be of the form

P

j;�;�

0

(q

�s

)

�1

or P

�;�

0

(q

�s

)

�1

where the polynomial P (X) satis�es P (0) = 1.

Finally, in the ase m < n one an show by a rather elementary although somewhat

involved manipulation of the integrals that all of the ideals I

j

(�; �

0

) are the same [33, Setion

2.7℄. We will write this ideal as I(�; �

0

) and its generator as P

�;�

0

(q

�s

)

�1

.

This gives us the de�nition of our loal L-funtion.

De�nition Let � and �

0

be as above. Then L(s; � � �

0

) = P

�;�

0

(q

�s

)

�1

is the normalized

generator of the frational ideal I(�; �

0

) formed by the family of loal integrals. If �

0

= 1 is

the trivial representation of GL

1

(k) then we write L(s; �) = L(s; � � 1).
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One an show easily that the ideal I(�; �

0

) is independent of the harater  used in

de�ning the Whittaker models, so that L(s; � � �

0

) is independent of the hoie of  . So it

is not inluded in the notation. Also, note that for �

0

= � an automorphi representation

(harater) of GL

1

(A ) we have the identity L(s; � � �) = L(s; � 
 �) where � 
 � is the

representation of GL

n

(A ) on V

�

given by � 
 �(g)� = �(det(g))�(g)�.

We summarize the above in the following Theorem.

Theorem 3.1 Let � and �

0

be as above. The family of loal integrals form a C [q

s

; q

�s

℄{

frational ideal I(�; �

0

) in C (q

�s

) with generator the loal L-funtion L(s; � � �

0

).

Another useful way of thinking of the loal L-funtion is the following. L(s; � � �

0

) is

the minimal (in terms of degree) funtion of the form P (q

�s

)

�1

, with P (X) a polynomial

satisfying P (0) = 1, suh that the ratios

	(s;W;W

0

)

L(s; � � �

0

)

(resp.

	(s;W;W

0

;�)

L(s; � � �

0

)

) are entire for

all W 2 W(�;  ) and W

0

2 W(�

0

;  

�1

), and if neessary � 2 S(k

n

). That is, L(s; � � �

0

) is

the standard Euler fator determined by the poles of the funtions in I(�; �

0

).

One should note that sine the L-fator is a generator of the ideal I(�; �

0

), then in

partiular it lies in I(�; �

0

). Sine this ideal is spanned by our loal integrals, we have the

following useful Corollary.

Corollary There are a �nite olletion of W

i

2 W(�;  ), W

0

i

2 W(�

0

;  

�1

), and if nees-

sary �

i

2 S(k

n

) suh that

L(s; � � �

0

) =

X

i

	(s;W

i

;W

0

i

) or L(s; � � �

0

) =

X

i

	(s;W

i

;W

0

i

;�

i

):

For future referene, let us set

e(s;W;W

0

) =

	(s;W;W

0

)

L(s; � � �

0

)

; e

j

(s;W;W

0

) =

	

j

(s;W;W

0

)

L(s; � � �

0

)

; ~e(s;W;W

0

) =

e

	(s;W;W

0

)

L(s; � � �

0

)

;

and

e(s;W;W

0

;�) =

	(s;W;W

0

;�)

L(s; � � �

0

)

:

Then all of these funtions are Laurent polynomials in q

�s

, i.e., elements of C [q

s

; q

�s

℄. As

suh they are entire and bounded in vertial strips. As above, there are hoies of W

i

, W

0

i

,

and if neessary �

i

suh that

P

e(s;W

i

;W

0

i

) � 1 or

P

e(s;W

i

;W

0

i

;�

i

) � 1. In partiular we

have the following result.

Corollary The funtions e(s;W;W

0

) and e(s;W;W

0

;�) are entire funtions, bounded in

vertial strips, and for eah s

0

2 C there is a hoie of W , W

0

, and if neessary � suh that

e(s

0

;W;W

0

) 6= 0 or e(s

0

;W;W

0

;�) 6= 0.
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n

3.1.2 The loal funtional equation

Either by analogy with Tate's thesis or from the orresponding global statement, we would

expet our loal integrals to satisfy a loal funtional equation. From the funtional equa-

tions for our global integrals, we would expet these to relate the integrals 	(s;W;W

0

) and

e

	(1�s; �(w

n;m

)

f

W;

f

W

0

) whenm < n and 	(s;W;W

0

;�) and 	(1�s;

f

W;

f

W

0

;

^

�) whenm = n.

This will indeed be the ase. These funtional equations will ome from interpreting the lo-

al integrals as families (in s) of quasi-invariant bilinear forms on W(�;  )�W(�

0

;  

�1

) or

trilinear forms on W(�;  )�W(�

0

;  

�1

)� S(k

n

) depending on the ase.

First, onsider the ase when m < n. In this ase we have seen that

	

�

s; �

�

h

I

n�m

�

W;�

0

(h)W

0

�

= j det(h)j

�s+(n�m)=2

	(s;W;W

0

)

and one heks that 	(1�s; �(w

n;m

)

f

W;

f

W

0

) has the same quasi-invariane as a bilinear form

on W(�;  ) � W(�

0

;  

�1

). In addition, if we let Y

n;m

denote the unipotent radial of the

standard paraboli subgroup assoiated to the partition (m + 1; 1; : : : ; 1) as before then we

have the quasi-invariane

	(s; �(y)W;W

0

) =  (y)	(s;W;W

0

)

for all y 2 Y

n;m

. One again heks that

e

	(1 � s; �(w

n;m

)

f

W;

f

W

0

) satis�es the same quasi-

invariane as a bilinear form on W(�;  )�W(�

0

;  

�1

).

For n = m we have seen that

	(s; �(h)W;�

0

(h)W

0

; �(h)�) = j det(h)j

�s

	(s;W;W

0

;�)

and it is elementary to hek that 	(1� s;

f

W;

f

W

0

;

^

�) satis�es the same quasi-invariane as

a trilinear form on W(�;  )�W(�

0

;  

�1

)� S(k

n

). Our loal funtional equations will now

follow from the following result [33, Propositions 2.10 and 2.11℄.

Proposition 3.4 (i) If m < n, then exept for a �nite number of exeptional values of q

�s

there is a unique bilinear form B

s

on W(�;  )�W(�

0

;  

�1

) satisfying

B

s

�

�

�

h

I

n�m

�

W;�

0

(h)W

0

�

= j det(h)j

�s+(n�m)=2

B

s

(W;W

0

)

and B

s

(�(y)W;W

0

) =  (y)B

s

(W;W

0

)

for all h 2 GL

m

(k) and y 2 Y

n;m

(k).

(ii) If n = m, then exept for a �nite number of exeptional values of q

�s

there is a

unique trilinear form T

s

on W(�;  )�W(�

0

;  

�1

)� S(k

n

) satisfying

T

s

(�(h)W;�

0

(h)W

0

; �(h)�) = j det(h)j

�s

T

s

(W;W

0

;�)

for all h 2 GL

n

(k).
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Let us say a few words about the proof of this proposition, beause it is another appli-

ation of the analysis of the restrition of representations of GL

n

to the miraboli subgroup

P

n

[33, Setions 2.10 and 2.11℄. In the ase where m < n the loal integrals involve the

restrition of the Whittaker funtions in W(�;  ) to GL

m

(k) � P

n

, that is, the Kirillov

model K(�;  ) of �. In the ase m = n one notes that S

0

(k

n

) = f� 2 S(k

n

) j �(0) = 0g,

whih has o-dimension one in S(k

n

), is isomorphi to the ompatly indued represen-

tation ind

GL

n

(k)

P

n

(k)

(Æ

�1=2

P

n

) so that by Frobenius reiproity a GL

n

(k) quasi-invariant trilinear

form on W(�;  )�W(�

0

;  

�1

)� S

0

(k

n

) redues to a P

n

(k)-quasi-invariant bilinear form on

K(�;  )�K(�

0

;  

�1

). So in both ases we are naturally working in the restrition to P

n

(k).

The restritions of irreduible representations of GL

n

(k) to P

n

(k) are no longer irreduible,

but do have omposition series of �nite length. One of the tools for analyzing the restri-

tions of representations of GL

n

to P

n

, or analyzing the irreduible representations of P

n

, are

the derivatives of Bernstein and Zelevinsky [2, 11℄. These derivatives �

(n�r)

are naturally

representations of GL

r

(k) for r � n. �

(0)

= � and sine � is generi the highest derivative

�

(n)

orresponds to the irreduible ommon submodule (�; V

�

) of all Kirillov models, and is

hene the non-zero irreduible representation of GL

0

(k). The poles of our loal integrals an

be interpreted as giving quasi-invariant pairings between derivatives of � and �

0

[11℄. The s

for whih suh pairings exist for all but the highest derivatives are the exeptional s of the

proposition. There is always a unique pairing between the highest derivatives �

(n)

and �

0(m)

,

whih are neessarily non-zero sine they sine these orrespond to the ommon irreduible

subspae (�; V

�

) of any Kirillov model, and this is the unique B

s

or T

s

of the proposition.

As a onsequene of this Proposition, we an de�ne the loal -fator whih gives the

loal funtional equation for our integrals.

Theorem 3.2 There is a rational funtion (s; � � �

0

;  ) 2 C (q

�s

) suh that we have

e

	(1� s; �(w

n;m

)

f

W;

f

W

0

) = !

0

(�1)

n�1

(s; � � �

0

;  )	(s;W;W

0

) if m < n

or

	(1� s;

f

W;

f

W

0

;

^

�) = !

0

(�1)

n�1

(s; � � �

0

;  )	(s;W;W

0

;�) if m = n

for all W 2 W(�;  ), W

0

2 W(�

0

;  

�1

), and if neessary all � 2 S(k

n

).

Again, if �

0

= 1 is the trivial representation of GL

1

(k) we write (s; �;  ) = (s; ��1;  ).

The fat that (s; ���

0

;  ) is rational follows from the fat that it is a ratio of loal integrals.

An equally important loal fator, whih ours in the urrent formulations of the loal

Langlands orrespondene [23, 26℄, is the loal "-fator.

De�nition The loal fator "(s; � � �

0

;  ) is de�ned as the ratio

"(s; � � �

0

;  ) =

(s; � � �

0

;  )L(s; � � �

0

)

L(1� s; e� � e�

0

)

:

With the loal "-fator the loal funtional equation an be written in the form

e

	(1� s; �(w

n;m

)

f

W;

f

W

0

)

L(1� s; e� � e�

0

)

= !

0

(�1)

n�1

"(s; � � �

0

;  )

	(s;W;W

0

)

L(s; � � �

0

)

if m < n
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n

or

	(1� s;

f

W;

f

W

0

;

^

�)

L(1� s; e� � e�

0

)

= !

0

(�1)

n�1

"(s; � � �

0

;  )

	(s;W;W

0

;�)

L(s; � � �

0

)

if m = n :

This an also be expressed in terms of the e(s;W;W

0

), et.. In fat, sine we know we an

hoose a �nite set of W

i

, W

0

i

, and if neessary �

i

so that

X

i

	(s; ;W

i

;W

0

i

)

L(s; � � �

0

)

=

X

i

e(s;W

i

;W

0

i

) = 1

or

X

i

	(s;W

i

;W

0

i

;�

i

)

L(s; � � �

0

)

=

X

i

e(s;W

i

;W

0

i

;�

i

) = 1

we see that we an write either

"(s; � � �

0

;  ) = !

0

(�1)

n�1

X

i

~e(1� s; �(w

n;m

)

f

W

i

;

f

W

0

i

)

or

"(s; � � �

0

;  ) = !

0

(�1)

n�1

X

i

e(1� s;

f

W

i

;

f

W

0

i

;

^

�

i

)

and hene "(s; � � �

0

;  ) 2 C [q

s

; q

�s

℄. On the other hand, applying the funtional equation

twie we get

"(s; � � �

0

;  )"(1� s; e� � e�

0

;  

�1

) = 1

so that "(s; � � �

0

;  ) is a unit in C [q

s

; q

�s

℄. This an be restated as:

Proposition 3.5 "(s; � � �

0

;  ) is a monomial funtion of the form q

�fs

.

Let us make a few remarks on the meaning of the number f ourring in the "{fator

in the ase of a single representation. Assume that  is unrami�ed. In this ase write

"(s; �;  ) = "(0; �;  )q

�f(�)s

. In [34℄ it is shown that f(�) is a non-negative integer, f(�) = 0

i� � is unrami�ed, that in general the spae of vetors in V

�

whih is �xed by the ompat

open subgroup

K

1

(p

f(�)

) =

8

>

>

>

<

>

>

>

:

g 2 GL

n

(o)

�

�

g �

0

B

B

B

�

�

�

.

.

.

�

0 � � � 0 1

1

C

C

C

A

(mod p

f(�)

)

9

>

>

>

=

>

>

>

;

has dimension exatly 1, and that if t < f(�) then the dimension of the spae of �xed vetors

for K

1

(p

t

) is 0. Depending on the ontext, either the integer f(�) or the ideal f(�) = p

f(�)

is alled the ondutor of �. Note that the analytially de�ned "-fator arries strutural

information about �.
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3.1.3 The unrami�ed alulation

Let us now turn to the alulation of the loal L-funtions. The �rst ase to onsider is

that where both � and �

0

are unrami�ed. Sine they are assumed generi, they are both

full indued representations from unrami�ed haraters of the Borel subgroup [69℄. So let

us write � ' Ind

GL

n

B

n

(�

1


 � � � 
 �

n

) and �

0

' Ind

GL

m

B

m

(�

0

1


 � � � 
 �

0

m

) with the �

i

and �

0

j

unrami�ed haraters of k

�

. The Satake parameterization of unrami�ed representations

assoiates to eah of these representation the semi-simple onjugay lasses [A

�

℄ 2 GL

n

(C )

and [A

�

0

℄ 2 GL

m

(C ) given by

A

�

=

0

B

�

�

1

($)

.

.

.

�

n

($)

1

C

A

A

�

0

=

0

B

�

�

0

1

($)

.

.

.

�

0

m

($)

1

C

A

:

(Reall that $ is a uniformizing parameter for k, that is, a generator of p.)

In the Whittaker models there will be unique normalized K = GL(o){ �xed Whittaker

funtions, W

Æ

2 W(�;  ) and W

0

Æ

2 W(�

0

;  

�1

), normalized by W

Æ

(e) = W

0

Æ

(e) = 1. Let us

onentrate on W

Æ

for the moment. Sine this funtion is right K

n

{invariant and transforms

on the left by  under N

n

we have that its values are ompletely determined by its values

on diagonal matries of the form

$

J

=

0

B

�

$

j

1

.

.

.

$

j

n

1

C

A

for J = (j

1

; : : : ; j

n

) 2 Z

n

. There is an expliit formula for W

Æ

($

J

) in terms of the Satake

parameter A

�

due to Shintani [63℄ for GL

n

and generalized to arbitrary redutive groups by

Casselman and Shalika [4℄.

Let T

+

(n) be the set of n{tuples J = (j

1

; : : : ; j

n

) 2 Z

n

with j

1

� � � � � j

n

. Let �

J

be the

rational representation of GL

n

(C ) with dominant weight �

J

de�ned by

�

J

0

B

�

t

1

.

.

.

t

n

1

C

A

= t

j

1

1

� � � t

j

n

n

:

Then the formula of Shintani says that

W

Æ

($

J

) =

(

0 if J =2 T

+

(n)

Æ

1=2

B

n

($

J

) tr(�

J

(A

�

)) if J 2 T

+

(n)

under the assumption that  is unrami�ed. This is proved by analyzing the reursion

relations oming from the ation of the unrami�ed Heke algebra on W

Æ

.

We have a similar formula for W

0

Æ

($

J

) for J 2 Z

m

.
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n

If we use these formulas in our loal integrals, we �nd [36, I, Prop. 2.3℄

	(s;W

Æ

;W

0

Æ

) =

X

J2T

+

(m); j

m

�0

W

Æ

�

$

J

I

n�m

�

W

0

Æ

($

J

)j det($

J

)j

s�(n�m)=2

Æ

�1

B

m

($

J

)

=

X

J2T

+

(m); j

m

�0

tr(�

(J;0)

(A

�

)) tr(�

J

(A

�

0

))q

�jJjs

=

X

J2T

+

(m); j

m

�0

tr(�

(J;0)

(A

�

)
 �

J

(A

�

0

))q

�jJjs

where we let jJ j = j

1

+ � � � + j

m

and we embed Z

m

,! Z

n

by J = (j

1

; � � � ; j

m

) 7! (J; 0) =

(j

1

; � � � ; j

m

; 0; � � � ; 0). We now use the invariant theory fats that

X

J2T

+

(m); j

m

�0; jJj=r

tr(�

(J;0)

(A

�

)
 �

J

(A

�

0

)) = tr(S

r

(A

�


 A

�

0

));

where S

r

(A) is the r

th

-symmetri power of the matrix A, and

1

X

r=0

tr(S

r

(A))z

r

= det(I � Az)

�1

for any matrix A. Then we quikly arrive at

	(s;W

Æ

;W

0

Æ

) = det(I � q

�s

A

�


 A

�

0

)

�1

=

Y

i;j

(1� �

i

($)�

0

j

($)q

�s

)

�1

a standard Euler fator of degree mn. Sine the L-funtion anels all poles of the loal

integrals, we know at least that det(I � q

�s

A

�


 A

�

0

) divides L(s; � � �

0

)

�1

. Either of the

methods disussed below for the general alulation of loal fators then shows that in fat

these are equal.

There is a similar alulation when n = m and � = �

Æ

is the harateristi funtion of the

lattie o

n

� k

n

. Also, sine � unrami�ed implies that its ontragredient e� is also unrami�ed,

with

f

W

Æ

as its normalized unrami�ed Whittaker funtion, then from the funtional equation

we an onlude that in this situation we have "(s; � � �

0

;  ) � 1.

Theorem 3.3 If �, �

0

, and  are all unrami�ed, then

L(s; � � �

0

) = det(I � q

�s

A

�


 A

�

0

)

�1

=

(

	(s;W

Æ

;W

0

Æ

) m < n

	(s;W

Æ

;W

0

Æ

;�

Æ

) m = n

and "(s; � � �

0

;  ) � 1.

For future use, let us reall a onsequene of this alulation due to Jaquet and Shalika

[36℄.

Corollary Suppose � is irreduible unitary generi admissible (our usual assumptions on

�) and unrami�ed. The the eigenvalues �

i

($) of A

�

all satisfy q

�1=2

< j�

i

($)j < q

1=2

.
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To see this, we apply the above alulation to the ase where �

0

= �� the omplex onjugate

representation. Then A

�

0

= A

�

, the omplex onjugate matrix, and we have from the above

det(I � q

�s

A

�


 A

�

)	(s;W

Æ

;W

Æ

;�

Æ

) = 1:

The loal integral in this ase is absolutely onvergent for Re(s) � 1 and so the fator

det(I � q

�s

A

�


 A

�

) annot vanish for Re(s) � 1. If �

i

($) is an eigenvalue of A

�

then we

have 1� q

��

j�

i

($)j

2

6= 0 for � � 1. Hene j�

i

($)j < q

1=2

. Note that if we apply this to the

ontragredient representation e� as well we onlude that q

�1=2

< j�

i

($)j < q

1=2

.

3.1.4 The superuspidal alulation

The other basi ase is when both � and �

0

are superuspidal. In this ase the restrition of

W to P

n

orW

0

to P

m

lies in the Kirillov model and is hene ompatly supported mod N . In

the ase of m < n we �nd that in our integral we have W evaluated along GL

m

(k) � P

n

(k).

Sine W is smooth, and hene stabilized by some ompat open subgroup, we �nd that the

loal integral always redues to a �nite sum and and hene lies in C [q

s

; q

�s

℄. In partiular

it is always entire. Thus in this ase L(s; � � �

0

) � 1. In the ase n = m the alulation

is a bit more involved and an be found in [11, 15℄. In essene, in the family of integrals

	(s;W;W

0

;�), if �(0) = 0 then the integral will again redue to a �nite sum and hene be

entire. If �(0) 6= 0 and if s

0

is a pole of 	(s;W;W

0

;�) then the residue of the pole at s = s

0

will be of the form

�(0)

Z

Z

n

(k) N

n

(k)nGL

n

(k)

W (g)W

0

(g)j det(g)j

s

0

dg

whih is the Whittaker form of an invariant pairing between � and �

0


 j det j

s

0

. Thus we

must have s

0

is pure imaginary and e� ' �

0


 j det j

s

0

for the residue to be nonzero. This

ondition is also suÆient.

Theorem 3.4 If � and �

0

are both (unitary) superuspidal, then L(s; � � �

0

) � 1 if m < n

and if m = n we have

L(s; � � �

0

) =

Y

(1� �q

�s

)

�1

with the produt over all � = q

s

0

with e� ' �

0


 j det j

s

0

.

3.1.5 Remarks on the general alulation

In the other ases, we must rely on the Bernstein{Zelevinsky lassi�ation of generi represen-

tations of GL

n

(k) [69℄. All generi representations an be realized as presribed onstituents

of representations parabolially indued from superuspidals. One an proeed by analyzing

the Whittaker funtions of indued representations in terms of Whittaker funtions of the

induing data as in [33℄ or by analyzing the poles of the loal integrals in terms of quasi

invariant pairings of derivatives of � and �

0

as in [11℄ to ompute L(s; � � �

0

) in terms of

L-funtions of pairs of superuspidal representations. We refer you to those papers or [42℄

for the expliit formulas.
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3.1.6 Multipliativity and stability of {fators

To onlude this setion, let us mention two results on the -fators. One is used in the

omputations of L-fators in the general ase. This is the multipliativity of -fators [33℄.

The seond is the stability of -fators [37℄. Both of these results are neessary in appliations

of the Converse Theorem to liftings, whih we disuss in Setion 5.

Proposition (Multipliativity of -fators) If � = Ind(�

1


�

2

), with �

i

and irreduible

admissible representation of GL

r

i

(k), then

(s; � � �

0

;  ) = (s; �

1

� �

0

;  )(s; �

2

� �

0

;  )

and similarly for �

0

. Moreover L(s; � � �

0

)

�1

divides [L(s; �

1

� �

0

)L(s; �

2

� �

0

)℄

�1

.

Proposition (Stability of -fators) If �

1

and �

2

are two irreduible admissible generi

representations of GL

n

(k), having the same entral harater, then for every suÆiently

highly rami�ed harater � of GL

1

(k) we have

(s; �

1

� �;  ) = (s; �

2

� �;  )

and

L(s; �

1

� �) = L(s; �

2

� �) � 1:

More generally, if in addition �

0

is an irreduible generi representation of GL

m

(k) then for

all suÆiently highly rami�ed haraters � of GL

1

(k) we have

(s; (�

1


 �)� �

0

;  ) = (s; (�

2


 �)� �

0

;  )

and

L(s; (�

1


 �)� �

0

) = L(s; (�

2


 �)� �

0

) � 1:

3.2 The arhimedean loal fators

We now take k to be an arhimedean loal �eld, i.e., k = R or C . We take (�; V

�

) to be

the spae of smooth vetors in an irreduible admissible unitary generi representation of

GL

n

(k) and similarly for the representation (�

0

; V

�

0

) of GL

m

(k). We take  a non-trivial

ontinuous additive harater of k.

The treatment of the arhimedean loal fators parallels that of the non-arhimedean

in many ways, but there are some signi�ant di�erenes. The major work on these fators

is that of Jaquet and Shalika in [38℄, whih we follow for the most part without further

referene, and in the arhimedean parts of [36℄.

One signi�ant di�erene in the development of the arhimedean theory is that the loal

Langlands orrespondene was already in plae when the theory was developed [45℄. The

orrespondene is very expliit in terms of the usual Langlands lassi�ation. Thus to � is

assoiated an n dimensional semi-simple representation � = �(�) of the Weil group W

k

of k

and to �

0

an m-dimensional semi-simple representation �

0

= �(�

0

) of W

k

. Then �(�)
 �(�

0

)
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is an nm dimensional representation of W

k

and to this representation of the Weil group is

attahed Artin-Weil L{ and "{fators [65℄, denoted L(s; �
�

0

) and "(s; �
�

0

;  ). In essene,

Jaquet and Shalika de�ne

L(s; � � �

0

) = L(s; �(�)
 �(�

0

)) and "(s; � � �

0

;  ) = "(s; �(�)
 �(�

0

);  )

and then set

(s; � � �

0

;  ) =

"(s; � � �

0

;  )L(1� s; e� � e�

0

)

L(s; � � �

0

)

:

For example, if � is unrami�ed, and hene of the form � ' Ind(�

1


 � � � 
 �

n

) with

unrami�ed haraters of the form �

i

(x) = jxj

r

i

then

L(s; �) = L(s; �(�)) =

n

Y

i=1

�

v

(s+ r

i

)

is a standard arhimedean Euler fator of degree n, where

�

v

(s) =

(

�

�s=2

�(

s

2

) if k

v

= R

2(2�)

�s

�(s) if k

v

= C

:

They then proeed to show that these funtions have the expeted relation to the loal

integrals. Their methods of analyzing the loal integrals 	

j

(s;W;W

0

) and 	(s;W;W

0

;�),

de�ned as in the non-arhimedean ase for W 2 W(�;  ), W

0

2 W(�

0

;  

�1

), and � 2 S(k

n

),

are diret analogues of those used in [33℄ for the non-arhimedean ase. One again, a most

important fat is [38, Proposition 2.2℄

Proposition 3.6 Let � be a generi representation of GL

n

(k). Then there is a �nite set of

�nite funtions X(�) = f�

i

g on A

n

(k), depending only on �, so that for every W 2 W(�;  )

there are Shwartz funtions �

i

2 S(k

n�1

� K

n

) suh that for all a 2 A

n

(k) with a

n

= 1 we

have

W (nak) =  (n)

X

X(�)

�

i

(a)�

i

(�

1

(a); : : : ; �

n�1

(a); k):

Now the �nite funtions are related to the exponents of the representation � and through

the Langlands lassi�ation to the representation �(�) of W

k

. We retain the same onver-

gene statements as in the non-arhimedean ase [36, I, Proposition 3.17; II, Proposition

2.6℄, [38, Proposition 5.3℄.

Proposition 3.7 The integrals 	

j

(s;W;W

0

) and 	(s;W;W

0

;�) onverge absolutely in the

half plane Re(s) � 1 under the unitarity assumption and for Re(s) > 0 if � and �

0

are

tempered.

The meromorphi ontinuation and \bounded denominator" statement in the ase of a

non-arhimedean loal �eld is now replaed by the following. De�neM(���

0

) to be the spae

of all meromorphi funtions �(s) with the property that if P (s) is a polynomial funtion

suh that P (s)L(s; ���

0

) is holomorphi in a vertial strip S[a; b℄ = fs a � Re(s) � bg then

P (s)�(s) is bounded in S[a; b℄. Note in partiular that if � 2 M(� � �

0

) then the quotient

�(s)L(s; � � �

0

)

�1

is entire.
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Theorem 3.5 The integrals 	

j

(s;W;W

0

) or 	(s;W;W

0

;�) extend to meromorphi fun-

tions of s whih lie in M(� � �

0

). In partiular, the ratios

e

j

(s;W;W

0

) =

	

j

(s;W;W

0

)

L(s; � � �

0

)

or e(s;W;W

0

;�) =

	(s;W;W

0

;�)

L(s; � � �

0

)

are entire and in fat are bounded in vertial strips.

This statement has more ontent than just the ontinuation and \bounded denominator"

statements in the non-arhimedean ase. Sine it presribes the \denominator" to be the L

fator L(s; � � �

0

)

�1

it is bound up with the atual omputation of the poles of the loal

integrals. In fat, a signi�ant part of the paper of Jaquet and Shalika [38℄ is taken up with

the simultaneous proof of this and the loal funtional equations:

Theorem 3.6 We have the loal funtional equations

	

n�m�j�1

(1� s; �(w

n;m

)

f

W;

f

W

0

) = !

0

(�1)

n�1

(s; � � �

0

;  )	

j

(s;W;W

0

)

or

	(1� s;

f

W;

f

W

0

;

^

�) = !

0

(�1)

n�1

(s; � � �

0

;  )	(s;W;W

0

;�):

The one fat that we are missing is the statement of \minimality" of the L-fator. That

is, we know that L(s; � � �

0

) is a standard arhimedean Euler fator (i.e., a produt of �-

funtions of the standard type) and has the property that the poles of all the loal integrals

are ontained in the poles of the L-fator, even with multipliity. But we have not established

that the L-fator annot have extraneous poles. In partiular, we do know that we an ahieve

the loal L-funtion as a �nite linear ombination of loal integrals.

Towards this end, Jaquet and Shalika enlarge the allowable spae of loal integrals.

Let � and �

0

be the Whittaker funtionals on V

�

and V

�

0

assoiated with the Whittaker

modelsW(�;  ) and W(�

0

;  

�1

). Then

^

� = �
�

0

de�nes a ontinuous linear funtional on

the algebrai tensor produt V

�


 V

�

0

whih extends ontinuously to the topologial tensor

produt V

�
�

0

= V

�

^


V

�

0

, viewed as representations of GL

n

(k)�GL

m

(k).

Before proeeding, let us make a few remarks on smooth representations. If (�; V

�

) is the

spae of smooth vetors in an irreduible admissible unitary representation, then the under-

lying Harish-Chandra module is the spae of K

n

-�nite vetors V

�;K

. V

�

then orresponds to

the (Casselman-Wallah) anonial ompletion of V

�;K

[66℄. The ategory of Harish-Chandra

modules is appropriate for the algebrai theory of representations, but it is useful to work in

the ategory of smooth admissible representations for automorphi forms. If in our ontext

we take the underlying Harish-Chandra modules V

�;K

and V

�

0

;K

then their algebrai tensor

produt is an admissible Harish-Chandra module for GL

n

(k) � GL

m

(k). The assoiated

smooth admissible representation is the anonial ompletion of this tensor produt, whih

is in fat V

�
�

0

, the topologial tensor produt of the smooth representations � and �

0

. It is

also the spae of smooth vetors in the unitary tensor produt of the unitary representations

assoiated to � and �

0

. So this ompletion is a natural plae to work in the ategory of

smooth admissible representations.

Now let

W(� 
 �

0

;  ) = fW (g; h) =

^

�(�(g)
 �

0

(h)�)j� 2 V

�
�

0

g:
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Then W(�
�

0

;  ) ontains the algebrai tensor produtW(�;  )
W(�

0

;  

�1

) and is again

equal to the topologial tensor produt. Now we an extend all out loal integrals to the

spae W(� 
 �

0

;  ) by setting

	

j

(s;W ) =

Z Z

W

0

�

0

�

h

x I

j

I

n�m�j

1

A

; h

1

A

dx j det(h)j

s�(n�m)=2

dh

and

	(s;W;�) =

Z

W (g; g)�(e

n

g)j det(g)j

s

dh

for W 2 W(� 
 �

0

;  ). Sine the loal integrals are ontinuous with respet to the topology

on the topologial tensor produt, all of the above fats remain true, in partiular the

onvergene statements, the loal funtional equations, and the fat that these integrals

extend to funtions in M(� � �

0

).

At this point, let I

j

(�; �

0

) = f	

j

(s;W )jW 2 W(� 
 �

0

)g and let I(�; �

0

) be the span

of the loal integrals f	(s;W;�)jW 2 W(� 
 �

0

;  ); � 2 S(k

n

)g. One again, in the ase

m < n we have that the spae I

j

(�; �

0

) is independent of j and we denote it also by I(�; �

0

).

These are still independent of  . So we know from above that I(�; �

0

) � M(� � �

0

). The

remainder of [38℄ is then devoted to showing the following.

Theorem 3.7 I(�; �

0

) =M(� � �

0

).

As a onsequene of this, we draw the following useful Corollary.

Corollary There is a Whittaker funtion W in W(� 
 �

0

;  ) suh that L(s; � � �

0

) =

	(s;W ) if m < n or �nite olletionof funtions W

i

2 W(� 
 �

0

;  ) and �

i

2 S(k

n

) suh

that L(s; � � �

0

) =

P

i

	(s;W

i

;�

i

) if m = n.

In the ases of m = n � 1 or m = n, Jaquet and Shalika an indeed get the loal

L-funtion as a �nite linear ombination of integrals involving only K-�nite funtions in

W(�;  ) and W(�

0

;  

�1

), that is, without going to the ompletion of W(�;  )
W(�

0

;  

�1

),

but this has not been published.

As a �nal result, let us note that in [12℄ it is established that the linear funtionals

e(s;W ) = 	(s;W )L(s; � � �

0

)

�1

and e(s;W;�) = 	(s;W;�)L(s; � � �

0

)

�1

are ontinuous

onW(�
�

0

;  ), uniformly for s in ompat sets. Sine there is a hoie ofW 2 W(�
�

0

;  )

suh that e(s;W ) � 1 orW

i

2 W(�
�

0

;  ) and �

i

2 S(k

n

) suh that

P

e(s;W

i

;�

i

) � 1, as a

result of this ontinuity and the fat that the algebrai tensor produtW(�;  )
W(�

0

;  

�1

)

is dense in W(� 
 �

0

;  ) we have the following result.

Proposition 3.8 For any s

0

2 C there are hoies of W 2 W(�;  ), W

0

2 W(�

0

;  

�1

) and

if neessary � suh that e(s

0

;W;W

0

) 6= 0 or e(s

0

;W;W

0

;�) 6= 0.
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4 Global L-funtions

One again, we let k be a global �eld, A its ring of adeles, and �x a non-trivial ontinuous

additive harater  = 
 

v

of A trivial on k.

Let (�; V

�

) be an uspidal representation of GL

n

(A ) (see Setion 1 for all the implied as-

sumptions in this terminology) and (�

0

; V

�

0

) a uspidal representation of GL

m

(A ). Sine they

are irreduible we have restrited tensor produt deompositions � ' 


0

�

v

and �

0

' 


0

�

0

v

with (�

v

; V

�

v

) and (�

0

v

; V

�

0

v

) irreduible admissible smooth generi unitary representations of

GL

n

(k

v

) and GL

m

(k

v

) [14, 18℄. Let ! = 


0

!

v

and !

0

= 


0

!

0

v

be their entral haraters.

These are both ontinuous haraters of k

�

nA

�

.

Let S be the �nite set of plaes of k, ontaining the arhimedean plaes S

1

, suh that

for all v =2 S we have that �

v

, �

0

v

, and  

v

are unrami�ed.

For eah plae v of k we have de�ned the loal fators L(s; �

v

� �

0

v

) and "(s; �

v

� �

0

v

;  

v

).

Then we an at least formally de�ne

L(s; � � �

0

) =

Y

v

L(s; �

v

� �

0

v

) and "(s; � � �

0

) =

Y

v

"(s; �

v

� �

0

v

;  

v

):

We need to disuss onvergene of these produts. Let us �rst onsider the onvergene of

L(s; ���

0

). For those v =2 S, so �

v

, �

0

v

, and  

v

are unrami�ed, we know that L(s; �

v

��

0

v

) =

det(I � q

�s

v

A

�

v


 A

�

0

v

)

�1

and that the eigenvalues of A

�

v

and A

�

0

v

are all of absolute value

less than q

1=2

v

. Thus the partial (or inomplete) L-funtion

L

S

(s; � � �

0

) =

Y

v=2S

L(s; �

v

� �

0

v

) =

Y

v=2S

det(I � q

�s

A

�

v


 A

�

0

v

)

�1

is absolutely onvergent for Re(s) >> 0. Thus the same is true for L(s; � � �

0

).

For the "{fator, we have seen that "(s; �

v

� �

0

v

;  

v

) � 1 for v =2 S so that the produt is

in fat a �nite produt and there is no problem with onvergene. The fat that "(s; �� �

0

)

is independent of  an either be heked by analyzing how the loal "{fators vary as you

vary  , as is done in [7, Lemma 2.1℄, or it will follow from the global funtional equation

presented below.

4.1 The basi analyti properties

Our �rst goal is to show that these L-funtions have nie analyti properties.

Theorem 4.1 The global L{funtions L(s; � � �

0

) are nie in the sense that

1. L(s; � � �

0

) has a meromorphi ontinuation to all of C ,

2. the extended funtion is bounded in vertial strips (away from its poles),

3. they satisfy the funtional equation

L(s; � � �

0

) = "(s; � � �

0

)L(1� s; e� � e�

0

):
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To do so, we relate the L-funtions to the global integrals.

Let us begin with ontinuation. In the ase m < n for every ' 2 V

�

and '

0

2 V

�

0

we

know the integral I(s;'; '

0

) onverges absolutely for all s. From the unfolding in Setion

2 and the loal alulation of Setion 3 we know that for Re(s) >> 0 and for appropriate

hoies of ' and '

0

we have

I(s;'; '

0

) =

Y

v

	

v

(s;W

'

v

;W

'

0

v

)

=

 

Y

v2S

	

v

(s;W

'

v

;W

'

0

v

)

!

L

S

(s; � � �

0

)

=

 

Y

v2S

	

v

(s;W

'

v

;W

'

0

v

)

L(s; �

v

� �

0

v

)

!

L(s; � � �

0

)

=

 

Y

v2S

e

v

(s;W

'

v

;W

'

0

v

)

!

L(s; � � �

0

)

We know that eah e

v

(s;W

v

;W

0

v

) is entire. Hene L(s; � � �

0

) has a meromorphi ontinua-

tion. If m = n then for appropriate ' 2 V

�

, '

0

2 V

�

0

, and � 2 S(A

n

) we again have

I(s;'; '

0

;�) =

 

Y

v2S

e

v

(s;W

'

v

;W

0

'

0

v

;�

v

)

!

L(s; � � �

0

):

One again, sine eah e

v

(s;W

v

;W

0

v

;�

v

) is entire, L(s; � � �

0

) has a meromorphi ontinua-

tion.

Let us next turn to the funtional equation. This will follow from the funtional equation

for the global integrals and the loal funtional equations. We will onsider only the ase

where m < n sine the other ase is entirely analogous. The funtional equation for the

global integrals is simply

I(s;'; '

0

) =

~

I(1� s; e'; e'

0

):

One again we have for appropriate ' and '

0

I(s;'; '

0

) =

 

Y

v2S

e

v

(s;W

'

v

;W

0

'

0

v

)

!

L(s; � � �

0

)

while on the other side

~

I(1� s; e'; e'

0

) =

 

Y

v2S

~e

v

(1� s; �(w

n;m

)

f

W

'

v

;

f

W

0

'

0

v

)

!

L(1� s; e� � e�

0

):
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However, by the loal funtional equations, for eah v 2 S we have

~e

v

(1� s; �(w

n;m

)

f

W

v

;

f

W

0

v

) =

e

	(1� s; �(w

n;m

)

f

W

v

;

f

W

0

v

)

L(1� s; e� � e�

0

)

= !

0

v

(�1)

n�1

"(s; �

v

� �

0

v

;  

v

)

	(s;W

v

;W

0

v

)

L(s; � � �

0

)

= !

0

v

(�1)

n�1

"(s; �

v

� �

0

v

;  

v

)e

v

(s;W

v

;W

0

v

)

Combining these, we have

L(s; � � �

0

) =

 

Y

v2S

!

0

v

(�1)

n�1

"(s; �

v

� �

0

v

;  

v

)

!

L(1� s; e� � e�

0

):

Now, for v =2 S we know that �

0

v

is unrami�ed, so !

0

v

(�1) = 1, and also that "(s; �

v

��

0

v

;  

v

) �

1. Therefore

Y

v2S

!

0

v

(�1)

n�1

"(s; �

v

� �

0

v

;  

v

) =

Y

v

!

0

v

(�1)

n�1

"(s; �

v

� �

0

v

;  

v

)

= !

0

(�1)

n�1

"(s; � � �

0

)

= "(s; � � �

0

)

and we indeed have

L(s; � � �

0

) = "(s; � � �

0

)L(1� s; e� � e�

0

):

Note that this implies that "(s; � � �

0

) is independent of  as well.

Let us now turn to the boundedness in vertial strips. For the global integrals I(s;'; '

0

)

or I(s;'; ';�) this simply follows from the absolute onvergene. For the L-funtion itself,

the paradigm is the following. For every �nite plae v 2 S we know that there is a hoie of

W

v;i

, W

0

v;i

, and �

v;i

if neessary suh that

L(s; �

v

� �

0

v

) =

X

	(s;W

v;i

;W

0

v

0

i

) or L(s; �

v

� �

0

v

) =

X

	(s;W

v;i

;W

0

v

0

i

;�

v;i

):

If m = n � 1 or m = n then by the unpublished work of Jaquet and Shalika mentioned

toward the end of Setion 3 we know that we have similar statements for v 2 S

1

. Hene if

m = n� 1 or m = n there are global hoies '

i

, '

0

i

, and if neessary �

i

suh that

L(s; � � �

0

) =

X

I(s;'

i

; '

0

i

) or L(s; � � �

0

) =

X

I(s;'

i

; '

0

i

;�

i

):

Then the boundedness in vertial strips for the L-funtions follows from that of the global

integrals.

However, if m < n � 1 then all we know at those v 2 S

1

is that there is a funtion

W

v

2 W(�

v


 �

0

v

;  

v

) = W(�

v

;  

v

)

^


W(�

0

v

;  

�1

v

) or a �nite olletion of suh funtions W

v;i

and of �

v;i

suh that

L(s; �

v

� �

0

v

) = I(s;W

v

) or L(s; �

v

� �

0

v

) =

X

I(s;W

v;i

;�

v;i

):
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To make the above paradigm work for m < n � 1 we would need to rework the theory of

global Eulerian integrals for usp forms in V

�

^


V

�

0

. This is naturally the spae of smooth

vetors in an irreduible unitary uspidal representation of GL

n

(A )�GL

m

(A ). So we would

need extend the global theory of integrals parallel to Jaquet and Shalika's extension of the

loal integrals in the arhimedean theory. There seems to be no obstrution to arrying this

out, and then we obtain boundedness in vertial strips for L(s; � � �

0

) in general.

We should point out that if one approahes these L-funtion by the method of onstant

terms and Fourier oeÆients of Eisenstein series, then Gelbart and Shahidi have shown a

wide lass of automorphi L-funtions, inluding ours, to be bounded in vertial strips [17℄.

4.2 Poles of L-funtions

Let us determine where the global L-funtions an have poles. The poles of the L-funtions

will be related to the poles of the global integrals. Reall from Setion 2 that in the ase

of m < n we have that the global integrals I(s;'; '

0

) are entire and that when m = n then

I(s;'; '

0

;�) an have at most simple poles and they our at s = �i� and s = 1 � i�

for � real when � ' e�

0


 j det j

i�

. As we have noted above, the global integrals and global

L-funtions are related, for appropriate ', '

0

, and �, by

I(s;'; '

0

) =

 

Y

v2S

e

v

(s;W

'

v

;W

0

'

0

v

)

!

L(s; � � �

0

)

or

I(s;'; '

0

;�) =

 

Y

v2S

e

v

(s;W

'

v

;W

0

'

0

v

;�

v

)

!

L(s; � � �

0

):

On the other hand, we have seen that for any s

0

2 C and any v there is a hoie of loalW

v

,

W

0

v

, and �

v

suh that the loal fators e

v

(s

0

;W

v

;W

0

v

) 6= 0 or e

v

(s

0

;W

v

;W

0

v

;�

v

) 6= 0. So as

we vary ', '

0

and � at the plaes v 2 S we see that division by these fators an introdue

no extraneous poles in L(s; �� �

0

), that is, in keeping with the loal haraterization of the

L-fator in terms of poles of loal integrals, globally the poles of L(s; ���

0

) are preisely the

poles of the family of global integrals fI(s;'; '

0

)g or fI(s;'; '

0

;�)g. Hene from Theorems

2.1 and 2.2 we have.

Theorem 4.2 If m < n then L(s; �� �

0

) is entire. If m = n, then L(s; �� �

0

) has at most

simple poles and they our i� � ' e�

0


 j det j

i�

with � real and are then at s = �i� and

s = 1� i�.

If we apply this with �

0

= e� we obtain the following useful orollary.

Corollary L(s; � � e�) has simple poles at s = 0 and s = 1.

4.3 Strong Multipliity One

Let us return to the Strong Multipliity One Theorem for uspidal representations. First,

reall the statement:
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Theorem (Strong Multipliity One) Let (�; V

�

) and (�

0

; V

�

0

) be two uspidal represen-

tations of GL

n

(A ). Suppose there is a �nite set of plaes S suh that for all v =2 S we have

�

v

' �

0

v

. Then � = �

0

.

We will now present Jaquet and Shalika's proof of this statement via L-funtions [36℄. First

note the following observation, whih follows from our analysis of the loation of the poles

of the L-funtions.

Observation For � and �

0

uspidal representations of GL

n

(A ), L(s; � � e�

0

) has a pole at

s = 1 i� � ' �

0

.

Thus the L-funtion gives us an analyti method of testing when two uspidal representations

are isomorphi, and so by the Multipliity One Theorem, the same.

Proof: If we take � and �

0

as in the statement of Strong Multipliity One, we have that

�

v

' �

0

v

for v =2 S and hene

L

S

(s; � � e�) =

Y

v=2S

L(s; �

v

� e�

v

) =

Y

v=2S

L(s; �

v

� e�

0

v

) = L

S

(s; � � e�

0

)

Sine the loal L-fators never vanish and for unitary representations they have no poles in

Re(s) � 1 (sine the loal integrals have no poles in this region) we see that for s = 1 that

L(s; � � e�

0

) has a pole at s = 1 i� L

S

(s; � � e�

0

) does. Hene we have that sine L(s; � � e�)

has a pole at s = 1, so does L

S

(s; � � e�). But L

S

(s; � � e�) = L

S

(s; � � e�

0

), so that both

L

S

(s; � � e�

0

) and then L(s; � � e�

0

) have poles at s = 1. But then the L-funtion riterion

above gives that � ' �

0

. Now apply Multipliity One. �

In fat, Jaquet and Shalika push this method muh further. If � is an irreduible

automorphi representation of GL

n

(A ), but not neessarily uspidal, then it is a theorem

of Langlands [44℄ that there are uspidal representations, say �

1

; : : : ; �

r

of GL

n

1

; : : : ;GL

n

r

with n = n

1

+ � � � + n

r

, suh that � is a onstituent of Ind(�

1


 � � � 
 �

r

). Similarly, �

0

is

a onstituent of Ind(�

0

1


 � � � 
 �

0

r

0

). Then the generalized version of the Strong Multipliity

One theorem that Jaquet and Shalika establish in [36℄ is the following.

Theorem (Generalized Strong Multipliity One) Given � and �

0

irreduible auto-

morphi representations of GL

n

(A ) as above, suppose that there is a �nite set of plaes

S suh that �

v

' �

0

v

for all v =2 S. Then r = r

0

and there is a permutation � of the set

f1; : : : ; rg suh that n

i

= n

0

�(i)

and �

i

= �

0

�(i)

.

Note, the uspidal representations �

i

and �

0

i

need not be unitary in this statement.

4.4 Non-vanishing results

Of interest for questions from analyti number theory, for example questions of equidistribu-

tion, are results on the non-vanishing of L-funtions. The fundamental non-vanishing result

for GL

n

is the following theorem of Jaquet and Shalika [35℄ and Shahidi [56, 57℄.
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Theorem 4.3 Let � and �

0

be uspidal representations of GL

n

(A ) and GL

m

(A ). Then the

L-funtion L(s; � � �

0

) is non-vanishing for Re(s) � 1.

The proof of non-vanishing for Re(s) > 1 is in keeping with the spirit of these notes [36, I,

Theorem 5.3℄. Sine the loal L-funtions are never zero, to establish the non-vanishing of

the Euler produt for Re(s) > 1 it suÆes to show that the Euler produt is absolutely

onvergent for Re(s) > 1, and for this it is suÆient to work with the inomplete L-funtion

L

S

(s; � � �

0

) where S is as at the beginning of this Setion. Then we an write

L

S

(s; � � �

0

) =

Y

v=2S

L(s; �

v

� �

0

v

) =

Y

v=2S

det(I � q

�s

v

A

�

v


 A

�

0

v

)

�1

with absolute onvergene for Re(s) >> 0.

Reall that an in�nite produt

Q

(1+a

n

) is absolutely i� the assoiated series

P

log(1+a

n

)

is absolutely onvergent.

Let us write

A

�

v

=

0

B

�

�

v;1

.

.

.

�

v;n

1

C

A

and A

�

0

v

=

0

B

�

�

0

v;1

.

.

.

�

0

v;m

1

C

A

:

We have seen that j�

v;i

j < q

1=2

v

and j�

0

v;j

j < q

1=2

v

. Then

logL(s; �

v

� �

0

v

) = �

X

i;j

log(1� �

v;i

�

0

v;j

q

�s

v

) =

X

i;j

1

X

d=1

(�

v;i

�

0

v;j

)

d

dq

ds

v

=

1

X

d=1

tr(A

d

�

v

) tr(A

d

�

0

v

)

dq

ds

v

with the sum absolutely onvergent for Re(s) >> 0. Then, still for Re(s) >> 0,

log(L

S

(s; � � �

0

)) =

X

v=2S

1

X

d=1

tr(A

d

�

v

) tr(A

d

�

0

v

)

dq

ds

v

:

If we apply this to �

0

= � = e� we �nd

log(L

S

(s; � � �)) =

X

v=2S

1

X

d=1

j tr(A

d

�

v

)j

2

dq

ds

v

whih is a Dirihlet series with non-negative oeÆients. By Landau's Lemma this will be

absolutely onvergent up to the its �rst pole, whih we know is at s = 1. Hene this series,

and the assoiated Euler produt L(s; � � e�), is absolutely onvergent for Re(s) > 1.

An appliation of the Cauhy{Shwatrz inequality then implies that the series

log(L

S

(s; � � �

0

)) =

X

v=2S

1

X

d=1

tr(A

d

�

v

) tr(A

d

�

0

v

)

dq

ds

v

is also absolutely onvergent for Re(s) > 1. Thus L(s; � � �

0

) is absolutely onvergent and

hene non-vanishing for Re(s) > 1.

To obtain the non-vanishing on the line Re(s) = 1 requires the tehnique of analyzing

L-funtions via their ourrene in the onstant terms and Fourier oeÆients of Eisenstein

series, whih we have not disussed. They an be found in the referenes [35℄ and [56, 57℄

mentioned above.
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4.5 The Generalized Ramanujan Conjeture (GRC)

The urrent version of the GRC is a onjeture about the struture of uspidal representa-

tions.

Conjeture (GRC) Let � be a (unitary) uspidal representation of GL

n

(A ) with deom-

position � ' 


0

�

v

. Then the loal omponents �

v

are tempered representations.

However, it has an interesting interpretation in terms of L-funtions whih is more in keep-

ing with the origins of the onjeture. If � is uspidal, then at every �nite plae v where �

v

is unrami�ed we have assoiated a semisimple onjugay lass, say A

�

v

=

0

B

�

�

v;1

.

.

.

�

v;n

1

C

A

so that

L(s; �

v

) = det(I � q

�s

v

A

�

v

)

�1

=

n

Y

i=1

(1� �

v;i

q

�s

v

)

�1

:

If v is an arhimedean plae where �

v

is unrami�ed, then we an similarly write

L(s; �) =

n

Y

i=1

�

v

(s+ �

v;i

)

where

�

v

(s) =

(

�

�s=2

�(

s

2

) if k

v

' R

2(2�)

�s

�(s) if k

v

' C

:

Then the statement of the GRC in these terms is

Conjeture (GRC for L-funtions) If � is a uspidal representation of GL

n

(A ) and if

v is a plae where �

v

is unrami�ed, then j�

v;i

j = 1 for v non-arhimedean and Re(�

v;i

) = 0

for v arhimedean.

Note that by inluding the arhimedean plaes, this onjeture enompasses not only

the lassial Ramanujan onjetures but also the various versions of the Selberg eigenvalue

onjeture [27℄.

Reall that by the Corollary to Theorem 3.3 we have the bounds q

�1=2

v

< j�

v;i

j < q

1=2

v

for

v non-arhimedean, and a similar loal analysis for v arhimedean would give jRe(�

v;i

)j <

1

2

.

The best bound for general GL

n

is due to Luo, Rudnik, and Sarnak [46℄. They are the

uniform bounds

q

�(

1

2

�

1

n

2

+1

)

v

� j�

v;i

j � q

1

2

�

1

n

2

+1

v

if v is non-arhimedean

and

jRe(�

v;i

)j �

1

2

�

1

n

2

+ 1

for v arhimedean:

Their tehniques are global and rely on the theory of Rankin{Selberg L-funtions as presented

here, a tehnique of persistene of zeros in families of L-funtions, and a positivity argument.
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For GL

2

there has been muh reent progress. The best general estimates I am aware of

at present are due to Kim and Shahidi [41℄, who use the holomorphy of the symmetri ninth

power L-funtion for Re(s) > 1 to obtain

q

�

1

9

v

< j�

v;i

j < q

1

9

v

for i = 1; 2, and v non-arhimedean,

and Kim and Sarnak, who obtain the analogous estimate for v arhimedean (with possible

equality) in the appendix to [39℄.

For some appliations, the notion of weakly Ramanujan [8℄ an replae knowing the full

GRC.

De�nition A uspidal representation � of GL

n

(A ) is alled weakly Ramanujan if for every

� > 0 there is a onstant 

�

> 0 and an in�nite sequene of plaes fv

m

g with the property

that eah �

v

m

is unrami�ed and the Satake parameters �

v

m

;i

satisfy



�1

�

q

��

v

m

< j�

v

m

;i

j < 

�

q

�

v

m

:

For example, if we knew that all uspidal representations on GL

n

(A ) were weakly Ra-

manujan, then we would know that under Langlands liftings between general linear groups,

the property of ourrene in the spetral deomposition is preserved [8℄.

For n = 2; 3 our tehniques let us show the following.

Proposition 4.1 For n = 2 or n = 3 all uspidal representations are weakly Ramanujan.

Proof: First, let � be a uspidal representation or GL

n

(A ). Reall that from the absolute

onvergene of the Euler produt for L(s; � � �) we know that the series

X

v=2S

X

d

j tr(A

d

�

v

)j

2

dq

ds

v

is absolutely onvergent for Re(s) > 1, so that in partiular we have that

X

v=2S

j tr(A

�

v

)j

2

q

s

v

is absolutely onvergent for Re(s) > 1. Thus, for a set of plaes of positive density, we

have the estimate j tr(A

�

v

)j

2

< q

�

v

for eah �. Sine A

�

v

= A

�1

�

v

for omponents of uspidal

representations, we have the same estimate for j tr(A

�1

�

v

)j.

In the ase of n = 2 and n = 3, these estimates and the fat that j detA

�

v

j = j!

v

($

v

)j = 1

give us estimates on the oeÆients of the harateristi polynomial for A

�

v

. For example,

if n = 3 and the harateristi polynomial of A

�

v

is X

3

+ aX

2

+ bX +  then we know

jaj = j tr(A

�

v

)j < q

�=2

v

, jbj = j tr(A

�1

�

v

) det(A

�

v

)j < q

�=2

v

, and jj = j det(A

�

v

)j = 1. Then an

appliation of Rouhe's theorem gives that the roots of this polynomial all lie in the irle

of radius q

�

v

as long as q

v

> 3. Applying this to both A

�

v

and A

�1

�

v

we �nd that for our set

primes of positive density above we have the estimate q

��

v

< j�

v

m

;i

j < q

�

v

. Thus we �nd that

for n = 2; 3 uspidal representations of GL

n

are weakly Ramanujan. �
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4.6 The Generalized Riemann Hypothesis (GRH)

This is one of the most important onjetures in the analyti theory of L-funtions. Simply

stated, it is

Conjeture (GRH) For any uspidal representation �, all the zeros of the L-funtion

L(s; �) lie on the line Re(s) =

1

2

.

Even in the simplest ase of n = 1 and � = 1 the trivial representation this redues to the

Riemann hypothesis for the Riemann zeta funtion!

For an interesting survey on these and other onjetures on L-funtions and their relation

to number theoreti problems, we refer the reader to the survey of Iwanie and Sarnak [27℄.

5 Converse Theorems

Let us return �rst to Heke. Reall that to a modular form

f(�) =

1

X

n�1

a

n

e

2�in�

for say SL

2

(Z) Heke attahed an L funtion L(s; f) and they were related via the Mellin

transform

�(s; f) = (2�)

�s

�(s)L(s; f) =

Z

1

0

f(iy)y

s

d

�

y

and derived the funtional equation for L(s; f) from the modular transformation law for f(�)

under the modular transformation law for the transformation � 7! �1=� . In his fundamental

paper [24℄ he inverted this proess by taking a Dirihlet series

D(s) =

1

X

n=1

a

n

n

s

and assuming that it onverged in a half plane, had an entire ontinuation to a funtion

of �nite order, and satis�ed the same funtional equation as the L-funtion of a modular

form of weight k, then he ould atually reonstrut a modular form from D(s) by Mellin

inversion

f(iy) =

X

i

a

n

e

�2�ny

=

1

2�i

Z

2+i1

2�i1

(2�)

�s

�(s)D(s)y

s

ds

and obtain the modular transformation law for f(�) under � 7! �1=� from the funtional

equation for D(s) under s 7! k � s. This is Heke's Converse Theorem.

In this Setion we will present some analogues of Heke's theorem in the ontext of L-

funtions for GL

n

. Surprisingly, the tehnique is exatly the same as Heke's, i.e., inverting

the integral representation. This was �rst done in the ontext of automorphi representation

for GL

2

by Jaquet and Langlands [30℄ and then extended and signi�antly strengthened for

GL

3

by Jaquet, Piatetski-Shapiro, and Shalika [31℄. For a more extensive bibliography and

history, see [10℄.

This setion is taken mainly from our survey [10℄. Further details an be found in [7, 9℄.
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5.1 The results

One again, let k be a global �eld, A its adele ring, and  a �xed non-trivial ontinuous

additive harater of A whih is trivial on k. We will take n � 3 to be an integer.

To state these Converse Theorems, we begin with an irreduible admissible representation

� of GL

n

(A ). In keeping with the onventions of these notes, we will assume that � is unitary

and generi, but this is not neessary. It has a deomposition � = 


0

�

v

, where �

v

is an

irreduible admissible generi representation of GL

n

(k

v

). By the loal theory of Setion 3,

to eah �

v

is assoiated a loal L-funtion L(s;�

v

) and a loal "-fator "(s;�

v

;  

v

). Hene

formally we an form

L(s;�) =

Y

v

L(s;�

v

) and "(s;�;  ) =

Y

v

"(s;�

v

;  

v

):

We will always assume the following two things about �:

1. L(s;�) onverges in some half plane Re(s) >> 0,

2. the entral harater !

�

of � is automorphi, that is, invariant under k

�

.

Under these assumptions, "(s;�;  ) = "(s;�) is independent of our hoie of  [7℄.

Our Converse Theorems will involve twists by uspidal automorphi representations

of GL

m

(A ) for ertain m. For onveniene, let us set A(m) to be the set of automor-

phi representations of GL

m

(A ), A

0

(m) the set of uspidal representations of GL

m

(A ), and

T (m) =

m

a

d=1

A

0

(d).

Let �

0

= 


0

�

0

v

be a uspidal representation of GL

m

(A ) with m < n. Then again we an

formally de�ne

L(s;�� �

0

) =

Y

v

L(s;�

v

� �

0

v

) and "(s;�� �

0

) =

Y

v

"(s;�

v

� �

0

v

;  

v

)

sine again the loal fators make sense whether � is automorphi or not. A onsequene

of (1) and (2) above and the uspidality of �

0

is that both L(s;� � �

0

) and L(s;

e

� �

e

�

0

)

onverge absolutely for Re(s) >> 0, where

e

� and

e

�

0

are the ontragredient representations,

and that "(s;�� �

0

) is independent of the hoie of  .

We say that L(s;�� �

0

) is nie if it satis�es the same analyti properties it would if �

were uspidal, i.e.,

1. L(s;�� �

0

) and L(s;

e

��

e

�

0

) have analyti ontinuations to entire funtions of s,

2. these entire ontinuations are bounded in vertial strips of �nite width,

3. they satisfy the standard funtional equation

L(s;�� �

0

) = "(s;�� �

0

)L(1� s;

e

��

e

�

0

):

The basi Converse Theorem for GL

n

is the following.
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Theorem 5.1 Let � be an irreduible admissible representation of GL

n

(A ) as above. Sup-

pose that L(s;� � �

0

) is nie for all �

0

2 T (n � 1). Then � is a uspidal automorphi

representation.

In this theorem we twist by the maximal amount and obtain the strongest possible

onlusion about �. The proof of this theorem essentially follows that of Heke [24℄ and

Weil [67℄ and Jaquet{Langlands [30℄. It is of ourse valid for n = 2 as well.

For appliations, it is desirable to twist by as little as possible. There are essentially two

ways to restrit the twisting. One is to restrit the rank of the groups that the twisting

representations live on. The other is to restrit rami�ation.

When we restrit the rank of our twists, we an obtain the following result.

Theorem 5.2 Let � be an irreduible admissible representation of GL

n

(A ) as above. Sup-

pose that L(s;� � �

0

) is nie for all �

0

2 T (n � 2). Then � is a uspidal automorphi

representation.

This result is stronger than Theorem 5.1, but its proof is a bit more deliate.

The theorem along these lines that is most useful for appliations is one in whih we also

restrit the rami�ation at a �nite number of plaes. Let us �x a �nite set of S of �nite plaes

and let T

S

(m) denote the subset of T (m) onsisting of representations that are unrami�ed

at all plaes v 2 S.

Theorem 5.3 Let � be an irreduible admissible representation of GL

n

(A ) as above. Let S

be a �nite set of �nite plaes. Suppose that L(s;�� �

0

) is nie for all �

0

2 T

S

(n� 2). Then

� is quasi-automorphi in the sense that there is an automorphi representation �

0

suh that

�

v

' �

0

v

for all v =2 S.

Note that as soon as we restrit the rami�ation of our twisting representations we lose

information about � at those plaes. In appliations we usually hoose S to ontain the set

of �nite plaes v where �

v

is rami�ed.

The seond way to restrit our twists is to restrit the rami�ation at all but a �nite

number of plaes. Now �x a non-empty �nite set of plaes S whih in the ase of a number

�eld ontains the set S

1

of all arhimedean plaes. Let T

S

(m) denote the subset onsisting

of all representations �

0

in T (m) whih are unrami�ed for all v =2 S. Note that we are plaing

a grave restrition on the rami�ation of these representations.

Theorem 5.4 Let � be an irreduible admissible representation of GL

n

(A ) as above. Let

S be a non-empty �nite set of plaes, ontaining S

1

, suh that the lass number of the ring

o

S

of S-integers is one. Suppose that L(s;� � �

0

) is nie for all �

0

2 T

S

(n � 1). Then �

is quasi-automorphi in the sense that there is an automorphi representation �

0

suh that

�

v

' �

0

v

for all v 2 S and all v =2 S suh that both �

v

and �

0

v

are unrami�ed.

There are several things to note here. First, there is a lass number restrition. However,

if k = Q then we may take S = S

1

and we have a Converse Theorem with \level 1" twists.

As a pratial onsideration, if we let S

�

be the set of �nite plaes v where �

v

is rami�ed,

then for appliations we usually take S and S

�

to be disjoint. One again, we are losing all
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information at those plaes v =2 S where we have restrited the rami�ation unless �

v

was

already unrami�ed there.

The proof of Theorem 5.1 essentially follows the lead of Heke, Weil, and Jaquet{

Langlands. It is based on the integral representations of L-funtions, Fourier expansions,

Mellin inversion, and �nally a use of the weak form of Langlands spetral theory. For

Theorems 5.2, 5.3, and 5.4, where we have restrited our twists, we must impose ertain

loal onditions to ompensate for our limited twists. For Theorem 5.2 and 5.3 there are a

�nite number of loal onditions and for Theorem 5.4 an in�nite number of loal onditions.

We must then work around these by using results on generation of ongruene subgroups

and either weak or strong approximation.

5.2 Inverting the integral representation

Let � be as above and let � 2 V

�

be a deomposable vetor in the spae V

�

of �. Sine � is

generi, then �xing loal Whittaker models W(�

v

;  

v

) at all plaes, ompatibly normalized

at the unrami�ed plaes, we an assoiate to � a non-zero funtion W

�

(g) =

Q

W

�

v

(g

v

)

on GL

n

(A ) whih transforms by the global harater  under left translation by N

n

(A ),

i.e., W

�

(ng) =  (n)W

�

(g). Sine  is trivial on rational points, we see that W

�

(g) is left

invariant under N

n

(k). We would like to use W

�

to onstrut an embedding of V

�

into the

spae of (smooth) automorphi forms on GL

n

(A ). The simplest idea is to average W

�

over

N

n

(k)nGL

n

(k), but this will not be onvergent. However, if we average over the rational

points of the miraboli P = P

n

then the sum

U

�

(g) =

X

N

n

(k)nP(k)

W

�

(pg)

is absolutely onvergent. For the relevant growth properties of U

�

see [7℄. Sine � is assumed

to have automorphi entral harater, we see that U

�

(g) is left invariant under both P(k)

and the enter Z

n

(k).

Suppose now that we know that L(s;� � �

0

) is nie for all �

0

2 T (m). Then we will

hope to obtain the remaining invariane of U

�

from the GL

n

�GL

m

funtional equation by

inverting the integral representation for L(s;� � �

0

). With this in mind, let Q = Q

m

be

the miraboli subgroup of GL

n

whih stabilizes the standard unit vetor

t

e

m+1

, that is the

olumn vetor all of whose entries are 0 exept the (m + 1)

th

, whih is 1. Note that if

m = n� 1 then Q is nothing more than the opposite miraboli P =

t

P

�1

to P. If we let �

m

be the permutation matrix in GL

n

(k) given by

�

m

=

0

�

1

I

m

I

n�m�1

1

A

then Q

m

= �

�1

m

�

n�1

P�

�1

n�1

�

m

is a onjugate of P and for any m we have that P(k) and Q(k)

generate all of GL

n

(k). So now set

V

�

(g) =

X

N

0

(k)nQ(k)

W

�

(�

m

qg)
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n

where N

0

= �

�1

m

N

n

�

m

� Q. This sum is again absolutely onvergent and is invariant on the

left by Q(k) and Z(k). Thus, to embed � into the spae of automorphi forms it suÆes to

show U

�

= V

�

, for the we get invariane of U

�

under all of GL

n

(k). It is this that we will

attempt to do using the integral representations.

Now let (�

0

; V

�

0

) be an irreduible subrepresentation of the spae of automorphi forms

on GL

m

(A ) and assume '

0

2 V

�

0

is also fatorizable. Let

I(s;U

�

; '

0

) =

Z

GL

m

(k)nGL

m

(A )

P

n

m

U

�

�

h

1

�

'

0

(h)j det(h)j

s�1=2

dh:

This integral is always absolutely onvergent for Re(s) >> 0, and for all s if �

0

is uspidal.

As with the usual integral representation we have that this unfolds into the Euler produt

I(s;U

�

; '

0

) =

Z

N

m

(A )n GL

m

(A )

W

�

�

h 0

0 I

n�m

�

W

0

'

0

(h)j det(h)j

s�(n�m)=2

dh

=

Y

v

Z

N

m

(k

v

)nGL

m

(k

v

)

W

�

v

�

h

v

0

0 I

n�m

�

W

0

'

0

v

(h

v

)j det(h

v

)j

s�(n�m)=2

v

dh

v

=

Y

v

	

v

(s;W

�

v

;W

0

'

0

v

):

Note that unless �

0

is generi, this integral vanishes.

Assume �rst that �

0

is uspidal. Then from the loal theory of L-funtions from Setion

3, for almost all �nite plaes we have 	

v

(s;W

�

v

;W

0

'

0

v

) = L(s;�

v

� �

0

v

) and for the other

plaes 	

v

(s;W

�

v

;W

0

'

0

v

) = e

v

(s;W

�

v

;W

0

'

0

v

)L(s;�

v

� �

0

v

) with the e

v

(s;W

�

v

;W

0

'

0

v

) entire and

bounded in vertial strips. So in this ase we have I(s;U

�

; '

0

) = e(s)L(s;� � �

0

) with e(s)

entire and bounded in vertial strips. Sine L(s; � � �

0

) is assumed nie we may onlude

that I(s;U

�

; '

0

) has an analyti ontinuation to an entire funtion whih is bounded in

vertial strips. When �

0

is not uspidal, it is a subrepresentation of a representation that

is indued from (possibly non-unitary) uspidal representations �

i

of GL

r

i

(A ) for r

i

< m

with

P

r

i

= m and is in fat, if our integral doesn't vanish, the unique generi onstituent

of this indued representation. Then we an make a similar argument using this indued

representation and the fat that the L(s;� � �

i

) are nie to again onlude that for all �

0

,

I(s;U

�

; '

0

) = e(s)L(s;�� �

0

) = e

0

(s)

Q

L(s;�� �

i

) is entire and bounded in vertial strips.

(See [7℄ for more details on this point.)

Similarly, onsider I(s;V

�

; '

0

) for '

0

2 V

�

0

with �

0

an irreduible subrepresentation of the

spae of automorphi forms on GL

m

(A ), still with

I(s;V

�

; '

0

) =

Z

GL

m

(k)nGL

m

(A )

P

n

m

V

�

�

h

1

�

'

0

(h)j det(h)j

s�1=2

dh:

Now this integral onverges for Re(s) << 0. However, when we unfold, we �nd

I(s;V

�

; '

0

) =

Y

e

	

v

(1� s; �(w

n;m

)

f

W

�

v

;

f

W

0

'

0

v

) = ~e(1� s)L(1� s;

e

��

e

�

0

)

as above. Thus I(s;V

�

; '

0

) also has an analyti ontinuation to an entire funtion of s whih

is bounded in vertial strips.
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Now, utilizing the assumed global funtional equation for L(s;�� �

0

) in the ase where

�

0

is uspidal, or for the L(s;� � �

i

) in the ase �

0

is not uspidal, as well as the loal

funtional equations at v 2 S

1

[ S

�

[ S

�

0

[ S

 

as in Setion 3 one �nds

I(s;U

�

; '

0

) = e(s)L(s;�� �

0

) = ~e(1� s)L(1� s;

e

��

e

�

0

) = I(s;V

�

; '

0

)

for all '

0

in all irreduible subrepresentations �

0

of GL

m

(A ), in the sense of analyti ontin-

uation. This onludes our use of the L-funtion.

We now rewrite our integrals I(s;U

�

; '

0

) and I(s;V

�

; '

0

) as follows. We �rst stratify

GL

m

(A ). For eah a 2 A

�

let GL

a

m

(A ) = fg 2 GL

m

(A ) j det(g) = ag. We an, and will,

always take GL

a

m

(A ) = SL

m

(A ) �

�

a

I

m�1

�

. Let

hP

n

m

U

�

; '

0

i

a

=

Z

SL

m

(k)nGL

a

m

(A )

P

n

m

U

�

�

h

1

�

'

0

(h) dh

and similarly for hP

n

m

V

�

; '

0

i

a

. These are both absolutely onvergent for all a and de�ne

ontinuous funtions of a on k

�

nA

�

. We now have that I(s;U

�

; '

0

) is the Mellin transform

of hP

n

m

U

�

; '

0

i

a

,

I(s;U

�

; '

0

) =

Z

k

�

nA

�

hP

n

m

U

�

; '

0

i

a

jaj

s�1=2

d

�

a;

similarly for I(s;V

�

; '

0

), and that these two Mellin transforms are equal in the sense of

analyti ontinuation. By Mellin inversion as in Lemma 11.3.1 of Jaquet-Langlands [30℄,

we have that hP

n

m

U

�

; '

0

i

a

= hP

n

m

V

�

; '

0

i

a

for all a, and in partiular for a = 1. Sine this is

true for all '

0

in all irreduible subrepresentations of automorphi forms on GL

m

(A ), then

by the weak form of Langlands' spetral theory for SL

m

we may onlude that P

n

m

U

�

= P

n

m

V

�

as funtions on P

m+1

(A ). More spei�ally, we have the following result.

Proposition 5.1 Let � be an irreduible admissible representation of GL

n

(A ) as above.

Suppose that L(s;� � �

0

) is nie for all �

0

2 T (m). Then for eah � 2 V

�

we have

P

n

m

U

�

(I

m+1

) = P

n

m

V

�

(I

m+1

).

This proposition is the key ommon ingredient for all our Converse Theorems.

5.3 Remarks on the proofs

All of our Converse Theorems take Proposition 5.1 as their starting point. Theorem 5.1

follows almost immediately. In Theorems 5.2, 5.3, and 5.4 we must add loal onditions to

ompensate for the fat that we do not have the full family of twists from Theorem 5.1 and

then work around them. We will sketh these arguments here. Details for Theorems 5.1 and

5.4 an be found in [7℄ and for Theorems 5.2 and 5.3 an be found in [9℄.

5.3.1 Theorem 5.1

Let us �rst look at the proof of Theorem 5.1. So we now assume that � is as above and that

L(s;� � �

0

) is nie for all �

0

2 T (n � 1). Then we have that for all � 2 V

�

, P

n

n�1

U

�

(I

n

) =
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n

P

n

n�1

V

�

(I

n

). But for m = n�1 the projetion operator P

n

n�1

is nothing more than restrition

to P

n

. Hene we have U

�

(I

n

) = V

�

(I

n

) for all � 2 V

�

. Then for eah g 2 GL

n

(A ), we have

U

�

(g) = U

�(g)�

(I

n

) = V

�(g)�

(I

n

) = V

�

(g). So the map � 7! U

�

(g) gives our embedding of �

into the spae of automorphi forms on GL

n

(A ), sine now U

�

is left invariant under P(k),

Q(k), and hene all of GL

n

(k). Sine we still have

U

�

(g) =

X

N

n

(k)nP(k)

W

�

(pg)

we an ompute that U

�

is uspidal along any paraboli subgroup of GL

n

. Hene � embeds

in the spae of usp forms on GL

n

(A ) as desired.

5.3.2 Theorem 5.2

Next onsider Theorem 5.2, so now suppose that n � 3, and that L(s;�� �

0

) is nie for all

�

0

2 T (n�2). Then from Proposition 5.1 we may onlude that P

n

n�2

U

�

(I

n�1

) = P

n

n�2

V

�

(I

n�1

)

for all � 2 V

�

. Sine the projetion operator P

n

n�2

now involves a non-trivial integration over

k

n�1

nA

n�1

we an no longer argue as in the proof of Theorem 5.1. To get to that point we

will have to impose a loal ondition on the vetor � at one plae.

Before we plae our loal ondition, let us write F

�

= U

�

� V

�

. Then F

�

is rapidly

dereasing as a funtion on P

n�1

. We have P

n

n�2

F

�

(I

n�1

) = 0 and we would like to have

simply that F

�

(I

n

) = 0. Let u = (u

1

; : : : ; u

n�1

) 2 A

n�1

and onsider the funtion

f

�

(u) = F

�

�

I

n�1

t

u

1

�

:

Now f

�

(u) is a funtion on k

n�1

nA

n�1

and as suh has a Fourier expansion

f

�

(u) =

X

�2k

n�1

^

f

�

(�) 

�

(u)

where  

�

(u) =  (� �

t

u) and

^

f

�

(�) =

Z

k

n�1

nA

n�1

f

�

(u) 

��

(u) du:

In this language, the statement P

n

n�2

F

�

(I

n�1

) = 0 beomes

^

f

�

(e

n�1

) = 0, where as always, e

k

is the standard unit vetor with 0's in all plaes exept the k

th

where there is a 1.

Note that F

�

(g) = U

�

(g)� V

�

(g) is left invariant under (Z(k) P(k)) \ (Z(k)Q(k)) where

Q = Q

n�2

. This ontains the subgroup

R(k) =

8

<

:

r =

0

�

I

n�2

�

0

�

n�1

�

n

1

1

A

�

�

�

0

2 k

n�2

; �

n�1

6= 0

9

=

;

:

Using this invariane of F

�

, it is now elementary to ompute that, with this notation,

^

f

�(r)�

(e

n�1

) =

^

f

�

(�) where � = (�

0

; �

n�1

) 2 k

n�1

. Sine

^

f

�

(e

n�1

) = 0 for all �, and in
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partiular for �(r)�, we see that for every � we have

^

f

�

(�) = 0 whenever �

n�1

6= 0. Thus

f

�

(u) =

X

�2k

n�1

^

f

�

(�) 

�

(u) =

X

�

0

2k

n�2

^

f

�

(�

0

; 0) 

(�

0

;0)

(u):

Hene f

�

(0; : : : ; 0; u

n�1

) =

P

�

0

2k

n�2

^

f

�

(�

0

; 0) is onstant as a funtion of u

n�1

. Moreover,

this onstant is f

�

(e

n�1

) = F

�

(I

n

), whih we want to be 0. This is what our loal ondition

will guarantee.

If v is a �nite plae of k, let o

v

denote the ring of integers of k

v

, and let p

v

denote the

prime ideal of o

v

. We may assume that we have hosen v so that the loal additive harater

 

v

is normalized, i.e., that  

v

is trivial on o

v

and non-trivial on p

�1

v

. Given an integer n

v

� 1

we onsider the open ompat group

K

00;v

(p

n

v

v

) = fg = (g

i;j

) 2 GL

n

(o

v

) j(i) g

i;n�1

2 p

n

v

v

for 1 � i � n� 2;

(ii) g

n;j

2 p

n

v

v

for 1 � j � n� 2;

(iii) g

n;n�1

2 p

2n

v

v

g:

(As usual, g

i;j

represents the entry of g in the i-th row and j-th olumn.)

Lemma Let v be a �nite plae of k as above and let (�

v

; V

�

v

) be an irreduible admissible

generi representation of GL

n

(k

v

). Then there is a vetor �

0

v

2 V

�

v

and a non-negative

integer n

v

suh that

1. for any g 2 K

00;v

(p

n

v

v

) we have �

v

(g)�

0

v

= !

�

v

(g

n;n

)�

0

v

2.

R

p

�1

v

�

v

0

�

I

n�2

1 u

1

1

A

�

0

v

du = 0.

The proof of this Lemma is simply an exerise in the Kirillov model of �

v

and an be

found in [9℄.

If we now �x suh a plae v

0

and assume that our vetor � is hosen so that �

v

0

= �

0

v

0

,

then we have

F

�

(I

n

) = f

�

(e

n�1

) = Vol(p

�1

v

0

)

�1

Z

p

�1

v

0

f

�

(0; : : : ; 0; u

v

0

) du

v

0

= Vol(p

�1

v

0

)

�1

Z

p

�1

v

0

F

�

0

�

I

n�2

1 u

v

0

1

1

A

du

v

0

= 0

for suh �.

Hene we now have U

�

(I

n

) = V

�

(I

n

) for all � 2 V

�

suh that �

v

0

= �

0

v

0

at our �xed

plae. If we let G

0

= K

00;v

0

(p

n

v

0

v

0

)G

v

0

, where we set G

v

0

=

Q

0

v 6=v

0

GL

n

(k

v

), then we have this

group preserves the loal omponent �

0

v

0

up to a onstant fator so that for g 2 G

0

we have

U

�

(g) = U

�(g)�

(I

n

) = V

�(g)�

(I

n

) = V

�

(g).

We now use a fat about generation of ongruene type subgroups. Let �

1

= (P(k) Z(k))\

G

0

, �

2

= (Q(k) Z(k)) \G

0

, and � = GL

n

(k) \G

0

. Then U

�

(g) is left invariant under �

1

and
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n

V

�

(g) is left invariant under �

2

. It is essentially a matrix alulation that together �

1

and

�

2

generate �. So, as a funtion on G

0

, U

�

(g) = V

�

(g) is left invariant under �. So if we

let �

v

0

= 


0

v 6=v

0

�

v

then the map �

v

0

7! U

�

0

v

o


�

v

0

(g) embeds V

�

v

0

into A(�nG

0

), the spae of

automorphi forms on G

0

relative to �. Now, by weak approximation, GL

n

(A ) = GL

n

(k) �G

0

and � = GL

n

(k) \ G

0

, so we an extend �

v

0

to an automorphi representation of GL

n

(A ).

Let �

0

be an irreduible omponent of the extended representation. Then �

0

is automorphi

and oinides with � at all plaes exept possible v

0

.

One now repeats the entire argument using a seond plae v

1

6= v

0

. Then we have two

automorphi representations �

1

and �

0

of GL

n

(A ) whih agree at all plaes exept possibly

v

0

and v

1

. By the generalized Strong Multipliity One for GL

n

we know that �

0

and �

1

are

both onstituents of the same indued representation � = Ind(�

1


� � �
�

r

) where eah �

i

is

a uspidal representation of some GL

m

i

(A ), eah m

i

� 1 and

P

m

i

= n. We an write eah

�

i

= �

Æ

i


 j det j

t

i

with �

Æ

i

unitary uspidal and t

i

2 R and assume t

1

� � � � � t

r

. If r > 1,

then either m

1

� n � 2 or m

r

� n � 2 (or both). For simpliity assume m

r

� n � 2. Let

S be a �nite set of plaes ontaining all arhimedean plaes, v

0

, v

1

, S

�

, and S

�

i

for eah i.

Taking �

0

= e�

r

2 T (n� 2), we have the equality of partial L-funtions

L

S

(s;�� �

0

) = L

S

(s;�

0

� �

0

) = L

S

(s;�

1

� �

0

)

=

Y

i

L

S

(s; �

i

� �

0

) =

Y

i

L

S

(s+ t

i

� t

r

; �

Æ

i

� e�

Æ

r

):

Now L

S

(s; �

r

�e�

r

) has a pole at s = 1 and all other terms are non-vanishing at s = 1. Hene

L(s;�� �

0

) has a pole at s = 1 ontraditing the fat that L(s;�� �

0

) is nie. If m

1

� 2,

then we an make a similar argument using L(s;

e

�� �

1

). So in fat we must have r = 1 and

�

0

= �

1

= � is uspidal. Sine �

0

agrees with � at v

1

and �

1

agrees with � at v

0

we see

that in fat � = �

0

= �

1

and � is indeed uspidal automorphi.

5.3.3 Theorem 5.3

Now onsider Theorem 5.3. Sine we have restrited our rami�ation, we no longer know

that L(s;���

0

) is nie for all �

0

2 T (n�2) and so Proposition 5.1 above is not immediately

appliable. In this ase, for eah plae v 2 S we �x a vetor �

0

v

2 V

�

v

as in the above

Lemma. (So we must assume we have hosen  so it is unrami�ed at the plaes in S.) Let

�

0

S

=

Q

v2S

�

0

v

2 �

S

. Consider now only vetors � of the form �

S


 �

0

S

with �

S

arbitrary

in V

�

S
and �

0

S

�xed. For these vetors, the funtions P

n

n�2

U

�

�

h

1

�

and P

n

n�2

V

�

�

h

1

�

are unrami�ed at the plaes v 2 S, so that the integrals I(s;U

�

; '

0

) and I(s;V

�

; '

0

) vanish

unless '

0

(h) is also unrami�ed at those plaes in S. In partiular, if �

0

2 T (n � 2) but

�

0

=2 T

S

(n � 2) these integrals will vanish for all '

0

2 V

�

0

. So now, for this �xed lass of �

we atually have I(s;U

�

; '

0

) = I(s;V

�

; '

0

) for all '

0

2 V

�

0

for all �

0

2 T (n � 2). Hene, as

before, P

n

n�2

U

�

(I

n�1

) = P

n

n�2

V

�

(I

n�1

) for all suh �.

Now we proeed as before. Our Fourier expansion argument is a bit more subtle sine

we have to work around our loal onditions, whih now have been imposed before this step,

but we do obtain that U

�

(g) = V

�

(g) for all g 2 G

0

= (

Q

v2S

K

00;v

(p

n

v

v

))G

S

. The generation

of ongruene subgroups goes as before. We then use weak approximation as above, but
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then take for �

0

any onstituent of the extension of �

S

to an automorphi representation of

GL

n

(A ).There no use of strong multipliity one nor any further use of the L-funtion in this

ase. More details an be found in [9℄.

5.3.4 Theorem 5.4

Let us now sketh the proof of Theorem 5.4. We �x a non-empty �nite set of plaes S,

ontaining all arhimedean plaes, suh that the ring o

S

of S-integer has lass number one.

Reall that we are now twisting by all uspidal representations �

0

2 T

S

(n � 1), that is, �

0

whih are unrami�ed at all plaes v =2 S. Sine we have not twisted by all of T (n�1) we are

not in a position to apply Proposition 5.1. To be able to apply that, we will have to plae

loal onditions at all v =2 S.

We begin by realling the de�nition of the ondutor of a representation �

v

of GL

n

(k

v

)

and the ondutor (or level) of � itself. Let K

v

= GL

n

(o

v

) be the standard maximal ompat

subgroup of GL

n

(k

v

). Let p

v

� o

v

be the unique prime ideal of o

v

and for eah integerm

v

� 0

set

K

0;v

(p

m

v

v

) =

8

>

>

>

<

>

>

>

:

g 2 GL

n

(o

v

)

�

�

�

�

g �

0

B

B

B

�

�

�

.

.

.

�

0 � � � 0 �

1

C

C

C

A

(mod p

m

v

)

9

>

>

>

=

>

>

>

;

and K

1;v

(p

m

v

v

) = fg 2 K

0;v

(p

m

v

v

) j g

n;n

� 1 (mod p

m

v

v

))g. Note that for m

v

= 0 we have

K

1;v

(p

0

v

) = K

0;v

(p

0

v

) = K

v

. Then for eah loal omponent �

v

of � there is a unique integer

m

v

� 0 suh that the spae of K

1;v

(p

m

v

v

){�xed vetors in �

v

is exatly one. For almost

all v, m

v

= 0. We take the ideal p

m

v

v

= f(�

v

) as the ondutor of �

v

. Then the ideal

n = f(�) =

Q

v

p

m

v

v

� o is alled the ondutor of �. For eah plae v we �x a non-zero

vetor �

Æ

v

2 �

v

whih is �xed by K

1;v

(p

m

v

v

), whih at the unrami�ed plaes is taken to be the

vetor with respet to whih the restrited tensor produt � = 


0

�

v

is taken. Note that for

g 2 K

0;v

(p

m

v

v

) we have �

v

(g)�

Æ

v

= !

�

v

(g

n;n

)�

Æ

v

.

Now �x a non-empty �nite set of plaes S, ontaining the arhimedean plaes if there are

any. As is standard, we will let G

S

=

Q

v2S

GL

n

(k

v

), G

S

=

Q

v=2S

GL

n

(k

v

), �

S

= 


v2S

�

v

,

�

S

= 


0

v=2S

�

v

, et. The the ompat subring n

S

=

Q

v=2S

p

m

v

v

� k

S

or the ideal it determines

n

S

= k \ k

S

n

S

� o

S

is alled the S{ondutor of �. Let K

S

1

(n) =

Q

v=2S

K

1;v

(p

m

v

v

) and

similarly for K

S

0

(n). Let �

Æ

= 


v=2S

�

Æ

v

2 �

S

. Then this vetor is �xed by K

S

1

(n) and

transforms by a harater under K

S

0

(n). In partiular, sine

Q

v=2S

GL

n�1

(o

v

) embeds in K

S

1

(n)

via h 7!

�

h

1

�

we see that when we restrit �

S

to GL

n�1

the vetor �

Æ

is unrami�ed.

Now let us return to the proof of Theorem 5.4 and in partiular the version of Proposition

5.1 we an salvage. For every vetor �

S

2 �

S

onsider the funtions U

�

S


�

Æ

and V

�

S


�

Æ

. When

we restrit these funtions to GL

n�1

they beome unrami�ed for all plaes v =2 S. Hene

we see that the integrals I(s;U

�

S


�

Æ

; '

0

) and I(s;V

�

S


�

Æ

; '

0

) vanish identially if the funtion

'

0

2 V

�

0

is not unrami�ed for v =2 S, and in partiular if '

0

2 V

�

0

for �

0

2 T (n � 1)

but �

0

=2 T

S

(n � 1). Hene, for vetors of the form � = �

S


 �

Æ

we do indeed have that

I(s;U

�

S


�

Æ

; '

0

) = I(s;V

�

S


�

Æ

; '

0

) for all '

0

2 V

�

0

and all �

0

2 T (n � 1). Hene, as in

Proposition 5.1 we may onlude that U

�

S


�

Æ

(I

n

) = V

�

S


�

Æ

(I

n

) for all �

S

2 V

�

S

. Moreover,
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n

sine �

S

was arbitrary in V

�

S

and the �xed vetor �

Æ

transforms by a harater of K

S

0

(n) we

may onlude that U

�

S


�

Æ

(g) = V

�

S


�

Æ

(g) for all �

S

2 V

�

S

and all g 2 G

S

K

S

0

(n).

What invariane properties of the funtion U

�

S


�

Æ

have we gained from our equality

with V

�

S


�

Æ

. Let us let �

i

(n

S

) = GL

n

(k) \ G

S

K

S

i

(n) whih we may view naturally as

ongruene subgroups of GL

n

(o

S

). Now, as a funtion on G

S

K

S

0

(n), U

�

S


�

Æ

(g) is naturally

left invariant under �

0;P

(n

S

) = Z(k) P(k)\G

S

K

S

0

(n) while V

�

S


�

Æ

(g) is naturally left invariant

under �

0;Q

(n

S

) = Z(k)Q(k) \ G

S

K

S

0

(n) where Q = Q

n�1

. Similarly we set �

1;P

(n

S

) =

Z(k) P(k)\G

S

K

S

1

(n) and �

1;Q

(n

S

) = Z(k)Q(k)\G

S

K

S

1

(n). The ruial observation for this

Theorem is the following result.

Proposition The ongruene subgroup �

i

(n

S

) is generated by �

i;P

(n

S

) and �

i;Q

(n

S

) for

i = 0; 1.

This proposition is a onsequene of results in the stable algebra of GL

n

due to Bass

whih were ruial to the solution of the ongruene subgroup problem for SL

n

by Bass,

Milnor, and Serre. This is reason for the restrition to n � 3 in the statement of Theorem

5.4.

From this we get not an embedding of � into a spae of automorphi forms on GL

n

(A ),

but rather an embedding of �

S

into a spae of lassial automorphi forms on G

S

. To this

end, for eah �

S

2 V

�

S

let us set

�

�

S

(g

S

) = U

�

S


�

Æ

((g

S

; 1

S

)) = V

�

S


�

Æ

((g

S

; 1

S

))

for g

S

2 G

S

. Then �

�

S

will be left invariant under �

1

(n

S

) and transform by a Nebentypus

harater �

S

under �

0

(n

S

) determined by the entral harater !

�

S of �

S

. Furthermore, it

will transform by a harater !

S

= !

�

S

under the enter Z(k

S

) of G

S

. The requisite growth

properties are satis�ed and hene the map �

S

7! �

�

S

de�nes an embedding of �

S

into the

spae A(�

0

(n

S

)nG

S

;!

S

; �

S

) of lassial automorphi forms on G

S

relative to the ongruene

subgroup �

0

(n

S

) with Nebentypus �

S

and entral harater !

S

.

We now need to lift our lassial automorphi representation bak to an adeli one and

hopefully reover the rest of �. By strong approximation for GL

n

and our lass num-

ber assumption we have the isomorphism between the spae of lassial automorphi forms

A(�

0

(n

S

)nG

S

;!

S

; �

S

) and the K

S

1

(n) invariants in A(GL

n

(k)nGL

n

(A );!) where ! is the

entral harater of �. Hene �

S

will generate an automorphi subrepresentation of the

spae of automorphi forms A(GL

n

(k)nGL

n

(A );!). To ompare this to our original �, we

must hek that, in the spae of lassial forms, the �

�

S


�

Æ

are Heke eigenforms for a las-

sial Heke algebra and that their Heke eigenvalues agree with those from �. We do this

only for those v =2 S whih are unrami�ed, where it is a rather standard alulation. As we

have not talked about Heke algebras, we refer the reader to [7℄ for the details.

Now if we let �

0

be any irreduible subrepresentation of the representation generated by

the image of �

S

in A(GL

n

(k)nGL

n

(A );!), then �

0

is automorphi and we have �

0

v

' �

v

for all v 2 S by onstrution and �

0

v

' �

v

for all v =2 S

0

by the Heke algebra alulation.

Thus we have proven Theorem 5.4.

5.4 Converse Theorems and liftings

In this setion we would like to make some general remarks on how to apply these Converse

Theorems to the problem of funtorial liftings [3℄.
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In order to apply these these theorems, you must be able to ontrol the global properties

of the L-funtion. However, for the most part, the way we have of ontrolling global L-

funtions is to assoiate them to automorphi forms or representations. A minute's thought

will then lead one to the onlusion that the primary appliation of these results will be to

the lifting of automorphi representations from some group H to GL

n

.

Suppose that H is a split lassial group, � an automorphi representation of H, and �

a representation of the L-group of H. Then we should be able to assoiate an L-funtion

L(s; �; �) to this situation [3℄. Let us assume that � :

L

H ! GL

n

(C ) so that to � should be

assoiated an automorphi representation � of GL

n

(A ). What should � be and why should

it be automorphi.

We an see what �

v

should be at almost all plaes. Sine we have the (arithmeti)

Langlands (or Langlands-Satake) parameterization of representations for all arhimedean

plaes and those �nite plaes where the representations are unrami�ed [3℄, we an use these

to assoiate to �

v

and the map �

v

:

L

H

v

! GL

n

(C ) a representation �

v

of GL

n

(k

v

). If H

happens to be GL

m

then we in priniple know how to assoiate the representation �

v

at

all plaes now that the loal Langlands onjeture has been solved for GL

m

[23, 26℄, but

in pratie this is still not feasible. For other situations, we do not know what �

v

should

be at the rami�ed plaes. We will return to this diÆulty momentarily. But for now, lets

assume we an �nesse this loal problem and arrive at a representation � = 


0

�

v

suh that

L(s; �; �) = L(s;�). � should then be the Langlands lifting of � to GL

n

assoiated to �.

For simpliity of exposition, let us now assume that � is simply the standard embedding

of

L

H into GL

n

(C ) and write L(s; �; �) = L(s; �) = L(s;�). We have our andidate � for

the lift of � to GL

n

, but how to tell whether � is automorphi. This is what the Converse

Theorem lets us do. But to apply them we must �rst be able to de�ne and ontrol the

twisted L-funtions L(s; � � �

0

) for �

0

2 T with an appropriate twisting set T from one of

our Converse Theorems. This is one reason it is always ruial to de�ne not only the standard

L-funtions for H, but also the twisted versions. If we know, from the theory of L-funtions

of H twisted by GL

m

for appropriate �

0

, that L(s; ���

0

) is nie and L(s; ���

0

) = L(s;���

0

)

for twists, then we an use Theorem 5.1 or 5.2 to onlude that � is uspidal automorphi

or Theorem 5.3 or 5.4 to onlude that � is quasi-automorphi and at least obtain a weak

automorphi lifting �

0

whih is veri�ably the orret representation at almost all plaes. At

this point this relies on the state of our knowledge of the theory of twisted L-funtions for

H.

Let us return now to the (loal) problem of not knowing the appropriate loal lifting

�

v

7! �

v

at the rami�ed plaes. We an irumvent this by a ombination of global and

loal means. The global tool is simply the following observation.

Observation Let � be as in Theorem 5.3 or 5.4. Suppose that � is a �xed (highly rami�ed)

harater of k

�

nA

�

. Suppose that L(s;���

0

) is nie for all �

0

2 T 
�, where T is either of

the twisting sets of Theorem 5.3 or 5.4. Then � is quasi-automorphi as in those theorems.

The only thing to observe, say by looking at the loal or global integrals, is that if �

0

2 T

then L(s;� � (�

0


 �)) = L(s; (� 
 �) � �

0

) so that applying the Converse Theorem for

� with twisting set T 
 � is equivalent to applying the Converse Theorem for � 
 � with

the twisting set T . So, by either Theorem 5.3 or 5.4, whihever is appropriate, � 
 � is

quasi-automorphi and hene � is as well.
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Now, if we begin with � automorphi on H(A ), we will take T to be the set of �nite

plaes where �

v

is rami�ed. For applying Theorem 5.3 we want S = T and for Theorem 5.4

we want S\T = ;. We will now take � to be highly rami�ed at all plaes v 2 T . So at v 2 T

our twisting representations are all loally of the form (unrami�ed prinipal series)
(highly

rami�ed harater).

We now need to know the following two loal fats about the loal theory of L-funtions

for H.

1. Multipliativity of -fators: If �

0

v

= Ind(�

0

1;v


 �

0

2;v

), with �

0

i;v

and irreduible ad-

missible representation of GL

r

i

(k

v

), then

(s; �

v

� �

0

v

;  

v

) = (s; �

v

� �

0

1;v

;  

v

)(s; �

v

� �

0

2;v

;  

v

)

and L(s; �

v

� �

0

v

)

�1

should divide [L(s; �

v

� �

0

1;v

)L(s; � � �

0

2;v

)℄

�1

.

If �

v

= Ind(�

v


 �

0

v

) with �

v

an irreduible admissible representation of GL

r

(k

v

) and

�

0

v

an irreduible admissible representation of H

0

(k

v

) with H

0

� H suh that GL

r

�H

0

is the Levi of a paraboli subgroup of H, then

(s; �

v

� �

0

v

;  

v

) = (s; �

v

� �

0

v

;  

v

)(s; �

0

v

� �

0

v

;  

v

)(s; e�

v

� �

0

v

;  

v

):

2. Stability of -fators: If �

1;v

and �

2;v

are two irreduible admissible representations of

H(k

v

), then for every suÆiently highly rami�ed harater �

v

of GL

1

(k

v

) we have

(s; �

1;v

� �

v

;  

v

) = (s; �

2;v

� �

v

;  

v

)

and

L(s; �

1;v

� �

v

) = L(s; �

2;v

� �

v

) � 1:

One again, for these appliations it is ruial that the loal theory of L-funtions is

suÆiently developed to establish these results on the loal -fators. As we have seen in

Setion 3, both of these fats are known for GL

n

.

To utilize these loal results, what one now does is the following. At the plaes where �

v

is rami�ed, hoose �

v

to be arbitrary, exept that it should have the same entral harater

as �

v

. This is both to guarantee that the entral harater of � is the same as that of �

and hene automorphi and to guarantee that the stable forms of the {fators for �

v

and

�

v

agree. Now form � = 


0

�

v

. Choose our harater � so that at the plaes v 2 T we have

that the L{ and {fators for both �

v


 �

v

and �

v


 �

v

are in their stable form and agree.

We then twist by T 
 � for this �xed harater �. If �

0

2 T 
 �, then for v 2 T , �

0

v

is of the

form �

0

v

= Ind(�

v;1


 � � � 
 �

v;m

) 
 �

v

with eah �

v;i

an unrami�ed harater of k

�

v

. So at

the plaes v 2 T we have

(s; �

v

� �

0

v

) = (s; �

v

� (Ind(�

v;1


 � � � 
 �

v;m

)
 �

v

))

=

Y

(s; �

v


 (�

v;i

�

v

)) (by multipliativity)

=

Y

(s;�

v


 (�

v;i

�

v

)) (by stability)

= (s;�

v

� (Ind(�

v;1


 � � � 
 �

v;m

)
 �

v

)) (by multipliativity)

= (s;�

v

� �

0

v

)
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and similarly for the L-fators. From this it follows that globally we will have L(s; ���

0

) =

L(s;�� �

0

) for all �

0

2 T 
 � and the global funtional equation for L(s; � � �

0

) will yield

the global funtional equation for L(s;�� �

0

). So L(s;�� �

0

) is nie and we may proeed

as before. We have, in essene, twisted all information about � and � at those v 2 T away.

The prie we pay is that we also lose this information in our onlusion sine we only know

that � is quasi-automorphi. In essene, the Converse Theorem �lls in a orret set of data

at those plaes in T to make the resulting global representation automorphi.

5.5 Some liftings

To onlude, let us make a list of some of the liftings that have been aomplished using

these Converse Theorems. Some have used the above trik of multipliativity and stability

of {fators to handle the rami�ed plaes. Others, prinipally those that involve GL

2

, have

adopted a tehnique of Ramakrishnan [51℄ involving a sequene of base hanges and desents

to get a more omplete handle on the rami�ed plaes.

1. The symmetri square lifting from GL

2

to GL

3

by Gelbart and Jaquet [15℄.

2. Non-normal ubi base hange for GL

2

by Jaquet, Piatetski-Shapiro, and Shalika [32℄.

3. The tensor produt lifting from GL

2

�GL

2

to GL

4

by Ramakrishnan [51℄.

4. The lifting of generi usp forms from SO

2n+1

to GL

2n

, with Kim, Piatetski-Shapiro,

and Shahidi [6℄.

5. The tensor produt lifting from GL

2

�GL

3

to GL

6

and the symmetri ube lifting from

GL

2

to GL

4

by Kim and Shahidi [40℄.

6. The exterior square lifting from GL

4

to GL

6

and the symmetri fourth power lift from

GL

2

to GL

5

by Kim [39℄.

For the most part, it was Theorem 5.3 that was used in eah ase, with the exeption of (4),

where a simpler variant was used requiring twists by T

S

(n� 1). For the non-normal ubi

base hange both Theorem 5.3 with n = 3 and Theorem 5.1 with n = 2 were used.
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