
1

J3DV: A Java-Based 3D Database Visualization Tool

Xiang Fang
110 Rogers Rd. Apt.N104
Athens, GA 30605
Tel: (706) 369-8579
xfang@cs.uga.edu

John A. Miller
415 GSRC, Computer Science Department
The University of Georgia
Athens GA, 30602-7404
Tel: (706) 542-3440
Fax: (706) 542-2966
jam@cs.uga.edu

Jonathan Arnold
Genetics Department
The University of Georgia
Athens, GA 30602
Tel: (706) 542-1449
arnold@arches.uga.edu

John A. Miller is the contact person.

 2

SUMMARY

Data visualization helps users process, interpret, and act upon data in large data

storage. In this paper, we present a Java-based 3D database visualization tool, J3DV. It

successfully solved the problem of data management faced by many other visualization

systems by integrating multiple data sources with the visualization tool. It utilizes two-

level mapping to transform the data into intermediate data, which can be used to render

graphs, and which offers better performance with a two-tier cache.

This visualization tool presents a sound framework, which has good extensibility

for plugging in new data sources, supporting new data models and visual presentation

types and allowing new graph layout algorithms.

INDEX WORDS: Database visualization, Data model , Mapping, Java 3D, Bioinformatics.

1. Introduction

Modern hardware and database technology has made it possible to store gigabytes

of information in databases. However, it can be difficult to utilize fully the information in

a large database with complicated structures. Many methods, such as data mining, have

been proposed and studied to help users better understand and analyze the information.

Database visualization is one of the effective solutions to this problem. Database

visualization becomes more appealing when handling large data sets with complex

relationships because information presented in the form of images is more direct and

easily understood by humans. Database visualization has been widely used in many

scientific research areas. Current visualization systems, such as MineSet [18], provide

users powerful tools to display and manipulate data. However, they offer insufficient data

management capability. In this paper, we introduce a database visualization tool ---

 3

J3DV, which improves this weakness by providing integration of data sources with

visualization and enhances performance with a two-tier cache.

1.1 Database Visualization

“Database visualization transcends traditional computing disciplines by creating

visual imagery with scientific data” [16]. It is a procedure performed by computer

programs, which integrate data from different sources, and then transform data into

images, which result in knowledgeable action. According to Lang et al. [15], the database

visualization process consists of the following steps:

� Retrieving data from data sources. The data sources can be of different types (e.g.,

relational databases, object-oriented databases or file systems). In addition, the

location of data sources can be on a local machine or distributed over the network.

� Mapping. This step transforms the original data into a geometric representation of

the data, providing a visual representation.

� Rendering and displaying. This step produces and displays images.

Database visualization is data centric. It makes data the core of the software

system development process. Understanding the data in data sources is the basic

requirement of database visualization. According to Berson et al. [6], the data resources

for database visualization fall into three categories, namely, computer simulations,

statistics, and data gathered from natural systems. These data undergo many

transformations from an original state to a displayable state. These data transformations

must be presented at the user interface, and include data storage, retrieval, and filtering

[16].

 4

Database visualization should not only show pictures but also allow the user to

explore the data in the large data sources. Goldstein et al. [7] proposed that a

visualization tool usually has three functions:

1) Data visualization, which may include transforming data into a displayable state

and rendering the image based on those data.

2) Data manipulation, which may include retrieving data, removing unwanted

attributes of data and reorganizing data.

3) Data analysis, which may include statistical reports on data and summarization of

data.

The data source and visualization system have different data models. A database

visualization tool must make a connection between the data source data model and the

visualization data model. Some methods has been proposed and studied. For example,

Lee [17] described a database management–database visualization integration, which

uses the view concept of relational databases to link database and visualization systems.

However, this method is not general enough to be applied to all data sources. To solve

this problem, a comprehensive data model is needed to make the connection. “A data

model is an abstraction of the data” [1]. Different visualization applications use different

data models. It is not feasible to create a single data model for all visualization systems.

Database visualization uses different visual representations to express multivariate

data. How to present the data with appropriate visual representations is important. A

number of database visualization techniques have been studied and developed, such as

3D imaging, colorization and animation [22]. A variety of presentation methods have

been employed. For example, the MineSet product of Silicon Graphics Inc. has a series of

 5

visualizers, such as Map Visualizer, Tree Visualizer, etc.. These visualizers can be used

to view data with different structures.

When discussing database visualization, it is necessary to mention a closely

associated field, data mining. Data mining is the process of extracting interesting

knowledge from large amounts of data stored either in databases, data warehouses, or

other information repositories [9]. According to them, data visualization and data mining

can be integrated in several ways, such as data mining result visualization, data mining

process visualization or interactive visual data mining.

1.2 Current State

Compared with other areas of computer science, database visualization has a

relatively short history. The recent emphasis on this research area emerged about fifteen

years ago [22]. Examples of some early visualization systems can be found in the work of

Asimov [2], Baecker [4], and Beddow [5]. The first IEEE workshop dedicated to

database visualization was held in 1993. Some advances have been achieved in this field

since then. Many visualization tools have been developed, for commercial and research

purposes. For example, the MineSet of Silicon Graphics Inc. and the AVS/Express [3] of

Advanced Visual System Inc. are mature commercial visualization products. Visage [25]

is a research project carried out at the Carnegie Mellon University. In addition, the Open

Visualization Data Explorer [20] of IBM is an open source visualization tool.

However, it has been pointed out that current data visualization environments

offer insufficient support for data source management and data interrogation methods.

Compared with the visual representation of data, system functions are underdeveloped.

 6

While the issues of graphical modeling and rendering are studied sufficiently, the

methods of data modeling and data retrieving are not efficient [27].

With the increasing complexity of data, the data management problem becomes

more apparent. According to Arya et al. [1], there are two options to deal with this

problem. The first option is to incorporate data source management capability into

visualization systems. Some visualization systems adopt this option to handle the data

management problem. However, most of these systems are not general-purpose solutions,

but only applicable for some specific visualization systems. Other visualization systems

adopt the other option to integrate visualization tools with database systems. However,

the challenge of this approach is how to define an efficient and sound interface between

the visualization system and the data sources. Many solutions have been proposed and

studied [1].

1.3 Motivation and Goals

In the present paper, a Java-based 3D database visualization tool (J3DV) is

discussed. This tool is an integral component of the Protein-Protein Interaction

Workflow, which in turn is an important part of the Fungal Genome project. The Fungal

Genome project is a multi-institutional project with the goal to create high-resolution

physical maps and determine the complete genome sequences of important fungal

organisms. The Protein-Protein Interaction Workflow is currently being developed at the

University of Georgia.

Protein-protein interactions play a key role in the structural and functional

organization of a cell. The interactions of novel proteins with known proteins provide

important clues to the understanding of the functions of these novel proteins. Many

 7

protein-protein interaction experiments have been carried out. For each experiment, 96

preys (proteins) and 96 baits (proteins) are grouped together to see if there exist

interactions among a given pair of proteins [11]. These data are usually stored in a

database or file system.

One task of the protein-protein interaction mapping workflow is to find the

protein-protein interaction network [11,26]. The motivation of J3DV is to extract

information from a database and generate the protein-protein interaction network.

Although the motivation for this system is to view the protein-protein interaction

network, we do not want to build a special purpose tool with limited functions. During

the design and implementation of the system, we set up the following goals:

� Generic. The tool should be application domain independent. In other words, it can

visualize data from other domains.

� Integrated. This system should be better integrated with data sources, so that it can

offer efficient data access and management.

� Extensible. This system should have a sound framework, so that we can easily add

more visual representation support.

� Pluggable. Scientific data can exist in any form, some in databases, some in specially

formatted data files. It should be easy to plug in new data sources.

� Easy to use. Most end-users have little programming experience, so ease of use is

very important.

� Portable. The tool should be deployable across platforms.

The outline of the rest of this paper is as follows. Section 2 introduces the

technological infrastructure of J3DV and its architecture. Section 3 discusses the system

integration issues and compares J3DV with other visualization tools. Section 4 deals with

data modeling and mapping. Section 5 walks through the use of J3DV. Finally, Section 6

concludes the paper and discusses future work.

 8

2. Architecture and Technological Infrastructure

In this section, we introduce J3DV in depth. Before that, we briefly review the

technology utilized in the visualization tool.

2.1 Technological Infrastructure

Modern software technology provides much more computing power so that

difficult problems can be solved more easily today. Java is such a software platform. Its

central promise, “write once, run anywhere” , has earned a reputation in today’s

information technology. The J3DV system is implemented in Java. The primary factors

for choosing Java are that it is platform-neutral, robust, and supports applications

deployed over heterogeneous network environments. In addition, the popularity of the

Java language itself is also a factor. We briefly review the technology used in this system.

Database visualization is data-centric, so integration of data sources with a

visualization tool is very important. Also, a visualization tool should be able to import

data from different data sources, instead of some specific data source. From the

beginning of this project, we have focused on finding an efficient and general-purpose

approach to access multiple data sources. The Java Data Objects (JDO) specification[13]

provides such an approach. It was proposed by Sun Microsystems Inc. to handle storage

issues for Java objects in heterogeneous storage. It provides transparent access to

different data sources, and is extensible to plug in new data sources. At the time this

paper is being written, the JDO specification is still a document and no official

implementation has been released. We implemented parts of the specification, which

were relevant to our project (see [3] for the details of the JDO specification).

 9

The Java language features are also useful in J3DV’s mapping procedure. The

mapping procedure transforms data from data source into intermediate data, which can be

used by the visualization system. Collecting data type information during run-time is the

key to the mapping and generating of intermediate data. Reflection capabilities provided

by Java can be used to solve this problem. It can help collect data object’s run-time type

information (RTTI), which is important in transforming original data into intermediate

data.

Java 3D technology is the key to our client-side implementation. It is the result of

a joint collaboration among Silicon Graphics, Inc., Intel, Apple Computer and Sun

Microsystems. It draws its ideas from these companies’ existing products, such as

OpenGL [21] and incorporates new technology. In short, Java 3D can optimize the

underlying hardware for better performance. It utilizes geometry compression to reduce

the potential bottleneck in network bandwidth.

Java Remote Method Invocation (RMI) technology establishes a connection

between the client and the server. An RMI distributed application can obtain a reference

to a remote object via an RMI registry, which keeps the information about the registered

remote objects. The server registers a remote object in the registry, which will associates

a name with that remote object. The client can reference the remote object by looking up

the remote object’s name in the server's registry and then invoking a method on it. The

RMI system uses hypertext transfer protocol (HTTP) to load class byte-codes from server

to client.

The Java Naming and Directory Interface (JNDI) is another technology, which

connects the client and sever. JNDI is an application programming interface that provides

 10

naming and directory functionality to applications. It is independent of any specific

directory service implementation, such as DNS and LDAP.

2.2 Architectural Overview

One of the key issues of database visualization is how to integrate the data sources

and the visualization tool. The method of integration decides the architecture. Currently,

three types of architectures have been identified to support the integration [1]:

1) Close-coupled architecture. All the components of the system, including data sources

and visualization tool, reside on one machine. This architecture is best for single user,

frequent transaction scenarios.

2) Client-server architecture. Two or more machines connected over a network play

different roles. Data sources act as servers by providing services, such as data access,

data transformation, and computing. Others act as clients, which the end users interact

with.

3) Distributed asynchronous process communication architecture. The visualization

system does not access data sources; there are other modules standing between the

visualization and data sources.

The latter two architectures both follow the client-server model and allow the

distribution of services, interoperability, and multiple clients using the services. The third

architecture can reduce data access time. Most of the popular visualization tools follow

the client-server model. For example, Open Visualization Data Explorer employs an

extended data-flow-driven client-server execution model. The client process uses a

graphical user interface. The server process does most of the computation and typically

 11

resides on a different machine. Medium or fine-grain configurations of symmetric multi-

processor servers provide significant scaling for the server process when applied to

larger, more complex data sets.

J3DV adopts the distributed asynchronous process communication architecture.

This is because the client does not access data source directly. Instead, the server stands

between the data sources and the client, and the server pipelines and caches the data.

Figure 1 shows its architecture.

 Dashed line is process boundary Solid line box is computer boundary

Figure 1. The Architecture of J3DV System

Data Access Module
(JDO Interface)

Server Client

Oracle MySql File
System

Mapping
Module

Server Manager
Module

RMI System
Activation Daemon

Data Service
 Module

Clint UI Module

Layout Algorithm
Module

Rendering and Display
Module

 12

2.3 Server-Side Modules

The server performs several tasks, including integrating multiple data sources

with visualization, transforming the original data into an intermediate form that can be

utilized by visualization clients, and caching and pipelining the mapped data. The server

consists of four modules: Server Manager Module, Data Access Module, Mapping

Module and Data Service Module.

2.3.1 Server Manager Module

Server Manager Module provides a friendly graphical user interface, through

which the users can interact with the system to decide the data source, view schema of

data sources, choose a data set and specify mapping relationship. The users using the

server must have a better knowledge on the database.

J3DV provides visualized metadata of the data sources. This provides at least two

advantages. First, it allows the user to visualize the internal structure of a data source, and

navigate across the database to locate interesting data sets. Second, the metadata includes

table and attribute information, which can be referenced during mapping. Section 5

includes some screen shots of the Server Manager module.

2.3.2 Data Access Module

The data access module is responsible for retrieving and filtering raw data from

the data sources and transforming raw data into Java objects. To facilitate transparent

access to multiple data sources and plugging-in new data sources, we choose the Java

Data Object (JDO) specification as the backbone of this module. JDO specification

 13

enables pluggable implementations of data sources into applications by defining a set of

interfaces between data sources and application [13]. These interfaces cover connection,

storage, query, transaction and other data access aspects. In our project, we implemented

the parts of JDO that are relevant to our project. The implementation includes connection,

storage and query interfaces.

Currently, J3DV supports not only databases, such as Oracle and MySql, but also

local file systems as its data sources. The databases can be distributed over a network.

When databases are used as data sources, we use JDBC to access data sources. This

makes it easy to use other database management systems (DBMS) that support JDBC.

When local file systems are used as data sources, we implement all the data access

methods, such as reading metadata and retrieving data sets.

2.3.3 Mapping Module

The mapping module gets Java objects (input Java objects) from the data access

module, and then transforms them into intermediate Java objects based on the

intermediate data model. These intermediate Java objects can be used to render 3D

graphs by the client. The data model will be discussed in more depth later (see section

4.2).

In J3DV, in order to create a mapping, a user needs to provide two things. The

first is the mapping correspondence. It specifies which attribute of an input Java object is

mapped to a given intermediate Java object attribute. The second is mapping rules, which

defines how an input Java object attribute, which is specified in mapping correspondence,

is mapped into the corresponding intermediate data attribute. To facilitate the mapping

 14

process, J3DV provides a mapping rule generator, which helps a user specify mapping

rules. Figure 7 is the screen shot of the mapping rule generator.

2.3.4 Data Service Module

 As we will discuss in section 2.4, the server of J3DV uses a two-tier cache

mechanism to improve the performance. In the second tier cache, the intermediate data

that were mapped previously are cached. The data service module manages these

intermediate data cached in the second tier cache and provides the client with these

previously mapped data. This module provides remote methods, which can be invoked by

remote processes, and executed on demand, i.e., when a client sends a data request, the

RMI activation daemon will trigger the corresponding methods in this module. It, in turn,

sends the requested intermediate data back to the client.

2.4 Communication Between Client and Server

The communication between the server and the client is through the Java Naming

and Directory Interface (JNDI) or a Java RMI activation daemon. The server uses a two-

tier cache mechanism to save intermediate data for clients. The first tier cache is an in-

memory cache, which caches the newly mapped data of the server. The second tier is a

disk-based cache that caches previously mapped data.

The first tier cache is accessed through JNDI, while the second tier cache is

achieved through the RMI activation system daemon. When the server creates a new

mapping and generates the intermediate data, it saves these intermediate data in both

caches and registers the data with a mapping name in both JNDI and RMI activation

 15

system daemon. When the server process shuts down, it has to un-register the data in

JNDI, i.e., remove the registered mapping name from JNDI. However, the RMI

activation daemon still has the registered name, so it is still able to provide data service to

clients.

 Figure 2 shows the cache organization and the information flow when the client

sends a data request. When a client sends a data request with mapping name to the server

(represented by arrow labeled 1), the data service module will handle the request. First, it

will check if the specified intermediate data is in first tier cache by looking it up through

JNDI (arrow 2). If the data is found in the first tier, it will be sent to the client (arrow 3)

and the data service module does not check second tier cache at all. Otherwise, the data

service module will check second tier cache by looking up the mapping name on disk

(arrow 4). If the mapping data is found, it will be sent to the client (arrow 5). However, if

the requested data is not in either of the caches, the server has to do the requested

mapping and then send the intermediate data to the client.

Client

Data Service
Module

First Tier
Cache

Second Tier
Cache

Figure 2. Cache Organization and Information Flow

1

2 3

4 5

 16

The two-tier cache mechanism provides much better performance. Table 1 shows

the results of comparison tests. The comparison tests consist of three cases; one uses the

first tier cache only, another uses the second tier cache, and the third does not use any

cache. We applied the same data load, i.e., the data requested by the client, on all three

cases. We measure data loading time, which is elapsed time between the point the client

sends out a data request and the point the client gets data from the server. We tested with

two different data loads, with data load 1 having 257 Java objects (nodes and edges), and

data load 2 having 415 Java objects. Although the measured time may vary with some

factors, such as network topology, network traffic, and system performance of the server

machine, we can still find that the caches provide much improved performance, while the

first tier cache offers better performance than the second tier does.

Loading Time

(Milliseconds)

First Tier Cache
(Memory)

Second Tier Cache
(Disk)

No Cache Used

Data Load 1 157 224 753

Data Load 2 229 537 1167

The overall communication framework of J3DV has several advantages. First, the

server does not need to run all the time to wait for a client requests; it only needs to

register its data service, and this data service is only executed “on demand”, i.e., upon the

request of a client. It saves system resources and computational time. Second, it has very

good extensibility. In the future, when we support more visual representations, we can

register more data services with the daemon; for clients, they just need to tell the daemon

which service they want. So this communication framework is also extensible.

Table 1. Cache Performance Tests (times in nilliseconds)

 17

2.5 Client-side Modules

The client gets the intermediate data from the server, applies a layout algorithm,

transforms the intermediate data into displayable data, and displays the data graphically.

The client consists of three modules: the Client User Interface Module, Layout Algorithm

Module and Graph Rendering and Display Module.

2.5.1 Client User Inter face Module

The Client User Interface (UI) module provides a graphical user interface for

users to interact with J3DV. It helps a user to request mapping data from a server, and

also provides some interaction methods for the user to control the display. These methods

include position control, rotation control and other interaction methods. Figure 9, 10 and

11 show the windows provided by the client UI module.

2.5.2 Layout Algor ithm Module

The J3DV displays the data in the form of graphs. A graph consists of a set of

nodes and edges. “The most often used approach to graph drawing is to set the position of

each vertex of the graph in such a way that the final graph would satisfy some predefined

requirements such as minimizing edge crossings, symmetry, and uniform vertex

distribution” [30]. Zhang [30] conducted thorough work in this research area.

The Layout module may contain several layout algorithms. In J3DV, to allow

maximum flexibility on graph drawing and manipulation, we defined the graph layout

algorithm interface, which consists of several graph-drawing methods. The user can plug

 18

in their own layout algorithm by implementing the layout algorithm interface. Tian [24]

gives more detail on this topic.

2.5.3 Graph Render ing and Display Module

The Graph Rendering and Display Module initializes the Java 3D environment

and transforms the mapped data into displayable data, which can be directly used to

render 3D graphs. The user can manipulate the graph and use the search function to

locate a node or clusters of nodes. Tian [24] and Zhang [30] described the client

architecture and implementation in depth.

3. System Integration

A number of issues need to be addressed in order to enable data source-

visualization integration. According to [1], these issues fall into five categories:

modeling, importing and exporting, querying, distribution and heterogeneity. In this

section, we focus on importing and exporting, querying, distribution and heterogeneity.

Modeling will be the topic of the next section.

3.1 Importing and Exporting

Flexible and efficient input and output mechanisms for data in the data source are

the goal for our visualization system. A sound visualization system should provide users

with the flexibility of accessing and using data as efficiently as possible. This can be

made possible by providing the interoperability of various visualization systems and data

sources, which leads to the need for data transformation. As for when and where this

 19

transformation occurs, different visualization systems provide different solutions. For

example, IBM’s OpenDX uses General Array Import [20] to import data from data files.

The General Array Importer uses a "header file" to describe the structure and location of

the data to be imported. This file consists of keyword statements that identify important

characteristics of the data (including grid structure, format, and data type, along with the

path name of the file containing the data). For OpenDX, the data transformation occurs

when a user creates the header file. However, in order to create the header file, a user

must have very good knowledge of the data in the data file and the syntax of the header

file, which can be a real challenge for users with little programming experience. As for

data exporting, OpenDX supports various image export format (e.g., RGB, Postscript,

TIFF, GIF, YUV). Another example is integrating profiling data [28] with protein-protein

network interaction.

In J3DV, data importing is carried out by integrating data sources with the

visualization tool. Considering that data sources may be of a wide variety, we choose the

Java Data Object (JDO) specification as the backbone of the integration, which is

implemented in the data access module mentioned earlier. As proposed by the Java Data

Object Expert Group, JDO has three goals. First, JDO defines contracts and

responsibilities for various roles, which leads to standard connectivity to data sources. In

addition, this will also enable a standard JDO implementation for a data source to be

pluggable across multiple application servers. Second, JDO provides a transparent

interface for applications and helps developers to store data without learning a new data

access language for each new data source. Third, JDO makes it easy for application

developers to use the Java programming model to model the application domain and

 20

transparently retrieve and store data from various data sources (e.g., relational databases,

object databases, mainframe transaction processing systems and local file systems).

The J3DV tool will transform the imported data into Java objects. Behind the

transformation, there exists a data type mapping, which maps each data type of the data

source into a Java data type. At the same time, the data type mapping is able to keep data

precision and avoid losing information.

3.2 Querying

The querying capability of a visualization system is closely related to the data

model. A good visualization system must be able to process and optimize queries based

on a particular data model.

Generally, querying is not a well-developed area of visualization, and its

implementation is ad-hoc in different systems. For example, SAGE supports retrieving

previously created graphics based on appearance and/or data contents. On the other hand,

most tools support drill-in and fly-by operations, which have similar effects to queries.

For J3DV, the resulting image is a graph, which consists of nodes and edges. The

J3DV supports some query functions by providing searching and extending functions. A

user can search a node entity by entering its key, which is one of the attributes of the data

model to identify the node. The user can use the extending function to display all the

nodes, which have direct connections with the current node. J3DV also provides other

interaction methods, such as Position Control, Rotation Control, Move and Delete. All

these methods provide navigational controls and manipulation to the resulting graphs.

 21

3.3 Distr ibution

Data visualization tools are mainly used by scientists and researchers who

perform experiments that result in large quantities of data. These data often need to be

distributed over a network. Most visualization systems provide support for distribution.

For example, MineSet by Silicon Graphics Inc. follows the client/server execution model.

The client and server may reside on different computers over a network. The client

presents visual representations to the user. The server performs most of the computation,

including retrieving, transforming data and analyzing data.

J3DV is also distributed. Not only can the client and server be distributed over a

network, but also the data sources can be distributed over a network because JDBC

supports remote data access. As far as the Protein-protein interaction mapping project is

concerned, the J3DV running on computers of the Computer Science Department can

access the data sources in the Genetic Department. In addition, a J3DV server can

provide services to multiple clients, and a client can get services from multiple servers.

3.4 Heterogeneity

Heterogeneity issues are often closely related to distribution issues. This is

because many distributed scenarios involve heterogeneous systems. Unix is a favorite

platform for visualization tools due to its powerful computational capability and high-end

graphics. Most tools can run on a Unix platform. Some of them only target Unix. For

example, the OpenDX can only run on X Window and motif. Others can run in mixed

environments. For example, the AVS/Express runs on both Unix and Windows platforms.

 22

The J3DV can run on most major platforms, such as Unix, Linux and Windows.

Clients and servers can be deployed on different platforms and still communicate with

each other. This portability comes from two things. The first is its implementation

language, Java, which is “write once, run anywhere” . The second is a well-defined client-

server communication interface, which makes the communication totally independent

from the platforms.

4. Data Modeling and Mapping

4.1 Data Modeling

In all visualization tools, data modeling is an important concept. By defining a

data model, a visualization tool becomes general-purpose by supporting a wide variety of

data that cross discipline boundaries. The implementation of a visualization tool solely

depends on the data model instead of any particular application domain. A good data

modeling approach can smooth the data transformation, and be applied in different

application domains. The essential problem to be solved here is how to present the rich

information in the data source to the end-user in a freedom-limited display.

Figure 3. The Mismatch between Data Models of Database and Visualization.

Different data sources have different data models. For example, file systems may

store data in columns and rows, where the data model could be a matrix. For a relational

database, the data model consists of collections of relations. Each relation is a table. The

columns of the table are atomic data types. The rows in the table are tuples of attributes.

Data
Sources

Data Mapping
Module

Visualization
Systems

Data source data model Visualization data model

 23

Many visualization techniques, such as a 3D image, have been adopted to

represent the data. These techniques use their own data models to define the visual

representations. Visualization data models are usually data structure models with

connectivity and topological specifications [19]. For example, MineSet uses the Tree

Visualizer and Map Visualizer to model the data sets. As shown in figure 3, the data

source with its underlying data model is one endpoint of the data visualization process.

The other endpoint is a visualization system with a graphical data model. The two models

abstract data differently, resulting in a mismatch between them. The critical issue for data

visualization is how the data are transformed with an intermediate data model. Mapping

is the method we use to bridge the two. The following section focuses on mapping.

4.2 Mapping

In essence, a mapping procedure is used to keep interesting information and filter

out trivial or unwanted information, and transform the interesting information into the

desired form. As Hibbard et al. [10] pointed out, there is no general data model for all

applications. Correspondingly, there is no one single method that can be applied to all

mapping situations. Nevertheless, many methods have been proposed and studied. For

example, Haber et al. [8] proposed the fiber bundle data model; its main idea is that the

input data of the scientific visualization are often sampled at grid points. Kao et al. [14]

proposed the extended schema data model. This data model allows the user to store and

manipulate scientific data in a uniform way.

The mapping procedure depends on the data model. In J3DV, we use a two-level

mapping to transform data from its original state to an intermediate form, which can be

used to render images by the visualization tool.

 24

 In Figure 4, we present the mapping procedure. The first level mapping

transforms original data in the data sources into Java objects. For each data source, there

exists a data type mapping, which will transform the data from the data source into Java

objects, i.e. group of attributes. After the first level mapping, data from different sources

have a uniform structure, making it easier to process the data.

The second level mapping transforms the data in the form of Java objects into

intermediate data. This mapping is based on the data model. The J3DV displays the data

set in the form of graph. The data model of J3DV is therefore a graph data structure,

which consists of entities of nodes and edges. A node is described by its shape, color and

size, while an edge by a pair of nodes and their connection. In the Protein-Protein

Interaction Project, we use nodes to represent proteins and edges to represent interactions

between a pair of proteins. This data model can be applied to other application domains,

where the data can be represented with a graph-like structure, such as network

management and material science.

Java
Object

Data
Source

Data
Source

Data
Source

Visualization

System

First level Mapping Second level Mapping

Figure 4. J3DV Mapping Procedure

 25

J3DV adopts a rule-based attribute-assembly mapping method to transform Java

objects into the intermediate form. By rule-based, we mean that the mapping is done

according to some user-specified rules. These rules generate predicates indicating the

value of a given intermediate data attribute. By attribute-assembly, we mean that all the

mapped data attributes will be assembled as an entity, that is, a node or an edge.

Using the two-level mapping, the intermediate data can be generated, and cached

in memory and/or disk. The client can then access it via either JNDI or the RMI

activation daemon.

 26

5. Sample Run

 In this section, we demonstrate how the J3DV tool can be used. [12] is the web

page where user can download the source code of J3DV.

5.1 Server

 Figure 4 shows the server-side’s main window. The user can follow the specified

order to create a new mapping. As is clear from the following window, it takes six steps

to create a mapping.

 In step 1, the user needs to choose data sources. In step 2, the user specifies the

data set in which he/she is interested, and the mapping correspondence between the

Figure 5. J3DV’s Server-side User Interface

 27

attributes of raw data and the attributes of data model. Figure 5 shows the schema of the

database (such metadata can help a user create a mapping by providing attribute

information). Figure 6 shows the mapping correspondence window, which helps the user

to specify the mapping correspondence between the attributes of original data and the

attributes of intermediate data model.

Figure 6. Visualized Database Metadata

Figure 7. Mapping Correspondence

 28

 In step 3, the user needs to give the mapping rules. J3DV provides a mapping rule

generator, as shown in Figure 7. Based on the mapping rules specified by the user, the

rule generator will generate a Java class, whose function is to transform raw data into

intermediate data.

 In step 4, J3DV will actually transform the data into intermediate data based on

mapping correspondence and mapping rules. Before that, J3DV will do error-checking to

make sure that no fatal errors, such as missing mapping class, exist. In Step 5, J3DV

saves the mapping information (mapping correspondence and mapping rules) for future

reference, and caches the intermediate data into both caches. In Step 6, J3DV closes the

connection to currently opened data sources.

Figure 8. Mapping Rule Generator

 29

5.2 Client-Side

 Figure 8 shows the client’s data request window. To use the server’s services, a

client has to know where the server process is, which is identified by a host name and a

port number (default is 5002). The client can choose the map name, which identifies the

intermediate data cached in the server. The server then sends the requested intermediate

data to the client.

 Once the client gets the data, the user can specify a layout algorithm from the

menu. The J3DV provides several interaction methods. These include position control

(which moves the graph along different axes), rotation control (which rotates the graph

along the X, Y, and Z axes in the 3D space), extend (which extends the incident nodes

and edges of the current node), move (which changes the position of a node in the layout

graph), and delete (which removes a node from the layout graph). Figure 10 and 11 show

the graph with initial layout algorithm and cluster layout algorithm applied respectively.

Figure 9. Client’s Data Request Window

 30

Figure 10. 3D Viewer displays the result of the initial layout algorithm.

Figure 11. 3D Viewer displays the result of cluster layout algorithm

 31

6. Conclusions and Future Work

In this paper, we introduced J3DV, a database visualization tool based on Java

technology. It has been incorporated in the Protein-Protein Interaction Workflow

developed at The University of Georgia. J3DV, together with other components of the

workflow, such as ODS3 [31], helps researchers identify the protein interaction

efficiently, which is helpful in understanding the functions of novel proteins.

The proposed system architecture has a sound framework. It differs from the

currently available visualization tools in several aspects. The key feature of this system is

that it uses the JDO specification to integrate different data sources with visualization.

JDO allows efficient and uniform access to different data sources and provides a solution

to the data management problem in database visualization. It is expected that many

database systems will support JDO in the near future.

Extensibility is another feature that has been considered while designing the

system. The extensibility is provided in three ways. First, we can easily plug in new data

sources that implement the JDO specification. Second, we can plug in new data models to

support more visual representations, such as transcriptional profiling information. Third,

we can easily plug in a new graph layout algorithm.

In addition, J3DV utilizes a two-level mapping to smoothly transform the raw

data into displayable data. It also utilizes a two-tier cache to provide better performance.

 However, there are still some issues that need to be addressed in the future. The

first is that we need to provide more visual representations, for example, a tree view, map

view and histogram view. The second is that we need to integrate more types of data

sources, such as object-oriented databases and XML. Third, we need to provide query

 32

support for file systems. Fourth, in JDO implementation for file systems, we can use

some standard metadata format to implement them, for example, Self-Defining Data

Format [23] is such metadata format. Fifth, we need to provide an exporting mechanism,

so that users can export the images as postscript [28], so they can be referenced later on

without repeating the rendering procedure which is time-consuming for large data sets.

 33

REFERENCES

1. Arya, M., N. Grady and G. Grinstein et al., 1993, Database Issues for Data
Visualization: System Integration Issues, Lecture Notes in Computer Science. Vol.
871, 1994, pp.16-24.

2. Asimov, D., 1985, The Grand Tour: A Tool for Viewing Multidimensional Data.
SIAM Journal on Science Statistical Computing, Vol. 6, No.1, 1985, pp. 128-143.

3. AVS/Express, Advanced Visualization System, 2001,
http://www.avs.com/products/ExpDev/expdev.htm

4. Baecker, R. M., 1986, An Application Overview of Program Visualization. Computer
Graphics: SIGGRAPH 86, 20 (4), July 1986, pp.325

5. Beddow, J., 1990, Shape Coding for Multidimensional Data on a Microcomputer
display. Proceedings of IEEE Conference of VISUALIZATION 90, pp. 238-246.

6. Berson, A. and S. Smith, 1997, Data Warehousing, Data Mining, and OLAP.
Published by McGraw-Hill companies, 1997.

7. Goldstein, J. And S.F. Roth, 1994, Using Aggregation and Dynamic Queries for
Expoloring Large Data Sets, Proceedings CHI’94 Human Factors in Computing
Systems, ACM, Apr., 1994.

8. Haber, B., Lucas, B., and Collins, N., 1991, A Data Model for Scientific
Visualization with Provisions for Regular and Irregular Grids. Proceedings of IEEE
Visualization ’91. San Diego, California. October, 1991.

9. Han, J. And M. Kamber, 2001, Data Mining: Concepts and Techniques, Morgan
Kaufmann Publishers, 2001.

10. Hibbard W. Hibbard, Charles R. Dyer and Brian E. Paul: The VIS-AD Data Model:
Integrating Metadata and Polymorphic Display with a Scientific Programming
Language, Lecture Notes in Computer Science, Vol. 871, 1993. pp.37-68.

11. Ito, T., K., Tashiro, S. Muta, R. Ozawa, T. Chiba, M. Nishizawa, K. Yamamoto, S.
Kuhara, and Y. Sakaki, 2000, Toward a Protein-Protein Interaction Map of the
Budding Yeast: A Comprehensive System to Examine Two-hybrid Interactions in All
Possible Combinations between the Yeast Proteins. PNAS, Vol. 97, no. 3, 2000,
pp.1143-1147.

12. J3DV homepage, http://www.chief.cs.uga.edu/~jsim

 34

13. JDO, Java Data Object Expert Group. Java Data Object. JSR000012, Version0.8.
2000. http://java.sun.com/aboutJava/communityprocess/review/jsr012/index.html

14. Kao, T., R. D. Bergeron, and T. M. Sparr, 1993, An Extended Schema Model for
Scientific Data. Proceedings of IEEE Visualization ’93 Workshop, San Jose, CA,
USA, Oct., 1993, pp.69-82.

15. Lang, U., G. Grinstein, R. D. Bergeron, 1995, Visualization Related Metadata,
Proceedings of IEEE Visualization ’95 Workshop, Atlanta, Georgia, USA, Oct.,
1995, pp.26-34.

16. Lee. J.P., 1993, Data Exploration Interactions and the ExBase System, Proceedings of
IEEE Visualization ’93 Workshop, San Jose, CA, USA, Oct., 1993, pp.118-137.

17. Lee J. P., G. Grinstein, Lecture Notes in Computer Science: Database Issues for Data
Visualization, 1993, Vol 871, pp. IX

18. MineSet, Silicon Graphics Inc., 2001, http://www.sgi.com/software/mineset

19. Nielson, G., P. Brunet, M. Gross, H. Hagen, S. Klimenko, Research Issue in Data
Modeling for Scientific Visualization. In Scientific Visualization: Advances and
Challenges. Academic Press, London, 1994, pages 472-479.

20. OpenDX, Open Data Visualization Explorer from IBM. 2000.
http://www.research.ibm.com/dx

21. OpenGL, Silicon Graphics Inc., 2001, http://www.sgi.com/software/opengl

22. Owen, G.S., 1999, HyperVis --- Teaching Scientific Visualization Using
Hypermedia, the ACM SIGGRAPH Education Committee,
http://www.siggraph.org/education/materials/HyperVis/visgoals/visgoal0.htm

23. SDDF, 2001, Self-Defining Data Format,
http://www-pablo.cs.uiuc.edu/project/SDDF/SDDFOverview.htm

24. Tian, H., 2001, Storage Management Issues for High Performance Database
Visualization, Proceedings of the 38th Annual Southeastern ACM Conference,
Athens, Georgia, Mar., 2001, pp. 251-256.

25. Visage, Carnegie Mellon University. 2001, http://www.cs.cmu.edu/~sage/sdm.html

26. Walhout, A. J. M., R. Sordella, X. Lu, J. L. Hartley, G. G. Temple, M. A. Brasch, N.
Thierry-Mieg, M. Vidal, 2000, Protein Interaction Mapping in C. Elegans Using
Proteins Involved in Vulval Development, Science, Vol 287, Jan., 2000, pp.116-122.

27. Wierse A., G.G. Grinstein, U. Lang Database Issues for Data Visualization, Lecture
Notes in Computer Science, Vol 1183, 1995.

 35

28. Wu, T., 2001, An Extensible Framework for Developing Visualization Software for
Gene Expression Data, Master thesis, Department of Computer Science, the
University of Georgia, Athens, GA, USA. Aug., 2001.

29. Zhang, Y. A Visualization System For Protein Interaction Mapping Using Java 3d
Technology, Master thesis, Department of Computer Science, the University of
Georgia, Athens, GA, USA. May, 2001.

30. Xu, Z., Mapping by Sequencing Using ODS3, Master thesis, Department of
Computer Science, the University of Georgia, Athens, GA, USA. Jul., 2001.

