JASPERS CHEM 350 Intro and Review
Structure and Properties of Organic Molecules
Structure, Nomenclature, and Conformation/Stereochemistry of Alkanes

1. Order the following according to increasing electronegativity, 1 being highest, 4 lowest. (2pts)
N \qquad
F \qquad O \qquad
C \qquad
2. Write Lewis structures and assign any non-zero formal charges. (3pts each)
a. $\left[\mathrm{CH}_{3} \mathrm{OH}_{2}\right]^{+}$

b. $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{ONa}^{\circ}$

$N_{a}{ }^{\oplus}$
c. $\mathrm{CH}_{3} \mathrm{CHCHCONH} 2$

3. Want normal bonding for all: in absence of metal ions or overall charge
4. $\mathrm{C}=\mathrm{O}$ (or $\mathrm{C}=\mathrm{C}$ in other cases) may help
5. If you have any formal charges, they must sum to net charge of molecule (zero, in this case) 4. Organization must match condensed formula sequence
6. For each of the following, a) draw its resonance structure, and for each pair b) circle the structure that would make the greater contribution to the resonance hybrid. (2 pts each)

7. Draw line-angle structures for 7 of the 9 structural isomers of $\mathrm{C}_{7} \mathrm{H}_{16}$. $(5 \mathrm{pts})$

4

2 Factors:

1. More bonds (priority)
2. Electronegativity (if bonds are equal)

Alkane Acyclic: $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n+2}$
Alkane Cyclic: $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n}$
Beware of drawing same thing twice!
5. For the following pairs of structures, identify them as either: Resonance Structures, Structural Isomers, Stereoisomers, or Same. (2 pts each)
a.

stereo
c.

d.

 resonance no atoms moved

e. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \quad\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{3}$ st fuctural

1. Resonance: No atoms can move! 2. Stereo: same condensed formula 3. Structural: different condensed formula
2. Rank the acidity of the following molecules, 1 being most acidic, 4 being least acidic. (3 pts)

3. Draw the line-angle structure for the following condensed structural formula: $\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{CO}$ (3pt)

4.

a. For the above structure, what is the hybridization, electron-pair geometry, and approximate bond angles $(109,120$, or 180) about: (6 pt)

4	$\mathrm{~N}-1$	$s p^{3}$	tetrahedral	~ 109
4	$\mathrm{C}-3$	$s p^{3}$	tetrahedral	~ 109
3	$\mathrm{C}-5$	$s p^{2}$	triqan planar	~ 120
2	$\mathrm{C}-8$	sp	linear	~ 180

b. Rank the length of the following bonds, 1 being shortest, 3 being longest. (2pt)

10. For each of the pairs listed, circle the one with the highe boiling point (4 pt)
a.

b.

ext carbons

2 factors:

1. H-bonding (raises bp + solubility)
2. London force (\# of carbons) -more C's raises bp but reduces water solubility
3. Parity
4. Draw a 3-dimensional picture for all of the atoms (hydrogen included) in the molecule CH 3 CHCHCOCH 2 CH 2 NHCH 3 . Your picture should use the hash-wedge convention to illustrate atoms that are not in the plane of the paper, and should reflect approximate bond

Note: $\mathrm{N}-\mathrm{H}$ hydrogen is NOT cr
 in the plane. But it could be drawn hashed or wedged, either is fine.
12. Draw a 3-D picture of CH 2 O mowing the π bond as well as the four atoms. (3pt)

p-orbitals used to make the pibond are perpendicular to the plane of the atoms. So if we draw the pi-bond in the plane, the attached H's must be out of plane.
13. For the following set, rank the solubility in water, from 1 (most soluble) to 4 (least soluble).

14. Identify the functional groups in the following molecules. (8pt)
a.

b.

15. Give the IUPAC name for the following compounds. (6pt)
a.

1. Longest chain
2. Alphabetize substituent
3. Number from end near substituent
4. cis/trans for di-subbed rings
5. Alphabetize substituent
6. Numbering
7. Know isopropyl and t-butyl

8. Draw the Newman projections for the best and worst conformations of butane, and give the names for these conformations. Briefly explain what "strain factors" make the worst conformation worse than the best conformation. (6pt)

Torsional strain; any eclipsed conformation has torsional strain, repulsion beween bondpair electrons.
Steric strain: atom are unnecessarily close, and repel each other
17. a.) Draw both chair conformations of cis-1-methyl-2-isopropylcyclohexane. Draw the substituents and H -atoms attached to carbons 1 and 2. (You don't need to show the H's on the other carbons). (4 pt)
b.) Circle the more stable conformation. (1pt)

1. Make sure you've really drawn "flipped" chairs
2. What's "ax" in one chair flip is "eq" in the other.
3. Process cis-trans
4. Draw in H's on substituted carbons (easier to see ax/eq).
5. Draw the best chair conformation for 1,3-diethylcyclohexane, and identify whether it is "cis" or "trans". (3pt)

6. Use the arrow-pushing convention to show the electron-movement mechanisms for the follow two reactions. (5pt)

b.

Good mechanism must explain changs in:

1. Bonds
2. Formal Charges
3. Lone pairs
