

Title	Page
Java	9	Programming	By	Example

	
	
	
	
	
	
	

Your	guide	to	software	development

	
	
	
	
	
	
	

Peter	Verhas

	
	
	
	
	
	
	

BIRMINGHAM	-	MUMBAI

Java	9	Programming	By	Example

Copyright	©	2017	Packt	Publishing	All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in
a	retrieval	system,	or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the	information
presented.	However,	the	information	contained	in	this	book	is	sold	without	warranty,	either	express	or
implied.	Neither	the	author,	nor	Packt	Publishing,	and	its	dealers	and	distributors	will	be	held	liable	for
any	damages	caused	or	alleged	to	be	caused	directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the	companies	and
products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.	However,	Packt	Publishing	cannot
guarantee	the	accuracy	of	this	information.

First	published:	April	2017

Production	reference:	1240417

Published	by	Packt	Publishing	Ltd.
Livery	Place
35	Livery	Street
Birmingham
B3	2PB,	UK.

ISBN	978-1-78646-828-4

www.packtpub.com

http://www.packtpub.com

Credits

Author

Peter	Verhas

Copy	Editors

Muktikant	Garimella
Zainab	Bootwala

Reviewer

Jeff	Friesen

Project	Coordinator

Ulhas	Kambali

Commissioning	Editor

Kunal	Parikh

Proofreader

Safis	Editing

Acquisition	Editor

Denim	Pinto	

Indexer

Mariammal	Chettiyar

Content	Development	Editor

Nikhil	Borkar

Graphics

Abhinash	Sahu

Technical	Editor

Hussain	Kanchwala

Production	Coordinator

Melwyn	Dsa

	 

About	the	Author
Peter	Verhas	is	a	senior	software	engineer	and	software	architect	having	electrical	engineering	and
economics	background	from	TU	Budapest	(MsC)	and	PTE	Hungary	(MBA),	and	also	studied	at	TU	Delft
and	TU	Vienna.	He	created	his	first	programs	in	1979,	and	since	then	he	has	authored	several	open	source
programs.	He	has	worked	in	several	positions	in	the	telecommunications	and	finance	industries	and	was
the	CIO	of	the	Hungarian	start-up	index.hu	during	its	early	days.

Peter	works	for	EPAM	Systems	in	Switzerland,	participating	in	software	development	projects	at	various
customer	sites,	and	he	supports	talent	acquisition	by	interviewing	candidates,	training	programs	for
developers,	and	internal	mentoring	programs.

You	can	follow	Peter	on	Twitter	at	@verhas,	LinkedIn,	and	GitHub,	or	read	his	technical	blog,	Java	Deep,	at
http://javax0.wordpress.com.

Acknowledgement	is	the	section	of	a	book	that	everybody	ignores	by	turning	the	pages.	This	time,	this
section	is	a	bit	different.	I	will	mention	a	few	people	and	their	roles	in	the	making	of	this	book	but,	at
the	same	time,	I	will	explain	why	and	how	it	is	important	to	rely	on	people,	being	a	software	developer.
Doing	professional	work	is	not	possible	without	having	a	life.	It	is	quite	obvious	if	you	take	that
literally,	but	it	is	just	as	true	figuratively.	If	you	do	not	find	the	balance	between	your	personal	and
professional	life,	you	will	burn	out	and	will	not	operate	professionally.	This	is	the	place	to	mention	my
family,	my	parents	whom	I	am	lucky	to	still	have	around,	my	wife,	and	my	already	adult	kids	who	never
stopped	believing	in	me	being	able	to	do	this	work,	who	know	more	than	well	what	a	hypocrite	I	am,
advocating	personal-professional	life	balance,	and	who	continually	pushed	me	closer	to	this
equilibrium	point	in	life	so	that	I	could	keep	performing	professionally.
For	professional	work,	coworkers	are	almost	as	important	as	family	support.	It	is	important	that	you
support	your	colleagues	as	much	as	you	ask	them	for	their	support.	You	learn	a	lot	from	books	and
from	experience,	but	you	learn	the	most	from	other	people.	Pay	attention	to	senior	developers.	You	can,
however,	learn	just	as	much	from	juniors.	No	matter	how	ace	you	are,	from	time	to	time,	a	rookie	may
shed	light	on	a	topic.	During	the	years,	I	learned	a	lot	from	juniors	who	brought	a	fresh	view	to	the
table,	asking	shocking	questions	that	were	absolutely	valid.	I	cannot	name	each	and	every	junior	who
aided	my	work	with	fresh	out-of-the-box	thinking.
I	can,	and	should,	however,	name	some	peer	professionals	who	actively	participated	in	the	creation	of
this	book	with	their	advice,	discussions,	and	suggestions.
I	should	certainly	mention	Károly	Oláh	who	was	very	enthusiastic	about	my	project,	and	he
represented,	supported,	and	encouraged	the	idea	inside	EPAM	systems.	He	actively	discussed	with	the
upper	management	that	the	support	for	writing	a	book	well	fits	the	innovation	line	and	development	of
the	company,	and	the	people	who	work	together.	Without	the	official	support	from	the	company
providing	extra	time	for	the	task,	I	would	not	have	been	able	to	create	this	book.
Good	company	attracts	good	people	who	are	clever	and	also	good	to	work	with.	I	had	many
discussions	about	the	book,	topics,	and	how	to	explain	certain	aspects	with	my	fellow	EPAMers:
Krisztián	Sallai,	Peter	Fodor,	Sándor	Szilágyi,	Mantas	Aleknavicius,	Gábor	Lénard,	and	many	others.
I	will	separately	mention	István	Attila	Kovács	from	our	Budapest	office	with	whom	I	discussed	Chapter
5	in	detail,	and	who	gave	me	very	valuable	feedback	about	the	topic.	If	he	does	not	know	something

http://javax0.wordpress.com

about	Java	parallel	computing,	then	that	something	does	not	exist.
As	a	summary	and	takeaway	for	the	patient	reader	who	read	this	section	till	the	end,	technology,
knowledge,	skills,	and	experience	are	extremely	important	for	being	a	professional	Java	9	developer,
but	it	is	the	people	who	really	matter.

About	the	Reviewer
Jeff	Friesen	is	a	freelance	author	and	software	developer	who	has	taught	Java	in	the	classroom	and	by
writing	numerous	articles	and	books	since	the	late	1990s.	He	holds	a	Bachelor	of	Science	degree	in
Computer	Science	and	Mathematics.	Prior	to	freelancing,	Jeff	worked	for	telecommunications,
investment,	and	software	development	companies.

Jeff	freelances	as	a	Java	author	and	software	developer.

Jeff	has	written	Java	I/O,	NIO	and	NIO.2	and	Java	Threads	and	the	Concurrency	Utilities	for	Apress.
Full	details	are	available	on	his	website	(http://javajeff.ca/cgi-bin/makepage.cgi?/books).

I	thank	Nitin	Dasan	for	the	opportunity	to	tech	review	this	book.	I	also	thank	Ulhas	Kambali	for
assisting	me	with	the	tech	review	process.

	

http://javajeff.ca/cgi-bin/makepage.cgi?/books

www.PacktPub.com
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and	ePub	files
available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as	a	print	book	customer,	you	are
entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with	us	at	service@packtpub.com	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up	for	a	range	of	free
newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books	and	eBooks.

https://www.packtpub.com/mapt

Get	the	most	in-demand	software	skills	with	Mapt.	Mapt	gives	you	full	access	to	all	Packt	books	and
video	courses,	as	well	as	industry-leading	tools	to	help	you	plan	your	personal	development	and	advance
your	career.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt

Why	subscribe?

Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

	

Customer	Feedback
	

Thanks	for	purchasing	this	Packt	book.	At	Packt,	quality	is	at	the	heart	of	our	editorial	process.	To	help	us
improve,	please	leave	us	an	honest	review	on	this	book's	Amazon	page	at
https://www.amazon.com/dp/178646828X/.

If	you'd	like	to	join	our	team	of	regular	reviewers,	you	can	e-mail	us	at	customerreviews@packtpub.com.	We
award	our	regular	reviewers	with	free	eBooks	and	videos	in	exchange	for	their	valuable	feedback.	Help
us	be	relentless	in	improving	our	products!

	

	

https://www.amazon.com/dp/178646828X/

Table	of	Contents

	

Preface
What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support
Downloading	the	example	code

Errata

Piracy

Questions

1.	 Getting	Started	with	Java	9
Getting	started	with	Java

Installing	Java
Installation	on	Windows

Installation	on	MAC	OS	X

Installation	on	Linux

Setting	JAVA_HOME

Executing	jshell
Looking	at	the	byte	code

Packaging	classes	into	a	JAR	file

Managing	the	running	Java	application

Using	an	IDE
NetBeans

Eclipse

IntelliJ

IDE	services
IDE	screen	structure

Editing	files

Managing	projects

Build	the	code	and	run	it

Debugging	Java

Summary

2.	 The	First	Real	Java	Program	-	Sorting	Names
Getting	started	with	sorting

Bubble	sort

Getting	started	with	project	structure	and	build	tools
Make

Ant
Installing	Ant

Using	Ant

Maven
Installing	Maven

Using	Maven

Gradle
Installing	Gradle

Setting	up	the	project	with	Maven

Coding	the	sort

Understanding	the	algorithm	and	language	constructs
Blocks

Variables

Types

Arrays

Expressions

Loops

Conditional	execution

Final	variables

Classes

Inner,	nested,	local,	and	anonymous	classes

Packages

Methods

Interfaces

Argument	passing

Fields

Modifiers

Object	initializers	and	constructors

Compiling	and	running	the	program

Summary

3.	 Optimizing	the	Sort	-	Making	Code	Professional
The	general	sorting	program

A	brief	overview	of	various	sorting	algorithms
Quick	sort

Project	structure	and	build	tools
Maven	dependency	management

Code	the	sort
Creating	the	interfaces

Creating	BubbleSort

Amending	the	interfaces

Architectural	considerations

Creating	unit	tests
Adding	JUnit	as	dependency

Writing	the	BubbleSortTest	class

Good	unit	tests
A	good	unit	test	is	readable

Unit	tests	are	fast

Unit	tests	are	deterministic

Assertions	should	be	as	simple	as	possible

Unit	tests	are	isolated

Unit	tests	cover	the	code

Refactor	the	test

Collections	with	wrong	elements

Handling	exceptions

Generics

Test	Driven	Development

Implementing	QuickSort
The	partitioning	class

Recursive	sorting

Non-recursive	sorting

Implementing	the	API	class

Creating	modules
Why	modules	are	needed

What	is	a	Java	module

Summary

4.	 Mastermind	-	Creating	a	Game
The	Game

The	model	of	the	game

Java	collections
Interface	collection

Set
Hash	functions

Method	equals

Method	hashCode

Implementing	equals	and	hashCode

HashSet

EnumSet

LinkedHashSet

SortedSet

NavigableSet
TreeSet

List
LinkedList

ArrayList

Queue

Deque

Map
HashMap

IdentityHashMap

Dependency	injection

Implementing	the	game
ColorManager

The	class	color

JavaDoc	and	code	comments

Row

Table

Guesser
UniqueGuesser

GeneralGuesser

The	Game	class

Creating	an	integration	test

Summary

5.	 Extending	the	Game	-	Run	Parallel,	Run	Faster
How	to	make	Mastermind	parallel

Refactoring

Processes

Threads

Fibers

java.lang.Thread

Pitfalls
Deadlocks

Race	conditions

Overused	locks

Starving

ExecutorService
ForkJoinPool

Variable	access

The	CPU	heartbeat

Volatile	variables

Synchronized	block

Wait	and	notify

Lock
Condition

ReentrantLock

ReentrantReadWriteLock

Atomic	classes

BlockingQueue
LinkedBlockingQueue

LinkedBlockingDeque

ArrayBlockingQueue

LinkedTransferQueue

IntervalGuesser

ParallelGamePlayer

Microbenchmarking

Summary

6.	 Making	Our	Game	Professional	-	Do	it	as	a	Webapp
Web	and	network

IP

TCP/IP

DNS

The	HTTP	protocol
HTTP	methods

Status	codes

HTTP/2.0

Cookies

Client	server	and	web	architecture

Writing	servlets
Hello	world	servlet

Java	Server	Pages

HTML,	CSS,	and	JavaScript

Mastermind	servlet
Storing	state

HTTP	session

Storing	state	on	the	client

Dependency	injection	with	Guice

The	MastermindHandler	class

Storing	state	on	the	server

The	GameSessionSaver	class

Running	the	Jetty	web	servlet

Logging
Configurability

Performance

Log	frameworks

Java	9	logging

Logging	practice

Other	technologies

Summary

7.	 Building	a	Commercial	Web	Application	Using	REST
The	MyBusiness	web	shop

Sample	business	architecture

Microservices

Service	interface	design

JSON

REST

Model	View	Controller

Spring	framework
Architecture	of	Spring

Spring	core

Service	classes

Compiling	and	running	the	application

Testing	the	application
Integration	test

Application	test

Servlet	filters

Audit	logging	and	AOP

Dynamic	proxy-based	AOP

Summary

8.	 Extending	Our	E-Commerce	Application
The	MyBusiness	ordering

Setting	up	the	project

Order	controller	and	DTOs

Consistency	checker

Annotations
Annotation	retention

Annotation	target

Annotation	parameters

Repeatable	annotations

Annotation	inheritance

@Documented	annotations

JDK	annotations

Using	reflection
Getting	annotations

Invoking	methods

Setting	fields

Functional	programming	in	Java
Lambda

Streams

Functional	interfaces

Method	references

Scripting	in	Java	9

Summary

9.	 Building	an	Accounting	Application	Using	Reactive	Programming
Reactive...	what?

Reactive	programming	in	a	nutshell

Reactive	systems
Responsive

Resilient

Elastic

Message-driven

Back-pressure

Reactive	streams

Reactive	programming	in	Java
Implementing	inventory

Summary

10.	 Finalizing	Java	Knowledge	to	a	Professional	Level
Java	deep	technologies

Java	agent

Polyglot	programming
Polyglot	configuration

Polyglot	scripting

Business	DSL

Problems	with	polyglot

Annotation	processing

Programming	in	the	enterprise
Static	code	analysis

Source	code	version	control

Software	versioning

Code	review

Knowledge	base

Issue	tracking

Testing
Types	of	tests

Test	automation

Black	box	versus	white	box

Selecting	libraries
Fit	for	the	purpose

License

Documentation

Project	alive

Maturity

Number	of	users

The	"I	like	it"	factor

Continuous	integration	and	deployment

Release	management

Code	repository

Walking	up	the	ladder

Summary

Preface
Java	drastically	changed	with	the	introduction	of	Java	8,	and	this	change	has	been	elevated	to	a	whole
new	level	with	the	new	version,	Java	9.	Java	has	a	well-established	past,	being	more	than	20	years	old,
but	at	the	same	time,	it	is	new,	functional,	reactive,	and	sexy.	This	is	a	language	that	developers	love,	and
at	the	same	time,	it	is	the	number	one	choice	of	developer	language	for	many	enterprise	projects.

It	is	probably	more	lucrative	to	learn	Java	now	than	ever	before,	starting	with	Java	9.	We	encourage	you
to	start	your	professional	developer	career	by	learning	Java	9,	and	we	have	done	our	best	in	this	book	to
help	you	along	this	road.	We	assembled	the	topics	of	the	book	so	that	it	is	easy	to	start,	and	you	can	feel
the	things	working	and	moving	very	soon.	At	the	same	time,	we	have	tried	to	reach	very	far,	signaling	the
road	ahead	for	a	professional	developer.

The	sands	of	time	kept	moving,	and	I	discovered	functional	programming.

I	could	very	well	see	why	writing	side-effect-free	code	worked!	I	was	hooked	and	started	playing	with
Scala,	Clojure,	and	Erlang.	Immutability	was	the	norm	here.

However,	I	wondered	how	traditional	algorithms	would	look	in	a	functional	setting	and	started	learning
about	it.

A	data	structure	is	never	mutated	in	place.	Instead,	a	new	version	of	the	data	structure	is	created.	The
strategy	of	copy	and	write	with	maximized	sharing	was	an	intriguing	one!	All	that	careful	synchronization
is	simply	not	needed!

The	languages	come	equipped	with	garbage	collection.	So,	if	a	version	is	not	needed	anymore,	runtime
would	take	care	of	reclaiming	the	memory.

All	in	good	time,	though!	Reading	this	book	will	help	you	see	that	we	need	not	sacrifice	algorithmic
performance	while	avoiding	in-place	mutation!

What	this	book	covers
Chapter	1,	Getting	Started	with	Java	9,	gives	you	a	jump	start	in	Java,	helping	you	install	it	on	your
computer	and	run	your	first	interactive	programs	using	the	new	Jshell.

Chapter	2,	The	First	Real	Java	Program	-	Sorting	Names,	teaches	you	how	to	create	a	development
project.	This	time,	we	will	create	program	files	and	compile	the	code.

Chapter	3,	Optimizing	the	Sort	-	Making	Code	Professional,	develops	the	code	further	so	that	the	code	is
reusable	and	not	only	a	toy.

Chapter	4,	Mastermind	-	Creating	a	Game,	is	when	some	fun	starts.	We	develop	a	game	application	that	is
interesting	and	not	as	trivial	as	it	first	seems,	but	we	will	do	it.

Chapter	5,	Extending	the	Game	-	Run	Parallel,	Run	Faster,	shows	you	how	to	utilize	the	multi-processor
capabilities	of	modern	architecture.	This	is	a	very	important	chapter	that	details	technologies,	that	only	a
few	developers	truly	understand.

Chapter	6,	Making	Our	Game	Professional	-	Do	it	as	a	Webapp,	transforms	the	user	interface	from
command-line	to	web	browser-based,	delivering	better	user	experience.

Chapter	7,	Building	a	Commercial	Web	Application	Using	REST,	takes	you	through	the	development	of	an
application	that	has	the	characteristics	of	many	commercial	applications.	We	will	use	the	standard	REST
protocol	which	has	gained	ground	in	enterprise	computing.

Chapter	8,	Extending	Our	E-Commerce	Application,	helps	you	develop	the	application	further	utilizing
modern	language	features	such	as	scripting	and	lambda	expressions.

Chapter	9,	Building	an	Accounting	Application	Using	Reactive	Programming,	teaches	you	how	to
approach	some	problems	using	reactive	programming.

Chapter	10,	Finalizing	Java	Knowledge	to	a	Professional	Level,	gives	a	bird's-eye	view	of	developer
topics	that	play	an	important	role	in	the	life	of	a	Java	developer,	and	which	will	guide	you	further	in
working	as	a	professional	developer.

	

What	you	need	for	this	book
	

To	immerse	into	the	content	of	this	book	and	to	soak	up	most	of	the	skills	and	knowledge,	we	assume	that
you	already	have	some	experience	with	programming.	We	do	not	assume	too	much	but	hope	that	you
already	know	what	a	variable	is,	that	computers	have	memory,	disk,	network	interfaces,	and	what	they
generally	are.
In	addition	to	these	basic	skills,	there	are	some	technical	requirements	to	try	out	the	code	and	the
examples	of	the	book.	You	need	a	computer—something	that	is	available	today	and	can	run	Windows,
Linux,	or	OSX.	You	need	an	operating	system	and,	probably,	that	is	all	you	need	to	pay	for.	All	other	tools
and	services	that	you	will	need	are	available	as	open	source	and	free	of	charge.	Some	of	them	are	also
available	as	commercial	products	with	an	extended	feature	set,	but	for	the	scope	of	this	book,	starting	to
learn	Java	9	programming,	those	features	are	not	needed.	Java,	a	development	environment,	build	tools,
and	all	other	software	components	we	use	are	open	source.

	

	

Who	this	book	is	for	
This	book	is	for	anyone	who	wants	to	learn	the	Java	programming	language.	You	are	expected	to	have
some	prior	programming	experience	with	another	language,	such	as	JavaScript	or	Python,	but	no
knowledge	of	earlier	versions	of	Java	is	assumed.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds	of	information.
Here	are	some	examples	of	these	styles	and	an	explanation	of	their	meaning.

Code	words	in	text,	database	table	names,	folder	names,	filenames,	file	extensions,	pathnames,	dummy
URLs,	user	input,	and	Twitter	handles	are	shown	as	follows:	"The	following	function	f	has	a	side	effect,
though."

A	block	of	code	is	set	as	follows:

package	packt.java9.by.example.ch03;	

	

public	interface	Sort	{	

	void	sort(SortableCollection	collection);	

}

If	there	is	a	line	(or	lines)	of	code	that	needs	to	be	highlighted,	it	is	set	as	follows:

id=123	

title=Book	Java	9	by	Example	

description=a	new	book	to	learn	Java	9	

weight=300	

width=20	

height=2	

depth=18

New	terms	and	important	words	are	shown	in	bold.	Words	that	you	see	on	the	screen,	for	example,	in
menus	or	dialog	boxes,	appear	in	the	text	like	this:	"Clicking	the	Next	button	moves	you	to	the	next
screen."

Warnings	or	important	notes	appear	in	a	box	like	this.

Tips	and	tricks	appear	like	this.

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this	book—what	you
liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us	develop	titles	that	you	will	really	get
the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	feedback@packtpub.com,	and	mention	the	book's	title	in	the	subject
of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or	contributing	to	a
book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help	you	to	get	the	most
from	your	purchase.

	

Downloading	the	example	code
	

You	can	download	the	example	code	files	for	this	book	from	your	account	at	https://github.com/PacktPublishing/Java
-9-Programming-By-Example.	If	you	purchased	this	book	elsewhere,	you	can	visit	http://www.packtpub.com/support	and
register	to	have	the	files	e-mailed	directly	to	you.

You	can	download	the	code	files	by	following	these	steps:

1.	 Log	in	or	register	to	our	website	using	your	e-mail	address	and	password.
2.	 Hover	the	mouse	pointer	on	the	SUPPORT	tab	at	the	top.
3.	 Click	on	Code	Downloads	&	Errata.
4.	 Enter	the	name	of	the	book	in	the	Search	box.
5.	 Select	the	book	for	which	you're	looking	to	download	the	code	files.
6.	 Choose	from	the	drop-down	menu	where	you	purchased	this	book	from.
7.	 Click	on	Code	Download.

Once	the	file	is	downloaded,	please	make	sure	that	you	unzip	or	extract	the	folder	using	the	latest	version
of:

WinRAR	/	7-Zip	for	Windows
Zipeg	/	iZip	/	UnRarX	for	Mac
7-Zip	/	PeaZip	for	Linux

The	code	bundle	for	the	book	is	also	hosted	on	GitHub	at	https://github.com/PacktPublishing/Java-9-
Programming-By_Example.	We	also	have	other	code	bundles	from	our	rich	catalog	of	books	and	videos
available	at	https://github.com/PacktPublishing/.	Check	them	out!

	

	

https://github.com/PacktPublishing/Java-9-Programming-By-Example
http://www.packtpub.com/support
https://github.com/PacktPublishing/

	

Errata
	

Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do	happen.	If	you	find
a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the	code—we	would	be	grateful	if	you
could	report	this	to	us.	By	doing	so,	you	can	save	other	readers	from	frustration	and	help	us	improve
subsequent	versions	of	this	book.	If	you	find	any	errata,	please	report	them	by	visiting	http://www.packtpub.com/
submit-errata,	selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the	details	of
your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and	the	errata	will	be
uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the	Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to	https://www.packtpub.com/books/content/support	and	enter	the	name	of
the	book	in	the	search	field.	The	required	information	will	appear	under	the	Errata	section.

	

	

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At	Packt,	we	take
the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come	across	any	illegal	copies	of	our
works	in	any	form	on	the	Internet,	please	provide	us	with	the	location	address	or	website	name
immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	copyright@packtpub.com	with	a	link	to	the	suspected	pirated	material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable	content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at	questions@packtpub.com,	and	we	will
do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

	

Getting	Started	with	Java	9
	

You	want	to	learn	Java	and	you	have	a	good	reason	for	it.	Java	is	a	modern	and	well-established
application	programming	language,	which	is	widely	used	in	many	industries,	be	it	telecommunication,
finance,	or	something	else.	Java	developer	positions	are	the	most	numerous	and,	probably,	the	best	paid.
This,	among	other	things,	makes	the	language	lucrative	for	young	professionals	to	learn.	On	the	other	hand,
this	is	not	without	reason.	Java	language,	the	tools,	and	the	whole	infrastructure	around	it	is	complex	and
compound.	Becoming	a	Java	professional	does	not	happen	in	a	day	or	week;	it	is	a	work	of	many	years.
To	be	a	Java	expert,	you	need	to	know	not	only	about	the	programming	language	but	also	about	object-
oriented	programming	principles,	open	source	libraries,	application	servers,	network,	databases,	and
many	other	things	that	you	can	become	an	expert	in.	Nevertheless,	learning	the	language	is	an	absolute
must	that	all	other	practices	should	build	on.	Through	this	book,	you	will	be	able	to	learn	Java	version	9
and	a	bit	more.

In	this	chapter,	you	will	be	introduced	to	the	Java	environment	and	given	step-by-step	instructions	on	how
to	install	it,	edit	sample	code,	compile,	and	run	Java.	You	will	get	acquainted	with	the	basic	tools	that
help	development,	be	they	are	a	part	of	Java	or	are	provided	by	other	vendors.	We	will	cover	the
following	topics	in	this	chapter:

Introduction	to	Java
Installing	Windows,	Linux,	and	Mac	OS	X
Executing	jshell
Using	other	Java	tools
Using	integrated	development	environment

	

Getting	started	with	Java
It	is	like	going	through	a	path	in	a	forest.	You	can	focus	on	the	gravel	of	the	road	but	it	is	pointless.
Instead,	you	can	enjoy	the	view,	the	trees,	the	birds,	and	the	environment	around	you,	which	is	more
enjoyable.	This	book	is	similar	as	I	won't	be	focusing	only	on	the	language.	From	time	to	time,	I	will
cover	topics	that	are	close	to	the	road	and	will	give	you	some	overview	and	directions	on	where	you	can
go	further	after	you	finish	this	book.	I	will	not	only	teach	you	the	language	but	also	talk	a	bit	about
algorithms,	object-oriented	programming	principles,	tools	that	surround	Java	development,	and	how
professionals	work.	This	will	be	mixed	with	the	coding	examples	that	we	will	follow.	Lastly,	the	final
chapter	will	be	fully	devoted	to	the	topic,	what	to	learn	next	and	how	to	go	further	to	become	a
professional	Java	developer.

By	the	time	this	book	gets	into	print,	Java	will	have	completed	22	years.	http://www.oracle.com/technetwork/java/jav
ase/overview/javahistory-index-198355.html.	The	language	has	changed	a	lot	during	this	period	and	got	better.	The
real	question	to	ask	is	not	how	long	has	it	been	here,	but	rather	how	long	will	it	stay?	Is	it	still	worth
learning	this	language?	There	are	numerous	new	languages	that	have	been	developed	since	Java	was	born
(http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/).	These	languages	are	more	modern
and	have	functional	programming	features,	which,	by	the	way,	Java	has	also	had	since	version	8.	Many
say	that	Java	is	the	past—the	future	is	Scala,	Swift,	Go,	Kotlin,	JavaScript,	and	so	on.	You	can	add	many
other	languages	to	this	list,	and	for	each,	you	can	find	a	blog	article	that	celebrates	the	burial	of	Java.
There	are	two	answers	to	this	concern-one	is	a	pragmatic	business	approach,	the	other	is	more
engineering:

Considering	that	COBOL	is	still	actively	used	in	the	finance	industry	and	COBOL	developers	are
perhaps	better	paid	than	Java	developers,	it	is	not	too	risky	to	say	that	as	a	Java	developer,	you	will
find	positions	in	the	next	40	years.	Personally,	I	would	bet	more	than	a	100	years,	but	considering	my
age,	it	will	not	be	fair	predicting	more	than	20	to	40	years	ahead.
Java	is	not	only	a	language;	it	is	also	a	technology	that	you	will	learn	a	bit	about	from	this	book.	The
technology	includes	the	Java	Virtual	Machine	(JVM),	which	is	usually	referred	to	as	JVM,	and
gives	the	runtime	environment	for	many	languages.	Kotlin	and	Scala,	for	example,	cannot	run	without
JVM.	Even	if	Java	will	be	adumbrated,	JVM	will	still	be	a	number	one	player	in	the	enterprise
scene.

To	understand	and	learn	the	basic	operation	of	JVM	is	almost	as	important	as	the	language	itself.	Java	is	a
compiled	and	interpreted	language.	It	is	a	special	beast	that	forges	the	best	of	both	worlds.	Before	Java,
there	were	interpreted	and	compiled	languages.

Interpreted	languages	are	read	from	the	source	code	by	the	interpreter	and	then	the	interpreter	executes	the
code.	In	each	of	these	languages,	there	is	some	preliminary	lexical	and	syntax	analysis	step;	however,
after	that,	the	interpreter,	which,	as	a	program	itself,	is	executed	by	the	processor	and	the	interpreter
continuously,	interprets	the	program	code	to	know	what	to	do.	Compiled	languages	are	different.	In	such	a
case,	the	source	code	is	compiled	to	binary	(.exe	file	on	Windows	platforms),	which	the	operating	system
loads	and	the	processor	directly	executes.	Compiled	programs	usually	run	faster,	but	there	is	usually	a
slower	compilation	phase	that	may	make	the	development	slower,	and	the	execution	environment	is	not	so

http://www.oracle.com/technetwork/java/javase/overview/javahistory-index-198355.html
http://blog.takipi.com/java-vs-net-vs-python-vs-ruby-vs-node-js-who-reigns-the-job-market/

flexible.	Java	combined	the	two	approaches.

To	execute	a	Java	program,	the	Java	source	code	has	to	be	compiled	to	the	JVM	byte	code	(.class	file),
which	is	loaded	by	JVM	and	is	interpreted	or	compiled.	Hmm...	is	it	interpreted	or	compiled?	The	thing
that	came	with	Java	is	the	Just	in	Time	(JIT)	compiler.	This	makes	the	phase	of	the	compilation	that	is
calculation-intensive	and	the	compilation	for	compiled	languages	relatively	slow.	JVM	first	starts	to
interpret	the	Java	byte	code	and,	while	doing	that,	it	keeps	track	of	execution	statistics.	When	it	gathers
enough	statistics	about	code	executions,	it	compiles	to	native	code	(for	example,	x86	code	on	an
Intel/AMD	platform)	for	direct	execution	of	the	parts	of	code	that	are	executed	frequently	and	keeps
interpreting	the	code	fragments	that	are	rarely	used.	After	all,	why	waste	expensive	CPU	time	to	compile
some	code	that	is	hardly	ever	used?	(For	example,	code	that	reads	configuration	during	startup	and	does
not	execute	again	unless	the	application	server	is	restarted.)	Compilation	to	the	byte	code	is	fast	and	code
generation	is	done	only	for	the	segments	that	pay	off.

It	is	also	interesting	that	JIT	uses	the	statistics	of	the	code	execution	to	optimize	the	code.	If,	for	example,
it	sees	that	some	conditional	branch	is	executed	in	99%	of	the	cases	and	the	other	branch	is	executed	only
in	1%,	then	it	will	generate	native	code	that	runs	fast,	thus	favoring	the	frequent	branch.	If	the	behavior	of
that	part	of	the	program	changes	by	time	and	the	statistic	shows	that	the	ratios	changed,	the	JIT
automatically	recompiles	the	byte	code	from	time	to	time.	This	is	all	automatic	and	behind	the	scenes.

In	addition	to	the	automatic	compilation,	there	is	also	an	extremely	important	feature	of	JVM-it	manages
the	memory	for	the	Java	program.	The	execution	environment	of	modern	languages	do	that	and	Java	was
the	first	mainstream	language	that	had	an	automatic	garbage	collection	(GC).	Before	Java,	I	was
programming	in	C	for	20	years	and	it	was	a	great	pain	to	keep	track	of	all	memory	allocation	and	not	to
forget	to	release	the	memory	when	the	program	no	longer	needed	it.	Forgetting	memory	allocation	at	a
single	point	in	the	code	and	the	long	running	program	was	eating	up	all	memory	slowly.	Such	problems
practically	ceased	to	exist	in	Java.	There	is	a	price	that	we	have	to	pay	for	it—GC	needs	processor
capacity	and	some	extra	memory,	but	that	is	something	we	are	not	short	of	in	most	of	the	enterprise
applications.	Some	special	programs,	like	real-time	embedded	systems	that	control	the	brakes	of	a	heavy-
duty	lorry	may	not	have	that	luxury.	Those	are	still	programmed	in	assembly	or	C.	For	the	rest	of	us,	we
have	Java,	and	though	it	may	seem	strange	for	many	professionals,	even	almost-real-time	programs,	such
as	high-frequency	trading	applications,	are	written	in	Java.

These	applications	connect	through	the	network	to	the	stock	exchange	and	they	sell	and	buy	stocks
responding	to	market	change	in	milliseconds.	Java	is	capable	of	doing	that.	The	runtime	environment	of
Java	that	you	will	need	to	execute	a	compiled	Java	code,	which	also	includes	the	JVM	itself,	contains
code	that	lets	Java	programs	access	the	network,	files	on	disks,	and	other	resources.	To	do	this,	the
runtime	contains	high-level	classes	that	the	code	can	instantiate,	execute,	and	which	do	the	low-level
jobs.	You	will	also	do	this.	It	means	that	the	actual	Java	code	does	not	need	to	handle	IP	packets,	TCP
connections,	or	even	HTTP	handling	when	it	wants	to	use	or	provide	a	REST	service	in	some
microservices	architecture.	It	is	already	implemented	in	the	runtime	libraries,	and	all	the	application
programmer	has	to	do	is	to	include	the	classes	in	the	code	and	use	the	APIs	they	provide	on	an	abstraction
level	that	matches	the	program.	When	you	program	in	Java,	you	can	focus	on	the	actual	problem	you	want
to	solve,	which	is	the	business	code	and	not	the	low-level	system	code.	If	it	is	not	in	the	standard	library,
you	will	find	it	in	some	product	in	some	external	library,	and	it	is	also	very	probable	that	you	will	find	an
open	source	solution	for	the	problem.

This	is	also	a	strong	point	of	Java.	There	is	a	vast	number	of	open	source	libraries	available	for	all	the
different	purposes.	If	you	cannot	find	a	library	fitting	your	problem	if	you	start	to	code	some	low-level
code,	then	probably	you	are	doing	something	wrong.	There	are	topics	in	this	book	that	are	important,	such
as	class	loaders	or	reflection,	not	because	you	have	to	use	them	every	day	but	rather	because	they	are
used	by	frameworks,	and	knowing	them	helps	understand	how	these	frameworks	work.	If	you	cannot	solve
your	problem	without	using	reflection	or	writing	your	own	class	loader	or	program	multithread	directly,
then	you	probably	chose	the	wrong	framework.	There	is	almost	certainly	a	good	one:	Apache	project,
Google,	and	many	other	important	players	in	the	software	industry	publish	their	Java	libraries	as	open
source.

This	is	also	true	for	multithread	programming.	Java	is	a	multithread	programming	environment	from	the
very	beginning.	The	JVM	and	the	runtime	supports	programs	that	execute	the	code.	The	execution	runs
parallel	on	multiple	threads.	There	are	runtime	language	constructs	that	support	parallel	executing
programs	starting	at	the	very	low	level	to	high	abstraction.	Multithread	code	utilizes	the	multicore
processors,	which	are	more	effective.	These	processors	are	more	and	more	common.	20	years	ago,	only
high-end	servers	had	multiple	processors	and	only	Digital	Alpha	processors	had	64-bit	architecture	and
CPU	clock	above	100	MHz.	10	years	ago,	multiprocessor	structure	was	common	on	the	server	side,	and
about	5	years	ago,	multicore	processors	were	on	some	desktops	and	on	notebooks.	Today,	even	mobile
phones	have	them.	When	Java	was	started	in	1995,	the	geniuses	who	created	it	had	seen	this	future.

They	envisioned	Java	to	be	a	write	once,	run	anywhere	language.	At	that	time,	the	first	target	for	the
language	was	applet	running	in	the	browser.	Today,	many	think	(and	I	also	share	this	opinion)	that	applets
were	a	wrong	target,	or	at	least	things	were	not	done	in	the	right	way.	As	for	now,	you	will	meet	applets
on	the	Internet	less	frequently	than	Flash	applications	or	dinosaurs.

However,	at	the	same	time,	the	Java	interpreter	was	also	executing	server	and	client	applications	without
any	browser;	furthermore,	as	the	language	and	the	executing	environment	developed,	these	application
areas	became	more	and	more	relevant.	Today,	the	main	use	of	Java	is	enterprise	computing	and	mobile
applications	mainly	for	the	Android	platform;	for	the	future,	the	use	of	the	environment	is	growing	in
embedded	systems	as	the	Internet	of	things	(IoT)	comes	more	and	more	into	picture.

Installing	Java
To	develop,	compile,	and	execute	Java	programs,	you	will	need	the	Java	execution	environment.	As	the
operating	systems	that	we	usually	use	for	software	development	do	not	contain	the	language	preinstalled,
you	will	have	to	download	it.	Although,	there	is	multiple	implementation	of	the	language,	I	recommend
that	you	download	the	official	version	of	the	software	from	Oracle.	The	official	site	for	java	is	http://java.co
m	and	this	is	the	site	from	where	the	latest	release	of	the	language	can	be	downloaded.	At	the	time	of
writing	this	book,	the	9th	version	of	Java	is	not	yet	released.	An	early	pre-release	version	is	accessible
via	http://jdk9.java.net/download.	Later	the	release	versions	will	also	be	available	from	here.

What	you	can	download	from	here	is	a	so	called	early	access	version	of	the	code	that	is	available	only	to
experiment	with	it,	and	no	professionals	should	use	it	for	real	professional	purposes

On	the	page,	you	have	to	click	on	the	radio	button	to	accept	the	license.	After	that,	you	can	click	on	the

http://java.com
http://jdk9.java.net/

link	that	directly	starts	the	download	of	the	installation	kit.	The	license	is	a	special	early	access	license
version	that	you,	as	a	professional,	should	carefully	read,	understand,	and	accept	only	if	you	are	agreeable
with	the	terms.

There	is	a	separate	installation	kit	for	Windows	32	and	64	bit	systems,	Mac	OS	X,	Linux	32	and	64	bit
versions,	Linux	for	ARM	processor,	Solaris	for	SPARC	processor	systems,	and	Solaris	x86	versions.	As
it	is	not	likely	that	you	will	use	Solaris,	I	will	detail	the	installation	procedure	only	for	Windows,	Linux,
and	Mac	OS	X.	In	later	chapters,	the	samples	will	always	be	Mac	OS	X,	but	since	Java	is	a	write	once,
run	anywhere	language,	there	is	no	difference	after	the	installation.	The	directory	separator	may	be
slanted	differently,	the	classpath	separator	character	is	a	semicolon	on	Windows	instead	of	a	colon,	and
the	look	and	feel	of	the	Terminal	or	command	application	is	also	different.	However,	where	it	is
important,	I	will	try	not	to	forget	to	mention	it.

To	confuse	you,	the	Java	download	for	each	of	these	operating	system	versions	lists	a	link	for	the	JRE	and
one	for	the	JDK.	JRE	stands	for	Java	Runtime	Environment	and	it	contains	all	the	tools	and	executables
that	are	needed	to	run	Java	programs.	JDK	is	the	Java	Development	Kit	that	contains	all	the	tools	and
executables	that	are	needed	to	develop	Java	programs	including	the	execution	of	the	Java	program.	In
other	words,	JDK	contains	its	own	JRE.	For	now,	all	you	need	to	do	is	download	the	JDK.

There	is	one	important	point	of	the	installation	that	is	the	same	on	each	of	the	three	operating	systems	that
you	have	to	be	prepared	for	before	the	installation:	to	install	Java,	you	should	have	administrative
privileges.

Installation	on	Windows
The	installation	process	on	Windows	starts	by	double	clicking	on	the	downloaded	file.	It	will	start	the
installer	that	will	present	you	a	welcome	screen.

Pressing	the	Next	button	we	get	a	window	where	you	can	select	the	parts	you	want	to	install.	Let's	leave
here	the	default	selection,	which	means	that	we	install	all	the	downloaded	parts	of	Java	and	press	the
button	Next.	The	following	window	is	where	we	can	select	the	destination	folder	for	the	installation.

As	for	now	we	do	not	change	the	directory	selected	by	the	installer.	Press	Next.	Later,	when	you	become
a	professional	Java	developer,	you	may	decide	to	install	Java	to	a	different	location	but	then	you	will
already	have	to	know	what	you	are	doing.

You	may	need	to	click	the	Next	button	a	few	times	and	then	the	installer	finishes.	Provide	the
administrative	password	when	asked	and	voila!	Java	is	installed.	This	is	really	the	very	usual	Windows
installation	process.

The	last	step	is	to	set	the	environment	variable	JAVA_HOME.	To	do	that	in	Windows	we	have	to	open	the

control	center	and	select	the	Edit	environment	variables	for	your	account	menu.

This	will	open	a	new	window	that	we	should	use	to	create	a	new	environment	variable	for	the	current
user.

The	name	of	the	new	variable	has	to	be	JAVA_HOME	and	the	value	should	point	to	the	installation	directory	of
the	JDK.

This	value	on	most	of	the	systems	is	C:Program	FilesJavajdk-9.	This	is	used	by	many	Java	programs	and
tools	to	locate	the	Java	runtime.

Installation	on	MAC	OS	X
In	this	section,	we	will	take	look	at	how	to	install	Java	step-by-step	on	an	OS	X	platform.	I	will	describe
the	installation	process	for	the	released	version	available	at	the	time	of	writing	this	book.	As	for	now,	the
Java	9	early	access	version	is	a	bit	tricky	to	install.	It	is	probable	that	version	Java	9	will	have	similar	or
the	same	install	steps	as	Java	8	update	92	has.

The	OS	X	version	of	Java	comes	in	the	form	of	a	.dmg	file.	This	is	a	packaging	format	of	OS	X.	To	open	it,
simply	double	click	on	the	file	in	the	Download	folder	where	the	browser	saves	it	and	the	operating	system
will	mount	the	file	as	a	read-only	disk	image.

There	is	only	one	file	on	this	disk:	the	installation	image.	Double	click	on	the	file	name	or	icon	in	the
Finder	application	and	the	installation	process	will	start.

The	first	screen	opening	is	a	welcome	screen.	Click	Continue	and	you	will	see	the	Summary	page	that
displays	what	will	be	installed.

It	is	not	a	surprise	that	you	will	see	a	standard	Java	installation.	This	time,	the	button	is	called	Install.
Click	on	it	and	you	will	see	the	following:

This	is	the	time	when	you	have	to	provide	the	login	parameters	for	the	administrative	user—a	username
and	password.	When	provided,	installation	starts	and,	in	a	few	seconds,	you	will	see	a	Summary	page.

Click	Close	and	you	are	ready.	You	have	Java	installed	on	your	Mac.	Optionally,	you	can	dismount	the
installation	disk	and,	sometime	later,	you	can	also	delete	the	.dmg	file.	You	will	not	need	that,	and	in	case
you	do,	you	can	download	it	any	time	from	Oracle.

The	last	thing	is	to	check	whether	the	installation	was	okay.	Proof	of	the	pudding	is	eating	it.	Start	a
Terminal	window	and	type	java	-version	at	the	prompt	and	Java	will	tell	you	the	version	installed.

On	the	next	screenshot	you	can	see	the	output	on	my	workstation	and	also	the	Mac	OS	commands	that	are
handy	to	switch	between	the	different	versions	of	Java:

On	the	screenshot,	you	can	see	that	I	have	installed	the	Java	JDK	1.8u92	version	and,	at	the	same	time,	I
also	have	a	Java	9	early	release	installation,	which	I	will	use	to	test	the	new	features	of	Java	for	this
book.

Installation	on	Linux
There	are	several	ways	to	install	Java	on	Linux,	depending	on	its	flavor.	Here,	I	will	describe	an
installation	method	that	works	more	or	less	the	same	way	on	all	flavors.	The	one	I	used	is	Debian.

First	step	is	the	same	as	in	any	other	operating	system:	download	the	installation	kit.	In	the	case	of	Linux,
you	should	select	a	package	that	has	a	tar.gz	ending.	This	is	a	compressed	archive	format.	You	should	also
carefully	select	the	package	that	matches	the	processor	in	your	machine	and	the	32/64	bit	version	of	the
operating	system.	After	the	package	is	downloaded,	you	have	to	switch	to	root	mode,	issuing	the	su
command.	This	the	first	command	you	can	see	on	the	screenshot	that	shows	the	installation	commands.

The	tar	command	uncompressed	the	archive	into	a	subfolder.	In	Debian,	this	subfolder	has	to	be	moved	to
/opt/jdk	and	the	mv	command	is	used	for	this	purpose.	The	two	update-alternatives	command	is	Debian-
specific.	These	tell	the	operating	system	to	use	this	newly	installed	Java	in	case	there	is	already	an	older
Java	installed.	The	Debian	I	was	using	to	test	and	demonstrate	the	installation	process	on	a	virtual
machine	came	with	a	7	year	old	version	of	Java.

The	final	step	of	the	installation	is	the	same	as	any	other	operating	system:	checking	that	the	installation
was	successful	in	issuing	the	java	-version	command.	In	the	case	of	Linux,	this	is	even	more	important
because	the	installation	process	does	not	check	that	the	downloaded	version	matches	the	operating	system
and	the	processor	architecture.

Setting	JAVA_HOME
The	JAVA_HOME	environment	variable	plays	a	special	role	for	Java.	Even	though	the	JVM	executable,	java.exe
or	java,	is	on	the	PATH	(thus	you	can	execute	it	by	typing	the	name	java	without	specifying	directory	on	the
Command	Prompt)	(Terminal),	it	is	recommended	that	you	use	the	correct	Java	installation	to	set	this
environment	variable.	The	value	of	the	variable	should	point	to	the	installed	JDK.	There	are	many	Java-
related	programs,	for	example,	Tomcat	or	Maven,	that	use	this	variable	to	locate	the	installed	and
currently	used	Java	version.	In	Mac	OS	X,	setting	this	variable	is	unavoidable.

In	OS	X,	the	program	that	starts	to	execute	when	you	type	java	is	a	wrapper	that	first	looks	at	JAVA_HOME	to
decide	which	Java	version	to	start.	If	this	variable	is	not	set,	then	OS	X	will	decide	on	its	own,	selecting
from	the	available	installed	JDK	versions.	To	see	the	available	versions,	you	can	issue	the	following
command:	~$	/usr/libexec/java_home	-V
Matching	Java	Virtual	Machines	(10):
9,	x86_64:	"Java	SE	9-ea"	/Library/Java/JavaVirtualMachines/jdk-9.jdk/Contents/Home
1.8.0_92,	x86_64:	"Java	SE	8"
/Library/Java/JavaVirtualMachines/jdk1.8.0_92.jdk/Contents/Home
1.7.0_60,	x86_64:	"Java	SE	7"
/Library/Java/JavaVirtualMachines/jdk1.7.0_60.jdk/Contents/Home
/Library/Java/JavaVirtualMachines/jdk-9.jdk/Contents/Home

You	will	then	get	the	list	of	installed	JDKs.	Note	that	the	command	is	lowercase,	but	the	option	is	capital.
If	you	do	not	provide	any	options	and	argument	to	the	program,	it	will	simply	return	the	JDK	it	thinks	is
the	newest	and	most	appropriate	for	the	purpose.	As	I	copied	the	output	of	the	command	from	my
Terminal	window,	you	can	see	that	I	have	quite	a	few	versions	of	Java	installed	on	my	machine.

The	last	line	of	the	program	response	is	the	home	directory	of	JDK,	which	is	the	default.	You	can	use	this
to	set	your	JAVA_HOME	variable	using	some	bash	programming:	export
JAVA_HOME=$(/usr/libexec/java_home)

You	can	place	this	file	in	your	.bashrc	file,	which	is	executed	each	time	you	start	Terminal	application	and
thus	JAVA_HOME	will	always	be	set.	If	you	want	to	use	a	different	version,	you	can	use	-v,	with	the	lower	case
option	this	time,	to	the	same	utility,	as	follows:	export	JAVA_HOME=$(/usr/libexec/java_home	-v	1.8)

The	argument	is	the	version	of	Java	you	want	to	use.	Note	that	this	versioning	becomes:

export	JAVA_HOME=$(/usr/libexec/java_home	-v	9)

If	you	want	to	use	Java	JDK	Early	Access	version	and	not	1.9,	there	is	no	explanation	for	the	same—fact
of	life.

Note	that	there	is	another	environment	variable	that	is	important	for	Java-CLASSPATH.	We	will	talk	about	it
later.

Executing	jshell
Now	that	we	have	spent	a	lot	of	time	installing	Java,	it	is	time	to	get	the	fingers	burnt	a	bit.	As	we	are
using	Java	9,	there	is	a	new	tool	that	helps	developers	to	play	around	with	the	language.	This	is	a	Read-
Eval-Print-Loop	(REPL)	tool	that	many	language	toolsets	contain	and	there	were	also	implementations
from	Java,	but	version	9	is	the	first	that	contains	this	feature	off	the	shelf.

REPL	is	a	tool	that	has	interactive	prompt	and	language	commands	that	can	be	directly	entered	without
editing	some	standalone	file.	The	entered	commands	are	executed	directly	and	then	the	loop	starts	again,
waiting	for	the	user	to	type	in	the	next	command.	This	is	a	very	effective	tool	to	try	out	some	language
constructs	without	the	delay	of	editing,	compiling,	and	loading.	The	steps	are	automatically	and
transparently	done	by	the	REPL	tool.

The	REPL	tool	in	Java	9	is	called	jshell.	To	start	it,	just	type	its	name.	If	it	is	not	on	the	PATH,	then	type	the
full	path	to	jshell	that	comes	installed	with	Java	9,	as	shown	in	the	following	example:

$	jshell

|		Welcome	to	JShell	--	Version	9-ea

|		For	an	introduction	type:	/help	intro

jshell>	

The	jshell	starts	up	in	an	interactive	way	and	the	prompt	it	displays	is	jshell>	to	help	you	recognize	that
jshell	is	running	and	what	you	type	is	read	by	the	program	and	not	the	operating	system	shell.	As	this	is
the	first	time	you	will	start	jshell,	it	tells	you	to	type	/help	intro.	Let's	do	it.	It	will	print	out	a	short	text
about	what	jshell	is,	as	shown	in	the	following	code:

jshell>	/help	intro

|		

|		intro

|		

|		The	jshell	tool	allows	you	to	execute	Java	code,	getting	immediate	results.

|		You	can	enter	a	Java	definition	(variable,	method,	class,	etc),	like:		int	x	=	8

|		or	a	Java	expression,	like:		x	+	x

|		or	a	Java	statement	or	import.

|		These	little	chunks	of	Java	code	are	called	'snippets'.

|		

|		There	are	also	jshell	commands	that	allow	you	to	understand	and

|		control	what	you	are	doing,	like:		/list

|		

|		For	a	list	of	commands:	/help

Okay,	so	we	can	type	Java	snippets	and	/list,	but	that	is	only	one	example	of	the	available	commands.	We
can	hope	for	more	information	by	typing	/help,	as	shown	in	the	following	code:

jshell>	/help

|		Type	a	Java	language	expression,	statement,	or	declaration.

|		Or	type	one	of	the	following	commands:

|					/list	[<name	or	id>|-all|-start]																													--	list	the	source	you	have	typed

|					/edit	<name	or	id>																																											--	edit	a	source	entry	referenced	by	name	or	id

|					/drop	<name	or	id>																																											--	delete	a	source	entry	referenced	by	name	or	id

|					/save	[-all|-history|-start]	<file>																										--	Save	snippet	source	to	a	file.

...

What	you	get	is	a	long	list	of	commands.	Most	of	it	is	not	presented	here	to	save	paper	and	your	attention.
We	will	use	many	of	these	commands	on	our	journey	through	the	next	few	pages.	Let's	start	with	a	small
Java	snippet	that	is	the	ageless	Hello	World	example:

jshell>	System.out.println("Hello	World!")

Hello	World!

This	is	the	shortest	ever	Hello	World	program	in	Java.	Till	Java	9,	if	you	wanted	to	do	nothing	more	than
print	out	Hello	World!,	you	had	to	create	a	program	file.	It	had	to	contain	the	source	code	of	a	class
including	the	public	static	main	method,	which	contained	the	one	line	we	had	to	type	in	with	Java	9	jshell.	It
was	cumbersome	just	for	a	simple	printout	of	sample	code.	Now	it	is	much	easier	and	jshell	is	also
lenient,	forgiving	us	the	missing	semicolon	at	the	end	of	the	line.

The	next	thing	we	should	try	is	declaring	a	variable,	as	follows:

jshell>	int	a	=	13

a	==>	13

jshell>	

We	declared	a	variable,	named	a,	and	assigned	the	value	to	it-13.	The	type	of	the	variable	is	int,	which	is
an	abbreviation	for	integer	types	in	Java.	Now	we	have	this	variable	already	in	our	snippet,	so	we	can
print	it	out	if	we	want	to	as	shown:

jshell>	System.out.println(a)

13

It	is	time	to	write	something	more	complex	into	jshell	than	a	one	liner.

jshell>	void	main(String[]	args){

			...>		System.out.println("Hello	World")

			...>	}

|		Error:

|		';'	expected

|			System.out.println("Hello	World")

|																													

The	jshell	recognizes	that	this	is	not	a	one-liner	and	that	it	cannot	process	what	we	typed	so	far,	when	we
press	Enter	at	the	end	of	the	first	line,	and	it	signals	that	it	expects	more	characters	from	us,	so	it	displays
...>	as	a	continuation	prompt.	We	type	in	the	commands	that	make	up	the	whole	hello	world	main	method,
but	this	time	jshell	does	not	let	us	miss	the	semicolon.	That	is	allowed	only	in	the	case	of	one-line
snippets.	As	jshell	is	interactive,	it	is	easy	to	correct	the	mistake;	press	the	up	arrow	key	a	few	times	to
get	back	the	previous	lines	and,	this	time,	add	the	semicolon	at	the	end	of	the	second	line:

jshell>	void	main(String[]	args){

			...>		System.out.println("Hello	World");

			...>	}

|		created	method	main(String[])

This	method	was	created	for	us	as	a	snippet	and	now	we	can	call	it:

jshell>	main(null)

Hello	World

And	it	works.	You	can	list	all	the	snippets	that	were	created,	as	follows:

jshell>	/list

			1	:	System.out.println("Hello	World!")

			2	:	int	a	=	13;

			3	:	System.out.println(a)

			4	:	void	main(String[]	args){

															System.out.println("Hello	World");

														}

And,	as	we	want	to	go	on	writing	a	full	Java	version	of	hello	world,	we	can	save	our	work	from	jshell	to
a	file,	as	follows:

jshell>	/save	HelloWorld.java

Finally,	we	exited	from	jshell	by	typing	/exit.	As	you	get	back	to	the	system	prompt,	type	cat	HelloWorld.java
(or	type	HelloWorld.java	on	Windows)	to	see	the	content	of	the	file.	It	is	as	follows:

$	cat	HelloWorld.java

System.out.println("Hello	World!")

int	a	=	13;

System.out.println(a)

void	main(String[]	args){

								System.out.println("Hello	World");

							}

The	file	contains	all	the	snippets	that	we	typed	in	one	after	the	other.	If	you	think	that	you	have	messed	up
the	shell	with	lots	of	variables	and	code	snippets	that	you	do	not	need	anymore,	you	can	issue	the	/reset
command:

jshell>	/reset

|		Resetting	state.

After	this	command,	the	jshell	is	as	clean	as	when	it	was	started	earlier

jshell>	/list

jshell>

Listing	just	does	not	produce	anything	as	we	deleted	it	all.	Fortunately,	we	saved	the	state	of	jshell	to	a
file	and	we	can	also	load	the	content	of	the	file	issuing	the	/open	command:

jshell>	/open	HelloWorld.java

Hello	World!

13

It	loads	the	line	from	the	file	and	executes	it	just	as	the	characters	were	typed	into	the	Command	Prompt.

You	may	recall	that	the	/list	command	printed	a	number	in	front	of	each	snippet.	We	can	use	it	to	edit	the
snippets	individually.	To	do	so,	issue	the	/edit	command	followed	by	the	number	of	the	snippet:

jshell>	/edit	1

You	may	recall	that	the	first	command	we	entered	was	the	System.out.println	system	call	that	prints	out	the
argument	to	the	console.	When	you	press	Enter	after	the	/edit	1	command,	you	do	not	get	the	prompt	back.
Instead,	jshell	opens	a	separate	graphical	editor	that	contains	the	snippet	to	edit	as	shown	in	the	following
image:

Edit	the	text	in	the	box	so	that	it	will	look	like	this:

printf("Hello	World!")

Click	on	Accept	and	then	Exit.	When	you	click	on	Accept,	the	Terminal	will	execute	the	snippet	and
display	the	following	result:

Hello	World!

The	method	that	we	used,	printf,	stands	for	formatted	printing.	This	may	be	well	known	from	many	other
languages.	It	was	first	introduced	by	the	C	language	and	though	cryptic,	the	name	survived.	This	is	also
part	of	the	standard	Java	class,	PrintStream,	just	like	println.	In	case	of	println,	we	had	to	write	System.out	in
front	of	the	method	name.	In	case	of	printf,	we	did	not.	Why?

The	reason	is	that	jshell	defines	a	few	snippets	that	are	automatically	loaded	when	jshell	starts	or	resets.
You	can	see	these	if	you	issue	the	/list	command	with	the	-start	option,	as	follows:

jshell>	/list	-start

		s1	:	import	java.util.*;

		s2	:	import	java.io.*;

		s3	:	import	java.math.*;

		s4	:	import	java.net.*;

		s5	:	import	java.util.concurrent.*;

		s6	:	import	java.util.prefs.*;

		s7	:	import	java.util.regex.*;

		s8	:	void	printf(String	format,	Object...	args)	{	System.out.printf(format,	args);	}

These	predefined	snippets	help	the	use	of	jshell.	Most	of	the	users	will	import	these	classes,	and	to	ease
the	print	to	screen,	it	defines	a	method	snippet	that	happens	to	have	the	name,	printf,	which	is	also	the
name	of	a	method	in	the	PrintStream	class.

If	you	want	to	list	all	the	snippets	you	entered	as	well	as	the	predefined	snippets	and	also	those	that
contained	some	error	and	thus	were	not	executed,	you	can	use	the	-all	option	to	the	/list	command,	as
follows:

jshell>	/list	-all

...

		s7	:	import	java.util.regex.*;

...

			1	:	System.out.println("Hello	World!")

...

		e1	:	System.out.println("Hello	World!")

							int	a	=	14;

			5	:	System.out.println("Hello	World!");

...

Some	of	the	lines	were	deleted	from	the	actual	output	for	brevity.	The	lines	that	are	preloaded	are
numbered	with	the	s	prefix.	The	snippets	that	contain	an	error	have	a	number	prefixed	with	e.

If	you	want	to	execute	some	of	the	snippets	again,	you	only	have	to	type	/n	where	n	is	the	number	of	the
snippet,	as	follows:

jshell>	/1

System.out.println("Hello	World!")

Hello	World!

You	cannot	re-execute	the	preloaded	snippets	or	snippets	that	contained	errors.	There	is	no	need	for	any
of	those	anyway.	Preloaded	snippets	declare	some	imports	and	define	a	snippet	method;	erroneous
snippets	do	not	execute	because	they	are,	well...erroneous.

You	need	not	rely	on	the	number	of	jshell	when	you	want	to	re-execute	a	snippet.	When	you	already	have
a	lot	of	snippets	in	your	jshell	session,	listing	them	all	would	be	too	cumbersome;	there	is	a	shortcut	to	re-
execute	the	last	n-th	snippet.	You	have	to	write	/-n.	Here,	n	is	the	number	of	the	snippet	counting	from	the
last	one.	So,	if	you	want	to	execute	the	very	last	snippet,	then	you	have	to	write	/-1.	If	you	want	to	execute
the	one	before	the	last	one,	you	have	to	write	/-2.	Note	that	if	you	already	typed	/-1,	then	the	last	one	is	the
re-execution	of	the	last	snippet	and	snippet	number	-2	will	become	number	-3.

Listing	all	the	snippets	can	also	be	avoided	in	other	ways.	When	you	are	interested	only	in	certain	types
of	snippets,	you	can	have	special	commands.

If	we	want	to	see	only	the	variables	that	we	defined	in	the	snippets,	then	we	can	issue	the	/vars	command,
as	follows:

jshell>	/vars

|				int	a	=	13

If	we	want	to	see	only	the	classes,	the	command/types	will	do	that:

jshell>	class	s	{}

|		created	class	s

jshell>	/types

|				class	s

Here,	we	just	created	an	empty	class	and	then	we	listed	it.

To	list	the	methods	that	were	defined	in	the	snippets,	the	/methods	command	can	be	issued:

jshell>	/methods

|				printf	(String,Object...)void

|				main	(String[])void

You	can	see	in	the	output	that	there	are	only	two	methods,	which	are	as	follows:

printf:	This	is	defined	in	a	preloaded	snippet
main:	This,	we	defined

If	you	want	to	see	everything	you	typed,	you	have	to	issue	the	/history	command	for	all	the	snippets	and
commands	that	you	typed.	(I	will	not	copy	the	output	here;	I	do	not	want	to	shame	myself.	You	should	try
yourself	and	see	your	own	history.)

Recall	that	we	can	delete	all	the	snippets	issuing	the	/reset	command.	You	can	also	delete	snippets
individually.	To	do	so,	you	should	issue	the	/drop	n	command,	where	n	is	the	snipped	number:

jshell>	/drop	1

|		This	command	does	not	accept	the	snippet	'1'	:	System.out.println("Hello	World!")

|		See	/types,	/methods,	/vars,	or	/list

Oops!	Something	went	wrong.	There	is	nothing	defined	when	snippet	number	1	was	executed	and	the	/drop

command	actually	drops	the	defined	variable,	type,	or	method.	There	is	nothing	to	be	dropped	in	the	first
snippet.	But,	if	we	reissue	the	/list	command,	we	will	get	the	following	results:

jshell>	/list

			1	:	System.out.println("Hello	World!")

			2	:	int	a	=	13;

			3	:	System.out.println(a)

			4	:	void	main(String[]	args){

															System.out.println("Hello	World");

														}

We	can	see	that	we	can	drop	the	second	or	the	fourth	snippet,	too:

jshell>	/drop	2

|		dropped	variable	a

jshell>	/drop	4

|		dropped	method	main(String[])

The	jshell	error	message	says	to	see	the	output	of	the	/types,	/methods,	/vars,	or	/list
commands.	The	problem	with	this	is	that	/types,	/methods,	and	/vars	do	not	display	the
number	of	the	snippet.	This	is	most	probably	a	small	bug	in	the	jshell	prerelease	version
and	may	be	fixed	by	the	time	the	JDK	is	released.

When	we	were	editing	the	snippets,	jshell	opened	a	separate	graphical	editor.	It	may	happen	that	you	are
running	jshell	using	ssh	on	a	remote	server	and	where	it	is	not	possible	to	open	a	separate	window.	You
can	set	the	editor	using	the	/set	command.	This	command	can	set	quite	a	few	configuration	options	of	the
jshell.	To	set	the	editor	to	use	the	ubiquitous	vi,	issue	the	following	command:

jshell>	/set	editor	"vi"

|		Editor	set	to:	vi

After	this,	jshell	will	open	the	snipped-in	vi	in	the	same	Terminal	window	where	you	issue	the	/edit
command.

It	is	not	only	the	editor	that	you	can	set.	You	can	set	the	startup	file,	and	the	way	jshell	prints	the	feedback
to	the	console	after	a	command	was	executed.

If	you	set	the	startup	file,	then	the	commands	listed	in	the	startup	file	will	be	executed	instead	of	the	built-
in	commands	of	jshell	after	the	/reset	command.	This	also	means	that	you	will	not	be	able	to	use	the
classes	directly	that	are	imported	by	default	and	you	will	not	have	the	printf	method	snippet,	unless	your
own	startup	file	contains	the	imports	and	the	definition	of	the	snippet.

Create	the	sample.startup	file	with	the	following	content:

void	println(String	message)	{	System.out.println(message);	}

Starting	up	a	new	jshell	and	executing	it	is	done	as	follows:

jshell>	/set	start	sample.startup

jshell>	/reset

|		Resetting	state.

jshell>	println("wuff")

wuff

jshell>	printf("This	won't	work...")

|		Error:

|		cannot	find	symbol

|				symbol:			method	printf(java.lang.String)

|		printf("This	won't	work...")

|		^----^

The	println	method	is	defined	but	the	printf	method,	which	was	defined	in	the	default	startup,	is	not.

The	feedback	defines	the	prompt	jshell	prints	and	then	waits	for	the	input,	the	prompt	for	the	continuation
lines,	and	the	message	details	after	each	command.	There	are	predefined	modes,	which	are	as	follows:

Normal
Silent
Concise
Verbose

Normal	is	selected	by	default.	If	you	issue	/set	feedback	silent,	then	prompt	becomes	->	and	jshell	will	not
print	details	about	the	commands.	The	/set	feedback	concise	code	prints	a	bit	more	information	and	/set
feedback	verbose	prints	verbose	information	about	the	commands	executed:

jshell>	/set	feedback	verbose

|		Feedback	mode:	verbose

jshell>	int	z	=	13

z	==>	13

|		modified	variable	z	:	int

|				update	overwrote	variable	z	:	int

You	can	also	define	your	own	modes,	giving	a	name	to	the	new	mode	using	the	/set	mode	xyz	command
where	xyz	is	the	name	of	the	new	mode.	After	this,	you	can	set	prompt,	truncation,	and	format	for	the	mode.
When	the	format	is	defined,	you	can	use	it	the	same	way	as	the	built-in	modes.

Last,	but	not	least,	the	most	important	command	of	jshell	is	/exit.	This	will	just	terminate	the	program	and
you	will	return	to	the	operating	system	shell	prompt.

Now,	let's	edit	the	HelloWorld.java	file	to	create	our	first	Java	program.	To	do	so,	you	can	use	vi,	notepad,
Emacs,	or	whatever	is	available	on	your	machine	and	fits	you.	Later	on,	we	will	use	some	integrated
development	environment	(IDE),	NetBeans,	Eclipse,	or	IntelliJ;	however,	for	now,	a	simple	text	editor	is
enough.

Edit	the	file	so	that	the	content	will	be	as	follows:

public	class	HelloWorld	{	

		public	static	void	main(String[]	args){	

								System.out.println("Hello	World");	

							}	

		}

To	compile	the	source	code	to	byte	code,	which	is	executable	by	JVM,	we	have	to	use	the	Java	compiler
named	javac:

javac	HelloWorld.java

This	generates	the	java.class	file	in	the	current	directory.	This	is	a	compiled	code	that	can	be	executed	as
follows:

$	java	HelloWorld

Hello	World

With	this	one,	you	have	created	and	executed	your	first	full	Java	program.	You	may	still	wonder	what	we
were	doing.	How	and	why,	I	will	explain	it;	but	first,	I	wanted	you	to	have	a	feeling	that	it	works.

The	file	we	edited	contained	only	the	snippet	and	we	deleted	most	of	the	lines,	except	the	declaration	of
the	main	method	and	we	inserted	the	declaration	of	the	class	around	it.

In	Java,	you	cannot	have	standalone	methods	or	functions,	like	in	many	other	languages.	Every	method
belongs	to	some	class	and	every	class	should	be	declared	in	a	separate	file	(well,	almost,	but	for	now,
let's	skip	the	exceptions).	The	name	of	the	file	has	to	be	the	same	as	the	name	of	the	class.	The	compiler
requires	this	for	public	classes.	Even	for	non-public	classes	we	usually	follow	this	convention.	If	you
renamed	the	file	from	HelloWorld.java	to	Hello.java,	the	compiler	will	display	an	error	when	you	try	to
compile	the	file	with	the	new	name.

$	mv	HelloWorld.java	Hello.java

~/Dropbox/java_9-by_Example$	javac	Hello.java

Hello.java:2:	error:	class	HelloWorld	is	public,	should	be	declared	in	a	file	named	HelloWorld.java

public	class	HelloWorld	{

							^

1	error

So,	let's	move	it	back	to	the	original	name:	mv	Hello.java	HelloWorld.java.

The	declaration	of	the	class	starts	with	the	keyword	class,	then	the	name	of	the	class,	an	opening	curly
brace,	and	lasts	until	the	matching	closing	brace.	Everything	in	between	belongs	to	the	class.

For	now,	let's	skip	why	I	wrote	public	in	front	of	the	class	and	focus	on	the	main	method	in	it.	The	method
does	not	return	any	value,	therefore;	the	return	value	of	it	is	void.	The	argument,	named	args,	is	a	string
array.	When	JVM	starts	the	main	method,	it	passes	the	command-line	arguments	to	the	program	in	this
array.	However,	this	time	we	do	not	use	it.	The	main	method	contains	the	line	that	prints	out	Hello	World.
Now,	let's	examine	this	line	a	bit	more.

In	other	languages,	printing	something	to	the	console	requires	only	a	print	statement	or	a	very	similar
command.	I	remember	that	some	BASIC	interpreters	even	allowed	us	to	type	?	instead	of	print	because
printing	to	the	screen	was	so	common.	This	has	changed	a	lot	during	the	last	40	years.	We	use	graphical
screens,	Internet,	and	many	other	input	and	output	channels.	These	days,	it	is	not	very	common	to	write	to
the	console.

Usually,	in	professional	large-scale	enterprise	applications,	there	is	not	even	a	single	line	that	does	that.
Instead,	we	will	direct	the	text	to	log	files,	send	messages	to	message	queues,	and	send	requests	and	reply
with	responses	over	TCP/IP	protocol.	As	this	is	so	infrequently	used,	there	is	no	reason	to	create	a
shortcut	for	the	purpose	in	the	language.	After	the	first	few	programs,	when	you	get	acquainted	with	the
debugger	and	logging	possibilities,	you	will	not	print	anything	directly	to	the	console	yourself.

Still,	Java	has	features	that	let	you	send	text	directly	to	the	standard	output	of	a	process	the	good	old	way,

as	it	was	invented	originally	for	UNIX.	This	is	implemented	in	a	Java	way	where	everything	has	to	be	an
object	or	class.	To	get	access	to	the	system	output,	there	is	a	class	named	System	and	it,	among	other	things,
has	the	following	three	variables:

in:	This	is	the	standard	input	stream
out:	This	is	the	standard	output	stream
err:	This	is	the	standard	error	stream

To	refer	to	the	output	stream	variable,	because	it	is	not	in	our	class	but	in	System,	we	will	have	to	specify
the	class	name	so	we	will	refer	to	it	as	System.out	in	our	program.	The	type	of	this	variable	is	PrintStream,
which	is	also	a	class.	Class	and	type	are	synonyms	in	Java.	Every	object	that	is	of	type	PrintStream	has	a
method	named	println	that	accepts	a	String.	If	the	actual	print	stream	is	the	standard	output,	and	we	are
executing	our	Java	code	from	the	command	line,	then	the	string	is	sent	to	the	console.

The	method	is	named	main	and	this	is	a	special	name	in	Java	programs.	When	we	start	a	Java	program
from	the	command	line,	JVM	invokes	the	method	named	main	from	the	class	that	we	specify	on	the
command	line.	It	can	do	that	because	we	declared	this	method	public	so	that	anyone	can	see	and	invoke	it.
If	it	was	private,	it	would	be	seen	and	callable	only	from	within	the	same	class,	or	classes,	that	are	defined
in	the	same	source	file.

The	method	is	also	declared	as	static,	which	means	that	it	can	be	invoked	without	an	actual	instance	of	the
class	that	contains	the	methods.	Using	static	methods	is	usually	seen	as	not	a	good	practice	these	days,
unless	they	are	implementing	functions	that	cannot	really	ever	be	related	to	an	instance,	or	have	different
implementations	such	as	the	functions	in	the	java.lang.Math	class;	but,	somewhere,	the	code	execution	has	to
start	and	the	Java	runtime	will	not	usually	create	instances	of	classes	for	us	automatically.

To	start	the	code,	the	command	line	should	be	as	follows:

java	-cp	.	HelloWorld

The	-cp	option	stands	for	classpath.	The	classpath	is	a	fairly	complex	idea	for	java	but,	for	now,	let's	make
it	simple	and	say	that	it	is	a	list	of	directories	and	JAR	files	that	contain	our	classes.	The	list	separator	for
the	classpath	is	:	(colon)	on	UNIX-like	systems	and	;	(semicolon)	on	Windows.	In	our	case,	the	classpath
is	the	actual	directory,	as	that	is	the	place	where	the	Java	compiler	created	HelloWorld.class.	If	we	do	not
specify	classpath	on	the	command	line,	Java	will	use	the	current	directory	as	a	default.	That	is	the	reason
our	program	was	working	without	the	-cp	option	in	the	first	place.

Both	java	and	javac	handle	many	options.	To	get	a	list	of	the	options	type	javac	-help	or	java	-help.	We	use	the
IDE	to	edit	the	code	and,	many	times,	to	compile,	build,	and	run	it	during	development.	The	environment
in	this	case	sets	the	reasonable	parameters.	For	production	we	use	build	tools	that	also	support	the
configuration	of	the	environment.	Because	of	this,	we	rarely	meet	these	command	line	options.
Nevertheless,	professionals	have	to	understand	their	meanings	at	least	and	know	where	to	learn	their
actual	use	in	case	it	is	needed.

Looking	at	the	byte	code
The	class	file	is	a	binary	file.	The	main	role	of	this	format	is	to	be	executed	by	the	JVM	and	to	provide
symbolic	information	for	the	Java	compiler	when	a	code	uses	some	of	the	classes	from	a	library.	When
we	compile	our	program	that	contains	System.out.println,	the	compiler	looks	at	the	compiled	.class	files	and
not	at	the	source	code.	It	has	to	find	the	class	named	System,	the	field	named	out,	and	the	method	println.
When	we	debug	a	piece	of	code	or	try	to	find	out	why	a	program	does	not	find	a	class	or	method,	we	will
need	a	way	to	look	into	the	binary	of	the	.class	files.	This	is	not	an	everyday	task	and	it	takes	some
advanced	knowledge

To	do	so,	there	is	a	decompiler	that	can	display	the	content	of	a	.class	file	in	a	more	or	less	readable
format.	This	command	is	called	javap.	To	execute	it,	you	can	issue	the	following	command:

$	javap	HelloWorld.class

Compiled	from	"HelloWorld.java"

public	class	HelloWorld	{

		public	HelloWorld();

		public	static	void	main(java.lang.String[]);

}

The	output	of	the	program	shows	that	the	class	file	contains	Java	class	that	has	something	called
HelloWorld();	it	seems	to	be	a	method	having	the	same	name	as	the	class	and	it	also	contains	the	method	we
have	written.

The	method	that	has	the	same	name	as	the	class	is	the	constructor	of	the	class.	As	every	class	in	java	can
be	instantiated,	there	is	a	need	for	a	constructor.	If	we	do	not	give	one,	then	the	Java	compiler	will	create
one	for	us.	This	is	the	default	constructor.	The	default	constructor	does	nothing	special	but	returns	a	new
instance	of	the	class.	If	we	provide	a	constructor	on	our	own,	then	the	Java	compiler	will	not	have
bothered	creating	one.

The	javap	decompiler	does	not	show	what	is	inside	the	methods	or	what	Java	code	it	contains	unless	we
provide	the	-c	option:

$	javap	-c	HelloWorld.class

Compiled	from	"HelloWorld.java"

public	class	HelloWorld	{

		public	HelloWorld();

				Code:

							0:	aload_0

							1:	invokespecial	#1																		//	Method	java/lang/Object."<init>":()V

							4:	return

		public	static	void	main(java.lang.String[]);

				Code:

							0:	getstatic					#2																		//	Field	java/lang/System.out:Ljava/io/PrintStream;

							3:	ldc											#3																		//	String	hali

							5:	invokevirtual	#4																		//	Method	java/io/PrintStream.println:(Ljava/lang/String;)V

							8:	return

}

It	is	very	cryptic	and	is	not	for	ordinary	humans.	Only	a	few	experts,	who	deal	with	the	Java	code
generation,	can	fluently	read	that.	But,	to	have	a	look	at	it	helps	you	get	a	glimpse	of	what	byte	code
means.	It	is	something	like	a	good	old	assembly.	Although	this	is	binary	code,	there	is	nothing	secret	in	it:
Java	is	open	source,	the	class	file	format	is	well	documented	and	debuggable	for	the	experts.

Packaging	classes	into	a	JAR	file
When	you	deliver	a	Java	application,	usually	the	code	is	packaged	into	JAR,	WAR,	EAR,	or	some	other
packaged	format.	We	learn	something	again	that	seems	to	be	obscure	at	first	sight,	but	in	reality,	this	is	not
that	complex.	They	are	all	ZIP	files.	You	can	open	any	of	these	files	using	WinZip	or	some	other	zip
manager	that	you	have	a	license	for.	The	extra	requirement	is	that,	for	example,	in	the	case	of	a	JAR	file,
the	archive	should	contain	a	directory	named	META-INF	and	inside	it	a	file	named	MANIFEST.MF.	This	file	is	a
text	file	and	contains	meta	information	in	the	format,	which	is	as	follows:	Manifest-Version:	1.0	
Created-By:	9-ea	(Oracle	Corporation)

There	can	be	a	lot	of	other	information	in	the	file,	but	this	is	the	minimum	that	the	Java	provided	tool	jar
puts	there	if	we	package	our	class	file	into	a	jar	issuing	the	following	command:

jar	-cf	hello.jar	HelloWorld.class

The	-c	option	tells	the	JAR	archiver	to	create	a	new	JAR	file	and	the	option	f	is	used	to	specify	the	name
of	the	new	archive.	The	one	we	specified	here	is	hello.jar	and	the	file	added	to	it	is	the	class	file.

The	packaged	JAR	file	can	also	be	used	to	start	the	Java	application.	Java	can	read	directly	from	JAR
archives	and	load	classes	from	there.	The	only	requirement	is	that	they	are	on	the	classpath.

Note	that	you	cannot	put	individual	classes	on	the	classpath,	only	directories.	As	JAR
files	are	archives	with	an	internal	directory	structure	in	them,	they	behave	like	a
directory.

Check	that	the	JAR	file	was	created	using	ls	hello.jar	and	remove	the	rm	HelloWorld.class	class	file	just	to
ensure	that	when	we	issue	the	command	line,	the	code	is	executed	from	the	JAR	file	and	not	the	class.

$	java	-cp	hello.jar	HelloWorld

Hello	World

To	see	the	content	of	the	JAR	file,	however,	it	is	recommended	that	you	use	the	JAR	tool	and	not	WinZip
even	though	that	may	be	cozier.	Real	professionals	use	the	Java	tools	to	handle	Java	files.

$	jar	-tf	hello.jar	

META-INF/	

META-INF/MANIFEST.MF	

HelloWorld.class

Managing	the	running	Java	application
The	Java	toolset	that	comes	with	the	JDK	supports	the	execution	and	management	of	running	Java
applications	as	well.	To	have	some	program	that	we	can	manage	while	executing,	we	will	need	a	code
that	runs	not	only	for	a	few	milliseconds	but,	while	it	runs,	it	also	prints	something	to	the	console.	Let's
create	a	new	program	called	HelloWorldLoop.java	with	the	following	content:

public	class	HelloWorldLoop	{	

		public	static	void	main(String[]	args){	

							for(;;){	

									System.out.println("Hello	World");	

									}	

							}	

		}

The	program	contains	a	for	loop.	Loops	allow	repeated	execution	of	a	code	block,	and	we	will	discuss
them	in	Chapter	2,	The	First	Real	Java	Program	-	Sorting	Names.	The	loop	we	created	here	is	a	special
one	that	never	terminates	but	repeats	the	printing	method	call,	printing	Hello	World	until	we	kill	the	program
by	pressing	Ctrl	+	c	or	issuing	a	kill	command	on	Linux	or	on	OSX,	or	terminate	the	program	in	the	task
manager	under	Windows.

Compile	and	start	it	in	one	window	and	open	another	Terminal	window	to	manage	the	application.

The	first	command	that	we	should	get	familiar	with	is	jps.	http://docs.oracle.com/javase/7/docs/technotes/tools/share/jps.ht
ml	It	lists	the	Java	processes	that	run	on	the	machine,	which	are	as	follows:

$	jps	

21873	sun.tools.jps.Jps	

21871	HelloWorldLoop

You	can	see	that	there	are	two	processes—one	is	the	program	we	execute	and	the	other	is	the	jps	program
itself.	Not	surprisingly,	the	jps	tool	is	also	written	in	Java.	You	can	also	pass	options	to	jps,	which	are
documented	on	the	web.

There	are	many	other	tools	and	we	will	examine	one	of	them,	which	is	a	very	powerful	and	easy-to-use
tool—Java	VisualVM.

http://docs.oracle.com/javase/7/docs/technotes/tools/share/jps.html

VisualVM	is	a	command-line	graphical	tool	that	connects	to	the	running	Java	process	and	displays	the
different	performance	parameters.	To	start	the	VisualVM	tool,	you	will	issue	the	jvisualvm	command
without	any	parameters.	Soon,	a	window	will	appear	with	an	exploring	tree	on	the	left-hand	side	and	a
welcome	pane	on	the	right.	The	left	side	shows	all	the	running	Java	processes	under	the	branch	named
Local.	If	you	double	click	on	HelloWorldLoop,	it	will	open	the	details	of	the	process	on	the	right	pane.	On	the
header	tabs,	you	can	select	Overview,	Monitor,	Threads,	Sampler,	and	Profiler.	The	first	three	tabs	are
the	most	important	and	give	you	a	good	view	of	what	is	happening	in	JVM	regarding	the	number	of
threads,	CPU	usage,	memory	consumption,	and	so	on.

Using	an	IDE
Integrated	development	environments	are	outstanding	tools	that	help	the	development	by	offloading	the
mechanical	tasks	from	the	developer's	shoulders.	They	recognize	many	of	the	programming	errors	as	we
type	the	code,	help	us	find	the	needed	library	methods,	display	the	documentation	of	the	libraries,	and
provide	extra	tools	for	style	checking,	debugging,	and	so	on.

In	this	section,	we	will	look	at	some	IDEs	and	how	to	leverage	the	functions	they	provide.

To	get	an	IDE,	you	will	have	to	download	and	install	it.	It	does	not	come	with	the	Java	development	tools
because	they	are	not	part	of	the	language	environment.	But,	don't	worry.	They	can	be	downloaded	free	of
charge	and	are	easy	to	install.	They	may	be	more	complex	to	start	up	than	a	notepad	editor,	but	even	after
a	few	hours	of	work,	they	will	pay	back	the	time	you	devote	to	learning	them.	After	all,	it	is	not	without
reason	that	no	developer	is	coding	Java	in	notepad	or	vi.

The	three	topmost	IDEs	are	NetBeans,	Eclipse,	and	IntelliJ.	All	are	available	in	community	versions,
which	means	that	you	need	not	pay	for	them.	IntelliJ	has	a	full	version	that	you	can	also	buy.	The
community	edition	will	be	usable	for	learning	the	language.	In	case	you	do	not	like	IntelliJ,	you	can	use
Eclipse	or	NetBeans.	These	are	all	free	of	charge.	Personally,	I	use	the	IntelliJ	community	edition	for
most	of	my	projects	and	the	screen	samples	that	show	an	IDE	in	this	book	will	feature	this	IDE.	But,	it
does	not	necessarily	mean	that	you	have	to	stick	to	this	IDE.

In	the	developer	community,	there	are	topics	that	can	be	heavily	debated.	These	topics
are	about	opinions.	Were	they	about	facts	the	debate	would	easily	be	soon	over.	One	such
topic	is:	"Which	is	the	best	IDE?"	It	is	a	matter	of	taste.	There	is	no	definite	answer.	If
you	learn	how	to	use	one,	you	will	like	that	and	you	will	be	reluctant	to	learn	another
one,	unless	you	see	that	the	other	one	is	so	much	better.	That	is	the	reason	developers
love	the	IDE	they	use	(or	just	hate,	depending	on	their	personality),	but	they	keep	using
the	same	IDE	usually	for	a	long	time.	There	is	no	best	IDE.

To	download	the	IDE	of	your	choice,	you	can	visit	either	one	of	the	following	websites:

https://netbeans.org/	for	NetBeans
http://www.eclipse.org/	for	Eclipse
https://www.jetbrains.com/idea/	for	IntelliJ

https://netbeans.org/
http://www.eclipse.org/
https://www.jetbrains.com/idea/

	

NetBeans
	

NetBeans	is	supported	by	Oracle	and	is	continuously	developed.	It	contains	components,	such	as	the
NetBeans	profiler,	that	became	part	of	the	Oracle	Java	distribution.	You	may	notice	that	when	you	start
Visual	VM	and	start	the	profiling,	the	Java	process	started	has	netbeans	in	its	name.

Generally,	NetBeans	is	a	framework	to	develop	rich	client	applications	and	the	IDE	is	only	one
application	of	the	many	that	are	built	on	top	of	the	framework.	It	supports	many	languages,	not	only	Java.
You	can	develop	PHP,	C,	or	JavaScript	code	using	NetBeans	and	have	similar	services	for	Java.	For	the
support	of	different	languages,	you	can	download	plugins	or	a	special	version	of	NetBeans.	These	special
versions	are	available	from	the	download	page	of	the	IDE	and	they	are	nothing	more	than	the	basic	IDE
with	some	preconfigured	plugins.	In	the	C	package,	the	developers	configure	the	plugins	that	are	needed
when	you	want	to	develop	C;	in	the	PHP	version,	they	plugin	for	PHP.

	

	

	

Eclipse
	

Eclipse	is	supported	by	IBM.	Similar	to	NetBeans,	it	is	also	a	platform	for	rich	client	application	and	it	is
built	around	the	OSGi	container	architecture,	which	itself	is	a	topic	that	can	fill	a	book	like	this.	Most	of
the	developers	use	Eclipse	and,	almost	exclusively,	it	is	the	choice	when	developers	create	code	for	the
IBM	WebSphere	application	server.	The	Eclipse	special	version	contains	a	developer	version	of
WebSphere.

Eclipse	also	has	plugins	to	support	different	programming	languages	and	also	has	different	variations
similar	to	NetBeans.	The	variations	are	plugins	prepackaged	with	the	basic	IDE.

	

	

	

IntelliJ
	

The	last	one	in	the	preceding	enumeration	is	IntelliJ.	This	IDE	is	the	only	one	that	does	not	want	to	be	a
framework.	IntelliJ	is	an	IDE.	It	also	has	plugins,	but	most	of	the	plugins	that	you	will	need	to	download
to	use	in	NetBeans	or	Eclipse	are	preconfigured.	When	you	want	to	use	some	more	advanced	plugin,	it
may	however	be	something	you	have	to	pay	for,	which	should	not	be	a	problem	when	you	are	doing
professional,	paid	work,	should	it?	These	things	are	not	that	expensive.	For	learning	the	subjects	in	this
book,	you	will	not	need	any	plugin	that	is	not	in	the	community	edition.	As	in	this	book,	I	will	develop	the
samples	using	IntelliJ	and	I	recommend	that	you	follow	me	during	your	learning	experience.

I	want	to	emphasize	that	the	examples	in	this	book	are	independent	of	the	actual	IDE	to
be	used.	You	can	follow	the	book	using	NetBeans,	Eclipse,	or	even	Emacs,	notepad,	or	vi.

	

	

	

IDE	services
	

Integrated	development	environments	provide	us	with	services.	The	most	basic	service	is	that	you	can
edit	files	with	them,	but	they	also	help	build	the	code,	find	bugs,	run	the	code,	deploy	to	the	application
server	in	development	mode,	debug,	and	so	on.	In	the	following	sections,	we	will	look	at	these	features.	I
will	not	give	an	exact	and	precise	introduction	on	how	to	use	one	or	the	other	IDE.	A	book	like	this	is	not
a	good	medium	for	such	a	tutorial.

IDEs	differ	on	menu	placement,	keyboard	shortcuts,	and	they	may	even	change	as	newer	versions	are
released.	It	is	best	to	look	at	the	actual	IDE	tutorial	video	or	online	help.	Their	features,	on	the	other	hand,
are	very	similar.	IntelliJ	has	the	video	documentation	at	https://www.jetbrains.com/idea/documentation/.

	

	

https://www.jetbrains.com/idea/documentation/

IDE	screen	structure
The	different	IDEs	look	similar,	and	have	the	same	screen	structure	more	or	less.	In	the	following
screenshot,	you	can	see	an	IntelliJ	IDE:

On	the	left	side,	you	can	see	the	file	structure	of	a	Java	project.	A	Java	project	typically	contains	many
files	in	different	directories	which	we	will	discuss	in	the	next	chapter.	The	simple	HelloWorld
application	contains	a	pom.xml	project	description	file.	This	file	is	needed	for	the	Maven	build	tool,	which
is	also	a	topic	for	the	next	chapter.	For	now,	you	should	only	know	that	it	is	a	file	that	describes	the
project	structure	for	maven.	The	IDE	also	keeps	track	of	some	administrative	data	for	itself.	It	is	stored	in
HelloWorld.iml.	The	main	program	file	is	stored	in	the	src/main/java	directory	and	named	HelloWorld.java.

On	the	right	side,	you	can	see	the	files.	In	the	screenshot,	we	have	only	one	file	opened.	In	case	there	is
more	than	one	file	opened,	then	there	are	tabs-one	for	each	file.	Now,	the	active	file	is	HelloWorld.java	that
can	be	edited	in	the	source	code	editor.

Editing	files
When	editing,	you	can	type	in	characters	or	delete	characters,	words,	and	lines,	but	this	is	something	that
all	editors	can	do.	IDEs	offer	extra.	IDEs	analyze	the	source	code	and	format	it,	which,	in	turn,
automatically	indents	the	lines.	It	also	continuously	compiles	the	code	in	the	background	while	you	edit	it
and	if	there	is	some	syntax	error,	then	it	underlines	it	with	a	red	waiving	line.	When	you	fix	the	error,	the
red	underlining	disappears.

The	editor	also	automatically	gives	suggestions	for	further	characters	as	you	type.	You	can	ignore	the
window	that	pops	up	and	continue	typing.	However,	many	times,	it	is	easier	to	stop	after	a	character	and
use	the	up	and	down	arrows	to	select	the	word	that	needs	finishing	before	pressing	Enter:	the	word	will
be	inserted	into	the	source	code	automatically.

In	the	screenshot,	you	can	see	that	I	wrote	System.o	and	the	editor	immediately	suggested	that	I	wanted	to
write	out.	The	other	alternatives	are	the	other	static	fields	and	methods	that	are	in	the	class	System	and
which	contain	the	letter	o.

The	IDE	editor	gives	you	hints	not	only	when	it	can	type	for	you,	but	also	when	it	cannot	type	instead	of
you.	In	the	screenshot,	the	IDE	tells	you	to	type	some	expression	as	argument	to	the	println()method	that	is
boolean,	char,	int,	and	so	on.	The	IDE	has	absolutely	no	idea	what	to	type	there.	You	have	to	construct	the
expression.	Still,	it	can	tell	you	that	it	needs	to	be	of	a	certain	type.

It	is	not	only	the	built-in	types	that	the	editor	knows.	The	editor	integrated	with	the	JDK	continuously
scans	the	source	files	and	knows	what	classes,	methods,	and	fields	are	there	in	the	source	code	which	are

usable	at	the	place	of	editing.

This	knowledge	is	also	heavily	used	when	you	want	to	rename	a	method	or	variable.	The	old	method	was
to	rename	the	field	or	method	in	the	source	file	and	then	do	an	exhaustive	search	for	all	references	to	the
variable.	Using	the	IDE,	the	mechanical	work	is	done	by	it.	It	knows	all	the	uses	of	a	field	or	method	and
automatically	replaces	the	old	identifier	with	the	new	one.	It	also	recognizes	whether	a	local	variable
happens	to	have	the	same	name	as	the	one	that	we	rename,	and	the	IDE	only	renames	those	occurrences
that	are	really	referring	to	the	one	we	are	renaming.

You	can	usually	do	more	than	just	renaming.	There	are	more	or	less	mechanical	tasks	that	programmers
call	refactoring.	These	are	supported	by	the	IDEs	using	some	keyboard	shortcut	and	context	sensitive
menu	in	the	editor—right	click	on	the	mouse	and	click	Menu.

The	IDE	also	helps	you	to	read	the	documentation	of	the	libraries	and	source	code	as	shown	in	the
following	image:

Libraries	provide	Javadoc	documentation	for	the	public	methods	and	you	should	also	write	Javadoc	for
your	own	method.	Javadoc	documentation	is	extracted	from	special	comments	in	the	source	code	and	we
will	learn	how	to	create	those	in	Chapter	4,	Mastermind	-	Creating	a	Game.	These	are	located	in	comments
in	front	of	the	actual	method	head.	As	creating	compiled	documentation	is	part	of	the	compilation	flow,
the	IDE	also	knows	the	documentation	and	it	displays	as	a	hovering	box	over	the	method	names,	class
names,	or	whatever	element	you	want	to	use	in	the	source	file	when	you	position	the	cursor	on	the
element.

Managing	projects
On	the	left	side	of	the	IDE	window,	you	can	see	the	directory	structure	of	the	project.	The	IDE	knows	the
different	types	of	files	and	shows	them	in	a	way	that	is	meaningful	from	the	programming	point	of	view.
For	example,	it	does	not	display	Main.java	as	a	filename.	Instead,	it	displays	Main	and	an	icon	that	signals
that	Main	is	a	class.	It	can	also	be	an	interface	still	in	a	file	named	Main.java	but,	in	that	case,	the	icon	will
show	that	this	is	an	interface.	This	is	again	done	by	the	IDE	continuously	scanning	and	compiling	the
code.

The	files	are	structured	into	subdirectories	when	we	develop	a	Java	code.	These	subdirectories	follow
the	packaging	structure	of	the	code.	Many	times,	in	Java,	we	use	compound	and	long	package	names,	and
displaying	it	as	a	deep	and	nested	directory	structure	will	not	be	so	easy	to	handle.

Packages	are	used	to	group	the	source	files.	The	source	files	for	classes	that	are	related
in	some	way	should	go	into	one	package.	We	will	discuss	the	notion	of	packages	and	how
to	use	them	in	the	next	chapter

The	IDE	is	capable	of	showing	the	package	structure	instead	of	the	nested	directories	for	those	directories
of	the	project	that	contain	source	files.

When	you	move	a	class	or	an	interface	from	one	package	to	another,	it	happens	in	a	similar	way	as
renaming	or	other	refactoring.	All	references	to	the	class	or	interface	in	the	source	files	get	renamed	to	the
new	package.	If	a	file	contains	an	import	statement	referring	to	the	class,	the	name	of	the	class	in	the
statement	is	corrected.	To	move	a	class,	you	can	open	the	package	and	use	the	good	old	drag	and	drop.

Package	hierarchy	is	not	the	only	hierarchy	displayed	in	the	IDE.	The	classes	are	in	packages	but,	at	the
same	time,	there	is	an	inheritance	hierarchy.	Classes	may	implement	interfaces	and	can	extend	other
classes.	The	Java	IDEs	help	us	by	showing	type	hierarchies	where	you	can	navigate	across	a	graphical
interface	along	the	inheritance	relations.

There	is	another	hierarchy	that	IDEs	can	show	to	help	us	with	development:	method	call	hierarchy.	After
analyzing	the	code,	the	IDE	can	show	us	the	graph	displaying	the	relations	between	the	methods:	which
method	calls	which	other	methods.	Sometimes,	this	call	graph	is	also	important	in	showing	the

dependencies	of	methods	on	each	other.

Build	the	code	and	run	it
The	IDEs	usually	compile	the	code	for	analysis	to	help	us	spot	syntax	errors	or	undefined	classes	and
methods	on	the	fly.	This	compilation	is	usually	partial,	covering	a	part	of	the	code,	and	as	it	runs	all	the
time,	the	source	code	changes	and	is	never	actually	complete.	To	create	the	deployable	file,	that	is,	the
final	deliverable	code	of	the	project,	a	separate	build	process	has	to	be	started.	Most	of	the	IDEs	have
some	built-in	tool	for	that,	but	it's	not	recommended	to	use	these	except	for	the	smallest	projects.
Professional	development	projects	use	Ant,	Maven,	or	Gradle	instead.	Here	is	an	example	of	Maven.

The	IDEs	are	prepared	to	use	such	an	external	tool,	and	they	can	help	us	in	starting	them.	This	way,	the
build	process	can	run	on	the	developer	machine	without	starting	a	new	shell	window.	IDEs	can	also
import	the	settings	from	the	configuration	file	of	these	external	build	tools	to	recognize	the	project
structure,	where	source	files	are,	and	what	to	compile	to	support	the	error	checking	while	editing.

The	building	process	usually	contains	the	execution	of	certain	checks	on	the	code.	A	bunch	of	the	Java
source	file	may	compile	smoothly	and	the	code	may	still	contain	a	lot	of	bugs	and	may	be	written	in	bad
style,	which	will	make	the	project	becomes	unmaintainable	in	the	long	run.	To	avoid	such	problems,	we
will	use	unit	tests	and	static	code	analysis	tools.	These	do	not	guarantee	error	free	code	but	the	chances
are	much	better.

IDEs	have	plugins	to	run	the	static	code	analysis	tools	as	well	as	unit	tests.	Being	integrated	into	the	IDE
has	a	huge	advantage.	When	there	is	any	problem	identified	by	the	analysis	tool,	or	by	some	unit	tests,	the
IDE	provides	an	error	message	that	also	functions	like	a	link	on	a	web	page.	If	you	click	on	the	message,
usually	blue	and	underlined,	exactly	like	on	a	web	page,	the	editor	opens	the	problematic	file	and	places
the	cursor	where	the	issue	is.

Debugging	Java
Developing	code	needs	debugging.	Java	has	very	good	facilities	to	debug	code	during	development.	JVM
supports	debuggers	via	the	Java	Platform	Debugger	Architecture.	This	lets	you	execute	code	in	debug
mode	and	JVM	will	accept	external	debugger	tools	to	attach	to	it	via	a	network,	or	it	will	try	to	attach	to	a
debugger	depending	on	command-line	options.	JDK	contains	a	client,	the	jdb	tool,	which	contains	a
debugger;	however,	it	is	so	cumbersome	to	use	when	compared	to	the	graphical	client	built	into	the	IDEs
that	I	have	never	heard	of	anyone	using	it	for	real	work.

To	start	a	Java	program	in	debug	mode	so	that	JVM	will	accept	a	debugger	client	to	attach	the	options	to
it,	execute	the	following	command:	-
Xagentlib:jdwp=transport=dt_socket,server=y,suspend=y,address=7896

The	Xagentlib	option	instructs	the	Java	runtime	to	load	the	jdwp	agent.	The	part	of	the	option	that	follows	-
Xagentlib:jdwp=	is	interpreted	by	the	debugger	agent.	These	options	are	as	follows:

transport:	This	should	specify	which	transport	to	use.	It	can	be	a	shared	memory	(dt_shmem)	socket	or	a
TCP/IP	socket	transport	but,	in	practice,	you	will	always	use	the	latter.	This	is	specified	in	the
preceding	dt_socket	sample.
server:	This	specifies	if	the	debugged	JVM	starts	in	server	mode	or	client	mode.	When	you	start	the
JVM	in	server	mode,	it	starts	to	listen	on	a	socket	and	accepts	the	debugger	to	connect	to	it.	If	it	is
started	in	client	mode,	then	it	tries	to	connect	a	debugger	that	is	supposed	to	be	started	in	server
mode,	listening	on	a	port.	The	value	of	the	option	is	y	meaning	server	mode	or	n	meaning	nonserver,
a.k.a.	client	mode.
suspend:	This	can	also	be	y	or	n.	If	JVM	is	started	in	suspend	mode,	it	will	not	start	the	Java	code	until
a	debugger	is	attached	to	it.	If	it	is	started	with	suspend=n,	then	the	JVM	starts	and	when	a	debugger
attaches,	it	stops	as	soon	as	a	breakpoint	is	reached.	If	you	start	a	standalone	Java	application,	you
will	usually	start	the	debugging	with	suspend=y,	which	is	the	default.	If	you	want	to	debug	an
application	in	an	application	server	or	servlet-container	environment,	then	it	is	better	to	start	with
suspend=n;	otherwise,	the	server	does	not	start	until	the	debugger	attaches	to	it.	Starting	the	Java
process	in	suspend=y	mode	in	case	servlet	application	is	only	useful	when	you	want	to	debug	the
servlet	static	initializer	code,	which	is	executed	when	the	server	is	starting	up.	Without	suspend
mode,	you	will	be	required	to	attach	the	debugger	very	fast.	It	is	better	that	JVM	just	waits	for	you	in
that	situation.
address:	This	should	specify	the	address	that	JVM	communicates	with.	If	the	JVM	started	in	client
mode,	then	it	will	start	to	connect	to	this	address.	If	the	JVM	runs	in	server	mode,	then	it	will	accept
connections	from	the	debugger	on	that	address.	The	address	may	specify	only	the	port.	In	this	case,
the	IP	address	is	that	of	the	local	machine.

The	other	options	the	debugger	agent	may	handle	are	for	special	cases.	For	the	topics	covered	in	this
book,	the	preceding	options	are	enough.

The	following	screenshot	shows	a	typical	debugging	session	where	we	debug	the	simplest	program	in
IntelliJ	IDE:

When	you	start	a	program	from	the	IDE	in	debug	mode,	all	these	options	are	automatically	set	for	you.
You	can	set	breakpoint	just	by	clicking	on	the	source	code	in	the	editor.	You	can	have	a	separate	form	to
add,	remove,	and	edit	breakpoints.	Breakpoints	can	be	attached	to	specific	lines	or	specific	events,	like
when	an	exception	is	thrown.	Breakpoints	attached	to	a	specific	line	can	also	have	conditions	that	tell	the
debugger	to	stop	the	execution	of	the	code	only	when	the	condition	is	true;	for	example,	if	a	variable	has
some	predefined	value.

	

Summary
	

In	this	chapter	we	were	introduced	to	each	other	with	Java.	We	do	not	know	too	much	from	each	other	but
we	got	acquainted.	We	have	installed	the	Java	environment:	Java,	JDK	and	integrated	development
environment.	We	have	written	a	small	program	and	had	a	brief	look	at	what	can	be	done	using	the
development	tools.	This	is	far	from	mastery	but	even	the	longest	journey	starts	with	a	first	step,	which	is
sometimes	the	hardest	to	make.	We	have	done	it	in	our	Java	journey.	We	started	rolling	and	for	the
enthusiasts	that	we	are,	nothing	can	stop	us	walking	all	the	way	long.

	

	

	

The	First	Real	Java	Program	-	Sorting	Names
	

In	the	previous	chapter,	we	got	acquainted	with	Java,	and	especially	with	using	the	REPL	tool	and
interactively	executing	some	simple	code.	That	is	a	good	start,	but	we	need	more.	In	this	chapter,	we	will
develop	a	simple	sort	program.	Using	this	code	as	an	example,	we	will	look	at	different	build	tools,
which	are	frequently	used	for	Java	projects,	and	learn	the	basic	features	of	the	Java	language.	This
chapter	will	cover	the	following	topics:

The	sorting	problem
The	project	structure	and	build	tools
The	Make,	Ant,	Maven,	and	Gradle	build	tools
Java	language	features	related	to	the	code	example

	

Getting	started	with	sorting
The	sorting	problem	is	one	of	the	oldest	programming	tasks	that	an	engineer	deals	with.	We	have	a	set	of
records	and	we	know	that	we	want	to	find	a	specific	one	sometime	later,	and	we	want	to	find	that	one	fast.
To	find	it,	we	sort	the	records	in	a	specific	order	that	helps	us	find	the	record	we	want	quickly.

As	an	example,	we	have	the	names	of	students	with	their	marks	on	some	cards.	When	students	come	to	the
office	asking	for	their	results,	we	look	through	all	of	the	cards	one	after	the	other	to	find	the	name	of	the
enquiring	student.	However,	it	is	better	if	we	sort	the	cards	by	the	names	of	the	students	alphabetically.
When	a	student	makes	an	enquiry,	we	can	search	the	mark	attached	to	the	name	much	faster.

We	can	look	at	the	middle	card;	if	it	shows	the	name	of	the	student,	then	we	are	happy	to	have	found	the
name	and	the	mark.	If	the	card	precedes	the	name	of	the	student	alphabetically,	then	we	will	continue
searching	in	the	second	half;	otherwise,	we	will	check	the	first	half.

Following	that	approach,	we	can	find	the	name	of	the	student	in	a	few	steps.	The	number	of	steps	can	not
be	more	than	the	number	as	many	times	the	pack	of	cards	can	be	halved.	If	we	have	two	cards,	then	it	is
two	steps	at	most.	If	it	is	four,	then	we	will	need	three	steps	at	most.	If	there	are	eight	cards,	then	we	may
need	four	steps,	but	not	more.	If	there	are	1,000	cards,	then	we	may	need	at	most	11	steps,	while	the
original,	non-sorted	set	will	need	1,000	steps,	worst	case.	That	is,	approximately,	it	speeds	up	the	search
100	times,	so	this	is	worth	sorting	the	cards,	unless	the	sorting	itself	takes	too	much	time.	The	algorithm
finding	an	element	in	the	already	sorted	set	we	just	described	is	called	binary	search	(https://en.wikipedia.org/w
iki/Binary_search_algorithm).

In	many	cases,	it	is	worth	sorting	the	dataset,	and	there	are	many	sorting	algorithms	to	do	that.	There	are
simpler	and	more	complex	algorithms,	and,	as	in	many	cases,	more	complex	algorithms	are	the	ones	that
run	faster.

As	we	are	focusing	on	the	Java	programming	part	and	not	the	algorithm	forging,	in	this	chapter,	we	will
develop	a	Java	code	that	implements	a	simple	and	not-that-fast	algorithm.

https://en.wikipedia.org/wiki/Binary_search_algorithm

	

Bubble	sort
	

The	algorithm	that	we	will	implement	in	this	chapter	is	well-known	as	bubble	sort.	The	approach	is	very
simple.	Begin	at	the	start	of	the	cards	and	compare	the	first	and	the	second	card.	If	the	first	card	is	later	in
lexicographic	order	than	the	second	one,	then	swap	the	two	cards.	Then	repeat	this	for	the	card	that	is	at
the	second	place	now,	then	the	third,	and	so	on.	There	is	a	card	that	is	lexicographically	the	latest,	say
Wilson.	When	we	get	this	card	and	start	to	compare	it	with	the	next	one,	we	will	always	swap	them;	this
way,	Wilson's	card	will	travel	to	the	last	place	where	it	has	to	be	after	the	sort.	All	we	have	to	do	is
repeat	this	travelling	from	the	start	and	do	the	occasional	swapping	of	cards	again,	but	this	time	only	to
the	last	but	one	element.	This	time,	the	second	latest	element	will	get	to	its	place—say,	Wilkinson	will	be
right	before	Wilson.	If	we	have	n	cards,	and	we	repeat	this	n-1	times,	all	cards	will	get	to	their	place.

In	the	following	sections,	we	will	create	a	Java	project	that	implements	this	algorithm.

	

	

Getting	started	with	project	structure	and	build
tools
When	a	project	is	more	complex	than	a	single	class,	and	it	usually	is,	then	it	is	wise	to	define	a	project
structure.	We	will	have	to	decide	where	we	store	the	source	files,	where	the	resource	files	(those	that
contain	some	resource	for	the	program,	but	are	not	Java	source)	are,	where	the	.class	files	should	be
written	by	the	compiler,	and	so	on.	Generally,	the	structure	is	mainly	the	directory	setup	and	the
configuration	of	the	tools	that	perform	the	build.

The	compilation	of	complex	programs	cannot	be	feasibly	done	using	the	command	line	issuing	javac
commands.	If	we	have	100	Java	source	files,	the	compilation	will	require	that	many	javac	commands	to	be
issued.	It	can	be	shortened	using	wild	cards,	such	as	javac	*.java	,or	we	can	write	a	simple	bash	script	or	a
BAT	command	file	that	does	that.	First,	it	will	be	just	100	lines,	each	compiling	one	source	Java	file	to
class	file.	Then,	we	will	realize	that	it	is	only	time,	CPU,	and	power	consuming	to	compile	the	files	that
are	not	changed	since	the	last	compilations	so	we	can	add	some	bash	programming	that	checks	the	time
stamp	on	the	source	and	generated	files.	Then,	we	will	probably	realize	that...	whatever.	At	the	end,	we
will	end	up	with	a	tool	that	is	essentially	a	build	tool.	Build	tools	are	available	ready	made;	it	is	not
worth	reinventing	the	wheel.

Instead	of	creating	one,	we	will	use	a	build	tool	that	is	ready.	There	are	a	few	of	them	that	can	be	found	at
https://en.wikipedia.org/wiki/List_of_build_automation_software.	In	this	chapter,	we	will	use	one	called	Maven;	however,
before	jumping	into	the	details	of	this	tool,	we	will	look	at	some	other	tools	that	you	are	likely	to	meet	as
a	Java	professional	in	enterprise	projects.

In	the	following	sections,	we	will	discuss	a	bit	of	the	four	build	tools:

Make
Ant
Maven
Gradle

We	will	mention	Make	only	briefly	because	it	is	not	used	in	Java	environments	these	days.	However,
Make	was	the	first	build	tool,	and	many	ideas	that	modern	Java	build	tools	are	based	on	come	from	the
good	old	make.	You,	as	a	professional	Java	developer,	should	also	be	familiar	with	Make	so	that	you	will
not	freak	out	if	you	happen	to	see	the	use	of	it	in	a	project	for	some	purpose,	and	can	know	what	it	is	and
where	its	detailed	documentation	can	be	found.

Ant	was	the	first	build	tool	widely	used	for	Java	many	years	ago,	and	it	is	still	used	in	many	projects.

Maven	is	newer	than	Ant,	and	it	uses	a	different	approach.	We	will	look	at	it	in	detail.	Maven	is	also	the
official	build	tool	of	the	Apache	software	foundation	for	the	Java	project.	We	will	also	use	Maven	as	a
build	tool	in	this	chapter.

Gradle	is	even	newer,	and	it	has	started	to	catch	up	to	Maven	these	days.	We	will	use	this	tool	in	later

https://en.wikipedia.org/wiki/List_of_build_automation_software

chapters	in	more	detail.

Make
The	make	program	was	originally	created	in	April	1976,	so	this	is	not	a	new	tool.	It	is	included	in	the	Unix
system,	so	this	tool	is	available	without	any	extra	installation	on	Linux,	Mac	OS	X,	or	any	other	Unix-
based	system.	Additionally,	there	are	numerous	ports	of	the	tool	on	Windows,	and	some	version	is/was
included	in	the	Visual	Studio	compiler	toolset.

The	Make	is	not	tied	to	Java.	It	was	created	when	the	major	programming	language	was	C,	but	it	is	not
tied	to	C	or	any	other	language.	The	make	is	a	dependency	description	language	that	has	a	very	simple
syntax.
The	make,	just	like	any	other	build	tool,	is	controlled	by	a	project	description	file.	In	the	case	of	make,	this
file	contains	a	rule	set.	The	description	file	is	usually	named	Makefile,	but	in	case	the	name	of	the
description	file	is	different,	it	can	be	specified	as	a	command-line	option	to	the	make	command.

Rules	in	Makefile	follow	each	other	and	consist	of	one	or	more	lines.	The	first	line	starts	at	the	first
position	(there	is	no	tab	or	space	at	the	start	of	the	line)	and	the	following	lines	start	with	a	tab	character.
Thus,	Makefile	may	look	something	like	the	following	code:

run	:	hello.jar	

				java	-cp	hello.jar	HelloWorld	

hello.jar	:	HelloWorld.class	

				jar	-cf	hello.jar	HelloWorld.class	

HelloWorld.class	:	HelloWorld.java	

				javac	HelloWorld.java

This	file	defines	three	so-called	targets:	run,	hello.jar,	and	HelloWorld.class.	To	create	HelloWorld.class,	type
the	following	line	at	the	command	prompt:

make	HelloWorld.class

Make	will	look	at	the	rule	and	see	that	it	depends	on	HelloWorld.java.	If	the	HelloWorld.class	file	does	not
exist,	or	HelloWorld.java	is	newer	than	the	Java	class	file,	make	will	execute	the	command	that	is	written	on
the	next	line	and	it	will	compile	the	Java	source	file.	If	the	class	file	was	created	following	the	last
modification	of	HelloWorld.java,	then	make	knows	that	there	is	no	need	to	run	the	command.

In	the	case	of	creating	HelloWorld.class,	the	make	program	has	an	easy	task.	The	source	file	was	already	there.
If	you	issue	the	make	hello.jar	command,	the	procedure	is	more	complex.	The	make	command	sees	that	in
order	to	create	hello.jar,	it	needs	HelloWorld.class,	which	itself	is	also	a	target	on	another	rule.	Thus,	it	may
need	to	be	created.

First,	it	starts	the	problem	the	same	way	as	before.	If	HelloWorld.class	is	there,	and	is	older	than	hello.jar,
there	is	nothing	to	do.	If	it	is	not	there,	or	is	newer	than	hello.jar,	then	the	jar	-cf	hello.jar	HelloWorld.class
command	needs	to	be	executed,	although	not	necessarily	at	the	moment	when	it	realizes	that	it	has	to	be
performed.	The	make	program	remembers	that	this	command	has	to	be	executed	sometime	in	the	future
when	all	the	commands	that	are	needed	to	create	HelloWorld.class	are	already	executed	successfully.	Thus,	it
continues	to	create	the	class	file	exactly	the	same	way	as	I	described	earlier.

In	general,	a	rule	can	have	the	following	format:

target	:	dependencies	

				command

The	make	command	can	create	any	target	using	the	make	target	command	by	first	calculating	which
commands	to	execute	and	then	executing	them	one	by	one.	The	commands	are	shell	commands	executing	in
a	different	process	and	may	pose	problems	under	Windows,	which	may	render	the	Makefile	files'	operating
system	dependent.

Note	that	the	run	target	is	not	an	actual	file	that	make	creates.	A	target	can	be	a	file	name	or	just	a	name	for
the	target.	In	the	latter	case,	make	will	never	consider	the	target	to	be	readily	available.

As	we	do	not	use	make	for	a	Java	project,	there	is	no	reason	to	get	into	more	details.	Additionally,	I
cheated	a	bit	by	making	the	description	of	a	rule	simpler	than	it	should	be.	The	make	tool	has	many
powerful	features	out	of	the	scope	of	this	book.	There	are	also	several	implementations	that	differ	a	little
from	each	other.	You	will	most	probably	meet	the	one	made	by	the	Free	Software	Foundation—the	GNU
make.	And,	of	course,	just	in	case	of	any	Unix	command-line	tool,	man	is	your	friend.	The	man	make	command
will	display	the	documentation	of	the	tool	on	the	screen.

The	main	points	that	you	should	remember	about	make	are	as	follows:

It	defines	the	dependencies	of	the	individual	artifacts	(targets)	in	a	declarative	way
It	defines	the	actions	to	create	the	missing	artifacts	in	an	imperative	way

This	structure	was	invented	decades	ago	and	has	survived	up	until	now	for	most	of	the	build	tools,	as	you
will	see	in	the	next	few	chapters.

Ant
The	ant	build	tool	was	built	especially	for	Java	projects	around	the	year	2000.	The	aim	of	Java	to	be	a
write-once-run-anywhere	language	needed	a	tool	that	can	also	be	used	in	different	environments.
Although	make	is	available	on	Unix	machines,	and	Windows	as	well,	Makefiles	were	not	always	compatible.
There	was	a	small	problem	with	the	use	of	the	tab	character	that	some	editors	replaced	with	space,
rendering	Makefile	unusable,	but	this	was	not	the	major	reason.	The	main	problem	with	make	that	ignited	the
development	of	Ant	is	that	the	commands	are	shell	commands.	Even	if	the	implementation	of	the	make
program	was	made	to	be	compatible	on	different	operating	systems,	the	used	commands	were	many	times
incompatible,	and	that	was	something	make	itself	could	not	change.	Because	make	issues	external
commands	to	build	the	targets,	developers	are	free	to	use	any	external	tool	that	is	available	for	them	on
the	development	machine.	Another	machine	using	the	same	operating	system	just	may	not	have	the	same
set	of	tools	invoked	by	make.	This	undermines	the	portability	of	the	make	built	projects.

At	the	same	time,	Ant	is	following	the	major	principles	of	make.	There	are	targets	that	may	depend	on	each
other	and	there	are	commands	that	need	to	be	executed	in	an	appropriate	sequence	to	create	the	targets	one
after	the	other,	following	the	dependency	order.	The	description	of	the	dependencies	and	the	commands	is
XML	(tab	issue	solved)	and	the	commands	are	implemented	in	Java	(system	dependency	is	solved,	well...
more	or	less).

As	Ant	is	neither	part	of	the	operating	system	nor	the	JDK,	you	will	have	to	download	and	install	it
separately	if	you	want	to	use	it.

Installing	Ant
Ant	can	be	downloaded	from	its	official	website	(http://ant.apache.org).	You	can	download	the	source	or	the
precompiled	version.	The	easiest	way	is	to	download	the	binary	in	a	tar.gz	format.

Whenever	you	download	software	from	the	Internet,	it	is	highly	recommended	that	you	check	the	integrity
of	the	downloaded	file.	The	HTTP	protocol	does	not	contain	error	checking,	and	it	may	happen	that	a
network	error	remains	hidden	or	a	malevolent	internal	proxy	modifies	the	downloaded	file.	Download
sites	usually	provide	checksums	for	the	downloadable	files.	These	are	usually	MD5,	SHA1,	SHA512,	or
some	other	checksums.

When	I	downloaded	the	Apache	Ant	1.9.7	version	in	tar.gz	format,	I	also	opened	the	page	that	led	to	the
MD5	checksum.	The	checksum	value	is	bc1d9e5fe73eee5c50b26ed411fb0119.

The	downloaded	file	can	be	checked	using	the	following	command	line:
$	md5	apache-ant-1.9.7-bin.tar.gz

MD5	(apache-ant-1.9.7-bin.tar.gz)	=	bc1d9e5fe73eee5c50b26ed411fb0119

The	calculated	MD5	checksum	is	the	same	as	the	one	on	the	website,	which	says	that	the
file	integrity	is	not	harmed.
On	the	Windows	operating	system,	no	tool	to	calculate	MD5	digest	is	included.	There	is	a
tool	that	Microsoft	provides,	called	File	Integrity	Checksum	Verifier	Utility,	which	is
available	via	the	page	https://support.microsoft.com/en-us/help/841290/availability-and-description-of-the-fil
e-checksum-integrity-verifier-utility.	If	you	use	Linux,	it	may	happen	that	the	md5	or	md5sum	utility	is
not	installed.	In	that	case,	you	can	install	it	using	the	command	apt-get	or	whatever
installation	tool	your	Linux	distribution	supports.

After	the	file	is	downloaded,	you	can	explode	it	to	a	subdirectory	using	the	following	command:

tar	xfz	apache-ant-1.9.7-bin.tar.gz

The	created	subdirectory	is	the	usable	binary	distribution	of	Ant.	Usually,	I	move	it	under	~/bin,	making	it
available	only	for	my	user	on	OS	X.	After	that,	you	should	set	the	environment	variable	as	ANT_HOME	to	point
to	this	directory	and	also	add	the	bin	directory	of	the	installation	to	the	PATH.	To	do	that,	you	should	edit	the
~/.bashrc	file	and	add	the	following	lines	to	it:

export	ANT_HOME=~/bin/apache-ant-1.9.7/	

export	PATH=${ANT_HOME}bin:$PATH

Then,	restart	the	terminal	application,	or	just	type	.	~/.bashrc	and	test	the	installation	of	Ant	by	typing	the
following	command:

$	ant

Buildfile:	build.xml	does	not	exist!

Build	failed

If	the	installation	was	correct,	you	should	see	the	preceding	error	message.

http://ant.apache.org
https://support.microsoft.com/en-us/help/841290/availability-and-description-of-the-file-checksum-integrity-verifier-utility

Using	Ant
When	you	see	a	project	to	be	built	by	Ant,	you	will	see	a	build.xml	file.	This	is	the	project	build	file,	the
one	that	Ant	was	missing	when	you	checked	that	the	installation	was	correct.	It	can	have	any	other	name,
and	you	can	specify	the	name	of	the	file	as	a	command-line	option	for	Ant,	but	this	is	the	default	file	name,
as	Makefile	was	for	make.	A	build.xml	sample	looks	like	the	following:

<project	name="HelloWorld"	default="jar"	basedir=".">	

<description>	

				This	is	a	sample	HelloWorld	project	build	file.	

</description>	

				<property	name="buildDir"	value="build"/>	

				<property	name="srcDir"	value="src"/>	

				<property	name="classesDir"	value="${buildDir}/classes"/>	

				<property	name="jarDir"	value="${buildDir}/jar"/>	

				<target	name="dirs">	

								<mkdir	dir="${classesDir}"/>	

								<mkdir	dir="${jarDir}"/>	

				</target>	

				<target	name="compile"	depends="dirs">	

								<javac	srcdir="${srcDir}"	destdir="${classesDir}"/>	

				</target>	

				<target	name="jar"	depends="dirs,compile">	

								<jar	destfile="${jarDir}/HelloWorld.jar"	basedir="${classesDir}"/>	

				</target>	

</project>

The	top-level	XML	tag	is	project.	Each	build	file	describes	one	project,	hence	the	name.	There	are	three
possible	attributes	to	the	tag,	which	are	as	follows:

name:	This	defines	the	name	of	the	project	and	is	used	by	some	IDEs	to	display	it	in	the	left	panel
identifying	the	project
default:	This	names	the	target	to	use	when	no	target	is	defined	on	the	command	line	starting	Ant
basedir:	This	defines	the	initial	directory	used	for	any	other	directory	name	calculation	in	the	build
file

The	build	file	can	contain	a	description	for	the	project,	as	well	as	properties	in	property	tags.	These
properties	can	be	used	as	variables	in	the	attributes	of	the	tasks	between	the	${	and	}	characters,	and	play
an	important	role	in	the	build	process.

The	targets	are	defined	in	target	XML	tags.	Each	tag	should	have	a	name	that	uniquely	identifies	the	target
in	the	build	file	and	may	have	a	depends	tag	that	specifies	one	or	more	other	targets	that	this	target	depends
on.	In	case	there	is	more	than	one	target,	the	targets	are	comma	separated	in	the	attribute.	The	tasks
belonging	to	the	targets	are	executed	in	the	same	order	as	the	targets	dependency	chain	requires,	in	a	very
similar	way	as	we	saw	in	the	case	of	make.

You	can	also	add	a	description	attribute	to	a	target	that	is	printed	by	Ant	when	the	command-line	option,	-
projecthelp,	is	used.	This	helps	the	users	of	the	build	file	to	know	what	targets	are	there	and	which	does
what.	Build	files	tend	to	grow	large	with	many	targets,	and	when	you	have	ten	or	more	targets,	it	is	hard	to
remember	each	and	every	target.

The	sample	project	with	HelloWorld.java	is	now	arranged	in	the	following	directories:

build.xml	in	the	root	folder	of	the	project
HelloWorld.java	in	the	src	folder	of	the	project
The	build/	folder	does	not	exist;	it	will	be	created	during	the	build	process
The	build/classes	and	build/jar	also	do	not	exist	yet,	and	will	be	created	during	the	build	process

When	you	start	the	build	for	the	HelloWorld	project	the	first	time,	you	will	see	the	following	output:

$	ant		

Buildfile:	/Users/verhasp/Dropbox/java_9-by_Example/sources/ch02/build.xml	

dirs:	

				[mkdir]	Created	dir:	/Users/verhasp/Dropbox/java_9-by_Example/sources/ch02/build/classes	

				[mkdir]	Created	dir:	/Users/verhasp/Dropbox/java_9-by_Example/sources/ch02/build/jar	

compile:	

...	

				[javac]	Compiling	1	source	file	to	/Users/verhasp/Dropbox/java_9-by_Example/sources/ch02/build/classes	

jar:	

						[jar]	Building	jar:	/Users/verhasp/Dropbox/java_9-by_Example/sources/ch02/build/jar/HelloWorld.jar	

BUILD	SUCCESSFUL	

Total	time:	0	seconds

Some	unimportant	lines	are	deleted	from	the	actual	output.

Ant	realizes	that	first	it	has	to	create	the	directories,	then	it	has	to	compile	the	source	code,	and	finally	it
can	pack	the	.class	files	into	a	.jar	file.	Now	it	is	up	to	you	to	remember	the	command	to	execute	the
HelloWorld	application.	It	was	listed	already	in	the	first	chapter.	Note	that	this	time,	the	JAR	file	is	named
HelloWorld.jar,	and	it	is	not	in	the	current	directory.	You	can	also	try	to	read	the	online	documentation	of	Ant
and	create	a	target	run	that	executes	the	compiled	and	packed	program.

Ant	has	a	built-in	task	named	java	that	executes	a	Java	class	in	almost	the	same	way	as
you	typed	the	java	command	in	the	terminal.

Maven
As	Ant	was	created	to	overcome	the	shortages	of	make,	Maven	was	created	with	a	similar	intention—to
overcome	the	shortages	of	Ant.	You	may	recall	that	make	could	not	guarantee	build	portability	because	the
commands	make	executes	are	arbitrary	shell	commands	that	may	be	system	specific.	An	Ant	build,	if	all	the
tasks	are	available	on	the	classpath,	is	portable	as	long	as	Java	runs	the	same	way	on	the	different
platforms.

The	problem	with	Ant	is	a	bit	different.	When	you	download	the	source	code	of	a	project	and	you	want	to
build,	what	will	the	command	be?	You	should	ask	Ant	to	list	all	the	targets	and	select	the	one	that	seems
to	be	the	most	suitable.	The	name	of	the	task	depends	on	the	engineer	who	crafted	the	build.xml	file.	There
are	some	conventions,	but	they	are	not	strict	rules.

Where	will	you	find	the	Java	source	files?	Are	they	in	the	src	directory	or	not?	Will	there	also	be	some
Groovy	or	other	programming	language	files	in	case	the	project	is	polyglot?	That	depends.	Again,	there
may	be	some	conventions	that	some	groups	or	company	cultures	suggest,	but	there	is	no	general	best
industry	practice.

When	you	start	a	new	project	with	Ant,	you	will	have	to	create	the	targets	for	compilation,	test	execution,
and	packaging.	It	is	something	that	you	will	have	already	done	for	other	projects.	After	the	second	or	third
project,	you	will	just	copy	and	paste	your	previous	build.xml	to	your	new	project.	Is	that	a	problem?	Yes,	it
is.	It	is	copy/paste	programming,	even	if	it	is	only	some	build	files.

Developers	realized	that	a	significant	effort	of	the	projects	utilizing	Ant	is	devoted	to	project	build	tool
configuration,	including	repetitive	tasks.	When	a	new	joiner	comes	to	the	team,	they	will	first	have	to
learn	how	the	build	is	configured.	If	a	new	project	is	started,	the	build	configuration	has	to	be	created.	If
it	is	a	repetitive	task,	then	better	let	the	computers	do	it.	That	is	generally	what	programming	is	all	about,
isn't	it?

Maven	approaches	the	build	issue	a	bit	differently.	We	want	to	build	Java	projects.	Sometimes,	some
Groovy	or	Jython	things,	but	they	are	also	JVM	languages;	thus,	saying	that	we	want	to	build	Java
projects	is	not	really	a	huge	restriction.	Java	projects	contain	Java	files,	sometimes	some	other
programming	language's	source	files,	resource	files,	and	generally,	that	is	it.	Ant	can	do	anything,	but	we
do	not	want	to	do	just	anything	with	a	build	tool.	We	want	to	build	projects.

Okay,	after	we	restricted	ourselves	and	accepted	that	we	do	not	need	a	build	tool	that	can	be	used	for
anything,	we	can	go	on.	We	can	require	that	the	source	files	be	under	the	src	directory.	There	are	files	that
are	needed	for	the	operational	code	and	there	are	files	that	contain	some	test	code	and	data.	Therefore,	we
will	have	two	directories,	src/test	and	src/main.	Java	files	are	in	src/main/java	as	well	as	src/test/java.
Resource	files	are	under	src/main/resources	and	src/test/resources.

If	you	want	to	put	your	source	files	somewhere	else,	then	don't.	I	mean	it.	It	is	possible,	but	I	will	not	even
tell	you	how.	Nobody	does	it.	I	do	not	even	have	any	idea	why	Maven	makes	it	possible.	Whenever	you
see	a	project	that	is	using	Maven	as	a	build	tool,	the	sources	are	organized	like	that.	There	is	no	need	to
understand	the	directory	structure	envisioned	by	the	project's	build	engineer.	It	is	always	the	same.

How	about	the	targets	and	the	tasks?	They	are	also	the	same	for	all	Maven-based	projects.	What	else
would	you	like	to	do	with	a	Java	project	other	than	compile,	test,	package,	or	deploy	it?	Maven	defines
these	project	life	cycles	for	us.	When	you	want	to	compile	a	project	using	Maven	as	a	build	tool,	you	will
have	to	type	$	mvn	compile	to	compile	the	project.	You	can	do	that	even	before	understanding	what	the
project	actually	is.

As	we	have	the	same	directory	structure	and	the	same	goals,	the	actual	tasks	leading	to	the	goals	are	also
all	the	same.	When	we	create	a	Maven	project,	we	do	not	have	to	describe	what	the	build	process	has	to
do	and	how	it	has	to	do	it.	We	will	have	to	describe	the	project,	and	only	the	parts	that	are	project
specific.

The	build	configuration	of	a	Maven	project	is	given	in	an	XML	file.	The	name	of	this	file	is	usually
pom.xml,	and	it	should	be	in	the	root	directory	of	the	project,	which	should	be	the	current	working	directory
when	firing	up	Maven.	The	word	POM	stands	for	Project	Object	Model,	and	it	describes	the	projects	in
a	hierarchical	way.	The	source	directories,	the	packaging,	and	other	things	are	defined	in	a	so-called
super	POM.	This	POM	is	part	of	the	Maven	program.	Anything	that	the	POM	defines,	overrides	the
defaults	defined	in	the	super	POM.	When	there	is	a	project	with	multiple	modules,	the	POMs	are	arranged
into	a	hierarchy,	and	they	inherit	the	configuration	values	from	the	parent	down	to	the	modules.	As	we
will	use	Maven	to	develop	our	sorting	code,	we	will	see	some	more	details	later.

Installing	Maven
Maven	is	neither	a	part	of	the	operating	system	nor	the	JDK.	It	has	to	be	downloaded	and	installed	in	a
very	similar	way	to	Ant.	You	can	download	Maven	from	its	official	website	(https://maven.apache.org/)	under
the	download	section.	Currently,	the	latest	stable	version	is	3.3.9.	When	you	download	it,	the	actual
release	may	be	different;	instead,	use	the	latest	stable	version.	You	can	download	the	source	or	the
precompiled	version.	The	easiest	way	is	to	download	the	binary	in	tar.gz	format.

I	cannot	skip	drawing	your	attention	to	the	importance	of	checking	the	download
integrity	using	checksums.	I	have	detailed	the	way	to	do	it	in	the	section	about	Ant
installation.

After	the	file	is	downloaded,	you	can	explode	it	to	a	subdirectory	using	the	following	command:

tar	xfz	apache-maven-3.3.9-bin.tar.gz

The	created	subdirectory	is	the	usable	binary	distribution	of	Maven.	Usually,	I	move	it	under	~/bin,	making
it	available	only	for	my	user	on	OS	X.	After	that,	you	should	add	the	bin	directory	of	the	installation	to	the
PATH.	To	do	that,	you	should	edit	the	~/.bashrc	file	and	add	the	following	lines	to	it:

export	M2_HOME=~/bin/apache-maven-3.3.9/	

export	PATH=${M2_HOME}bin:$PATH

Then,	restart	the	terminal	application,	or	just	type	.	~/.bashrc	and	test	the	installation	of	Maven	typing,	as
follows:

$	mvn	-v

Apache	Maven	3.3.9	(bb52d8502b132ec0a5a3f4c09453c07478323dc5;	2015-11-10T17:41:47+01:00)

Maven	home:	/Users/verhasp/bin/apache-maven-3.3.9

Java	version:	9-ea,	vendor:	Oracle	Corporation

Java	home:	/Library/Java/JavaVirtualMachines/jdk-9.jdk/Contents/Home

Default	locale:	en_US,	platform	encoding:	UTF-8

OS	name:	"mac	os	x",	version:	"10.11.6",	arch:	"x86_64",	family:	"mac"

You	should	see	a	similar	message	on	the	screen	that	displays	the	installed	Maven	version	and	other
information.

https://maven.apache.org/

Using	Maven
Unlike	Ant,	Maven	helps	you	create	the	skeleton	of	a	new	project.	To	do	that,	you	will	have	to	type	the
following	command:

$	mvn	archetype:generate

Maven	will	first	download	the	actually	available	project	types	from	the	network	and	prompt	you	to	select
the	one	you	want	to	use.	This	approach	seemed	to	be	a	good	idea	while	Maven	was	new.	When	I	first
started	Maven,	the	number	of	listed	projects	was	somewhere	between	10	and	20.	Today,	as	I	write	this
book,	it	lists	1,635	different	archetypes.	This	number	seems	more	like	a	historical	date	(the	constitution	of
the	French	Academy	of	Science)	than	a	usable	size	list	of	different	archetypes.	However,	do	not	freak	out.
Maven	offers	a	default	value	when	it	asks	for	your	choice,	and	it	is	good	for	the	HelloWorld	we	go	for.

Choose	a	number:	817:	

The	actual	number	may	be	different	on	your	installation.	Whatever	it	is,	accept	the	suggestion	and	press
Enter.	After	that,	Maven	will	ask	you	for	the	version	of	the	project:

Choose	version:	

1:	1.0-alpha-1

2:	1.0-alpha-2

3:	1.0-alpha-3

4:	1.0-alpha-4

5:	1.0

6:	1.1

Choose	a	number:	6:	5

Select	the	1.0	version	that	is	listed	as	number	5.	The	next	thing	Maven	asks	for	is	the	group	ID	and	the
artifact	ID	of	the	project.	The	dependency	management	that	we	will	discuss	later	uses	these.	I	selected	a
group	ID	based	on	the	book	and	the	publisher.	The	artifact	of	the	project	is	SortTutorial	as	we	will	start	our
chapter	example	in	this	project.

Define	value	for	property	'groupId':	:	packt.java9.by.example

Define	value	for	property	'artifactId':	:	SortTutorial

The	next	question	is	the	current	version	of	the	project.	We	have	already	selected	1.0	and	Maven	offers	1.0-
SNAPSHOT.	Here,	I	selected	1.0.0-SNAPSHOT	because	I	prefer	semantic	versioning.

Define	value	for	property	'version':		1.0-SNAPSHOT:	:	1.0.0-SNAPSHOT

Semantic	versioning,	defined	on	http://semver.org/,	is	a	versioning	scheme	that	suggests	three
digit	version	numbers	as	M.m.p.	for	Major,	minor,	and	patch	version	numbers.	This	is
very	useful	for	libraries.	You	will	increment	the	last	version	number	if	there	is	only	a	bug
fix	since	the	previous	release.	You	will	increment	the	minor	number	when	the	new	release
also	contains	new	features,	but	the	library	is	compatible	with	the	previous	version;	in
other	words,	any	program	that	is	using	the	older	version	can	still	use	the	newer	version.
The	major	release	number	is	increased	when	the	new	version	is	significantly	different
from	the	previous	one.
In	the	case	of	application	programs,	there	is	no	code	that	uses	the	application	API;	thus,
the	minor	version	number	is	not	that	important.	It	does	not	hurt,	though,	and	it	often

http://semver.org/

proves	to	be	useful	to	signal	smaller	changes	in	the	application.	We	will	discuss	how	to
version	software	in	the	last	chapter.

Maven	handles	the	versions	that	have	the	-SNAPSHOT	postfix	as	non-release	versions.	While	we	develop	the
code,	we	will	have	many	versions	of	our	code,	all	having	the	same	snapshot	version	number.	On	the	other
hand,	non-snapshot	version	numbers	can	only	be	used	only	for	a	single	version.

Define	value	for	property	'package':		packt.java9.by.example:	:

The	last	question	from	the	program	skeleton	generation	is	the	name	of	the	Java	package.	The	default	is	the
value	we	gave	for	groupId,	and	we	will	use	this.	It	is	a	rare	exception	to	use	something	else.

When	we	have	specified	all	the	parameters	that	are	needed,	the	final	request	is	to	confirm	the	setting:

Confirm	properties	configuration:	

groupId:	packt.java9.by.example	

artifactId:	SortTutorial	

version:	1.0.0-SNAPSHOT	

package:	packt.java9.by.example	

	Y:	:	Y

After	entering	Y,	Maven	will	generate	the	files	that	are	needed	for	the	project	and	display	the	report	about
this:

[INFO]	---	

[INFO]	Using	following	parameters	for	creating	project	from	Old	(1.x)	Archetype:	maven-archetype-quickstart:1.0	

[INFO]	---	

[INFO]	Parameter:	basedir,	Value:	.../mavenHelloWorld	

[INFO]	Parameter:	package,	Value:	packt.java9.by.example	

[INFO]	Parameter:	groupId,	Value:	packt.java9.by.example	

[INFO]	Parameter:	artifactId,	Value:	SortTutorial	

[INFO]	Parameter:	packageName,	Value:	packt.java9.by.example	

[INFO]	Parameter:	version,	Value:	1.0.0-SNAPSHOT	

[INFO]	***	End	of	debug	info	from	resources	from	generated	POM	***	

[INFO]	project	created	from	Old	(1.x)	Archetype	in	dir:	.../mavenHelloWorld/SortTutorial	

[INFO]	---	

[INFO]	BUILD	SUCCESS	

[INFO]	---	

[INFO]	Total	time:	01:27	min	

[INFO]	Finished	at:	2016-07-24T14:22:36+02:00	

[INFO]	Final	Memory:	11M/153M	

[INFO]	---

You	can	take	look	at	the	following	generated	directory	structure:

You	can	also	see	that	it	generated	the	following	three	files:

SortTutorial/pom.xml	that	contains	the	Project	Object	Model

SortTutorial/src/main/java/packt/java9/by/example/App.java	that	contains	a	HelloWorld	sample	application
SortTutorial/src/test/java/packt/java9/by/example/AppTest.java	that	contains	a	unit	test	skeleton	utilizing	the
junit4	library

We	will	discuss	unit	tests	in	the	next	chapter.	For	now,	we	will	focus	on	the	sorting	application.	As
Maven	was	so	kind	and	generated	a	sample	class	for	the	app,	we	can	compile	and	run	it	without	actual
coding,	just	to	see	how	we	can	build	the	project	using	Maven.	Change	the	default	directory	to	SortTutorial
issuing	cd	SortTutorial	and	issue	the	following	command:

$	mvn	package

We	will	get	the	following	output:

Maven	fires	up,	compiles,	and	packages	the	project	automatically.	If	not,	please	read	the	next	info	box.

When	you	first	start	Maven,	it	downloads	a	lot	of	dependencies	from	the	central
repository.	These	downloads	take	time,	and	are	reported	on	the	screen,	so	the	actual
output	may	be	different	from	what	you	saw	in	the	preceding	code.
Maven	compiles	code	with	the	default	settings	for	Java	version	1.5.	It	means	that	the

generated	class	file	is	compatible	with	Java	version	1.5,	and	also	that	the	compiler	only
accepts	language	constructs	that	were	available	already	in	Java	1.5.	If	we	want	to	use
newer	language	features,	and	in	this	book	we	use	a	lot,	the	pom.xml	file	should	be	edited	to
contain	the	following	lines:

<build>

<plugins>

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-compiler-plugin</artifactId>

<configuration>

<source>1.9</source>

<target>1.9</target>

</configuration>

</plugin>

</plugins>

</build>

When	using	Java	9's	default	settings	for	Maven,	it	becomes	even	more	complex,	because
Java	9	does	not	generate	class	format	nor	restrict	source	compatibility	earlier	than	Java
1.6.	At	this	very	moment,	as	I	write	these	lines,	the	latest	Maven	release	is	3.3.9.	When	I
try	to	compile	the	preceding	code	without	the	modifications,	the	Java	compiler	stops	with
an	error	displaying	the	following:
[ERROR]	Source	option	1.5	is	no	longer	supported.	Use	1.6	or	later.

[ERROR]	Target	option	1.5	is	no	longer	supported.	Use	1.6	or	later.	
Later,	Maven	releases	may	behave	differently	in	the	future.

Now,	you	can	start	the	code	using	the	following	command:

$	java	-cp	target/SortTutorial-1.0.0-SNAPSHOT.jar	packt.java9.by.example.App

You	can	see	the	result	of	a	sample	run	in	the	following	picture:

Gradle
Ant	and	Maven	are	two	worlds,	and	using	one	or	the	other	may	lead	to	heated	debates	on	Internet	forums.
Ant	gives	freedom	to	developers	to	create	a	build	process	that	fits	their	taste.	Maven	restricts	the	team	to
use	a	build	process	that	is	more	standard.	Some	special	processes	that	do	not	match	any	standard	build,
but	which	are	sometimes	needed	in	some	environments,	are	hard	to	implement	using	Maven.	In	Ant,	you
can	script	almost	anything	using	the	built-in	tasks,	almost	the	same	way	as	you	can	program	bash.	Utilizing
Maven	is	not	that	simple,	and,	it	often	requires	writing	a	plugin.	Even	though	writing	a	plugin	is	not	rocket
science,	developers	usually	like	to	have	the	possibility	of	making	things	in	a	simpler	way:	Scripting.	We
have	two	approaches,	two	mindsets	and	styles,	and	not	a	single	tool	to	fulfill	all	the	needs.	No	surprise
that	by	the	Java	technologies	were	developed,	a	new	build	tool	was	emerging.

Gradle	tries	to	use	the	best	of	both	worlds,	utilizing	techniques	that	were	not	available	by	the	time	Maven
and	Ant	were	first	developed.

Gradle	has	built-in	targets	and	life	cycle,	but	at	the	same	time,	you	can	also	write	your	own	targets.	You
can	configure	a	project,	just	like	using	Maven,	without	scripting	the	tasks	to	do	so,	but	at	the	same	time,
you	can	also	script	your	own	target	just	like	in	Ant.	What	is	more,	Gradle	integrated	Ant,	so	any	task
implemented	for	Ant	is	available	for	Gradle	as	well.

Maven	and	Ant	use	XML	files	to	describe	the	build.	Today,	XML	is	a	technology	of	the	past.	We	still	use
it,	and	a	developer	should	be	fluent	in	handling,	reading,	and	writing	XML	files,	but	a	modern	tool	does
not	use	XML	for	configuration.	New,	fancy	formats	such	as	JSON	are	more	popular.	Gradle	is	no
exception.	The	configuration	file	of	Gradle	uses	a	domain-specific	language	(DSL)	based	on	Groovy.
This	language	is	more	readable	for	programmers	and	gives	more	freedom	to	program	build	processes.
And,	this	is	also	the	danger	of	Gradle.

Having	the	powerful	JVM	language	Groovy	in	the	hands	of	developers	to	create	build	tools	gives	a
freedom	and	temptation	to	create	complex	build	processes	that	seem	to	be	a	good	idea	at	the	start,	but
later	may	prove	to	be	just	too	complex	and	hard,	and,	therefore,	expensive	to	maintain.	This	is	exactly
why	Maven	was	implemented	in	the	first	place.

I	have	to	stop	before	getting	into	another	area	that	is	the	ground	for	heated	and	pointless	debates.	Gradle
is	an	extremely	powerful	build	tool.	You	should	use	it	carefully,	just	like	you	would	use	a	weapon—don't
shoot	your	legs.

Installing	Gradle
To	install	Gradle,	you	will	have	to	download	the	compiled	binaries	from	the	https://gradle.org/gradle-download/
website.

Again,	I'd	like	to	emphasize	the	importance	of	checking	the	download	integrity	using
checksums.	I	have	given	a	detailed	way	to	do	it	in	the	section	about	Ant	installation.
Unfortunately,	the	Gradle	website	does	not	provide	the	checksum	values	for	the
downloadable	files.

Gradle	is	downloadable	in	the	ZIP	format.	To	unpack	the	file,	you	will	have	to	use	the	unzip	command:

$	unzip	gradle-3.3-bin.zip

The	created	subdirectory	is	the	usable	binary	distribution	of	Gradle.	Usually,	I	move	it	under	~/bin,	making
it	available	only	for	my	user	on	OS	X.	After	that,	you	should	add	the	bin	directory	of	the	installation	to	the
PATH.	To	do	that,	you	should	edit	the	~/.bashrc	file	and	add	the	following	lines:

export	GRADLE_HOME=~/bin/gradle-3.3/	

export	PATH=${GRADLE_HOME}bin:$PATH

Then,	restart	the	terminal	application,	or	just	type	.	~/.bashrc	and	test	the	installation	of	Gradle,	typing	the
following:

$	gradle	-version

We	get	to	the	following	output,	as	can	be	seen	in	this	screenshot:

https://gradle.org/gradle-download/

Setting	up	the	project	with	Maven
To	start	the	project,	we	will	use	the	directory	structure	and	pom.xml	that	was	created	by	Maven	itself	when
we	started	with	the	following	command	line:	$	mvn	archetype:generate

It	created	the	directories,	the	pom.xml	file,	and	an	App.java	file.	Now,	we	will	extend	this	project	by	creating
new	files.	We	will	code	the	sorting	algorithm	first	in	the	packt.java9.by.example.stringsort	package:	

When	we	create	the	new	package	in	the	IDE,	the	editor	will	automatically	create	the	stringsort
subdirectory	under	the	already	existing	src/main/java/packt/java9/by/example	directory:	

Creating	the	new	Sort	class	using	the	IDE	will	also	automatically	create	a	new	file	named	Sort.java	in	this
directory,	and	it	will	fill	in	the	skeleton	of	the	class:	package	packt.java9.by.example.stringsort;	

public	class	Sort	{	
}

We	will	now	have	App.java	containing	the	following	code:

package	packt.java9.by.example;	

public	class	App		

{	

				public	static	void	main(String[]	args)	

				{	

								System.out.println("Hello	World!");	

				}	

}

Maven	created	it	as	a	starting	version.	We	will	edit	this	file	to	provide	a	sample	list	that	the	sorting
algorithm	can	sort.	I	recommend	that	you	use	the	IDE	to	edit	the	file	and	also	to	compile	and	run	the	code.
The	IDE	provides	a	shortcut	menu	to	start	the	code	and	this	is	a	bit	easier	than	typing	the	command	in
Terminal.	Generally,	it	is	recommended	that	you	get	acquainted	with	the	IDE	features	to	save	time
avoiding	repetitive	tasks,	such	as	typing	terminal	commands.	Professional	developers	use	the	command
line	almost	exclusively	to	test	command-line	features	and	use	the	IDE	whenever	it	is	possible.

Coding	the	sort
Maven	and	the	IDE	created	the	files	for	the	sort	program.	They	form	the	skeleton	for	our	code,	and	now	it
is	time	to	grow	some	muscles	on	them	to	let	it	move.	We	spent	quite	some	time	to	set	up	the	project	by
visiting	the	different	build	tools,	only	to	learn	how	to	compile	the	code.	I	hope	that	this	did	not	distract
you	much,	but	anyhow,	we	deserve	to	see	some	real	code.

First,	we	will	create	the	code	for	the	sorting	code,	and	after	that,	the	code	that	invokes	the	sorting.	The
code	that	invokes	the	sorting	is	a	kind	of	testing	code.	For	simplicity,	we	will	now	simply	use	a	public
static	void	main	method	to	start	the	code.	We	will	use	the	test	framework	in	later	chapters.

As	for	now,	the	code	for	the	sorting	will	look	like	this:

package	packt.java9.by.example.stringsort;	

public	class	Sort	{	

				public	void	sort(String[]	names)	{	

								int	n	=	names.length;	

								while	(n	>	1)	{	

												for	(int	j	=	0;	j	<	n	-	1;	j++)	{	

																if	(names[j].compareTo(names[j	+	1])	>	0)	{	

																				final	String	tmp	=	names[j	+	1];	

																				names[j	+	1]	=	names[j];	

																				names[j]	=	tmp;	

																}	

												}	

												n--;	

								}	

				}	

}

This	is	the	class	that	does	the	sorting.	There	is	only	one	method	in	this	class	that	does	the	sorting.	The
argument	to	the	method	is	an	array	containing	the	strings,	and	the	method	sorts	this	array.	The	method	has
no	return	value.	This	is	denoted	in	the	declaration	using	the	pseudo	type	void.	Methods	use	their	arguments
to	perform	some	tasks,	and	may	return	one	value.	The	arguments	to	the	method	are	passed	by	value,	which
means	that	the	method	cannot	modify	the	variable	passed	as	argument.	However,	it	can	modify	the	objects
the	arguments	contain.	In	this	case,	the	array	is	modified	and	we	will	sort	it.	On	the	other	hand,	the
actualNames	variable	will	point	to	the	same	array	and	the	sort	method	cannot	do	anything	to	make	this
variable	point	to	a	different	array.

There	is	no	main	method	in	this	class,	which	means	that	it	cannot	be	started	from	the	command	line	on	its
own.	This	class	can	only	be	used	from	some	other	class,	as	every	Java	program	should	have	a	class	that
has	a	public	static	void	main	method	that	we	created	separately.

I	could	also	put	a	main	method	into	the	class	to	make	it	executable,	but	that	is	not	a	good	practice.	Real
programs	are	composed	of	many	classes,	and	one	class	should	not	do	many	things.	Rather,	it's	the
opposite.	The	single	responsibility	principle	says	that	a	single	class	should	be	responsible	for	one	single
thing;	therefore,	class	sort	does	the	sorting.	Executing	the	application	is	a	different	task,	and	thus	it	has	to
be	implemented	in	a	different	class.

Often,	we	do	not	implement	the	class	containing	the	main	method.	Often,	a	framework	provides	it.	For

example,	writing	a	servlet	that	runs	in	a	servlet	container	requires	containing	a	class	that	implements	the
javax.servlet.Servlet	interface.	In	this	case,	the	program	seemingly	does	not	have	a	main	method.	The	actual
implementation	of	the	servlet	container	does.	The	Java	command	line	starts	the	container	and	the
container	loads	the	servlets	when	they	are	needed.

In	the	following	example	code,	we	implemented	the	App	class	containing	the	main	method:

package	packt.java9.by.example;	

import	packt.java9.by.example.stringsort.Sort;	

public	class	App	{	

				public	static	void	main(String[]	args)	{	

								String[]	actualNames	=	new	String[]{	

																"Johnson",	"Wilson",	

																"Wilkinson",	"Abraham",	"Dagobert"	

								};	

								final	Sort	sorter	=	new	Sort();	

								sorter.sort(actualNames);	

								for	(final	String	name	:	actualNames)	{	

												System.out.println(name);	

								}	

				}	

}

This	code	contains	a	string	array	initialized	to	contain	constant	values,	creates	a	new	instance	of	the	Sort
class,	invokes	the	sort	method,	and	then	prints	out	the	code	to	the	standard	output.

In	real	programs,	we	almost	never	have	such	constants	in	program	codes;	we	put	them	into	resource	files
and	have	some	code	to	read	the	actual	values.	This	separates	the	code	from	data	and	eases	maintenance,
eliminating	the	risk	of	accidental	modification	of	code	structure	when	only	the	data	is	to	be	changed.
Similarly,	we	will	almost	never	write	anything	to	standard	output	using	System.out.	Usually,	we	will	use
logging	possibilities	that	are	available	from	different	sources.	There	are	different	libraries	that	provide
logging	functionalities	and	logging	is	also	available	from	the	JDK	itself.

As	for	now,	we	will	focus	on	simple	solutions	so	as	to	not	distract	your	focus	from	Java	by	the	plethora	of
different	libraries	and	tools.	In	the	following	section,	we	will	look	at	the	Java	language	constructs	that	we
used	to	code	the	algorithm.	First,	we	will	look	at	them	generally,	and	then,	in	a	bit	more	detail.	These
language	features	are	not	independent	of	each	other:	one	builds	up	on	the	other,	and	therefore,	the
explanation	will	first	be	general,	and	we	will	go	into	details	in	the	subsections.

int	n	=	names.length;	
	while	(n	>	1)	{	
	for	(int	j	=	0;	j	<	n	-	1;	j++)	{	
	if
(names[j].compareTo(names[j	+	1])	>	0)	{	
	final	String	tmp	=	names[j	+	1];	

names[j	+	1]	=	names[j];	
	names[j]	=	tmp;	
	}	
	}	
	n--;	
	}

The	n	variable	holds	the	length	of	the	array	at	the	start	of	the	sorting.	Arrays	in	Java
always	have	a	property	that	gives	the	length	and	it	is	called	length.	When	we	start	the
sorting,	we	will	go	from	the	start	of	the	array	to	the	end	of	it	and,	as	you	may	recall,	the
last	element,	Wilson,	will	walk	up	to	the	last	position	during	this	first	iteration.
Subsequent	iterations	will	be	shorter	and,	therefore,	the	variable	n	will	be	decreased.

	

Blocks
	

The	code	in	Java	is	created	in	code	blocks.	Anything	that	is	between	the	{	and	}	characters	is	a	block.	In
the	preceding	example,	the	code	of	the	method	is	a	block.	It	contains	commands,	and	some	of	them,	like
the	while	loop,	also	contain	a	block.	Inside	that	block,	there	are	two	commands.	One	of	them	is	a	for	loop,
again	with	a	block.	Although	we	can	have	single	expressions	to	form	the	body	of	a	loop,	we	usually	use
blocks.	We	will	discuss	loops	in	detail	in	just	a	few	pages.

As	we	could	see	in	the	preceding	example,	the	loops	can	be	nested,	and	thus	the	{	and	}	characters	form
pairs.	A	block	can	be	inside	another	block,	but	two	blocks	cannot	overlap.	When	the	code	contains	a	}
character,	it	is	closing	the	block	that	was	opened	last.

	

	

	

Variables
	

In	Java,	just	like	in	almost	any	programming	language,	we	use	variables.	The	variables	in	Java	are	typed.
It	means	that	a	variable	can	hold	a	value	of	a	single	type.	It	is	not	possible	for	a	variable	to	hold	an	int
type	at	some	point	in	the	program	and	later	a	String	type.	When	variables	are	declared,	their	type	is
written	in	front	of	the	variable	name.

Variables	also	have	visibility	scope.	Local	variables	in	methods	can	only	be	used	inside	the	block	in
which	they	are	defined.	A	variable	can	be	used	inside	methods	or	they	can	belong	to	a	class	or	an	object.
To	differentiate	the	two,	we	usually	call	these	variables	fields.

	

	

Types
Each	variable	has	one	type.	In	Java,	there	are	two	major	groups	of	type:	primitive	and	reference	types.
The	primitive	types	are	predefined,	and	you	cannot	define	or	create	a	new	primitive	type.	There	are	eight
primitive	types:	byte,	short,	int,	long,	float,	double,	boolean,	and	char.

The	first	four	types,	byte,	short,	int,	and	long,	are	signed	numeric	integer	types,	capable	of	storing	positive
and	negative	numbers	on	8,	16,	32,	and	64	bits.

The	float	and	double	types	store	floating	point	numbers	on	32	and	64	bits	in	the	IEEE	754	floating-point	format.

The	boolean	type	is	a	primitive	type	that	can	only	be	true	or	false.

The	char	type	is	a	character	data	type	that	stores	a	single	16-bit	Unicode	character.

For	each	primitive	type,	there	is	a	class	that	can	store	the	same	type	of	value.	When	a	primitive	type	has
to	be	converted	to	the	matching	class	type	it	is	done	automatically.	It	is	called	auto	boxing.	These	types
are	Byte,	Short,	Integer,	Long,	Float,	Double,	Boolean,	and	Character.	Take,	for	example,	the	following	variable
declaration:

Integer	a	=	113;

This	converts	the	value	113,	which	is	an	int	number,	to	an	Integer	object.

These	types	are	part	of	the	runtime,	and	also	part	of	the	language.	Although	there	is	no	primitive
counterpart	of	it,	there	is	a	very	important	and	ubiquitous	class	that	we	have	already	used:	String.	A	string
contains	characters.

The	major	differences	between	primitive	types	and	objects	are	that	primitive	types	cannot	be	used	to
invoke	methods,	but	they	consume	less	memory.	The	difference	between	the	memory	consumption	and	its
consequences	for	speed	is	important	in	the	case	of	arrays.

Arrays
Variables	can	be	a	primitive	type	according	to	their	declaration,	or	they	may	hold	a	reference	to	an	object.
A	special	object	type	is	an	array.	When	a	variable	holds	a	reference	to	an	array,	then	it	can	be	indexed
with	the	[and]	characters,	along	with	an	integral	value	consisting	of	0	or	a	positive	value	ranging	to	one
less	than	the	array's	length,	to	access	a	certain	element	of	the	array.	Multi-dimensional	arrays	are	also
supported	by	Java	when	an	array	has	elements	that	are	also	arrays.	Arrays	are	indexed	from	zero	in	Java.
Under	or	over	indexing	is	checked	at	runtime,	and	the	result	is	an	exception.

An	exception	is	special	condition	that	interrupts	the	normal	execution	flow	and	stops	the
execution	of	the	code	or	jumps	to	the	closest	enclosing	catch	statement.	We	will	discuss
exceptions	and	how	to	handle	them	in	the	next	chapter.

When	a	code	has	an	array	of	a	primitive	type,	the	array	contains	many	memory	slots,	each	holding	the
value	of	the	type.	When	the	array	has	a	reference	type,	in	other	words,	when	it	is	an	array	of	objects,	then
the	array	elements	are	references	to	objects,	each	containing	the	type.	In	the	case	of	int	for	example,	each
element	of	the	array	is	32-bit,	which	is	4	bytes.	If	the	array	is	a	type	of	Integer,	then	the	elements	are
references	to	objects,	pointers,	so	to	say,	which	is	usually	64-bit	using	64-bit	JVM	and	32-bit	on	32-bit
JVM.	In	addition	to	that,	there	is	an	Integer	object	somewhere	in	memory	that	contains	the	4-byte	value	and
also	an	object	header	that	may	be	as	much	as	24	bytes.

The	actual	size	of	the	extra	information	needed	to	administer	each	object	is	not	defined
in	the	standard.	It	may	be	different	on	different	implementations	of	the	JVM.	The	actual
coding,	or	even	the	optimization	of	the	code	in	an	environment,	should	not	depend	on	the
actual	size.	However,	the	developers	should	be	aware	that	this	overhead	exists	and	is	in
the	range	of	around	20	or	so	bytes	for	every	object.	Objects	are	expensive	in	terms	of
memory	consumption.

Memory	consumption	is	one	issue,	but	there	is	something	else.	When	the	program	works	with	a	large
amount	of	data	and	the	work	needs	the	consecutive	elements	of	the	array,	then	the	CPU	loads	a	chunk	of
memory	into	the	processor	cache.	It	means	that	the	CPU	can	access	elements	of	the	array	that	are
consecutively	faster.	If	the	array	is	of	a	primitive	type,	it	is	fast.	If	the	array	is	of	some	class	type,	then	the
CPU	has	to	access	memory	to	get	the	actual	value,	which	may	be	as	much	as	50	times	slower.

Expressions
Expressions	in	Java	are	very	much	like	in	other	programming	languages.	You	can	use	the	operators	that
may	be	similar	from	languages	such	as	C	or	C++.	They	are	as	follows:

Unary	prefix	and	postfix	increment	operators	(--	and	++	before	and	after	a	variable)
Unary	sign	(+	and	-)	operators
Logical	(!)	and	bitwise	(~)	negation
Multiplication	(*),	division	(/),	and	modulo	(%)
Addition	and	subtraction	(+	and	-	again,	but	this	time	as	binary	operators)
Shift	operators	move	the	values	bitwise,	and	there	is	left	(<<)	and	right	(>>)	shift	and	unsigned	right
shift	(>>>)
The	comparing	operators	are	<,	>,	<=,	>=,	==,	!=	and	instanceof	that	result	in	boolean	value
There	are	bitwise	or	(|),	and	(&),	exclusive	or	(^)	operators,	and	similarly	logical	or	(||),	and	(&&)
operators

When	logical	operators	are	evaluated,	they	are	shortcut	evaluated.	It	means	the	right-hand	operand	is
evaluated	only	if	the	result	cannot	be	identified	from	the	result	of	the	left	operand.

The	ternary	operator	is	also	similar	to	the	one,	like	it	is	on	C,	selecting	from	one	of	the	expressions	based
on	some	condition:	condition	?	expression	1	:	expression	2.	Usually,	there	is	no	problem	with	the	ternary
operator,	but	sometimes	you	have	to	be	careful	as	there	is	a	complex	rule	controlling	the	type	conversions
in	case	the	two	expressions	are	not	of	the	same	type.	It's	always	better	to	have	the	two	expressions	be	of
the	same	type.

Finally,	there	is	an	assignment	operator	(=)	that	assigns	the	value	of	an	expression	to	a	variable.	For	each
binary	operator,	there	is	an	assignment	version	that	combines	=	with	a	binary	operator	to	perform	an
operation	involving	the	right	operand	and	assign	the	result	to	the	left	operand,	which	must	be	a	variable.
These	are	+=,	-=,	*=,	/=,	%=,	&=,	^=,	|=,	<<=,	>>=,	and	>>>=.

The	operators	have	precedence	and	can	be	overridden	by	parentheses,	as	usual.

An	important	part	of	expressions	is	invoking	methods.	Static	methods	can	be	invoked	by	the	name	of	the
class	and	the	name	of	the	method.	For	example,	to	calculate	the	sine	of	1.22,	we	can	write	the	following
line:

double	z	=	Math.sin(1.22);

Here,	Math	is	the	class	from	the	package	java.lang.	The	method	sin	is	invoked	without	using	any	instance	of
Math.	This	method	is	static,	and	it	is	not	likely	that	we	will	ever	need	any	other	implementation	of	it	than
the	one	provided	in	the	class	Math.

Non-static	methods	can	be	invoked	using	an	instance	and	the	name	of	the	method	with	a	dot	separating	the
two.	For	example,	take	the	following	code	line	as	an	example:

System.out.println("Hello	World");

The	preceding	code	uses	an	instance	of	the	class	PrintStream	that	is	readily	available	through	a	static	field
in	the	class	System.	This	variable	is	called	out,	and	when	we	write	our	code,	we	have	to	reference	it	as
System.out.	The	method	println	is	defined	in	the	class	PrintStream	and	we	invoke	it	on	the	object	referenced
by	the	variable	out.	This	example	also	shows	that	static	fields	can	also	be	referenced	through	the	name	of
the	class	and	the	field	separated	by	a	dot.	Similarly,	when	we	need	to	reference	a	non-static	field,	we	can
do	it	through	an	instance	of	the	class.

Static	methods	defined	in	the	same	class	from	where	it	is	invoked	or	inherited	can	be	invoked	without	the
class	name.	Invoking	a	non-static	method	defined	in	the	same	class	or	being	inherited	can	be	invoked
without	an	instance.	In	this	case,	the	instance	is	the	current	object	the	execution	is	in.	This	object	is	also
available	through	the	this	keyword.	Similarly,	when	we	use	a	field	of	the	same	class	where	our	code	is,	we
simply	use	the	name.	In	case	of	a	static	field,	the	class	we	are	in	by	default.	In	the	case	of	a	non-static
field,	the	instance	is	the	object	referenced	by	the	this	keyword.

You	can	also	import	a	static	method	into	your	code	using	the	importstatic	language	feature,	in	which	case
you	can	invoke	the	method	without	the	name	of	the	class.

The	arguments	of	the	method	calls	are	separated	using	commas.	Methods	and	method	argument	passing	is
an	important	topic	that	we	will	mention	in	detail	in	a	separate	subsection.

Loops
The	for	loop	inside	the	while	loop	will	go	through	all	the	elements	from	the	first	(indexed	with	zero	in
Java)	up	till	the	last	(indexed	with	n-1).	Generally,	the	for	loop	has	the	same	syntax	as	in	C:

for(initial	expression	;	condition	;	increment	expression)	

		block

First,	the	initial	expression	is	evaluated.	It	may	contain	variable	declaration,	as	in	our	example.	The
variable	j	in	the	preceding	example	is	visible	only	inside	the	block	of	the	loop.	After	this,	the	condition	is
evaluated,	and	after	each	execution	of	the	block,	the	increment	expression	is	executed.	The	loop	repeats
so	long	as	the	condition	is	true.	If	the	condition	is	false	right	after	the	execution	of	the	initial	expression,
the	loop	does	not	execute	at	all.	The	block	is	a	list	of	commands	separated	by	semicolons	and	enclosed
between	the	{	and	}	characters.

Instead	of	{	and	},	enclosed	block	Java	lets	you	use	a	single	command	following	the	head
of	the	for	loop.	The	same	is	true	in	the	case	of	the	while	loop,	and	also	for	the	if...else
constructs.	Practice	shows	that	this	is	not	something	a	professional	should	use.
Professional	code	always	uses	curly	braces,	even	when	there	is	only	a	single	command
where	the	block	is	in	place.	This	prevents	the	dangling	else	problem	and	generally	makes
the	code	more	readable.	This	is	similar	to	many	C-like	languages.	Most	of	them	allow	a
single	command	at	these	places,	and	professional	programmers	avoid	using	a	single
command	in	these	languages	for	readability	purposes.
It	is	ironic	that	the	only	language	that	strictly	requires	the	use	of	the	{	and	}	braces	at
these	places	is	Perl—the	one	language	infamous	for	unreadable	code.

The	loop	in	the	for	(int	j	=	0;	j	<	n	-	1;	j++)	{	sample	starts	from	zero	and	goes	to	n-2.	Writing	j	<	n-1	is	the
same,	in	this	case,	as	j	<=	n-2.	We	will	limit	j	to	stop	in	the	loop	before	the	end	of	the	section	of	the	array,
because	we	reach	beyond	the	index	j	by	one	comparing	and	conditionally	swapping	the	elements	indexed
by	j	and	j+1.	If	we	went	one	element	further,	we	would	try	to	access	an	element	of	the	array	that	does	not
exist,	and	it	would	cause	a	runtime	exception.	Try	and	modify	the	loop	condition	to	j	<	n	or	j	<=	n-1	and
you	will	get	the	following	error	message:

It	is	an	important	feature	of	Java	that	the	runtime	checks	memory	access	and	throws	an	exception	in	the
case	of	bad	array	indexing.	In	the	good	old	days,	while	coding	in	C,	often,	we	faced	unexplainable	errors
that	stopped	our	code	much	later	and	at	totally	different	code	locations	from	where	the	real	error	was.
Array	index	in	C	silently	corrupted	the	memory.	Java	stops	you	as	soon	as	you	make	a	mistake.	It	follows
the	fail-fast	approach	that	you	also	should	use	in	your	code.	If	something	is	wrong,	the	program	should
fail.	No	code	should	try	to	live	with	or	overcome	an	error	that	comes	from	a	coding	error.	Coding	errors
should	be	fixed	before	they	cause	even	more	damage.

There	are	also	two	more	loop	constructs	in	Java:	the	while	loop	and	the	do	loop.	The	example	contains	a
while	loop:	it	is	the	outer	loop	that	runs	so	long	as	there	are	at	least	two	elements	that	may	need	swapping
in	the	array:

while	(n	>	1)	{

The	general	syntax	and	semantics	of	the	while	loop	is	very	simple,	as	seen	here:

while	(condition)	block

Repeat	the	execution	of	the	block	so	long	as	the	condition	is	true.	If	the	condition	is	not	true	at	the	very
start	of	the	loop,	then	do	not	execute	the	block	at	all.	The	do	loop	is	also	similar,	but	it	checks	the
condition	after	each	execution	of	the	block:

do	block	while(condition);

For	some	reason,	programmers	rarely	use	do	loops.

Conditional	execution
The	heart	of	the	sort	is	the	condition	and	the	value	swapping	inside	the	loop.

if	(names[j].compareTo(names[j	+	1])	>	0)	{	

																				final	String	tmp	=	names[j	+	1];	

																				names[j	+	1]	=	names[j];	

																				names[j]	=	tmp;	

																}

There	is	only	one	conditional	command	in	Java,	the	if	command.	It	has	the	following	format:

if(condition)	block	else	block

The	meaning	of	the	code	structure	is	quite	straightforward.	If	the	condition	is	true,	then	the	first	block	is
executed,	otherwise,	the	second	block	is	executed.	The	else	keyword,	along	with	the	second	block,	is
optional.	If	there	is	nothing	to	be	executed	in	case	that	the	condition	is	false,	then	there	is	no	need	for	the
else	branch,	just	like	in	the	example.	If	the	array	element	indexed	with	j	is	later	in	the	sort	order	than	the
element	j+1,	then	we	swap	them,	but	if	they	are	already	in	order,	there	is	nothing	to	do	with	them.

To	swap	the	two	array	elements,	we	will	use	a	temporary	variable	named	tmp.	The	type	of	this	variable	is
String,	and	this	variable	is	declared	to	be	final.	The	final	keyword	has	different	meanings	depending	on
where	it	is	used	in	Java.	This	may	be	confusing	for	beginners	unless	you	are	warned	about	it,	just	like
now.	A	final	class	or	method	is	a	totally	different	thing	than	a	final	field,	which	is	again	different	than	a
final	local	variable.

Final	variables
In	our	case,	tmp	is	a	final	local	variable.	The	scope	of	this	variable	is	limited	to	the	block	following	the	if
statement,	and	inside	this	block,	this	variable	gets	a	value	only	once.	The	block	is	executed	many	times
during	the	code	execution,	and	each	time	the	variable	gets	into	scope,	it	gets	a	value.	However,	this	value
cannot	be	changed	in	the	block.	This	may	be	a	bit	confusing.	You	can	think	about	it	as	having	a	new	tmp
each	time	the	block	executes.	The	variable	gets	declared	and	has	an	undefined	value	and	can	get	a	value
only	once.

Final	local	variables	do	not	need	to	get	the	value	where	they	are	declared.	You	can	assign	a	value	to	a
final	variable	some	time	later.	It	is	important	that	there	should	not	be	a	code	execution	that	assigns	a	value
to	a	final	variable	that	was	already	assigned	a	value	before.	The	compiler	checks	it	and	does	not	compile
the	code	if	there	is	a	possibility	of	the	reassignment	of	a	final	variable.

To	declare	a	variable	to	be	final	is	generally	to	ease	readability	of	the	code.	When	you	see	a	variable	in	a
code	declared	to	be	final,	you	can	assume	that	the	value	of	the	variable	will	not	change	and	the	meaning	of
the	variable	will	always	be	the	same	wherever	it	was	used	in	the	method.	It	will	also	help	you	avoid
some	bugs	when	you	try	to	modify	some	final	variables	and	the	IDE	will	immediately	complain	about	it.
In	such	situations,	it	is	likely	to	be	a	programming	mistake	that	is	discovered	extremely	early.

In	principle,	it	is	possible	to	write	a	program	where	all	variables	are	final.	It	is	generally	a	good	practice
to	declare	all	final	variables	that	can	be	declared	to	be	final	and,	in	case	some	variable	may	not	be
declared	final,	then	try	to	find	some	way	of	coding	the	method	a	bit	differently.

If	you	need	to	introduce	a	new	variable	to	do	that,	it	probably	means	you	were	using	one
variable	to	store	two	different	things.	These	things	are	of	the	same	type	and	stored	in	the
same	variable	at	different	times	but,	logically,	they	still	are	different	things.	Do	not	try	to
optimize	the	use	of	variables.	Never	use	a	variable	because	you	already	have	a	variable
of	the	type	in	your	code	that	is	available.	If	it	is	logically	a	different	thing,	then	declare	a
new	variable.
While	coding,	always	prefer	source	code	clarity	and	readability.	In	Java,	especially,	the
Just	In	Time	compiler	will	optimize	all	this	for	you.

Although	we	do	not	explicitly	tend	to	use	the	final	keyword	on	the	argument	list	of	a	method,	it	is	good
practice	to	make	sure	that	your	methods	compile	and	work	if	the	arguments	are	declared	final.	Some
experts,	including	me,	believe	that	the	method	parameters	should	have	been	made	final	by	default	in	the
language.	This	is	something	that	will	not	happen	in	any	version	of	Java,	so	long	as	Java	follows	the
backward	compatibility	philosophy.

Classes
Now	that	we	have	looked	at	the	actual	code	lines	and	have	understood	how	the	algorithm	works,	let's
look	at	the	more	global	structures	of	the	code	that	brings	it	together:	classes	and	packages	enclosing	the
methods.

Every	file	in	a	Java	program	defines	a	class.	Any	code	in	a	Java	program	is	inside	a	class.	There	is
nothing	like	global	variables	or	global	functions	as	in	C,	Python,	Go,	or	other	languages.	Java	is	totally
object	oriented.

There	can	be	more	than	one	class	in	a	single	file,	but	usually	one	file	is	one	class.	Later,	we	will	see	that
there	are	inner	classes	when	a	class	is	inside	another	class,	but,	for	now,	we	will	put	one	class	into	one
file.

There	are	some	features	in	the	Java	language	that	we	do	not	use.	When	the	language	was
created,	these	features	seemed	to	be	a	good	idea.	CPU,	memory,	and	other	resources,
including	mediocre	developers,	were	also	more	limited	than	today.	Some	of	the	features,
perhaps,	made	more	sense	because	of	these	environmental	constraints.	Sometimes,	I	will
mention	these.	In	the	case	of	classes,	you	can	put	more	than	one	class	into	a	single	file	so
long	as	only	one	is	public.	That	is	bad	practice,	and	we	will	never	do	that.
Java	never	obsoletes	these	features.	It	is	a	philosophy	of	Java	to	remain	compatible	with
all	previous	versions.	This	philosophy	is	good	for	the	already	written,	huge	amount	of
legacy	code.	Java	code	written	and	tested	with	an	old	version	will	work	in	a	newer
environment.	At	the	same	time,	those	features	lure	beginners	to	a	wrong	style.	For	this
reason,	sometimes,	I	will	not	even	mention	these	features.	For	example,	here,	I	could	say:
There	is	one	class	in	a	file.	This	would	not	be	absolutely	correct.	At	the	same	time,	it	is
more	or	less	pointless	to	explain	in	great	detail	a	feature	that	I	recommend	not	to	be
used.	Later,	I	may	simply	skip	them	and	"lie".	There	are	not	too	many	of	those	features.

A	class	is	defined	using	the	class	keyword	and	each	class	has	to	have	a	name.	The	name	should	be	unique
within	the	package	(see	the	next	section)	and	has	to	be	the	same	as	the	name	of	the	file.	A	class	can
implement	an	interface	or	extend	another	class,	for	which	we	will	see	an	example	later.	A	class	can	also
be	abstract,	final,	and	public.	These	are	defined	with	the	appropriate	keywords,	as	you	will	see	in
examples.

Our	program	has	two	classes.	Both	of	them	are	public.	The	public	classes	are	accessible	from	anywhere.
Classes	that	are	not	public	are	visible	only	inside	the	package.	Inner	and	nested	classes	can	also	be	private
visible	only	inside	the	top-level	class	defined	on	the	file	level.

Classes	that	contain	a	main	method	to	be	invoked	by	the	Java	environment	should	be	public.	That	is	because
they	are	invoked	by	the	JVM.

The	class	starts	at	the	beginning	of	the	file	right	after	the	package	declaration	and	everything	between	the	{
and	}	characters	belong	to	the	class.	The	methods,	fields,	inner	or	nested	classes,	and	so	on	are	part	of	the
class.	Generally,	curly	braces	denote	some	block	in	Java.	This	was	invented	in	the	C	language,	and	many

languages	follow	this	notation.	Class	declaration	is	some	block,	methods	are	defined	using	some	block,
loops,	and	conditional	commands	use	blocks.

When	we	use	the	classes,	we	will	have	to	create	instances	of	classes.	These	instances	are	objects.	In
other	words,	objects	are	created	instantiating	a	class.	To	do	that,	the	new	keyword	is	used	in	Java.	When
the	line	final	Sort	sorter	=	new	Sort();	is	executed	in	the	App	class,	it	creates	a	new	object	instantiating	the
Sort	class.	We	will	also	say	that	we	created	a	new	Sort	object	or	that	the	type	of	the	object	is	Sort.	When	a
new	object	is	created,	a	constructor	of	the	object	is	invoked.	A	bit	sloppy,	I	may	say,	that	the	constructor
is	a	special	method	in	the	class	that	has	the	same	name	as	the	class	itself	and	has	no	return	value.	That	is
because	it	returns	the	created	object.	To	be	precise,	constructors	are	not	methods.	They	are	initializers
and	they	do	not	return	the	new	object.	They	work	on	the	not-ready-yet	object.	When	a	constructor
executing	the	object	is	not	fully	initialized,	some	of	the	final	fields	may	not	be	initialized	and	the	overall
initialization	still	can	fail	if	the	constructor	throws	an	exception.	In	our	example,	we	do	not	have	any
constructor	in	the	code.	In	such	a	case,	Java	creates	a	default	constructor	that	accepts	no	argument	and
does	not	modify	the	already	allocated	but	uninitialized	object.	If	the	Java	code	defines	an	initializer,	then
the	Java	compiler	does	not	create	a	default	one.

A	class	can	have	many	constructors,	each	having	different	parameter	list.

In	addition	to	constructors	Java	classes	can	contain	initializer	blocks.	They	are	blocks	on	the	class	level,
the	same	level	as	the	constructor	and	methods.	The	code	in	these	blocks	is	compiled	into	the	constructors
and	is	executed	when	the	constructor	is	executing.

It	is	also	possible	to	initialize	static	fields	in	static	initializer	blocks.	These	are	the	blocks	on	the	top
level	inside	the	class	with	the	static	keyword	in	front	of	them.	They	are	executed	only	once	when	the	class
is	loaded.

We	named	the	classes	in	our	example	App	and	Sort.	This	is	a	convention	in	Java	to	name	almost	everything
in	CamelCase.

CamelCase	is	when	the	words	are	written	without	spaces	between	them.	The	first	word
may	start	with	lowercase	or	uppercase,	and,	to	denote	the	start	of	the	second	and
subsequent	words,	they	start	with	uppercase.	ForExampleThisIsALongCamelCase	name.

Class	names	start	with	an	uppercase	letter.	This	is	not	a	requirement	of	the	language	formally,	but	this	is	a
convention	that	every	programmer	should	follow.	These	coding	conventions	help	you	create	code	that	is
easier	to	understand	by	other	programmers,	and	lead	to	easier	maintenance.	Static	code	analyzer	tools,
such	as	Checkstyle	(http://checkstyle.sourceforge.net/),	also	check	that	the	programmers	follow	the	conventions.

http://checkstyle.sourceforge.net/

Inner,	nested,	local,	and	anonymous	classes
I	have	already	mentioned	inner	and	nested	classes	in	the	previous	section.	Now	we	look	at	them	in	bit
more	detail.

The	details	of	inner	and	nested	classes	at	this	point	may	be	difficult.	Don't	feel	ashamed
if	you	do	not	understand	this	section	fully.	If	it	is	too	difficult,	skip	to	the	next	section	and
read	about	packages	and	return	here	later.	Nested,	inner,	and	local	classes	are	rarely
used,	though	they	have	their	roles	and	use	in	Java.	Anonymous	classes	were	very	popular
in	GUI	programming	with	the	Swing	user	interface	that	allowed	developers	to	create
Java	GUI	applications.	With	Java	8	and	the	lambda	feature,	anonymous	classes	are	not
so	important	these	days,	and	with	the	emerging	JavaScript	and	browser	technology,	the
Java	GUI	became	less	popular.

When	a	class	is	defined	in	a	file	on	its	own,	it	is	called	a	top-level	class.	Classes	that	are	inside	another
class	are,	obviously,	not	top-level	classes.	If	they	are	defined	inside	a	class	on	the	same	level	as	fields
(variables	that	are	not	local	to	some	method	or	other	block),	they	are	inner	or	nested	classes.	There	are
two	differences	between	them.	One	is	that	nested	classes	have	the	static	keyword	before	the	class	keyword
at	their	definition,	and	inner	classes	don't.

The	other	difference	is	that	instances	of	nested	classes	can	exist	without	an	instance	of	the	surrounding
class.	Inner	class	instances	always	have	a	reference	to	an	instance	of	the	surrounding	class.

Because	inner	class	instances	cannot	exist	without	an	instance	of	the	surrounding	class,	their	instance	can
only	be	created	by	providing	an	instance	of	the	outer	class.	We	will	see	no	difference	if	the	surrounding
class	instance	is	the	actual	this	variable,	but	if	we	want	to	create	an	instance	of	an	inner	class	from
outside	the	surrounding	class,	then	we	have	to	provide	an	instance	variable	before	the	new	keyword
separated	by	a	dot,	just	like	if	new	were	a	method.	For	example,	we	could	have	a	class	named	TopLevel	that
has	a	class	named	InnerClass,	like	in	the	following	code	snippet:

public	class	TopLevel	{	

				class	InnerClass	{	}	

}

Then	we	can	create	an	instance	of	the	InnerClass	from	outside	with	only	a	TopLevel	object,	like	in	this
snippet:

TopLevel	tl	=	new	TopLevel();	

InnerClass	ic	=	tl.new	InnerClass();

As	inner	classes	have	an	implicit	reference	to	an	instance	of	the	enclosing	class,	the	code	inside	the	inner
class	can	access	the	fields	and	the	methods	of	the	enclosing	class.

Nested	classes	do	not	have	an	implicit	reference	to	any	instance	of	the	enclosing	class,	and	they	may	be
instantiated	with	the	new	keyword	without	any	reference	to	any	instance	of	any	other	class.	Because	of	that,
they	cannot	access	the	fields	of	the	enclosing	class	unless	they	are	static	fields.

Local	classes	are	classes	that	are	defined	inside	a	method,	constructor,	or	an	initializer	block.	We	will
soon	talk	about	initializer	blocks	and	constructors.	Local	classes	can	be	used	inside	the	block	where	they
are	defined.

Anonymous	classes	are	defined	and	instantiated	in	a	single	command.	They	are	a	short	form	of	a	nested,
inner,	or	local	class,	and	the	instantiation	of	the	class.	Anonymous	classes	always	implement	an	interface
or	extend	a	named	class.	The	new	keyword	is	followed	by	the	name	of	the	interface	or	the	class	with	the
argument	list	to	the	constructor	between	parentheses.	The	block	that	defines	the	body	of	the	anonymous
class	stands	immediately	after	the	constructor	call.	In	the	case	of	extending	an	interface,	the	constructor
can	only	be	the	one	without	argument.	The	anonymous	class	with	no	name	cannot	have	its	own
constructors.	In	modern	Java	we	usually	use	lambda	instead	of	anonymous	classes.

Last	but	not	least—well,	actually,	least	I	should	mention	that	nested	and	inner	classes
can	also	be	nested	in	deeper	structures.	Inner	classes	cannot	contain	nested	classes,	but
nested	classes	can	contain	inner	classes.	Why?	I	have	never	met	anyone	who	could
reliably	tell	me	the	real	reason.	There	is	no	architectural	reason.	It	could	be	like	that.
Java	does	not	permit	that.	However,	it	is	not	really	interesting.	If	you	happen	to	write
code	that	has	more	than	one	level	of	class	nesting	then	just	stop	doing	it.	Most	probably
you	are	doing	something	wrong.

Packages
Classes	are	organized	into	packages	and	the	first	code	line	in	a	file	should	specify	the	package	that	the
class	is	in.

package	packt.java9.by.example.stringsort;

If	you	do	not	specify	the	package,	then	the	class	will	be	in	the	default	package.	This	should	not	be	used,
except	in	the	simplest	case	when	you	want	to	try	some	code.	With	Java	9,	you	can	use	jshell	for	this
purpose,	so,	as	opposed	to	previous	versions	of	Java,	now	the	suggestion	becomes	very	simple—never
put	any	class	in	the	default	package.

The	name	of	the	packages	is	hierarchical.	The	parts	of	the	names	are	separated	by	dots.	Using	package
names	helps	you	avoid	name	collisions.	Names	of	the	classes	are	usually	kept	short	and	putting	them	into
packages	helps	the	organization	of	the	program.	The	full	name	of	a	class	includes	the	name	of	the	package
the	class	is	in.	Usually,	we	will	put	those	classes	into	a	package	that	are	in	some	way	related,	and	add
something	to	a	similar	aspect	of	a	program.	For	example,	controllers	in	an	MVC	pattern	program	are	kept
in	a	single	package.	Packages	also	help	you	avoid	name	collision	of	classes.	However,	this	only	pushes
the	problem	from	class	name	collision	to	package	name	collision.	We	have	to	make	sure	that	the	name	of
the	package	is	unique	and	does	not	cause	any	problem	when	our	code	is	used	together	with	any	other
library.	When	an	application	is	developed,	we	just	cannot	know	what	other	libraries	will	be	used	in	later
versions.	To	be	prepared	for	the	unexpected,	the	convention	is	to	name	the	packages	according	to	some
Internet	domain	names.	When	a	development	company	has	the	domain	name	acmecompany.com,	then	their
software	is	usually	under	the	com.acmecompany...	packages.	It	is	not	a	strict	language	requirement.	It	is	only	a
convention	to	write	the	domain	name	from	right	to	left,	and	use	it	as	package	name,	but	this	proves	to	be
fairly	good	in	practice.	Sometimes,	like	I	do	in	this	book,	one	can	deviate	from	this	practice	so	you	can
see	that	this	rule	is	not	carved	in	stone.

When	the	rubber	hits	the	road,	and	the	code	is	compiled	into	byte	code,	the	package	becomes	the	name	of
the	class.	Thus,	the	full	name	of	the	Sort	class	is	packt.java9.by.example.stringsort.Sort.	When	you	use	a	class
from	another	package,	you	can	use	this	full	name	or	import	the	class	into	your	class.	Again,	this	is	on	the
language	level.	Using	the	fully	qualified	name	or	importing	makes	no	difference	when	Java	becomes	byte
code.

Methods
We	have	already	discussed	methods,	but	not	in	detail,	and	there	are	still	some	aspects	that	we	should	meet
before	we	go	on.

There	are	two	methods	in	the	sample	classes.	There	can	be	many	methods	in	a	class.	Method	names	are
also	camel	cased	by	convention,	and	the	name	starts	with	a	lowercase	letter,	as	opposed	to	classes.
Methods	may	return	a	value.	If	a	method	returns	a	value,	the	method	has	to	declare	the	type	of	the	value	it
returns	and,	in	that	case,	any	execution	of	the	code	has	to	finish	with	a	return	statement.	The	return
statement	has	an	expression	after	the	keyword,	which	is	evaluated	when	the	method	is	executed	and	is
returned	by	the	method.	It	is	good	practice	to	have	only	one	single	return	from	a	method	but,	in	some
simple	cases,	breaking	that	coding	convention	may	be	forgiven.	The	compiler	checks	the	possible	method
execution	paths,	and	it	is	a	compile-time	error	if	some	of	the	paths	do	not	return	a	value.

When	a	method	does	not	return	any	value,	it	has	to	be	declared	to	be	void.	This	is	a	special	type	that	means
no	value.	Methods	that	are	void,	such	as	the	public	static	void	main	method,	may	simply	miss	the	return
statement	and	just	end.	If	there	is	a	return	statement,	there	is	no	place	for	any	expression	defining	a	return
value	after	the	return	keyword.	Again,	this	is	a	coding	convention	to	not	use	the	return	statement	in	case	of
a	method	that	does	not	return	any	value,	but	in	some	coding	patterns,	this	may	not	be	followed.

Methods	can	be	private,	protected,	public,	and	static,	and	we	will	discuss	their	meaning	later.

We	have	seen	that	the	main	method	that	was	invoked	when	the	program	started	is	a	static	method.	Such	a
method	belongs	to	the	class	and	can	be	invoked	without	having	any	instance	of	the	class.	Static	methods
are	declared	with	the	static	modifier,	and	they	cannot	access	any	field	or	method	that	is	not	static.

In	our	example,	the	sort	method	is	not	static,	but	as	it	does	not	access	any	field	and	does	not	call	any	non-
static	method	(as	a	matter	of	fact,	it	does	not	call	any	method	at	all),	it	could	just	as	well	be	static.	If	we
change	the	declaration	of	the	method	to	public	static	void	sort(String[]	names)	{	(note	the	word	static),	the
program	still	works,	but	the	IDE	will	give	a	warning	while	editing,	for	example:

Static	member	'packt.java9.by.example.stringsort.Sort.sort(java.lang.String[])'	accessed	via	instance	reference

That	is	because	you	can	access	the	method	without	an	instance	directly	through	the	name	of	the
Sort.sort(actualNames);	class	without	the	need	of	the	sorter	variable.	Calling	a	static	method	via	an	instance
variable	is	possible	in	Java	(again	something	that	seemed	to	be	a	good	idea	at	the	genesis	of	Java,	but	is
probably	not),	but	it	may	mislead	the	reader	of	the	code	into	thinking	that	the	method	is	an	instance
method.

Making	the	sort	method	static,	the	main	method	can	be	as	follows:

public	static	void	main(String[]	args)	{	

				String[]	actualNames	=	new	String[]{	

												"Johnson",	"Wilson",	

												"Wilkinson",	"Abraham",	"Dagobert"	

				};	

				Sort.sort(actualNames);	

				for	(final	String	name	:	actualNames)	{	

								System.out.println(name);	

				}	

}

It	seems	to	be	much	simpler	(it	is),	and,	in	case	the	method	does	not	use	any	field,	you	may	think	that	there
is	no	reason	to	make	a	method	non-static.	During	the	first	ten	years	of	Java,	static	methods	were	in	heavy
use.	There	is	even	a	term,	utility	class,	which	means	a	class	that	has	only	static	methods	and	should	not	be
instantiated.	With	the	advent	of	Inversion	of	Control	containers,	we	tend	to	use	less	static	methods.	When
static	methods	are	used,	it	is	harder	to	use	dependency	injection,	and	it	is	also	more	difficult	to	create
tests.	We	will	discuss	these	advanced	topics	in	the	next	few	chapters.	For	now,	you	are	informed	as	to
what	static	methods	are	and	that	they	can	be	used;	however,	usually,	unless	there	is	a	very	special	need	for
them,	we	will	avoid	them.

Later,	we	will	look	at	how	classes	are	implemented	in	the	hierarchy,	and	how	classes	may	implement
interfaces	and	extend	other	classes.	When	these	features	are	looked	at,	we	will	see	that	there	are	so-
called	abstract	classes	that	may	contain	abstract	methods.	These	methods	have	the	abstract	modifier,	and
they	are	not	defined—only	the	name,	argument	types	(and	names),	and	return	type	are	specified.	A
concrete	(non-abstract)	class	extending	the	abstract	class	should	define	them.

The	opposite	of	abstract	method	is	the	final	method	declared	with	the	final	modifier.	A	final	method
cannot	be	overridden	in	subclasses.

Interfaces
Methods	are	also	declared	in	interfaces.	A	method	declared	in	an	interface	does	not	define	the	actual
behavior	of	the	method;	they	do	not	contain	the	code.	They	have	only	the	head	of	the	method;	in	other
words,	they	are	abstract	implicitly.	Although	nobody	does,	you	may	even	use	the	abstract	keyword	in	an
interface	when	you	define	a	method.

Interfaces	look	very	similar	to	classes,	but	instead	of	using	the	class	keyword,	we	use	the	interface
keyword.	Because	interfaces	are	mainly	used	to	define	methods,	the	methods	are	public	if	no	modifier	is
used.

Interfaces	can	also	define	fields,	but	since	interfaces	cannot	have	instances	(only	implementing	classes
can	have	instances),	these	fields	are	all	static	and	they	also	have	to	be	final.	This	is	the	default	for	fields
in	interfaces,	thus	we	do	not	need	to	write	these	if	we	defined	fields	in	interfaces.

It	was	a	common	practice	to	define	only	constants	in	some	interfaces	and	then	use	these
in	classes.	To	do	that,	the	easiest	way	was	to	implement	the	interface.	Since	these
interfaces	do	not	define	any	method,	the	implementation	is	nothing	more	than	writing	the
implements	keyword	and	the	name	of	the	interface	into	the	header	of	the	class
declaration.	This	is	bad	practice	because	this	way	the	interface	becomes	part	of	the
public	declaration	of	the	class,	although	these	constants	are	needed	inside	the	class.	If
you	need	to	define	constants	that	are	not	local	to	a	class	but	are	used	in	many	classes,
then	define	them	in	a	class	and	import	the	fields	using	import	static	or	just	use	the	name	of
the	class	and	the	field.

Interfaces	can	also	have	nested	classes,	but	they	cannot	have	inner	classes.	The	obvious	reason	for	that	is
that	inner	class	instances	have	a	reference	to	an	instance	of	the	enclosing	class.	In	the	case	of	an	interface,
there	are	no	instances,	so	an	inner	class	could	not	have	a	reference	to	an	instance	of	an	enclosing
interface,	because	that	just	does	not	exist.	The	joyful	part	of	it	is	that	we	do	not	need	to	use	the	static
keyword	in	the	case	of	nested	classes	because	that	is	the	default,	just	as	in	the	case	of	fields.

With	the	advent	of	Java	8,	you	can	also	have	default	methods	in	interfaces	that	provide	default
implementation	of	the	method	for	the	classes	that	implement	the	interface.	There	can	also	be	static	and
private	methods	in	interfaces	since	Java	9.

Methods	are	identified	by	their	name	and	the	argument	list.	You	can	reuse	a	name	for	a	method	and	have
different	argument	types;	Java	will	identify	which	method	to	use	based	on	the	types	of	the	actual
arguments.	This	is	called	method	overloading.	Usually,	it	is	easy	to	tell	which	method	you	call,	but	when
there	are	types	that	extend	each	other,	the	situation	becomes	more	complex.	The	standard	defines	very
precise	rules	for	the	actual	selection	of	the	method	that	the	compiler	follows,	so	there	is	no	ambiguity.
However,	fellow	programmers	who	read	the	code	may	misinterpret	overloaded	methods	or,	at	least,	will
have	hard	time	identifying	which	method	is	actually	called.	Method	overloading	may	also	hinder
backward	compatibility	when	you	want	to	extend	your	class.	The	general	advice	is	to	think	twice	before
creating	overloaded	methods.	They	are	lucrative,	but	may	sometimes	be	costly.

Argument	passing
In	Java,	arguments	are	passed	by	value.	When	the	method	modifies	an	argument	variable,	then	only	the
copy	of	the	original	value	is	modified.	Any	primitive	value	is	copied	during	the	method	call.	When	an
object	is	passed	as	an	argument,	then	the	copy	of	the	reference	to	the	object	is	passed.

That	way,	the	object	is	available	to	be	modified	for	the	method.	In	the	case	of	classes	that	have	their
primitive	counterpart,	and	also	in	the	case	of	String	and	some	other	class	types,	the	objects	simply	do	not
provide	methods	or	fields	to	modify	the	state.	This	is	important	for	the	integrity	of	the	language,	and	to	not
get	into	trouble	when	objects	and	primitive	values	automatically	get	converted.

In	other	cases,	when	the	object	is	modifiable,	the	method	can	effectively	work	on	the	very	object	it	was
passed	to.	This	is	also	the	way	the	sort	method	in	our	example	works	on	the	array.	The	same	array,	which
is	also	an	object	itself,	is	modified.

This	argument	passing	is	much	simpler	than	it	is	in	other	languages.	Other	languages	let	the	developer	mix
the	pass	by	reference	and	the	pass	by	value	argument	passing.	In	Java,	when	you	use	a	variable	by	itself
as	an	expression	to	pass	a	parameter	to	a	method,	you	can	be	sure	that	the	variable	itself	is	never
modified.	The	object	it	refers	to,	however,	in	case	it	is	mutable,	may	be	modified.

An	object	is	mutable	if	it	can	be	modified,	altering	the	value	of	some	of	its	field	directly
or	via	some	method	call.	When	a	class	is	designed	in	a	way	that	there	is	no	normal	way	to
modify	the	state	of	the	object	after	the	creation	of	the	object,	the	object	is	immutable.	The
classes	Byte,	Short,	Integer,	Long,	Float,	Double,	Boolean,	Character,	as	well	as	String,	are	designed
in	the	JDK	so	that	the	objects	are	immutable.
It	is	possible	to	overcome	the	limitation	of	immutability	implementation	of	certain
classes	using	reflection,	but	doing	that	is	hacking	and	not	professional	coding.	Doing
that	can	be	done	for	one	single	purpose—getting	a	better	knowledge	and	understanding
of	the	inner	workings	of	some	Java	classes,	but	nothing	else.

Fields
Fields	are	variables	on	the	class	level.	They	represent	the	state	of	an	object.	They	are	variables,	with
defined	type	and	possible	initial	value.	Fields	can	be	static,	final,	transient,	and	volatile,	and	the	access
may	be	modified	with	the	public,	protected,	and	private	keywords.

Static	fields	belong	to	the	class.	It	means	that	there	is	one	of	them	shared	by	all	the	instances	of	the	class.
Normal,	non-static	fields	belong	to	the	objects.	If	you	have	a	field	named	f,	then	each	instance	of	the	class
has	its	own	f.	If	f	is	declared	static,	then	the	instances	will	share	the	very	same	f	field.

The	final	fields	cannot	be	modified	after	they	are	initialized.	Initialization	can	be	done	on	the	line	where
they	are	declared,	in	an	initializer	block	or	in	the	constructor	code.	The	strict	requirement	is	that	the
initialization	has	to	happen	before	the	constructor	returns.	This	way,	the	meaning	of	the	final	keyword	is
very	different,	in	this	case,	from	what	it	means	in	the	case	of	a	class	or	a	method.	A	final	class	cannot	be
extended	and	a	final	method	cannot	be	overridden	in	an	extending	class,	as	we	will	see	in	the	next	chapter.
The	final	fields	are	either	uninitialized	or	get	a	value	during	instance	creation.	The	compiler	also	checks
that	the	code	does	initialize	all	final	fields	during	the	object-instance	creation	or	during	the	class	loading,
in	case	the	final	field	is	static,	and	that	the	code	is	not	accessing/reading	any	final	field	that	was	not	yet
initialized.

It	is	a	common	misconception	that	the	final	fields	have	to	be	initialized	at	the
declaration.	It	can	be	done	in	an	initializer	code	or	in	a	constructor.	The	restriction	is
that,	no	matter	which	constructor	is	called	in	case	there	are	more,	the	final	fields	have	to
be	initialized	exactly	once.

The	transient	fields	are	not	part	of	the	serialized	state	of	the	object.	Serialization	is	an	act	of	converting
the	actual	value	of	an	object	to	physical	bytes.	Deserialization	is	the	opposite	when	the	object	is	created
from	the	bytes.	It	is	used	to	save	the	state	in	some	frameworks.	The	code	that	does	the	serialization,
java.lang.io.ObjectOutputStream,	works	only	with	classes	that	implement	the	Serializable	interface,	and	uses
only	the	fields	from	those	objects	that	are	not	transient.	Very	obviously,	transient	fields	are	also	not
restored	from	the	bytes	that	represent	the	serialized	form	of	the	object	because	their	value	is	not	there.

Serialization	is	usually	used	in	distributed	programs.	A	good	example	is	the	session	object	of	a	servlet.
When	the	servlet	container	runs	on	a	clustered	node,	some	fields	of	objects	stored	into	the	session	object
may	magically	disappear	between	HTTP	hits.	That	is	because	serialization	saves	and	reloads	the	session
to	move	the	session	between	the	nodes.	Serialization,	in	such	a	situation,	may	also	be	a	performance	issue
if	a	developer	does	not	know	the	side	effects	of	the	stored	large	objects	in	the	session.

The	volatile	keyword	is	a	keyword	that	tells	the	compiler	that	the	field	may	be	used	by	different	threads.
When	a	volatile	field	is	accessed	by	any	code,	the	JIT	compiler	generates	code	which	ensures	that	the
value	of	the	field	accessed	is	up	to	date.	When	a	field	is	not	volatile,	the	compiler-generated	code	may
store	the	value	of	the	field	in	a	processor	cache	or	registry	for	faster	access	when	it	sees	that	the	value
will	be	needed	soon	by	some	subsequent	code	fragment.	In	the	case	of	volatile	fields,	this	optimization
cannot	be	done.	Additionally,	note	that	saving	the	value	to	memory	and	loading	from	there	all	the	time	may
be	50	or	more	times	slower	than	accessing	a	value	from	a	registry	or	cache.

Modifiers
Methods,	constructors,	fields,	interfaces,	and	classes	can	have	access	modifiers.	The	general	rule	is	that
in	case	there	is	no	modifier,	the	scope	of	the	method,	constructor,	and	so	on,	is	the	package.	Any	code	in
the	same	package	can	access	it.

When	the	private	modifier	is	used,	the	scope	is	restricted	to	the	so-called	compilation	unit.	This	means	the
class	that	is	in	one	file.	What	is	inside	one	file	can	see	and	use	anything	declared	to	be	private.	This	way,
inner	and	nested	classes	can	have	access	to	each	other's	private	variables,	which	may	not	really	be	a	good
programming	style,	but	Java	permits	that.

The	opposite	of	private	is	public.	It	extends	the	visibility	to	the	whole	Java	program,	or	at	least	to	the
whole	module,	if	the	project	is	a	Java	9	module.

There	is	a	middle	way:	protected.	Anything	with	this	modifier	is	accessible	inside	the	package	and	also	in
classes	that	extend	the	class	(regardless	of	package)	that	the	protected	method,	field,	and	so	on,	is	in.

Object	initializers	and	constructors
When	an	object	is	instantiated,	the	appropriate	constructor	is	called.	The	constructor	declaration	looks
like	a	method	with	the	following	deviation:	the	constructor	does	not	have	a	return	value.	That	is	because
the	constructors	work	on	the	not-fully-ready	instance	when	the	new	command	operator	is	invoked	and	does
not	return	anything.	Constructors,	having	the	same	name	as	the	class,	cannot	be	distinguished	from	each
other.	If	there	is	a	need	for	more	than	one	constructor,	they	have	to	be	overloaded.	Constructors,	thus,	can
call	each	other,	almost	as	if	they	were	void	methods	with	different	arguments.	However,	there	is	a
restriction—when	a	constructor	calls	another,	it	has	to	be	the	very	first	instruction	in	the	constructor.	You
use	this()	syntax	with	an	appropriate	argument	list,	which	may	be	empty,	to	invoke	a	constructor	from
another	constructor.

The	initialization	of	the	object	instance	also	executes	initializer	blocks.	These	are	blocks	containing
executable	code	inside	the	{	and	}	characters	outside	the	methods	and	constructors.	They	are	executed
before	the	constructor	in	the	order	they	appear	in	the	code,	together	with	the	initialization	of	the	fields	in
case	their	declarations	contain	value	initialization.

If	you	see	the	static	keyword	in	front	of	an	initializer	block,	the	block	belongs	to	the	class	and	is	executed
when	the	class	is	loaded	along	with	the	static	field	initializers.

Compiling	and	running	the	program
Finally,	we	will	compile	and	execute	our	program	from	the	command	line.	There	is	nothing	new	in	this
one;	we	will	only	apply	what	we	have	learned	in	this	chapter	using	the	following	two	commands:	$	mvn
package

This	compiles	the	program,	packages	the	result	into	a	JAR	file,	and	finally	executes	the	following
command:

$	java	-cp	target/SortTutorial-1.0.0-SNAPSHOT.jar	packt.java9.by.example.App

This	will	print	the	following	result	on	the	command	line:

	

Summary
	

In	this	chapter,	we	have	developed	a	very	basic	sort	algorithm.	It	was	made	purposefully	simple	so	that
we	could	reiterate	the	basic	and	most	important	Java	language	elements,	classes,	packages,	variables,
methods,	and	so	on.	We	also	looked	at	build	tools,	so	we	are	not	empty	handed	in	the	next	chapters	when
projects	will	contain	more	than	just	two	files.	We	will	use	Maven	and	Gradle	in	the	following	chapters.

In	the	very	next	chapter,	we	will	make	the	sort	program	more	complex,	implementing	more	effective
algorithms	and	also	making	our	code	flexible,	giving	us	the	opportunity	to	learn	more	advanced	Java
language	features.

	

	

Optimizing	the	Sort	-	Making	Code	Professional
In	this	chapter,	we	will	develop	the	sorting	code	and	make	it	more	general.	We	want	to	sort	not	only	an
array	of	Strings.	Essentially,	we	will	write	a	program	that	can	sort	anything	that	is	sortable.	That	way,	we
will	bring	the	coding	to	its	full	extent	toward	one	of	the	major	strengths	of	Java:	abstraction.

Abstraction,	however,	does	not	come	without	a	price	tag.	When	you	have	a	class	that	sorts	strings	and	you
accidentally	mix	an	integer	or	something	else,	which	is	not	a	string,	into	the	sortable	data,	then	the
compiler	will	complain	about	it:	Java	does	not	allow	you	to	put	an	int	into	a	String	array.	When	the	code
is	more	abstract,	such	programming	errors	may	slip	in.	We	will	look	at	how	to	handle	such	exceptional
cases	catching	and	throwing	Exceptions.

To	identify	the	bugs,	we	will	use	unit	testing,	applying	the	industry	standard	JUnit	version	4.	As	JUnit
heavily	uses	annotation,	and	because	annotations	are	important,	you	will	learn	about	it	a	bit.

After	that,	we	will	modify	the	code	to	use	the	generics	feature	of	Java	that	was	introduced	into	the
language	in	version	5.	Using	that	possibility,	we	will	catch	the	coding	error	during	compilation	time,
which	is	better	than	during	run	time.	The	earlier	a	bug	is	identified,	the	cheaper	it	is	to	fix.

For	the	build,	we	will	still	use	Maven,	but	this	time,	we	will	split	the	code	into	small	modules.	Thus,	we
will	have	a	multi-module	project.	We	will	have	separate	modules	for	the	definition	of	a	sorting	module
and	for	the	different	implementations.	That	way,	we	will	look	at	how	classes	can	extend	each	other	and
implement	interfaces,	and,	generally,	we	will	really	start	to	program	in	the	object-oriented	way.

We	will	also	discuss	Test	Driven	Development	(TDD),	and	at	the	end	of	the	section,	we	will	start	using
the	brand	new	feature	of	Java	9:	module	support.

In	this	chapter,	we	will	cover	the	following	topics:

Object-oriented	programming	principles
Unit	testing	practices
Algorithmic	complexity	and	quick	sort
Exception	handling
Recursive	methods
Module	support

The	general	sorting	program
In	the	previous	chapter,	we	implemented	a	simple	sort	algorithm.	The	code	can	sort	elements	of	a	String
array.	We	did	this	to	learn.	For	practical	use,	there	is	a	ready	cooked	sort	solution	in	the	JDK	that	can	sort
members	of	collections,	which	are	comparable.

The	JDK	contains	a	utility	class	called	Collections.	This	class	contains	a	static	Collections.sort	method	that
is	capable	of	sorting	any	List	that	has	members	that	are	Comparable.	List	and	Comparable	are	interfaces	defined
in	the	JDK.	Thus,	if	we	want	to	sort	a	list	of	Strings,	the	simplest	solution	is	as	follows:

public	class	SimplestStringListSortTest	{	

				@Test	

				public	void	canSortStrings()	{	

								ArrayList	actualNames	=	new	ArrayList(Arrays.asList(

																"Johnson",	"Wilson",	

																"Wilkinson",	"Abraham",	"Dagobert"	

));	

								Collections.sort(actualNames);	

								Assert.assertEquals(new	ArrayList<String>(Arrays.<String>asList(

																"Abraham",	"Dagobert",	"Johnson",	"Wilkinson",	"Wilson")),	actualNames);	

				}	

}

This	code	fragment	is	from	a	sample	JUnit	test,	which	is	the	reason	we	have	the	@Test	annotation	in	front	of
the	method.	We	will	discuss	that	in	detail	later.	To	execute	that	test,	you	can	issue	the	following	command:

$	mvn	-Dtest=SimplestStringListSortTest	test

This	sort	implementation,	however,	does	not	fit	our	needs.	First	of	all,	because	it	is	there	ready	(no	need
to	code)	and	using	it	does	not	need	anything	new	that	you	have	not	learned	in	the	previous	chapters.
Except	for	the	annotation	in	front	of	the	method,	there	is	nothing	new	in	the	code	that	you	cannot
understand.	You	may	refresh	BY	turning	some	pages	back,	or	else	consult	the	oracle	online	documentation
of	the	JDK	(https://docs.oracle.com/javase/8/docs/api/),	but	that	is	all.	You	already	know	these	things.

You	may	wonder	why	I	wrote	the	URL	for	the	Java	version	8	API	to	the	link.	Well,	then
this	is	the	moment	of	honesty	and	truth-when	I	wrote	this	book,	the	Java	9	JDK	was	not
available	in	its	final	form.	I	created	most	of	the	examples	on	my	Mac	Book	using	Java	8
and	I	only	tested	the	features	that	are	Java	9	specific.	Support	at	the	moment	for	Java	9
in	the	IDEs	is	not	perfect.	When	you	read	this	book,	Java	9	will	be	available,	so	you	can
try	and	change	that	one	single	digit	from	8	to	9	in	the	URL	and	get	to	the	documentation
of	the	version	9.	At	the	moment,	I	get	HTTP	ERROR	404.
Sometimes,	you	may	need	the	documentation	of	older	versions.	You	can	use	3,	4,	5,	6,	or	7
instead	of	8	in	the	URL.	Documentation	for	3	and	4	is	not	available	to	read	online,	but	it
can	be	downloaded.	Hopefully,	you	will	never	need	that	anymore.	Version	5,	perhaps.
Version	6	is	still	widely	used	at	large	corporations.

Although	you	can	learn	a	lot	from	reading	code	that	was	written	by	other	programmers,	I	do	not
recommend	trying	to	learn	from	the	JDK	source	code	at	this	early	stage	of	your	studies.	These	blocks	of
code	are	heavily	optimized,	not	meant	to	be	tutorial	codes,	and	old.	They	do	not	get	rusted	during	the
years,	but	they	were	not	refactored	to	follow	the	coding	styles	of	Java	as	it	matured.	At	some	places,	you

https://docs.oracle.com/javase/8/docs/api/

can	find	really	ugly	code	in	the	JDK.

Okay,	saying	that	we	need	to	develop	a	new	sort	code	because	we	can	learn	from	it,	is	a	bit	contrived.
The	real	reason	why	we	need	a	sort	implementation	is	that	we	want	something	that	can	sort	not	only	List
data	types	and	a	List	of	something	that	implements	the	Comparable	interface.	We	want	to	sort	a	bunch	of
objects.	All	we	require	is	that	the	bunch	containing	the	objects	provides	simple	methods	that	are	just
enough	to	sort	them	and	have	a	sorted	bunch.

Originally	I	wanted	to	use	the	word	collection	instead	of	bunch,	but	there	is	a	Collection
interface	in	Java	and	I	wanted	to	emphasize	that	we	are	not	talking	about
java.util.Collection	of	objects.

We	also	do	not	want	the	objects	to	implement	the	Comparable	interface.	If	we	require	the	object	to	implement
the	Comparable	interface,	it	may	violate	the	Single	Responsibility	Principle	(SRP).

When	we	design	a	class,	it	should	model	some	object	class	of	the	real	world.	We	will	model	the	problem
space	with	classes.	The	class	should	implement	the	features	that	represent	the	behavior	of	the	objects	that
it	models.	If	we	look	at	the	example	of	students	from	the	second	chapter,	then	a	Student	class	should
represent	the	features	that	all	students	share,	and	is	important	from	the	modeling	point	of	view.	A	Student
object	should	be	able	to	tell	the	name	of	the	student,	the	age,	the	average	scores	of	the	last	year,	and	so	on.
All	students	have	feet,	and	certainly	each	of	those	feet	have	size	so	we	may	think	that	a	Student	class
should	also	implement	a	method	that	returns	the	size	of	the	student's	foot	(one	for	the	left	and	one	for	the
right	just	to	be	precise),	but	we	do	not.	We	do	not,	because	the	size	of	the	foot	is	irrelevant	from	the	model
point	of	view.	If	we	want	to	sort	a	list	containing	Student	objects,	the	Student	class	has	to	implement	the
Comparable	interface.	But	wait!	How	do	you	compare	two	students?	By	names,	by	age.	or	by	the	average
score	of	them?

Comparing	a	student	to	another	is	not	a	feature	of	the	Student.	Every	class,	or	for	that	matter,	package,
library,	or	programming	unit	should	have	one	responsibility	and	it	should	implement	only	that	and	nothing
else.	It	is	not	exact.	This	is	not	mathematics.	Sometimes,	it	is	hard	to	tell	if	a	feature	fits	into	the
responsibility	or	not.	There	are	simple	techniques.	For	example,	in	case	of	a	student,	you	can	ask	the	real
person	about	his	name	and	age,	and	probably	they	can	also	tell	you	their	average	score.	If	you	ask	one	of
them	to	compareTo	(another	student),	as	the	Comparable	interface	requires	this	method,	they	will	probably	ask
back,	but	by	what	attribute?	Or	how?	Or	just,	what?	In	such	a	case,	you	can	suspect	that	implementing	the
feature	is	probably	not	in	the	area	of	that	class	and	this	concern;	the	comparison	should	be	segregated
from	the	implementation	of	the	original	class.	This	is	also	called	Segregation	of	Concerns,	which	is
closely	related	to	SRP.

JDK	developers	were	aware	of	this.	Collections.sort	that	sorts	a	List	of	Comparable	elements	is	not	the	only
sorting	method	in	this	class.	There	is	another	that	just	sorts	any	List	if	you	pass	a	second	argument	and
object	that	implements	the	Comparator	interface	and	is	capable	of	comparing	two	elements	of	List.	This	is	a
clean	pattern	to	separate	the	concerns.	In	some	cases,	separating	the	comparison	is	not	needed.	In	other
cases,	it	is	desirable.	The	Comparator	interface	declares	one	single	method	that	the	implementing	classes
have	to	provide:	compare.	If	the	two	arguments	are	equal,	then	this	method	returns	0.	If	they	are	different,	it
should	return	a	negative	or	a	positive	int	depending	on	which	argument	precedes	which	one.

There	are	also	sort	methods	in	the	JDK	class,	java.util.Arrays.	They	sort	arrays,	or	only	a	slice	of	an	array.
The	method	is	a	good	example	of	method	overloading.	There	are	methods	with	the	same	name,	but	with
different	arguments	to	sort	a	whole	array	for	each	primitive	type,	for	a	slice	of	each,	and	also	two	for
object	array	implementing	the	Comparable	interface,	and	also	for	object	array	to	be	sorted	using	Comparator.
As	you	see,	there	is	a	whole	range	of	sort	implementations	available	in	the	JDK,	and	in	99	percent	of	the
cases,	you	will	not	need	to	implement	a	sort	yourself.	The	sorts	use	the	same	algorithm,	a	stable	merge
sort	with	some	optimization.

What	we	will	implement	is	a	general	approach	that	can	be	used	to	sort	lists,	arrays,	or	just	anything	that
has	elements	and	it	is	possible	to	swap	any	two	elements	of	it;	the	solution	will	be	able	to	use	the	bubble
sort	that	we	have	already	developed	and	also	other	algorithms.

A	brief	overview	of	various	sorting	algorithms
There	are	many	different	sorting	algorithms.	As	I	said,	there	are	simpler	and	more	complex	algorithms
and,	in	many	cases,	more	complex	algorithms	are	the	ones	that	run	faster.	In	this	chapter,	we	will
implement	the	bubble	sort	and	quick	sort.	We	have	already	implemented	the	bubble	sort	for	strings	in	the
previous	chapter,	so	in	this	case,	the	implementation	will	mainly	focus	on	the	recoding	for	general
sortable	object	sorting.	Implementing	quick	sort	will	involve	a	bit	of	algorithmic	interest.

Be	warned	that	this	section	is	here	to	give	you	only	a	taste	of	algorithmic	complexity.	It	is
far	from	precise	and	I	am	in	the	vain	hope	that	no	mathematician	reads	this	and	puts	a
curse	on	me.	Some	of	the	explanations	are	vague.	If	you	want	to	learn	computer	science
in	depth,	then	after	reading	this	book,	find	some	other	books	or	visit	online	courses.

When	we	talk	about	the	general	sorting	problem,	we	will	think	about	some	general	set	of	objects	that	can
be	compared	and	any	two	of	them	can	be	swapped	while	we	sort.	We	will	also	assume	that	this	is	an	in-
place	sort;	thus,	we	do	not	create	another	list	or	array	to	collect	the	original	objects	in	sorted	order.	When
we	talk	about	the	speed	of	an	algorithm,	we	are	talking	about	some	abstract	thing	and	not	milliseconds.
When	we	want	to	talk	about	milliseconds,	actual	real-world	duration,	we	should	already	have	some
implementation	in	some	programming	language	running	on	a	real	computer.

Algorithms,	in	their	abstract	form,	don't	do	that	without	implementation.	Still,	it	is	worth	talking	about	the
time	and	memory	need	of	an	algorithm.	When	we	do	that,	we	will	usually	investigate	how	the	algorithm
behaves	for	a	large	set	of	data.	For	a	small	set	of	data,	most	algorithms	are	just	fast.	Sorting	two	numbers
is	usually	not	an	issue,	is	it?

In	case	of	sorting,	we	will	usually	examine	how	many	comparisons	are	needed	to	sort	a	collection	of	n
elements.	Bubble	sort	needs	approximately	n2	(n	times	n)	comparisons.	We	cannot	say	that	this	is	exactly
n2	because	in	case	of	n=2,	the	result	is	1,	for	n=3	it	is	3,	for	n=4	it	is	6,	and	so	on.	However,	as	n	starts
to	get	larger,	the	actual	number	of	comparisons	needed	and	n2	will	asymptotically	be	of	the	same	value.
We	say	that	the	algorithmic	complexity	of	the	bubble	sort	is	O(n2).	This	is	also	called	the	big-O	notation.
If	you	have	an	algorithm	that	is	O(n2)	and	it	works	just	fine	for	1,000	elements	finishing	in	a	second,	then
you	should	expect	the	same	algorithm	finishing	for	1	million	elements	in	around	ten	days	or	in	a	month.	If
the	algorithm	is	linear,	say	O(n),	then	finishing	1,000	element	in	one	second	should	make	you	expect	1
million	to	be	finished	in	1,000	seconds.	That	is	a	bit	longer	than	a	coffee	break	and	too	short	for	lunch.

This	makes	it	feasible	that	if	we	want	some	serious	business	sorting	objects,	we	will	need	something
better	than	bubble	sort.	That	many	unnecessary	comparisons	are	not	only	wasting	our	time,	but	also	CPU
power,	consuming	energy,	and	polluting	the	environment.	The	question,	however,	is:	how	fast	can	a	sort
be?	Is	there	a	provable	minimum	that	we	cannot	overcome?

The	answer	is	yes.

When	we	implement	any	sorting	algorithm,	the	implementation	will	execute	comparisons	and	element
swaps.	That	is	the	only	way	to	sort	a	collection	of	objects.	The	outcome	of	a	comparison	can	have	two
values.	Say,	these	values	are	0	or	1.	This	is	one	bit	of	information.	If	the	result	of	the	comparison	is	1,

then	we	swap,	if	the	result	is	0,	then	we	do	not	swap.

We	can	have	the	objects	in	different	orders	before	we	start	the	comparison	and	the	number	of	different
orders	is	n!	(n	factorial).	That	is,	the	numbers	multiplied	from	1	to	n,	in	other	words	n!=1*2*3*...*(n-
1)*n.

Let's	assume	that	we	stored	the	result	of	the	individual	comparisons	in	a	number	as	a	series	of	bits	for
each	possible	input	for	the	sort.	Now,	if	we	reverse	the	execution	of	the	sort	and	run	the	algorithm	starting
from	the	sorted	collection,	control	the	swapping	using	the	bits	that	described	the	results	of	the
comparison,	and	we	use	the	bits	the	other	way	around	doing	the	last	swap	first	and	the	one	that	was	done
first	during	the	sorting	first,	we	should	get	back	the	original	order	of	the	objects.	This	way,	each	original
order	is	uniquely	tied	to	a	number	expressed	as	an	array	of	bits.

Now,	we	can	express	the	original	question	this	way:	how	many	bits	are	needed	to	describe	n	factorial
different	numbers?	That	is	exactly	the	number	of	comparisons	we	will	need	to	sort	n	elements.	The
number	of	bits	is	log2(n!)	.	Using	some	mathematics,	we	will	know	that	log2(n!)	is	the	same	as	log2(1)+
log2(2)+...+	log2(n).	If	we	look	at	this	expression's	asymptotic	value,	then	we	can	say	that	this	is	the
same	O(n*log	n).	We	should	not	expect	any	general	sorting	algorithm	to	be	faster.

For	special	cases,	there	are	faster	algorithms.	For	example,	if	we	want	to	sort	1	million	numbers	that	are
each	between	one	and	10,	then	we	only	need	to	count	the	number	of	the	different	numbers	and	then	create
a	collection	that	contains	that	many	ones,	twos,	and	so	on.	This	is	an	O(n)	algorithm,	but	this	is	not
applicable	for	the	general	case.

Again,	this	was	not	a	formal	mathematical	proof.

Quick	sort
Sir	Charles	Antony	Richard	Hoare	developed	the	quick	sort	algorithm	in	1959.	It	is	a	typical	divide	and
conquer	algorithm.	To	sort	a	long	array,	pick	an	element	from	the	array	that	will	be	the	pivot	element.
Then,	partition	the	array	so	that	the	left	side	will	contain	all	the	elements	that	are	smaller	than	the	pivot
and	the	right	side	will	contain	all	the	elements	that	are	larger	than,	or	equal	to	the	pivot.	When	this	is
done,	the	left	side	and	the	right	side	of	the	array	can	be	sorted	by	calling	the	sort	recursively.	To	stop	the
recursion,	when	we	have	one	single	element	in	the	array,	we	will	declare	it	sorted.

We	talk	about	a	recursive	algorithm	when	the	algorithm	is	defined	partially	using	itself.
The	most	famous	recursive	definition	is	the	Fibonacci	series	that	is	0	and	1	for	the	first
two	elements	and	any	later	element	the	nth	element	is	the	sum	of	the	(n-1)th	and	the	(n-2)th
element.	Recursive	algorithms	are	many	times	implemented	in	modern	programming
languages	implementing	a	method	that	does	some	calculation	but	sometimes	calls	itself.
When	designing	recursive	algorithms,	it	is	of	utmost	importance	to	have	something	that
stops	the	recursive	calls;	otherwise,	recursive	implementation	will	allocate	all	memory
available	for	the	program	stack	and	stop	the	program	with	error.

The	partitioning	algorithm	goes	the	following	way:	we	will	start	to	read	the	array	using	two	indices	from
the	start	and	end.	We	will	first	start	with	the	index	that	is	small	and	increase	the	index	until	it	is	smaller
than	the	large	index,	or	until	we	find	an	element	that	is	greater	than	or	equal	to	the	pivot.	After	this,	we
will	start	to	decrease	the	larger	index	so	long	as	it	is	greater	than	the	small	index	and	the	element	indexed
is	greater	than	or	equal	to	the	pivot.	When	we	stop,	we	swap	the	two	elements	pointed	by	the	two	indices,
if	the	indices	are	not	the	same,	and	we	will	start	increasing	and	decreasing	the	small	and	large	indices,
respectively.	If	the	indices	are	the	same,	then	we	are	finished	with	the	partitioning.	The	left	side	of	the
array	is	from	the	start	to	the	index	where	the	indices	met	minus	one;	the	right	side	starts	with	the	index	and
lasts	until	the	end	of	the	to-be-sorted	array.

This	algorithm	is	usually	O(n	log	n),	but	in	some	cases	it	can	degrade	to	be	O(n2),	depending	on	how	the
pivot	is	chosen.	There	are	different	approaches	for	the	selection	of	the	pivot.	In	this	book,	we	will	use	the
simplest:	we	will	select	the	first	element	of	the	sortable	collection	as	a	pivot.

<project>	
...	
	<modules>	
	<module>SortInterface</module>	

<module>bubble</module>	
	<module>quick</module>	
	</modules>	

</project>

$	tree	
	|-SortInterface	
	|---src/main/java/packt/java9/by/example/ch03	
	|-
bubble	
	|---src	
	|-----main/java/packt/java9/by/example/ch03/bubble	
	|-----
test/java/packt/java9/by/example/ch03/bubble	
	|-quick/src/	
	|-----main/java

	|-----test/java

Maven	dependency	management
Dependencies	are	also	important	in	the	POM	file.	The	previous	project	did	not	have	any	dependency,	but
this	time	we	will	use	JUnit.	Dependencies	are	defined	in	pom.xml	using	the	dependencies	tag.	For	example,	the
bubble	sort	module	contains	the	following	piece	of	code:

<dependencies>	

				<dependency>	

								<groupId>packt.java9.by.example</groupId>	

								<artifactId>SortInterface</artifactId>	

				</dependency>	

				<dependency>	

								<groupId>junit</groupId>	

								<artifactId>junit</artifactId>	

				</dependency>	

</dependencies>

The	actual	pom.xml	in	the	code	set	you	can	download	will	contain	more	code	than	this.	In
print,	we	often	present	a	version	or	only	a	fraction	that	helps	the	understanding	of	the
topic	that	we	are	discussing	at	that	point.

It	tells	Maven	that	the	module	code	uses	classes,	interfaces,	and	enum	types	that	are	defined	in	these
modules	that	are	available	from	some	repository.

When	you	use	Maven	to	compile	the	code,	the	libraries	that	are	used	by	your	code	are	available	from
repositories.	When	Ant	was	developed,	the	notion	of	repositories	was	not	invented.	At	that	time,	the
developers	copied	the	used	version	of	the	library	into	a	folder	in	the	source	code	structure.	Usually,	the
directory	lib	was	used	for	the	purpose.	There	were	two	problems	with	this	approach.	One	is	the	size	of
the	source	code	repository.	If,	for	example,	100	different	projects	used	JUnit,	then	the	JAR	file	of	the
JUnit	library	was	copied	there	100	times.	The	other	problem	was	to	gather	all	the	libraries.	When	a
library	used	another	library,	the	developers	had	to	read	the	documentation	of	the	library	that	described
(many	times	outdated	and	not	precise)	what	other	libraries	are	needed	to	use	this	library.	Those	libraries
had	to	be	downloaded	and	installed	the	same	way.	This	was	time	consuming	and	error	prone.	When	a
library	was	missing	and	the	developers	just	did	not	notice	it,	the	error	was	manifested	during	compile
time	when	the	compiler	could	not	find	the	class	or	even	only	at	runtime	when	the	JVM	was	not	able	to
load	the	class.

To	solve	this	issue,	Maven	comes	with	a	built-in	repository	manager	client.	The	repository	is	a	storage
that	contains	the	libraries.	As	there	can	be	other	types	of	files	in	a	repository,	not	only	libraries,	Maven
terminology	is	artifact.	The	groupId,	the	artifactId,	and	the	version	number	identify	an	artifact.	There	is	a
very	strict	requirement	that	an	artifact	can	only	be	put	into	a	repository	once.	Even	if	there	is	an	error
during	the	release	process	that	is	identified	after	the	erroneous	release	was	uploaded,	the	artifact	cannot
be	overwritten.	For	the	same	groupId,	artifactId,	and	version,	there	can	only	be	one	single	file	that	will	never
change.	If	there	was	an	error,	then	a	new	artifact	is	to	be	created	with	new	version	number	and	the
erroneous	artifact	may	be	deleted	but	not	replaced.

If	the	version	number	ends	with	-SNAPSHOT,	then	this	uniqueness	is	not	guaranteed	or	required.	Snapshots	are
usually	stored	in	separate	repository	and	are	not	published	for	the	world.

Repositories	contain	the	artifacts	in	directories	that	are	organized	in	a	defined	way.	When	Maven	runs,	it
can	access	different	repositories	using	https	protocol.

Formerly,	the	http	protocol	was	also	used,	and	for	non-paying	customers,	the	central
repository	was	available	via	http	only.	However,	it	was	discovered	that	modules
downloaded	from	the	repository	could	be	targets	for	men-in-the-middle	security	attacks
and	Sonatype	(http://www.sonatype.com)	changed	the	policy	and	used	https	protocol	only.	Never
configure	or	use	a	repository	with	the	http	protocol.	Never	trust	a	file	that	you
downloaded	from	HTTP.

There	is	a	local	repository	on	the	developer	machine,	usually	under	the	~/.m2/repository	directory.	When
you	issue	the	mvn	install	command,	Maven	stores	the	created	artifact	here.	Maven	also	stores	an	artifact
here	when	it	is	downloaded	from	a	repository	via	HTTPS.	This	way,	subsequent	compilations	do	not
need	to	go	out	to	the	network	for	the	artifacts.

Companies	usually	set	up	their	own	repository	manager	(the	one	that	Sonatype,	the	company	backing
Maven,	is	providing	Nexus).	These	applications	can	be	configured	to	communicate	with	several	other
repositories	and	collect	the	artifacts	from	there	on	demand,	essentially	implementing	proxy	functionality.
Artifacts	travel	to	the	build	from	the	far	end	repositories	to	the	closer	ones	in	a	hierarchical	structure	to
the	local	repo	and	essentially	to	the	final	artifact	if	the	packaging	type	of	the	project	is	war,	ear,	or	some
other	format	that	encloses	the	dependent	artifacts.	This	is	essentially	file	caching	without	revalidation	and
cache	eviction.	This	can	be	done	because	of	the	strict	rules	of	artifact	uniqueness.	This	is	the	reason	for
such	a	strict	rule.

If	the	project	bubble	were	a	standalone	project,	and	not	part	of	a	multi-module	one,	then	the	dependency
would	look	like	this:

<dependencies>	

				<dependency>	

								<groupId>packt.java9.by.example</groupId>	

								<artifactId>SortInterface</artifactId>	

								<version>1.0.0-SNAPSHOT</version>	

				</dependency>	

				<dependency>	

								<groupId>junit</groupId>	

								<artifactId>junit</artifactId>	

								<version>4.12</version>	

				</dependency>	

</dependencies>

If	version	is	not	defined	for	a	dependency,	Maven	will	not	be	able	to	identify	which	artifact	to	use.	In	the
case	of	a	multi-module	project,	version	can	be	defined	in	the	parent	and	the	modules	can	inherit	the
version.	As	the	parent	is	not	dependent	on	the	actual	dependency,	it	only	defines	the	version	attached	to
the	groupId	and	artifactId;	the	XML	tag	is	not	dependencies,	but	dependencyManagement/dependencies	under	the	top-
level	project	tag	as	in	the	following	example:

<dependencyManagement>	

				<dependencies>	

								<dependency>	

												<groupId>packt.java9.by.example</groupId>	

												<artifactId>SortInterface</artifactId>	

												<version>${project.version}</version>	

								</dependency>	

								<dependency>	

												<groupId>junit</groupId>	

http://www.sonatype.com

												<artifactId>junit</artifactId>	

												<version>4.12</version>	

												<scope>test</scope>	

								</dependency>	

				</dependencies>	

</dependencyManagement>

If	the	parent	POM	uses	the	dependencies	tag	directly,	Maven	is	not	able	to	decide	if	the	parent	depends	on
that	artifact	or	some	modules.	When	the	modules	want	to	use	junit,	they	need	not	specify	the	version.	They
will	get	it	from	the	parent	project	defined	as	4.12,	which	is	the	latest	from	JUnit	4.	If	ever	there	will	be	a
new	version	4.12.1,	with	some	serious	bugs	fixed,	then	the	only	place	to	modify	the	version	number	is	the
parent	POM,	and	the	modules	will	use	the	new	version	starting	with	the	next	execution	of	the	Maven
compilation.

When	the	new	version,	JUnit	5,	comes	out,	however,	the	modules	will	all	have	to	be	modified	because
JUnit	is	not	just	a	new	version.	Version	5	of	JUnit	is	split	into	several	modules	and,	this	way,	groupId	and
artifactId	will	also	change.

It	is	also	worth	noting	that	the	modules	that	implement	the	interfaces	from	the	SortInterface	module	are
eventually	dependent	on	this	module.	In	this	case,	the	version	is	defined	as	follows:

<version>${project.version}</version>

That	seems	to	be	a	bit	tautological	(it	is,	actually).	The	${project.version}	property	is	the	version	of	the
project	and	it	is	inherited	by	the	SortInterface	module.	This	is	the	version	of	the	artifact	that	the	other
modules	depend	on.	In	other	words,	the	modules	always	depend	on	the	version	that	we	are	currently
developing.

	

Code	the	sort
	

To	implement	the	sort,	first,	we	will	define	the	interfaces	that	a	sort	library	should	implement.	Defining
the	interface	before	the	actual	coding	is	a	good	practice.	When	there	are	many	implementations,	it	is
sometimes	recommended	to	first	create	a	simple	one	and	start	using	it	so	that	the	interface	may	evolve
during	the	phase,	and	when	the	more	complex	implementations	are	due,	then	the	interface	to	be
implemented	is	already	fixed,	more	or	less.

	

	

package	packt.java9.by.example.ch03;	

public	interface	Sort	{	
	void
sort(SortableCollection	collection);	
}

package	packt.java9.by.example.ch03;	

public	interface	SortableCollection	{

}

Creating	BubbleSort
Now,	we	can	start	creating	the	bubble	sort	that	implements	the	Sort	interface:

package	packt.java9.by.example.ch03.bubble;	

import	packt.java9.by.example.ch03.*;	

import	java.util.Comparator;	

public	class	BubbleSort	implements	Sort	{	

				@Override	

				public	void	sort(SortableCollection	collection)	{	

								int	n	=	collection.size();	

								while	(n	>	1)	{	

												for	(int	j	=	0;	j	<	n	-	1;	j++)	{	

																if	(comparator.compare(collection.get(j),	

																								collection.get(j	+	1))	>	0)	{	

																				swapper.swap(j,	j	+	1);	

																}	

												}	

												n--;	

								}	

				}

Normally,	the	algorithm	to	execute	needs	two	operations	that	we	implemented	in	the	code	last	time
specific	to	a	String	array:	comparing	two	elements	and	swapping	two	elements.	As	this	time	the	sort
implementation	itself	does	not	know	what	type	the	elements	are	used	and	also	does	not	know	if	the
something	it	sorts	is	an	array,	a	lists	or	something	else,	it	needs	something	that	does	it	for	the	sort	when
needed.	More	precisely,	it	needs	a	comparator	object	capable	of	comparing	two	elements	and	it	needs	a
swapper	object	that	is	capable	of	swapping	two	elements	in	the	collection.

To	get	those,	we	can	implement	two	setter	methods	that	can	set	the	objects	for	the	purpose	before	sort	is
invoked.	As	this	is	not	specific	to	the	bubble	sort	algorithm	but	is	rather	general,	these	two	methods
should	also	be	made	a	part	of	the	interface,	so	the	implementation	is	overriding	it.

private	Comparator	comparator	=	null;	

				@Override	

				public	void	setComparator(Comparator	comparator)	{	

								this.comparator	=	comparator;	

				}	

				private	Swapper	swapper	=	null;	

				@Override	

				public	void	setSwapper(Swapper	swapper)	{	

								this.swapper	=	swapper;	

				}	

}

The	@Override	annotation	signals	for	the	Java	compiler	that	the	method	is	overriding	a	method	of	the	parent
class,	or,	as	in	this	case,	of	the	interface.	A	method	can	override	a	parent	method	without	this	annotation;
however,	if	we	use	the	annotation,	the	compilation	fails	if	the	method	does	actually	not	override
something.	This	helps	you	discover	during	compile	time	that	something	was	changed	in	the	parent	class	or
in	the	interface	and	we	did	not	follow	that	change	in	the	implementation,	or	that	we	just	made	some
mistake	thinking	that	we	will	override	a	method	when	we	actually	do	not.	As	annotations	are	heavily	used
in	unit	tests,	we	will	talk	about	annotations	in	a	bit	more	detail	later.

Amending	the	interfaces
The	modified	Sort	interface	will	look	like	this:

public	interface	Sort	{	

				void	sort(SortableCollection	collection);	

				void	setSwapper(Swapper	swap);	

				void	setComparator(Comparator	compare);	

}

This	also	means	that	we	will	need	two	new	interfaces:	Swapper	and	Comparator.	We	are	lucky	that	the	Java
runtime	already	defines	a	Comparator	interface	that	just	fits	the	purpose.	You	may	have	guessed	that	from	the
following	import	statement:

import	java.util.Comparator;

When	you	need	something	very	basic,	like	a	comparator	interface,	it	is	most	probably	defined	in	the	runtime.
It	is	advisable	to	consult	the	runtime	before	writing	your	own	version.	The	Swapper	interface,	however,	we
will	have	to	create.

package	packt.java9.by.example.ch03;	

public	interface	Swapper	{	

				void	swap(int	i,	int	j);	

}

As	it	is	used	to	swap	two	elements	specified	by	the	indices	in	SortableCollection,	there	is	a	method,	quite
trivially	named	swap	for	the	purpose.	But,	we	are	not	ready	yet.	If	you	try	to	compile	the	preceding	code,
the	compiler	will	complain	about	the	get	and	size	methods.	They	are	needed	by	the	algorithm	to	implement
the	sort,	but	they	are	not	inherently	part	of	the	sorting	itself.	This	is	a	responsibility	that	should	not	be
implemented	in	the	sort.	As	we	do	not	know	what	type	of	collections	we	will	sort,	it	is	not	only
unadvisable	but	also	impossible	to	implement	these	functionalities	inside	the	sort.	It	seems	that	we	just
cannot	sort	anything.	There	are	some	restrictions	we	will	have	to	set.	The	sorting	algorithm	must	know	the
size	of	the	collection	we	sort	and	also	should	have	access	to	an	element	by	index	so	that	it	can	pass	it	on
to	the	comparator.

These	restrictions	are	expressed	in	the	SortableCollection	interface	that	we	just	left	empty	not	knowing
before	the	first	sort	implementation	what	is	required	to	be	there.

package	packt.java9.by.example.ch03;	

public	interface	SortableCollection	{	

				Object	get(int	i);	

				int	size();	

}

Now,	we	are	ready	with	the	interfaces	and	the	implementation	and	we	can	go	on	testing	the	code.	But,
before	that,	we	will	briefly	reiterate	what	we	did	and	why	we	did	that.

Architectural	considerations
We	created	an	interface	and	a	simple	implementation	of	it.	During	the	implementation,	we	discovered	that
the	interface	needs	other	interfaces	and	methods	that	are	needed	to	support	the	algorithm.	This	usually
happens	during	the	architectural	design	of	the	code,	before	implementation.	For	didactical	reasons,	I
followed	the	build-up	of	the	interfaces	while	we	developed	the	code.	In	real	life,	when	I	created	the
interfaces,	I	created	them	all	in	one	step	as	I	have	enough	experience.	I	wrote	my	first	quick	sort	code
around	1983	in	Fortran.	However,	it	does	not	mean	that	I	hit	the	bull's	eye	with	just	any	problem	and	come
out	with	the	final	solution.	It	just	happens	that	sort	is	a	too	well	known	problem.	If	you	need	to	modify	the
interfaces	or	other	aspects	of	your	design	during	development,	do	not	feel	embarrassed.	It	is	a	natural
consequence	and	a	proof	that	you	understand	things	better	and	better	as	time	goes	by.	If	the	architecture
needs	change,	it	is	better	to	be	done	than	not,	and	the	sooner	it	is,	the	better.	In	real	life	enterprise
environments,	we	will	design	interfaces	just	to	learn	during	development	that	there	were	some	aspects
that	we	forgot.	They	are	very	true	and	bit	more	complex	operations	than	sorting	a	collection.

In	the	case	of	the	sorting	problem,	we	abstracted	the	something	we	want	to	sort	to	the	most	possible
extreme.	The	Java	build	in	sort	can	sort	arrays	or	lists.	If	you	want	to	sort	something	that	is	not	a	list	or	an
array,	you	have	to	create	a	class	that	implements	the	java.util.List	interface	with	more	than	24	methods	it
requires	to	wrap	your	sortable	object	to	make	it	sortable	by	the	JDK	sort.	To	be	honest,	that	is	not	too
many,	and	in	a	real-world	project,	I	would	consider	that	as	an	option.

However,	we	do	not,	and	cannot	know,	what	methods	of	the	interface	the	built-in	sort	uses.	Those	that	are
used	should	be	functionally	implemented	and	those	that	are	not,	can	contain	a	simple	return	statement
because	they	are	just	never	invoked.	A	developer	can	consult	the	source	code	of	the	JDK	and	see	what
methods	are	actually	used,	but	that	is	not	the	contract	of	the	search	implementation.	It	is	not	guaranteed
that	a	new	version	will	still	use	only	those	methods.	If	a	new	version	starts	to	use	a	method	that	we
implemented	with	a	single	return	statement,	the	sort	will	magically	fail.

It	is	also	an	interesting	performance	question	how	the	swapping	of	two	elements	is	implemented	by	the
search	using	only	the	List	interface.	There	is	no	put(int,	Object)	method	in	the	List	interface.	There	is	add(int
Object),	but	that	inserts	a	new	element	and	it	may	be	extremely	costly	(burning	CPU,	disk,	energy)	to	push
all	elements	of	the	list	up	if	the	objects	are	stored,	for	example,	on	disk.	Furthermore,	the	next	step	may	be
removing	the	element	after	the	one	we	just	inserted,	doing	the	costly	process	of	moving	the	tail	of	the	list
again.	That	is,	the	trivial	implementation	of	put(int,Object)	that	the	sort	may	or	may	not	follow.	Again,	this
is	something	that	should	not	be	assumed.

When	developers	use	libraries,	classes,	and	methods	from	the	JDK,	open	source,	or	commercial	libraries,
the	developers	may	consult	the	source	code	but	they	should	not	rely	on	the	implementation.	You	should
rely	only	on	the	contract	and	the	definition	of	the	API	that	the	library	comes	with.	When	you	implement	an
interface	from	some	external	library,	and	you	do	not	need	to	implement	some	part	of	it,	and	create	some
dummy	methods,	feel	the	danger	in	the	air.	It	is	an	ambush.	It	is	likely	that	either	the	library	is	poor	quality
or	you	did	not	understand	how	to	use	it.

In	our	case,	we	separated	the	swapping	and	the	comparison	from	the	sort.	The	collection	should
implement	these	operations	and	provide	them	for	the	sort.	The	contract	is	the	interface,	and	to	use	the	sort,

you	have	to	implement	all	methods	of	the	interfaces	we	defined.

The	interface	of	Sort	defines	setters	that	set	Swapper	and	Comparator.	Having	dependencies	set	that	way	may
lead	to	a	code	that	creates	a	new	instance	of	a	class	implementing	the	Sort	interface,	but	does	not	set
Swapper	and	Comparator	before	invoking	Sort.	This	will	lead	to	NullPointerException	the	first	time	the	Comparator	is
invoked	(or	when	the	Swapper	is	invoked	in	case	the	implementation	invokes	that	first,	which	is	not	likely,
but	possible).	The	calling	method	should	inject	the	dependencies	before	using	the	class.	When	it	is	done
through	setters,	it	is	called	setter	injection.	This	terminology	is	heavily	used	when	we	use	frameworks
such	as	Spring,	Guice,	or	some	other	container.	Creating	these	service	classes	and	injecting	the	instance
into	our	classes	is	fairly	similar	all	the	time.

Container	implementations	contain	the	functionality	in	a	general	way	and	provide	configuration	options	to
configure	what	instances	are	to	be	injected	into	what	other	objects.	Usually,	this	leads	to	shorter,	more
flexible,	and	more	readable	code.	However,	dependency	injection	is	not	exclusive	to	containers.	When
we	write	the	testing	code	in	the	next	section,	and	invoke	the	setters,	we	actually	do	dependency	injection.

There	is	another	way	of	dependency	injection	that	avoids	the	problem	of	dependencies	not	being	set.	This
is	called	constructor	injection.	The	dependencies	are	final	private	fields	with	no	values.	Remember	that
these	fields	should	get	their	final	values	by	the	time	the	constructor	finishes.	Constructor	injection	passes
the	injected	values	to	the	constructor	as	arguments	and	the	constructor	sets	the	fields.	This	way,	the	fields
are	guaranteed	to	be	set	by	the	time	the	object	was	constructed.	This	injection,	however,	cannot	be
defined	in	an	interface.

Now,	we	already	have	the	code,	and	we	know	the	considerations	of	how	the	interfaces	were	created.	This
is	the	time	to	do	some	testing.

Creating	unit	tests
When	we	write	code,	we	should	test	it.	No	code	has	ever	gone	into	production	before	at	least	doing	some
test	runs.	There	are	different	levels	of	tests	having	different	aims,	technologies,	industry	practices,	and
names.

Unit	tests,	as	the	name	suggests,	test	a	unit	of	code.	Integration	tests	test	how	the	units	integrate	together.
Smoke	tests	test	a	limited	set	of	the	features	just	to	see	that	the	code	is	not	totally	broken.	There	are	other
tests,	until	the	final	test,	which	is	the	proof	of	the	work:	user	acceptance	test.	Proof	of	the	pudding	is
eating	it.	A	code	is	good	if	the	user	accepts	it.

Many	times,	I	tell	juniors	that	the	name	user	acceptance	test	is	a	bit	misleading,	because
it	is	not	the	user	who	accepts	the	result	of	a	project,	but	the	customer.	By	definition,	the
customer	is	the	person	who	pays	the	bill.	Professional	development	is	paid;	otherwise,	it
is	not	professional.	The	terminology	is,	however,	user	acceptance	test.	It	just	happens
that	customers	accept	the	project	only	if	the	users	can	use	the	program.

When	we	develop	in	Java,	unit	test	is	testing	standalone	classes.	In	other	words,	in	Java	development,	a
unit	is	a	class	when	we	talk	about	unit	tests.	To	furnish	unit	tests,	we	usually	use	the	JUnit	library.	There
are	other	libraries,	such	as	TestNG,	but	JUnit	is	the	most	widely	used,	so	we	will	use	JUnit.	To	use	it	as	a
library,	first,	we	will	have	to	add	it	to	the	Maven	POM	as	a	dependency.

Adding	JUnit	as	dependency
Recall	that	we	have	a	multi-module	project,	and	the	dependency	versions	are	maintained	in	the	parent
POM	under	the	dependencyManagement	tag.

<dependencyManagement>	

				<dependencies>	

								...	

								<dependency>	

												<groupId>junit</groupId>	

												<artifactId>junit</artifactId>	

												<version>4.12</version>	

												<scope>test</scope>	

								</dependency>	

				</dependencies>	

</dependencyManagement>

The	scope	of	the	dependency	is	test,	which	means	that	this	library	is	needed	only	to	compile	the	test	code
and	during	the	execution	of	the	test.	The	JUnit	library	will	not	make	its	way	to	the	final	released	product;
there	is	no	need	for	it.	If	you	find	the	JUnit	library	in	some	deployed	production	Web	Archive	(WAR)
file,	suspect	that	somebody	was	not	properly	managing	the	scopes	of	the	libraries.

Maven	supports	the	compilation	and	the	execution	of	JUnit	tests	in	the	lifecycle	of	the	project.	If	we	want
to	execute	the	tests,	only	we	can	issue	the	mvn	test	command.	The	IDEs	also	support	the	execution	of	the
unit	tests.	Usually,	the	same	menu	item	that	can	be	used	to	execute	a	class	that	has	a	public	static	main
method	can	be	used.	If	the	class	is	a	unit	test	utilizing	JUnit,	the	IDE	will	recognize	it	and	execute	the	tests
and	usually	give	a	graphical	feedback	on	what	test	was	executing	fine	and	which	ones	failed,	and	how.

Writing	the	BubbleSortTest	class
The	test	classes	are	separated	from	the	production	classes.	They	go	into	the	src/test/java	directory.	When
we	have	a	class	named,	for	example,	BubbleSort,	then	the	test	will	be	named	BubbleSortTest.	This	convention
helps	the	executing	environment	to	separate	the	tests	from	those	classes	that	do	not	contain	tests	but	are
needed	to	execute	the	tests.	To	test	the	sort	implementation	we	have	just	created,	we	can	furnish	a	class
that	contains,	for	now,	a	single	canSortStrings	method.

Unit	test	method	names	are	used	to	document	the	functionality	being	tested.	As	the	JUnit	framework
invokes	each	and	every	method	that	has	the	@Test	annotation,	the	name	of	the	test	is	not	referenced
anywhere	in	our	code.	We	can	bravely	use	arbitrary	long	method	names;	it	will	not	hinder	readability	at
the	place	where	the	method	is	invoked.

package	packt.java9.by.example.ch03.bubble;	

//	imports	deleted	from	print	

public	class	BubbleSortTest	{	

				@Test	

				public	void	canSortStrings()	{	

								ArrayList	actualNames	=	new	ArrayList(Arrays.asList(

																"Johnson",	"Wilson",	

																"Wilkinson",	"Abraham",	"Dagobert"	

));

The	method	contains	ArrayList	with	the	actual	names	that	we	have	already	gotten	familiar	with.	As	we	have
a	sort	implementation	and	interface	that	needs	SortableCollection,	we	will	create	one	backed	up	by	ArrayList.

SortableCollection	namesCollection	=	new	SortableCollection()	{	

												@Override	

												public	Object	get(int	i)	{	

																return	actualNames.get(i);	

												}	

												@Override	

												public	int	size()	{	

																return	actualNames.size();	

												}	

								};

We	declared	a	new	object	that	has	the	SortableCollection	type,	which	is	an	interface.	To	instantiate
something	that	implements	SortableCollection,	we	will	need	a	class.	We	cannot	instantiate	an	interface.	In
this	case,	define	the	class	in	the	place	of	the	instantiation.	This	is	called	an	anonymous	class	in	Java.	The
name	comes	from	the	fact	that	the	name	of	the	new	class	is	not	defined	in	the	source	code.	The	Java
compiler	will	automatically	create	a	name	for	the	new	class,	but	that	is	not	interesting	for	the
programmers.	We	will	simply	write	new	SortableCollection()	and	provide	the	needed	implementation
immediately	following	between	{	and	}.	It	is	very	convenient	to	define	this	anonymous	class	inside	the
method	as,	this	way,	it	can	access	ArrayList	without	passing	a	reference	to	ArrayList	in	the	class.

As	a	matter	of	fact,	the	reference	is	needed,	but	the	Java	compiler	automatically	does	this.	The	Java
compiler,	in	this	case,	also	takes	care	that	automatic	reference	passing	this	way	can	only	be	done	using
variables	that	were	initialized	and	will	not	change	during	the	execution	of	the	code	after	the	instantiation
of	the	anonymous	class.	The	variable	actualNames	was	set	and	it	should	not	be	changed	in	the	method	later.

As	a	matter	of	fact,	we	can	even	define	actualNames	to	be	final	and	this	would	have	been	a	requirement	if
we	used	Java	1.7	or	earlier.	Starting	with	1.8,	the	requirement	is	that	the	variable	is	effectively	final,	but
you	need	not	declare	it	to	be	final.

The	next	thing	that	we	need	is	a	Swapper	implementation	for	ArrayList.	In	this	case,	we	will	define	a	whole
class	inside	the	method.	It	can	also	be	an	anonymous	class,	but	this	time	I	decided	to	use	a	named	class	to
demonstrate	that	a	class	can	be	defined	inside	a	method.	Usually,	we	do	not	do	that	in	production	projects.

class	SwapActualNamesArrayElements	implements	Swapper	{	

												@Override	

												public	void	swap(int	i,	int	j)	{	

																final	Object	tmp	=	actualNames.get(i);	

																actualNames.set(i,actualNames.get(j));	

																actualNames.set(j,	tmp);	

												}	

								}

Last,	but	not	least,	we	will	need	a	comparator	before	we	can	invoke	the	sort.	As	we	have	Strings	to
compare,	this	is	easy	and	straightforward.

Comparator	stringCompare	=	new	Comparator()	{	

												@Override	

												public	int	compare(Object	first,	Object	second)	{	

																final	String	f	=	(String)	first;	

																final	String	s	=	(String)	second;	

																return	f.compareTo(s);	

												}	

								};

Having	everything	prepared	for	the	sorting,	we	will	finally	need	an	instance	of	the	Sort	implementation,
set	the	comparator	and	the	swapper,	and	invoke	the	sort.

Sort	sort	=	new	BubbleSort();	

								sort.setComparator(stringCompare);	

								sort.setSwapper(new	SwapActualNamesArrayElements());	

								sort.sort(namesCollection);

The	last,	but	most	important	part	of	the	test	is	to	assert	that	the	result	is	the	one	that	we	expect.	JUnit	helps
us	do	that	with	the	aid	of	the	Assert	class.

Assert.assertEquals(Arrays.asList("Abraham",	"Dagobert",	"Johnson",	"Wilkinson",	"Wilson"),	actualNames);	

				}	

}

The	call	to	assertEquals	checks	that	the	first	argument,	the	expected	result,	equals	the	second	argument,	the
sorted	actualNames.	If	they	differ,	then	AssertionError	is	thrown;	otherwise,	the	test	just	finishes	fine.

Good	unit	tests
Is	this	a	good	unit	test?	If	you	read	it	in	a	tutorial	book	like	this,	it	has	to	be.	Actually,	it	is	not.	It	is	a	good
code	to	demonstrate	some	of	the	tools	that	JUnit	provides	and	some	Java	language	features,	but	as	a	real
JUnit	test,	I	will	not	use	it	in	a	real	life	project.

What	makes	a	unit	test	good?	To	answer	this	question,	we	will	have	to	find	what	the	unit	test	is	good	for
and	what	it	is	that	we	use	it	for.

We	will	create	unit	tests	to	validate	the	operation	of	the	units	and	to	document.

Unit	tests	are	not	to	find	bugs.	Developers	eventually	use	unit	tests	during	debugging	sessions	but,	many
times,	the	testing	code	created	for	the	debugging	is	a	temporary	one.	When	the	bug	is	fixed,	the	code	used
to	find	it	will	not	get	into	the	source	code.	For	every	new	bug,	there	should	be	a	new	test	created	that
covers	the	functionality	that	was	not	properly	working,	but	it	is	hardly	the	test	code	that	is	used	to	find	the
bug.	This	is	because	unit	tests	are	mainly	for	documentation.	You	can	document	a	class	using	JavaDoc,
but	the	experience	shows	that	the	documentation	often	becomes	outdated.	The	developers	modify	the
code,	but	they	do	not	modify	the	documentation,	and	the	documentation	becomes	obsolete	and	misleading.
Unit	tests,	however,	are	executed	by	the	build	system	and	if	Continuous	Integration	(CI)	is	in	use	(and	it
should	be,	in	a	professional	environment),	then	the	build	will	be	broken	if	a	test	fails,	all	developers	will
get	mail	notification	about	it,	and	it	will	drive	the	developer	breaking	the	build	to	fix	the	code	or	the	test.
This	way,	the	tests	verify	that	continuous	development	did	not	break	anything	in	the	code	or,	at	least,	not
something	that	can	be	discovered	using	unit	tests.

A	good	unit	test	is	readable
Our	test	is	far	from	being	readable.	A	test	case	is	readable	if	you	look	at	it	and	in	15	seconds	you	can	tell
what	it	does.	It	assumes,	of	course,	some	experience	in	Java	on	behalf	of	the	reader,	but	you	get	the	point.
Our	test	is	cluttered	with	support	classes	that	are	not	core	to	the	test.

Our	test	also	hardly	validates	that	the	code	is	working	properly.	It	actually	does	not.	There	are	some	bugs
in	it	that	I	put	there	deliberately,	which	we	will	locate	and	zap	in	the	following	sections.	One	single	test
that	sorts	a	single	String	array	is	far	from	validating	a	sort	implementation.	If	I	were	to	extend	this	test	to	a
real-world	test,	we	would	need	methods	that	would	have	the	name	canSortEmptyCollection,
canSortOneElementCollection,	canSortTwoElements,	canSortReverseOrder,	or	canSortAlreadySorted.	If	you	look	at	the
names,	you	will	see	what	tests	we	need.	Coming	from	the	nature	of	the	sort	problem,	an	implementation
may	be	reasonably	sensitive	to	errors	in	these	special	cases.

What	are	the	good	points	in	our	unit	test,	in	addition	to	it	being	an	acceptable	demonstration	tool?

	

Unit	tests	are	fast
	

Our	unit	test	runs	fast.	As	we	execute	unit	tests	each	time,	the	CI	fires	up	a	build	and	the	execution	of	the
tests	should	not	last	long.	You	should	not	create	a	unit	test	sorting	billions	of	elements.	That	is	a	kind	of
stability	or	load	test	and	they	should	run	in	separate	test	periods	and	not	every	time	the	build	is	running.
Our	unit	test	sorts	five	elements	that	are	reasonable.

	

	

	

Unit	tests	are	deterministic
	

Our	unit	test	is	deterministic.	Non-deterministic	unit	tests	are	the	nightmare	of	the	developers.	If	you	are
in	a	group	where	some	builds	break	on	the	CI	server,	and	when	a	build	breaks,	your	fellow	developer
says	that	you	just	have	to	try	it	again;	no	way!	If	a	unit	test	runs,	it	should	run	all	times.	If	it	fails,	it	should
fail	no	matter	how	many	times	you	start	it.	A	non-deterministic	unit	test,	in	our	case,	will	be	to	render
random	numbers	and	have	them	sorted.	We	will	end	up	with	different	arrays	in	each	test	run	and,	in	case
there	is	some	bug	in	the	code	that	manifests	for	some	array,	we	will	not	be	able	to	reproduce	it.	Not	to
mention	that	the	assertion	that	the	code	was	running	fine	is	also	difficult.

If	we	sorted	a	random	array	in	a	unit	test	(something	we	do	not),	we	could,	hypothetically,	assert	that	the
array	is	sorted,	comparing	the	elements	one	after	the	other	checking	that	they	are	in	ascending	order.	It
would	also	be	a	totally	wrong	practice.

	

	

	

Assertions	should	be	as	simple	as	possible
	

If	the	assertion	is	complex,	the	risk	of	introducing	bugs	in	the	assertion	is	higher.	The	more	complex	the
assertion,	the	higher	the	risk.	We	will	write	the	unit	tests	to	ease	our	lives	and	not	to	have	more	code	to
debug.

Additionally,	one	test	should	assert	only	one	thing.	This	one	assertion	may	be	coded	with	multiple	Assert
class	methods,	one	after	the	other.	Still,	the	aim	of	these	is	to	assert	the	correctness	of	one	single	feature
of	the	unit.	Remember	the	SRP:	one	test,	one	feature.	A	good	test	is	like	a	good	sniper:	one	shot,	one	kill.

	

	

Unit	tests	are	isolated
When	we	test	a	unit	A,	any	change	in	another	unit	B,	or	a	bug	in	a	different	unit	should	not	affect	our	unit
test	that	is	for	the	unit	A.	In	our	case,	it	was	easy	because	we	have	only	one	unit.	Later,	when	we	develop
the	test	for	the	quick	sort,	we	will	see	that	this	separation	is	not	that	simple.

If	the	unit	tests	are	properly	separated,	a	failing	unit	test	clearly	points	out	the	location	of	the	problem.	It
is	in	the	unit	where	the	unit	test	failed.	If	tests	do	not	separate	the	units,	then	a	failure	in	one	test	may	be
caused	by	a	bug	in	a	different	unit	than	we	expect.	In	this	case,	these	tests	are	not	really	unit	tests.

In	practice,	you	should	make	a	balance.	If	the	isolation	of	the	units	will	be	too	costly,	you	can	decide	to
create	integration	tests;	and,	if	they	still	run	fast,	have	them	executed	by	the	CI	system.	At	the	same	time,
you	should	also	try	to	find	out	why	the	isolation	is	hard.	If	you	cannot	easily	isolate	the	units	in	the	tests,	it
means	that	the	units	are	too	strongly	coupled,	which	may	not	be	a	good	design.

Unit	tests	cover	the	code
Unit	tests	should	test	all	usual	and	also	all	special	cases	of	the	functionality.	If	there	is	a	special	case	of
code	that	is	not	covered	by	the	unit	test,	the	code	is	in	danger.	In	case	of	a	sort	implementation,	the	general
case	is	sorting,	say	five	elements.	The	special	cases	are	much	more	numerous	usually.	How	does	our	code
behave	if	there	is	only	one	element	or	if	there	are	no	elements?	What	if	there	are	two?	What	if	the
elements	are	in	reverse	order?	What	if	they	are	already	sorted?

Usually,	the	special	cases	are	not	defined	in	the	specification.	The	programmer	has	to	think	about	it	before
coding,	and	some	special	cases	are	discovered	during	coding.	The	hard	thing	is	that	you	just	cannot	tell	if
you	covered	all	special	cases	and	the	functionality	of	the	code.

What	you	can	tell	is	if	all	the	lines	of	code	were	executed	during	the	testing	or	not.	If	90%	of	the	code
lines	are	executed	during	the	tests,	then	the	code	coverage	is	90%,	which	is	fairly	good	in	real	life,	but
you	should	never	be	content	with	anything	less	than	100%.

Code	coverage	is	not	the	same	as	functional	coverage,	but	there	is	a	correlation.	If	the	code	coverage	is
less	than	100%,	then	at	least	one	of	the	following	two	statements	is	true:

The	functional	coverage	is	not	100%
There	is	unused	code	in	the	tested	unit,	which	can	just	be	deleted

The	code	coverage	can	be	measured,	the	functional	coverage	cannot.	The	tools	and	IDEs	support	code
coverage	measurement.	These	measurements	are	integrated	into	the	editor	so	you	will	not	only	get	the
percentage	of	the	coverage,	but	the	editor	will	show	you	exactly	which	lines	are	not	covered	by	the
coverage	coloring	the	lines	(in	Eclipse,	for	example)	or	the	gutter	on	the	left	side	of	the	editor	window
(IntelliJ).	The	picture	shows	that	in	IntelliJ,	the	tests	cover	the	lines	indicated	by	a	green	color	on	the
gutter.	(In	the	print	version	this	is	just	a	grey	rectangle).

Refactor	the	test
Now	that	we	have	discussed	what	a	good	unit	test	is,	let's	improve	our	test.	The	first	thing	is	to	move	the
supporting	classes	to	separate	files.	We	will	create	ArrayListSortableCollection:

package	packt.java9.by.example.ch03.bubble;	

import	packt.java9.by.example.ch03.SortableCollection;	

import	java.util.ArrayList;	

public	class	ArrayListSortableCollection	implements	SortableCollection	{	

				final	private	ArrayList	actualNames;	

				ArrayListSortableCollection(ArrayList	actualNames)	{	

								this.actualNames	=	actualNames;	

				}	

				@Override	

				public	Object	get(int	i)	{	

								return	actualNames.get(i);	

				}	

				@Override	

				public	int	size()	{	

								return	actualNames.size();	

				}	

}

This	class	encapsulates	ArrayList	and	then	implements	the	get	and	size	methods	to	ArrayList	access.	ArrayList
itself	is	declared	as	final.	Recall	that	a	final	field	has	to	be	defined	by	the	time	the	constructor	finishes.
This	guarantees	that	the	field	is	there	when	we	start	to	use	the	object	and	that	it	does	not	change	during	the
object	lifetime.	Note,	however,	that	the	content	of	the	object,	in	this	case,	the	elements	of	ArrayList,	may
change.	If	it	were	not	the	case,	we	would	not	be	able	to	sort	it.

The	next	class	is	StringComparator.	This	is	so	simple	that	I	will	not	list	it	here;	I	will	leave	it	to	you	to
implement	the	java.util.Comparator	interface	that	can	compare	two	Strings.	It	should	not	be	difficult,
especially	as	this	class	was	already	a	part	of	the	previous	version	of	the	BubbleSortTest	class	(hint:	it	was
an	anonymous	class	that	we	stored	in	the	variable	named	stringCompare).

We	also	have	to	implement	ArrayListSwapper,	which	also	should	not	be	a	big	surprise.

package	packt.java9.by.example.ch03.bubble;	

import	packt.java9.by.example.ch03.Swapper;	

import	java.util.ArrayList;	

public	class	ArrayListSwapper	implements	Swapper	{	

				final	private	ArrayList	actualNames;	

				ArrayListSwapper(ArrayList	actualNames)	{	

								this.actualNames	=	actualNames;	

				}	

				@Override	

				public	void	swap(int	i,	int	j)	{	

								Object	tmp	=	actualNames.get(i);	

								actualNames.set(i,	actualNames.get(j));	

								actualNames.set(j,	tmp);	

				}	

}

Finally,	our	test	will	look	this:

package	packt.java9.by.example.ch03.bubble;	

//	...	imports	deleted	from	print	...	

public	class	BubbleSortTest	{	

				@Test	

				public	void	canSortStrings()	{	

								ArrayList	actualNames	=	new	ArrayList(Arrays.asList(

																"Johnson",	"Wilson",	

																"Wilkinson",	"Abraham",	"Dagobert"	

));	

								ArrayList	expectedResult	=	new	ArrayList(Arrays.asList(

																"Abraham",	"Dagobert",	

																"Johnson",	"Wilkinson",	"Wilson"	

));	

								SortableCollection	names	=	

																new	ArrayListSortableCollection(actualNames);	

								Sort	sort	=	new	BubbleSort();	

								sort.setComparator(

																new	StringComparator());	

								sort.setSwapper(

																new	ArrayListSwapper(actualNames));	

								sort.sort(names);	

								Assert.assertEquals(expectedResult,	actualNames);	

				}	

}

Now	this	is	already	a	test	that	can	be	understood	in	15	seconds.	It	documents	well	how	to	use	a	sort
implementation	that	we	defined.	It	still	works	and	does	not	reveal	any	bug,	as	I	promised.

Collections	with	wrong	elements
The	bug	is	not	trivial,	and	as	usual,	this	is	not	in	the	implementation	of	the	algorithm,	but	rather	in	the
definition,	or	the	lack	of	it.	What	should	the	program	do	if	there	are	not	only	strings	in	the	collection	that
we	sort?

If	I	create	a	new	test	that	starts	with	the	following	lines,	it	will	throw	ClassCastException:

@Test	

public	void	canNotSortMixedElements()	{	

				ArrayList	actualNames	=	new	ArrayList(Arrays.asList(

												42,	"Wilson",	

												"Wilkinson",	"Abraham",	"Dagobert"	

));	

...	the	rest	of	the	code	is	the	same	as	the	previous	test

The	problem	here	is	that	Java	collections	can	contain	any	type	of	elements.	You	cannot	ever	be	sure	that	a
collection,	such	as	ArrayList,	contains	only	the	types	that	you	expect.	Even	if	you	use	generics	(we	have	not
learned	that,	but	we	will	in	this	chapter),	the	chances	of	a	bug	somehow	conjuring	up	some	object	of	an
inappropriate	type	into	a	collection,	are	smaller	but	are	still	there.	Don't	ask	me	how;	I	cannot	tell	you.
This	is	the	nature	of	the	bugs—you	cannot	tell	how	they	work	until	you	zap	them.	The	thing	is	that	you
have	to	be	prepared	for	such	an	exceptional	case.

Handling	exceptions
Exceptional	cases	should	be	handled	in	Java	using	exceptions.	The	ClassCastException	is	there	and	it
happens	when	the	sort	tries	to	compare	String	to	Integer	using	StringComparator,	and	to	do	that,	it	tries	to	cast
an	Integer	to	String.

When	an	exception	is	thrown	by	the	program	using	the	throw	command,	or	by	the	Java	runtime,	the
execution	of	the	program	stops	at	that	point,	and	instead	of	executing	the	next	command,	it	continues	where
the	exception	is	caught.	It	can	be	in	the	same	method,	or	in	some	calling	method	up	in	the	call	chain.	To
catch	an	exception,	the	code	throwing	the	exception	should	be	inside	a	try	block,	and	the	catch	statement
following	the	try	block	should	specify	an	exception	that	is	compatible	with	the	exception	thrown.

If	the	exception	is	not	caught,	then	the	Java	runtime	will	print	out	the	message	of	the	exception	along	with
a	stack	trace	that	will	contain	all	the	classes,	methods,	and	line	numbers	on	the	call	stack	at	the	time	of	the
exception.	In	our	case,	the	mvn	test	command	will	produce	the	following	trace	in	the	output:

java.lang.ClassCastException:	java.lang.Integer	cannot	be	cast	to	java.lang.String	

				at	packt.java9.by.example.ch03.bubble.StringComparator.compare(StringComparator.java:9)	

				at	packt.java9.by.example.ch03.bubble.BubbleSort.sort(BubbleSort.java:13)	

				at	packt.java9.by.example.ch03.bubble.BubbleSortTest.canNotSortMixedElements(BubbleSortTest.java:49)	

				at	sun.reflect.NativeMethodAccessorImpl.invoke0(Native	Method)	

				at	sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)	

				at	sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)	

				at	java.lang.reflect.Method.invoke(Method.java:498)	

...	some	lines	deleted	from	the	print	

				at	org.apache.maven.surefire.junit4.JUnit4Provider.executeTestSet(JUnit4Provider.java:141)	

				at	org.apache.maven.surefire.junit4.JUnit4Provider.invoke(JUnit4Provider.java:112)	

				at	sun.reflect.NativeMethodAccessorImpl.invoke0(Native	Method)	

				at	sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)	

...	some	lines	deleted	from	the	print	

				at	org.apache.maven.surefire.booter.ProviderFactory.invokeProvider(ProviderFactory.java:85)	

				at	org.apache.maven.surefire.booter.ForkedBooter.runSuitesInProcess(ForkedBooter.java:115)	

				at	org.apache.maven.surefire.booter.ForkedBooter.main(ForkedBooter.java:75)

This	stack	trace	is	not	really	long.	In	the	production	environment	in	an	application	that	runs	on	an
application	server,	the	stack	trace	may	contain	a	few	hundred	elements.	In	this	trace,	you	can	see	that
Maven	was	starting	the	test	execution,	involved	Maven	surefire	plugin,	and	then	the	JUnit	executor,	until
we	get	through	the	test	to	the	comparator,	where	the	actual	exception	was	thrown.

This	exception	was	not	printed	by	the	Java	runtime	to	the	console.	This	exception	is	caught	by	the	JUnit
library	code	and	the	stack	trace	is	logged	out	to	the	console	using	Maven	logging	facility.

The	problem	with	this	approach	is	that	the	real	issue	is	not	the	class	casting	failure.	The	real	issue	is	that
the	collection	contains	mixed	elements.	It	is	only	realized	by	the	Java	runtime	when	it	tries	to	cast	two
incompatible	classes.	Our	code	can	be	smarter.	We	can	amend	the	comparator.

package	packt.java9.by.example.ch03.bubble;	

import	java.util.Comparator;	

public	class	StringComparator	implements	Comparator	{	

				@Override	

				public	int	compare(Object	first,	Object	second)	{	

								try	{	

												final	String	f	=	(String)	first;	

												final	String	s	=	(String)	second;	

												return	f.compareTo(s);	

								}	catch	(ClassCastException	cce)	{	

												throw	new	NonStringElementInCollectionException	(

																				"There	are	mixed	elements	in	the	collection.",	cce);	

								}	

				}	

}

This	code	catches	the	ClassCastException	and	throws	a	new	one.	The	advantage	of	throwing	a	new	exception
is	that	you	can	be	sure	that	this	exception	is	thrown	from	the	comparator	and	that	the	problem	really	is	that
there	are	mixed	elements	in	the	collection.	Class	casting	problems	may	happen	at	other	places	of	the	code
as	well,	inside	some	of	the	sort	implementations.	Some	application	code	may	want	to	catch	the	exception
and	want	to	handle	the	case;	for	example,	sending	an	application-specific	error	message	and	not	dumping
only	a	stack	trace	to	the	user.	This	code	can	catch	ClassCastException	as	well,	but	it	cannot	be	sure	what	the
real	cause	of	the	exception	is.	On	the	other	hand,	NonStringElementInCollectionException	is	definite.

The	NonStringElementInCollectionException	is	an	exception	that	does	not	exist	in	the	JDK.	We	will	have	to
create	it.	Exceptions	are	Java	classes	and	our	exception	looks	as	follows:

package	packt.java9.by.example.ch03.bubble;	

public	class	NonStringElementInCollectionException	extends	RuntimeException	{	

				public	NonStringElementInCollectionException	(String	message,	Throwable	cause)	{	

								super(message,	cause);	

				}	

}

Java	has	the	notion	of	checked	exceptions.	It	means	that	any	exception	that	is	not	extending	RuntimeException
should	be	declared	in	the	method	definition.	Suppose	our	exception	was	declared	as	follows:

public	class	NonStringElementInCollectionException	extends	Exception

Then,	we	will	have	to	declare	the	compare	method	as	follows:

public	int	compare(Object	first,	Object	second)	throws	NonStringElementInCollectionException

The	problem	is	that	the	exception	a	method	throws	is	part	of	the	method	signature,	and	this	way	compare
will	not	override	the	compare	method	of	the	interface,	and,	that	way,	the	class	will	not	implement	the
Comparator	interface.	Thus,	our	exception	has	to	be	a	runtime	exception.

There	can	be	a	hierarchy	of	exceptions	in	an	application,	and	often,	novice	programmers	create	huge
hierarchies	of	them.	If	there	is	something	you	can	do,	it	does	not	mean	that	you	should	do	it.	Hierarchies
should	be	kept	as	flat	as	possible,	and	this	is	especially	true	for	exceptions.	If	there	is	an	exception	in	the
JDK	that	describes	the	exceptional	case,	then	use	the	readymade	exception.	Just	as	well	as	for	any	other
class:	if	it	is	ready,	do	not	implement	it	again.

It	is	also	important	to	note	that	throwing	an	exception	should	only	be	done	in	exceptional	cases.	It	is	not	to
signal	some	normal	operational	condition.	Doing	that	hinders	readability	of	the	code	and	also	eats	CPU.
Throwing	an	exception	is	not	an	easy	task	for	the	JVM.

It	is	not	only	the	exception	that	can	be	thrown.	The	throw	command	can	throw,	and	the	catch	command	can
catch	anything	that	extends	the	Throwable	class.	There	are	two	subclasses	of	Throwable:	Error,	and	Exception.
The	Error	exception	is	thrown	if	some	error	happened	during	the	execution	of	the	Java	code.	The	two	most
infamous	errors	are	OutOfMemoryError	and	StackOverflowError.	If	any	of	these	happens,	you	cannot	do	anything
reliably	to	catch	the	error.

There	is	also	InternalError	and	UnknownError	in	the	JVM,	but	since	JVM	is	fairly	stable,	you
will	hardly	ever	meet	these	errors.

When	any	of	those	errors	happen,	try	to	debug	the	code	and	try	to	find	out	why	you	use	that	much	memory
or	such	deep	method	calls	and	try	to	optimize	your	solution.	What	I	have	just	said	about	creating
exception	hierarchies	is	true	again	to	catch	errors.	The	fact	that	you	can	catch	errors	does	not	mean	that
you	should.	On	the	contrary,	you	should	never	catch	an	error	and,	especially,	never	ever	catch	a	Throwable.

This	way,	we	handled	this	special	case	when	some	programmer	accidentally	writes	42	among	the	names,
but	will	it	be	nicer	if	the	error	was	identified	during	compile	time?	To	do	that,	we	will	introduce
generics.

Just	a	last	thought	before	we	go	there.	What	class	behavior	do	we	test	with	the	canNotSortMixedElements	unit
test?	The	test	is	inside	the	BubbleSortTest	test	class,	but	the	functionality	is	in	the	comparator
implementation,	StringComparator.	This	test	checks	something	that	is	out	of	the	scope	of	the	unit	test	class.	I
can	use	it	for	demonstration	purposes,	but	this	is	not	a	unit	test.	The	real	functionality	of	the	sort
implementation	can	be	formulized	this	way:	whatever	exception	the	comparator	throws	is	thrown	by	the
sort	implementation.	You	can	try	to	write	this	unit	test,	or	read	on;	we	will	have	it	in	the	next	section.

The	StringComparator	class	does	not	have	a	test	class	because	StringComparator	is	part	of	the	test	and	we	will
never	write	a	test	for	a	test.	Otherwise,	we	will	sink	into	an	endless	rabbit	hole.

Generics
The	generics	feature	was	introduced	into	Java	in	version	5.	To	start	with	an	example,	our	Sortable	interface
until	now	was	this:

package	packt.java9.by.example.ch03;	

public	interface	SortableCollection	{	

				Object	get(int	i);	

				int	size();	

}

After	introducing	generics,	it	will	be	as	follows:

package	packt.java9.by.example.ch03;	

public	interface	SortableCollection<E>	{	

				E	get(int	i);	

				int	size();	

}

The	E	identifier	denotes	a	type.	It	can	be	any	type.	It	says	that	a	class	is	a	sortable	collection	if	it
implements	the	interface,	namely	the	two	methods—	size	and	get.	The	get	method	should	return	something
that	is	of	type	E,	whatever	E	is.	This	may	not	make	too	much	sense	up	until	now,	but	you	will	soon	get	the
point.	After	all,	generics	is	a	difficult	topic.

The	Sort	interface	will	become	the	following:

package	packt.java9.by.example.ch03;	

import	java.util.Comparator;	

public	interface	Sort<E>	{	

				void	sort(SortableCollection<E>	collection);	

				void	setSwapper(Swapper	swap);	

				void	setComparator(Comparator<E>	compare);	

}

This	still	does	not	provide	much	more	value	than	the	previous	version	without	generics,	but,	at	least,	it
does	something.	In	the	actual	class	implementing	the	Sort	interface,	Comparator	should	accept	the	same	type
that	SortableCollection	uses.	It	is	not	possible	that	SortableCollection	works	on	strings	and	we	inject	a
comparator	for	integers.

The	implementation	of	BubbleSort	is	as	follows:

package	packt.java9.by.example.ch03.bubble;	

import	packt.java9.by.example.ch03.*;	

import	java.util.Comparator;	

public	class	BubbleSort<E>	implements	Sort<E>	{	

				@Override	

				public	void	sort(SortableCollection<E>	collection)	{	

								...	sort	code	same	as	before	

				}	

				private	Comparator<E>	comparator	=	null;	

				@Override	

				public	void	setComparator(Comparator<E>	comparator)	{	

								this.comparator	=	comparator;	

				}	

								...	method	swapper	same	as	before	

}

The	real	power	of	generics	will	come	when	we	will	write	the	tests.	The	first	test	does	not	change	much,

although	with	the	generics,	it	is	more	definite.

@Test	

public	void	canSortStrings()	{	

				ArrayList<String>	actualNames	=	new	ArrayList<	>(Arrays.asList(

												"Johnson",	"Wilson",	

												"Wilkinson",	"Abraham",	"Dagobert"	

));	

				ArrayList<String>	expectedResult	=	new	ArrayList<>(Arrays.asList(

												"Abraham",	"Dagobert",	

												"Johnson",	"Wilkinson",	"Wilson"	

));	

				SortableCollection<String>	names	=	

												new	ArrayListSortableCollection<>(actualNames);	

				Sort<String>	sort	=	new	BubbleSort<>();	

				sort.setComparator(String::compareTo);	

				sort.setSwapper(new	ArrayListSwapper<>(actualNames));	

				sort.sort(names);	

				Assert.assertEquals(expectedResult,	actualNames);	

}

When	we	define	ArrayList,	we	will	also	declare	that	the	elements	of	the	list	will	be	strings.	When	we
allocate	the	new	ArrayList,	there	is	no	need	to	specify	again	that	the	elements	are	strings	because	it	comes
from	the	actual	elements	there.	Each	of	them	is	a	string;	therefore,	the	compiler	knows	that	the	only	thing
that	can	come	between	the	<	and	>	character	is	String.

The	two	characters	<	and	>,	without	the	type	definition	in	between,	is	called	diamond	operator.	The	type
is	inferred.	If	you	get	used	to	generics,	this	code	brings	you	more	information	on	the	types	that	the
collections	work	on	and	the	code	becomes	more	readable.	The	readability	and	the	extra	information	is	not
the	only	point.

As	we	know	that	the	Comparator	argument	is	Comparator<String>	now,	we	can	use	advanced	features	of	Java
available	since	Java	8	and	can	pass	the	String::compareTo	method	reference	to	the	comparator	setter.

The	second	test	is	the	important	one	for	us	now.	This	is	the	test	which	ensures	that	Sort	does	not	interfere
with	the	exception	that	the	comparator	throws.

@Test(expected	=	RuntimeException.class)	

public	void	throwsWhateverComparatorDoes	()	{	

				ArrayList<String>	actualNames	=	new	ArrayList<>(Arrays.asList(

												42,	"Wilson",	

												"Wilkinson",	"Abraham",	"Dagobert"	

));	

				SortableCollection<String>	names	=	

												new	ArrayListSortableCollection<>(actualNames);	

				Sort<String>	sort	=	new	BubbleSort<>();	

				sort.setComparator((String	a,	String	b)	->	{	

								throw	new	RuntimeException();	

				});	

				final	Swapper	neverInvoked	=	null;	

				sort.setSwapper(neverInvoked);		

				sort.sort(names);	

}

The	thing	is,	that	it	does	not	even	compile.	The	compiler	says	that	it	cannot	infer	the	type	of	ArrayList<>	on
the	third	line.	When	all	the	arguments	of	the	asList	method	were	strings,	the	method	returned	a	list	of	String
elements	and	therefore	the	new	operator	was	known	to	generate	ArrayList<String>.	This	time,	there	is	an
integer,	and	thus,	the	compiler	cannot	infer	that	ArrayList<>	is	for	String	elements.

To	change	the	type	definition	from	ArrayList<>	to	ArrayList<String>	is	not	a	cure.	In	that	case,	the	compiler

will	complain	about	the	value	42.	This	is	the	power	of	generics.	When	you	use	classes	that	have	type
parameters,	the	compiler	can	detect	when	you	provide	a	value	of	the	wrong	type.	To	get	the	value	into
ArrayList	to	check	that	the	implementation	really	throws	an	exception,	we	will	have	to	conjure	the	value
into	it.	We	can	try	to	replace	the	value	42	with	an	empty	String	and	then	add	the	following	line	which	will
still	not	compile:

actualNames.set(0,42);

The	compiler	will	still	know	that	the	value	you	want	to	set	in	ArrayList	is	supposed	to	be	String.	To	get	the
array	with	the	Integer	element,	you	will	have	to	explicitly	unlock	the	safety	handle	and	pull	the	trigger,
shooting	yourself:

((ArrayList)actualNames).set(0,42);

Now,	the	test	looks	like	this:

@Test(expected	=	RuntimeException.class)	

public	void	throwsWhateverComparatorDoes()	{	

				ArrayList<String>	actualNames	=	new	ArrayList<>(Arrays.asList(

												"",	"Wilson",	

												"Wilkinson",	"Abraham",	"Dagobert"	

));	

				((ArrayList)	actualNames).set(0,	42);	

				SortableCollection<String>	names	=	

												new	ArrayListSortableCollection<>(actualNames);	

				Sort<String>	sort	=	new	BubbleSort<>();	

				sort.setComparator((a,	b)	->	{	

								throw	new	RuntimeException();	

				});	

				final	Swapper	neverInvoked	=	null;	

				sort.setSwapper(neverInvoked);	

				sort.sort(names);	

}

We	will	set	the	Swapper	to	be	null	because	it	is	never	invoked.	When	I	first	wrote	this
code,	it	was	evident	to	me.	A	few	days	later,	I	read	the	code	and	I	stopped.	Why	is
swapper	null?	Then	I	remembered	in	a	second	or	two.	But	any	time,	when	reading	and
understanding	the	code	hicks	up,	I	tend	to	think	about	refactoring.
I	can	add	a	comment	to	the	line	saying	//never	invoked,	but	comments	tend	to	remain	there
even	when	functionality	changes.	I	learned	it	the	hard	way	in	2006,	when	a	wrong
comment	prevented	me	from	seeing	how	the	code	was	executing.	I	was	reading	the
comment	while	debugging,	instead	of	the	code,	and	bug	fixing	took	two	days	while	the
system	was	down.
Instead	of	a	comment,	I	tend	to	use	constructs	that	make	the	code	express	what	happens.
The	extra	variable	may	make	the	class	file	a	few	bytes	bigger,	but	it	is	optimized	out	by
the	JIT	compiler	so	the	final	code	does	not	run	slower.

The	comparator	that	throws	an	exception	was	provided	as	a	lambda	expression.	Lambda	expressions	can
be	used	in	cases	where	an	anonymous	class	or	named	class	will	be	used	having	only	one	simple	method.
Lambda	expressions	are	anonymous	methods	stored	in	variables	or	passed	in	argument	for	later
invocation.	We	will	discuss	the	details	of	lambda	expressions	in	Chapter	8,	Extending	our	E-Commerce
Application.

For	now,	we	will	go	on	implementing	QuickSort,	and	to	do	that,	we	will	use	the	TDD	methodology.

Test	Driven	Development
Test	Driven	Development	(TDD)	is	a	code	writing	approach	when	the	developers	first	write	a	test	based
on	the	specification	and	then	write	the	code.	This	is	just	the	opposite	that	the	developer	community	got
used	to.	The	conventional	approach	that	we	followed	was	to	write	the	code	and	then	write	tests	for	it.	To
be	honest,	the	real	practice	many	times	was	to	write	the	code	and	test	it	with	ad-hoc	tests	and	no	unit	tests
at	all.	Being	a	professional,	you	will	never	do	that,	by	the	way.	You	always	write	tests.	(And	now,	write	it
down	a	hundred	times:	I	will	always	write	tests.)

One	of	the	advantages	of	TDD	is	that	the	tests	do	not	depend	on	the	code.	As	the	code	does	not	exist	at	the
creation	of	the	test,	developers	cannot	rely	on	the	implementation	of	the	unit	and,	thus,	it	cannot	influence
the	test	creation	process.	This	is	generally	good.	Unit	tests	should	be	black	box	tests	as	much	as	possible.

Black	box	test	is	a	test	that	does	not	take	into	account	the	implementation	of	the	tested
system.	If	a	system	is	refactored,	implemented	in	a	different	way,	but	the	interface	it
provides	toward	the	external	world	is	the	same,	then	the	black	box	tests	should	run	just
fine.
A	white	box	test	depends	on	the	internal	working	of	the	system	tested.	When	the	code
changes	the	white	box	test,	the	code	may	also	need	tuning	to	follow	the	change.	The
advantage	of	a	white	box	test	can	be	the	simpler	test	code.	Not	always.
Gray	box	test	is	a	mixture	of	the	two.

Unit	tests	should	be	black	box	tests,	but,	many	times,	it	is	not	simple	to	write	a	black	box	test.	Developers
will	write	a	test	that	they	think	is	black	box,	but	many	times,	this	belief	proves	to	be	false.	When	the
implementation	changes,	something	is	refactored	and	the	test	does	not	work	anymore	and	it	needs	to	be
corrected.	It	just	happens	that	knowing	the	implementation,	the	developers,	especially	those	who	wrote
the	unit,	will	write	a	test	that	depends	on	the	internal	working	of	the	code.	Writing	the	test	before	the	code
is	a	tool	to	prevent	this.	If	there	is	no	code,	you	cannot	depend	on	it.

TDD	also	says	that	the	development	should	be	an	iterative	approach.	You	write	only	one	test	at	the	start.
If	you	run,	it	fails.	Of	course	it	fails!	As	there	is	no	code	yet,	it	has	to	fail.	Then,	you	will	write	the	code
that	fulfills	this	test.	Nothing	more,	only	the	code	that	makes	this	test	pass.	Then,	you	will	go	on	writing	a
new	test	for	another	part	of	the	specification.	You	will	run	it	and	it	fails.	This	proves	that	the	new	test
does	test	something	that	was	not	developed	yet.	Then,	you	will	develop	the	code	to	satisfy	the	new	test
and,	possibly,	you	will	also	modify	a	block	of	code	that	you	have	already	written	in	the	previous
iterations.	When	the	code	is	ready,	the	tests	will	pass.

Many	times,	developers	are	reluctant	to	modify	the	code.	This	is	because	they	are	afraid	of	breaking
something	that	was	already	working.	When	you	follow	TDD,	you	should	not,	and	at	the	same	time,	you
need	not	be	afraid	of	this.	There	are	tests	for	all	features	that	were	already	developed.	If	some	of	the	code
modification	breaks	some	functionality,	the	tests	will	immediately	signal	the	error.	The	key	is	that	you	run
the	tests	as	often	as	possible	when	the	code	is	modified.

	

Implementing	QuickSort
	

Quick	sort,	as	we	have	already	discussed,	is	made	of	two	major	parts.	One	is	partitioning	and	the	other
one	is	doing	the	partitioning	recursively	until	the	whole	array	is	sorted.	To	make	our	code	modular	and
ready	to	demonstrate	the	Java	9	module-handling	feature,	we	will	develop	the	partitioning	and	the
recursive	sorting	into	separate	classes	and	in	a	separate	package.	The	complexity	of	the	code	will	not
justify	this	separation.

	

	

The	partitioning	class
The	partitioning	class	should	provide	a	method	that	moves	the	elements	of	the	collection	based	on	a	pivot
element,	and	we	will	need	to	know	the	position	of	the	pivot	element	after	the	method	finishes.	The
signature	of	the	method	should	look	something	like	this:

public	int	partition(SortableCollection<E>	sortable,	int	start,	int	end,	E	pivot);

The	class	should	also	have	access	to	Swapper	and	Comparator.	In	this	case,	we	defined	a	class	and	not	an
interface;	therefore,	we	will	use	constructor	injection.

These	constructs,	like	setters	and	constructor	injectors,	are	so	common	and	happen	so
frequently	that	IDEs	support	the	generation	of	these.	You	will	need	to	create	the	final
fields	in	the	code	and	use	the	code	generation	menu	to	create	the	constructor.

The	partitioning	class	will	look	like	the	following:

package	packt.java9.by.example.ch03.qsort;	

import	packt.java9.by.example.ch03.SortableCollection;	

import	packt.java9.by.example.ch03.Swapper;	

import	java.util.Comparator;	

public	class	Partitioner<E>	{	

				private	final	Comparator<E>	comparator;	

				private	final	Swapper	swapper;	

				public	Partitioner(Comparator<E>	comparator,	Swapper	swapper){	

								this.comparator	=	comparator;	

								this.swapper	=	swapper;	

				}	

				public	int	partition(SortableCollection<E>	sortable,	int	start,	int	end,	E	pivot){	

								return	0;	

				}	

}

This	code	does	nothing,	but	that	is	how	TDD	starts.	We	will	create	the	definition	of	a	requirement
providing	the	skeleton	of	the	code	and	the	test	that	will	call	it.	To	do	that,	we	will	need	something	that	we
can	partition.	The	simplest	choice	is	an	Integer	array.	The	partition	method	needs	a	object	of	type
SortableCollection<E>,	and	we	will	need	something	that	wraps	the	array	and	implements	this	interface.	We
name	that	class	ArrayWrapper.	This	class	serves	a	general	purpose	and	it	is	not	only	for	the	test.	Because	of
that,	we	create	it	as	production	code	and	as	such	we	put	it	in	the	directory	main	and	not	in	the	directory
test.	As	this	wrapper	is	independent	from	the	implementation	of	Sort,	the	proper	position	of	this	class	is	in
a	new	SortSupportClasses	module.	We	will	create	the	new	module	as	it	is	not	part	of	the	interface.
Implementations	depend	on	the	interface,	but	not	on	the	support	classes.	There	can	also	be	some
application	that	uses	our	libraries	and	may	need	the	interface	module	and	some	of	the	implementation	but
still	does	not	need	the	support	classes	when	they	deliver	the	wrapping	functionality	themselves.	After	all,
we	cannot	implement	all	possible	wrapping	functionality.	The	SRP	also	holds	for	the	modules.

Java	libraries	tend	to	contain	unrelated	functionalities.	For	the	short	run,	it	makes	the	use	of	the	library
simpler.	You	will	only	need	to	specify	one	dependency	in	your	POM	file	and	you	will	have	all	the	classes
and	APIs	that	you	need.	In	the	long	run,	the	application	gets	bigger,	carrying	a	lot	of	classes	that	are	part

of	some	of	the	libraries	but	the	application	never	uses	them.

To	add	the	new	module,	the	module	directory	has	to	be	created	along	with	the	source	directories	and	the
POM	file.	The	module	has	to	be	added	to	the	parent	POM	and	it	also	has	to	be	added	to	the
dependencyManagement	section	so	that	the	test	code	of	the	QuickSort	module	can	use	it	without	specifying	the
version.	The	new	module	depends	on	the	interface	module,	so	this	dependency	has	to	be	added	to	the
POM	of	the	support	classes.

The	ArrayWrapper	class	is	simple	and	general.

package	packt.java9.by.example.ch03.support;	

import	packt.java9.by.example.ch03.SortableCollection;	

public	class	ArrayWrapper<E>	implements	SortableCollection<E>	{	

				private	final	E[]	array;	

				public	ArrayWrapper(E[]	array)	{	

								this.array	=	array;	

				}	

				public	E[]	getArray()	{	

								return	array;	

				}	

				@Override	

				public	E	get(int	i)	{	

								return	array[i];	

				}	

				@Override	

				public	int	size()	{	

								return	array.length;	

				}	

}

The	ArraySwapper	class,	which	we	also	need,	comes	into	the	same	module.	It	is	just	as	simple	as	the
wrapper.

package	packt.java9.by.example.ch03.support;	

import	packt.java9.by.example.ch03.Swapper;	

public	class	ArraySwapper<E>	implements	Swapper	{	

				private	final	E[]	array;	

				public	ArraySwapper(E[]	array)	{	

								this.array	=	array;	

				}	

				@Override	

				public	void	swap(int	k,	int	r)	{	

								final	E	tmp	=	array[k];	

								array[k]	=	array[r];	

								array[r]	=	tmp;	

				}	

}

Having	these	classes,	we	can	create	our	first	test.

package	packt.java9.by.example.ch03.qsort;	

//	imports	deleted	from	print	

public	class	PartitionerTest	{

Before	creating	the	@Test	method,	we	will	need	two	helper	methods	that	make	assertions.	Assertions	are
not	always	simple,	and	in	some	cases,	they	may	involve	some	coding.	The	general	rule	is	that	the	test	and
the	assertions	in	it	should	be	as	simple	as	possible;	otherwise,	they	are	just	possible	source	of
programming	errors.	Additionally,	we	created	them	to	avoid	programming	errors,	not	to	create	new	ones.

The	assertSmallElements	method	asserts	that	all	elements	before	cutIndex	are	smaller	than	pivot.

private	void	assertSmallElements(Integer[]	array,	int	cutIndex,	Integer	pivot)	{	

								for	(int	i	=	0;	i	<	cutIndex;	i++)	{	

												Assert.assertTrue(array[i]	<	pivot);	

								}	

				}

The	assertLargeElements	method	makes	sure	that	all	elements	following	cutIndex	are	at	least	as	large	as	pivot.

private	void	assertLargeElemenents(Integer[]	array,	int	cutIndex,	Integer	pivot)	{	

								for	(int	i	=	cutIndex;	i	<	array.length;	i++)	{	

												Assert.assertTrue(pivot	<=	array[i]);	

								}	

				}

The	test	uses	a	constant	array	of	Integers	and	wraps	it	into	an	ArrayWrapper	class.

@Test	

				public	void	partitionsIntArray()	{	

								Integer[]	partitionThis	=	new	Integer[]{0,	7,	6};	

								Swapper	swapper	=	new	ArraySwapper<>(partitionThis);	

								Partitioner<Integer>	partitioner	=	

																new	Partitioner<>((a,	b)	->	a	<	b	?	-1	:	a	>	b	?	+1	:	0,	swapper);	

								final	Integer	pivot	=	6;	

								final	int	cutIndex	=	partitioner.partition(new	ArrayWrapper<>(partitionThis),	0,	2,	pivot);	

								Assert.assertEquals(1,	cutIndex);	

								assertSmallElements(partitionThis,	cutIndex,	pivot);	

								assertLargeElemenents(partitionThis,	cutIndex,	pivot);	

				}	

}

There	is	no	Comparator	for	Integer	type	in	the	JDK,	but	it	is	easy	to	define	one	as	a	lambda	function.	Now	we
can	write	the	partition	method,	as	follows:

public	int	partition(SortableCollection<E>	sortable,	int	start,	int	end,	E	pivot){	

				int	small	=	start;	

				int	large	=	end;	

				while(large	>	small){	

								while(comparator.compare(sortable.get(small),	pivot)	<	0	&&	small	<	large){	

												small	++;	

								}	

								while(comparator.compare(sortable.get(large),	pivot)	>=	0	&&	small	<	large){	

												large--;	

								}	

								if(small	<	large){	

												swapper.swap(small,	large);	

								}	

				}	

				return	large;	

}

If	we	run	the	test,	it	runs	fine.	However,	if	we	run	the	test	with	coverage,	then	the	IDE	tells	us	that	the
coverage	is	only	92%.	The	test	covered	only	13	of	the	14	lines	of	the	partition	method.

There	is	a	red	rectangle	on	the	gutter	at	line	28.	This	is	because	the	test	array	is	already	partitioned.	There
is	no	need	to	swap	any	element	in	it	when	the	pivot	value	is	6.	It	means	that	our	test	is	good,	but	not	good

enough.	What	if	there	is	an	error	on	that	line?

To	amend	this	problem,	we	will	extend	the	test,	changing	the	test	array	from	{	0,	7,	6	}	to	{	0,	7,	6,	2}.	Run
the	test	and	it	fails.	Why?	After	some	debugging,	we	will	realize	that	we	invoke	the	method	partition	with
the	fixed	parameter	2	as	the	last	index	of	the	array.	But,	we	made	the	array	longer.	Why	did	we	write	a
constant	there	in	the	first	place?	It	is	a	bad	practice.	Let's	replace	it	with	partitionThis.length-1.	Now,	it	says
that	cutIndex	is	2,	but	we	expected	1.	We	forgot	to	adjust	the	assertion	to	the	new	array.	Let's	fix	it.	Now	it
works.

The	last	thing	is	to	rethink	the	assertions.	The	less	code	the	better.	The	assertion	methods	are	quite
general,	and	we	will	use	it	for	one	single	test	array.	The	assertion	methods	are	so	complex	that	they
deserve	their	own	test.	But,	we	do	not	write	code	to	test.	Instead	of	that,	we	can	simply	delete	the	methods
and	have	the	final	version	of	the	test.

@Test	

public	void	partitionsIntArray()	{	

				Integer[]	partitionThis	=	new	Integer[]{0,	7,	6,	2};	

				Swapper	swapper	=	new	ArraySwapper<>(partitionThis);	

				Partitioner<Integer>	partitioner	=	

												new	Partitioner<>((a,	b)	->	a	<	b	?	-1	:	a	>	b	?	+1	:	0,	swapper);	

				final	Integer	pivot	=	6;	

				final	int	cutIndex	=	partitioner.partition(new	ArrayWrapper<>(partitionThis),	0,	partitionThis.length-1,	pivot);	

				Assert.assertEquals(2,	cutIndex);	

				final	Integer[]	expected	=	new	Integer[]{0,	2,	6,	7};	

				Assert.assertArrayEquals(expected,partitionThis);	

}

And	then	again,	is	this	a	black-box	test?	What	if	the	partitioning	returns	{2,	1,	7,	6}?	It	fits	the	definition.
We	can	create	more	complex	tests	to	cover	such	cases.	But	a	more	complex	test	may	also	have	a	bug	in
the	test	itself.	As	a	different	approach,	we	can	create	tests	that	may	be	simpler	but	rely	on	the	internal
structure	of	the	implementation.	These	are	not	black-box	tests	and	thus	not	ideal	unit	tests.	I	will	go	for	the
second	one,	but	I	will	not	argue	if	someone	chooses	the	other.

Recursive	sorting
We	will	implement	the	quick	sort	with	an	extra	class	that	is	in	the	qsort	package	along	with	the	partitioning
class,	which	is	as	follows:

package	packt.java9.by.example.ch03.qsort;	

//	imports	deleted	from	the	print	

public	class	Qsort<E>		{	

//	constructor	injected	final	fields	deleted	from	the	print	

				public	void	qsort(SortableCollection<E>	sortable,	int	start,	int	end)	{	

								if	(start	<	end)	{	

												final	E	pivot	=	sortable.get(start);	

												final	Partitioner<E>	partitioner	=	new	Partitioner<>(comparator,	swapper);	

												int	cutIndex	=	partitioner.partition(sortable,	start,	end,	pivot);	

												if	(cutIndex	==	start)	{	

																cutIndex++;	

												}	

												qsort(sortable,	start,	cutIndex	-	1);	

												qsort(sortable,	cutIndex,	end);	

								}	

				}	

}

The	method	gets	SortableCollection<E>	and	two	index	parameters.	It	does	not	sort	the	whole	collection;	it
sorts	only	the	elements	between	the	start	and	the	end	index.

It	is	always	important	to	be	extremely	precise	with	the	indexing.	Usually,	there	is	no
problem	with	the	start	index	in	Java,	but	a	lot	of	bugs	source	from	how	the	end	index	is
interpreted.
In	this	method,	the	value	of	end	can	mean	that	the	index	is	already	not	part	of	the	to-be-
sorted	interval.	In	that	case,	the	partition	method	should	be	invoked	with	end-1	and	the	first
recursive	call	with	cutIndex	as	last	parameter.	It	is	a	matter	of	taste.	The	important	thing	is
to	be	precise	and	define	the	interpretation	of	index	parameters.

If	there	is	only	one	element	(start	==	end),	then	there	is	nothing	to	be	sorted	and	the	method	returns.	This	is
the	end	criterion	of	the	recursion.	The	method	also	assumes	that	the	end	index	is	never	smaller	than	the
start	index.	As	this	method	is	used	only	inside	the	library	that	we	are	developing	at	the	moment,	such	an
assumption	is	not	too	risky	to	make.

If	there	is	something	to	be	sorted,	then	the	method	takes	the	first	element	of	the	to-be-sorted	interval	and
uses	it	as	pivot	and	calls	the	partition	method.	When	the	partition	is	done,	the	method	recursively	calls
itself	for	the	two	halves.

This	algorithm	is	recursive.	This	means	that	the	method	calls	itself.	When	a	method	call	is	executed,	the
processor	allocates	some	memory	in	an	area	called	stack	and	it	stores	the	local	variables	there.	This	area
that	belongs	to	the	method	in	the	stack	is	called	stack	frame.	When	the	method	returns,	this	area	is
released	and	the	stack	is	restored,	simply	moving	the	stack	pointer	where	it	was	to	the	previous	state.
This	way	a	method	can	continue	its	execution	after	calling	another	method;	the	local	variables	are	there.

When	a	method	calls	itself,	it	is	not	different.	The	local	variables	are	local	to	the	actual	call	of	the
method.	When	the	method	calls	itself,	it	allocates	space	for	the	local	variables	again	on	the	stack.	In	other

words,	these	are	new	instances	of	the	local	variables.

We	will	use	recursive	methods	in	Java,	and	in	other	programming	languages,	when	the	definition	of	the
algorithm	is	recursive.	It	is	extremely	important	to	understand	that	when	the	processor	code	runs,	it	is	not
recursive	any	more.	On	that	level,	there	are	instructions,	register	stores,	and	memory	loads	and	jumps.
There	is	nothing	like	function	or	method	and	therefore,	on	that	level,	there	is	nothing	like	recursion.

If	you	get	that,	it	is	easy	to	understand	that	any	recursion	can	be	coded	as	a	loop.

As	a	matter	of	fact,	it	is	also	true	the	other	way	around—every	loop	can	be	coded	as	recursion	but	that	is
not	really	interesting	until	you	start	functional	programming.

The	problem	with	the	recursion	in	Java,	and	in	many	other	programming	languages,	is	that	it	may	run	out
of	stack	space.	In	the	case	of	quick	sort,	this	is	not	the	case.	You	can	safely	assume	that	the	stack	for
method	calling	in	Java	is	a	few	hundreds	of	levels.	Quick	sort	needs	a	stack	that	is	approximately	log2n
deep,	where	n	is	the	number	of	elements	to	be	sorted.	In	the	case	of	one	billion	elements,	this	is	30	that
should	just	fit.

Why	is	the	stack	not	moved	or	resized?	That	is	because	the	code	that	runs	out	of	the	stack
space	is	usually	bad	style.	They	can	be	expressed	more	readable	in	form	of	some	loop.	A
more	robust	stack	implementation	would	only	lure	the	novice	programmer	to	do	some	less
readable	recursive	coding.

There	is	a	special	case	of	recursion	named	tail	recursion.	A	tail	recursive	method	calls	itself	as	the	last
instruction	of	the	method.	When	the	recursive	call	returns	the	code,	executing	the	method	does	nothing	else
but	release	the	stack	frame	that	was	used	for	this	method	invocation.	In	other	words,	we	will	keep	the
stack	frame	during	the	recursive	call	just	to	throw	it	away	afterwards.	Why	not	throw	it	away	before	the
call?	In	that	case,	the	actual	frame,	which	has	the	same	size	and	call,	will	allocate	because	this	is	just	the
same	method	that	is	kept	and	the	recursive	call	is	transformed	into	a	jump	instruction.	This	is	an
optimization	that	Java	does	not	do.	Functional	languages	are	doing	it,	but	Java	is	not	really	a	functional
language	and	therefore	tail-recursive	functions	should	rather	be	avoided	and	transformed	to	a	loop	in	the
Java	source	level.

Non-recursive	sorting
To	demonstrate	that	even	non-tail	recursive	methods	can	be	expressed	in	a	non-recursive	way,	here	is	the
quick	sort	that	way:

public	class	NonRecursiveQuickSort<E>	{	

				//	injected	final	fields	and	constructor	deleted	from	print		

				private	static	class	Stack	{	

								final	int	begin;	

								final	int	fin;	

								public	Stack(int	begin,	int	fin)	{	

												this.begin	=	begin;	

												this.fin	=	fin;	

								}	

				}	

				public	void	qsort(SortableCollection<E>	sortable,	int	start,	int	end)	{	

								final	List<Stack>	stack	=	new	LinkedList<>();	

								final	Partitioner<E>	partitioner	=	new	Partitioner<>(comparator,	swapper);	

								stack.add(new	Stack(start,	end));	

								int	i	=	1;	

								while	(!stack.isEmpty())	{	

												Stack	iter	=	stack.remove(0);	

												if	(iter.begin	<	iter.fin)	{	

																final	E	pivot	=	sortable.get(iter.begin);	

																int	cutIndex	=	partitioner.partition(sortable,	iter.begin,	iter.fin,	pivot);	

																if(cutIndex	==	iter.begin){	

																				cutIndex++;	

																}	

																stack.add(new	Stack(iter.begin,	cutIndex	-	1));	

																stack.add(new	Stack(cutIndex,	iter.fin));	

												}	

								}	

				}	

}

This	code	implements	a	stack	on	the	Java	level.	While	it	sees	that	there	is	still	something	scheduled	to	be
sorted	in	stack,	it	fetched	it	from	the	stack	and	does	the	sort	partitioning,	and	schedules	the	two	parts	for
being	sorted.

This	code	is	more	complex	than	the	previous	one	and	you	have	to	understand	the	role	of	the	Stack	class	and
how	it	works.	On	the	other	hand,	the	program	uses	only	one	instance	of	the	Partitioner	class	and	it	is	also
possible	to	use	a	thread	pool	to	schedule	the	subsequent	sorts	instead	of	handling	the	tasks	in	a	single
process.	This	may	speed	up	the	sort	when	it	is	executed	on	a	multi-CPU	machine.	However,	this	is	a	bit
more	complex	task	and	this	chapter	contains	a	lot	of	new	things	without	multitasking;	therefore,	we	will
look	at	multithread	code	in	two	chapters	later	only.

In	the	very	first	version	of	the	sort,	I	was	coding	it	without	the	three	lines	that	compare
cutIndex	against	the	interval	start	and	increments	it	in	the	if	branch.	It	is	needed	very
much.	But,	the	unit	tests	we	created	in	this	book	do	not	discover	the	bug	if	we	miss	those
lines.	I	recommend	that	you	just	delete	those	lines	and	try	to	write	some	unit	tests	that
fail.	Then	try	to	understand	what	the	special	case	is	when	those	lines	are	vital	and	try	to
modify	your	unit	test	so	that	it	is	the	simplest	possible	that	still	discovers	that	bug.
(Finally,	put	the	four	lines	back	and	see	if	the	code	works.)
Additionally,	find	some	architectural	reason	why	not	to	put	this	modification	into	the
method	partition.	That	method	could	just	return	large+1	in	case	large	==	start.

Implementing	the	API	class
Having	done	all	this,	the	last	thing	we	will	need	is	to	have	QuickSort	as	a	simple	class	(all	the	real	work
was	already	done	in	different	classes).

public	class	QuickSort<E>	implements	Sort<E>	{	

				public	void	sort(SortableCollection<E>	sortable)	{	

								int	n	=	sortable.size();	

								Qsort<E>	qsort	=	new	Qsort<>(comparator,swapper);	

								qsort.qsort(sortable,	0,	n-1);	

				}	

//	...	setter	injectors	were	deleted	from	the	print	

}

Do	not	forget	that	we	also	need	a	test!	But,	in	this	case,	that	is	not	much	different	than	that	of	BubbleSort.

@Test	

public	void	canSortStrings()	{	

				final	String[]	actualNames	=	new	String[]{	

												"Johnson",	"Wilson",	

												"Wilkinson",	"Abraham",	"Dagobert"	

				};	

				final	String[]	expected	=	new	String[]{"Abraham",	"Dagobert",	"Johnson",	"Wilkinson",	"Wilson"};	

				Sort<String>	sort	=	new	QuickSort<>();	

				sort.setComparator(String::compareTo);	

				sort.setSwapper(new	ArraySwapper<String>(actualNames));	

				sort.sort(new	ArrayWrapper<>(actualNames));	

				Assert.assertArrayEquals(expected,	actualNames);	

}

This	time,	we	used	String	array	instead	of	ArrayList.	This	makes	this	test	simpler	and,	this	time,	we	already
have	the	support	classes.

You	may	recognize	that	this	is	not	a	unit	test.	In	the	case	of	BubbleSort,	the	algorithm	was	implemented	in	a
single	class.	Testing	that	single	class	is	a	unit	test.	In	the	case	of	QuickSort,	we	separated	the	functionality
into	separate	classes,	and	even	into	separate	packages.	A	real	unit	test	of	the	QuickSort	class	will	disclose
the	dependency	of	that	class	on	other	classes.	When	this	test	runs,	it	involves	the	execution	of	Partitioner
and	also	Qsort;	therefore,	it	is	not	really	a	unit	test.

Should	we	bother	about	that?	Not	really.	We	want	to	create	unit	tests	that	involve	a	single	unit	to	know
where	the	problem	is	when	a	unit	test	fails.	If	there	were	only	integration	tests,	a	failing	test	case	would
not	help	a	lot	in	pointing	out	where	the	problem	is.	All	it	says	is	that	there	is	some	problem	in	the	classes
that	are	involved	in	the	test.	In	this	case,	there	are	only	a	limited	number	of	classes	(three)	that	are
involved	in	this	test	and	they	are	tied	together.	They	are	actually	tied	together	and	related	to	each	other	so
closely	that	in	the	real	production	code,	I	would	have	implemented	them	in	a	single	class.	I	separated
them	here	to	demonstrate	how	to	test	a	single	unit	and	also	to	demonstrate	Java	9	module	support	that
needs	a	bit	more	than	a	single	class	in	a	JAR	file.

	

Creating	modules
	

Module	handling,	also	known	as	project	Jigsaw,	is	a	feature	that	was	made	available	only	in	Java	9.	It
was	a	long	planned	feature	that	the	developers	were	waiting	for.	First	it	was	planned	for	Java	7,	but	it
was	so	complex	that	it	got	postponed	to	Java	8	and	then	to	Java	9.	A	year	ago,	it	seemed	that	it	would	get
postponed	again,	but	finally,	the	project	code	got	into	the	early	releases	and	now	nothing	can	stop	from
being	part	of	the	release.

	

	

Why	modules	are	needed
We	have	already	seen	that	there	are	four	levels	of	access	in	Java.	A	method	or	field	can	be	private,
protected,	public,	or	default	(also	known	as	package	private)	when	no	modifier	is	supplied.	When	you
develop	a	complex	library	to	be	used	in	several	projects,	the	library	itself	will	contain	many	classes	in
many	packages.	There	will	certainly	be	classes	and	methods,	fields	in	those	that	are	used	inside	the
library	by	other	classes	from	different	packages,	but	classes	that	are	not	to	be	used	by	the	code	outside	the
library.	Making	them	anything	less	visible	than	public	will	render	them	unusable	inside	the	library.	Making
them	public	will	make	them	visible	from	outside.

In	our	code,	the	Maven	module	quick	compiled	to	a	JAR	can	only	be	used	if	the	method	sort	can	invoke
qsort.	But,	we	do	not	want	qsort	to	be	used	directly	from	outside.	In	the	next	version,	we	may	want	to
develop	a	version	of	the	sort	that	uses	qsort	from	the	NonRecursiveQuickSort	class	and	we	do	not	want
complaining	customers	whose	code	does	not	compile	or	work	because	of	a	minor	library	upgrade.	We	can
document	that	the	internal	methods	and	classes	are	still	public	but	not	for	use,	but	in	vain.	Developers
using	our	library	do	not	read	documentation.	This	is	also	why	we	do	not	write	excessive	comments.
Nobody	will	read	it,	not	even	the	processor	executing	the	code.

The	most	well-known	and	infamous	example	of	this	problem	is	the	sun.misc.Unsafe	class	in	the	JDK.	There
is	some	really	unsafe	code	in	it,	as	the	name	implies.	You	can	access	memory	out	of	heap,	create	objects
without	initialization,	and	so	on.	You	should	not.	Why	bother?	You	are	a	well-behaving	developer	and	you
just	stick	to	the	rules	and	you	do	not	use	that	package.	Whenever	it	changes	in	a	new	version	of	the	JDK,
your	program	is	safe	using	only	public	and	well-documented	JDK	API.	Right?

Wrong!	Without	being	aware	of	this,	you	may	use	some	libraries	that	depend	on	other	libraries	that	use	the
package.	Mockito	and	Spring	Framework	are	only	two	of	the	numerous	in	danger.	In	addition,	Java	9	will
definitely	come	with	a	new	version	of	this	package.	However,	it	will	also	come	with	module	handling.
While	Java	9	will	provide	some	useful	API	for	the	libraries	that	were	using	the	Unsafe	package	because
there	was	no	provided	API	for	the	functionality	they	needed,	it	will	deliver	modules	not	to	recreate	the
same	problem	again.

What	is	a	Java	module
A	Java	module	is	a	collection	of	classes	in	a	JAR	or	in	a	directory	that	also	contain	a	special	class	named
module-info.	If	there	is	this	file	in	a	JAR	or	directory	then	it	is	a	module,	otherwise	it	is	just	a	collection	of
classes	that	are	on	the	classpath	(or	not).	Java	8,	and	the	earlier	versions,	will	just	ignore	that	class	as	it	is
never	used	as	code.	This	way,	using	older	Java,	causes	no	harm	and	backward	compatibility	is
maintained.

The	module	information	defines	what	the	module	exports	and	what	it	requires.	It	has	a	special	format.	For
example,	we	can	place	module-info.java	in	our	SortInterface	Maven	module.

module	packt.java9.by.example.ch03{	

								exports	packt.java9.by.example.ch03;	

								}

This	means	that	any	class,	which	is	public	and	inside	the	packt.java9.by.example.ch03	package,	can	be	used
from	outside.	This	package	is	exported	from	the	module,	but	other	classes	from	other	packages	are	not
visible	from	outside	of	the	module	even	if	they	are	public.	The	name	of	the	module	is	same	as	the	package,
but	this	is	mere	convention	in	case	there	is	only	one	package	exported.	The	requirement	is	the	same	as	in
the	case	of	packages:	there	should	be	a	name	that	is	not	likely	to	collide	with	other	module	names.	The
reversed	domain	name	is	a	good	choice	but	it	is	not	a	must	as	you	can	see	in	this	book.	There	is	no	top-
level	domain	packt,	yet.

We	should	also	configure	the	parent	POM	to	ensure	that	the	compiler	we	use	is	Java	9,

<build>	...	

				<plugins>	...	

								<plugin>	

												<groupId>org.apache.maven.plugins</groupId>	

												<artifactId>maven-compiler-plugin</artifactId>	

												<version>3.5.1</version>	

												<configuration>	

																<source>1.9</source>	

																<target>1.9</target>	

												</configuration>	

								</plugin>	

...

Older	versions	would	be	confused	with	the	module-info.java	file.	(By	the	way,	even	the	early	access	version
of	Java	9	I	use	for	this	book	sometimes	gives	a	hard	time.)

We	also	create	a	module-info.java	file	in	the	Maven	module,	quick,	which	is	as	follows:

module	packt.java9.by.example.ch03.quick{	

								exports	packt.java9.by.example.ch03.quick;	

								requires	packt.java9.by.example.ch03;	

								}

This	module	exports	another	package	and	requires	the	packt.java9.by.example.ch03	module	that	we	have	just
created.	Now,	we	can	compile	the	modules	and	the	created	JARs	in	the./quick/target	and
./SortInterface/target	directories	are	now	Java	9	modules.

As	Maven	does	not	fully	support	the	modules	yet,	when	I	issue	the	mvn	install	command,	I

get	the	following	error	message:
[ERROR]	.../genericsort/quick/src/main/java/module-info.java:[3,40]	module	not	found:

packt.java9.by.example.ch03

Maven	puts	the	compiled	modules	on	classpath,	but	Java	9	seeks	modulepath	for	modules.
Maven	does	not	handle	modulepath	yet.	To	hack	modulepath	to	the	compiler,	we	will	have	to
add	the	following	configuration	lines	to	the	parent	POM	to	the	configuration	of	the
compiler	plugin:<compilerArgs>
<arg>-modulepath</arg>

<arg>${project.parent.basedir}/SortInterface/target/SortInterface-1.0.0-SNAPSHOT.jar:	...</arg>

</compilerArgs>

The	actual	file	should	list	all	the	colon	separated	JAR	files	that	Maven	generates,	and	on
which	some	of	the	modules	depend.	These	are	the	SortInterface,	quick,	and	SortSupportClasses.

To	test	the	functionality	of	module	support,	we	will	create	another	Maven	module	called	Main.	It	has	only
one	class,	called	Main,	with	a	public	static	void	main	method:

package	packt.java9.by.example.ch03.main;	

//	...	imports	deleted	from	the	print	

public	class	Main	{	

				public	static	void	main(String[]	args)	throws	IOException	{	

								String	fileName	=	args[0];	

								BufferedReader	br	=	new	BufferedReader(new	InputStreamReader(new	FileInputStream(new	File(fileName))));	

								List<String>	lines	=	new	LinkedList<>();	

								String	line;	

								while	((line	=	br.readLine())	!=	null)	{	

												lines.add(line);	

								}	

								br.close();	

								String[]	lineArray	=	lines.toArray(new	String[0]);	

								Sort<String>	sort	=	new	QuickSort<>();	

								Qsort<String>	qsort	=	new	Qsort<>(String::compareTo,new	ArraySwapper<>(lineArray));	

								sort.setComparator(String::compareTo);	

								sort.setSwapper(new	ArraySwapper<>(lineArray));	

								sort.sort(new	ArrayWrapper<>(lineArray));	

								for	(final	String	outLine	:	lineArray)	{	

												System.out.println(outLine);	

								}	

				}	

}

It	takes	the	first	argument	(without	checking	that	there	is	one,	which	we	should	not	use	in	a	production
code)	and	uses	that	as	a	file	name.	Then,	it	reads	the	lines	of	the	file	into	a	String	array,	sorts	it,	and	prints
it	to	the	standard	output.

As	the	module	support	only	works	for	modules,	this	Maven	module	also	has	to	be	a	Java	module	and	have
a	module-info.java	file.

module	packt.java9.by.example.ch03.main{	

								requires	packt.java9.by.example.ch03.quick;	

								requires	packt.java9.by.example.ch03;	

								requires	packt.java9.by.example.ch03.support;	

								}

Additionally,	we	will	have	to	create	a	module-info.java	file	for	the	support	module;	otherwise,	we	will	not
be	able	to	use	it	from	our	module.

After	compiling	the	modules	using	mvn	install,	we	can	run	it	to	print	out	the	parent	POM.

java	-cp	Main/target/Main-1.0.0-SNAPSHOT.jar:SortInterface/target/SortInterface-1.0.0-SNAPSHOT.jar:quick/target/quick-1.0.0-SNAPSHOT.jar:SortSupportClasses/target/SortSupportClasses-1.0.0-SNAPSHOT.jar	packt.java9.by.example.ch03.main.Main	pom.xml	

Note	that	this	is	one	line	of	command	that	print	breaks	into	several	lines.

Now,	if	we	try	to	access	Qsort	directly	inserting	the	following	line	Qsort<String>	qsort	=	new	Qsort<>
(String::compareTo,new	ArraySwapper<>(lineArray));	into	the	main	method,	Maven	will	complain	because	the
module	system	hides	it	from	our	Main	class:

[ERROR]	Failed	to	execute	goal	org.apache.maven.plugins:maven-compiler-plugin:3.5.1:compile	(default-compile)	on	project	Main:	Compilation	failure:	Compilation	failure:

[ERROR]	.../Main/src/main/java/packt/java9/by/example/ch03/main/Main.java:[4,41]	package	packt.java9.by.example.ch03.qsort	does	not	exist

[ERROR]	.../Main/src/main/java/packt/java9/by/example/ch03/main/Main.java:[25,9]	cannot	find	symbol

The	module	system	also	supports	the	java.util.ServiceLoader	based	class-loading	mechanism,	which	we	will
not	discuss	in	this	book.	This	is	an	old	technology	that	is	rarely	used	in	an	enterprise	environment	when
Spring,	Guice,	or	some	other	dependency	injection	framework	is	used.	If	you	see	a	module-info.java	file	that
contains	the	uses	and	provides	keywords,	then	first	consult	with	the	Java	documentation	about	the
ServiceLoader	class	at	http://docs.oracle.com/javase/8/docs/api/java/util/ServiceLoader.html,	and	then	the	Java	9	language
documentation	on	module	support	(http://openjdk.java.net/projects/jigsaw/quick-start).

http://docs.oracle.com/javase/8/docs/api/java/util/ServiceLoader.html
http://openjdk.java.net/projects/jigsaw/quick-start

	

Summary
	

In	this	chapter,	we	developed	a	general	sorting	algorithm	implementing	quick	sort.	We	modified	our
project	to	be	a	multi-module	Maven	project	and	also	to	use	Java	module	definitions.	We	were	using	JUnit
to	develop	unit	tests,	and	we	developed	the	code	using	TDD.	We	converted	the	code	from	old	style	Java
to	new	using	generics,	and	we	used	exception	handling.	These	are	the	basic	tools	that	are	needed	for	the
coming	chapters,	where	we	will	develop	a	guessing	game.	First	we	will	develop	a	simpler	version	and	in
the	subsequent	chapter	we	will	develop	a	version	that	uses	parallel	computing,	and	multiple	proccessors.

	

	

Mastermind	-	Creating	a	Game
In	this	chapter,	we	will	start	to	develop	a	simple	game.	The	game	is	the	Mastermind	game	for	two
players.	Player	one	selects	four	differently	colored	pins	out	of	six	possible	colors	and	arranges	them	on	a
board	in	a	row	hidden	from	the	other	player.	The	other	player	tries	to	guess	the	colors	of	the	pins	and	its
positions.	After	each	try,	player	one	tells	the	number	of	matching	colors	and	the	pins	matching	both	color
and	position.	The	program	will	act	as	both	player	one	and	player	two.	Our	code	will	play	alone.
However,	what	remains	for	us	to	play	with	is	the	most	important:	the	code.

This	example	is	complex	enough	to	deepen	the	OO	principles	and	how	we	design	classes	and	model	the
real	world.	We	have	already	used	classes	provided	in	the	Java	runtime.	This	time,	we	will	use
collections	and	discuss	this	important	area.	These	classes	and	interfaces	are	widely	used	and	available	in
the	JDK	and	as	important	for	a	professional	Java	developer	as	the	language	itself.

The	build	tool	this	time	is	Gradle.

In	this	chapter	we	will	cover:

Java	collections
Dependency	injection
How	to	comment	our	code	and	to	create	JavaDoc	documentation
How	to	create	integration	tests

The	Game
Mastermind	(https://en.wikipedia.org/wiki/Mastermind_(board_game))	is	an	old	game.	The	plastic	version	that	was
ubiquitous	in	every	house	with	children	was	invented	in	1970.	I	got	a	board	around	1980	as	a	Christmas
gift	and	solving	the	game	puzzle	in	BASIC	language	was	one	of	the	first	programs	that	I	created	around
1984.

The	game	board	contains	holes	in	several	rows	in	four	columns.	There	are	plastic	pins	of	six	different
colors	that	can	be	inserted	into	the	holes.	Each	pin	has	one	color.	They	are	usually	red,	green,	blue,
yellow,	black,	and	white.	There	is	a	special	row	that	is	hidden	from	one	of	the	players	(the	guesser).

To	play	the	game,	one	of	the	players	(hider)	has	to	select	four	pins	from	a	set	of	pins.	The	selected	pins
should	have	different	colors.	The	pins	are	placed	in	the	hidden	row	one	by	one,	each	into	a	position.

The	guesser	tries	to	find	out	what	colors	are	in	which	position	guessing.	Each	guess	takes	place	selecting
four	pins	and	placing	them	in	a	row.	The	hider	tells	the	guesser	how	many	pins	are	in	correct	position	and
how	many	have	a	color	that	is	on	the	table,	but	are	not	in	the	position	where	that	color	is	hidden.

A	sample	play	may	go	like	this:

The	hider	hides	four	pins	with	color	blue,	yellow,	white,	and	black.
Guesser	guesses	yellow,	blue,	green,	and	red.
The	hider	tells	the	guesser	that	there	are	two	colors	matching,	but	none	of	them	is	in	the	position	in
the	hidden	row.	The	hider	says	this	because	yellow	and	blue	are	in	the	hidden	row	but	not	in	the
positions	as	the	guesser	guessed.	They	are	actually	swapped,	but	this	information	the	hider	keeps	a
secret.	All	she	says	is	that	there	are	two	colors	matching,	none	in	the	correct	position.
The	next	guess	is	...

The	game	finishes	when	the	guesser	finds	the	correct	colors	in	the	correct	order.	The	same	game,	as	on	the
figure,	can	also	be	described	with	textual	notation,	B	for	blue,	Y	for	yellow,	G	for	green,	W	for	white,	R	for
red,	and	b	for	black	(lucky	we	have	upper	and	lower	case	letters	on	the	computer).

RGBY	0/0

GRWb	0/2

https://en.wikipedia.org/wiki/Mastermind_(board_game)

YBbW	0/2

BYGR	0/4

RGYB	2/2

RGBY	4/0

Guess	what!	This	is	the	actual	output	of	the	program	that	we	develop	in	this	chapter.

The	model	of	the	game
When	we	develop	a	piece	of	code	with	an	object-oriented	mindset,	we	try	to	model	the	real	world	and
map	real-world	objects	to	objects	in	the	program.	You	certainly	have	heard	of	object	orientation
explained	with	the	very	typical	examples	of	geometric	objects,	or	the	car	and	the	motor	thing	to	explain
composition.	Personally,	I	believe	that	these	examples	are	too	simple	to	get	a	good	understanding.	They
may	be	good	for	starters,	but	we	are	already	in	the	fourth	chapter	of	the	book.	The	Mastermind	game	is
much	better.	It	is	a	bit	more	complex	than	just	rectangles	and	triangles,	but	not	as	complex	as	a	telecom
billing	application	or	an	atomic	power	plant	control.

What	are	the	real-world	objects	that	we	have	in	that	game?	We	have	a	table	and	we	have	pins	of	different
colors.	There	are	two	Java	classes	that	we	certainly	will	need.	What	is	in	a	table?	There	are	rows	each
having	four	positions.	Perhaps	we	will	need	a	class	for	a	row.	A	table	will	have	rows.	We	will	also	need
something	that	hides	the	secret.	This	also	may	be	a	row	and	each	row	may	also	hold	the	information	about
how	many	positions	and	how	many	colors	are	matching.	In	case	of	the	secret	row,	this	information	is
obvious:	4	and	0.

What	is	a	pin?	Each	pin	has	a	color	and	generally,	that	is	it.	There	are	no	other	features	of	a	pin,	except
that	it	can	be	inserted	into	a	hole	on	the	table,	but	this	is	a	real	life	feature	we	will	not	model.	Essentially,
a	pin	is	a	color	and	nothing	else.	This	way,	we	can	eliminate	the	pin	class	from	our	model	early	on,	even
before	we	created	it	in	Java.	Instead,	we	have	colors.

What	is	a	color?	This	is	something	that	may	be	hard	to	immerse	into	the	first	time.	We	all	know	well	what
a	color	is.	It	is	a	mixture	of	different	frequency	of	lights,	as	our	eyes	perceive	it.	We	can	have	paints	and
prints	in	different	colors,	and	so	on.	There	are	very	many	things	that	we	do	not	model	in	this	program.	It	is
really	hard	to	tell	what	we	model	about	color	in	our	code	because	these	features	are	so	obvious	that	we
take	it	for	granted	in	real	life;	we	can	tell	about	two	colors	that	they	are	different.	This	is	the	only	feature
we	need.	To	do	this,	the	simplest	class	of	Java	can	be	used:

package	packt.java9.by.example.mastermind;	

public	class	Color	{}

If	you	have	two	variables	of	the	type	Color,	you	can	tell	if	they	are	the	same	or	not.	You	can	use	object
identity	comparing	a	and	b	using	the	expression	a	==	b	or	you	can	use	the	equals	method	inherited	from	the
Object	class,	a.equals(b).	It	is	tempting	to	encode	the	colors	with	letters,	or	use	String	constants	to	denote
them.	It	may	be	easier	first,	but	there	are	serious	drawbacks	later.	When	the	code	becomes	complex,	it
leads	to	bugs;	it	will	be	easy	to	pass	something	also	encoded	as	String	instead	of	a	color	and	only	unit
tests	may	save	the	day.	Better,	the	compiler	already	complains	in	the	IDE	when	you	type	the	wrong
argument.

When	we	play	the	game,	the	pins	are	in	small	boxes.	We	pull	pins	out	of	the	boxes.	How	do	we	get	the
colors	in	the	program?	We	need	something	from	where	we	can	fetch	colors	or	looking	at	the	other	way
something	that	can	give	us	colors.	We	will	call	it	ColorManager.	ColorManager	knows	how	many	different	colors
we	have	and	any	time	we	need	a	color,	we	can	ask	for	it.

Again,	there	is	a	temptation	to	design	the	ColorManager	that	it	can	serve	a	color	by	its	serial	number.	If	we

have	four	colors,	we	could	ask	for	color	number	0,	1,	2,	or	3.	But	then	again,	it	would	just	implicitly
encode	the	colors	as	integer	numbers,	which	we	agreed	we	will	not.	We	should	find	the	minimum	feature
that	we	will	need	to	model	the	game.

To	describe	the	structure	of	the	classes,	professional	developers	usually	use	UML	class	diagrams.	UML	is
a	diagram	notation	that	is	standardized	and	is	almost	exclusively	used	to	visualize	software	architecture.
There	are	many	diagram	types	in	UML	to	describe	the	static	structure	and	the	dynamic	behavior	of	a
program.	This	time,	we	will	look	at	a	very	simplified	class	diagram.

We	have	no	room	to	get	into	the	details	of	UML	class	diagrams.	Rectangles	denote	the	classes,	normal
arrows	denote	the	relations	when	a	class	has	field	of	the	other	class	type,	and	triangle	headed	arrow
means	that	a	class	extends	another.	The	arrow	points	to	the	direction	of	the	class	being	extended.

A	Game	contains	a	secret	Row	and	a	Table.	The	Table	has	a	ColorManager	and	a	List<>	of	Row.	The
ColorManager	has	a	first	color	and	has	a	Map<>	of	Color.	We	have	not	discussed	why	that	is	the	design,
we	will	get	there	and	the	diagram	helps	us	walking	that	road.	A	Row	is	essentially	an	array	of	Color.

The	one	who	plays	the	game	has	one	function:	it	has	to	guess	many	times	until	it	finds	the	hidden	secret.
To	get	to	the	model	of	the	ColorManager,	we	will	have	to	design	the	algorithm	of	the	Guesser.

When	the	player	makes	the	first	guess,	any	combination	of	colors	is	just	as	good	as	any	other.	Later,	the
guesses	should	consider	the	responses	that	were	given	for	previous	guesses.	It	is	a	reasonable	approach
to	try	only	color	variations	that	can	be	the	actual	secret.	The	player	selects	a	variation	and	looks	at	all
previous	guesses	assuming	that	the	selected	variation	is	the	secret.	If	the	responses	to	the	rows	he	has
already	made	are	the	same	for	this	variation	as	for	the	unknown	secret	in	the	game,	then	it	is	reasonable	to
try	this	variation.	If	there	is	any	difference	in	the	responses,	then	this	variation	is	certainly	not	the

variation	that	was	hidden.

To	follow	this	approach,	the	guesser	has	to	generate	all	possible	color	variations	one	after	the	other	and
compare	it	against	the	table.	The	guesser	code	will	not	create	and	store	all	the	possible	variations	ahead,
but	it	has	to	know	where	it	was	and	has	to	be	able	to	calculate	the	next	variation	that	comes.	This	assumes
an	order	of	the	variations.	For	a	short	while,	let's	forget	that	no	color	may	appear	twice	in	a	variation.	A
simple	ordering	can	be	made	the	same	way	as	we	sort	decimal	numbers.	If	we	have	a	three-digit	number,
then	the	first	one	is	000,	the	next	one	is	001,	and	so	on	until	009,	always	fetching	the	next	digit	for	the	last
position.	After	that,	010	comes.	We	increased	a	digit	next	to	the	last	one	and	we	set	the	last	one	to	0	again.
Now,	we	have	011,	012,	and	so	on.	You	know,	how	we	count	numbers.	Now,	replace	the	digits	with
colors	and	we	have	only	six	and	not	ten.	Or,	we	have	as	many	as	we	want	when	we	instantiate	a
ColorManager	object.

This	leads	to	the	functionality	of	the	ColorManager.	It	has	to	do	the	following	two	things:

Give	the	first	color	to	the	caller
Give	the	next	color	that	follows	a	given	color	(we	will	name	the	method	nextColor)

The	latter	functionality	should	also	signal	some	way	when	there	is	no	next	color.	This	will	be
implemented	using	another	method,	named	thereIsNextColor.

It	is	a	convention	to	start	the	method	names	that	return	a	Boolean	value	with	is.	That
would	lead	to	the	name	following	this	convention	isThereNextColor,	or	isNextColor.	Either	of
these	names	explains	the	functionality	of	the	method.	If	I	ask	the	question	isThereNextColor,
the	method	will	answer	me	true	or	false.	But,	this	is	not	how	we	will	use	the	method.	We
will	talk	in	simple	sentences.	We	will	use	short	sentences.	We	will	avoid	unnecessary,
gibberish	expressions.	We	will	also	program	that	way.	Most	probably,	the	caller	will	use
this	method	in	an	if	statement.	They	will	write	the	following:
If(thereIsNextColor(currentColor)){...}

and	not
if(isThereNextColor(currentColor)){...}

I	think	the	first	version	is	more	readable	and	readability	comes	first.	Last,	but	not	least,
nobody	will	blame	you	if	you	follow	the	old	convention,	and	in	case	that	is	the	company
standard,	you	have	to	anyway.

To	do	these,	the	ColorManager	also	has	to	create	the	color	objects	and	should	store	them	in	a	structure	that
helps	the	operations	being	performed.

package	packt.java9.by.example.mastermind;	

		

	import	java.util.HashMap;	

	import	java.util.Map;	

		

	public	class	ColorManager	{	

					final	protected	int	nrColors;	

					final	protected	Map<Color,	Color>	successor	=	new	HashMap<>();	

					final	private	Color	first;	

		

					public	ColorManager(int	nrColors)	{	

									this.nrColors	=	nrColors;	

									first	=	new	Color();	

									Color	previousColor	=	first;	

		

									for	(int	i	=	1;	i	<	nrColors;	i++)	{	

													final	Color	thisColor	=	new	Color();	

													successor.put(previousColor,	thisColor);	

													previousColor	=	thisColor;	

									}	

									successor.put(previousColor,	Color.none);	

					}	

		

					public	Color	firstColor()	{	

									return	first;	

					}	

		

					boolean	thereIsNextColor(Color	color)	{	

									return	successor.get(color)	!=	Color.none;	

					}	

		

					public	Color	nextColor(Color	color)	{	

									return	successor.get(color);	

					}	

	}

The	structure	we	use	is	a	Map.	Map	is	an	interface	defined	in	the	Java	runtime	and	is	available	since	the	very
early	releases	of	Java.	A	Map	has	keys	and	value,	and	for	any	key,	you	can	easily	retrieve	the	value
assigned	to	the	key.

You	can	see	on	the	line,	where	the	variable	successor	is	defined	that	we	define	the	type	of
the	variable	as	an	interface,	but	the	value	is	an	instance	of	a	class.	Obviously,	the	value
cannot	be	an	instance	of	an	interface	because	such	beasts	do	not	exist.	But,	why	do	we
define	the	variable	to	be	an	interface?	The	reason	is	abstraction	and	coding	practice.	If
we	need	to	change	the	implementation	we	use	for	some	reason,	the	variable	type	still	may
remain	the	same	and	there	is	no	need	to	change	the	code	elsewhere.	It	is	also	a	good
practice	to	declare	the	variable	to	be	an	interface	so	that	we	will	not	have	the	temptation
to	use	some	special	API	of	the	implementation	that	is	not	available	in	the	interface	just
by	convenience.	When	it	is	really	needed,	we	can	change	the	type	of	the	variable	and	use
the	special	API.	After	all,	there	is	a	reason	that	API	is	there,	but	the	mere	temptation	to
use	some	special	thing	just	because	it	is	there	is	hindered.	This	helps	to	write	simpler	and
cleaner	program.

Map	is	only	one	of	the	interfaces	defined	in	the	Java	runtime	belonging	to	the	Java	collections.	There	are
many	other	interfaces	and	classes.	Although,	the	JDK	and	all	the	classes	are	a	vast	amount	and	almost
nobody	knows	all	the	classes	that	are	there,	collections	is	a	special	area	that	a	professional	developer
should	be	knowledgeable	about.	Before	getting	into	details	on	why	HashMap	is	used	in	this	code,	we	will
have	an	overview	of	the	collection	classes	and	interfaces.	This	will	help	us	also	understand	the	other
collections	used	in	this	program.

Java	collections
Collections	are	interfaces	and	classes	that	help	us	store	more	than	one	object.	We	have	already	seen
arrays	that	can	do	that,	and	also	ArrayList	in	the	previous	chapters,	but	we	did	not	discuss	in	detail	what
other	possibilities	there	are	in	the	JDK.	Here,	we	will	go	into	more	detail,	but	leave	the	streams	and	the
functional	methods	for	later	chapters,	and	we	will	also	refrain	to	go	into	details	that	is	rather	the	task	of	a
reference	book.

Using	implementation	of	the	collection	classes	and	interfaces	reduces	the	programming	effort.	First	of	all,
you	do	not	need	to	program	something	that	is	already	there.	Secondly,	these	classes	are	highly	optimized,
both	in	implementation	and	in	their	features.	They	have	very	well	designed	API	as	well	as	the	code	is	fast
and	uses	small	memory	footprint.	Sorry	to	say	that	their	code	was	written	long	time	ago	and	many	times	it
is	not	a	good	style,	hard	to	read,	and	understand.

When	you	use	a	collection	from	the	JDK,	it	is	more	likely	that	you	can	interoperate	with	some	library.	If
you	cook	your	own	version	of	linked	lists,	it	is	not	likely	that	you	will	find	a	readymade	solution	that	will
sort	your	list.	If	you	use	the	LinkedList	class	in	the	JDK's	standard	class	library,	you	will	get	a	readymade
solution	from	the	Collections	class,	right	from	the	JDK.	It	is	also	worth	mentioning	that	the	Java	language
itself	supports	these	classes,	for	example,	you	can	easily	iterate	through	the	elements	of	a	Collection	with	a
shortened	special	syntax.

The	collections	in	JDK	contain	interfaces	that	define	the	behavior	of	the	different	collection	types,
implementation	classes,	and	algorithms	that	perform	certain	actions	such	as	sorting.	Many	times,	these
algorithms	work	on	different	implementation	versions,	getting	the	same	result,	but	optimized	for	the
implementation	specific	class.

You	can	use	the	API	given	by	the	interface,	and	if	you	change	the	implementation	in	your	code,	you	will
get	an	optimized	version	fitting	the	implementation.

The	collection	interfaces	can	be	categorized	in	two	bags.	One	bag	contains	the	interfaces	that	extend	the
Collection	interface,	and	the	other	one	contains	Map,	and	a	SortedMap	extending	Map.	This	way,	Map	is	not	really	a
collection,	as	it	does	not	simply	contain	other	objects	but	also	pair	values	to	keys.

Interface	collection
Collection	is	the	top	of	the	interface	hierarchy.	This	interface	defines	the	methods	that	all	implementations
should	provide,	no	matter	if	they	implement	the	Set,	SortedSet,	List,	Queue,	or	Deque	interface	directly.	As
Collection	simply	says	that	an	object	that	implements	the	Collection	interface	is	only	an	object	that	collects
other	objects	together,	the	methods	it	defines	are	like	adding	a	new	object	to	the	collection,	clearing	all
elements	from	there,	checking	that	an	object	is	already	a	member	of	the	collection,	and	iterating	through
the	elements.

For	an	up-to-date	definition	of	the	interface,	consult	the	Java	pi	documentation	(http://down
load.java.net/java/jdk9/docs/api/overview-summary.html).	You	can	consult	the	online	API	any	time,
and	it	is	recommended	to	do	so.

The	Java	language	itself	directly	supports	the	interface.	You	can	iterate	through	the	elements	of	the
Collection	with	the	enhanced	for	loop	syntax,	the	same	way	as	you	can	iterate	over	the	elements	of	an	array
where	the	collection	should	be	an	expression	that	results	an	object	that	implements	the	Collection	interface:
for(E	element	:	collection){...}

In	the	preceding	code,	E	is	either	Object	or	the	generic	type	of	the	elements	of	the	Collection.

The	interface	Collection	is	not	directly	implemented	in	the	JDK.	Classes	implement	one	of	the	sub
interfaces	of	Collection.

http://download.java.net/java/jdk9/docs/api/overview-summary.html

Set
The	Set	is	a	special	collection	that	cannot	contain	duplicate	elements.	When	you	want	to	add	an	object	into
a	set	that	already	has	an	object	that	is	the	same	or	equal	to	the	actual	one,	then	the	add	method	will	not	add
the	actual	object.	The	add	method	will	return	false	indicating	the	failure.

You	can	use	Set	in	your	program	when	you	need	a	collection	of	unique	elements	where	you	simply	want	to
check	that	an	element	is	a	member	of	a	set	or	not,	whether	an	object	belongs	to	a	certain	group	or	not.

As	we	will	return	to	our	program	code,	we	will	see	that	the	UniqueGuesser	class	has	to	implement	an
algorithm	that	checks	that	a	color	in	a	guess	is	present	only	once.	This	algorithm	is	the	ideal	candidate	for
a	Set	to	be	used:

private	boolean	isNotUniqueWithSet(Color[]	guess)	{	

					final	Set<Color>	alreadyPresent	=	new	HashSet<>();	

					for	(Color	color	:	guess)	{	

									if	(alreadyPresent.contains(color))	{	

													return	true;	

									}	

									alreadyPresent.add(color);	

					}	

					return	false;	

	}

The	code	creates	a	set,	which	is	empty	when	the	method	starts.	After	that,	it	checks	for	each	color	(notice
the	enhanced	for	loop	over	the	array	elements)	if	it	was	already	present	before.	To	do	that,	the	code
checks	if	the	color	is	already	in	the	set.	If	it	is	there,	the	guess	is	not	unique	as	we	have	found	a	color	that
is	present	at	least	twice.	If	the	color	was	not	in	the	set,	then	the	guess	can	still	be	unique	in	colors.	To	be
able	to	detect	that	later,	the	code	puts	the	color	into	the	set.

The	actual	implementation	of	Set	that	we	will	use	is	HashSet.	In	the	JDK,	there	are	many	classes
implementing	the	Set	interface.	The	most	widely	used	is	HashSet,	and	it	is	also	worth	mentioning	EnumSet,
LinkedHashSet,	and	TreeSet.	The	last	one	also	implements	the	SortedSet	interface,	so	we	will	detail	it	there.

To	understand	what	HashSet	(and	later	HashMap)	are	and	how	they	work,	we	will	have	to	discuss	what	hashes
are.	They	play	very	important	and	central	role	in	many	applications.	They	do	their	job	under	the	hood	in
the	JDK	but	there	are	some	very	important	constraints	that	programmers	have	to	follow	or	else	really
weird	and	extremely	hard	to	find	bugs	will	make	their	life	miserable.	I	dare	to	say	that	violation	of	the	hash	contract	in
HashSet	and	HashMap	are	the	cause	of	the	second	most	difficult	to	find	bugs	next	to	multithread	issues.

Thus,	before	going	on	with	the	different	collection	implementations,	we	will	visit	this	topic.	We	are
already	one	level	deep	from	our	example	in	this	detour	discussing	collections	and	now	we	will	go	one
level	deeper.	I	promise	this	is	the	last	in-depth	level	of	detours.

Hash	functions
A	hash	is	a	mathematical	function	that	assigns	a	number	to	an	element.	Say	you	work	at	a	university
administration	and	you	have	to	tell	if	Wilkinson	is	a	student	at	your	class.	You	can	store	the	names	on
small	papers	in	envelopes	one	for	each	starting	letter.	Instead	of	searching	through	the	10	thousand
students,	you	can	look	at	the	papers	in	the	envelope	titled	W.	This	very	simple	hash	function	assigns	the
first	letter	of	the	name	to	the	name	(or	the	ordinal	number	of	the	letter,	as	we	said	that	a	hash	function
results	a	number).	This	is	not	really	a	good	hash	function	because	it	puts	only	a	few	elements,	if	any,	into
the	envelope	denoted	X	and	many	to	A	for	example.

A	good	hash	function	results	each	possible	ordinal	number	with	similar	probability.	In	hash	tables,	we
usually	have	more	buckets	(envelopes	in	the	previous	example)	than	the	number	of	elements	to	be	stored.
Therefore,	when	an	element	is	searched	for,	it	is	likely	that	there	is	only	one	element	there.	At	least	that	is
what	we	would	like	to	have.	If	there	are	multiple	elements	in	a	single	bucket,	it	is	called	collision.	A
good	hash	function	has	as	little	collisions	as	possible.

For	backward	compatibility,	there	is	a	Hashtable	class	in	the	JDK.	This	was	one	of	the	first
hash	table	implementations	in	Java	right	in	the	very	first	version,	and	as	Java	is
backward	compatible,	it	was	not	thrown	away.	The	Map	interface	was	introduced	in	version
1.2	only.	Hashtable	has	many	drawbacks	and	its	use	is	not	recommended.	(Even	the	name	is
violating	the	Java	naming	conventions.)	We	do	not	discuss	this	class	in	this	book.
Whenever	we	talk	about	hash	tables,	it	is	referring	to	the	actual	array	that	is	inside	the
implementation	of	HashSet,	HashMap,	or	any	other	collection	that	uses	some	hash	indexed
table.

Hash	tables	are	arrays	that	use	the	result	of	the	hash	function	to	index	the	array.	Usually,	linked	lists
manage	collisions.	Hash	table	implementations	also	implement	a	strategy	to	resize	the	array	when	the
number	of	elements	to	be	stored	becomes	too	high	and	the	likelihood	of	collisions	increase.	This
operation	may	take	considerable	time	and,	during	this,	the	individual	elements	are	moved	between	the
buckets.

During	this	operation,	the	hash	table	cannot	reliably	be	used	and	this	may	be	some
source	of	issues	in	a	multithread	environment.	In	single	thread	code,	you	do	not	meet	this
problem.	When	you	call	the	add	method,	the	hash	table	(set	or	map)	decides	that	the	table
has	to	be	resized.	The	add	method	calls	the	resizing	method	and	does	not	return	until	it	is
finished.	Single	thread	code	has	no	possibility	to	use	the	hash	table	during	this	period:
the	one	and	single	thread	is	executing	the	resizing	itself.	In	a	multithread	environment,
however...

HashSet	and	HashMap	use	the	hash	function	provided	by	the	Object	that	is	stored	in	the	collection.	The	Object
class	implements	the	hashCode	and	equals	methods.	You	can	override	them	and	if	you	do,	you	should
override	both	in	a	consistent	manner.	First,	we	will	see	what	they	are	and	then	how	to	override	them
consistently.

	

Method	equals
	

The	documentation	of	set	says	"sets	contain	no	pair	of	elements	e1	and	e2	such	that	e1.equals(e2)".	The	equals
method	returns	true	if	the	e1	and	e2	are	in	some	way	equal.	It	may	be	different	from	two	objects	being
identical.	There	can	be	two	distinct	objects	that	are	equal.	For	example,	we	could	have	a	color
implementation	that	has	the	name	of	the	colors	as	an	attribute	and	two	color	objects	may	return	true
calling	the	equals	method	on	one	of	them	and	passing	the	argument	as	the	other	when	the	two	strings	are
equal.	The	default	implementation	of	the	equals	method	is	in	the	code	of	the	Object	class	and	this	returns	true
if	and	only	if	e1	and	e2	are	exactly	the	same	and	single	object.

It	seems	to	be	obvious,	but	my	experience	shows	that	it	cannot	be	stressed	enough	that	the	implementation
of	equals	in	an	object	has	to	be	as	follows:

Reflexive:	This	means	that	an	object	that	always	equals	itself
Symmetric	(commutative):	This	means	if	e1.equals(e2)	is	true,	then	e2.equals(e1)	should	also	be	true
Transitive:	This	means	if	e1.equals(e2)	and	e2.equals(e3),	then	e1.equals(e3)
Consistent:	This	means	that	the	return	value	should	not	change	if	the	objects	were	not	changed
between	the	invocations

	

Method	hashCode
The	hashCode	method	returns	an	int.	The	documentation	says	that	any	class	redefining	this	method	should
provide	the	following	implementation:

Consistently	return	the	same	value	if	the	object	was	not	modified
Result	the	same	int	value	for	two	objects	that	are	equal	(the	equals	method	returns	true)

The	documentation	also	mentions	that	this	is	not	a	requirement	to	result	different	int	values	for	objects	that
are	not	equal,	but	it	is	desirable	to	support	the	performance	of	the	hash	implementing	collections.

If	you	violate	any	of	these	rules	in	the	implementation	of	equals	and	hashCode,	then	the	JDK	classes	using
them	will	fail.	As	you	can	be	sure	that	HashSet,	HashMap,	and	similar	classes	were	fully	debugged,	seeing	that
you	added	an	object	to	a	set	and	then	the	set	reporting	that	it	is	not	there	will	be	a	bewildering	experience.
However,	only	until	you	find	out	that	the	two	objects	being	equal	and	stored	in	the	set	have	different
hashCode	values,	HashSet	and	HashMap	will	look	for	the	object	only	in	the	bucket	that	is	indexed	by	the	hashCode
value.

It	is	also	a	common	mistake	to	store	an	object	in	a	HashSet	or	HashMap	and	then	modify	it.	The	object	is	in	the
collection	but	you	cannot	find	it	because	the	hashCode	returns	a	different	value.	Objects	stored	in	a
collection	should	not	be	modified	unless	you	know	what	you	are	doing.

Many	times,	objects	contain	fields	that	are	not	interesting	from	the	equality	point	of	view.	The	hashCode	and
equals	methods	should	be	idempotent	to	those	fields	and	you	can	alter	those	fields	even	after	storing	the
object	in	a	HashSet	or	in	HashMap.

As	an	example,	you	may	administer	triangles	in	objects	maintaining	the	coordinates	of	the	vertices	and	the
color	of	the	triangle.	However,	you	do	not	care	about	the	color	for	equality,	only	that	the	two	triangles	are
at	the	exact	same	location	in	the	space.	In	that	case,	the	equals	and	hashCode	method	should	not	take	the	field
color	into	account.	This	way,	we	can	paint	our	triangles;	they	will	still	be	found	in	HashSet	or	HashMap	no
matter	what	the	color	field	is.

Implementing	equals	and	hashCode
Implementing	these	methods	is	fairly	simple.	As	this	is	a	very	common	task,	the	IDEs	support	the
generation	of	these	methods.	These	methods	are	tied	together	so	much	that	the	menu	items	in	the	IDEs	are
not	separate;	they	offer	you	to	generate	these	methods	at	once.

Asking	the	IDE	to	generate	the	equals	method	will	result	in	something	like	the	following	code:

@Override	

	public	boolean	equals(Object	o)	{	

					if	(this	==	o)	return	true;	

					if	(o	==	null	||	getClass()	!=	o.getClass())	return	false;	

					MyObjectJava7	that	=	(MyObjectJava7)	o;	

					return	Objects.equals(field1,	that.field1)	&&	

													Objects.equals(field2,	that.field2)	&&	

													Objects.equals(field3,	that.field3);	

	}

For	this	sample,	we	have	three	Object	fields	named	field1,	field2,	and	field3.	The	code	with	any	other	types
and	fields	will	look	very	similar.

First,	the	method	checks	for	object	identity.	One	Object	always	equals	itself.	If	the	reference	passed	as
argument	is	null	and	not	an	object,	or	they	are	of	different	class,	then	this	generated	method	will	return
false.	In	other	cases,	the	static	method	of	the	class	Objects	(note	the	plural)	will	be	used	to	compare	each	of
the	fields.

The	utility	class	Objects	was	introduced	in	Java	7,	hence	the	name	of	the	sample	class.	The	static	methods,
equals	and	hash,	support	the	override	of	the	Object	equals	and	hashCode	methods.	The	hashCode	creation	before
Java	7	was	fairly	complex	and	required	the	implementation	of	modulo	arithmetic	with	some	magic
numbers	that	is	hard	to	explain	just	looking	at	the	code	without	knowing	the	mathematics	behind	it.

This	complexity	is	now	hidden	behind	the	following	Objects.hash	method.

@Override	

	public	int	hashCode()	{	

					return	Objects.hash(field1,	field2,	field3);	

	}

The	generated	method	simply	calls	the	Objects.hash	method	passing	the	important	fields	as	arguments.

	

HashSet
	

Now,	we	know	essentially	a	lot	of	things	about	hashes	so	we	can	bravely	discuss	the	HashSet	class.	HashSet
is	an	implementation	of	the	Set	interface	that	internally	uses	hash	table.	Generally,	that	is	it.	You	store
objects	there	and	you	can	see	if	an	object	is	already	there	or	not.	When	there	is	a	need	for	a	Set
implementation,	almost	always	HashSet	is	the	choice.	Almost...

	

	

	

EnumSet
	

EnumSet	can	contain	elements	from	a	certain	enumeration.	Recall	that	enumerations	are	classes	that	have
fixed	a	number	of	instances	declared	inside	the	enum	itself.	As	this	limits	the	number	of	the	different	object
instances,	and	this	number	is	known	during	compilation	time,	the	implementation	of	the	EnumSet	code	is
fairly	optimized.	Internally,	EnumSet	is	implemented	as	a	bit	field	and	is	a	good	choice	where	bit	field
manipulations	can	be	used.

	

	

	

LinkedHashSet
	

LinkedHashSet	is	a	HashSet	that	also	maintains	a	doubly	linked	list	of	the	elements	it	holds.	When	we	iterate
though	a	HashSet,	there	is	no	guaranteed	order	of	the	element.	When	the	HashSet	is	modified,	the	new
elements	are	inserted	into	one	of	the	buckets	and,	possibly,	the	hash	table	gets	resized.	This	means	that	the
elements	get	rearranged	and	get	into	totally	different	buckets.	Iteration	over	the	elements	in	HashSet	just
takes	the	buckets	and	the	elements	in	it	in	some	order	that	is	arbitrary	from	the	caller	point	of	view.

LinkedHashSet,	however,	iterates	over	the	elements	using	the	linked	list	it	maintains	and	the	iteration	is
guaranteed	to	happen	in	the	order	the	elements	were	inserted.

	

	

	

SortedSet
	

The	SortedSet	is	an	interface	that	guarantees	that	the	classes	implementing	it	will	iterate	over	the	set	in	a
sorted	order.	The	order	may	be	the	natural	ordering	of	the	objects	if	the	objects	implement	the	Comparable
interface	or	a	Comparator	object	may	drive	it.	This	object	should	be	available	when	the	instance	of	the	class
implementing	the	SortedSet	is	created;	in	other	words,	it	has	to	be	a	constructor	parameter.

	

	

	

NavigableSet
	

NavigableSet	extends	the	SortedSet	interface	with	methods	that	let	you	do	proximity	search	in	the	set.	This
essentially	lets	you	search	for	an	element	that	is	in	the	search	and	is	less	than	the	searched	object,	less	or
equal	to	the	searched	element,	greater	or	equal,	or	greater	than	the	searched	object.

	

	

	

TreeSet
	

TreeSet	is	an	implementation	of	NavigableSet	and,	this	way	this	is	also	a	SortedSet	and,	as	a	matter	of	fact,	is
also	a	Set.	As	a	SortableSet	documentation	implies	there	are	two	types	of	the	constructors,	each	having
multiple	versions	though.	One	requires	some	Comparator,	the	other	one	relies	on	the	natural	ordering	of	the
elements.

	

	

	

List
	

List	is	an	interface	that	requires	implementing	class	to	keep	track	of	the	order	of	the	elements.	There	are
also	methods	that	access	an	element	by	index	and	iteration	defined	by	the	Collection	interface	that
guarantees	the	order	of	the	elements.	The	interface	also	defines	the	listIterator	method	that	returns	an
Iterator	also	implementing	the	ListIterator	interface.	This	interface	provides	methods	that	let	the	caller
insert	elements	to	the	list	while	iterating	through	it	and	also	going	back	and	forth	in	the	iteration.	It	is	also
possible	to	search	for	a	certain	element	in	the	List	but	most	implementations	of	the	interface	provide	poor
performance	while	the	searching	is	simply	going	through	all	elements	until	the	element	searched	for	is
found.	There	are	many	classes	implementing	this	interface	in	the	JDK.	Here,	we	will	mention	two.

	

	

	

LinkedList
	

This	is	a	doubly-linked	list	implementation	of	the	List	interface	that	has	a	reference	to	the	previous,	and
also	to	the	next	element	in	the	list	for	each	element.	The	class	also	implements	the	Deque	interface.	It	is
fairly	cheap	to	insert	or	delete	an	element	from	the	list	because	it	needs	only	the	adjustment	of	few
references.	On	the	other	hand,	the	access	to	an	element	by	index	will	need	iteration	from	the	start	of	the
list,	or	from	the	end	of	the	list,	whichever	is	closer	to	the	specified	indexed	element.

	

	

ArrayList
This	class	is	an	implementation	of	the	List	interface	that	keeps	the	references	to	the	elements	in	an	array.
That	way,	this	is	fairly	fast	to	access	an	element	by	index.	On	the	other	hand,	inserting	an	element	to
ArrayList	can	be	costly.	It	needs	moving	all	references	above	the	inserted	element	one	index	higher,	and	it
may	also	require	resizing	the	backing	array	in	case	there	is	no	room	in	the	original	one	to	store	the	new
element.	Essentially,	this	means	allocating	a	new	array	and	copying	all	references	to	it.

The	reallocation	of	the	array	may	be	optimized	if	we	know	how	large	the	array	will	grow	and	call	the
ensureCapacity	method.	This	will	resize	the	array	to	the	size	provided	as	argument,	even	if	the	currently	used
slots	are	less	numbered.

My	experience	is	that	novice	programmers	use	ArrayList	when	they	need	a	list	without
considering	the	algorithmic	performance	of	the	different	implementations.	I	do	not
actually	know	why	there	is	this	popularity	of	ArrayList.	The	actual	implementation	used	in
a	program	should	be	based	on	proper	decision	and	not	habit.

Queue
Queue	is	a	collection	that	usually	stores	element	for	later	use.	You	can	put	elements	into	a	queue	and	you
can	pull	them	out.	An	implementation	may	specify	the	given	order,	that	may	be	first	in	first	out	(FIFO)	or
last	in	first	out	(LIFO)	or	some	priority	based	ordering.

On	a	queue,	you	can	invoke	the	add	method	to	add	an	element,	remove	to	remove	the	head	element,	and	the
element	method	to	access	the	head	element	without	removing	it	from	the	queue.	The	add	method	will	throw
an	exception	when	there	is	a	capacity	problem	and	the	element	cannot	be	added	to	the	queue.	When	the
queue	is	empty,	and	there	is	no	head	element,	the	element	and	remove	methods	throw	exception.

As	exceptions	can	only	be	used	in	exceptional	cases,	and	the	calling	program	may	handle	these	situations
in	the	normal	course	of	the	code,	thus	all	these	methods	have	a	version	that	just	return	some	special	value
signaling	the	situation.	Instead	of	add,	a	caller	may	call	offer	to	offer	an	element	for	storage.	If	the	queue
cannot	store	the	element,	it	will	return	false.	Similarly,	peek	will	try	to	get	access	to	the	head	element	or
return	null	if	there	is	none,	and	poll	will	remove	and	return	the	head	element	or	just	return	null	if	there	is
none.

Note	that	these	methods	returning	null	just	make	the	situation	ambiguous	when	the
implementation,	such	as	LinkedList,	allows	null	elements.	Never	store	a	null	element	in	a
queue.

Deque
Deque	is	an	interface	which	is	a	double-ended	queue.	It	extends	the	Queue	interface	with	the	methods	that
allow	access	to	both	ends	of	the	queue	to	add,	look	at,	and	remove	elements	from	both	ends.

For	the	Queue	interface	we	needed	six	methods.	Dequeue	having	two	manageable	ends	needs	12	methods.
Instead	of	add	we	have	addFirst	and	addLast.	Similarly	we	can	offerFirst,	offerLast	as	well	as	peekFirst,	peekLast
and	pollFirst,	pollLast.	For	some	reason	the	methods	that	implement	the	functionality	of	the	element	method
on	Queue	are	named	getFirst	and	getLast.

Since	this	interface	extends	the	Queue	interface	the	methods	defined	there	can	also	be	used	to	access	the
head	of	the	queue.	In	addition	to	these	this	interface	also	defines	the	methods	removeFirstOccurrence	and
removeLastOccurrence	that	can	be	used	to	remove	a	specific	element	inside	the	queue.	We	cannot	specify	the
index	of	the	element	to	remove	and	we	also	cannot	access	an	element	based	on	index.	The
removeFirst/LastOccurrence	methods'	argument	is	the	object	that	is	to	be	removed.	If	we	need	this	functionality
we	can	use	Deque	even	if	we	add	and	remove	elements	from	the	same	end	of	the	queue.

Why	are	there	these	methods	in	Deque	and	not	in	Queue?	These	methods	have	nothing	to	do
with	double	headedness	of	Deque.	The	reason	is	that	methods	cannot	be	added	to	interfaces
after	they	were	released.	If	we	add	a	method	to	an	interface	we	break	the	backward
compatibility	because	all	classes	that	implement	that	interface	have	to	implement	the
new	method.	Java	8	introduced	default	methods	that	eased	this	constraint,	but	the	Queue
interface	was	defined	in	Java	1.5	and	the	Deque	interface	was	defined	in	Java	1.6.	There
was	no	way	at	that	time	to	add	the	new	methods	to	the	already	existing	interfaces.

	

Map
	

A	Map	pairs	keys	and	values.	If	we	want	to	approach	a	Map	from	the	Collection	point	of	view	then	a	Map	is	a
set	of	key/value	pairs.	You	can	put	key	value	pairs	into	a	Map	and	you	can	get	a	value	based	on	a	key.	Keys
are	unique	the	same	way	as	elements	in	a	Set.	If	you	look	at	the	source	code	of	the	different
implementations	of	the	Set	interface,	you	may	see	that	some	of	them	are	implemented	as	a	wrapper	around
a	Map	implementation	where	the	values	are	simply	discarded.

Using	Maps	is	easy	and	alluring.	Many	languages,	such	as	Python,	Go,	JavaScript,	Perl,	and	so	on,	support
this	data	structure	on	the	language	level.	However,	using	a	Map	when	an	array	would	be	sufficient	is	a
bad	practice	that	I	have	seen	many	times,	especially	in	scripting	languages.	Java	is	not	prone	to	that
novice	programmer	error	but	you	may	still	find	yourself	in	a	situation	when	you	want	to	use	a	Map,	and
still	there	is	a	better	solution.	It	is	a	general	rule	that	the	simplest	data	structure	should	be	used	that	is
sufficient	for	the	implementation	of	the	algorithm.

	

	

	

HashMap
	

HashMap	is	a	hash	table	based	implementation	of	the	Map	interface.	As	the	map	is	based	on	a	hash	table,	the
basic	put	and	get	methods	are	performed	in	constant	time.	Additionally,	as	Map	is	very	important,	and
because	the	most	frequently	used	implementation	in	the	JDK	is	HashMap,	the	implementation	is	fairly
configurable.	You	can	instantiate	HashMap	using	the	default	constructor	without	argument,	but	there	is	also	a
constructor	that	defines	the	initial	capacity	and	the	load	factor.

	

	

	

IdentityHashMap
	

IdentityHashMap	is	a	special	Map	that	implements	the	Map	interface	literally,	but	as	a	matter	of	fact,	it	violates
the	contract	the	Map	interface	documentation	defines.	It	does	it	with	good	reason.	The	implementation	uses
a	hash	table	just	as	HashMap,	but	to	decide	the	equality	of	the	key	found	in	the	bucket	comparing	with	the	key
element	provided	as	argument	to	the	get	method	it	uses	Object	reference	(==	operator)	and	not	the	method
equals,	which	is	required	by	documentation	of	Map	interface.

The	use	of	this	implementation	is	reasonable	when	we	want	to	distinguish	different	Object
instances	as	keys	that	otherwise	equal	to	each	other.	Using	this	implementation	for
performance	reasons	is	almost	certainly	a	wrong	decision.	Also,	note	that	there	is	no
IdentityHashSet	implementation	in	the	JDK.	Probably	such	collection	is	so	rarely	used	that
its	existence	in	the	JDK	would	cause	more	harm	than	good	alluring	novice	programmers
to	misuse.

	

	

Dependency	injection
In	the	previous	chapter	we	briefly	already	discussed	dependency	injection	(DI).	Now	we	will	dig	into	it
a	bit	more	detail.

Objects	usually	do	not	work	on	their	own.	Most	of	the	time	the	implementation	depends	on	the	services	of
other	classes.	When	we	want	to	write	something	to	the	console	we	use	the	System	class.	When	we	manage
the	table	of	guesses	we	need	Color	objects	and	ColorManager.

In	case	of	writing	to	the	console	we	may	not	realize	the	dependency	because	the	class	being	part	of	the
JDK	class	library	is	available	all	the	time	and	all	we	need	to	do	is	to	write	System.out.println.	In	this	case
this	dependency	is	wired	into	the	code.	We	cannot	send	the	output	somewhere	else	unless	we	change	the
code.	This	is	not	too	flexible	and	in	many	cases	we	need	a	solution	that	can	work	with	different	output,
different	color	manager	or	different	whatever	service	our	code	depends	on.	The	first	step	to	do	that	is	to
have	a	field	that	has	a	reference	of	the	object	that	gives	our	class	the	service.	In	case	of	output	the	type	of
the	field	can	be	of	type	OutputStream.	The	next,	more	interesting	step	is	how	this	field	gets	value.

One	of	the	solution	is	to	use	DI.	In	this	approach	some	external	code	prepares	the	dependencies	and
injects	them	into	the	object.	When	the	first	call	to	a	method	of	the	class	is	issued	all	the	dependencies	are
already	filled	and	ready	to	be	used.

In	this	structure,	we	have	four	different	players:

The	client	object	is	the	one	that	gets	the	injected	service	objects	during	the	process
Service	object	or	objects	are	injected	into	the	client	object
Injector	is	the	code	that	performs	the	injection
Interfaces	define	the	service	that	the	client	needs

If	we	move	the	logic	of	the	creation	of	the	service	objects	from	the	client	code	the	code	becomes	shorter
and	cleaner.	The	actual	competency	of	the	client	class	should	hardly	ever	cover	the	creation	of	the	service
objects.	For	example	a	Game	class	contains	a	Table	instance	but	a	game	is	not	responsible	to	create	the	Table.
It	is	given	to	it	to	work	with	it,	just	as	in	real	life	that	we	model.

The	creation	of	service	objects	is	sometimes	as	simple	as	issuing	the	new	operator.	Sometimes	service
objects	also	depend	on	other	service	objects	and	that	way	also	act	as	clients	in	the	process	of	dependency
injection.	In	this	case	the	creation	of	the	service	objects	may	be	a	lot	of	lines.	The	structure	of	the
dependencies	can	be	expressed	in	a	declarative	fashion	that	describes	which	service	object	needs	which
other	service	objects	and	also	what	implementation	of	the	service	interfaces	are	to	be	used.	Dependency
injection	injectors	work	with	such	declarative	descriptions.	When	there	is	a	need	for	an	object	that	needs
service	objects	that	themselves	need	again	other	service	objects	the	injector	creates	the	service	instances
in	the	appropriate	order	using	the	implementations	that	are	matching	the	declarative	descriptions.	The
injector	discovers	all	the	dependencies	transitively	and	creates	a	transitive	closure	graph	of	the
dependencies.

The	declarative	description	of	the	needed	dependencies	can	be	XML,	or	a	special	language	developed

especially	for	the	dependency	injection	or	it	can	even	be	Java	itself	using	specially	designed	fluent	API	(h
ttps://blog.jooq.org/2012/01/05/the-java-fluent-api-designer-crash-course/).	XML	was	first	used	in	DI	injectors.	Later
Groovy	based	Domain	Specific	Language	(https://martinfowler.com/books/dsl.html)	came	into	picture	and	Java
fluent	API	approach.	We	will	use	only	the	last	one	being	the	most	modern	and	we	will	use	Spring	and
GuiceDI	containers	since	they	are	the	most	well-known	injector	implementations.

https://blog.jooq.org/2012/01/05/the-java-fluent-api-designer-crash-course/
https://martinfowler.com/books/dsl.html

Implementing	the	game
Collections	without	examples	are	boring.	Fortunately,	we	have	our	game	where	we	use	a	few	collection
classes	and	also	other	aspects	that	we	will	examine	in	this	chapter.

ColorManager
We	jumped	into	the	pool	filled	with	collection	classes	from	the	implementation	of	the	ColorManager	class.
Let's	refresh	the	part	of	the	class	that	is	interesting	for	us	now—the	constructor:

final	protected	int	nrColors;	

	final	protected	Map<Color,	Color>	successor	=	new	HashMap<>();	

	final	private	Color	first;	

		

	public	ColorManager(int	nrColors)	{	

					this.nrColors	=	nrColors;	

					first	=	new	Color();	

					Color	previousColor	=	first;	

		

					for	(int	i	=	1;	i	<	nrColors;	i++)	{	

									final	Color	thisColor	=	new	Color();	

									successor.put(previousColor,	thisColor);	

									previousColor	=	thisColor;	

					}	

					successor.put(previousColor,	Color.none);	

	}

We	will	use	HashMap	to	keep	the	colors	in	an	ordered	list.	At	first,	the	choice	of	HashMap	seems	to	be	strange.
Very	true,	that	during	the	coding	of	ColorManager,	I	also	considered	a	List,	which	seemed	to	be	a	more
obvious	choice.	When	we	have	a	List<Color>	colors	variable,	then	the	nextColor	method	is	something	like
this:

public	Color	nextColor(Color	color)	{	

					if	(color	==	Color.none)	

									return	null;	

					else	

									return	colors.get(colors.indexOf(color)	+	1);	

	}

The	constructor	will	be	much	simpler,	as	shown	in	the	following	piece	of	code:

final	List<Color>	colors	=	new	ArrayList<>();	

		

					public	ColorManager(int	nrColors)	{	

									this.nrColors	=	nrColors;	

									for	(int	i	=	0;	i	<	nrColors;	i++)	{	

													colors.add(new	Color());	

									}	

									colors.add(Color.none);	

					}	

		

					public	Color	firstColor()	{	

									return	colors.get(0);	

					}

Why	did	I	choose	the	more	complex	solution	and	the	unobvious	data	structure?	The	thing	is	performance.
When	the	nextColor	method	is	invoked,	the	list	implementation	first	finds	the	element	checking	all	the
elements	in	the	list	and	then	fetches	the	next	element.	The	time	is	proportional	to	the	number	of	colors.
When	our	number	of	colors	increases,	the	time	will	also	increase	to	just	get	the	next	color	having	one.

At	the	same	time,	if	we	focus	on	not	the	data	structure	that	comes	from	the	verbal	expression	of	the	task
we	want	to	solve	(get	the	colors	in	a	sorted	order)	but	rather	focus	on	the	actual	method	that	we	want	to
implement,	nextColor(Color),	then	we	will	easily	come	to	the	conclusion	that	a	Map	is	more	reasonable.	What
we	need	is	exactly	a	Map	:	having	one	element	we	want	another	related	to	the	one	we	have.	The	key	and	the

value	is	also	Color.	Getting	the	next	element	is	constant	time	using	HashMap.	This	implementation	is	probably
faster	than	the	one	based	on	ArrayList.

The	problem	is	that	it	is	only	probably	faster.	When	you	consider	refactoring	a	code	to
have	better	performance,	your	decision	should	always	be	based	on	measurements.	If	you
implement	a	code	that	you	only	think	is	faster,	practice	shows,	you	will	fail.	In	best	case,
you	will	optimize	a	code	to	be	blazing	fast	and	runs	during	the	application	server	setup.
At	the	same	time,	optimized	code	is	usually	less	readable.	Something	for	something.
Optimization	should	never	be	done	prematurely.	Code	for	readability	first.	Then,	assess
the	performance,	and	in	case	there	is	problem	with	the	performance,	then	profile	the
execution	and	optimize	the	code	where	it	hurts	the	most	of	the	overall	performance.
Micro-optimizations	will	not	help.
Did	I	do	premature	optimization	selecting	the	HashMap	implementation	instead	of	List?	If	I
actually	implemented	the	code	using	List	and	then	refactored,	then	yes.	If	I	was	thinking
about	the	List	solution	and	then	it	came	to	me	that	Map	solution	is	better	without	prior
coding,	then	I	did	not.	By	years,	such	considerations	will	come	easier,	as	you	will	also
experience.

The	class	color
We	have	already	looked	at	the	code	for	the	class	code	and	it	was	the	simplest	class	in	the	world.	In
reality,	as	it	is	in	the	GitHub	repository	(https://github.com/j9be/chapter04	or	https://github.com/PacktPublishing/Java-9-Progra
mming-By-Example/tree/master/Chapter04),	the	code	is	a	bit	more	complex:

package	packt.java9.by.example.mastermind;	

		

	/**	

		*	Represents	a	color	in	the	MasterMind	table.	

		*/	

	public	class	Color	{	

					/**	

						*	A	special	object	that	represents	a	

						*	value	that	is	not	a	valid	color.	

						*/	

					public	static	final	Color	none	=	new	Color();	

	}

We	have	a	special	color	constant	named	none	that	we	use	to	signal	a	reference	that	is	of	type	Color	but	is	not
a	valid	Color.	In	professional	development,	we	used	the	null	value	for	a	long	time	to	signal	invalid
reference,	and	because	we	are	backward	compatible,	we	still	use	it.	However,	it	is	recommended	to
avoid	the	null	reference	wherever	possible.

Tony	Hoare	(https://en.wikipedia.org/wiki/Tony_Hoare),	who	invented	the	null	reference	in	1965,
admitted	one	time	that	this	was	a	mistake	that	cost	billions	of	dollars	in	the	IT	industry.

The	problem	with	the	null	value	is	that	it	takes	the	control	away	from	the	class,	and	thus,	opens
encapsulation.	If	a	method	returns	null	in	some	situation,	the	caller	is	strictly	required	to	check	the	nullity
and	act	according	to	that.	For	example,	you	cannot	call	a	method	on	a	null	reference	and	you	cannot	access
any	field.	If	the	method	returns,	a	special	instance	of	the	object	these	problems	are	less	serious.	If	the
caller	forgets	to	check	the	special	return	value	and	invokes	methods	on	the	special	instance,	the	methods
invoked	still	have	the	possibility	to	implement	some	exception	or	error	handling.	The	class	has	the	control
encapsulated	and	can	throw	a	special	exception	that	may	give	more	information	about	the	error	caused	by
the	programmatic	mistake	by	the	caller	not	checking	the	special	value.

https://github.com/j9be/chapter04
https://github.com/PacktPublishing/Java-9-Programming-By-Example/tree/master/Chapter04
https://en.wikipedia.org/wiki/Tony_Hoare

JavaDoc	and	code	comments
There	is	also	another	difference	between	what	we	presented	here	earlier	and	the	listing.	This	is	the
commenting	of	the	code.	Code	comments	are	part	of	the	program,	which	are	ignored,	filtered	out	by	the
compiler.	These	comments	are	solely	for	those	who	maintain	or	use	the	code.

In	Java,	there	are	two	different	comments.	The	code	enclosed	between	/*	and	*/	are	comments.	The	start
and	the	end	of	the	comment	do	not	need	to	be	on	the	same	line.	The	other	type	of	comment	starts	with	the
//	characters	and	ends	at	the	end	of	the	line.

To	document	the	code,	the	JavaDoc	tool	can	be	used.	JavaDoc	is	a	special	tool	that	reads	the	source	code
and	extracts	HTML	documentation	about	the	classes,	methods,	fields,	and	other	entities	that	have	a
comment	starting	with	the	/**	characters.	The	documentation	will	contain	the	JavaDoc	comments	in	a
formatted	way	and	also	the	information	that	is	extracted	from	the	program	code.

The	documentation	also	appears	as	online	help	in	the	IDE	when	you	move	the	mouse	over	a	method	call
or	class	name,	if	there	is	any.	The	JavaDoc	comment	can	contain	HTML	codes,	but	it	generally	should	not.
If	really	needed,	you	can	use	<p>	to	start	a	new	paragraph	or	the	<pre>	tags	to	include	some	preformatted
code	sample	into	the	documentation,	but	nothing	more	gives	real	benefit.	Documentation	should	be	as
short	as	possible	and	contain	as	few	formatting	as	possible.

There	are	special	tags	that	appear	in	the	JavaDoc	documentation.	These	are	prefilled	by	the	IDEs	when
you	start	to	type	a	JavaDoc	as	/**	and	then	press	Enter.	These	are	inside	the	comment	and	start	with	the	@
character.	There	are	a	predefined	set	of	tags:	@author,	@version,	@param,	@return,	@exception,	@see,	@since,	@serial,
and	@deprecated.	The	most	important	tags	are	@param	and	@return.	They	are	used	to	describe	the	method
arguments	and	the	return	value.	Although	we	are	not	there	yet,	let's	peek	ahead	to	the	guessMatch	method
from	the	Guesser	class.

/**	

		*	A	guess	matches	if	all	rows	in	the	table	matches	the	guess.	

		*	

		*	@param	guess	to	match	against	the	rows	

		*	@return	true	if	all	rows	match	

		*/	

	protected	boolean	guessMatch(Color[]	guess)	{	

					for	(Row	row	:	table.rows)	{	

									if	(!row.guessMatches(guess))	{	

													return	false;	

									}	

					}	

					return	true;	

	}

The	name	of	the	parameter	is	automatically	generated	by	the	IDE.	When	you	create	the	documentation,
write	something	that	is	meaningful	and	not	tautology.	Many	times,	novice	programmers	feel	the	urge	to
write	JavaDoc,	and	that	something	has	to	be	written	about	the	parameters.	They	create	documentations
like	this:

*	@param	guess	is	the	guess

Really?	I	would	never	have	guessed.	If	you	do	not	know	what	to	write	there	to	document	the	parameter,	it

may	happen	that	you	were	choosing	the	name	of	the	parameter	excellent.	The	documentation	of	our
preceding	example	will	look	as	follows:

Focus	on	what	the	method,	class,	and	interface	does	and	how	it	can	be	used.	Do	not	explain	how	it	works
internally.	JavaDoc	is	not	the	place	for	the	explanation	of	the	algorithm	or	the	coding.	It	is	used	to	help
use	the	code.	However,	if	somebody	happens	to	explain	how	a	method	works,	it	is	not	a	disaster.
Comments	can	easily	be	deleted.

There	is,	however,	a	comment	that	is	worse	than	nothing:	outdated	documentation	that	is	not	valid
anymore.	When	the	contract	of	the	element	has	changed,	but	the	documentation	does	not	follow	the	change
and	is	misleading	the	user	who	wants	to	call	the	method,	interface,	or	class	whatever	will	face	serious
bugs	and	will	be	clueless.

From	now	on,	JavaDoc	comments	will	not	be	listed	in	print	to	save	trees,	and	electrons	in	the	eBook
version,	but	they	are	there	in	the	repository	and	can	be	examined.

Row
Now,	we	have	Colors	and	even	instances	if	we	need	having	a	ColorManager.	This	is	the	time	to	store	Colors	in
Rows.	The	Row	class	is	a	bit	longer,	but	not	too	complex.

package	packt.java9.by.example.mastermind;	

		

	import	java.util.Arrays;	

		

	public	class	Row	{	

					final	Color[]	positions;	

					private	int	matchedPositions;	

					private	int	matchedColors;

A	Row	contains	three	fields.	One	is	the	positions	array.	Each	element	of	the	array	is	a	Color.	The
matchedPositions	is	the	number	of	positions	that	are	matched	and	matchedColors	is	the	number	of	colors	that
match	a	color	in	the	hidden	row	but	is	not	on	the	position	as	in	the	hidden	row.

public	static	final	Row	none	=	new	Row(Guesser.none);

The	none	is	a	constant	that	contains	a	special	Row	instance	that	we	will	use	wherever	we	would	use	null.
The	constructor	gets	the	colors	in	an	array	that	should	be	in	the	row.

public	Row(Color[]	positions)	{	

									this.positions	=	Arrays.copyOf(positions,	positions.length);	

					}

The	constructor	makes	a	copy	of	the	original	array.	This	is	an	important	code	that	we	will	examine	a	bit.
Let's	reiterate	that	Java	passes	arguments	by	value.	It	means	that	when	you	pass	an	array	to	a	method,	you
will	pass	the	value	of	the	variable	that	holds	the	array.	However,	an	array	in	Java	is	an	Object	just	as
well	as	anything	else	(except	primitives	like	int).	Therefore,	what	the	variable	contains	is	a	reference	to
an	object	that	happens	to	be	an	array.	If	you	change	the	elements	of	the	array,	you	actually	change	the
elements	of	the	original	array.	The	array	reference	is	copied	when	the	argument	passes,	but	the	array
itself,	and	the	elements,	are	not.

The	java.util.Arrays	utility	class	provides	a	lot	of	useful	tools.	We	can	easily	code	the	array	copying	in
Java	but	why	to	reinvent	the	wheel?	In	addition	to	that,	arrays	are	continuous	area	of	memory	that	can	very
effectively	be	copied	from	one	place	to	another	using	low-level	machine	code.	The	copyOf	method	that	we
invoke	calls	the	method	System.arraycopy	which	is	a	native	method	and	as	such	executes	native	code.

Note	that	there	is	no	guarantee	that	Arrays.copyOf	invokes	the	native	implementations	and
that	this	will	be	extremely	fast	in	case	of	large	arrays.	The	very	version	I	was	testing	and
debugging	was	doing	it	that	way,	and	we	can	assume	that	a	good	JDK	does	something
similar,	effective	and	fast.

After	we	copied	the	array,	it	is	not	a	problem	if	the	caller	modifies	the	array	that	was	passed	to	the
constructor.	The	class	will	have	a	reference	to	a	copy	that	will	contain	the	same	elements.	However,	note
that	if	the	caller	changes	any	of	the	objects	that	are	stored	in	the	array	(not	the	reference	in	the	array,	but
the	object	itself	that	is	referenced	by	an	array	element),	then	the	same	object	is	modified.	Arrays.copyOf	does
not	copy	the	objects	that	are	referenced	by	the	array,	only	the	array	elements.

The	row	is	created	along	with	the	colors	and	thus,	we	used	a	final	field	for	the	Color	array.	The	matches,
however,	cannot	be	known	when	a	Row	is	created.	One	of	the	players	creates	the	Row	and	after	that,	the
other	player	will	tell	the	two	int	values.	We	do	not	create	two	setters	for	the	two	values,	however,
because	they	are	always	defined	at	the	same	time	in	the	game	together.

public	void	setMatch(int	matchedPositions,	int	matchedColors)	{	

									if	(matchedColors	+	matchedPositions	>	positions.length)	{	

													throw	new	IllegalArgumentException(

																					"Number	of	matches	can	not	be	more	that	the	position.");	

									}	

									this.matchedColors	=	matchedColors;	

									this.matchedPositions	=	matchedPositions;	

					}

The	setMatch	method	does	not	only	set	the	values,	but	also	checks	that	the	values	are	consistent.	The	sum	of
the	two	values	cannot	be	more	than	the	number	of	the	columns.	This	check	ensures	that	the	caller,	who
uses	the	API	of	the	Row	class,	does	not	use	it	inconsistently.	If	this	API	is	used	only	from	inside	our	code,
this	assertion	should	not	be	part	of	the	code.	A	good	coding	style,	in	that	case,	will	ensure	that	the	method
is	never	invoked	inconsistently	using	unit	tests.	When	we	create	API	to	use	out	of	our	control,	we	should
check	that	the	use	is	consistent.	Failing	to	do	so,	our	code	may	behave	just	weird	when	used
inconsistently.	When	the	caller	sets	matches	to	values	that	do	not	match	any	possible	guess,	the	game	may
never	finish	and	the	caller	may	have	a	hard	time	figuring	out	what	is	going	on.	This	figuring	out	probably
will	need	the	debug	execution	of	our	code.

If	we	throw	an	exception	in	this	case,	the	program	stops	where	the	bug	is.	There	is	no	need	to	debug	the
library.

public	boolean	guessMatches(Color[]	guess)	{	

					return	nrMatchingColors(guess)	==	matchedColors	&&	

													nrMatchingPositions(guess)	==	matchedPositions;	

	}

The	next	method	decides	if	a	guess,	given	as	an	argument,	matches	the	actual	row.	This	method	checks	that
the	answers	to	the	guess	in	the	row	can	be	valid	if	the	current	guess	was	in	the	hidden	row.	The
implementation	is	fairly	short	and	simple.	A	guess	matches	a	row	if	the	number	of	the	colors	matching	and
the	number	of	positions	matching	are	the	same	as	the	number	given	in	the	row.	Do	not	be	shy	to	write	short
methods.	Do	not	think	that	a	one-line	method	that	essentially	contains	one	statement	is	useless.	Wherever
we	use	this	method,	we	could	also	write	the	expression,	which	is	right	after	the	return	statement,	but	we
do	not	for	two	reasons.	The	first	and	most	important	reason	is	that	the	algorithm,	which	decides	that	a	row
matches	a	guess	belongs	to	the	implementation	of	the	class	Row.	If	ever	the	implementation	changes,	the
only	location	where	the	code	is	to	be	changed	is	here.	The	other	reason	is	also	important,	and	that	is
readability.	In	our	codebase,	we	call	this	method	from	abstract	class	Guesser.	It	contains	an	if	statement	with
the	following	expression:

if	(!row.guessMatches(guess))	{

Would	it	be	more	readable	in	the	following	way:

if(!(nrMatchingColors(guess)	==	matchedColors	&&	nrMatchingPositions(guess)	==	matchedPositions))	{

I	am	certain	that	the	majority	of	the	programmers	understand	the	intention	of	the	first	version	easier.	I
would	even	recommend	implementing	the	doesNotMatchGuess	method	to	improve	the	readability	of	the	code

even	more.

public	int	nrMatchingColors(Color[]	guess)	{	

									int	count	=	0;	

									for	(int	i	=	0;	i	<	guess.length;	i++)	{	

													for	(int	j	=	0;	j	<	positions.length;	j++)	{	

																	if	(i	!=	j	&&	guess[i]	==	positions[j])	{	

																					count++;	

																	}	

													}	

									}	

									return	count;	

					}

The	number	of	matching	colors	is	that	which	appears	both	in	the	row	and	the	guess,	but	not	in	the	same
position.	The	definition,	and	how	we	calculate	it,	is	fairly	simple	and	unambiguous	in	case	no	color	can
appear	twice	in	the	hidden	row.	In	case	a	color	may	appear	multiple	times	in	the	hidden	row,	this
implementation	will	count	all	occurrences	of	that	color	in	the	guess	as	many	times	as	it	appears	in	the
hidden	row.	If	we,	for	example,	have	a	hidden	RRGB	row	and	the	guess	is	bYRR,	the	calculation	will	say	4.	It
is	a	matter	of	agreement	between	the	players	how	they	count	in	this	case.	The	important	aspect	is	that	they
use	the	same	algorithm,	which	should	be	true	in	our	case,	because	we	will	ask	the	program	to	play	both
players.	As	we	will	program	the	code	ourselves,	we	can	trust	that	it	will	not	cheat.

public	int	nrMatchingPositions(Color[]	guess)	{	

									int	count	=	0;	

									for	(int	i	=	0;	i	<	guess.length;	i++)	{	

													if	(guess[i]	==	positions[i])	{	

																	count++;	

													}	

									}	

									return	count;	

					}

Counting	the	colors	that	are	OK,	and	also	on	the	position	where	they	are	supposed	to	be,	is	even	simpler.

public	int	nrOfColumns()	{	

					return	positions.length;	

	}

This	method	tells	the	number	of	columns	in	the	Row.	This	method	is	needed	in	the	Game	class	that	controls	the
flow	of	a	whole	game.	As	this	class	is	in	the	same	package	as	Row,	it	can	access	the	field	positions.	I
created	the	code	to	get	the	number	of	columns	as	row.positions.length.	But	then,	I	was	reading	the	code	next
day	and	told	myself:	This	is	ugly	and	unreadable!	What	I	am	interested	in	here	is	not	some	mysterious
positions'	length;	it	is	the	number	of	columns.	And	the	number	of	columns	is	the	responsibility	of	the	Row
class	and	not	the	business	of	any	other	class.	If	I	start	to	store	the	positions	in	a	List,	which	does	not	have
length	(it	has	method	size),	it	is	the	sole	responsibility	of	Row	and	should	not	affect	any	other	code.	So,	I
created	the	nrOfColumns	method	to	improve	the	code.

The	rest	of	the	class	contains	some	more	very	simple	methods	that	are	needed	only	to	display	the	game
and	not	for	the	algorithm	to	play:

public	int	nrColumns()	{	

									return	positions.length;	

					}	

		

					public	Color	position(int	i)	{	

									return	positions[i];	

					}	

		

					public	int	matchedPositions()	{	

									return	matchedPositions;	

					}	

		

					public	int	matchedColors()	{	

									return	matchedColors;	

					}	

	}

If	you	are	a	purist,	you	can	encapsulate	these	methods	into	an	inner	class	named	Output	or	Print	and	call
them	through	a	final	instance	of	it	created	as	a	field	in	the	Row	class.	It	is	also	possible	to	change	the
visibility	of	these	fields	from	private	to	protected	and	implement	these	methods	in	a	PrintableRow	that	can	be
instantiated	from	an	already	existing	Row	and	implement	these	methods.

The	first	version	of	PrintableRow	will	look	like	this:

public	class	PrintableRow	extends	Row	{	

					public	PrintableRow(Row	row)	{	

									super(row.positions);	

									super.setMatch(row.matchedPositions,row.matchedColors);	

					}	

	//	the	methods	are	deleted	from	the	print	...	

	}

The	methods	are	exactly	the	same	as	in	the	preceding	print;	they	are	cut	and	pasted,	or	rather	moved,	using
the	IDE	refactoring	support	from	one	class	to	the	other.

When	you	write	a	code,	please	never	use	copy	and	paste.	However	you	can	use	cut	and
paste	to	move	code	fragments	around.	The	danger	is	in	the	copy	paste	use.	Many
developers	claim	that	their	use	of	actual	copy	and	paste	is	not	copy	paste	programming.
Their	reasoning	is	that	they	change	the	pasted	code	so	much	that	it	has	practically
nothing	to	do	with	the	original	code.
Really?	In	that	case	why	did	you	need	the	copied	code	when	you	started	the	modification
of	it?	Why	not	start	from	scratch?	That	is	because	if	you	use	the	IDE's	copy	and	paste
functionality	then,	no	matter	what,	you	do	copy	paste	programming.

Class	PrintableRow	is	pretty	neat	and	separates	the	output	concern	from	the	core	functionality.	When	you
need	an	instance,	it	is	not	a	problem	that	you	have	a	Row	instance	already	in	hand.	The	constructor	will
essentially	clone	the	original	class	and	return	a	printable	version.	What	bothers	me	is	the	implementation
of	the	cloning.	The	code	in	the	constructor	calls	the	super	constructor	and	then	a	method	and	all	these
work	with	the	original	functionality	of	the	Row	class.	They	have	nothing	to	do	with	the	printability	that
PrintableRow	implements.	This	functionality	actually	belongs	to	the	Row	class.	We	should	create	a	protected
constructor	that	does	the	cloning:

protected	Row(Row	cloneFrom)	{	

					this(cloneFrom.positions);	

					setMatch(cloneFrom.matchedPositions,	cloneFrom.matchedColors);	

	}

The	constructor	of	PrintableRow	should	simply	call	super(row)	and	that	is	it.

Code	is	never	finished	and	never	perfect.	In	a	professional	environment,	programmers
many	times	tend	to	finish	polishing	the	code	when	it	is	good	enough.	There	is	no	code
that	cannot	be	made	better,	but	there	is	a	deadline.	The	software	has	to	be	passed	on	to
the	testers	and	users	and	has	to	be	used	to	help	economy.	After	all,	that	is	the	final	goal

of	a	professional	developer:	have	a	code	that	supports	the	business.	A	code	that	never
runs	is	worth	nothing.
I	do	not	want	you	to	think	that	the	examples	that	I	provided	here	were	created	perfect
upfront.	The	reason	for	that	is	(did	you	read	carefully?)	because	they	are	not	perfect.	As	I
said,	code	is	never	perfect.
When	I	first	created	Row,	it	contained	the	printing	methods	in	an	inner	class.	I	did	not
like	it.	The	code	was	smelly.	So,	I	decided	to	move	the	functionality	to	the	Row	class.
However,	I	still	did	not	like	the	solution.	Then,	I	went	to	bed,	slept,	worked,	and	returned
to	it	a	few	days	later.	What	I	could	not	create	the	day	before	now	seemed	obvious—these
methods	have	to	be	moved	to	a	subclass.
Now	comes	another	dilemma.	Should	I	present	this	final	solution	or	should	I	have	here
the	different	versions?	In	some	cases,	I	will	just	present	the	final	version.	In	other	cases,
like	this,	there	are	things	to	learn	from	the	development	step.	In	these	cases,	I	present	not
only	the	code,	but	part	of	its	evolution	on	how	it	was	created.	If	you	want	to	see	those
that	I	did	not	dare	publishing,	look	at	the	Git	history.	I	admit,	sometimes,	I	create	code
that	even	makes	me	facepalm	a	day	later.

Table
Table	is	a	simple	class	that	has	only	one	very	simple	functionality.

public	class	Table	{	

					final	ColorManager	manager;	

					final	int	nrColumns;	

					final	List<Row>	rows;	

		

					public	Table(int	nrColumns,	ColorManager	manager)	{	

									this.nrColumns	=	nrColumns;	

									this.rows	=	new	LinkedList<>();	

									this.manager	=	manager;	

					}	

		

					public	void	addRow(Row	row)	{	

									rows.add(row);	

					}	

	}

There	is	one	thing	to	mention,	which	is	nothing	new,	but	worth	repeating.	The	rows	variable	is	declared	as
final	and	it	gets	the	value	in	the	constructor.	This	is	a	List<Row>	type	variable.	The	fact	that	it	is	final	means
that	it	will	hold	the	same	list	object	during	its	lifetime.	The	length,	members,	and	other	features	of	the	list
may	and	will	change.	We	will	add	new	rows	to	this	list.	Final	object	variables	reference	an	object,	but	it
does	not	guarantee	that	the	object	itself	is	immutable.	It	is	only	the	variable	that	does	not	change.

When	you	do	code	review	and	explain	to	your	colleagues	what	a	class	does,	and	you	find
yourself	starting	the	explanation	"this	class	is	very	simple"	many	times,	it	means	the
code	is	good.
Well,	it	may	be	wrong	in	other	aspects,	but	the	class'	granularity	seems	to	be	okay.

Guesser
Guesser	and	the	UniqueGuesser	and	GeneralGuesser	subclasses	are	the	most	interesting	classes	of	the	program.
They	actually	perform	the	task	that	is	the	core	of	the	game.	Given	a	Table	with	a	hidden	row,	the	guesser
has	to	create	newer	and	newer	guesses.

To	do	this,	a	Guesser	needs	to	get	a	Table	when	it	is	created.	This	is	passed	as	a	constructor	argument.	The
only	method	it	should	implement	is	guess,	which	returns	a	new	guess	based	on	the	table	and	on	its	actual
state.

As	we	want	to	implement	a	guesser	that	assumes	that	all	colors	in	the	hidden	row	are	different,	and	also
one	that	does	not	make	this	assumption,	we	will	implement	three	classes.	Guesser	is	an	abstract	class	that
implements	only	the	logic	that	is	independent	from	the	assumptions.	These	methods	will	be	inherited	by
both	actual	implementations:	UniqueGuesser	and	GeneralGuesser.

Let's	go	through	the	actual	code	of	the	class:

package	packt.java9.by.example.mastermind;	

		

	public	abstract	class	Guesser	{	

					protected	final	Table	table;	

					private	final	ColorManager	manager;	

					public	Guesser(Table	table)	{	

									this.table	=	table;	

									this.lastGuess	=	new	Color[table.nrColumns];	

									this.manager	=	table.manager;	

					}

The	state	of	the	guesser	is	the	last	guess	it	made.	Although	this	is	on	the	last	row	of	the	table,	it	is	more	of
an	internal	matter	of	the	guesser.	The	guesser	has	all	the	possible	guesses,	one	after	the	other;	lastGuess	is
the	one	where	it	left	off	last	time	and	it	should	continue	from	there	when	it	is	invoked	again.

abstract	protected	void	setFirstGuess();

Setting	the	first	guess	very	much	depends	on	the	assumption	of	color	uniqueness.	The	first	guess	should
not	contain	duplicated	colors	in	case	the	hidden	row	does	not	(at	least	in	our	implementation),	while
GeneralGuesser	is	free	to	guess	any	time,	even	as	firstGuess	all	colors	to	be	the	same.

protected	final	Color[]	lastGuess;	

				public	static	final	Color[]	none	=	new	Color[]{Color.none};

Again,	none	in	this	class	is	just	an	object	that	we	try	to	use	instead	of	null,	whenever	we	need	to	return
something	that	is	a	reference	to	a	Guess	but	is	not	really	a	guess.

protected	Color[]	nextGuess()	{	

									if	(lastGuess[0]	==	null)	{	

													setFirstGuess();	

													return	lastGuess;	

									}	else	{	

													return	nextNonFirstGuess();	

									}	

					}

The	nextGuess	method	is	an	internal	method	that	generates	the	next	guess,	which	just	comes	as	we	order	the

possible	guesses.	It	does	not	check	anything	against	the	Table;	it	only	generates	the	next	guess	almost
without	thinking.	The	implementation	on	how	we	do	the	first	guess	and	how	we	do	the	consecutive
guesses	are	different.	Thus,	we	will	implement	these	algorithms	in	different	methods	and	invoke	them
from	here.

The	nextNonFirstGuess	method	represents	the	next	guess	in	the	special	case	when	the	guess	is	not	the	first
one:

private	Color[]	nextNonFirstGuess()	{	

									int	i	=	0;	

									boolean	guessFound	=	false;	

									while	(i	<	table.nrColumns	&&	!guessFound)	{	

													if	(manager.thereIsNextColor(lastGuess[i]))	{	

																	lastGuess[i]	=	manager.nextColor(lastGuess[i]);	

																	guessFound	=	true;	

													}	else	{	

																	lastGuess[i]	=	manager.firstColor();	

																	i++;	

													}	

									}	

									if	(guessFound)	{	

													return	lastGuess;	

									}	else	{	

													return	none;	

									}	

					}

Look	back	a	few	pages	where	we	detailed	how	the	algorithm	works.	We	made	the	statement	that	this	way
of	working	is	very	much	like	the	way	we	count	with	decimal	numbers.	By	now,	you	have	enough	Java
knowledge	and	programming	skill	to	understand	what	the	method	does.	It	is	more	interesting	to	know	why
it	is	coded	that	way.

Hint:	as	always,	to	be	readable.

There	is	the	temptation	to	eliminate	the	guessFound	variable.	Would	it	not	be	simpler	to	return	from	the
middle	of	the	method	when	we	find	the	blessed	guesses?	If	we	did,	there	would	be	no	need	to	check	the
guessFound	value	before	returning	none	value.	The	code	would	not	get	there	if	we	returned	from	the	middle	of
the	loop.

Yes,	it	would	be	simpler	to	write.	But,	we	create	code	to	be	readable	and	not	writable.	Yes,	but	less	code
is	more	readable.	Not	in	this	case!	Returning	from	a	loop	degrades	the	readability.	Not	to	mention,	the
return	statements	are	scattered	around	in	the	method	at	different	stages	of	execution.

private	Color[]	nextNonFirstGuess()	{	

					int	i	=	0;	

					while	(i	<	table.nrColumns)	{	

									if	(manager.thereIsNextColor(lastGuess[i]))	{	

													lastGuess[i]	=	manager.nextColor(lastGuess[i]);	

													return	lastGuess;	

									}	else	{	

													lastGuess[i]	=	manager.firstColor();	

													i++;	

									}	

					}	

					return	none;	

	}

When	somebody	writes	a	code	optimized	in	that	way,	it	is	similar	to	a	toddler	who	makes	his	first	steps
and	then	looks	proudly	at	the	mother.	Okay	boy/girl,	you	are	great.	Now	go	on	and	start	walking.	When

you	are	the	postman,	walking	will	be	boring.	That	will	be	your	profession.	So,	slide	aside	the	pride	and
write	boring	code.	Professionals	write	boring	code.	Won't	it	be	slow?

No!	It	will	not	be	slow.	First	of	all,	it	is	not	slow	until	the	profiler	proves	that	the	code	does	not	meet	the
business	requirements.	If	it	does,	it	is	fast	enough,	no	matter	how	slow	it	is.	Slow	is	good	as	long	as	it	is
okay	for	the	business.	After	all,	JIT	should	have	some	task	optimizing	the	code	to	run.

The	next	method	checks	if	the	guess	matches	the	previous	guesses	and	their	results	on	the	Table:

private	boolean	guessMatch(Color[]	guess)	{	

									for	(Row	row	:	table.rows)	{	

													if	(!row.guessMatches(guess))	{	

																	return	false;	

													}	

									}	

									return	true;	

					}	

					private	boolean	guessDoesNotMatch(Color[]	guess)	{	

									return	!guessMatch(guess);	

					}

As	we	have	the	guess	matching	already	implemented	in	the	class	Row,	all	we	have	to	do	is	invoke	that
method	for	each	row	in	the	table.	If	all	rows	match,	then	the	guess	can	be	good	for	the	table.	If	any	of	the
former	guesses	do	not	match,	then	this	guess	goes	down	the	drain.

As	we	check	the	negated	expression	of	matching,	we	created	an	English	version	of	the	method.

In	situations	like	this,	it	could	be	enough	to	create	the	guessDoesNotMatch	version	of	the
method.	However,	the	logical	execution	of	the	code	is	more	readable	if	the	method	is	not
negated.	Therefore,	it	is	more	error	prone	to	write	the	guessDoesNotMatch	method	alone.
Instead,	we	will	implement	the	original,	readable	version	and	the	aux	method	to	be
nothing	more	than	a	negation.

After	all	the	aux	methods,	here	we	are	implementing	the	public	method	of	the	Guesser.

public	Row	guess()	{	

									Color[]	guess	=	nextGuess();	

									while	(guess	!=	none	&&	guessDoesNotMatch(guess))	{	

													guess	=	nextGuess();	

									}	

									if	(guess	==	none)	{	

													return	Row.none;	

									}	else	{	

													return	new	Row(guess);	

									}	

					}	

		

	}

It	just	takes	the	nextGuess	and	again	and	again	until	it	finds	one	that	matches	the	hidden	row,	or	there	is	no
more	guess.	If	it	finds	a	proper	guess,	it	encapsulate	it	to	a	Row	object	and	return	it	so	that	it	can	later	be
added	to	the	Table	by	the	Game	objects.

UniqueGuesser
Class	UniqueGuesser	has	to	implement	setFirstGuess	(all	concrete	classes	extending	an	abstract	class	should
implement	the	abstract	method	of	the	parent)	and	it	can	and	will	override	the	protected	nextGuess	method:

package	packt.java9.by.example.mastermind;	

		

	import	java.util.HashSet;	

	import	java.util.Set;	

		

	public	class	UniqueGuesser	extends	Guesser	{	

		

					public	UniqueGuesser(Table	table)	{	

									super(table);	

					}	

		

					@Override	

					protected	void	setFirstGuess()	{	

									int	i	=	lastGuess.length-1;	

									for	(Color	color	=	table.manager.firstColor();	

														i	>=	0;	

														color	=	table.manager.nextColor(color))	{	

													lastGuess[i--]	=	color;	

									}	

					}

The	setFirstGuess	method	selects	the	first	guess	in	such	a	way	that	any	possible	color	variations	that	come
after	the	first	one	create	the	guesses	one	after	the	other	if	we	follow	the	algorithm.

The	aux	isNotUnique	method	returns	true	if	the	guess	contains	duplicate	colors.	It	is	not	interesting	to	see
how	many.	If	all	colors	are	the	same,	or	only	one	color	appears	twice,	it	does	not	matter.	The	guess	is	not
unique	and	does	not	fit	our	guesser.	This	method	judges	that.

private	boolean	isNotUnique(Color[]	guess)	{	

									final	Set<Color>	alreadyPresent	=	new	HashSet<>();	

									for	(Color	color	:	guess)	{	

													if	(alreadyPresent.contains(color))	{	

																	return	true;	

													}	

													alreadyPresent.add(color);	

									}	

									return	false;	

					}

To	do	this,	it	uses	a	Set,	and	any	time	a	new	color	is	found	in	the	guess	array,	the	color	is	stored	in	the	set.
If	the	set	contains	the	color	when	we	find	it	in	the	array,	it	means	that	the	color	was	already	used	before;
the	guess	is	not	unique.

@Override	

					protected	Color[]	nextGuess()	{	

									Color[]	guess	=	super.nextGuess();	

									while	(isNotUnique(guess))	{	

													guess	=	super.nextGuess();	

									}	

									return	guess;	

					}	

		

The	overriding	nextGuess	method	is	simple.	It	asks	the	super	nextGuess	implementation	to	make	guesses	but
throws	away	those	that	it	does	not	like.

package	packt.java9.by.example.mastermind;	
	
public	class	GeneralGuesser
extends	Guesser	{	
	
	public	GeneralGuesser(Table	table)	{	super(table);	}	

	@Override	
	protected	void	setFirstGuess()	{	
	int	i	=	0;	
	for	(Color
color	=	table.manager.firstColor();	
	i	<	lastGuess.length;)	{	
	lastGuess[i++]	=
color;	
	}	
	}	
	
	}

Setting	the	lastGuess	it	just	puts	the	first	color	on	all	columns.	Guess	could	not	be
simpler.	Everything	else	is	inherited	from	the	abstract	class	Guesser.

package	packt.java9.by.example.mastermind;	
	
	public	class	Game	{	

	final	Table	table;	
	final	private	Row	secretRow;	
	boolean	finished	=
false;	
	
	public	Game(Table	table,	Color[]	secret)	{	
	this.table	=	table;

	this.secretRow	=	new	Row(secret);	
	}	
	
	public	void
addNewGuess(Row	row)	{	
	if(isFinished()){	
	throw	new
IllegalArgumentException(
	"You	can	not	guess	on	a	finished	game.");	
	}	

final	int	positionMatch	=	secretRow.	
	nrMatchingPositions(row.positions);	

final	int	colorMatch	=	secretRow.	
	nrMatchingColors(row.positions);	

row.setMatch(positionMatch,	colorMatch);	
	table.addRow(row);	
	if(
positionMatch	==	row.nrOfColumns()){	
	finished	=	true;	
	}	
	}	

	public	boolean	isFinished()	{	
	return	finished;	
	}	
	}

Think	about	what	I	wrote	earlier	about	short	methods,	and	when	you	download	the	code
from	GitHub	to	play	with	it,	try	to	make	it	look	more	readable.	You	can,	perhaps,	create
and	use	a	method	named	boolean	itWasAWinningGuess(int	positionMatch).

Creating	an	integration	test
We	have	created	unit	tests	in	the	previous	chapter	and	there	are	unit	tests	for	the	functionalities
implemented	in	the	classes	of	this	chapter	as	well.	We	will	just	not	print	these	unit	tests	here.	Instead	of
listing	the	unit	tests,	we	will	look	at	an	integration	test.

Integration	tests	need	the	invocation	of	many	classes	working	together.	They	check	that	the	functionality
can	be	delivered	by	the	whole	application,	or	at	least	a	larger	part	of	the	application,	and	do	not	focus	on
a	single	unit.	They	are	called	integration	tests	because	they	test	the	integration	between	classes.	The
classes	alone	are	all	OK.	They	should	not	have	any	problem	as	it	was	already	verified	by	the	unit	tests.
Integration	focuses	on	how	they	work	together.

If	we	want	to	test	the	Game	class,	we	will	either	have	to	create	mocks	that	mimic	the	behavior	of	the	other
Game	classes,	or	we	will	just	write	an	integration	test.	Technically,	an	integration	test	is	very	similar	to	a
unit	test.	Many	times,	the	very	same	JUnit	framework	is	used	to	execute	the	integration	tests.	This	is	the
case	for	the	integration	test	of	this	game.

The	build	tool,	however,	needs	to	be	configured	to	execute	the	integration	tests	only	when	it	is	required.
Usually,	integration	test	executions	need	more	time,	and	sometimes	resources,	such	as	external	database
that	may	not	be	available	at	each	and	every	developer	desktop.	Unit	tests	run	every	time	the	application	is
compiled	so	they	have	to	be	fast.	To	separate	the	unit	and	integration	tests,	there	are	different	techniques
and	configuration	options,	but	there	is	no	such	more	or	less	de-facto	standard	like	the	directory	structure
introduced	by	Maven	(later	adapted	by	Gradle).

In	our	case,	the	integration	test	does	not	need	any	extra	resource	and	does	not	take	enormous	time	to	run.	It
plays	a	game	from	the	start	to	the	end	and	plays	the	role	of	both	the	players.	It	is	very	much	like	somebody
playing	chess	with	themselves,	making	a	step	and	then	turning	the	table.

The	aim	of	this	code	is	twofold.	On	one	hand,	we	want	to	see	that	the	code	runs	and	plays	a	whole	game.
If	the	game	finishes,	then	it	is	just	OK.	This	is	a	very	weak	assertion	and	real	integration	tests	perform	lots
of	assertions	(one	test	tests	only	one	assertion	though).	We	will	focus	on	the	other	aim—deliver	some	joy
and	visualize	the	game	on	the	console	in	text	format	so	that	the	reader	does	not	get	bored.

To	do	that,	we	will	create	a	utility	class	that	prints	out	a	color	and	assigns	letters	to	the	Color	instances	on
the	fly.	This	is	the	PrettyPrintRow	class.	There	are	several	limitations	in	this	class	that	we	have	to	talk	about
after	we	look	at	the	code.	I'd	say	that	this	code	is	here	only	to	demonstrate	what	not	to	do,	to	establish
some	reasoning	for	the	next	chapter,	and	why	we	need	to	refactor	the	code	we	created	in	this	one.

package	packt.java9.by.example.mastermind;	

		

	import	java.util.HashMap;	

	import	java.util.Map;	

		

	public	class	PrettyPrintRow	{	

		

					private	static	final	Map<Color,	Character>	

													letterMapping	=	new	HashMap<>();	

					private	static	final	String	letters	=	"RGBYWb";	

					private	static	int	counter	=	0;	

		

					private	static	char	colorToChar(Color	color)	{	

									if	(!letterMapping.containsKey(color))	{	

													letterMapping.put(color,	letters.charAt(counter));	

													counter++;	

		

									}	

									return	letterMapping.get(color);	

					}

This	is	the	heart	of	this	class.	When	a	color	is	to	be	printed,	it	gets	a	letter	assigned	unless	it	already	has
one.	As	the	Map	containing	the	assignments	in	each	and	every	game	that	is	running	in	the	JVM	will	use	the
same	mapping,	a	new	Game	is	started.	It	allocates	new	Colors	and	will	soon	run	out	of	the	six	characters	that
we	allocated	here	in	the	String	constant.

If	the	Game	instances	are	run	parallel,	then	we	are	in	even	more	trouble.	The	class	is	not	thread	safe	at	all.
If	two	threads	concurrently	call	the	colorToChar	method	for	the	same	Color	instance,	(which	is	not	likely
because	each	Game	uses	its	own	color,	but	note	that	not	likely	in	programming	is	very	much	like	a	famous
last	words	quote	on	a	tombstone)	then	both	threads	may	see	at	the	same	time	that	there	is	no	letter
assigned	to	the	color	and	both	will	assign	the	letter	(the	same	letter	or	two	different	letters,	based	on	luck)
and	increase	the	counter	once	or	twice.	At	least,	what	we	can	say	is	that	the	execution	is	nondeterministic.

You	may	recall	that	I	said	violating	the	hash	contract	is	the	second	most	difficult	to	find	bug	after
multithread	issues.	Such	a	nondeterministic	code	is	exactly	that:	a	multithread	issue.	There	is	no	prize	to
find	the	most	difficult	bug.	When	the	application	does	not	run,	and	a	bug	affects	the	production	system	for
hours	or	days,	no	businessperson	will	be	happy,	and	they	will	not	be	amazed	after	you	find	the	bug.	It	may
be	an	intellectual	challenge,	but	the	real	value	is	not	creating	the	bugs	in	the	first	place.

As	a	summary,	this	code	can	only	be	used	once	in	a	JVM	by	a	single	thread.	For	this	chapter,	it	is	good,
though	a	smelly	and	shameful	code,	but	it	will	be	a	good	example	for	the	next	chapter,	in	which	we	will
see,	how	to	refactor	the	application	so	that	it	will	not	need	such	a	hacking	to	print	out	the	colors.

Code	smell	is	a	term	minted	by	Kent	Back,	according	to	Martin	Fowler	(http://martinfowler.co
m/bliki/CodeSmell.html).	It	means	that	some	code	looks	not	good,	nor	apparently	bad,	but	some
constructs	make	the	feeling	in	the	developer	that	it	may	not	be	good.	As	it	is	defined	on
the	web	page,	"A	code	smell	is	a	surface	indication	that	usually	corresponds	to	a	deeper
problem	in	the	system."	The	term	is	widely	accepted	and	used	in	software	development
for	the	last	10	years.

The	rest	of	the	code	is	plain	and	simple:

public	static	String	pprint(Row	row)	{	

									String	string	=	"";	

									PrintableRow	pRow	=	new	PrintableRow(row);	

									for	(int	i	=	0;	i	<	pRow.nrOfColumns();	i++)	{	

													string	+=	colorToChar(pRow.position(i));	

									}	

									string	+=	"	";	

									string	+=	pRow.matchedPositions();	

									string	+=	"/";	

									string	+=	pRow.matchedColors();	

									return	string;	

					}

The	integration	test,	or	rather	the	demonstration	code	(as	it	does	not	contain	any	assertions	other	than	it
runs	without	exception),	defines	six	colors	and	four	columns.	This	is	the	size	of	the	original	game.	It

http://martinfowler.com/bliki/CodeSmell.html

creates	a	color	manager,	and	then	it	creates	a	table	and	a	secret.	The	secret	could	be	just	any	random
color	selection	from	the	six	colors	that	is	available	(there	are	360	different	possibilities	tested	in	the
UniqueGuesserTest	unit	test	available	from	GitHub).	As	we	know	that	the	Guesser	implementation	starts	from
one	end	of	the	color	set	and	creates	the	new	guesses	systematically,	we	want	to	set	a	secret	that	it	will
guess	the	last.	This	is	not	because	we	are	evil,	but	rather	because	we	want	to	see	that	our	code	really
works.

The	directory	structure	of	the	code	is	very	similar	to	the	one	we	used	in	case	of	the	Maven	build	tool,	as
can	be	seen	on	the	following	screenshot	created	on	a	Windows	machine:

The	source	code	is	under	the	directory	src	and	the	main	and	test	source	code	files	are	separated	into	two
subdirectory	structures.	The	compiled	files	will	be	generated	in	the	directory	build	when	we	use	Gradle.
The	code	of	the	integration	test	class	is	the	following:

package	packt.java9.by.example.mastermind.integration;	

		

	import	org.junit.Assert;	

	import	org.junit.Test;	

	import	packt.java9.by.example.mastermind.*;	

		

	public	class	IntegrationTest	{	

		

					final	int	nrColors	=	6;	

					final	int	nrColumns	=	4;	

					final	ColorManager	manager	=	new	ColorManager(nrColors);	

		

					private	Color[]	createSecret()	{	

									Color[]	secret	=	new	Color[nrColumns];	

									int	count	=	0;	

									Color	color	=	manager.firstColor();	

									while	(count	<	nrColors	-	nrColumns)	{	

													color	=	manager.nextColor(color);	

													count++;	

									}	

									for	(int	i	=	0;	i	<	nrColumns;	i++)	{	

													secret[i]	=	color;	

													color	=	manager.nextColor(color);	

									}	

									return	secret;	

					}	

		

					@Test	

					public	void	testSimpleGame()	{	

									Table	table	=	new	Table(nrColumns,	manager);	

									Color[]	secret	=	createSecret();	

									System.out.println(

													PrettyPrintRow.pprint(new	Row(secret)));	

									System.out.println();	

									Game	game	=	new	Game(table,	secret);	

		

									Guesser	guesser	=	new	UniqueGuesser(table);	

									while	(!game.isFinished())	{	

													Row	guess	=	guesser.guess();	

													if	(guess	==	Row.none)	{	

																	Assert.fail();	

													}	

													game.addNewGuess(guess);	

													System.out.println(PrettyPrintRow.pprint(guess));	

									}	

					}	

	}

The	easiest	way	to	run	the	test	is	start	it	from	inside	the	IDE.	When	the	IDE	imports	the	project	based	on
the	build	file,	be	it	a	Maven	pom.xml	or	Gradle	build.gradle.	IDE	usually	provides	a	run	button	or	menu	to
start	the	code.	Running	the	game	will	print	out	the	following	piece	of	code	that	we	worked	so	hard	on	in
this	chapter:

RGBY	0/0

GRWb	0/2

YBbW	0/2

BYGR	0/4

RGYB	2/2

RGBY	4/0

	

Summary
	

In	this	chapter,	we	programmed	a	table	game:	Mastermind.	We	not	only	programmed	the	model	of	the
game,	but	also	created	an	algorithm	that	can	guess.	We	revisited	some	OO	principles	and	discussed	why
the	model	was	created	the	way	it	was.	While	we	created	the	model	of	the	game,	which	we	will	refine	in
the	next	chapter,	you	have	learned	about	Java	collections,	what	an	integration	test	is,	and	how	to	create
JavaDoc.

	

	

Extending	the	Game	-	Run	Parallel,	Run	Faster
In	this	chapter,	we	will	extend	the	Mastermind	game.	As	it	is	now,	it	can	guess	the	secret	that	was	hidden
and	also	hide	the	pegs.	The	test	code	can	even	do	both	at	the	same	time.	It	can	play	against	itself	leaving
us	only	with	the	fun	of	programming.	What	it	cannot	do	is	make	use	of	all	the	processors	that	we	have	in
today's	notebooks	and	servers.	The	code	runs	synchronous	and	utilizes	only	a	single	processor	core.

We	will	alter	the	code	extending	the	guessing	algorithm	to	slice	up	the	guessing	into	subtasks	and	execute
the	code	in	parallel.	During	this,	we	will	get	acquainted	with	Java	concurrent	programming.	This	will	be
a	huge	topic	with	many	subtle	corners	and	caveats	lurking	in	the	dark.	We	will	get	into	those	details	that
are	the	most	important	and	will	form	a	firm	base	for	further	studies	whenever	you	need	concurrent
programs.

As	the	outcome	of	the	game	is	the	same	as	it	was,	only	faster,	we	have	to	assess	what	faster	is.	To	do	that,
we	will	utilize	a	new	feature	introduced	in	Java	9:	microbenchmarking	harness.

In	this	chapter,	we	will	cover	the	following	topics:

The	meaning	of	processes,	threads	and	fibers
Multithreading	in	Java
Issues	with	multithread	programming	and	how	to	avoid	them
Locking,	synchronization,	and	blocking	queues
Microbenchmarking

How	to	make	Mastermind	parallel
The	old	algorithm	was	to	go	through	all	the	variations	and	try	to	find	a	guess	that	matches	the	current	state
of	the	table.	Assuming	that	the	currently	examined	guess	is	the	secret,	will	we	get	the	same	answers	for
the	guesses	that	are	already	on	the	table	as	the	answers	are	actually	on	the	table?	If	yes,	then	the	current
guess	can	be	the	secret,	and	it	is	just	as	good	a	guess	as	any	other	guesses.

A	more	complex	approach	can	implement	the	min-max	algorithm	(https://en.wikipedia.org/wiki/Minimax).	This
algorithm	does	not	simply	get	the	next	possible	guess	but	also	looks	at	all	the	possible	guesses	and	selects
the	one	that	shortens	the	outcome	of	the	game	the	most.	If	there	is	a	guess	that	can	be	followed	by	three
more	guesses	in	the	worst	case,	and	there	is	another	for	which	this	number	is	only	two,	then	min-max	will
choose	the	latter.	It	is	a	good	exercise	for	the	interested	readers.	In	the	case	of	the	six	colors	and	four
columns	for	the	pegs,	the	min-max	algorithm	solves	the	game	in	no	more	than	5	steps.	The	simple
algorithm	we	implemented	also	solves	the	game	in	5	steps.	However,	we	do	not	go	in	that	direction.

Instead,	we	want	to	have	a	version	of	the	game	that	utilizes	more	than	one	processor.	How	can	you
transform	the	algorithm	into	a	parallel	one?	There	is	no	simple	answer	to	this.	When	you	have	an
algorithm,	you	can	analyze	the	calculations	and	parts	of	the	algorithm,	and	you	can	try	to	find
dependencies.	If	there	is	some	calculation	B	that	needs	the	data,	which	is	the	result	of	another	calculation
A,	then	it	is	obvious	that	A	can	only	be	performed	when	B	is	ready.	If	there	are	parts	of	the	algorithm	that
do	not	depend	on	the	outcome	of	the	others,	then	they	can	be	executed	in	parallel.

For	example,	the	quick-sort	has	two	major	tasks:	partitioning	and	then	sorting	of	the	two	parts.	It	is	fairly
obvious	that	the	partitioning	has	to	finish	before	we	start	sorting	the	two	partitioned	parts.	However,	the
sorting	tasks	of	the	two	parts	do	not	depend	on	each	other,	they	can	be	done	independently.	You	can	give
them	to	two	different	processors.	One	will	be	happy	sorting	the	part	containing	the	smaller	elements;	the
other	one	will	carry	the	heavier,	larger	ones.

If	you	turn	the	pages	back	to	Chapter	3,	Optimizing	the	Sort	-	Making	Code	Professional	where	we
implemented	quick-sort	in	a	non-recursive	way,	you	can	see	that	we	scheduled	sorting	tasks	into	a	stack
and	then	performed	the	sorting	by	fetching	the	elements	from	the	stack	in	a	while	loop.	Instead	of	executing
the	sort	right	there	in	the	core	of	the	loop,	we	could	pass	the	task	to	an	asynchronous	thread	to	perform	it
and	go	back	for	the	next	waiting	task.	We	just	do	not	know	how.	Yet.	That	is	why	we	are	here	in	this
chapter.

Processors,	threads,	and	processes	are	complex	and	abstract	things	and	they	are	hard	to	imagine.	Different
programmers	have	different	techniques	to	imagine	parallel	processing	and	algorithms.	I	can	tell	you	how	I
do	it	but	it	is	not	a	guarantee	that	this	will	work	for	you.	Others	may	have	different	techniques	in	their
mind.	As	a	matter	of	fact,	I	just	realized	that	as	I	write	this,	I	have	actually	never	told	this	to	anyone
before.	It	may	seem	childish,	but	anyway,	here	it	goes.

When	I	imagine	algorithms,	I	imagine	people.	One	processor	is	one	person.	This	helps	me	overcome	the
freaking	fact	that	a	processor	can	make	billions	of	calculations	in	a	second.	I	actually	imagine	a
bureaucrat	wearing	a	brown	suit	and	doing	the	calculations.	When	I	create	a	code	for	a	parallel	algorithm,
I	imagine	many	of	them	working	behind	their	desks.	They	work	alone	and	they	do	not	talk.	It	is	important

https://en.wikipedia.org/wiki/Minimax

that	they	do	not	talk	to	each	other.	They	are	very	formal.	When	there	is	a	need	for	information	exchange,
they	stand	up	with	a	piece	of	paper	they	have	written	something	on,	and	they	bring	it	to	each	other.
Sometimes,	they	need	a	piece	of	paper	for	their	work.	Then	they	stand	up,	go	to	the	place	where	the	paper
is,	take	it,	bring	it	back	to	their	desk,	and	go	on	working.	When	they	are	ready,	they	go	back	and	bring	the
paper	back.	If	the	paper	is	not	there	when	they	need	it,	they	queue	up	and	wait	until	someone	who	has	the
paper	brings	it	there.

How	does	it	help	with	Mastermind?

I	imagine	a	boss	who	is	responsible	for	the	guesses.	There	is	a	table	on	the	wall	in	the	office	with	the
previous	guesses	and	the	results	for	each	row.	The	boss	is	too	lazy	to	come	up	with	new	guesses	so	he
gives	this	task	to	subordinates.	When	a	subordinate	comes	up	with	a	guess,	the	boss	checks	whether	the
guess	is	valid	or	not.	He	does	not	trust	the	subordinates,	and	if	the	guess	is	good,	he	makes	it	as	an	official
guess,	putting	it	on	the	table	along	with	the	result.

The	subordinates	deliver	the	guesses	written	on	small	post-it	notes,	and	they	put	them	in	a	box	on	the	table
of	the	boss.	The	boss	looks	at	the	box	from	time	to	time,	and	if	there	is	a	note,	the	boss	takes	it.	If	the	box
is	full	and	a	subordinate	wants	to	put	a	paper	there,	the	subordinate	stops	and	waits	until	the	boss	takes	at
least	one	note	so	that	there	is	some	room	in	the	box	for	a	new	note.	If	the	subordinates	queue	up	to	deposit
guesses	in	the	box,	they	all	wait	for	their	time.

The	subordinates	should	be	coordinated;	otherwise,	they	will	just	come	up	with	the	same	guesses.	Each	of
them	should	have	an	interval	of	guesses.	For	example,	the	first	one	should	check	the	guesses	from	1234	up
until	2134,	the	second	should	check	from	2134	up	until	3124,	and	so	on,	if	we	denote	the	colors	with
numbers.

Will	this	structure	work?	Common	sense	says	that	it	will.	However,	bureaucrats,	in	this	case,	are
metaphors	and	metaphors	are	not	exact.	Bureaucrats	are	human,	even	when	they	do	not	seem	like	it	much
more	than	threads	or	processors.	They	sometimes	behave	extremely	strangely,	doing	things	that	normal
humans	don't	really	do	often.	However,	we	can	still	use	this	metaphor	if	it	helps	us	imagine	how	parallel
algorithms	work.

We	can	imagine	that	the	boss	goes	on	holiday	and	does	not	touch	the	heap	of	paper	piling	up	on	the	table.
We	can	imagine	that	some	of	the	workers	are	producing	results	much	faster	than	the	others.	As	this	is	only
imagination,	the	speedup	can	be	1000	times	(think	of	a	time-lapse	video).	Imagining	these	situations	may
help	us	discover	special	behavior	that	rarely	happens,	but	may	cause	problems.	As	the	threads	work	in
parallel,	many	times	subtle	differences	may	influence	the	general	behavior	greatly.

In	some	early	version,	as	I	coded	the	parallel	Mastermind	algorithm,	the	bureaucrats	started	working	and
filled	the	box	of	the	boss	with	guesses	before	the	boss	could	put	any	of	them	on	the	table.	As	there	were
no	guesses	on	the	table,	the	bureaucrats	simply	found	all	possible	variations	in	their	interval	being	a
possibly	good	guess.	The	boss	gained	nothing	by	the	help	of	the	parallel	helpers;	they	had	to	select	the
correct	ones	from	all	possible	guesses,	while	the	guessers	were	just	idle.

Another	time,	the	bureaucrats	were	checking	guesses	against	the	table	while	the	boss	was	putting	a	guess
on	one	of	them	created	beforehand.	And	some	of	the	bureaucrats	freaked	out	saying	that	it	is	not	possible

to	check	a	guess	against	a	table	if	someone	is	changing	it.	More	precisely,	the	code	executing	in	one
thread,	threw	ConcurrentModificationException	when	the	List	of	the	table	was	modified.

Another	time,	I	tried	to	avoid	the	too	fast	work	of	bureaucrats,	and	I	limited	the	size	of	the	box	where	they
could	put	their	papers	containing	the	guesses.	When	the	boss	finally	found	the	secret,	and	the	game
finished,	the	boss	told	the	bureaucrats	that	they	could	go	home.	The	boss	did	that	by	creating	a	small	paper
with	the	instruction:	you	can	go	home,	and	put	it	on	the	tables	of	the	bureaucrats.	What	did	the	bureaucrats
do?	Kept	waiting	for	the	box	to	have	space	for	the	paper!	(Until	the	process	was	killed.	This	is	kind	of
equivalent	on	Mac	OS	and	on	Linux	as	ending	the	process	from	the	task	manager	on	Windows.)	Such
coding	errors	happen	and,	to	avoid	as	many	as	possible,	we	have	to	do	at	least	two	things.	Firstly,	we
have	to	understand	how	Java	multithreading	works	and	secondly,	have	a	code	as	clean	as	possible.	For
the	second,	we	will	clean	up	the	code	even	more	and	then	we	will	look	at	how	the	parallel	algorithm
described	earlier	can	be	implemented	in	Java,	running	on	the	JVM	instead	of	utilizing	bureaucrats.

Refactoring
When	we	finished	the	previous	chapter,	we	had	the	classes	of	the	Mastermind	game	designed	and	coded
in	a	nice	and	perfectly	object	oriented	way	that	did	not	break	any	of	the	OO	principles.	Did	we?	Absurd.
There	is	no	code,	except	some	trivial	examples,	that	cannot	be	made	to	look	nicer	or	better.	Usually,	when
we	develop	code	and	finish	the	coding,	it	looks	great.	It	works,	the	tests	all	run,	and	documentation	is
ready.	From	the	professional	point	of	view,	it	really	is	perfect.	Well,	it	is	good	enough.	The	big	question
that	we	have	not	tested	yet	is	maintainability.	What	is	the	cost	to	alter	the	code?

That	is	not	an	easy	question,	especially	because	it	is	not	a	definite	one.	Alter	to	what?	What	is	the
modification	that	is	to	be	made	to	the	code?	We	do	not	know	that	when	we	create	the	code	in	the	first
place.	If	the	modification	is	to	fix	a	bug,	then	it	is	obvious	that	we	did	not	know	that	beforehand.	If	we
knew,	we	would	not	have	introduced	the	bug	in	the	first	place.	If	this	is	a	new	feature,	then	there	is	a
possibility	that	the	function	was	foreseen.	However,	usually	it	is	not	the	case.	When	a	developer	tries	to
predict	the	future,	and	what	features	the	program	will	need	in	the	future,	they	usually	fail.	It	is	the	task	of
the	customer	to	know	the	business.	Features	needed	are	driven	by	the	business	in	case	of	professional
software	development.	After	all,	that	is	what	it	means	to	be	professional.

Even	though	we	do	not	exactly	know	what	needs	to	be	altered	later	in	the	code,	there	are	certain	things
that	may	give	hints	to	experienced	software	developers.	Usually,	the	OO	code	is	easier	to	maintain	than
the	ad-hoc	code,	and	there	are	code	smells	that	one	can	spot.	For	example,	take	a	look	at	the	following
code	lines:

while	(guesser.guess()	!=	Row.none)	{	

				while	(guesser.nextGuess()	!=	Guesser.none)	{	

								public	void	addNewGuess(Row	row)	{	

												Color[]	guess	=	super.nextGuess();

We	may	sense	the	odor	of	something	strange.	(Each	of	these	lines	is	in	the	code	of	the	application	as	we
finished	it	in	Chapter	4,	Mastermind	-	Creating	a	Game.)	The	return	value	of	the	guess	method	is	compared
to	Row.none,	which	is	a	Row.	Then,	we	compare	the	return	value	of	nextGuess	to	Guesser.none,	which	should	be	a
Guesser.	When	we	add	a	new	guess	to	something,	we	actually	add	a	Row.	Finally,	we	can	realize	that
nextGuess	returns	a	guess	that	is	not	an	object	with	its	own	declared	class.	A	guess	is	just	an	array	of	colors.

Should	we	introduce	another	layer	of	abstraction	creating	a	Guess	class?	Will	it	make	the	code	more
maintainable?	Or	will	it	only	make	the	code	more	complex?	It	is	usually	true	that	the	less	code	lines	we
have,	the	less	possibility	we	have	for	bugs.	However,	sometimes,	the	lack	of	abstraction	will	make	the
code	complex	and	tangled.	What	is	the	case	in	this	situation?	How	can	we	decide	that	generally?

The	more	experience	you	have,	the	easier	you	will	tell	by	looking	at	the	code	and	acutely	knowing	what
modifications	you	want	to	make.	Many	times,	you	will	not	bother	making	the	code	more	abstract,	and
many	other	times,	you	will	create	new	classes	without	hesitation.	When	in	doubt,	do	create	the	new
classes	and	see	what	comes	out.	The	important	thing	is	not	to	ruin	the	already	existing	functionality.	You
can	do	that	only	if	you	have	sufficient	unit	tests.

When	you	want	to	introduce	some	new	functionality	or	fix	a	bug,	but	the	code	is	not	appropriate,	you	will
have	to	modify	it	first.	When	you	modify	the	code	so	that	the	functionality	does	not	change,	the	process	is

named	refactoring.	You	change	a	small	part	of	the	code	in	a	limited	time,	and	then	you	build	it.	If	it
compiles	and	all	unit	tests	run,	then	you	can	go	on.	The	hint	is	to	run	the	build	frequently.	It	is	like	building
a	new	road	near	an	existing	one.	Once	in	every	few	miles,	you	should	meet	the	old	line.	Failing	to	do	so,
you	will	end	up	somewhere	in	the	middle	of	the	desert	in	a	totally	wrong	direction,	and	all	you	can	do	is
return	to	the	starting	point—your	old	to-be-refactored	code.	Effort	wasted.

It	is	not	only	the	safety	that	advises	us	to	run	the	build	frequently,	it	is	also	time	limitation.	Refactoring
does	not	directly	deliver	revenue.	The	functionality	of	the	program	is	tied	directly	to	income.	Nobody
will	pay	us	for	infinite	refactoring	work.	Refactoring	has	to	stop	some	time	and	it	is	usually	not	the	time
when	there	is	nothing	to	be	refactored	any	more.	The	code	will	never	be	perfect,	but	you	may	stop	when	it
is	good	enough.	And,	many	times,	programmers	are	never	satisfied	with	the	quality	of	the	code,	and	when
they	are	stopped	by	some	external	factor	(usually	called	project	manager),	the	code	should	compile	and
tests	should	run	so	that	the	new	feature	and	bug	fixing	can	be	performed	on	the	actual	code	base.

Refactoring	is	a	huge	topic	and	there	are	many	techniques	that	can	be	followed	during	such	an	activity.	It
is	so	complex	that	there	is	a	whole	book	about	it	by	Martin	Fowler	(http://martinfowler.com/books/refactoring.html).

In	our	case,	the	modification	we	want	to	apply	to	our	code	is	to	implement	a	parallel	algorithm.	The	first
thing	we	will	modify	is	the	ColorManager.	When	we	wanted	to	print	guesses	and	rows	on	the	terminal,	we
had	to	implement	some	bad	tricks.	Why	not	have	color	implementations	that	can	be	printed?	We	can	have
a	class	that	extends	the	original	Color	class	and	has	a	method	that	returns	something	that	represents	that
color.	Do	you	have	any	candidate	name	for	that	method?	It	is	the	toString	method.	It	is	implemented	in	the
Object	class	and	any	class	can	freely	override	it.	When	you	concatenate	an	object	to	a	string,	automatic
type	conversion	will	call	this	method	to	convert	the	object	to	String.	By	the	way,	it	is	an	old	trick	to	use
""+object	instead	of	object.toString()	to	avoid	null	pointer	exception.	Needless	to	say,	we	do	not	use	tricks.
The	toString	method	is	also	invoked	by	the	IDEs	when	the	debugger	wants	to	display	the	value	of	some
object,	so	it	is	generally	recommended	to	implement	toString	if	for	nothing	else,	then	to	ease	development.
If	we	have	a	Color	class	that	implements	toString,	then	the	PrettyPrintRow	class	becomes	fairly
straightforward	and	tricks	less:

package	packt.java9.by.example.mastermind;	

		

	public	class	PrettyPrintRow	{	

		

					public	static	String	pprint(Row	row)	{	

									String	string	=	"";	

									PrintableRow	pRow	=	new	PrintableRow(row);	

									for	(int	i	=	0;	i	<	pRow.nrOfColumns();	i++)	{	

													string	+=	pRow.pos(i);	

									}	

									string	+=	"	";	

									string	+=	pRow.full();	

									string	+=	"/";	

									string	+=	pRow.partial();	

									return	string;	

					}	

	}

We	removed	the	problem	from	the	printing	class,	but	you	may	argue	that	the	issue	is	still
there,	and	you	are	right.	Many	times,	when	there	is	a	problem	in	a	class	design,	the	way
to	the	solution	to	move	the	problem	from	the	class	to	another.	If	it	is	still	a	problem	there,
then	you	may	split	the	design	more	and	more	and,	at	the	last	stage,	you	will	realize	that
what	you	have	is	an	issue	and	not	a	problem.

http://martinfowler.com/books/refactoring.html

To	implement	a	LetteredColor	class	is	also	straightforward:

package	packt.java9.by.example.mastermind.lettered;	

		

	import	packt.java9.by.example.mastermind.Color;	

		

	public	class	LetteredColor	extends	Color	{	

		

					private	final	String	letter;	

					public	LetteredColor(String	letter){	

									this.letter	=	letter;	

					}	

		

					@Override	

					public	String	toString(){	

									return	letter;	

					}	

	}

Again,	the	problem	was	pushed	forward.	But,	in	reality,	this	is	not	a	problem.	It	is	an	OO	design.	Printing
is	not	responsible	for	assigning	String	to	colors	for	their	representation.	And	the	color	implementation
itself	is	also	not	responsible	for	that.	The	assignment	has	to	be	performed	where	the	color	is	made,	and
then	the	String	has	to	be	passed	to	the	constructor	of	the	LetteredColor	class.	The	color	instances	are	created
in	ColorManager	so	we	have	to	implement	this	in	the	ColorManager	class.	Or	not?	What	does	ColorManager	do?	It
creates	the	colors	and...

When	you	come	to	an	explanation	or	description	of	a	class	that	lists	the	functionalities,	you	may
immediately	see	that	the	single	responsibility	principle	was	ignored.	ColorManager	should	manage	the
colors.	Managing	is	providing	a	way	to	get	the	colors	in	a	definite	order	and	getting	the	first	and	the	next
when	we	know	one	color.	We	should	implement	the	other	responsibility—the	creation	of	a	color	in	a
separate	class.

A	class	that	has	the	sole	functionality	to	create	an	instance	of	another	class	is	called	factory.	That	is
almost	the	same	as	using	the	new	operator	but	unlike	new,	the	factories	can	be	used	more	flexibly.	We	will
see	that	immediately.	The	ColorFactory	interface	contains	a	single	method,	as	follows:

package	packt.java9.by.example.mastermind;	

		

	public	interface	ColorFactory	{	

					Color	newColor();	

	}

Interfaces	that	define	only	one	method	are	named	functional	interfaces	because	their	implementation	can
be	provided	as	a	lambda	expression	at	the	place	where	you	would	use	an	object	that	is	an	instance	of	a
class	which	implements	the	functional	interface.	The	SimpleColorFactory	implementation	creates	the
following	Color	objects:

package	packt.java9.by.example.mastermind;	

		

	public	class	SimpleColorFactory	implements	ColorFactory	{	

					@Override	

					public	Color	newColor()	{	

									return	new	Color();	

					}	

	}

It	is	very	much	like	how	we	create	an	interface,	and	then	an	implementation,	instead	of	just	writing	new
Color()	in	the	code	in	ColorManager.	LetteredColorFactory	is	a	bit	more	interesting:

package	packt.java9.by.example.mastermind.lettered;	

		

	import	packt.java9.by.example.mastermind.Color;	

	import	packt.java9.by.example.mastermind.ColorFactory;	

		

	public	class	LetteredColorFactory	implements	ColorFactory	{	

		

					private	final	String	letters	=	"0123456789ABCDEFGHIJKLMNOPQRSTVWXYZabcdefghijklmnopqrstvwxzy";	

					private	int	counter	=	0;	

		

					@Override	

					public	Color	newColor()	{	

									Color	color	=	new	LetteredColor(letters.substring(counter,	counter	+	1));	

									counter++;	

									return	color;	

					}	

	}

Now,	here	we	have	the	functionality	that	assigns	Strings	to	the	Color	objects	when	they	are	created.	It	is
very	important	that	the	counter	variable	that	keeps	track	of	the	already	created	colors	is	not	static.	The
similar	variable	in	the	previous	chapter	was	static	and	it	meant	that	it	could	run	out	of	characters	as	ever-
newer	ColorManagers	created	too	many	colors.	It	actually	did	happen	to	me	during	the	unit	test	execution
when	the	tests	each	created	ColorManagers	and	new	Color	instances,	and	the	printing	code	tried	to	assign	new
letters	to	the	new	colors.	The	tests	were	running	in	the	same	JVM	under	the	same	classloader	and	the
unfortunate	static	variable	had	no	clue	when	it	could	just	start	counting	from	zero	for	the	new	tests.	The
drawback	is	that	somebody,	somewhere,	has	to	instantiate	the	factory	and	it	is	not	the	ColorManager.
ColorManager	already	has	a	responsibility	and	it	is	not	to	create	a	color	factory.	The	ColorManager	has	to	get	the
ColorFactory	in	its	constructor:

package	packt.java9.by.example.mastermind;	

		

	import	java.util.HashMap;	

	import	java.util.List;	

	import	java.util.Map;	

		

	public	class	ColorManager	{	

					final	protected	int	nrColors;	

					final	protected	Map<Color,	Color>	successor	=	new	HashMap<>();	

					private	Color	first;	

					private	final	ColorFactory	factory;	

		

					public	ColorManager(int	nrColors,	ColorFactory	factory)	{	

									this.nrColors	=	nrColors;	

									this.factory	=	factory;	

									createOrdering();	

					}	

		

					private	Color[]	createColors()	{	

									Color[]	colors	=	new	Color[nrColors];	

									for	(int	i	=	0;	i	<	colors.length;	i++)	{	

													colors[i]	=	factory.newColor();	

									}	

									return	colors;	

					}	

		

					private	void	createOrdering()	{	

									Color[]	colors	=	createColors();	

									first	=	colors[0];	

									for	(int	i	=	0;	i	<	nrColors	-	1;	i++)	{	

													successor.put(colors[i],	colors[i	+	1]);	

									}	

					}	

		

					public	Color	firstColor()	{	

									return	first;	

					}	

		

					public	boolean	thereIsNextColor(Color	color)	{	

									return	successor.containsKey(color);	

					}	

		

					public	Color	nextColor(Color	color)	{	

									return	successor.get(color);	

					}	

		

					public	int	getNrColors()	{	

									return	nrColors;	

					}	

	}

You	may	also	notice	that	I	could	not	resist	refactoring	the	createColors	method	into	two
methods	to	follow	the	single	responsibility	principle.

Now,	the	code	that	creates	ColorManager	has	to	create	a	factory	and	pass	it	to	the	constructor.	For	example,
the	unit	test's	ColorManagerTest	class	will	contain	the	following	method:

@Test

	public	void	thereIsAFirstColor()	{	

					ColorManager	manager		

										=	new	ColorManager(NR_COLORS,	Color::new);	

					Assert.assertNotNull(manager.firstColor());	

	}

This	is	the	simplest	way	ever	to	implement	a	factory	defined	by	a	functional	interface.	Just	name	the	class
and	reference	the	new	operator	like	it	was	a	method	by	creating	a	method	reference.

The	next	thing	we	will	refactor	is	the	Guess	class,	which,	actually,	we	did	not	have	so	far.	A	Guess	class
contains	the	pegs	of	the	guess	and	can	calculate	the	number	of	full	(color	as	well	as	position)	and	partial
(color	present	but	in	wrong	position)	matches,	and	can	also	calculate	the	next	Guess	that	comes	after	this
guess.	This	functionality	was	implemented	in	the	Guesser	class	so	far,	but	this	is	not	really	the	functionality
for	how	we	select	the	guesses	when	checking	the	already	made	guesses	on	the	table.	If	we	follow	the
pattern	we	set	up	for	the	colors,	we	may	implement	this	functionality	in	a	separate	class	named
GuessManager,	but	as	for	now,	it	is	not	needed.	Again,	this	is	not	black	and	white.

It	is	important	to	note	that	a	Guess	object	can	only	be	made	at	once.	If	it	is	on	the	table,	the	player	is	not
allowed	to	change	it.	If	we	have	a	Guess	that	is	not	yet	on	the	table,	it	is	still	just	a	Guess	identified	by	the
colors	and	orders	of	the	pegs.	A	Guess	object	never	changes	after	it	was	created.	Such	objects	are	easy	to
use	in	multithread	programs	and	are	called	immutable	objects:

package	packt.java9.by.example.mastermind;	

		

	import	java.util.Arrays;	

	import	java.util.HashSet;	

	import	java.util.Set;	

		

	public	class	Guess	{	

					final	static	public	Guess	none	=	new	Guess(new	Color[0]);	

					final	private	Color[]	colors;	

					private	boolean	uniquenessWasNotCalculated	=	true;	

					private	boolean	unique;	

		

					public	Guess(Color[]	colors)	{	

									this.colors	=	Arrays.copyOf(colors,	colors.length);	

					}

The	constructor	is	creating	a	copy	of	the	array	of	colors	that	were	passed.	As	a	Guess	is	immutable,	this	is
extremely	important.	If	we	just	keep	the	original	array,	any	code	outside	of	the	Guess	class	could	alter	the

elements	of	the	array,	essentially	changing	the	content	of	Guess	that	is	not	supposed	to	be	changing:

public	Color	getColor(int	i)	{	

									return	colors[i];	

					}	

		

					public	int	nrOfColumns()	{	

									return	colors.length;	

					}	

		

					/**	

						*	Calculate	the	next	guess	and	return	a	new	Guess	object.	

						*	The	guesses	are	ordered	in	the	order	of	the	colors	as	

						*	specified	by	the	color	manager.	

						*	

						*	@param	manager	that	specifies	the	order	of	the	colors	

						*																can	return	the	next	color	after	one	color.	

						*	@return	the	guess	that	comes	after	this	guess.	

						*/	

					public	Guess	nextGuess(ColorManager	manager)	{	

									final	Color[]	colors	=	Arrays.copyOf(

																																					this.colors,	nrOfColumns());	

		

									int	i	=	0;	

									boolean	guessFound	=	false;	

									while	(i	<	colors.length	&&	!guessFound)	{	

													if	(manager.thereIsNextColor(getColor(i)))	{	

																	colors[i]	=	manager.nextColor(colors[i]);	

																	guessFound	=	true;	

													}	else	{	

																	colors[i]	=	manager.firstColor();	

																	i++;	

													}	

									}	

									if	(guessFound)	{	

													return	new	Guess(colors);	

									}	else	{	

													return	Guess.none;	

									}	

					}

In	this	method,	we	start	to	calculate	the	next	Guess	starting	with	the	color	array	that	is	contained	in	the
actual	object.	We	need	a	work	array	that	is	modified,	so	we	will	copy	the	original.	The	final	new	object
can,	this	time,	use	the	array	we	use	during	the	calculation,	so	that	will	need	a	separate	constructor	that
does	not	create	a	copy.	It	is	possible	extra	code,	but	we	should	consider	making	that	only	if	we	see	that
that	is	the	bottleneck	in	the	code	and	we	are	not	satisfied	with	the	actual	performance.

The	next	method	just	checks	if	the	passed	Guess	has	the	same	number	of	colors	as	the	actual	one.	This	is
just	a	safety	check	used	by	the	next	two	methods	that	calculate	the	matches:

private	void	assertCompatibility(Guess	guess)	{	

									if	(nrOfColumns()	!=	guess.nrOfColumns())	{	

													throw	new	IllegalArgumentException("Cannot	compare	different	length	guesses");	

									}	

					}	

		

					/**	

						*	Count	the	number	of	colors	that	are	present	on	the	guess	

						*	but	not	on	the	pos	where	they	are	in	the	other	guess.	

						*	If	the	same	color	is	on	multiple	pos	it	is	counted	

						*	for	each	pos	once.	For	example	the	secret	is	

						*	<pre>	

						*					RGRB	

						*	</pre>	

						*	and	the	guess	is	

						*	<pre>	

						*					YRPR	

						*	</pre>	

						*	then	this	method	will	return	2.	

						*	

						*	@param	guess	is	the	actual	guess	that	we	evaluate	

						*	@return	the	number	of	good	colors	not	in	pos	

						*/	

					public	int	nrOfPartialMatches(Guess	guess)	{	

									assertCompatibility(guess);	

									int	count	=	0;	

									for	(int	i	=	0;	i	<	nrOfColumns();	i++)	{	

													for	(int	j	=	0;	j	<	nrOfColumns();	j++)	{	

																	if	(i	!=	j	&&	

																									guess.getColor(i)	==	this.getColor(j))	{	

																					count++;	

																	}	

													}	

									}	

									return	count;	

					}	

		

					/**	

						*	Count	the	number	of	colors	that	are	correct	and	are	in	pos.	

						*	

						*	@param	guess	is	the	actual	guess	that	we	evaluate	

						*	@return	the	number	of	colors	that	match	in	pos	

						*/	

					public	int	nrOfFullMatches(Guess	guess)	{	

									assertCompatibility(guess);	

									int	count	=	0;	

									for	(int	i	=	0;	i	<	nrOfColumns();	i++)	{	

													if	(guess.getColor(i)	==	this.getColor(i))	{	

																	count++;	

													}	

									}	

									return	count;	

					}

The	isUnique	method	checks	if	there	is	any	color	more	than	once	in	the	Guess.	As	the	Guess	is	immutable,	it
may	not	happen	that	a	Guess	is	unique	one	time	and	not	unique	at	another	time.	This	method	should	return
the	same	result	whenever	it	is	called	on	a	specific	object.	Because	of	that,	it	is	possible	to	cache	the
result.	This	method	does	this,	saving	the	return	value	to	an	instance	variable.

You	may	say	that	this	is	premature	optimization.	Yes,	it	is.	I	decided	to	do	it	for	one	reason.	It	is
demonstration,	and	based	on	that,	you	can	try	to	modify	the	nextGuess	method	to	do	the	same:

/**	

						*	@return	true	if	the	guess	does	not	

						*									contain	any	color	more	than	once	

						*/	

					public	boolean	isUnique()	{	

									if	(uniquenessWasNotCalculated)	{	

													final	Set<Color>	alreadyPresent	=	new	HashSet<>();	

													unique	=	true;	

													for	(Color	color	:	colors)	{	

																	if	(alreadyPresent.contains(color))	{	

																					unique	=	false;	

																					break;	

																	}	

																	alreadyPresent.add(color);	

													}	

													uniquenessWasNotCalculated	=	false;	

									}	

									return	unique;	

					}

Methods	that	return	the	same	result	for	the	same	arguments	are	called	idempotent.	Caching	the	return	value
for	such	a	method	can	be	very	important	if	the	method	is	called	many	times	and	the	calculation	is	using	a
lot	of	resources.	When	the	method	has	arguments,	the	result	caching	is	not	simple.	The	object	method	has
to	remember	the	result	for	all	arguments	that	were	already	calculated,	and	this	storage	has	to	be	effective.
If	it	takes	more	resources	to	find	the	stored	result	than	the	calculation	of	it,	then	the	use	of	cache	not	only

uses	more	memory	but	also	slows	down	the	program.	If	the	method	is	called	for	several	arguments	during
the	lifetime	of	the	object,	then	the	storage	memory	may	just	grow	too	large.	Some	of	the	elements	have	to
be	purged—those	that	will	not	be	needed	anymore	in	the	future.	However,	we	cannot	know	which
elements	of	the	cache	are	not	needed,	so	we	will	have	to	guess.

As	you	can	see,	caching	can	get	complex	very	fast	and,	to	do	that	professionally,	it	is	almost	always	better
to	use	some	readily	available	cache	implementation.	The	caching	we	use	here	is	only	the	tip	of	the
iceberg.	Or,	it	is	even	only	the	sunshine	glimpsing	on	it.

The	rest	of	the	class	is	fairly	standard	and	something	we	have	talked	about	in	detail—a	good	check	of
your	knowledge	is	to	understand	how	the	equals,	hashCode,	and	toString	methods	are	implemented	this	way.	I
implemented	the	toString	method	to	help	me	during	debugging,	but	it	is	also	used	in	the	following	example
output:

@Override	

					public	boolean	equals(Object	other)	{	

									if	(this	==	other)	return	true;	

									if	(other	==	null	||	!(other	instanceof	Guess))	

																																															return	false;	

									Guess	guess	=	(Guess)	other;	

									return	Arrays.equals(colors,	guess.colors);	

					}	

		

					@Override	

					public	int	hashCode()	{	

									return	Arrays.hashCode(colors);	

					}	

		

					@Override	

					public	String	toString()	{	

									if	(this	==	none)	{	

													return	"none";	

									}	else	{	

													String	s	=	"";	

													for	(int	i	=	colors.length	-	1;	i	>=	0;	i--)	{	

																	s	+=	colors[i];	

													}	

													return	s;	

									}	

					}	

	}

This	is	mainly	the	modification	that	I	needed	while	I	developed	the	parallel	algorithm.	Now,	the	code	is
fairly	up-to-date	and	described	to	focus	on	the	main	topic	of	this	chapter:	how	to	execute	code	in	Java	in
parallel.

The	parallel	execution	of	the	code	in	Java	is	done	in	threads.	You	may	know	that	there	is	a	Thread	object	in
Java	runtime,	but	without	understanding	what	a	thread	in	the	computer	is,	it	makes	no	sense.	In	the
following	subsections,	we	will	learn	what	these	threads	are,	how	to	start	a	new	thread,	how	to
synchronize	data	exchange	between	threads,	and	finally	put	all	this	together	and	implement	the
Mastermind	parallel	guessing	algorithm.

Processes
When	you	start	your	computer,	the	program	that	starts	is	the	operating	system	(OS).	The	OS	controls	the
machine	hardware	and	the	programs	that	you	can	run	on	the	machine.	When	you	start	a	program,	the	OS
creates	a	new	process.	It	means	that	the	OS	allocates	a	new	entry	in	a	table	(array)	where	it	administers
the	processes	and	fills	in	the	parameters	that	it	knows,	and	needs	to	know,	about	the	process.	For
example,	it	registers	what	memory	segment	the	process	is	allowed	to	use,	what	the	ID	of	the	process	is,
and	which	user	started	from	which	other	process.	You	cannot	start	a	process	just	out	of	thin	air.	When	you
double-click	on	an	EXE	file,	you	actually	tell	the	file	explorer,	which	is	a	program	running	as	a	process,
to	start	the	EXE	file	as	a	separate	process.	The	explorer	calls	the	system	via	some	API	and	kindly	asks
the	OS	to	do	that.	The	OS	will	register	the	explorer	process	as	the	parent	of	the	new	process.	The	OS
does	not	actually	start	the	process,	but	creates	all	the	data	that	it	needs	to	start	it	and,	when	there	is	some
free	CPU	resource,	then	the	process	gets	started,	and	then	it	gets	paused	very	soon.	You	will	not	notice	it
because	the	OS	will	start	it	again	and	again	and	is	always	pausing	the	process	repeatedly.	It	needs	to	do	it
to	provide	run	possibilities	to	all	processes.	That	way,	we	experience	all	processes	running	at	the	same
time.	In	reality,	processes	do	not	run	at	the	same	time	on	a	single	processor,	but	they	get	time	slots	to	run
often.

If	you	have	more	than	one	CPU	in	the	machine,	then	processes	can	actually	run	at	the	same	time,	as	many
CPUs	as	there	are.	As	the	integration	gets	more	advanced	today,	desktop	computers	have	CPUs	that
contain	multiple	cores	that	function	almost	like	separate	CPUs.	On	my	machine,	I	have	four	cores,	each
capable	of	executing	two	threads	simultaneously;	so,	my	Mac	is	almost	like	an	8	CPU	machine.

Processes	have	separate	memories.	They	are	allowed	to	use	one	part	of	the	memory	and	if	a	process	tries
to	use	another	part	that	does	not	belong	to	it,	the	processor	will	stop	doing	so.	The	OS	will	kill	the
process.

Just	imagine	how	frustrated	the	developers	of	the	original	UNIX	could	have	been	that
they	named	the	program	to	stop	a	process	to	kill,	and	stopping	a	process	is	called	killing
it.	It	is	like	medieval	ages	when	they	cut	off	the	hand	of	a	felon.	You	touch	the	wrong	part
of	the	memory	and	get	killed.	I	would	not	like	to	be	a	process.

The	memory	handling	by	the	operating	system	is	very	complex	in	addition	to	separating	the	processes
from	each	other.	When	there	is	not	enough	memory,	the	OS	writes	part	of	the	memory	to	disk	freeing	up
the	memory	and	reloading	that	part	when	it	is	needed	again.	This	is	a	very	complex,	low-level
implemented	and	highly	optimized	algorithm	that	is	the	responsibility	of	the	OS.

Threads
When	I	said	that	the	OS	executes	the	processes	in	time	slots,	I	was	not	absolutely	precise.	Every	process
has	one	or	more	threads,	and	threads	are	executed.	A	thread	is	the	smallest	execution	managed	by	an
external	scheduler.	Older	operating	systems	did	not	have	the	notion	of	a	thread	and	were	executing
processes.	As	a	matter	of	fact,	the	first	thread	implementations	were	simply	duplications	of	processes	that
were	sharing	the	memory.

You	may	hear	the	terminology,	lightweight	process—it	means	a	thread.

The	important	thing	is	that	the	threads	do	not	have	their	own	memory.	They	use	the	memory	of	the	process.
In	other	words,	the	threads	that	run	in	the	same	process	have	undistinguished	access	to	the	same	memory
segment.	It	is	an	extremely	powerful	possibility	to	implement	parallel	algorithms	that	make	use	of	the
multiple	cores	in	the	machine,	but	at	the	same	time,	it	may	lead	to	bugs.

Imagine	that	two	threads	increment	the	same	long	variable.	The	increment	first	calculates	the	incremented
value	of	the	lower	32	bits	and	then	the	upper,	if	there	were	any	overflow	bits.	These	are	two	or	more
steps	that	may	be	interrupted	by	the	OS.	It	may	happen	that	one	thread	increments	the	lower	32	bits,

remembers	that	there	is	something	to	do	to	the	upper	32	bits,	starts	the	calculation,	but	has	no	time	to	store
the	result	before	it	gets	interrupted.	Then,	another	thread	increments	the	lower	32	bits,	the	upper	32	bits,
and	then	the	first	thread	just	saves	the	upper	32	bits	that	it	calculated.	The	result	gets	garbled.	On	an	older
32-bit	Java	implementation,	it	was	extremely	easy	to	demonstrate	this	effect.	On	a	64-bit	Java
implementation,	all	the	64	bits	are	loaded	into	registers	and	saved	back	to	the	memory	in	one	step	so	it	is
not	that	easy	to	demonstrate	multithread	issues,	but	it	does	not	mean	that	there	are	none.

When	a	thread	is	paused	and	another	thread	is	started,	the	operating	system	has	to	perform	a	context
switch.	It	means	that,	among	other	things,	the	CPU	registers	have	to	be	saved	and	then	set	to	the	value	that
they	should	have	for	the	other	thread.	A	context	switch	is	always	saving	the	state	of	the	thread	and	loading
the	previously	saved	state	of	the	thread	to	be	started.	This	is	on	a	CPU	register	level.	This	context	switch
is	time	consuming;	therefore,	the	more	context	switches	that	are	done,	the	more	CPU	resource	is	used	for
the	thread	administration	instead	of	letting	them	run.	On	the	other	hand,	if	there	are	not	enough	switches,
some	threads	may	not	get	enough	time	slots	to	execute,	and	the	program	hangs.

Fibers
Java	does	not	have	fibers,	but	as	there	are	some	libraries	that	support	fiber	handlings,	it	is	worth
mentioning.	A	fiber	is	a	finer	unit	than	a	thread.	A	program	code	executing	in	a	thread	may	decide	to	give
up	the	execution	and	tell	the	fiber	manager	to	just	execute	some	other	fiber.	What	is	the	point	and	why	is	it
better	than	using	another	thread?	The	reason	is	that	this	way,	fibers	can	avoid	part	of	the	context	switch.	A
context	switch	cannot	be	avoided	totally	because	a	different	part	of	the	code	that	starts	to	execute	it	may
use	the	CPU	registers	in	a	totally	different	way.	As	it	is	the	same	thread,	the	context	switching	is	not	the
task	of	the	OS,	but	the	application.

The	OS	does	not	know	if	the	value	of	a	register	is	used	or	not.	There	are	bits	in	the	registers,	and	no	one
can	tell	seeing	only	the	processor	state	whether	those	bits	are	relevant	for	the	current	code	execution	or
just	happen	to	be	there	in	that	way.	The	program	generated	by	a	compiler	does	know	which	registers	are
important	and	which	are	those	that	can	just	be	ignored.	This	information	changes	from	place	to	place	in
the	code,	but	when	there	is	a	need	for	a	switch,	the	fiber	passes	the	information	of	what	is	needed	to	be
switched	at	that	point	to	the	code	that	does	the	switching.

The	compiler	calculates	this	information,	but	Java	does	not	support	fibers	in	the	current	version.	The	tools
that	implement	fibers	in	Java	analyze	and	modify	the	byte	code	of	the	classes	to	do	this	after	the
compilation	phase.

Golang's	goroutines	are	fibers	and	that	is	why	you	can	easily	start	many	thousand
goroutines	in	Go,	but	you	better	limit	the	number	of	threads	in	Java	to	a	lower	number.
They	are	not	the	same	things.

As	the	terminology	lightweight	process	is	fading	out	and	used	by	less	and	less	fibers,	many	times	are
referred	to	as	lightweight	threads.

java.lang.Thread
As	everything	in	Java	(well,	almost)	is	object,	if	we	want	to	start	a	new	thread,	we	will	need	a	class	that
represents	the	thread.	This	class	is	java.lang.Thread	built	into	the	JDK.	When	you	start	a	Java	code,	the	JVM
automatically	creates	a	few	Thread	objects	and	uses	them	to	run	different	tasks	that	are	needed	by	it.	If	you
start	up	VisualVM,	you	can	select	the	Threads	tab	of	any	JVM	process	and	see	the	actual	threads	that	are
in	the	JVM.	For	example,	the	VisualVM	as	I	started	it	has	29	live	threads.	One	of	them	is	the	thread	named
main.	This	is	the	one	that	starts	to	execute	the	main	method	(surprise!).	The	main	thread	started	most	of	the
other	threads.	When	we	want	to	write	a	multithread	application,	we	will	have	to	create	new	Thread	objects
and	start	them.	The	simplest	way	to	do	that	is	new	Thread(),	and	then	calling	the	start	method	on	the	thread.	It
will	start	a	new	Thread	that	will	just	finish	immediately	as	we	did	not	give	it	anything	to	do.	The	Thread
class,	as	it	is	in	the	JDK,	does	not	do	our	business	logic.	The	following	are	the	two	ways	to	specify	the
business	logic:

Creating	a	class	that	implements	the	Runnable	interface
Creating	a	class	that	extends	the	Thread	class	and	overrides	the	run	method

The	following	block	of	code	is	a	very	simple	demonstration	program:

public	class	ThreadIntermingling	{	

					static	class	MyThread	extends	Thread	{	

									private	final	String	name;	

									MyThread(String	name){	

													this.name	=	name;	

									}	

									@Override	

									public	void	run(){	

													for(int	i	=	1	;	i	<	1000	;	i	++){	

																	System.out.print(name	+	"	"	+	i+	",	");	

													}	

									}	

					}	

					public	static	void	main(String[]	args){	

									Thread	t1	=	new	MyThread("t1");	

									Thread	t2	=	new	MyThread("t2");	

									t1.start();	

									t2.start();	

									System.out.print("started	");	

		

					}	

	}

The	preceding	code	creates	two	threads	and	starts	them	one	after	the	other.	When	the	start	method	is
called,	it	schedules	the	thread	object	to	be	executed	and	then	returns.	As	a	result,	the	new	thread	will	soon
start	executing	asynchronously	while	the	calling	thread	continues	its	execution.	The	two	threads,	and	the
main	thread,	run	parallel	in	the	following	example	and	create	an	output	that	looks	something	like	this:

started	t2	1,	t2	2,	t2	3,	t2	4,	t2	5,	t2	6,	t2	7,	t2	8,	t1	1,	t2	9,	t2	10,	t2	11,	t2	12,...

The	actual	output	changes	from	run	to	run.	There	is	no	definite	order	of	the	execution	or	how	the	threads
get	access	to	the	single	screen	output.	There	is	not	even	guarantee	that	in	each	and	every	execution,	the
message	started	is	printed	before	any	of	the	thread	messages.

To	get	a	better	understanding	of	this,	we	will	have	to	look	at	the	state	diagram	of	threads.	A	Java	Thread

can	be	in	one	of	the	following	states:

NEW

RUNNABLE

BLOCKED

WAITING

TIMED_WAITING

TERMINATED

These	states	are	defined	in	the	enumThread.State.	When	you	create	a	new	thread	object,	it	is	in	the	NEW	state.
At	this	moment,	the	thread	is	nothing	special,	it	is	just	an	object	but	the	operating	system	execution-
scheduling	does	not	know	about	it.	In	some	sense,	it	is	only	a	piece	of	memory	allocated	by	the	JVM.

When	the	start	method	is	invoked,	the	information	about	the	thread	is	passed	to	the	operating	system	and
the	OS	schedules	the	thread	so	it	can	be	executed	by	it	when	there	is	an	appropriate	time	slot.	Doing	this
is	a	resourceful	action	and	that	is	the	reason	why	we	do	not	create	and,	especially,	do	not	start	new
Thread	objects	only	when	it	is	needed.	Instead	of	creating	new	Threads,	we	will	keep	the	existing	threads
for	a	while,	even	if	they	are	not	needed	at	the	moment,	and	reuse	an	existing	one	if	there	is	one	suitable.

A	thread	in	the	OS	can	also	be	in	a	running	state	as	well	as	runnable	when	the	OS	schedules	and	executes
it	at	the	moment.	Java	JDK	API	does	not	distinguish	between	the	two	for	good	reason.	It	would	be
useless.	When	a	thread	is	in	the	RUNNABLE	state	asking	if	it	is	actually	running	from	the	thread	itself,	it	will
result	in	an	obvious	answer:	if	the	code	just	returned	from	the	getState	method	implemented	in	the	Thread
class,	then	it	runs.	If	it	were	not	running,	it	would	not	have	returned	from	the	call	in	the	first	place.	If	the
getState	method	was	called	from	another	thread,	then	the	result	about	the	other	thread	by	the	time	the
method	returns	would	be	meaningless.	The	OS	may	have	stopped,	or	started,	the	queried	thread	several
times	until	then.

A	thread	is	in	a	BLOCKED	state	when	the	code	executing	in	the	thread	tries	to	access	some	resource	that	is	not
currently	available.	To	avoid	constant	polling	of	resources,	the	operating	system	provides	effective
notification	mechanism	so	the	threads	get	back	to	the	RUNNABLE	state	when	the	resource	they	need	becomes
available.

A	thread	is	in	the	WAIT	or	TIMED_WAITING	state	when	it	waits	for	some	other	thread	or	lock.	TIMED_WAITING	is	the
state	when	the	waiting	started	calling	a	version	of	a	method	that	has	timeout.

Finally,	the	TERMINATED	state	is	reached	when	the	thread	finishes	its	execution.	If	you	append	the	following
lines	to	the	end	of	our	previous	example,	then	you	will	get	a	TERMINATED	printout	and	also	an	exception
thrown	up	to	the	screen	complaining	about	illegal	thread	state,	which	is	because	you	cannot	start	an
already	terminated	thread:

System.out.println();	

System.out.println(t1.getState());	

System.out.println();	

t1.start();

Instead	of	extending	the	Thread	class	to	define	what	to	execute	asynchronously,	we	can	create	a	class	that
implements	Runnable.	Doing	that	is	more	in	line	with	the	OO	programming	approach.	The	something	that	we

implement	in	the	class	is	not	a	functionality	of	a	thread.	It	is	more	of	a	something	that	can	be	executed.	It	is
something	that	can	just	run.

If	this	execution	is	asynchronous	in	a	different	thread,	or	it	is	executed	in	the	same	thread	that	was	calling
the	run	method,	is	a	different	concern	that	has	to	be	separated.	If	we	do	it	that	way,	we	can	pass	the	class
to	a	Thread	object	as	a	constructor	argument.	Calling	start	on	the	Thread	object	will	start	the	run	method	of
the	object	we	passed.	This	is	not	the	gain.	The	gain	is	that	we	can	also	pass	the	Runnable	object	to	an
Executor	(dreadful	name,	huhh!).	Executor	is	an	interface,	and	implementations	execute	Runnable	(and	also
Callable,	see	later)	objects	in	Threads	in	an	efficient	way.	Executors	usually	have	a	pool	of	Thread	objects	that
are	prepared,	and	in	the	BLOCKED	state.	When	the	Executor	has	a	new	task	to	execute,	it	gives	it	to	one	of	the
Thread	objects	and	releases	the	lock	that	is	blocking	the	thread.	The	Thread	gets	into	the	RUNNABLE	state,
executes	the	Runnable,	and	gets	blocked	again.	It	does	not	terminate	and	thus	can	be	reused	to	execute
another	Runnable	later.	That	way,	Executors	avoid	the	resource	consuming	process	of	thread	registration	into
the	operating	system.

Professional	application	code	never	creates	a	new	Thread.	Application	code	uses	some
framework	to	handle	the	parallel	execution	of	the	code	or	uses	Executors	provided	by	some
ExecutorService	to	start	Runnable	or	Callable	objects.

	

Pitfalls
	

We	have	already	discussed	many	of	the	problems	that	we	may	face	when	developing	parallel	program.	In
this	section,	we	will	summarize	them	with	the	usual	terminology	used	for	the	problems.	Terminology	is
not	only	interesting,	but	it	is	also	important	when	you	talk	with	colleagues	to	easily	understand	each	other.

	

	

Deadlocks
Deadlock	is	the	most	infamous	parallel	programming	pitfall,	and	for	this	reason,	we	will	start	with	this
one.	To	describe	the	situation,	we	will	follow	the	metaphor	of	bureaucrats.

The	bureaucrat	has	to	stamp	a	paper	he	has	in	his	hand.	To	do	that,	he	needs	the	stamp,	and	he	also	needs
the	inkpad.	First,	he	goes	to	the	drawer	where	the	stamp	is	and	takes	it.	Then,	he	walks	to	the	drawer
where	the	inkpad	is	and	takes	the	inkpad.	He	inks	the	stamp,	pushes	on	the	paper.	Then,	he	puts	the	stamp
back	to	its	place	and	then	the	inkpad	back	in	its	place.	Everything	is	nice,	we	are	on	cloud	9.

What	happens	if	another	bureaucrat	takes	the	inkpad	first	and	then	the	stamp	second?	They	may	soon	end
up	as	one	bureaucrat	with	the	stamp	in	hand	waiting	for	the	inkpad	and	another	one	with	the	inkpad	in
hand	waiting	for	the	stamps.	And,	they	may	just	stay	there,	frozen	forever,	and	then	more	and	more	start	to
wait	for	these	locks,	the	papers	never	get	stamped,	and	the	whole	system	sinks	into	anarchy.

To	avoid	such	situations,	the	locks	have	to	be	ordered	and	the	locks	should	always	be	acquired	in	the
order.	In	the	preceding	example,	the	simple	agreement	that	the	inkpad	is	acquired	first	and	the	stamp
second	solves	the	problem.	Whoever	acquired	the	stamp	can	be	sure	that	the	inkpad	is	free	or	will	soon
be	free.

Race	conditions
We	talk	about	race	conditions	when	the	result	of	a	calculation	may	be	different	based	on	the	speed	and
CPU	access	of	the	different	parallel	running	threads.	Let's	take	a	look	at	the	following	two	code	lines:

void	method1(){	

1							a	=	b;	

2							b	=	a+1;	

								}	

				void	method2(){	

3							c	=	b;	

4							b	=	c+2;	

								}

If	the	value	of	b	at	the	start	of	the	execution	is	0,	and	two	different	threads	execute	the	two	methods,	then
the	order	of	the	lines	can	be	1234,	1324,	1342,	3412,	3142,	or	3142.	Any	execution	order	of	the	four	lines
may	happen	which	assures	that	1	runs	before	2	and	3	runs	before	4,	but	no	other	restrictions.	The	outcome,
the	value	of	b,	is	either	1	or	2	at	the	end	of	the	execution	of	the	segments,	which	may	not	be	good	and	what
we	wanted	when	coding.

Note	that	the	implementation	of	the	parallel	Mastermind	game	also	has	something	like	this.	The	actual
guesses	very	much	depend	on	the	speed	of	the	different	threads,	but	this	is	irrelevant	from	the	final	result
point	of	view.	We	may	have	different	guesses	in	different	runs	and	that	way	the	algorithm	is	not
deterministic,	but	we	are	guaranteed	to	find	the	final	solution.

	

Overused	locks
	

In	many	situations,	it	may	happen	that	the	threads	are	waiting	on	a	lock,	which	protects	a	resource	from
concurrent	access.	If	the	resource	cannot	be	used	by	multiple	threads	simultaneously,	and	there	are	more
threads	than	can	be	served,	then	the	threads	are	starving.	However,	in	many	cases,	the	resource	can	be
organized	in	a	way	so	that	the	threads	can	get	access	to	some	of	the	services	that	the	resource	provides,
and	the	locking	structure	can	be	less	restrictive.	In	that	case,	the	lock	is	overused	and	the	situation	can	be
mended	without	allocating	more	resource	for	the	threads.	It	may	be	possible	to	use	several	locks	that
control	the	access	to	the	different	functionality	of	the	resource.

	

	

	

Starving
	

Starving	is	the	situation	when	several	threads	are	waiting	for	a	resource	trying	to	acquire	a	lock	and	some
threads	get	access	to	the	lock	only	after	extremely	long	time	or	never.	When	the	lock	is	released	and	there
are	threads	waiting	for	it,	then	one	of	the	threads	can	get	the	lock.	There	is	usually	no	guarantee	that	a
thread	gets	the	lock	if	it	waits	long	enough.	Such	a	mechanism	would	require	intensive	administration	of
the	threads,	sorting	them	in	the	waiting	queue.	As	locking	should	be	a	low	latency	and	high	performance
action,	even	a	few	CPU	clock	cycles	are	significant;	therefore,	the	locks	do	not	provide	this	type	of	fair
access	by	default.	Not	wasting	time	with	fairness	in	thread	scheduling	is	a	good	approach,	in	case	the
locks	have	one	thread	waiting.	The	main	goal	of	locks	is	not	scheduling	the	waiting	threads,	but	rather
preventing	parallel	access	to	resources.

It	is	like	in	a	shop.	If	there	is	somebody	at	the	cashier,	you	wait.	It	is	a	lock	built	in	implicitly.	It	is	not	a
problem	if	people	do	not	queue	up	for	the	cashier,	so	long	as	long	there	is	almost	always	one	free.
However,	when	there	are	several	queues	built	up	in	front	of	the	cashiers,	then	having	no	queue	and
waiting	order	will	certainly	lead	to	some	very	long	waiting	order	for	someone	who	is	slow	to	get	access
to	the	cashier.	Generally,	the	solution	of	fairness	and	creating	queue	of	waiting	threads	(customers)	is	not
a	good	solution.	The	good	solution	is	to	eliminate	the	situation	that	leads	to	waiting	queues.	You	can
employ	more	cashiers,	or	you	can	do	something	totally	different	that	makes	the	peak	load	smaller.	In	a
shop,	you	can	give	discount	to	drive	customers	who	come	in	at	off-peak	hours.	In	programming,	several
techniques	can	be	applied,	usually,	depending	on	the	actual	business	we	code	and	fair	scheduling	of	locks
is	usually	a	workaround.

	

	

ExecutorService
ExecutorService	is	an	interface	in	the	JDK.	An	implementation	of	the	interface	can	execute	a	Runnable	or
Callable	class	in	an	asynchronous	way.	The	interface	only	defines	the	API	for	the	implementation	and	does
not	require	that	the	invocation	is	asynchronous	but,	in	reality,	that	is	the	main	point	implementing	such	a
service.	Invoking	the	run	method	of	a	Runnable	interface	in	a	synchronous	way	is	simply	calling	a	method.
We	do	not	need	a	special	class	for	that.

The	Runnable	interface	defines	one	run	method.	It	has	no	arguments	returns	no	value	and	does	not	throw	any
exception.	The	Callable	interface	is	parameterized	and	the	only	method	it	defines,	call,	has	no	argument	but
returns	a	generic	value	and	may	also	throw	Exception.	In	our	code,	we	will	implement	Runnable	if	we	just
want	to	run	something,	and	Callable	when	we	want	to	return	something.	Both	of	these	interfaces	are
functional	interfaces,	therefore,	they	are	good	candidates	to	be	implemented	using	lambda.

To	have	an	instance	of	an	implementation	of	an	ExecutorService,	we	can	use	the	utility	class	Executors.	Many
times	when	there	is	an	XYZ	interface	in	the	JDK,	there	can	be	an	XYZs	(plural)	utility	class	that	provides
factory	for	the	implementations	of	the	interface.	If	we	want	to	start	the	t1	task	many	times,	we	can	do	so
without	creating	a	new	Thread.	We	should	use	the	following	executor	service:

public	class	ThreadIntermingling	{	

						static	class	MyThread	implements	Runnable	{	

										private	final	String	name;	

			

										MyThread(String	name)	{	

														this.name	=	name;	

										}	

			

										@Override	

										public	void	run()	{	

														for	(int	i	=	1;	i	<	1000;	i++)	{	

																		System.out.print(name	+	"	"	+	i	+	",	");	

														}	

										}	

						}	

						public	static	void	main(String[]	args)	

																throws	InterruptedException,	ExecutionException	{	

										ExecutorService	es	=	Executors.newFixedThreadPool(2);	

										Runnable	t1	=	new	MyThread("t1");	

										Runnable	t2	=	new	MyThread("t2");	

										Future<?>	f1	=	es.submit(t1);	

										Future<?>	f2	=	es.submit(t2);	

										System.out.print("started	");	

										f1.get();	

										f2.get();	

										System.out.println();	

										f1	=	es.submit(t1);	

										es.shutdown();	

						}	

		}

This	time,	we	do	not	get	any	exception.	Instead,	the	t1	task	runs	second	time.	In	this	example,	we	are	using
a	fixed	size	thread	pool	that	has	two	Threads.	As	we	want	to	start	only	two	threads	simultaneously,	it	is
enough.	There	are	implementations	that	grow	and	shrink	the	size	of	the	pool	dynamically.	Fixed	size	pool
should	be	used	when	we	want	to	limit	the	number	of	the	threads	or	we	know	from	some	other	information
source	the	number	of	the	a-priory	threads.	In	this	case,	it	is	a	good	experiment	to	change	the	size	of	the
pool	to	one	and	see	that	the	second	task	will	not	start	in	this	case	until	the	first	one	finishes.	The	service
will	not	have	another	thread	for	t2	and	will	have	to	wait	until	the	one	and	only	Thread	in	the	pool	is	freed.

When	we	submit	the	task	to	the	service,	it	returns	even	if	the	task	cannot	currently	be	executed.	The	tasks
are	put	in	a	queue	and	will	start	execution	as	soon	as	there	is	enough	resource	to	start	them.	The	submit
method	returns	a	Future	object,	as	we	can	see	in	the	preceding	sample.

It	is	like	a	service	ticket.	You	bring	your	car	to	the	repair	mechanic,	and	you	get	a	ticket.	You	are	not
required	to	stay	there	until	the	car	is	fixed,	but	at	any	time,	you	can	ask	if	the	car	is	ready.	All	you	need	is
the	ticket.	You	can	also	decide	to	wait	until	the	car	is	ready.	A	Future	object	is	also	something	like	that.
You	do	not	get	the	value	that	you	need.	It	will	be	calculated	asynchronously.	However,	there	is	a	Future
promise	that	it	will	be	there	and	your	ticket	to	access	the	object	you	need	is	the	Future	object.

When	you	have	a	Future	object,	you	can	call	the	isDone	method	to	see	if	it	is	ready.	You	can	start	waiting	for
it	to	call	get	with,	or	without,	some	timeout.	You	can	also	cancel	the	task	executing	it,	but	in	that	case,	the
outcome	may	be	questionable.	Just	like,	in	case	of	your	car,	if	you	decide	to	cancel	the	task,	you	may	get
back	your	car	with	the	motor	disassembled.	Similarly,	cancelling	a	task	that	is	not	prepared	for	it	may
lead	to	resource	loss,	opened	and	inaccessible	database	connection	(this	is	a	painful	memory	for	me,	even
after	10	years),	or	just	a	garbled	unusable	object.	Prepare	your	tasks	to	be	cancelled	or	do	not	cancel
them.

In	the	preceding	example,	there	is	no	return	value	for	Future	because	we	submitted	a	Runnable	object	and	not
a	Callable	one.	In	that	case	the	value	passed	to	the	Future	is	not	to	be	used.	It	is	usually	null,	but	that	is
nothing	to	lean	on.

The	final	and	most	important	thing	that	many	developers	miss,	even	me,	after	not	writing	multithread	Java
API	using	code	for	years,	is	shutting	down	the	ExecutorService.	The	ExecutorService	is	created	and	it	has	Thread
elements.	The	JVM	stops	when	all	non-daemon	threads	are	stopped.	It	ain't	over	till	the	fat	lady	sings.

A	thread	is	a	daemon	thread	if	it	was	set	to	be	daemon	(invoking	setDaemon(true))	before	it
was	started.	A	thread	is	automatically	daemon	of	the	starting	thread	is	a	daemon	thread.
Daemon	threads	are	stopped	by	the	JVM	when	all	other	threads	are	finished	and	the	JVM
wants	to	finish.	Some	of	the	threads	the	JVM	executes	itself	are	daemon	threads,	but	it	is
likely	that	there	is	no	practical	use	of	creating	daemon	threads	in	an	application
program.

Not	shutting	down	the	service	simply	prevents	the	JVM	from	stopping.	The	code	will	hang	after	the	main
method	finishes.	To	tell	the	ExecutorService	that	there	is	no	need	for	the	threads	it	has,	we	will	have	to
shutdown	the	service.	The	call	will	only	start	the	shutdown	and	return	immediately.	In	this	case,	we	do	not
want	to	wait.	The	JVM	does	anyway.	If	we	need	to	wait,	we	will	have	to	call	awaitTermination.

ForkJoinPool
The	ForkJoinPool	is	a	special	ExecutorService	that	has	methods	to	execute	ForkJoinTask	objects.	These	classes
are	very	handy	when	the	task	that	we	want	to	perform	can	be	split	into	many	small	tasks	and	then	the
results,	when	they	are	available,	aggregated.	Using	this	executor,	we	need	not	care	about	the	size	of	the
thread	pool	and	shutting	down	the	executor.	The	size	of	the	thread	pool	is	adjusted	to	the	number	of
processors	on	the	given	machine	to	have	optimal	performance.	As	the	ForkJoinPool	is	a	special
ExecutorService	that	is	designed	for	short	running	tasks,	it	does	not	expect	any	task	to	be	there	longer	or
being	needed	when	there	are	no	more	tasks	to	run.	Therefore,	it	is	executed	as	a	daemon	thread;	when	the
JVM	shuts	down,	the	ForkJoinPool	automatically	stops	and	the	lady	does	not	sing	any	more.

To	create	a	task,	the	programmer	should	extend	either	RecursiveTask	or	RecursiveAction.	The	first	one	is	to	be
used	when	there	is	some	return	value	from	the	task,	the	second	when	there	is	no	computed	value	returned.
They	are	called	recursive	because	many	times,	these	tasks	split	the	problem	they	have	to	solve	smaller
problems	and	invoke	these	tasks	asynchronously	through	the	fork-join	API.

A	typical	problem	to	be	solved	using	this	API	is	the	quick-sort.	In	the	Chapter	3,	Optimizing	the	Sort	-
Making	Code	Professional	we	created	two	versions	of	the	quick-sort	algorithm.	One	using	recursive
calls	and	one	without	using	it.	We	can	also	create	a	new	one,	which,	instead	of	calling	itself	recursively,
schedule	the	task	to	be	executed,	perhaps	by	another	processor.	The	scheduling	is	the	task	of	the
ForkJoinPool	implementation	of	ExecutorService.

You	may	revisit	the	code	of	Qsort.java	in	Chapter	3,	Optimizing	the	Sort	-	Making	Code	Professional.	Here
is	the	version	that	is	using	ForkJoinPool:

public	class	FJQuickSort<E>	{	

					final	private	Comparator<E>	comparator;	

					final	private	Swapper	swapper;	

		

					public	FJQuickSort(Comparator<E>	comparator,	Swapper	swapper){	

									this.comparator	=	comparator;	

									this.swapper	=	swapper;	

					}	

		

					public	void	qsort(SortableCollection<E>	sortable,	

																							int	start,	int	end)	{	

									ForkJoinPool	pool	=	new	ForkJoinPool();	

									pool.invoke(new	RASort(sortable,start,end));	

					}	

		

					private	class	RASort	extends	RecursiveAction	{	

		

									final	SortableCollection<E>	sortable;	

									final	int	start,	end;	

		

									public	RASort(SortableCollection<E>	sortable,	

																							int	start,	int	end)	{	

													this.sortable	=	sortable;	

													this.start	=	start;	

													this.end	=	end;	

									}	

		

									public	void	compute()	{	

													if	(start	<	end)	{	

																	final	E	pivot	=	sortable.get(start);	

																	final	Partitioner<E>	partitioner	=		

																										new	Partitioner<>(comparator,	swapper);	

																	int	cutIndex	=	partitioner.partition(

																																				sortable,	start,	end,	pivot);	

																	if	(cutIndex	==	start)	{	

																					cutIndex++;	

																	}	

																	RecursiveAction	left	=		

																				new	RASort(sortable,	start,	cutIndex	-	1);	

																	RecursiveAction	right	=		

																				new	RASort(sortable,	cutIndex,	end);	

																	invokeAll(left,right);	

																	left.join();	

																	right.join();	

													}	

									}	

					}

Whenever	you	can	split	your	tasks	into	subtasks	similar	to	the	way	it	was	done	in	the	preceding	quick-sort
example,	I	recommend	that	you	use	ForkJoinPool	as	an	ExecutorService.	You	can	find	good	documentation	on
the	API	and	the	use	on	the	JavaDoc	documentation	of	Oracle.

Variable	access
Now	that	we	can	start	threads	and	create	code	that	runs	parallel,	it	is	time	to	talk	a	little	bit	about	how
these	threads	can	exchange	data	between	each	other.	At	first	glimpse,	it	seems	fairly	simple.	The	threads
use	the	same	shared	memory;	therefore,	they	all	can	read	and	write	all	the	variables	that	the	Java	access
protection	allows	them.	This	is	true,	except	that	some	threads	may	just	decide	not	to	read	the	memory.
After	all,	if	they	have	just	recently	read	the	value	of	some	variable,	why	read	it	again	from	the	memory	to
the	registers	if	it	was	not	modified?	Who	would	have	modified	them?	Let's	see	the	following	short
example:

package	packt.java9.by.example.thread;	

		

	public	class	VolatileDemonstration	implements	Runnable	{	

					private	Object	o	=	null;	

					private	static	final	Object	NON_NULL	=	new	Object();	

					@Override	

					public	void	run()	{	

									while(o	==	null);	

									System.out.println("o	is	not	null");	

					}	

					public	static	void	main(String[]	args)	

																												throws	InterruptedException	{	

									VolatileDemonstration	me	=	new	VolatileDemonstration();	

									new	Thread(me).start();	

									Thread.sleep(1000);	

									me.o	=	NON_NULL;	

					}	

	}

What	will	happen?	You	may	expect	that	the	code	starts	up,	starts	the	new	thread,	and	one	minute,	when	the
main	thread	sets	the	object	to	something	not	null,	will	it	stop?	It	will	not.

It	may	stop	on	some	Java	implementations,	but	in	most	of	them,	it	will	just	keep	spinning.	The	reason	for
that	is	that	the	JIT	compiler	optimizes	the	code.	It	sees	that	the	loop	does	nothing	and	also	that	the	variable
will	just	never	be	non-null.	It	is	allowed	to	assume	that	because	the	variables	not	declared	volatile	are	not
supposed	to	be	modified	by	any	other	thread,	the	JIT	is	eligible	to	optimize.	If	we	declare	the	Object	o
variable	to	be	volatile	(with	the	volatile	keyword),	then	the	code	will	stop.

In	case	you	try	to	remove	the	call	to	sleep,	the	code	will	also	stop.	This,	however,	does
not	fix	the	issue.	The	reason	is	that	JIT	optimization	kicks	in	only	after	about	5000	loops
of	the	code	execution.	Before	that,	the	code	runs	naive	and	stops	before	the	optimization
will	eliminate	the	extra	and	regularly	not	needed	access	to	the	non-volatile	variable.

If	this	is	so	gruesome,	then	why	don't	we	declare	all	variables	to	be	volatile?	Why	does	Java	not	do	that
for	us?	The	answer	is	speed,	and	to	understand	it	deeper,	we	will	use	our	metaphor,	the	office,	and	the
bureaucrat.

The	CPU	heartbeat
These	days	CPUs	run	on	2	to	4	GHz	frequency	processors.	It	means	that	a	processor	gets	2	to	4	times	109
clock	signals	to	do	something	every	second.	A	processor	cannot	do	any	atomic	operation	faster	than	this,
and	also	there	is	no	reason	to	create	a	clock	that	is	faster	than	what	a	processor	can	follow.	It	means	that	a
CPU	performs	a	simple	operation,	such	as	incrementing	a	register	in	half	or	quarter	of	a	nanosecond.	This
is	the	heartbeat	of	the	processor,	and	if	we	think	of	the	bureaucrat	as	humans,	who	they	are,	then	it	is
equivalent	to	one	second,	approximately,	if	and	as	their	heartbeat.

Processors	have	registers	and	caches	on	the	chip	on	different	levels,	L1,	L2,	and	sometimes	L3;	there	is
memory,	SSD,	disk,	network,	and	tapes	that	may	be	needed	to	retrieve	data.

Accessing	data	that	is	in	the	L1	cache	is	approximately	0.5ns.	You	can	grab	a	paper	that	is	on	your	desk—
half	of	a	second.	L2	cache	is	7ns.	This	is	a	paper	in	the	drawer.	You	have	to	push	the	chair	a	bit	back,
bend	it	in	a	sitting	position,	pull	out	the	drawer,	take	the	paper,	push	the	drawer	back,	and	raise	and	put
the	paper	on	the	desk;	it	takes	10	seconds,	give	or	take.

Main	memory	read	is	100ns.	The	bureaucrat	stands	up,	goes	to	the	shared	file	at	the	wall,	he	waits	while
other	bureaucrats	are	pulling	their	papers	or	putting	theirs	back,	selects	the	drawer,	pulls	it	out,	takes	the
paper,	and	walks	back	to	the	desk.	This	is	two	minutes.	This	is	volatile	variable	access	every	time	you
write	a	single	word	on	a	document	and	it	has	to	be	done	twice.	Once	to	read,	and	once	to	write,	even	if
you	happen	to	know	that	the	next	thing	you	will	do	is	just	fill	another	field	of	the	form	on	the	same	paper.

Modern	architectures,	where	there	are	no	multiple	CPUs	but	rather	single	CPUs	with	multiple	cores,	are	a
bit	faster.	One	core	may	check	the	other	core's	caches	to	see	if	there	was	any	modification	on	the	same
variable,	but	this	speeds	the	volatile	access	to	20ns	or	so,	which	is	still	a	magnitude	slower	than
nonvolatile.

Although	the	rest	is	less	focused	on	multithread	programming,	it	is	worth	mentioning	here,	because	it
gives	good	understanding	on	the	different	time	magnitudes.

Reading	a	block	from	an	SSD	(4K	block	usually)	is	150,000ns.	In	human	speed,	that	is	a	little	bit	more
than	5	days.	Reading	or	sending	something	to	a	server	over	the	network	on	the	Gb	local	Ethernet	is	0.5ms,
which	is	like	waiting	for	almost	a	month	for	the	metaphoric	bureaucrat.	If	the	data	over	the	network	is	on
a	spinning	magnetic	disk,	then	seek	time	adds	up	(the	time	until	the	disk	rotates	so	that	the	part	of	the
magnetic	surface	gets	under	the	reading	head)	to	20ms.	It	is,	approximately,	a	year	in	human	terms.

If	we	send	a	network	packet	over	the	Atlantic	on	the	Internet,	it	is	approximately	is	150ms.	It	is	like	14
years,	and	this	was	only	one	single	package;	if	we	want	to	send	data	over	the	ocean,	it	may	be	seconds
that	count	up	to	historic	times,	thousands	of	years.	If	we	count	one	minute	for	a	machine	to	boot,	it	is
equivalent	to	the	time	span	of	our	whole	civilization.

We	should	consider	these	numbers	when	we	want	to	understand	what	the	CPU	is	doing	most	of	the	time:	it
waits.	Additionally,	it	also	helps	cool	your	nerves	when	you	think	about	the	speed	of	a	real-life
bureaucrat.	They	are	not	that	slow	after	all,	if	we	consider	their	heartbeat,	which	implies	the	assumption

that	they	have	a	heart.	However,	let's	go	back	to	real	life,	CPUs,	and	L1,	L2	caches	and	volatile	variables.

Volatile	variables
Let's	modify	the	declaration	of	the	o	variable	in	our	sample	code	as	follows:

private	volatile	Object	o	=	null;

The	preceding	code	runs	fine	and	stops	after	a	second	or	so.	Any	Java	implementation	has	to	guarantee
that	multiple	threads	can	access	volatile	fields	and	the	value	of	the	field	is	consistently	updated.	This	does
not	mean	that	volatile	declaration	will	solve	all	synchronization	issues,	but	guarantees	that	the	different
variables	and	their	value	change	relations	are	consistent.	For	example,	let's	consider	we	have	the
following	two	fields	incremented	in	a	method:

private	volatile	int	i=0,j=0;	

		

	public	void	method(){	

					i++;	j++;	

	}

In	the	preceding	code,	reading	i	and	j	from	another	thread	will	never	result	an	i>j.	Without	the	volatile
declaration,	the	compiler	is	free	to	reorganize	the	execution	of	the	increment	operations	if	it	needs	and
thus,	it	will	not	guarantee	that	an	asynchronous	thread	reads	consistent	values.

Synchronized	block
Declaring	variables	are	not	the	only	tool	to	ensure	the	consistency	between	threads.	There	are	other	tools
in	the	Java	language	and	one	of	them	is	the	synchronized	block.	The	synchronized	keyword	is	part	of	the
language	and	it	can	be	used	in	front	of	a	method	or	a	program	block	inside	a	method.

Every	object	in	the	Java	program	has	a	monitor	that	can	be	locked	and	unlocked	by	any	running	thread.
When	a	thread	locks	a	monitor,	it	is	said	that	that	thread	holds	the	lock,	and	no	two	threads	can	hold	the
lock	of	a	monitor	at	a	time.	If	a	thread	tries	to	lock	a	monitor	that	is	already	locked,	it	gets	BLOCKED	until	the
monitor	is	released.	A	synchronized	block	starts	with	the	synchronized	keyword,	and	then	an	object	instance
specified	between	parentheses	and	the	block	comes.	The	following	small	program	demonstrates	the
synchronized	block:

public	class	SynchronizedDemo	implements	Runnable	{	

					public	static	final	int	N	=	1000;	

					public	static	final	int	MAX_TRY	=	1_000_000;	

		

					private	final	char	threadChar;	

					private	final	StringBuffer	sb;	

					public	SynchronizedDemo(char	threadChar,	StringBuffer	sb)	{	

									this.threadChar	=	threadChar;	

									this.sb	=	sb;	

					}	

					@Override	

					public	void	run()	{	

									for	(int	i	=	0;	i	<	N;	i++)	{	

													synchronized	(sb)	{	

																	sb.append(threadChar);	

																	sleep();	

																	sb.append(threadChar);	

													}	

									}	

					}	

					private	void	sleep()	{	

									try	{	

													Thread.sleep(1);	

									}	catch	(InterruptedException	ignored)	{}	

					}	

					public	static	void	main(String[]	args)	{	

									boolean	failed	=	false;	

									int	tries	=	0;	

									while	(!failed	&&	tries	<	MAX_TRY)	{	

													tries++;	

													StringBuffer	sb	=	new	StringBuffer(4	*	N);	

													new	Thread(new	SynchronizedDemo('a',	sb)).start();	

													new	Thread(new	SynchronizedDemo('b',	sb)).start();	

													failed	=	sb.indexOf("aba")	!=	-1	||	

																						sb.indexOf("bab")	!=	-1;	

									}	

									System.out.println(failed	?		

															"failed	after	"	+	tries	+	"	tries"	:	"not	failed");	

					}	

	}

The	code	starts	two	different	threads.	One	of	the	threads	appends	aa	to	the	StringBuffer.	The	other	one
appends	bb.	This	appending	is	done	in	two	separate	steps	with	a	sleep	in	between.	The	sleep	is	needed	to
avoid	JIT	that	optimizes	the	two	separate	steps	into	one.	Each	thread	executes	the	append	1000	times	each
time	appending	a	or	b	two	times.	As	the	two	appends	one	after	the	other	are	inside	a	synchronized	block	it
cannot	happen	that	an	aba	or	bab	sequence	gets	into	the	StringBuffer.	While	one	thread	executes	the
synchronized	block,	the	other	thread	cannot	execute	it.

If	I	remove	the	synchronized	block,	then	the	JVM	I	used	to	test	Java	HotSpot	(TM)	64-Bit	Server	VM
(build	9-ea+121,	mixed	mode)	prints	out	the	failure	with	a	try-count	around	a	few	hundreds.

It	clearly	demonstrates	what	the	synchronization	means,	but	it	draws	our	attention	to	another	important
phenomena.	The	error	occurs	only	around	every	few	hundred	thousand	executions	only.	It	is	extremely
rare,	even	though	this	example	was	furnished	to	demonstrate	such	a	mishap.	If	a	bug	appears	so	rare,	it	is
extremely	hard	to	reproduce	and,	even	more,	to	debug	and	fix.	Most	of	the	synchronization	errors	manifest
in	mysterious	ways	and	their	fixing	usually	is	the	result	of	meticulous	code	review	rather	than	debugging.
Therefore,	it	is	extremely	important	to	clearly	understand	the	true	nature	of	Java	multithread	behavior
before	starting	commercial	multithread	application.

The	synchronized	keyword	can	also	be	used	in	front	of	a	method.	In	this	case,	the	object	to	acquire	the	lock
of	is	the	object.	In	case	of	a	static	method,	the	synchronization	is	done	on	the	whole	class.

Wait	and	notify
There	are	five	methods	implemented	in	the	class	Object	that	can	be	used	to	get	further	synchronization
functionality:	wait	with	three	different	timeout	argument	signature,	notify,	and	notifyAll.	To	call	wait,	the
calling	thread	should	have	the	lock	of	the	Object	on	which	wait	is	invoked.	It	means	that	you	can	only
invoke	wait	from	inside	a	synchronized	block,	and	when	it	is	called,	the	thread	gets	BLOCKED	and	releases	the
lock.	When	another	thread	calls	notify	all	on	the	same	Object,	the	thread	gets	into	the	RUNNABLE	state.	It	cannot
continue	execution	immediately	as	it	cannot	get	the	lock	on	the	object.	The	lock	is	held	at	that	moment	by
the	thread	that	just	called	notifyAll.	However,	sometime	after	the	other	thread	releases,	the	lock	gets	out	of
the	synchronized	block,	and	the	waiting	thread	continues	the	execution.

If	there	are	more	threads	waiting	on	an	object,	all	of	them	get	out	of	the	BLOCKED	state.	The	notify	method
wakes	only	one	of	the	waiting	threads.	There	is	no	guarantee	which	thread	is	awakened.

The	typical	use	of	wait,	notify,	and	notifyAll	is	when	one	or	more	threads	are	creating	Objects	that	are
consumed	by	other	thread,	or	threads.	The	storage	where	the	objects	travel	between	the	threads	is	some
kind	of	queue.	The	consumer	waits	until	there	is	something	to	read	from	the	queue,	and	the	producer	puts
the	objects	into	the	queue	one	after	the	other.	The	producer	notifies	the	consumers	when	it	stores
something	into	the	queue.	If	there	is	no	room	left	in	the	queue,	the	producer	has	to	stop	and	wait	until	the
queue	has	some	space.	In	this	case,	the	producer	calls	the	wait	method.	To	wake	the	producer	up,	the
consumer	calls	notifyAll	when	it	reads	something.

The	consumer	consumes	the	objects	from	the	queue	in	a	loop	and	calls	wait	only	if	there	is	nothing	to	be
read	from	the	queue.	When	the	producer	calls	notifyAll,	and	there	is	no	consumer	waiting,	the	notification
is	just	ignored.	It	flies	away,	but	this	is	not	a	problem;	consumers	are	not	waiting.	When	the	consumer
consumes	an	object	and	calls	notifyAll	and	there	is	no	producer	waiting,	the	situation	is	the	same.	It	is	not
a	problem.

It	cannot	happen	that	the	consumer	consumes,	calls	notifyAll,	and	after	the	notification	was	flying	in	the	air
not	finding	any	waiting	producer,	a	producer	starts	to	wait.	This	cannot	happen	because	the	whole	code	is
in	a	synchronized	block	and	it	ensures	that	no	producer	is	in	the	critical	section.	This	is	the	reason	why	wait,
notify,	and	notifyAll	can	only	be	invoked	when	the	lock	of	the	Object	class	is	acquired.

If	there	are	many	consumers,	which	are	executing	the	same	code	and	are	equivalently	good	in	consuming
the	objects,	then	it	is	an	optimization	to	call	notify	instead	of	notifyAll.	In	that	case,	notifyAll	will	just
awake	all	consumer	threads	and	all,	but	the	lucky	one	will	recognize	that	they	were	woken	up	but
somebody	else	already	got	away	with	the	bait.

I	recommend	that	you	practice	at	least	once	to	implement	a	blocking	queue	that	can	be	used	to	pass	Objects
between	threads.	However,	never	use	that	code	in	production:	starting	with	Java	1.5,	there	are
implementations	of	the	BlockingQueue	interface.	Use	one	that	fits	your	needs.	We	will	too,	in	our	example
code.

Feel	lucky	that	you	can	code	in	Java	9.	I	started	using	Java	professionally	when	it	was
1.4	and	once	I	had	to	implement	a	blocking	queue.	Life	gets	just	better	and	easier	all	the

time	with	Java.

In	professional	code,	we	usually	avoid	using	synchronized	methods	or	blocks	and	volatile	fields	as	well	as
the	wait	and	notify	methods,	notifyAll	too,	if	possible.	We	can	use	asynchronous	communication	between
threads,	or	pass	the	whole	multithreading	to	the	framework	for	handling.	Synchronized	and	volatile	cannot	be
avoided	in	some	special	cases	when	the	performance	of	the	code	is	important,	or	we	cannot	find	a	better
construct.	Sometimes,	the	direct	synchronization	on	specific	code	and	data	structures	is	more	efficient
than	the	approach	delivered	by	JDK	classes.	It	is	to	note,	however,	that	those	classes	also	use	these	low-
level	synchronization	constructs,	so	it	is	not	magic	how	they	work;	and	to	develop	yourself,	you	can	look
into	the	code	of	the	JDK	classes	before	you	want	to	implement	your	own	version.	You	will	realize	that	it
is	not	that	simple	to	implement	these	queues;	the	code	of	the	classes	is	not	complex	and	compound	without
reason.	If	you	find	the	code	simple,	it	means	that	you	are	senior	enough	to	know	what	not	to	reimplement.
Or,	perhaps,	you	do	not	even	realize	what	code	you	read.

Lock
Locks	are	built	in	Java;	every	Object	has	a	lock	that	a	thread	may	acquire	when	it	enters	a	synchronized	block.
We	discussed	that	already.	In	some	programming	code,	there	are	situations	when	this	kind	of	structure	is
not	optimal.

In	some	situations,	the	structure	of	locks	may	be	lined	up	to	avoid	deadlock.	It	may	be	needed	to	acquire
lock	A	before	B	and	to	acquire	B	before	C.	However,	A	should	be	released	as	soon	as	possible,	not	to
prevent	access	to	resource	protected	by	lock	D,	but	also	needing	lock	A	before	it.	In	complex	and	highly
parallel	structures,	the	locks	are	structured	many	times	into	trees	where	accessing	a	resource	a	thread
should	climb	down	along	the	tree	to	a	leaf	representing	the	resource.	In	this	climbing,	the	thread	gets	hold
of	a	lock	on	a	node,	then	a	lock	on	a	node	below	it,	and	then	releases	the	lock	above,	just	like	a	real
climber	descending	(or	climbing	up	if	you	imagine	the	tree	with	the	leafs	at	the	top,	which	is	more
realistic,	nevertheless	graphs	usually	show	trees	upside	down).

You	cannot	leave	a	synchronized	block	remaining	in	another	that	is	inside	the	first	one.	Synchronized	blocks
are	nested.	The	java.util.concurrent.Lock	interface	defines	methods	to	handle	that	situation	and	the
implementations	are	also	there	in	the	JDK	to	be	used	in	our	code.	When	you	have	a	lock,	you	can	call	the
methods	lock	and	unlock.	The	actual	order	is	in	your	hand	and	you	can	write	the	following	line	of	code	to
get	the	locking	sequence:

a.lock();	b.lock();	a.unlock();	c.lock()

The	freedom,	however,	comes	with	responsibility	as	well.	The	locks	and	unlocks	are	not	tied	to	the
execution	sequence	of	the	code,	like	in	case	of	synchronized	block,	and	it	may	be	very	easy	to	create	code
that	in	some	case	just	loses	a	lock	not	unlocking	it	rendering	some	resource	unusable.	The	situation	is
similar	to	a	memory	leak:	you	will	allocate	(lock)	something	and	forget	to	release	(unlock)	it.	After	a
while,	the	program	will	run	out	of	resource.

My	personal	recommendation	is	to	avoid	using	locks	if	possible	and	use	higher-level	constructs	and
asynchronous	communications	between	threads,	such	as	blocking	queues.

	

Condition
	

The	java.util.concurrent.Condition	interface	in	functionality	is	similar	to	the	built-in	wait,	notify,	and	notifyAll.
Any	implementation	of	Lock	should	create	new	Condition	objects	and	return	as	a	result	to	the	invocation	of
the	newCondition	method.	When	the	thread	has	a	Condition,	it	can	call	await,	signal,	and	signalAll	when	the
thread	has	the	lock	that	created	the	condition	object.

The	functionality	is	very	similar	to	the	methods	of	Object	mentioned.	However,	the	big	difference	is	that
you	can	create	many	Condition	for	a	single	Lock	and	they	will	work	independent	of	each	other,	but	not
independent	of	the	Lock.

	

	

	

ReentrantLock
	

ReentrantLock	is	the	simplest	implementation	of	the	interface	lock	in	the	JDK.	There	are	two	ways	to	create
this	type	of	lock:	with	and	without	fairness	policy.	If	the	ReentrantLock(Boolean	fair)	constructor	is	called
with	the	true	argument,	then	the	lock	will	be	assigned	to	the	thread	that	is	waiting	for	the	lock	the	longest
time	in	case	there	are	many	threads	waiting.	This	will	avoid	a	thread	made	to	wait	for	infinite	time	and
starving.

	

	

ReentrantReadWriteLock
This	class	is	an	implementation	of	ReadWriteLock.	ReadWriteLock	is	a	lock	that	can	be	used	for	parallel	read
access	and	exclusive	write	access.	It	means	that	several	threads	can	read	the	resource	protected	by	the
lock,	but	when	a	thread	writes	the	resource,	no	other	thread	can	get	access	to	it,	not	even	read	during	that
period.	A	ReadWriteLock	is	simply	two	Lock	objects	returned	by	the	readLock	and	writeLock	methods.	To	get	read
access	on	ReadWriteLock,	the	code	has	to	invoke	myLock.readLock().lock(),	and	to	get	access	to	write	lock,
myLock.writeLock().lock().	Acquiring	one	of	the	locks	and	releasing	it	in	the	implementation	is	coupled	with
the	other	lock.	To	acquire	a	write	lock,	no	thread	should	have	an	active	read	lock,	for	example.

There	are	several	intricacies	in	the	use	of	the	different	lock.	For	example,	you	can	acquire	a	read	lock,	but
you	cannot	get	a	write	lock	so	long	as	you	have	the	read	lock.	You	have	to	release	the	read	lock	first	to
acquire	a	write	lock.	This	is	just	one	of	the	simple	details,	but	this	is	the	one	that	novice	programmers
have	trouble	with	many	times.	Why	is	it	implemented	this	way?	Why	should	the	program	get	a	write	lock,
which	is	more	expensive—in	sense	of	higher	probability	locking	other	threads—when	it	still	is	not	sure
that	it	wants	to	write	the	resource?	The	code	wants	to	read	it	and.	based	on	the	content.	it	may	later	decide
that	it	wants	to	write	it.

The	issue	is	not	with	the	implementation.	The	developers	of	the	library	decided	this	rule,	not	because	they
just	liked	it	that	way	or	because	they	were	aware	of	parallel	algorithms	and	deadlock	possibilities.	When
two	threads	have	read	lock	and	each	decides	to	upgrade	the	lock	to	write	lock,	then	they	would
intrinsically	create	a	deadlock.	Each	would	hold	the	read	lock	waiting	for	the	write	and	none	of	them
would	get	it	ever.

On	the	other	end,	you	can	downgrade	a	write	lock	to	a	read	lock	without	risking	that	in	the	meantime
somebody	acquires	a	write	lock	and	modifies	the	resource.

Atomic	classes
Atomic	classes	enclose	primitive	values	into	objects	and	provide	atomic	operations	on	them.	We
discussed	race	conditions	and	volatile	variables.	For	example,	if	we	have	an	int	variable	to	be	used	as	a
counter	and	we	want	to	assign	a	unique	value	to	objects	that	we	work	with,	we	can	increment	the	value
and	use	the	result	as	a	unique	ID.	However,	when	multiple	threads	use	the	same	code,	we	cannot	be	sure
about	the	value	we	read	after	the	increment.	It	may	happen	that	another	thread	also	incremented	the	value
in	the	meantime.	To	avoid	that,	we	will	have	to	enclose	the	increment	and	the	assignment	of	the
incremented	value	to	an	object	into	a	synchronized	block.	This	can	also	be	done	using	AtomicInteger.

If	we	have	a	variable	of	AtomicInteger,	then	calling	incrementAndGet	increments	the	value	of	int	enclosed	in	the
class	and	returns	the	incremented	value.	Why	do	it	instead	of	using	synchronized	block?	The	first	answer
is	that	if	the	functionality	is	there	in	the	JDK,	then	using	it	is	less	line	than	implementing	it	again.
Developers	maintaining	the	code	you	create	are	expected	to	know	the	JDK	libraries	but	have	to	study
your	code,	and	this	takes	time	and	time	is	money.

The	other	reason	is	that	these	classes	are	highly	optimized	and,	many	times,	they	implement	the	features
using	platform	specific	native	code	that	greatly	over	performs	the	version	we	can	implement	using
synchronized	blocks.	Worrying	about	performance	too	early	is	not	good,	but	parallel	algorithms	and
synchronization	between	threads	are	usually	used	when	performance	is	crucial;	thus,	there	is	a	good
chance	that	the	performance	of	the	code	using	the	atomic	classes	is	important.

In	the	java.util.concurrent.atomic	package,	there	are	several	classes,	AtomicInteger,	AtomicBoolean,	AtomicLong,	and
AtomicReference	among	them.	They	all	provide	methods	that	are	specific	to	the	encapsulated	value.

The	method,	which	is	implemented	by	every	atomic	class,	is	compareAndSet.	This	is	a	conditional	value-
setting	operation	that	has	the	following	format:

boolean	compareAndSet(expectedValue,	updateValue);

When	it	is	applied	on	an	atomic	class,	it	compares	the	actual	value	with	the	one	expectedValue,	and	if	they
are	the	same,	then	it	sets	the	value	to	updateValue.	If	the	value	was	updated,	the	method	returns	true	and	it
does	all	this	in	an	atomic	action.

You	may	ask	the	question	that	if	this	method	is	in	all	of	these	classes,	why	is	there	no
Interface	defining	this	method?	The	reason	for	this	is	that	the	argument	types	are	different
based	on	the	encapsulated	type,	and	these	types	are	primitives.	As	primitives	cannot	be
used	as	generic	types,	not	even	a	generic	interface	can	be	defined.	In	case	of
AtomicXXXArray,	the	method	has	an	extra	first	argument,	which	is	the	index	of	the	array
element	handled	in	the	call.

The	variables	encapsulated	are	handled	the	same	way	as	volatile,	as	far	as	the	reordering	is	concerned,
but	there	are	special	methods	that	loosen	the	conditions	a	bit	to	be	used	when	possible,	and	performance
is	key.

The	general	advice	is	to	consider	using	atomic	classes,	if	there	is	one	usable,	and	you	will	find	yourself

creating	a	synchronized	block	for	check-and-set,	atomic	increment,	or	addition	operations.

	

BlockingQueue
	

BlockingQueue	is	an	interface	that	extends	the	standard	Queue	interface	with	methods	that	are	suitable	to	be
used	by	multithread	applications.	Any	implementation	of	this	interface	provides	methods	that	allow
different	threads	to	put	element	into	the	queue,	pull	elements	off	the	queue,	and	wait	for	elements	that	are
in	the	queue.

When	there	is	a	new	element	that	is	to	be	stored	in	the	queue,	you	can	add	it,	offer	it,	or	put	it.	These	are	the
name	of	the	methods	that	store	elements	and	they	do	the	same	thing,	but	a	bit	differently.	The	add	element
throws	an	exception	if	the	queue	is	full	and	there	is	no	room	for	the	element.	The	offer	element	does	not
throw	exception	but	returns	either	true	or	false,	based	on	the	success.	If	it	can	store	the	element	in	the
queue,	it	returns	true.	There	is	also	a	version	of	offer	that	specifies	a	timeout.	That	version	of	the	method
waits,	and	returns	only	false	if	it	cannot	store	the	value	into	the	queue	during	the	period.	The	put	element	is
the	dumbest	version;	it	waits	until	it	can	do	its	job.

When	talking	about	available	room	in	a	queue,	do	not	get	puzzled	and	mix	it	with	general	Java	memory
management.	If	there	is	no	more	memory,	and	the	garbage	collector	can	also	not	release	any,	you	will
certainly	get	OutOfMemoryError.	Exception	is	thrown	by	add,	and	false	is	returned	by	offer,	when	the	queue
limits	are	reached.	Some	of	the	BlockingQueue	implementations	can	limit	the	number	of	elements	that	can	be
stored	at	a	time	in	a	queue.	If	that	limit	is	reached,	then	the	queue	is	full	and	cannot	accept	more	elements.

Fetching	elements	from	a	BlockingQueue	implementation	also	has	four	different	ways.	In	this	direction,	the
special	case	is	when	the	queue	is	empty.	In	that	case,	remove	throws	an	exception	instead	of	returning	the
element,	poll	returns	null	if	there	is	no	element,	and	take	just	waits	until	it	can	return	an	element.

Finally,	there	are	two	methods	inherited	from	the	interface	Queues	that	do	not	consume	the	element	from	the
queue	only	look	at.	The	element	return	the	head	of	the	queue	and	throws	an	exception	if	the	queue	is	empty,
and	peek	returns	null	if	there	is	no	element	in	the	queue.	The	following	table	summarizes	the	operations
borrowed	from	the	documentation	of	the	interface:

Throws	exception Special	value Blocks Times	out

Insert add(e) offer(e) put(e) offer(e,	time,	unit)

Remove remove() poll() take() poll(time,	unit)

Examine element() peek() not	applicable not	applicable

	

	

LinkedBlockingQueue
	

This	is	an	implementation	of	the	BlockingQueue	interface,	which	is	backed	up	by	a	linked	list.	The	size	of	the
queue	is	not	limited	by	default	(to	be	precise,	it	is	Integer.MAX_VALUE)	but	it	can	optionally	be	limited	in	a
constructor	argument.	The	reason	to	limit	the	size	in	this	implementation	is	to	aid	the	use	when	the	parallel
algorithm	performs	better	with	limited	size	queue,	but	the	implementation	does	not	have	any	restriction	on
the	size.

	

	

	

LinkedBlockingDeque
	

This	is	the	simplest	implementation	of	the	BlockingQueue	and	also	its	subinterface	BlockingDeque.	As	we
discussed	in	the	previous	chapter,	a	Deque	is	a	double-ended	queue	that	has	add,	remove,	offer,	and	so	on,	type
of	methods	in	the	form	of	xxxFirst	and	xxxLast	to	do	the	act	with	one	or	the	other	end	of	the	queue.	The	Deque
interface	defines	getFirst	and	getLast	instead	of	consistently	naming	elementFirst	and	elementLast,	so	this	is
something	you	should	get	used	to.	After	all,	the	IDEs	help	with	automatic	code	completion	so	this	should
not	be	a	really	big	problem.

	

	

	

ArrayBlockingQueue
	

ArrayBlockingQueue	implements	the	BlockingQueue	interface,	hence	the	Queue	interface.	This	implementation
manages	a	queue	with	fixed	size	elements.	The	storage	in	the	implementation	is	an	array	and	the	elements
are	handled	in	a	FIFO	manner:	first-in	first-out.	This	is	the	class	that	we	will	also	use	in	the	parallel
implementation	of	Mastermind	for	the	communication	between	the	boss	and	the	subordinated	bureaucrats.

	

	

	

LinkedTransferQueue
	

The	TransferQueue	interface	is	extending	BlockingQueue	and	the	only	implementation	of	it	in	the	JDK	is
LinkedTransferQueue.	A	TransferQueue	comes	handy	when	a	thread	wants	to	hand	over	some	data	to	another
thread	and	needs	to	be	sure	that	some	other	thread	takes	the	element.	This	TransferQueue	has	a	method
transfer	that	puts	an	element	on	the	queue	but	does	not	return	until	some	other	thread	removes	(or	polls)	it.
That	way	the	producing	thread	can	be	sure	that	the	object	put	on	the	queue	is	in	the	hands	of	another
processing	thread	and	does	not	wait	in	the	queue.	The	method	transfer	also	has	a	format	tryTransfer	in
which	you	can	specify	some	timeout	value.	If	the	method	times	out	the	element	is	not	put	into	the	queue.

	

	

IntervalGuesser
We	discussed	the	different	Java	language	elements	and	JDK	classes	that	are	all	available	to	implement
parallel	algorithms.	Now,	we	will	see	how	to	use	these	approaches	to	implement	the	parallel	guesser	for
the	Masterrmind	game.

The	class	that	performs	the	creation	of	the	guesses	is	named	IntervalGuesser.	It	creates	the	guesses	between
a	start	and	an	end	guess	and	sends	them	to	a	BlockingQueue.	The	class	implements	Runnable	so	it	can	run	in	a
separate	Thread.	The	purist	implementation	will	separate	the	Runnable	functionality	from	the	interval
guessing,	but	as	the	whole	class	is	hardly	more	than	50	lines,	it	is	forgivable	sin	implementing	the	two
functionalities	in	a	single	class.

public	class	IntervalGuesser	extends	UniqueGuesser	implements	Runnable	{	

					private	final	Guess	start;	

					private	final	Guess	end;	

					private	Guess	lastGuess;	

					private	final	BlockingQueue<Guess>	guessQueue;	

		

					public	IntervalGuesser(Table	table,	Guess	start,	Guess	end,	BlockingQueue<Guess>	guessQueue)	{	

									super(table);	

									this.start	=	start;	this.end	=	end;	

									this.lastGuess	=	start;	

									this.guessQueue	=	guessQueue;	

									nextGuess	=	start;	

					}	

					@Override	

					public	void	run()	{	

									Guess	guess	=	guess();	

									try	{	

													while	(guess	!=	Guess.none)	{	

																	guessQueue.put(guess);	

																	guess	=	guess();	

													}	

									}	catch	(InterruptedException	ignored)	{	

									}	

					}	

					@Override	

					protected	Guess	nextGuess()	{	

									Guess	guess;	

									guess	=	super.nextGuess();	

									if	(guess.equals(end))	{	

													guess	=	Guess.none;	

									}	

									lastGuess	=	guess;	

									return	guess;	

					}	

		

					public	String	toString()	{	

									return	"["	+	start	+	","	+	end	+	"]";	

					}	

	}

The	implementation	is	very	simple	as	most	of	the	functionality	is	already	implemented	in	the	abstract
Guesser	class.	The	more	interesting	code	is	the	one	that	invoked	the	IntervalGuesser.

ParallelGamePlayer
The	ParallelGamePlayer	class	implements	the	Player	interface	that	defines	the	play	method:

@Override	

	public	void	play()	{	

					Table	table	=	new	Table(NR_COLUMNS,	manager);	

					Secret	secret	=	new	RandomSecret(manager);	

					Guess	secretGuess	=	secret.createSecret(NR_COLUMNS);	

					Game	game	=	new	Game(table,	secretGuess);	

					final	IntervalGuesser[]	guessers	=	createGuessers(table);	

					startAsynchronousGuessers(guessers);	

					final	Guesser	finalCheckGuesser	=	new	UniqueGuesser(table);	

					try	{	

									while	(!game.isFinished())	{	

													final	Guess	guess	=	guessQueue.take();	

													if	(finalCheckGuesser.guessMatch(guess))	{	

																	game.addNewGuess(guess);	

													}	

									}	

					}	catch	(InterruptedException	ie)	{	

		

					}	finally	{	

									stopAsynchronousGuessers(guessers);	

					}	

	}

This	method	creates	a	Table,	a	RandomSecret	that	creates	the	guess	used	as	a	secret	in	a	random	way,	a	Game
object,	IntervalGuessers,	and	a	UniqueGuesser.	The	IntervalGuessers	are	the	bureaucrats;	the	UniqueGuesser	is	the
boss	who	crosschecks	the	guesses	that	the	IntervalGuessers	create.	The	method	starts	off	the	asynchronous
guessers	and	then	reads	the	guesses	in	a	loop	from	them	and	puts	them	on	the	table	if	they	are	OK	until	the
game	finishes.	At	the	end	of	the	method,	in	the	finally	block,	the	asynchronous	guessers	are	stopped.

The	start	and	the	stop	method	for	the	asynchronous	guessers	use	ExecutorService.

private	ExecutorService	executorService;	

		

	private	void	startAsynchronousGuessers(

																																			IntervalGuesser[]	guessers)	{	

					executorService	=	Executors.newFixedThreadPool(nrThreads);	

					for	(IntervalGuesser	guesser	:	guessers)	{	

									executorService.execute(guesser);	

					}	

	}	

		

private	void	stopAsynchronousGuessers(

																																			IntervalGuesser[]	guessers)	{	

					executorService.shutdown();	

					guessQueue.drainTo(new	LinkedList<>());	

	}

The	code	is	quite	straightforward.	The	only	thing	that	may	need	mention	is	that	the	queue	of	the	guesses	is
drained	into	a	collection	that	we	do	not	use	afterward.	This	is	needed	to	help	any	IntervalGuesser	that	is
waiting	with	a	suggested	guess	in	hand,	trying	to	put	it	into	the	queue.	When	we	drain	the	queue,	the
guesser	thread	returns	from	the	method	put	in	the	guessQueue.put(guess);	line	in	IntervalGuesser	and	can	catch
the	interrupt.	The	rest	of	the	code	does	not	contain	anything	that	would	be	radically	different	from	what
we	have	already	seen	and	you	can	find	it	on	GitHub.

The	last	question	that	we	still	want	to	discuss	in	this	chapter	is	how	much	speed	did	we	gain	making	the
code	parallel?

Microbenchmarking
Microbenchmarking	is	measuring	the	performance	of	a	small	code	fragment.	When	we	want	to	optimize
our	code,	we	will	have	to	measure	it.	Without	measurement,	code	optimization	is	like	shooting
blindfolded.	You	will	not	hit	the	target,	but	you	likely	will	shoot	somebody	else.

Shooting	is	a	good	metaphor	because	you	should	usually	not	do	it,	but	when	you	really	have	to	then	you
have	no	choice.	If	there	is	no	performance	issue	and	the	software	meets	the	requirements,	then	any
optimization,	including	speed	measurement,	is	a	waste	of	money.	This	does	not	mean	that	you	are
encouraged	to	write	slow	and	sloppy	code.	When	we	measure	performance,	we	will	compare	it	against	a
requirement,	and	the	requirement	is	usually	on	the	user	level.	Something	like,	the	response	time	of	the
application	should	be	less	than	2	seconds.	To	do	such	a	measurement,	we	usually	create	load	tests	in	a
test	environment	and	use	different	profiling	tools	that	tell	us	what	is	consuming	the	most	time	and	where
we	should	optimize.	Many	times,	it	is	not	only	Java	code,	but	configuration	optimization,	using	larger
database	connection	pool,	more	memory,	and	similar	things.

Microbenchmarking	is	a	different	story.	It	is	about	the	performance	of	a	small	Java	code	fragment	and,	as
such,	closer	to	the	Java	programming.

It	is	rarely	used,	and	before	starting	to	do	a	microbenchmark	for	real	commercial	environment,	we	will
have	to	think	twice.	Microbenchmark	is	a	luring	tool	to	optimize	something	small	without	knowing	if	it	is
worth	optimizing	that	code.	When	we	have	a	huge	application	that	has	several	modules	run	on	several
servers,	how	can	we	be	sure	that	improving	some	special	part	of	the	application	drastically	improves	the
performance?	Will	it	pay	back	in	increased	revenue	that	generates	so	much	profit	that	will	cover	the	cost
we	burned	into	the	performance	testing	and	development?	Statistically,	almost	sure	that	such	an
optimization	including	microbenchmarking	will	not	pay	off.

Once	I	was	maintaining	the	code	of	a	senior's	colleague.	He	created	a	highly	optimized
code	to	recognize	configuration	keywords	that	were	present	in	a	file.	He	created	a
program	structure	that	represented	a	decision	tree	based	on	the	characters	in	the	key
string.	If	there	was	a	keyword	in	the	configuration	file	that	was	misspelled,	the	code
threw	an	exception	at	the	very	first	character	where	it	could	decide	that	the	keyword
could	not	be	correct.
To	insert	a	new	keyword,	it	needed	to	get	through	the	code	structure	to	find	the	occasion
in	the	code	where	the	new	keyword	was	first	different	from	already	existing	ones	and
extend	the	deeply	nested	if/else	structures.	To	read	the	list	of	the	handled	keywords	was
possible	from	the	comments	that	listed	all	the	keywords	that	he	did	not	forget	to
document.	The	code	was	working	blazingly	fast,	probably	saving	a	few	milliseconds	of
the	servlet	application	startup	time.	The	application	was	started	up	only	after	system
maintenance	every	few	month.
You	feel	the	irony,	don't	you?	Seniority	is	not	always	the	number	of	years.	Lucky	ones	can
save	their	inner	child.

So	when	to	use	microbenchmarking?	I	can	see	two	areas:

You	identified	the	code	segment	that	eats	most	of	the	resources	in	your	application	and	the
improvement	can	be	tested	by	microbenchmarks
You	cannot	identify	the	code	segment	that	will	eat	most	of	the	resources	in	an	application	but	you
suspect	it

The	first	is	the	usual	case.	The	second	is	when	you	develop	a	library,	and	you	just	do	not	know	all	the
applications	that	will	use	it.	In	this	case,	you	will	try	to	optimize	the	part	that	you	think	is	the	most	crucial
for	most	of	the	imagined,	suspected	applications.	Even	in	that	case,	it	is	better	to	take	some	sample
applications	that	are	created	by	users	of	your	library	and	collect	some	statistics	about	the	use.

Why	should	we	talk	about	microbenchmarking	in	details?	What	are	the	pitfalls?	Benchmarking	is	an
experiment.	The	first	programs	I	wrote	was	a	TI	calculator	code	and	I	can	just	count	the	number	of	steps
the	program	made	to	factor	two	large	(10	digits	those	days)	prime	numbers.	Even	at	that	time,	I	was	using
an	old	Russian	stopwatch	to	measure	the	time,	being	lazy	to	calculate	the	number	of	steps.	Experiment	and
measurement	was	easier.

Today,	you	cannot	calculate	the	number	of	steps	the	CPU	makes	even	if	you	wanted.	There	are	so	many
small	factors	that	may	change	the	performance	of	the	applications	that	are	out	of	control	of	the
programmer,	which	makes	it	impossible	to	calculate	the	steps.	We	have	the	measurement	left	for	us,	and
we	will	gain	all	the	problems	of	measurements.

What	is	the	biggest	problem?	We	are	interested	in	something,	say	X,	and	we	usually	cannot	measure	that.
So,	we	will	measure	Y	instead	and	hope	that	the	values	of	Y	and	X	are	coupled	together.	We	want	to
measure	the	length	of	the	room,	but	instead	we	measure	the	time	it	takes	for	the	laser	beam	to	travel	from
one	end	to	the	other.	In	this	case,	the	length	X	and	the	time	Y	are	strongly	coupled.	Many	times,	X	and	Y
only	correlate	more	or	less.	Most	of	the	times,	when	people	do	measurement,	the	X	and	Y	values	have	no
relation	to	each	other	at	all.	Still,	people	put	their	money	and	more	on	decisions	backed	by	such
measurements.

Microbenchmarking	is	no	different.	The	first	question	is	how	to	measure	the	execution	time?	Small	code
runs	short	times	and	System.currentTimeMillis()	may	just	return	the	same	value	when	the	measurement	starts
and	when	it	ends,	because	we	are	still	in	the	same	millisecond.	Even	if	the	execution	is	10ms,	the	error	of
the	measurement	is	still	at	least	10%	purely	because	of	the	quantization	of	the	time	as	we	measure.
Luckily,	there	is	System.nanoTime().	But	is	there?	Just	because	the	name	says	it	returns	the	number	of
nanoseconds	from	a	specific	start	time,	it	does	not	necessarily	mean	it	really	can.

It	very	much	depends	on	the	hardware	and	the	implementation	of	the	method	in	the	JDK.	It	is	called	nano
because	this	is	the	precision	that	we	cannot	certainly	reach.	If	it	was	microseconds,	then	some
implementation	may	be	limited	by	the	definition,	even	if	on	the	specific	hardware,	there	is	a	more	precise
clock.	However,	this	is	not	only	the	precision	of	an	available	hardware	clock;	it	is	about	the	precision	of
the	hardware.

Let's	remember	the	heartbeat	of	the	bureaucrats,	and	the	time	needed	to	read	something	from	memory.
Calling	a	method,	such	as	System.nanoTime(),	is	like	asking	the	bellboy	in	a	hotel	to	run	down	from	the
second	floor	to	the	lobby	and	peek	out	to	look	at	the	clock	on	the	tower	on	the	other	side	of	the	road,	come
back,	and	tell	seconds	precision	what	the	time	was	it	when	we	asked.	Nonsense.	We	should	know	the

precision	of	the	clock	on	the	tower	and	the	speed	of	the	bellboy	running	from	the	floor	to	the	lobby	and
back.	This	is	a	bit	more	than	just	calling	nanoTime.	This	is	what	a	microbenchmarking	harness	does	for	us.

The	Java	Microbenchmarking	Harness	(JMH)	is	available	for	some	time	as	a	library.	It	is	developed
by	Oracle	and	used	to	tune	the	performance	of	some	core	JDK	classes,	and	with	Java	9,	these
performance	measurements	and	results	become	part	of	the	distributed	JDK.	This	is	good	news	for	those
who	develop	Java	platform	for	new	hardware,	but	also	for	developers,	because	it	means	that	the	JMH	is
and	will	be	supported	by	Oracle.

"JMH	is	a	Java	harness	to	build,	run,	and	analyze	nano/micro/milli/macro	benchmarks	written	in	Java
and	other	languages	targeting	the	JVM."	(quote	from	the	official	site	of	JMH,	http://openjdk.java.net/projects/cod
e-tools/jmh/).

You	can	run	jmh	as	a	separate	project	independent	from	the	actual	project	you	measure,	or	you	can	just
store	the	measurement	code	in	a	separate	directory.	The	harness	will	compile	against	the	production	class
files	and	will	execute	the	benchmark.	The	easiest	way,	as	I	see,	is	to	use	the	Gradle	plugin	to	execute
JMH.	You	can	store	the	benchmark	code	in	a	directory	called	jmh	(the	same	level	as	main	and	test)	and
create	a	main	that	can	start	the	benchmark.

The	Gradle	build	script	is	extended	with	the	following	lines:

buildscript	{	

					repositories	{	

									jcenter()	

					}	

					dependencies	{	

									classpath	"me.champeau.gradle:jmh-gradle-plugin:0.2.0"	

					}	

	}	

	apply	plugin:	"me.champeau.gradle.jmh"	

		

	jmh	{	

					jmhVersion	=	'1.13'	

					includeTests	=	true	

	}

And	the	microbenchmark	class	is	as	follows:

public	class	MicroBenchmark	{	

					public	static	void	main(String...	args)	

																														throws	IOException,	RunnerException	{	

									Options	opt	=	new	OptionsBuilder()	

																	.include(MicroBenchmark.class.getSimpleName())	

																	.forks(1)	

																	.build();	

									new	Runner(opt).run();	

					}	

		

					@State(Scope.Benchmark)	

					public	static	class	ThreadsAndQueueSizes	{	

									@Param(value	=	{"1",	"4",	"8"})	

									String	nrThreads;	

									@Param(value	=	{	"-1","1",	"10",	"100",	"1000000"})	

									String	queueSize;	

					}	

		

					@Benchmark	

					@Fork(1)	

					public	void	playParallel(ThreadsAndQueueSizes	t3qs)	throws	InterruptedException	{	

									int	nrThreads	=	Integer.valueOf(t3qs.nrThreads);	

									int	queueSize	=	Integer.valueOf(t3qs.queueSize);	

									new	ParallelGamePlayer(nrThreads,	queueSize).play();	

http://openjdk.java.net/projects/code-tools/jmh/

					}	

		

					@Benchmark	

					@Fork(1)	

					public	void	playSimple(){	

									new	SimpleGamePlayer().play();	

					}	

		

	}

ParallelGamePlayer	is	created	to	play	the	game	with	-1,	1,	4,	and	8	IntervalGuesser	threads,	and	in	each	case,
there	is	a	test	running	with	a	queue	of	length	1,	10,	100,	and	1	million.	These	are	16	test	executions.	When
the	number	of	threads	is	negative,	then	the	constructor	uses	LinkedBlockingDeque.	There	is	another	separate
measurement	that	measures	the	nonparallel	player.	The	test	was	executed	with	unique	guesses	and	secrets
(no	color	used	more	than	once)	and	ten	colors	and	six	columns.

When	the	harness	starts,	it	does	all	the	calibrations	automatically	and	runs	the	tests	for	many	iterations	to
let	the	JVM	start	up.	You	may	recall	the	code	that	just	never	stopped	unless	we	used	the	volatile	modifier
in	for	the	variable	that	was	used	to	signal	the	code	to	stop.	That	happened	because	the	JIT	compiler
optimized	the	code.	This	is	done	only	when	the	code	was	already	run	a	few	thousand	times.	The	harness
makes	these	executions	to	warm	up	the	code	and	ensure	that	the	measurement	is	done	when	JVM	is	at	full
speed.

Running	this	benchmark	takes	approximately	15	minutes	on	my	machine.	During	the	execution,	it	is
recommended	to	stop	all	other	processes	and	let	the	benchmark	use	all	available	resources.	If	there	is
anything	using	resources	during	the	measurement,	then	it	will	be	reflected	in	the	result.

Benchmark					(nrThreads)		(queueSize)	Score			Error	

playParallel												1											-1	15,636	±	1,905	

playParallel												1												1	15,316	±	1,237	

playParallel												1											10	15,425	±	1,673	

playParallel												1										100	16,580	±	1,133	

playParallel												1						1000000	15,035	±	1,148	

playParallel												4											-1	25,945	±	0,939	

playParallel												4												1	25,559	±	1,250	

playParallel												4											10	25,034	±	1,414	

playParallel												4										100	24,971	±	1,010	

playParallel												4						1000000	20,584	±	0,655	

playParallel												8											-1	24,713	±	0,687	

playParallel												8												1	24,265	±	1,022	

playParallel												8											10	24,475	±	1,137	

playParallel												8										100	24,514	±	0,836	

playParallel												8						1000000	16,595	±	0,739	

playSimple												N/A										N/A	18,613	±	2,040

The	actual	output	of	the	program	is	a	bit	more	verbose;	it	was	edited	for	printing	purposes.	The	Score
column	shows	how	many	times	the	benchmark	can	run	in	a	second.	The	Error	shows	that	the	measurement
shows	less	than	10%	scattering.

The	fastest	performance	we	have	is	when	the	algorithm	runs	on	eight	threads,	which	is	the	number	of
threads	the	processor	can	independently	handle	on	my	machine.	It	is	interesting	that	limiting	the	size	of	the
queue	did	not	help	the	performance.	I	actually	expected	it	to	be	different.	Using	a	one	million	length	array
as	a	blocking	queue	has	a	huge	overhead	and	this	is	not	a	surprise	that,	in	this	case,	the	execution	is
slower	than	when	we	have	only	100	elements	in	the	queue.	The	unlimited	linked	list-based	queue
handling,	on	the	other	hand,	fairly	fast	and	clearly	shows	that	the	extra	speed	at	the	limited	queue	for	100
elements	does	not	come	from	the	fact	that	the	limit	does	not	allow	the	IntervalThreads	to	run	too	far.

When	we	start	one	thread,	then	we	expect	similar	results,	as	when	we	run	the	serial	algorithm.	The	fact
that	the	serial	algorithm	beats	the	parallel	algorithm	running	on	one	thread	is	not	a	surprise.	The	thread
creation	and	the	communication	between	the	main	thread	and	the	extra	one	thread	have	overhead.	The
overhead	is	significant,	especially	when	the	queue	is	unnecessarily	large.

Summary
In	this	chapter,	you	learned	a	lot	of	things.	First	of	all,	we	refactored	the	code	to	be	ready	for	further
development	that	uses	parallel	guessing.	We	got	acquainted	with	processes	and	threads,	and	we	even
mentioned	fibers.	After	that,	we	looked	at	how	Java	implements	threads	and	how	to	create	code	that	runs
on	multiple	threads.	Additionally,	we	saw	the	different	means	that	Java	provides	to	programmers	needing
parallel	programs,	starting	threads,	or	just	starting	some	tasks	in	already	existing	threads.

Perhaps	the	most	important	part	of	this	chapter	that	you	should	remember	is	the	metaphor	of	bureaucrats
and	the	different	speeds.	This	is	extremely	important	when	you	want	to	understand	the	performance	of
concurrent	applications.	And	I	hope	that	this	is	a	catchy	picture,	which	is	easy	to	remember.

There	was	a	huge	topic	about	the	different	synchronization	means	that	Java	provides,	and	you	have	also
learned	about	the	pitfalls	that	programmers	can	fall	into	when	programming	concurrent	applications.

Last	but	not	least,	we	created	the	concurrent	version	of	the	Mastermind	guesser	and	also	measured	that	it
is	indeed	faster	than	the	version	that	uses	only	one	processor	(at	least	on	my	machine).	We	used	the	Java
Microbenchmark	Harness	with	the	Gradle	build	tool	and	discussed,	a	bit,	how	to	perform
microbenchmarking.

This	was	a	long	chapter	and	not	an	easy	one.	I	may	tend	to	think	that	this	is	the	most	complex	and	most
theoretical	one.	If	you	understood	half	of	it	at	first	read,	you	can	be	proud.	On	the	other	hand,	be	aware
that	this	is	only	a	good	base	to	start	experimenting	with	concurrent	programming	and	there	is	a	long	way
to	being	senior	and	professional	in	this	area.	And,	it	is	not	an	easy	one.	But	first	of	all,	be	proud	of
yourself	at	the	end	of	this	chapter.

In	the	following	chapters	we	will	learn	more	about	web	and	web	programming.	In	the	very	next	chapter
we	will	develop	our	little	game	so	that	it	can	run	in	a	server	and	the	player	can	play	with	it	using	a	web
browser.	This	will	establish	the	basic	knowledge	for	web	programming.	Later	we	will	build	on	this
developing	web	based	service	applications,	reactive	programming	and	all	the	tools	and	areas	that	will
make	a	professional	Java	developer.

Making	Our	Game	Professional	-	Do	it	as	a
Webapp
In	this	chapter,	we	will	program	a	web	application.	We	will	build	on	what	we	have	achieved	already	and
create	a	web	version	of	the	Mastermind	game.	This	time,	it	will	not	only	run	alone,	guessing	and
answering	the	number	of	positions	and	matched	colors,	but	also	communicate	with	the	user	asking	for	the
answers	to	the	guesses.	This	will	be	a	real	game.	Web	programming	is	extremely	important	for	Java
programmers.	Most	of	the	programs	are	web	applications.	The	universal	client	available	on	the	Internet	is
the	web	browser.	The	thin-client,	web	browser-based	architecture	is	widely	accepted	in	enterprises	as
well.	There	are	only	some	exceptions	when	the	architecture	has	something	else	but	the	web	client.	If	you
want	to	become	a	professional	Java	developer,	you	must	be	familiar	with	web	programming.	And	it	is
also	fun!

There	are	a	lot	of	technical	topics	that	we	will	visit	during	the	development.	First	of	all,	we	will	discuss
networking	and	web	architecture.	This	is	the	concrete	base	of	the	whole	building.	It	is	not	too	sexy,	just
like	when	you	construct	the	building.	You	spend	a	lot	of	money	and	effort	digging	trenches,	and	then	you
bury	the	concrete	and	end	up	at	the	end	of	the	phase	with	what	you	seemingly	had	before:	flat	ground.
Except	that	there	is	the	base.	Building	without	this	base,	the	house	would	either	collapse	soon	after	or
during	the	process	of	building.	Networking	is	just	as	important	for	web	programming.	There	are	a	lot	of
topics	that	seemingly	have	nothing	to	do	with	programming.	Still,	it	is	the	base	of	the	building	and	when
you	program	web	applications,	you	will	also	find	the	fun	part	in	it.

We	will	also	talk	a	bit	about	HTML,	CSS,	and	JavaScript,	but	not	too	much.	We	cannot	avoid	them
because	they	are	also	important	for	web	programming,	but	they	are	topics	that	you	can	learn	from
somewhere	else	as	well.	In	case	you	are	not	an	expert	in	some	of	these	areas,	there	are	usually	other
experts	in	enterprise	project	teams	who	can	extend	your	knowledge.	(In	the	case	of	networking,	there	is	no
mercy.)	In	addition	to	that,	JavaScript	is	a	topic	so	complex	and	huge	that	it	deserves	a	whole	book	to
start	with	it.	There	are	only	very	few	experts	who	deeply	understand	both	Java	and	JavaScript.	I
understand	the	general	structure	of	the	language	and	the	environment	it	runs	in,	but	I	cannot	keep	up	with
the	new	frameworks	that	are	released	every	week	these	days,	having	my	focus	on	other	areas.

You	will	learn	how	to	create	Java	applications	that	run	in	an	application	server,	this	time	in	Jetty,	and	we
will	see	what	a	servlet	is.	We	will	create	a	web	hello	world	application	to	start	up	fast,	and	then	we	will
create	the	servlet	version	of	Mastermind.	Note	that	we	hardly	ever	program	servlets	directly	without	the
aid	of	some	framework	that	implements	the	code	to	handle	parameters,	authentication,	and	many	other
things	that	are	not	application-specific.	We	will	still	stick	to	a	naked	servlet	in	this	chapter	because	it	is
not	possible	to	effectively	use	frameworks,	such	as	Spring,	without	first	understanding	what	a	servlet	is.
Spring	will	come	in	the	next	chapter.

We	will	mention	Java	Server	Pages	(JSP)	only	because	you	may	meet	some	legacy	application,	which
was	developed	using	that	technology,	but	modern	web	applications	do	not	use	JSP.	Still,	JSP	is	a	part	of
the	servlet	standard	and	is	available	for	use.	There	are	other	technologies	that	were	developed	in	the
recent	past	but	do	not	seem	to	be	future-proof	these	days.	They	are	still	usable	but	appear	only	in	legacy

applications,	and	choosing	them	for	a	new	project	is	fairly	questionable.	We	will	talk	about	these
technologies	shortly	in	a	separate	section.

By	the	end	of	this	chapter,	you	will	understand	how	the	basic	web	technology	works	and	what	the	major
architectural	elements	are,	and	you	will	be	able	to	create	simple	web	applications.	This	is	not	enough	to
be	a	professional	Java	web	developer	but	will	be	a	good	grounding	for	the	next	chapter,	where	we	will
have	a	look	at	the	professional	frameworks	used	in	today's	enterprises	for	real	application	developments.

	

Web	and	network
	

Programs	run	on	computers,	and	computers	are	connected	to	the	Internet.	This	network	was	developed	in
the	last	60	years,	first	to	provide	military	data	communication	that	is	resilient	to	rocket	attack,	then	it	was
extended	to	be	an	academic	network,	and	later	it	became	a	commercial	network	used	by	anyone	and
available	almost	ubiquitously	all	over	the	Earth.

The	design	of	the	network,	and	the	research,	started	as	a	response	to	the	flight	of	Gagarin
over	the	Earth	in	the	fifties.	Sending	Gagarin	to	space	and	travelling	over	the	Earth	was
a	demonstration	that	Russia	could	send	a	rocket	anywhere	on	the	globe,	possibly	with
atomic	explosives.	It	meant	that	any	data	network	that	needed	some	central	control	was
not	resilient	to	such	an	attack.	It	was	not	feasible	to	have	a	network	with	a	central
location	as	a	single	point	of	failure.	Therefore,	research	was	started	to	create	a	network
that	goes	on	working	even	if	any	part	of	it	is	brought	down.

	

	

IP
The	network	delivers	data	packets	between	any	two	computers	connected	to	it.	The	protocol	used	on	the
network	is	IP,	which	is	simply	an	abbreviation	of	Internet	Protocol.	Using	IP,	a	computer	can	send	a	data
packet	to	another.	The	package	contains	a	header	and	the	data	content.	The	header	contains	the	Internet
addresses	of	the	sender	and	the	target	machine,	other	flags,	and	information	about	the	package.	Since	the
machines	are	not	connected	to	each	other	directly,	routers	forward	the	packets.	It	is	like	post	offices
sending	mails	to	each	other	till	it	gets	into	the	hands	of	the	postman	you	know,	who	can	directly	deliver	it
to	your	mailbox.	To	do	that,	the	routers	use	the	information	in	the	header.	The	algorithm	and	organization
of	how	the	routers	interact	are	complex	and	something	we	need	not	know	to	be	Java	professionals.

If	you	ever	need	to	program	in	order	to	send	IP	packets	directly,	you	should	look	at	java.net.DatagramPacket,
and	the	rest	is	implemented	in	the	JDK,	the	operating	system,	and	on	the	firmware	of	the	network	card.
You	can	create	a	data	packet;	sending	it	and	changing	the	modulated	voltage	on	the	network	card	or
emitting	photons	to	the	fiber	is	not	your	headache.	However,	you	will	all	know	whether	you	really	need	to
program	datagrams	directly.

IP	has	two	versions.	The	old	version	still	in	use	is	IPv4.	The	new	version	that	coexists
with	the	old	one	is	IPv6	or	IPng	(ng	stands	for	new	generation).	The	major	difference
that	may	concern	a	Java	developer	is	that	version	4	uses	32-bit	addresses	and	version	6
uses	128-bit	addresses.	When	you	see	a	version-4	address,	you	will	see	something	like
192.168.1.110,	which	contains	the	four	bytes	in	a	decimal	format	separated	by	dots.	IPv6
addresses	are	expressed	as	2001:db8:0:0:0:0:2:1,	as	eight	16-bit	numbers	expressed	in
hexadecimal	separated	by	colons.

The	Web	is	a	bit	more	complex	than	sending	data	packets.	If	sending	a	data	packet	is	like	sending	a	one-
page	letter,	then	a	web	page	download	is	like	discussing	a	contract	in	paper	mail.	There	should	be	an
agreement	in	the	initial	paper	mail	as	to	what	to	send,	what	to	answer,	and	so	on,	until	the	contract	is
signed.	On	the	Internet,	that	protocol	is	called	Transmission	Control	Protocol	(TCP).	While	it	is	highly
unlikely	(but	possible)	that	you	will	meet	IP	routing	issues,	being	a	Java	developer,	you	certainly	may
meet	TCP	programming.	Therefore,	we	will	cover	shortly	how	the	TCP	works.	Be	aware	that	this	is	very
brief.	Really.	You	will	not	become	a	TCP	expert	reading	the	next	section,	but	you	will	get	a	glimpse	of	the
most	important	issues	that	affect	web	programming.

TCP/IP
The	TCP	protocol	is	implemented	in	the	operating	system	and	provides	a	higher	level	of	interface	than	IP.
When	you	program	TCP,	you	do	not	deal	with	datagrams.	Instead,	you	have	a	channel	of	byte	streams
where	you	can	put	bytes	to	be	delivered	to	the	other	computer,	and	you	can	read	bytes	from	the	channel
that	were	sent	by	the	other	computer,	exactly	in	the	order	as	they	were	sent.	This	is	a	kind	of	connection
between	two	computers	and,	what's	more,	between	two	programs.

There	are	other	protocols	that	are	implemented	over	IP	and	which	are	not	connection-
oriented.	One	of	them	is	User	Datagram	Protocol	(UDP),	used	for	services	when	there	is
no	need	for	connections,	when	the	data	may	be	lost	and	it	is	more	important	that	the	data
gets	to	the	destination	in	a	timely	manner	than	losing	some	of	the	packets	(video
streaming,	telephony).	When	the	data	amount	is	small	and	in	case	it	is	not	delivered,	it
can	be	requested	again;	the	cost	of	losing	it	is	cheap	(DNS	request,	see	the	next	section).

When	a	packet	is	lost	on	the	network,	or	when	it	is	sent	twice,	or	when	it	is	delivered	sooner	than	a	later
package,	it	is	handled	by	the	TCP	software	layer	implemented	by	the	operating	system.	This	layer	is	also
popularly	called	the	TCP	stack.

Since	the	TCP	is	a	connected	protocol,	there	is	a	need	for	something	that	tells	the	TCP	stack	which	stream
a	datagram	belongs	to	when	it	arrives.	The	stream	is	identified	by	two	ports.	A	port	is	a	16-bit	integer.
One	identifies	the	program	that	initiates	the	connection,	called	the	source	port.	The	other	one	identifies	the
target	program:	the	destination	port.	These	are	contained	in	each	and	every	TCP	packet	delivered.	When	a
machine	runs	a	Secure	Shell	(SSH)	server	and	a	web	server,	they	use	different	ports,	usually	port	22	and
80.	When	a	package	comes	that	contains	the	destination	port	number	22	in	the	TCP	header,	the	TCP	stack
knows	that	the	data	in	the	packet	belongs	to	the	stream	handled	by	the	SSH	server.	Likewise,	if	the
destination	port	is	80,	then	the	data	goes	to	the	web	server.

When	we	program	a	server,	we	usually	have	to	define	the	port	number;	otherwise,	there	is	no	way	the
clients	will	find	the	server	program.	Web	servers	are	usually	listen	on	port	80,	and	clients	try	to	connect
to	that	port.	The	client	port	is	usually	not	important	and	not	specified;	it	is	allocated	by	the	TCP	stack
automatically.

To	connect	from	a	client	code	to	a	server	is	easy:	only	a	few	lines	of	code.	Sometimes,	it	is	only	one	line
of	code.	However,	under	the	hood,	there	is	a	lot	of	work	that	the	TCP	stack	does	that	we	should	care
about—it	takes	time	to	build	up	a	TCP	connection.

To	have	a	connection,	the	TCP	stack	has	to	send	a	datagram	to	the	destination	to	know	that	it	exists.	If
there	is	no	server	listening	on	the	port,	sending	the	data	over	the	network	has	no	result,	except	for	wasting
the	network	bandwidth.	For	this	reason,	the	client	first	sends	an	empty	data	packet	called	SYN.	When	the
other	side	receives	it,	it	sends	back	a	similar	package	called	SYN-ACK.	Finally,	the	client	sends	a
package	called	ACK.	If	the	packets	go	through	the	Atlantic,	this	is	approximately	45ms	for	each	package,
which	is	equivalent	to	45	million	seconds	in	bureaucrat	time.	This	is	almost	one	and	a	half	years.	We	need
three	of	those	to	set	up	the	connection,	and	there	is	more.

When	a	TCP	connection	starts,	the	client	does	not	start	to	send	the	data	without	control.	It	sends	some	data
packets	and	then	it	waits	for	the	server	to	acknowledge	their	receipt.	It	would	not	only	be	useless,	but	also
network	wasting,	to	send	data	that	the	server	is	not	prepared	to	accept	and	has	to	throw	away.	The	TCP	is
designed	to	optimize	the	network	usage.	Therefore,	the	client	sends	some	data,	and	then	it	waits	for	the
acknowledgement.	The	TCP	stack	automatically	manages	this.	If	the	acknowledgement	arrives,	it	sends
more	packets,	and	if	a	carefully	designed	optimization	algorithm,	implemented	in	the	TCP	stack,	believes
that	it	is	good	to	send	more,	it	will	send	a	bit	more	data	than	in	the	first	step.	If	there	are	negative
acknowledgements	telling	the	client	that	the	server	could	not	accept	some	of	the	data	and	had	to	throw	it
away,	then	the	client	will	lower	the	number	of	packets	it	sends	without	acknowledgement.	But	first	it
starts	slow	and	cautious.	This	is	called	TCP	slow	start	and	we	have	to	be	aware	of	it.	Although	it	is	a	low
level	networking	feature	it	has	consequences	that	we	have	to	consider	in	our	Java	code:	we	use	database
connection	pools	instead	of	creating	a	new	connection	to	the	database	each	time	there	is	a	need	for	some
data;	we	try	to	manage	to	have	as	few	connections	to	web	servers	as	possible	using	techniques	such	as
keep-alive,	SPDY	protocol,	or	http/2.0	(also	replacing	SPDY).

For	a	start,	it	is	enough	that	TCP	is	connection-oriented	where	you	build	up	a	connection	to	a	server,	send
and	receive	bytes,	and	finally	close	the	connection.	When	you	have	a	network	performance	problem,	you
have	to	look	at	the	issues	I	listed.

	

DNS
	

The	TCP	protocol	creates	a	channel	using	the	IP	addresses	of	machines.	When	you	type	a	URL	in	the
browser,	it	usually	does	not	contain	IP	numbers.	It	contains	machine	names.	The	name	is	converted	to	IP
numbers	using	a	distributed	database	called	Domain	Name	System	(DNS).	This	database	is	distributed,
and	when	a	program	needs	to	convert	a	name	to	an	address,	it	sends	DNS	request	to	one	of	the	DNS
servers	it	knows.	These	servers	query	each	other	or	tell	the	client	whom	to	ask,	until	the	client	knows	the
IP	address	assigned	to	the	name.	The	servers	and	the	client	also	cache	the	recently	requested	names,	so
answering	is	fast.	On	the	other	hand,	when	the	IP	address	of	a	server	changes	this	name,	not	all	clients
will	immediately	see	the	address	assignment	over	the	globe.	The	DNS	lookup	can	be	easily	programmed,
and	there	are	classes	and	methods	in	JDK	that	support	this,	but	usually	we	need	not	care	about	that;	when
we	program,	it	is	done	automatically	in	web	programming.

	

	

The	HTTP	protocol
The	Hypertext	Transport	Protocol	(HTTP)	is	built	on	top	of	the	TCP.	When	you	type	a	URL	in	a
browser,	the	browser	opens	a	TCP	channel	to	the	server	(after	DNS	lookup,	of	course)	and	sends	a	HTTP
request	to	the	web	server.	The	server,	after	receiving	the	request,	produces	a	response	and	sends	it	to	the
client.	After	that,	the	TCP	channel	may	be	closed	or	kept	alive	for	further	HTTP	request-response	pairs.

Both	the	request	and	the	response	contain	a	header	and	an	optional	(possibly	zero-length)	body.	The
header	is	in	the	text	format,	and	it	is	separated	from	the	body	by	an	empty	line.

More	precisely	the	header	and	the	body	are	separated	by	four	bytes:	0x0D,	0x0A,	0x0D,	and
0x0A,	which	are	two	CR,	LF	line	separators.	The	HTTP	protocol	uses	carriage	return	and
line	feed	to	terminate	lines	in	the	header,	and	thus,	an	empty	line	is	two	CRLF	following
each	other.

The	start	of	the	header	is	a	status	line	plus	header	fields.	The	following	is	a	sample	HTTP	request:

GET	/html/rfc7230	HTTP/1.1	

Host:	tools.ietf.org	

Connection:	keep-alive	

Pragma:	no-cache	

Cache-Control:	no-cache	

Upgrade-Insecure-Requests:	1	

User-Agent:	Mozilla/5.0	(Macintosh;	Intel	Mac	OS	X	10_11_6)	AppleWebKit/537.36	(KHTML,	like	Gecko)	Chrome/52.0.2743.116	Safari/537.36	

Accept:	text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8	

DNT:	1	

Referer:	https://en.wikipedia.org/	

Accept-Encoding:	gzip,	deflate,	sdch,	br	

Accept-Language:	en,hu;q=0.8,en-US;q=0.6,de;q=0.4,en-GB;q=0.2

The	following	is	the	response:

HTTP/1.1	200	OK	

Date:	Tue,	04	Oct	2016	13:06:51	GMT	

Server:	Apache/2.2.22	(Debian)	

Content-Location:	rfc7230.html	

Vary:	negotiate,Accept-Encoding	

TCN:	choice	

Last-Modified:	Sun,	02	Oct	2016	07:11:54	GMT	

ETag:	"225d69b-418c0-53ddc8ad0a7b4;53e09bba89b1f"	

Accept-Ranges:	bytes	

Cache-Control:	max-age=604800	

Expires:	Tue,	11	Oct	2016	13:06:51	GMT	

Content-Encoding:	gzip	

Strict-Transport-Security:	max-age=3600	

X-Frame-Options:	SAMEORIGIN	

X-Xss-Protection:	1;	mode=block	

X-Content-Type-Options:	nosniff	

Keep-Alive:	timeout=5,	max=100	

Connection:	Keep-Alive	

Transfer-Encoding:	chunked	

Content-Type:	text/html;	charset=UTF-8	

<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.0	Transitional//EN"	

		"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">	

<html	xmlns="http://www.w3.org/1999/xhtml"	xml:lang="en"	lang="en">	

<head	profile="http://dublincore.org/documents/2008/08/04/dc-html/">	

				<meta	http-equiv="Content-Type"	content="text/html;	charset=utf-8"	/>	

				<meta	name="robots"	content="index,follow"	/>

The	request	does	not	contain	a	body.	The	status	line	is	as	follows:

GET	/html/rfc7230	HTTP/1.1

It	contains	the	so-called	method	of	the	request,	the	object	that	is	requested,	and	the	protocol	version	used
by	the	request.	The	rest	of	the	request	of	the	header	contains	header	fields	that	have	the	format,	label	:
value.	Some	of	the	lines	are	wrapped	in	the	printed	version,	but	there	is	no	line	break	in	a	header	line.

The	response	specifies	the	protocol	it	uses	(usually	the	same	as	the	request),	the	status	code,	and	the
message	format	of	the	status:	HTTP/1.1	200	OK

After	this,	the	response	fields	come	with	the	same	syntax	as	in	the	request.	One	important	header	is	the
content	type:

Content-Type:	text/html;	charset=UTF-8

It	specifies	that	the	response	body	(truncated	in	the	printout)	is	HTML	text.

The	actual	request	was	sent	to	the	URL,	https://tools.ietf.org/html/rfc7230,	which	is	the	standard	that	defines	the
1.1	version	of	HTTP.	You	can	easily	look	into	the	communication	yourself,	starting	up	the	browser	and
opening	the	developer	tools.	Such	a	tool	is	built	into	every	browser	these	days.	You	can	use	it	to	debug
the	program	behavior	on	the	network	application	level	looking	at	the	actual	HTTP	requests	and	responses
on	the	byte	level.	The	following	screenshot	shows	how	the	developer	tool	shows	this	communication:

https://tools.ietf.org/html/rfc7230

HTTP	methods
The	method	that	is	the	first	word	in	the	status	line	of	the	request	tells	the	server	what	to	do	with	the
request.	The	standard	defines	different	methods,	such	as	GET,	HEAD,	POST,	PUT,	DELETE,	and	some	others.

The	client	uses	the	GET	method	when	it	wants	to	get	the	content	of	a	resource.	In	the	case	of	a	GET	request,
the	body	of	the	request	is	empty.	This	is	the	method	used	by	the	browser	when	we	download	a	web	page.
It	is	also,	many	times,	the	method	used	when	some	program	implemented	in	JavaScript	and	running	in	the
browser	asks	for	some	information	from	a	web	application,	but	it	does	not	want	to	send	much	information
to	the	server.

When	the	client	uses	POST,	the	intention	is	usually	to	send	some	data	to	the	server.	The	server	does	reply
and,	many	times,	there	is	also	a	body	in	the	reply,	but	the	main	purpose	of	the	request/reply
communication	is	to	send	some	information	from	the	client	to	the	server.	This	is	the	opposite	of	the	GET
method	in	some	sense.

The	GET	and	POST	methods	are	the	most	frequently	used	methods.	Although	there	is	a	general	guideline	to
use	GET	to	retrieve	data	and	POST	to	send	data	to	the	server,	it	is	only	a	recommendation,	and	there	is	no
clean	separation	of	the	two	cases.	Many	times,	GET	is	used	to	send	some	data	to	the	server.	After	all,	it	is
an	HTTP	request	with	a	status	line	and	header	fields,	and	although	there	is	no	body	in	the	request,	the
object	(part	of	the	URL)	that	follows	the	method	in	the	status	line	is	still	able	to	deliver	parameters.	Many
times,	it	is	also	easy	to	test	a	service	that	responds	to	a	GET	request	because	you	only	need	a	browser	and
to	type	in	the	URL	with	the	parameters,	and	look	at	the	response	in	the	browser	developer	tools.	You
should	not	be	surprised	if	you	see	an	application	that	uses	GET	requests	to	execute	operations	that	modify
the	state	on	a	web	server.	However,	not	being	surprised	does	not	mean	approval.	You	should	be	aware
that	in	most	cases,	these	are	not	good	practices.	When	we	send	sensitive	information	using	the	GET	request,
the	parameters	in	the	URL	are	available	to	the	client	in	the	address	line	of	the	browser.	When	we	send
using	POST,	the	parameters	are	still	reachable	by	the	client	(after	all,	the	information	the	client	sends	is
generated	by	the	client	and,	as	such,	cannot	be	unavailable),	but	not	that	easy	for	a	simple	security-
unaware	user	to	copy-paste	the	information	and	send,	perhaps,	to	a	malevolent	third	party.	The	decision
between	using	GET	and	POST	should	always	consider	practicalities	and	security	issues.

The	HEAD	method	is	identical	to	a	GET	request,	but	the	response	will	not	contain	a	body.	This	is	used	when
the	client	is	not	interested	in	the	actual	response.	It	may	happen	that	the	client	already	has	the	object	and
wants	to	see	if	it	was	changed.	The	Last-Modified	header	will	contain	the	time	when	the	resource	was	last
changed,	and	the	client	can	decide	if	it	has	a	newer	one	or	needs	to	ask	for	the	resource	in	a	new	request.

The	PUT	method	is	used	when	the	client	wants	to	store	something	on	the	server	and	DELETE	when	the	client
wants	to	erase	some	resource.	These	methods	are	used	only	by	applications	usually	written	in	JavaScript
and	not	directly	by	the	browser.

There	are	other	methods	defined	in	the	standard,	but	these	are	the	most	important	and	frequently	used
ones.

	

Status	codes
	

The	response	starts	with	the	status	code.	These	codes	are	also	defined	and	there	are	a	limited	number	of
codes	usable	in	a	response.	The	most	important	is	200,	which	says	all	is	OK;	the	response	contains	what
the	request	wanted.	The	codes	are	always	in	the	range	of	100	to	599,	contain	three	digits,	and	are	grouped
by	the	first	digit.

1xx:	These	codes	are	information	codes.	They	are	rarely	used	but	can	be	very	important	in	some
cases.	For	example,	100	means	continue.	A	server	can	send	this	code	when	it	gets	a	POST	request	and
the	server	wants	to	signal	the	client	to	send	the	body	of	the	request	because	it	can	process	it.	Using
this	code,	and	the	client	waiting	for	this	code,	may	save	a	lot	of	bandwidth	if	properly	implemented
on	the	server	and	also	on	the	client.
2xx:	These	codes	mean	success.	The	request	is	answered	properly,	or	the	requested	service	was
done.	There	are	codes,	such	as	200,	201,	202,	and	so	on,	defined	in	the	standard	and	there	is	a
description	about	when	to	use	one	or	the	other.
3xx:	These	codes	mean	redirection.	One	of	these	codes	is	sent	when	the	server	cannot	directly
service	the	request	but	knows	the	URL	that	can.	The	actual	codes	can	distinguish	between	a
permanent	redirect	(when	it	is	known	that	all	future	requests	should	be	sent	to	the	new	URL)	and
temporary	redirect	(when	any	later	request	should	be	sent	here	and	possibly	served	or	redirected),
but	the	decision	is	kept	on	the	server	side.
4xx:	These	are	error	codes.	The	most	famous	code	is	404,	which	means	Not	Found,	that	is,	the	server
is	not	able	to	respond	to	the	request	because	the	resource	is	not	found.	401	means	that	the	resource	to
serve	the	request	may	be	available	but	it	requires	authentication.	403	is	a	code	that	signals	that	the
request	was	valid	but	is	still	refused	to	be	served	by	the	server.
5xx:	These	codes	are	server	error	codes.	When	a	response	holds	one	of	these	error	codes,	the
meaning	is	that	there	is	some	error	on	the	server.	This	error	can	be	temporary,	for	example,	when	the
server	is	processing	too	many	requests	and	cannot	respond	to	a	new	request	with	a	calculation-
intensive	response	(this	is	usually	signaled	by	error	code	503)	or	when	the	feature	is	not	implemented
(code	501).	The	general	error	code	500	is	interpreted	as	Internal	Error,	which	means	that	no
information,	whatsoever,	is	available	about	what	was	going	wrong	on	the	server,	but	it	was	not	going
well	and	hence,	no	meaningful	response.

	

HTTP/2.0
After	almost	20	years	since	the	last	release	of	HTTP,	the	new	version	of	HTTP	was	released	in	2015.
This	new	version	of	the	protocol	has	several	enhancements	over	the	previous	versions.	Some	of	these
enhancements	will	also	affect	the	way	server	applications	will	be	developed.

The	first	and	most	important	enhancement	is	that	the	new	protocol	will	make	it	possible	to	send	several
resources	parallelly	in	a	single	TCP	connection.	The	keep-alive	flag	is	available	to	avoid	the	recreation
of	the	TCP	channel,	but	it	does	not	help	when	a	response	is	created	slowly.	In	the	new	protocol,	other
resources	can	also	be	delivered	in	the	same	TCP	channel	even	before	one	request	is	fully	served.	This
requires	complex	package	handling	in	the	protocol,	but	this	is	hidden	from	the	server	application
programmer	as	well	as	the	browser	programmer.	The	application	server,	servlet	container,	and	browser
implement	this	transparently.

HTTP/2.0	will	always	be	encrypted,	therefore	it	will	not	be	possible	to	use	http	as	a	protocol	in	the
browser	URL.	It	will	always	be	https.

The	feature	that	will	need	changes	in	servlet	programming	to	leverage	the	advantages	of	the	new	version
of	the	protocol	is	server	push.	Version	4.0	of	the	servlet	specification	includes	support	for	HTTP/2.0,	and
this	version	is	still	in	draft.

Server	push	is	an	HTTP	response	to	a	request	that	will	come	in	the	future.	How	can	a	server	answer	a
request	that	is	not	even	issued?	Well,	the	server	anticipates.	For	example,	the	application	sends	an	HTML
page	that	has	references	to	many	small	pictures	and	icons.	The	client	downloads	the	HTML	page,	builds
the	DOM	structure,	analyzes	it,	and	realizes	that	the	pictures	are	needed,	and	sends	the	request	for	the
pictures.	The	application	programmer	knows	what	pictures	are	there	and	may	code	the	server	to	send	the
pictures	even	before	the	browser	requests	for	it.	Every	such	response	includes	a	URL	that	this	response	is
for.	When	the	browser	wants	the	resource,	it	realizes	that	it	is	already	there	and	does	not	issue	a	new
request.	In	HttpServlet,	the	program	should	access	PushBuilder	via	the	request's	new	getPushBuilder	method	and
use	that	to	push	down	resources	to	the	client.

Cookies
Cookies	are	maintained	by	the	browser	and	are	sent	in	the	HTTP	request	header	using	the	Cookie	header
field.	Each	cookie	has	a	name,	value,	domain,	path,	expiration	time,	and	some	other	parameters.	When	a
request	is	sent	to	a	URL	that	matches	the	domain,	the	path	of	a	non-expired	cookie,	the	client	sends	the
cookie	to	the	server.	Cookies	are	usually	stored	in	small	files	on	the	client	by	the	browser	or	in	a	local
database.	The	actual	implementation	is	the	business	of	the	browser,	and	we	need	not	worry	about	it.	It	is
just	the	text	information	that	is	not	executed	by	the	client.	It	is	only	sent	back	to	the	server	when	some
rules	(mainly	domain	and	path)	match.	Cookies	are	created	by	servers	and	are	sent	to	the	client	in	HTTP
responses	using	the	Set-Cookie	header	field.	Thus,	essentially	the	server	tells	the	client,	Hey,	here	is	this
cookie,	whenever	you	come	to	me	next	time,	show	me	this	piece	of	information,	so	I	will	know	it	is	you.

Cookies	are	usually	to	remember	clients.	Advertisers	and	online	shops	that	need	to	remember	who	they
are	talking	to	heavily	use	it.	But	this	is	not	the	only	use.	These	days,	any	application	that	maintains	user
sessions	uses	cookies	to	chain	up	the	HTTP	requests	that	come	from	the	same	user.	When	you	log	in	to	an
application,	the	username	and	password	you	use	to	identify	yourself	are	sent	to	the	server	only	once,	and
in	subsequent	requests,	only	a	special	cookie	is	sent	to	the	server	used	to	identify	the	already	logged	in
user.	This	use	of	cookies	emphasizes	why	it	is	important	to	use	cookie	values	that	cannot	be	easily
guessed.	If	the	cookie	used	to	identify	a	user	is	easily	guessable,	then	an	attacker	could	just	create	a
cookie	and	send	it	to	the	server	mimicking	the	other	user.	Cookie	values,	for	the	purpose,	are	usually	long
random	strings.

Cookies	are	not	always	sent	back	to	the	server	where	they	originate.	When	the	cookie	is	set,	the	server
specifies	the	domain	of	the	URL	where	the	cookie	should	be	sent	back.	This	is	used	when	a	different
server	from	the	one	providing	the	services	needing	authentication	does	the	user	authentication.

Applications	sometimes	encode	values	into	cookies.	This	is	not	necessarily	bad,	though	in	most	actual
cases,	it	is.	When	encoding	something	into	a	cookie,	we	should	always	consider	the	fact	that	the	cookie
travels	through	the	network	and	can	go	huge	as	more	and	more	data	is	encoded	in	it	and	can	create
unnecessary	burden	on	the	network.	Usually,	it	is	better	to	send	only	some	unique,	otherwise	meaningless,
random	key,	and	store	the	values	in	some	database,	be	it	on	disk	or	in	the	memory.

Client	server	and	web	architecture
The	applications	we	developed	so	far	were	running	on	a	single	JVM.	We	already	have	some	experience
with	concurrent	programming	and	this	is	something	that	will	come	handy	now.	When	we	program	a	web
application,	a	part	of	the	code	will	run	on	the	server	and	a	part	of	the	application	logic	will	execute	in	the
browser.	The	server	part	will	be	written	in	Java,	the	browser	part	will	be	implemented	in	HTML,	CSS,
and	JavaScript.	Since	this	is	a	Java	book	we	will	focus	mainly	on	the	server	part,	but	we	should	still	be
aware	of	the	fact	that	many	of	the	functionalities	can	be	and	should	be	implemented	to	run	in	the	browser.
The	two	programs	communicate	with	each	other	over	the	IP	network,	that	is,	the	Internet,	or	in	the	case	of
an	enterprise	internal	application,	the	network	of	the	company.

Today,	a	browser	is	capable	of	running	very	powerful	applications,	all	implemented	in	JavaScript.	A	few
years	ago,	such	applications	needed	client	application	implemented	in	Delphi,	C++,	or	Java,	using	the
windowing	capabilities	of	the	client	operating	system.

Originally,	the	client-server	architecture	meant	that	the	functionality	of	the	application	was	implemented
on	the	client,	and	the	program	was	using	general	services	only	from	the	server.	The	server	provided
database	access	and	file	storage	but	nothing	more.	Later,	the	three-tier	architecture	put	the	business
functionality	on	the	servers	that	used	other	servers	for	database	and	other	general	services,	and	the	client
application	implemented	the	user	interface	and	limited	business	functionality.

When	the	web	technology	started	to	penetrate	enterprise	computing,	the	web	browser	started	to	replace
the	client	applications	in	many	use	cases.	Previously,	the	browser	could	not	run	complex	JavaScript
applications.	The	application	was	executed	on	the	web	server	and	the	client	displayed	the	HTML	that	the
server	created	as	a	part	of	the	application	logic.	Every	time	something	was	changed	on	the	user	interface,
the	browser	started	a	communication	with	the	server,	and	in	a	HTTP	request-response	pair,	the	browser
content	was	replaced.	A	web	application	was	essentially	a	series	of	form	filling	and	form	data	sending	to
the	server,	and	the	server	responded	with	HTML-formatted	pages,	presumably	containing	new	forms.

JavaScript	interpreters	were	developed	and	became	more	and	more	effective	and	standardized.	Today,
modern	web	applications	contain	HTML	(which	is	a	part	of	the	client	code	and	is	not	generated	by	the
server	on	the	fly),	CSS,	and	JavaScript.	When	the	code	is	downloaded	from	the	web	server,	the
JavaScript	starts	to	execute	and	communicate	with	the	server.	It	is	still	HTTP	requests	and	responses,	but
the	responses	do	not	contain	HTML	code.	It	contains	pure	data,	usually	in	the	JSON	format.	This	data	is
used	by	the	JavaScript	code	and	some	of	the	data,	if	needed,	is	displayed	on	the	web	browser	display
also	controlled	by	JavaScript.	This	is	functionally	equivalent	to	a	three-tier	architecture	with	some	slight
but	very	important	differences.

The	first	difference	is	that	the	code	is	not	installed	on	the	client.	The	client	downloads	the	application
from	a	web	server,	and	the	only	thing	that	is	installed	is	the	modern	browser.	This	removes	a	lot	of
enterprise	maintenance	burden	and	cost.

The	second	difference	is	that	the	client	is	not	able,	or	is	limited,	to	access	the	resources	of	the	client
machine.	Thick	client	applications	could	save	anything	in	a	local	file	or	access	a	local	database.	This	is
very	limited,	for	security	reasons,	compared	to	a	program	running	on	the	browser.	At	the	same	time	this	is

a	handy	limitation	because	clients	aren't	and	shouldn't	be	a	trusted	part	of	the	architecture.	The	disk	in	the
client	computer	is	hard	and	expensive	to	back	up.	It	can	be	stolen	with	a	notebook,	and	encrypting	it	is
costly.	There	are	tools	to	protect	client	storage,	but	most	of	the	time,	storing	the	data	on	the	server	only	is
a	more	viable	solution.

It	is	also	a	common	program	design	error	to	trust	the	client	application.	The	client	physically	controls	the
client	computer	and	although	it	can	be	made	technically	very	difficult,	the	client	can	still	overcome	the
security	limitations	of	the	client	device	and	client	code.	If	it	is	only	the	client	application	that	checks	the
validity	of	some	functionality	or	data,	then	the	physical	security	provided	by	the	physical	control	of	the
server	is	not	used.	Whenever	data	is	sent	from	the	client	to	the	server,	the	data	has	to	be	checked	in
regards	of	validity,	no	matter	what	the	client	application	is.	Actually,	since	the	client	application	can	be
changed,	we	just	don't	really	know	what	the	client	application	really	is.

In	this	chapter	and,	as	a	matter	of	fact,	in	the	entire	book,	we	focus	on	Java	technologies;	therefore	the
sample	application	will	not	contain	almost	any	client	technology.	I	could	not	help	but	create	some	CSS.
On	the	other	hand,	I	definitely	avoided	JavaScript.	Therefore,	I	have	to	emphasize	again	that	the	example
is	to	demonstrate	the	programming	of	the	server	side	and	still	providing	something	that	really	works.	A
modern	application	would	use	REST	and	JSON	communications	and	would	not	play	around	creating
HTML	on	the	fly	on	the	server	side.	Originally,	I	wanted	to	create	a	JavaScript	client	and	REST	server
application,	but	the	focus	was	moved	so	much	from	server-side	Java	programming	that	I	dropped	this
idea.	On	the	other	hand,	you	can	extend	the	application	to	be	one	like	that.

Writing	servlets
Servlets	are	Java	classes	that	are	executed	in	a	web	server	that	implements	the	servlet	container
environment.	The	first	web	servers	could	only	deliver	static	HTML	files	to	the	browsers.	For	each	URL,
there	was	an	HTML	page	on	the	web	server	and	the	server	delivered	the	content	of	this	file,	in	response
to	a	request	sent	by	the	browser.	Very	soon,	there	was	a	need	to	extend	the	web	servers	to	be	able	to	start
some	program	that	calculates	the	content	of	the	response,	on	the	fly,	when	the	request	is	processed.

The	first	standard	to	do	that	defined	CGI.	It	started	a	new	process	to	respond	to	a	request.	The	new
process	got	the	request	on	its	standard	input,	and	the	standard	output	was	sent	back	to	the	client.	This
approach	wastes	a	lot	of	resources.	Starting	a	new	process,	as	you	learned	in	the	previous	chapter,	is	way
too	costly	just	to	respond	to	an	HTTP	request.	Even	starting	a	new	thread	seems	to	be	unnecessary,	but
with	that,	we	ran	a	bit	ahead.

The	next	approach	was	FastCGI,	executing	the	external	process	continually	and	reusing	it,	and	then	came
different	other	approaches.	The	approaches	after

FastCGIall	use	in-process	extensions.	In	these	cases,	the	code	calculating	the	response	runs	inside	the
same	process	as	the	web	server.	Such	standards	or	extension	interfaces	were	ISAPI	for	the	Microsoft	IIS
server,	NSASPI	for	the	Netscape	server,	and	the	Apache	module	interface.	Each	of	these	made	it	possible
to	create	a	dynamically	loaded	library	(DLL	on	Windows	or	SO	files	on	Unix	systems)	to	be	loaded	by
the	web	server	during

startupand	to	map	certain	requests	to	be	handled	by	the	code	implemented	in	these	libraries.

When	somebody	programs	PHP,	for	example,	the	Apache	module	extension	is	the	PHP	interpreter	that
reads	the	PHP	code	and	acts	upon	it.	When	somebody	programs	ASP	pages	for	the	Microsoft	IIS,	the
ISAPI	extension	implementing	the	ASP	page	interpreter	is	executed	(well,	this	is	a	bit	sloppy	and
oversimplified	to	say	but	works	as	an	example).

To	Java,	the	interface	definition	is	a	servlet	defined	in	JSR340	as	of	version	3.1.

JSR	stands	for	Java	Specification	Request.	These	are	requests	for	modification	of	the
Java	language,	library	interfaces,	and	other	components.	The	requests	go	through	an
evaluation	process,	and	when	they	are	accepted,	they	become	a	standard.	The	process	is
defined	by	the	Java	Community	Process	(JCP).	JCP	is	also	documented	and	has	versions.
The	current	version	is	2.10	and	can	be	found	at	https://jcp.org/en/procedures/overview.	The
JSR340	standard	can	be	found	at	https://jcp.org/en/jsr/detail?id=340.

A	servlet	program	implements	the	servlet	interface.	Usually	this	is	done	via	extending	HttpServlet,	the
abstract	implementation	of	the	Servlet	interface.	This	abstract	class	implements	methods,	such	as	doGet,
doPost,	doPut,	doDelete,	doHead,	doOption,	and	doTrace,	free	to	be	overridden	by	the	actual	class	extending	it.	If	a
servlet	class	does	not	override	one	of	the	these	methods,	sending	the	corresponding	HTTP	method,	GET,
POST,	and	so	on,	will	return	the	405Not	Allowed	status	code.

https://jcp.org/en/procedures/overview
https://jcp.org/en/jsr/detail?id=340

Hello	world	servlet
Before	getting	into	the	technical	details,	let's	create	an	extremely	simple	hello	world	servlet.	To	do	it,	we
setup	a	Gradle	project	with	the	build	file,	build.gradle,	the	servlet	class	in	the	file,
src/main/java/packt/java9/by/example/mastermind/servlet/HelloWorld.java,	and	last	but	not	least,	we	have	to	create
the	file	src/main/webapp/WEB-INF/web.xml.	The	gradle.build	file	will	look	the	following:

apply	plugin:	'java'	

	apply	plugin:	'jetty'	

		

	repositories	{	

					jcenter()	

	}	

		

	dependencies	{	

					providedCompile	"javax.servlet:javax.servlet-api:3.1.0"	

	}	

		

	jettyRun	{	

					contextPath	'/hello'	

	}

The	Gradle	build	file	uses	two	plugins,	java	and	jetty.	We	have	already	used	the	java	plugin	in	the	previous
chapter.	The	jetty	plugin	adds	tasks	such	as	jettyRun	that	load	the	Jetty	servlet	container	and	start	up	the
application.	The	jetty	plugin	is	also	an	extension	of	the	war	plugin	that	compiles	web	applications	into	a
Web	Archive	(WAR)	packaging	format.

The	WAR	packaging	format	is	practically	the	same	as	JAR;	it	is	a	zip	file	and	it	contains	a	lib	directory
that	contains	all	the	JAR	files	that	the	web	application	depends	on.	The	classes	of	the	application	are	in
the	directory,	WEB-INF/classes,	and	there	is	a	WEB-INF/web.xml	file	that	describes	servlet	URL	mapping,	which
we	will	explore	in	detail	soon.

Since	we	want	to	develop	an	extremely	simple	servlet,	we	add	the	servlet	API	as	a	dependency	to	the
project.	This	is,	however,	not	a	compile	dependency.	The	API	is	available	when	the	servlet	runs	in	the
container.	Still,	it	has	to	be	available	when	the	compiler	compiles	our	code;	therefore,	a	dummy
implementation	is	provided	by	the	artifact	specified	as	providedCompile.	Because	it	is	specified	that	way,	the
build	process	will	not	package	the	library	into	the	generated	WAR	file.	The	generated	file	will	contain
nothing	that	is	specific	to	Jetty	or	any	other	servlet	container.

The	servlet	container	will	provide	the	actual	implementation	of	the	servlet	library.	When	the	application
is	deployed	and	started	in	a	Jetty,	the	Jetty-specific	implementation	of	the	servlet	library	will	be	available
on	the	classpath.	When	the	application	is	deployed	to	a	Tomcat,	the	Tomcat	specific	implementation	will
be	available.

We	create	a	class	in	our	project,	as	follows:

package	packt.java9.by.example.mastermind.servlet;	

		

	import	javax.servlet.ServletException;	

	import	javax.servlet.http.HttpServlet;	

	import	javax.servlet.http.HttpServletRequest;	

	import	javax.servlet.http.HttpServletResponse;	

	import	java.io.IOException;	

	import	java.io.PrintWriter;	

		

	public	class	HelloWorld	extends	HttpServlet	{	

		

					private	String	message;	

		

					@Override	

					public	void	init()	throws	ServletException	{	

									message	=	"Hello,	World";	

					}	

		

					@Override	

					public	void	doGet(HttpServletRequest	request,	

																							HttpServletResponse	response)	

													throws	ServletException,	IOException	{	

									response.setContentType("text/html");	

									PrintWriter	out	=	response.getWriter();	

									out.println("<h1>"	+	message	+	"</h1>");	

					}	

		

					@Override	

					public	void	destroy()	{	

					}	

	}

When	the	servlet	is	started,	the	init	method	is	invoked.	When	it	is	put	out	of	service,	the	destroy	method	is
called.	These	methods	can	be	overridden	and	provide	a	more	fine-grained	control	than	the	constructor	and
other	finalization	possibilities.	A	servlet	object	may	be	put	into	service	more	than	once,	and	after	calling
destroy,	the	servlet	container	may	invoke	init	again;	thus,	this	cycle	is	not	strictly	tied	to	the	life	cycle	of
the	object.	Usually,	there	is	not	much	that	we	do	in	these	methods,	but	sometimes,	you	may	need	some
code	in	them.

Also,	note	that	a	single	servlet	object	may	be	used	to	serve	many	requests,	even	at	the	same	time;	thus,	the
servlet	classes	and	methods	in	it	should	be	fairly	thread-safe.	The	specification	demands	that	a	servlet
container	uses	only	one	servlet	instance	in	case	the	container	runs	in	a	non-distributed	environment.	In
case	the	container	runs	on	the	same	machine	in	several	processes,	each	executing	a	JVM,	or	even	on
different	machines,	there	can	be	many	servlet	instances	that	handle	the	requests.	Generally,	the	servlet
classes	should	be	designed	such	that	they	do	not	assume	that	only	one	thread	is	executing	them,	but	at	the
same	time,	they	should	also	not	assume	that	the	instance	is	the	same	for	different	requests.	We	just	cannot
know.

What	does	it	mean	in	practice?	You	should	not	use	instance	fields	that	are	specific	to	a	certain	request.	In
the	example,	the	field	initialized	to	hold	the	message	holds	the	same	value	for	each	and	every	request;
essentially,	the	variable	is	almost	a	final	constant.	It	is	used	only	to	demonstrate	some	functionality	for	the
init	method.

The	doGet	method	is	invoked	when	the	servlet	container	gets	an	HTTP	request	with	the	GET	method.	The
method	has	two	arguments.	The	first	one	represents	the	request,	and	the	second	one	represents	the
response.	The	request	can	be	used	to	collect	all	information	that	comes	in	the	request.	In	the	preceding
example,	there	is	nothing	like	that.	We	do	not	use	any	of	the	inputs.	If	a	request	comes	to	our	servlet,	then
we	answer	the	Hello,	World	string,	no	matter	what.	Later,	we	will	see	examples	when	we	read	the
parameters	from	the	request.	The	response	gives	methods	that	can	be	used	to	handle	the	output.	In	the
example,	we	fetch	PrintWriter,	which	is	to	be	used	to	send	characters	to	the	body	of	the	HTTP	response.
This	is	the	content	that	appears	in	the	browser.	The	mime	type	we	send	is	text/html,	and	this	is	set	by
calling	the	setContentType	method.	This	will	get	into	the	HTTP	header	field,	Content-Type.	The	standard	and
the	JavaDoc	documentation	of	the	classes	define	all	the	methods	that	can	be	used,	and	also	how	these

should	be	used.

Finally,	we	have	a	web.xml	file	that	declares	the	servlets	that	are	implemented	in	our	code.	This	is,	just	as
the	name	of	the	file	indicates,	an	XML	file.	It	declaratively	defines	all	the	servlets	that	are	included	in	the
archive	and	also	other	parameters.	In	the	example,	the	parameters	are	not	defined,	only	the	servlet	and	the
mapping	to	the	URL.	Since	we	have	only	one	single	servlet	in	this	example,	the	WAR	file,	it	is	mapped	to
the	root	context.	All	and	every	GET	request	that	arrives	to	the	servlet	container	and	to	this	archive	will	be
served	by	this	servlet:

<?xml	version="1.0"	encoding="UTF-8"?>	

<web-app	version="2.5"	

									xmlns="http://java.sun.com/xml/ns/javaee"	

									xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

									xsi:schemaLocation="http://java.sun.com/xml/ns/javaee	http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd">	

				<servlet>	

								<display-name>HelloWorldServlet</display-name>	

								<servlet-name>HelloWorldServlet</servlet-name>	

								<servlet-class>packt.java9.by.example.mastermind.servlet.HelloWorld</servlet-class>	

				</servlet>	

				<servlet-mapping>	

								<servlet-name>HelloWorldServlet</servlet-name>	

								<url-pattern>/</url-pattern>	

				</servlet-mapping>	

</web-app>

Java	Server	Pages
I	promised	you	that	I	would	not	bore	you	with	Java	Server	Pages	because	that	is	a	technology	of	the	past.
Even	though	it	is	the	past,	it	is	still	not	history	as	there	are	many	programs	running	that	still	use	JSP	and
contain	JSP	code.

JSP	pages	are	web	pages	that	contain	HTML	and	Java	code	mixed.	When	an	HTTP	request	is	served	by	a
JSP	page,	the	servlet	container	reads	the	JSP	page,	executes	the	Java	parts,	takes	the	HTML	parts	as	they
are,	and	in	this	way,	mixing	the	two	together,	creates	an	HTML	page	that	is	sent	to	the	browser.

<%@	page	language="java"	

									contentType="text/html;	charset=UTF-8"	

									pageEncoding="UTF-8"%>	

<html>	

<body>	

<%	for(int	i	=	0	;	i	<	5	;	i	++){	%>	

		hallo
	

<%	}	%>	

</body>	

</html>

The	preceding	page	will	create	an	HTML	page	that	contains	the	text	hallo	five	times,	each	in	a	new	line
separated	by	the	tag	br.	Behind	the	scenes,	the	servlet	container	converts	the	JSP	page	to	a	Java	servlet,
then	compiles	the	servlet	using	the	Java	compiler,	and	then	runs	the	servlet.	It	does	it	every	time	there	is
some	change	in	the	source	JSP	file;	therefore,	it	is	very	easy	to	incrementally	craft	some	simple	code
using	JSP.	The	code	that	is	generated	from	the	preceding	JSP	file	is	138	lines	long	(on	the	Tomcat	8.5.5
version),	which	is	simply	long	and	boring	to	list	here,	but	the	part	that	may	help	to	understand	how	the
Java	file	generation	works	is	only	a	few	lines.

If	you	want	to	see	all	the	lines	of	the	generated	servlet	class,	you	can	deploy	the
application	into	a	Tomcat	server	and	look	at	the	directory
work/Catalina/localhost/hello/org/apache/jsp/.	It	is	a	rarely	known	fact	among	developers	that
this	code	is	actually	saved	to	disk	and	is	available.	Sometimes	it	helps	when	you	need	to
debug	some	JSP	pages.

Here	are	the	few	interesting	lines	generated	from	the	preceding	code:

out.write("\n");	

						out.write("<html>\n");	

						out.write("<body>\n");	

	for(int	i	=	0	;	i	<	5	;	i	++){		

						out.write("\n");	

						out.write("		hallo
\n");	

	}		

						out.write("\n");	

						out.write("</body>\n");	

						out.write("</html>\n");

The	JSP	compiler	moves	the	inside	of	the	JSP	code	out	and	the	outside	in.	In	the	JSP	code,	Java	is
surrounded	by	HTML,	and	in	the	generated	servlet	Java	source,	the	HTML	is	surrounded	by	Java.	It	is
like	when	you	want	to	mend	clothes:	the	first	thing	is	to	turn	the	dress	inside	out.

It	is	not	only	the	Java	code	that	you	can	mix	into	HTML	in	the	JSP	pages	but	also	the	so-called	tags.	Tags

are	collected	into	tag	libraries,	implemented	in	Java,	and	packaged	into	JAR	files,	and	they	should	be
available	on	the	classpath	to	be	used.	The	JSP	page	using	the	tags	from	some	library	should	declare	the
use:

<%@	taglib	prefix="c"	

											uri="http://java.sun.com/jsp/jstl/core"	%>

The	tags	look	like	HTML	tags,	but	they	are	processed	by	the	JSP	compiler	and	executed	by	the	code
implemented	in	the	taglib	library.	JSP	may	also	refer	to	the	value	of	the	Java	objects	that	are	available	in
the	scope	of	the	JSP.	To	do	this	inside	the	HTML	page,	the	JSP	expression	language	could	be	used.

JSP	was	originally	created	to	ease	the	development	of	a	web	application.	The	main	advantage	is	the	fast
startup	of	development.	There	is	no	lengthy	time	for	configuration,	setup,	and	so	on	in	the	development,
and	when	there	is	any	change	in	the	JSP	page,	there	is	no	need	to	compile	the	whole	application	again:	the
servlet	container	generates	the	Java	code,	compiles	it	to	class	file,	loads	the	code	into	memory,	and
executes.	JSP	was	a	competitor	of	Microsoft	ASP	pages,	which	mixed	HTML	with	VisualBasic	code.

When	the	application	starts	to	grow	big,	using	the	JSP	technology	causes	more	problems	than	are	good.
The	code	that	mixes	the	business	logic	and	the	view	of	the	application,	how	it	is	rendered	in	the	browser,
becomes	messy.	Developing	JSP	requires	frontend	technology	knowledge.	A	Java	developer	is	expected
to	know	some	frontend	technology	but	is	rarely	a	design	expert	and	CSS	guru.	Modern	code	also	contains
JavaScript,	many	times	embedded	in	the	HTML	page.	After	all,	the	big	advantage	of	JSP	is	that	it	contains
code	that	runs	on	the	server	as	well	as	on	the	client-side	code.	The	developers	follow	the	paradigm	many
times,	so	do	not	be	surprised	to	see	some	legacy	code	that	contains	Java,	HTML,	CSS,	and	JavaScript	all
mixed	in	a	JSP	file.	Since	Java	and	JavaScript	are	syntactically	similar	sometimes,	it	is	not	obvious	to	see
what	is	executed	on	the	server	and	what	is	executed	on	the	client.	I	have	even	seen	code	that	created
JavaScript	code	from	Java	code	in	a	JSP	file.	That	is	a	total	mix	of	different	responsibilities	and	a	mess
that	is	nearly	impossible	to	maintain.	This	led	to	the	total	deprecation	of	JSP	as	of	today.

The	deprecation	of	JSP	is	not	official.	It	is	my	expert	opinion.	You	may	meet	some
experienced	developers	who	are	still	in	love	with	JSP,	and	you	may	find	yourself	in
projects	where	you	are	required	to	develop	programs	in	JSP.	It	is	not	shameful	doing	that.
Some	people	do	worse	for	money.

To	mend	the	messy	situation,	there	were	technologies	that	advocated	the	separation	of	the	server	code	and
the	client	functionality	more	and	more.	These	technologies	include	Wicket,	Vaadin,	JSF,	and	different	Java
templating	engines,	such	as	Freemarker,	Apache	Velocity,	and	Thymeleaf.	These	latter	technologies	can
also	be	interesting	when	you	generate	textual	output	from	Java	even	when	the	code	is	not	web-related	at
all.

These	technologies,	with	discipline,	helped	control	the	development	and	maintenance	costs	of	moderate
and	large	web	projects,	but	the	basic	problem	of	the	architecture	was	still	there:	no	clear	separation	of
concerns.

Today,	modern	applications	implement	the	code	of	a	web	application	in	separate	projects:	one	for	the
client,	using	HTML,	CSS	and	JavaScript,	and	a	separate	one	to	implement	server	functionality	in	Java	(or
in	something	else,	but	we	focus	here	on	Java).	The	communication	between	the	two	is	the	REST	protocol,

which	we	will	cover	in	the	subsequent	chapters.

HTML,	CSS,	and	JavaScript
HTML,	CSS,	and	JavaScript	are	client-side	technologies.	These	are	extremely	important	for	web
applications,	and	a	professional	Java	developer	should	have	some	knowledge	about	them.	Nobody
expects	you	to	be	an	expert	in	Java	and	in	web-client	technologies	at	the	same	time,	though	this	is	not
impossible.	A	certain	understanding	is	desirable.

HTML	is	the	textual	representation	of	a	structured	text.	The	text	is	given	as	characters,	as	in	any	text	file.
Tags	represent	the	structure.	A	start	tag	starts	with	a	<	character,	then	the	name	of	the	tag,	then,	optionally,
name="value"	attributes,	and	finally	a	closing	>	character.	An	end	tag	starts	with	</,	then	the	name	of	the	tag,
and	then	>.	Tags	are	enclosed	into	hierarchies;	thus,	you	should	not	close	a	tag	sooner	than	the	one	that
was	opened	later.	First,	the	tag	that	was	opened	last	has	to	be	closed,	then	the	next,	and	so	on.	This	way,
any	actual	tag	in	the	HTML	has	a	level,	and	all	tags	that	are	between	the	start	and	end	tags	are	below	this
tag.	Some	tags	that	cannot	enclose	other	tags	or	text	do	not	have	end	tags	and	stand	on	their	own.	Consider
the	following	sample:

<html>	

		<head>	

				<title>this	is	the	title</title>	

		</head>	

</html>

The	tag	head	is	under	html,	and	title	is	under	head.	This	can	be	structured	into	a	tree,	as	follows:

html	

+	head	

		+	title	

				+	"this	is	the	title"

The	browser	stores	the	HTML	text	in	a	tree	structure,	and	this	tree	is	the	object	model	of	the	web	page
document,	thus	the	name,	Document	Object	Model	(DOM)	tree.

The	original	HTML	concept	mixed	formatting	and	structure,	and	even	with	the	current	version	of	HTML5,
we	still	have	tags	such	as	b,	i,	tt	that	suggest	the	browser	to	display	the	text	between	the	start	and	end	tags
in	bold,	italics,	and	teletype,	respectively.

As	the	name	HTML,	standing	for	Hypertext	Markup	Language,	suggests,	the	text	can	contain	references	to
other	web	pages	in	the	form	of	hyperlinks.	These	links	are	assigned	to	texts	using	the	a	tag	(standing	for
anchor)	or	to	some	form	that	may	consist	of	different	fields,	and	when	the	submit	button	of	the	form	is
pressed,	the	content	of	the	fields	is	sent	to	the	server	in	a	POST	request.	When	the	form	is	sent,	the	content	of
the	fields	is	encoded	in	the	so-called	application/x-www-form-urlencoded	form.

The	HTML	structure	always	tried	to	promote	the	separation	of	structure	and	formatting.	To	do	so,
formatting	was	moved	to	styles.	Styles	defined	in	Cascading	Style	Sheets	(CSS)	provide	much	more
flexibility	for	formatting	than	HTML;	the	format	of	a	CSS	is	more	effective	for	formatting.	The	aim	to
create	CSS	was	that	the	design	can	be	decoupled	from	the	structure	of	the	text.	If	I	had	to	choose	one	of
the	three,	I	would	opt	for	CSS	as	the	one	that	is	least	important	for	Java	server-side	web	developers	and,
at	the	same	time,	the	most	important	for	the	users	(things	should	look	nice).

JavaScript	is	the	third	pillar	of	client-side	technologies.	JavaScript	is	a	fully	functional,	interpreted
programming	language	executed	by	the	browser.	It	can	access	the	DOM	tree,	and	read	and	modify	it.
When	the	DOM	tree	is	modified,	the	browser	automatically	displays	the	modified	page.	JavaScript
functions	can	be	scheduled	and	registered	to	be	invoked	when	some	event	occurs.	For	example,	you	can
register	a	function	to	be	invoked	when	the	document	is	fully	loaded,	when	the	user	presses	a	button,	clicks
on	a	link,	or	just	hovers	the	mouse	over	some	section.	Although	JavaScript	was	first	only	used	to	create
funny	animations	on	the	browser,	today	it	is	possible,	and	is	a	usual	practice,	to	program	fully	functional
clients	using	the	capabilities	of	the	browser.	There	are	really	powerful	programs	written	in	JavaScript,
even	such	power-hungry	applications	as	PC	emulators.

In	this	book,	we	focus	on	Java	and	use	the	client-side	technologies	as	much	as	is	needed	for
demonstration	technologies.	However,	being	a	Java	web	developer	professional,	you	have	to	learn	these
technologies	as	well,	to	some	extent	at	least,	to	understand	what	a	client	can	do	and	to	be	able	to
cooperate	with	the	professionals	responsible	for	frontend	technologies.

Mastermind	servlet
Playing	the	Mastermind	game	via	the	Web	is	a	bit	different	from	what	it	used	to	be.	Till	now,	we	did	not
have	any	user	interaction	and	our	classes	were	designed	accordingly.	For	example,	we	could	add	a	new
guess	to	the	table,	along	with	the	partial	and	full	matches	calculated	by	the	program.	Now	we	have	to
separate	the	creation	of	a	new	guess,	add	it	to	the	game,	and	set	the	full	and	partial	matches.	This	time,	we
have	to	display	the	table	first,	and	the	user	has	to	calculate	and	provide	the	number	of	matches.

We	have	to	modify	some	of	the	classes	to	be	able	to	do	that.	We	need	to	add	a	new	method	to	Game.java:
public	Row	addGuess(Guess	guess,	int	full,	int	partial)	{	
assertNotFinished();	
final	Row	row	=	new	Row(guess,	full,	partial);	
table.addRow(row);	
if	(itWasAWinningGuess(full))	{	
finished	=	true;	
}	
return	row;	
}

Till	now,	we	had	only	one	method	that	was	adding	a	new	guess,	and	since	the	program	knew	the	secret,	it
was	immediately	calculating	the	value	of	full	and	partial.	The	name	of	the	method	could	be	addNewGuess,
overloading	the	original	method,	but	this	time,	the	method	is	used	not	only	to	add	a	new	guess	but	also	to
add	old	guesses	to	rebuild	the	table.

When	the	program	starts,	there	are	no	guesses.	The	program	creates	one,	the	first	one.	Later	on,	when	the
user	tells	the	program	the	full	and	partial	matches,	the	program	needs	the	Game	structure	with	Table	and	Row
objects	containing	Guess	objects	and	the	full	and	partial	match	values.	These	were	already	available,	but
when	the	new	HTTP	hit	comes	in,	we	have	to	pull	it	from	somewhere.	Programming	a	servlet,	we	have	to
store	the	state	of	the	game	somewhere	and	restore	it	when	a	new	HTTP	request	hits	the	server.

Storing	state
Storing	the	state	can	be	done	in	two	places.	One	place,	which	we	will	first	do	in	our	code,	is	the	client.
When	the	program	creates	a	new	guess,	it	adds	it	to	the	table	and	sends	an	HTML	page	that	contains	not
only	the	new	guess	but	also	all	the	previous	guesses	and	the	full	and	partial	match	values	that	the	user
gave	for	each	of	the	rows.	To	send	the	data	to	the	server,	the	values	are	stored	in	the	fields	of	a	form.
When	the	form	is	submitted,	the	browser	gathers	the	information	in	the	fields,	creates	an	encoded	string
from	the	content	of	the	fields,	and	puts	the	content	into	the	body	of	a	POST	request.

The	other	possibility	for	storing	the	actual	state	is	in	the	server.	The	server	can	store	the	state	of	the	game,
and	it	can	reconstruct	the	structure	when	it	creates	a	new	guess.	The	problem	in	this	case	is	knowing
which	game	to	use.	The	server	can	and	should	store	many	games,	one	for	each	user,	and	users	may	use	the
application	concurrently.	It	does	not	necessarily	mean	strong	concurrency	in	the	same	meaning	as	we
examined	in	the	previous	chapter.

Even	if	the	users	are	not	served	at	the	same	time	in	multiple	threads,	there	can	be	games	that	are	active.
Imagine	cnn.com	telling	you	that	you	cannot	read	the	news	at	the	moment	because	somebody	else	is	reading
it.	There	can	be	multiple	users	playing	multiple	games,	and	while	serving	an	HTTP	request,	we	should
know	which	user	we	are	serving.

Servlets	maintain	sessions	that	can	be	used	for	this	purpose	as	we	will	see	in	the	next	section.

HTTP	session
When	a	client	sends	requests	from	the	same	browser	to	the	same	servlet,	the	series	of	requests	belong	to
one	session.	To	know	that	the	requests	belong	to	the	same	session,	the	servlet	container	automatically
sends	a	cookie	named	JSESSIONID	to	the	client,	and	this	cookie	has	a	long,	random,	hard-to-guess	value
(tkojxpz9qk9xo7124pvanc1z	as	I	run	the	application	in	Jetty).	The	servlet	maintains	a	session	store	that	contains
the	HttpSession	instances.	The	key	string	that	travels	in	the	value	of	the	JSESSIONID	cookie	identifies	the
instances.	When	an	HTTP	request	arrives	at	the	servlet,	the	container	attaches	the	session	to	the	request
object	from	the	store.	If	there	is	no	session	for	the	key,	then	one	is	created,	and	the	code	can	access	the
session	object	by	calling	the	request.getSession()	method.

A	HttpSession	object	can	store	attributes.	The	program	can	call	the	setAttribute(String,Object),
getAttribute(String),	and	removeAttribute(String)	methods	to	store,	retrieve,	or	delete	an	attribute	object.	Each
attribute	is	assigned	to	a	String	and	can	be	any	Object.

Although	the	session	attribute	store	essentially	looks	as	simple	as	a	Map<String,?>	object,	it	is	not.	The
values	stored	in	the	session	can	be	moved	from	one	node	to	another	when	the	servlet	container	runs	in	a
clustered	or	other	distributed	environment.	To	do	that,	the	values	are	serialized;	therefore,	the	values
stored	in	the	session	should	be	Serializable.	Failing	to	do	so	is	a	very	common	novice	error.	During
development,	executing	the	code	in	a	simple	development	Tomcat	or	Jetty	container	practically	never
serializes	the	session	to	disk	and	never	loads	it	from	the	serialized	form.	This	means	that	the	values	set
using	setAttribute	will	be	available	by	calling	getAttribute.	We	run	into	trouble	the	first	time	the	application
gets	installed	in	a	clustered	environment.	As	soon	as	a	HTTP	request	arrives	on	different	nodes
getAttribute	may	return	null.	The	method	setAttribute	is	called	on	one	node	and	during	the	processing	of	the
next	request	getAttribute	on	a	different	node	cannot	deserialize	the	attribute	value	from	the	disk	shared
among	the	nodes.	This	is	usually,	and	sadly,	the	production	environment.

You,	as	a	developer,	should	also	be	aware	that	serializing	and	de-serializing	an	object	is	a	heavy
operation	that	costs	several	CPU	cycles.	If	the	structure	of	the	application	uses	only	a	part	of	the	client
state	serving	most	of	the	HTTP	requests,	then	this	is	a	waste	of	CPU	to	create	the	whole	state	in	memory
from	a	serialized	form	and	then	serializing	it	again.	In	such	cases,	it	is	more	advisable	to	store	only	a	key
in	the	session	and	use	some	database	(SQL	or	NoSQL)	or	some	other	service	to	store	the	actual	data
referenced	by	the	key.	Enterprise	applications	almost	exclusively	use	this	structure.

package	packt.java9.by.example.mastermind.servlet;	

import
packt.java9.by.example.mastermind.Color;	
import
packt.java9.by.example.mastermind.Table;	

import	javax.inject.Inject;

import	javax.inject.Named;	

public	class	HtmlTools	{	
	@Inject	

Table	table;	

	@Inject	
	@Named("nrColumns")	
	private	int
NR_COLUMNS;	

	public	String	tag(String	tagName,	String...	attributes)	{	

StringBuilder	sb	=	new	StringBuilder();	
	sb.append("<").append((tagName));	

for	(int	i	=	0;	i	<	attributes.length;	i	+=	2)	{	
	sb.append("	").	

append(attributes[i]).	
	append("=\"").	
	append(attributes[i	+	1]).	

append("\"");	
	}	
	sb.append(">");	
	return	sb.toString();	
	}	

	public	String	inputBox(String	name,	String	value)	{	
	return	tag("input",
"type",	"text",	"name",	name,	"value",	value,	"size",	"1");	
	}	

	public	String
colorToHtml(Color	color,	int	row,	int	column)	{	
	return	tag("input",	"type",
"hidden",	"name",	paramNameGuess(row,	column),	
	"value",	color.toString())	+

	tag("div",	"class",	"color"	+	color)	+	
	tag("/div")	+	
	tag("div",	"class",
"spacer")	+	
	tag("/div");	
	}	

	public	String	paramNameFull(int
row)	{	
	return	"full"	+	row;	
	}	

	public	String	paramNamePartial(int
row)	{	
	return	"partial"	+	row;	
	}	

	public	String
paramNameGuess(int	row,	int	column)	{	
	return	"guess"	+	row	+	column;	
	}

	public	String	tableToHtml()	{	
	StringBuilder	sb	=	new	StringBuilder();

	sb.append("<html><head>");	
	sb.append("<link	rel=\"stylesheet\"
type=\"text/css\"	href=\"colors.css\">");	
	sb.append("<title>Mastermind
guessing</title>");	
	sb.append("<body>");	
	sb.append(tag("form",	"method",
"POST",	"action",	"master"));	

	for	(int	row	=	0;	row	<	table.nrOfRows();
row++)	{	
	for	(int	column	=	0;	column	<	NR_COLUMNS;	column++)	{	

sb.append(colorToHtml(table.getColor(row,	column),	row,	column));	
	}	

sb.append(inputBox(paramNameFull(row),	""	+	table.getFull(row)));	

sb.append(inputBox(paramNamePartial(row),	""	+	table.getPartial(row)));	

sb.append("<p>");	
	}	
	return	sb.toString();	
	}	
}

<html>	
	<head>	
	<link	rel="stylesheet"	type="text/css"	href="colors.css">

	<title>Mastermind	guessing</title>	
	<body>	
	<form	method="POST"
action="master">	
	<input	type="hidden"	name="guess00"	value="3">	
	<div
class="color3"></div>	
	<div	class="spacer"></div>	
	<input	type="hidden"
name="guess01"	value="2">	
	<div	class="color2"></div>	
	<div
class="spacer"></div>	
	<input	type="hidden"	name="guess02"	value="1">	

<div	class="color1"></div>	
	<div	class="spacer"></div>	
	<input
type="hidden"	name="guess03"	value="0">	
	<div	class="color0"></div>	
	<div
class="spacer"></div>	
	<input	type="text"	
	name="full0"	value="0"	size="1">

	<input	type="text"	
	name="partial0"	value="2"	size="1">	
	<p>	

<input	type="hidden"	name="guess10"	value="5">	
	<div	class="color5"></div>

...deleted	content	that	just	looks	almost	the	same...	

	<p>	

<input	type="submit"	value="submit">	
	</form>	
	</body>	
	</head>

</html>

.color0	{	
	background:	red;	
	width	:	20px;	
	height:	20px;	
	float:left

}	
.color1	{	
	background-color:	green;	
	width	:	20px;	
	height:
20px;	
	float:left	
}	
...	.color2	to	.color5	is	deleted,	content	is	the	same
except	different	colors	...	

.spacer	{	
	background-color:	white;	

width	:	10px;	
	height:	20px;	
	float:left	
}

Dependency	injection	with	Guice
The	servlet	class	is	very	simple	as	shown	in	the	following:

package	packt.java9.by.example.mastermind.servlet;	

import	com.google.inject.Guice;	

import	com.google.inject.Injector;	

import	org.slf4j.Logger;	

import	org.slf4j.LoggerFactory;	

import	javax.servlet.ServletException;	

import	javax.servlet.http.HttpServlet;	

import	javax.servlet.http.HttpServletRequest;	

import	javax.servlet.http.HttpServletResponse;	

import	java.io.IOException;	

public	class	Mastermind	extends	HttpServlet	{	

				private	static	final	Logger	log	=	LoggerFactory.getLogger(Mastermind.class);	

				public	void	doGet(HttpServletRequest	request,	

																						HttpServletResponse	response)	

												throws	ServletException,	IOException	{	

								doPost(request,	response);	

				}	

				public	void	doPost(HttpServletRequest	request,	

																							HttpServletResponse	response)	

												throws	ServletException,	IOException	{	

								Injector	injector	=		

												Guice.createInjector(new	MastermindModule());	

								MastermindHandler	handler	=		

												injector.getInstance(MastermindHandler.class);	

								handler.handle(request,	response);	

				}	

}

Because	many	threads	use	servlets	concurrently,	and	thus	we	cannot	use	instance	fields	holding	data	for	a
single	hit,	the	servlet	class	does	nothing	else	but	create	a	new	instance	of	a	MastermindHandler	class	and
invoke	its	handle	method.	Since	there	is	a	new	instance	of	MastermindHandler	for	each	request,	it	can	store
objects	in	fields	specific	to	the	request.	To	create	a	handler,	we	use	the	Guice	library	created	by	Google.

We	have	already	talked	about	dependency	injection.	The	handler	needs	a	Table	object	to	play,	a	ColorManager
object	to	manage	the	colors,	and	a	Guesser	object	to	create	a	new	guess,	but	creating	these	or	fetching	some
prefabricated	instances	from	somewhere	is	not	the	core	functionality	of	the	handler.	The	handler	has	to	do
one	thing:	handle	the	request;	the	instances	needed	to	do	this	should	be	injected	from	outside.	This	is	done
by	a	Guice	injector.

To	use	Guice,	we	have	to	list	the	library	among	the	dependencies	in	build.gradle:

apply	plugin:	'java'	

apply	plugin:	'jetty'	

repositories	{	

				jcenter()	

}	

dependencies	{	

				providedCompile	"javax.servlet:javax.servlet-api:3.1.0"	

				testCompile	'junit:junit:4.12'	

				compile	'org.slf4j:slf4j-api:1.7.7'	

				compile	'ch.qos.logback:logback-classic:1.0.11'	

				compile	'com.google.inject:guice:4.1.0'	

}	

jettyRun	{	

				contextPath	'/hello'	

}

Then	we	have	to	create	an	injector	instance	that	will	do	the	injection.	The	injector	is	created	with	the
following	line	in	the	servlet:

Injector	injector	=	Guice.createInjector(new	MastermindModule());

The	instance	of	MastermindModule	specifies	what	to	inject	where.	This	is	essentially	a	configuration	file	in	the
Java	format.	Other	dependency	injector	frameworks	used,	and	use,	XML	and	annotations	to	describe	the
injection	binding	and	what	to	inject	where,	but	Guice	solely	uses	Java	code.	The	following	is	the	DI
configuration	code:

public	class	MastermindModule	extends	AbstractModule	{	

				@Override	

				protected	void	configure()	{	

								bind(int.class)	

										.annotatedWith(Names.named("nrColors")).toInstance(6);	

								bind(int.class)	

										.annotatedWith(Names.named("nrColumns")).toInstance(4);	

								bind(ColorFactory.class).to(LetteredColorFactory.class);	

								bind(Guesser.class).to(UniqueGuesser.class);	

				}	

}

The	methods	used	in	the	configure	method	are	created	in	a	fluent	API	manner	so	that	the	methods	can	be
chained	one	after	the	other	and	that	the	code	can	be	read	almost	like	English	sentences.	A	good
introduction	to	fluent	API	can	be	found	at	https://blog.jooq.org/2012/01/05/the-java-fluent-api-designer-crash-course/.	For
example,	the	first	configuration	line	could	be	read	in	English	as

Bind	to	the	class	int	wherever	it	is	annotated	with	the	@Name	annotation	having	value	"nrColor"	to	the
instance	6.

(Note	that	the	int	value	6	is	autoboxed	to	an	Integer	instance.)

The	MastermindHandler	class	contains	fields	annotated	with	@Inject	annotation:

@Inject	

@Named("nrColors")	

private	int	NR_COLORS;	

@Inject	

@Named("nrColumns")	

private	int	NR_COLUMNS;	

@Inject	

private	HtmlTools	html;	

@Inject	

Table	table;	

@Inject	

ColorManager	manager;	

@Inject	

Guesser	guesser;

This	annotation	is	not	Guice-specific.	@Inject	is	a	part	of	the	javax.inject	package	and	is	a	standard	part	of
JDK.	JDK	does	not	provide	the	dependency	injector	(DI)	framework	but	supports	the	different
frameworks	so	that	they	can	use	standard	JDK	annotations,	and	in	case	the	DI	framework	is	replaced,	the
annotations	may	remain	the	same	and	not	framework-specific.

https://blog.jooq.org/2012/01/05/the-java-fluent-api-designer-crash-course/

When	the	injector	is	called	to	create	an	instance	of	MastermindHandler,	it	looks	at	the	class	and	sees	that	it	has
an	int	field	annotated	with	@Inject	and	@Named("nrColors"),	and	finds	in	the	configuration	that	such	a	field
should	have	the	value	6.	It	injects	the	value	to	the	field	before	returning	the	MastermindHandler	object.
Similarly,	it	also	injects	the	values	into	the	other	fields,	and	if	it	should	create	any	of	the	objects	to	be
injected,	it	does.	If	there	are	fields	in	these	objects,	then	they	are	also	created	by	injecting	other	objects
and	so	on.

This	way	the	DI	framework	removes	the	burden	from	the	programmers'	shoulder	to	create	the	instances.
This	is	something	fairly	boring	and	is	not	the	core	feature	of	the	classes	anyway.	Instead,	it	creates	all	the
objects	needed	to	have	a	functional	MastermindHandler	and	links	them	together	via	the	Java	object	references.
This	way,	the	dependencies	of	the	different	objects	(MastermindHandler	needs	Guesser,	ColorManager,	and	Table;
ColorManager	needs	ColorFactory;	and	Table	also	needs	ColorManager,	and	so	on)	become	a	declaration,	specified
using	annotations	on	the	fields.	These	declarations	are	inside	the	code	of	the	classes,	and	it	is	the	right
place	for	them.	Where	else	could	we	specify	what	the	class	needs	to	properly	function	than	in	the	class
itself?

The	configuration	in	our	example	specifies	that	wherever	there	is	a	need	for	ColorFactory,	we	will	use
LetteredColorFactory,	and	that	wherever	we	need	Guesser,	we	will	use	UniqueGuesser.	This	is	separated	from	the
code	and	it	has	to	be	like	that.	If	we	want	to	change	the	guessing	strategy,	we	replace	the	configuration	and
the	code	should	work	without	modifying	the	classes	that	use	the	guesser.

Guice	is	clever	enough	and	you	need	not	specify	that	wherever	there	is	a	need	for	Table,	we	will	use	Table:
there	is	no	bind(Table.class).to(Table.class).	First	I	created	a	line	like	that	in	the	configuration,	but	Guice
rewarded	me	with	an	error	message,	and	now,	writing	it	again	in	plain	English,	I	feel	really	stupid.	If	I
need	a	table	I	need	a	table.	Really?

The	MastermindHandler	class
We	have	already	started	the	listing	of	the	MastermindHandler	class,	and	since	this	class	is	more	than	a	hundred
lines,	I	will	not	include	it	here	as	a	whole.	The	most	important	method	of	this	class	is	handle:

public	void	handle(HttpServletRequest	request,	

																			HttpServletResponse	response)	

								throws	ServletException,	IOException	{	

				Game	game	=	buildGameFromRequest(request);	

				Guess	newGuess	=	guesser.guess();	

				response.setContentType("text/html");	

				PrintWriter	out	=	response.getWriter();	

				if	(game.isFinished()	||	newGuess	==	Guess.none)	{	

								displayGameOver(out);	

				}	else	{	

								log.debug("Adding	new	guess	{}	to	the	game",	newGuess);	

								game.addGuess(newGuess,	0,	0);	

								displayGame(out);	

				}	

				bodyEnd(out);	

}

We	perform	three	steps.	Step	1	is	creating	the	table	and	we	do	it	from	the	request.	If	this	is	not	the	start	of
the	game,	there	is	already	a	table	and	the	HTML	form	contains	all	previous	guess	colors	and	the	answers
to	those.	Then,	as	the	second	step,	we	create	a	new	guess	based	on	that.	Step	3	is	to	send	the	new	HTML
page	to	the	client.

Again,	this	is	not	a	modern	approach,	creating	HTML	on	the	servlet	code,	but
demonstrating	pure	servlet	functionality	with	REST,	JSON,	and	JavaScript	with	some
framework	would	make	this	chapter	alone	a	few	hundred	pages	long,	and	it	would
definitely	distract	our	focus	from	Java.

Printing	HTML	text	to	a	PrintWriter	is	not	something	that	should	be	new	to	you	at	this	point	in	this	book;
therefore,	we	will	not	list	that	code	here.	You	can	download	the	working	example	on	GitHub.	The	branch
for	this	version	of	the	code	is	nosession.	Instead	of	printing,	we	will	focus	on	the	servlet	parameter
handling.

The	request	parameters	are	available	via	the	getParameter	method,	which	returns	the	string	value	of	a
parameter.	This	method	assumes	that	any	parameter,	be	it	GET	or	POST,	appears	only	once	in	the	request.	In
case	there	are	parameters	that	appear	multiple	times,	the	value	should	have	been	a	string	array.	In	such	a
case,	we	should	use	getParameterMap,	which	returns	the	whole	map	with	the	String	keys	and	String[]	values.
Even	though	we	do	not	have	multiple	values	for	any	key	this	time,	and	we	also	know	the	values	of	the
keys	coming	as	POST	parameters,	we	will	still	use	the	latter	method.	The	reason	for	this	is	that	we	will
later	use	the	session	to	store	these	values,	and	we	want	to	have	a	method	that	is	reusable	in	that	case.

If	you	look	at	the	earlier	commits	in	the	Git	repository,	you	will	see	that	the	first	version
used	getParameter	and	I	refactored	it	only	later	when	I	created	the	second	version	of	the
program,	which	stores	the	state	in	a	session.	Never	believe	if	anyone	tells	you	that
programs	are	created	perfectly	upfront	without	any	refactoring	during	development.	Do
not	feel	ashamed	to	create	foolish	code	and	refactor	it	later.	It	is	only	shameful	if	you	do
not	refactor	it.

To	get	to	that	we	convert	the	request's	Map<String,String[]>	to	Map<String,String>:

private	Game	buildGameFromRequest(HttpServletRequest	request)	{	

				return	buildGameFromMap(toMap(request));	

}	

private	Map<String,	String>	toMap(HttpServletRequest	request)	{	

				log.debug("converting	request	to	map");	

				return	request.getParameterMap().entrySet().	

												stream().collect(

																				Collectors.toMap(

																												Map.Entry::getKey,	

																												e	->	e.getValue()[0]));	

}

Then,	we	use	that	map	to	re-create	the	game:

private	Game	buildGameFromMap(Map<String,	String>	params)	{	

				final	Guess	secret	=	new	Guess(new	Color[NR_COLUMNS]);	

				final	Game	game	=	new	Game(table,	secret);	

				for	(int	row	=	0;	

									params.containsKey(html.paramNameGuess(row,	0));	

									row++)	{	

								Color[]	colors	=	getRowColors(params,	row);	

								Guess	guess	=	new	Guess(colors);	

								final	int	full	=	Integer.parseInt(params.get(html.paramNameFull(row)));	

								final	int	partial	=	Integer.parseInt(params.get(html.paramNamePartial(row)));	

								log.debug("Adding	guess	to	game");	

								game.addGuess(guess,	full,	partial);	

				}	

				return	game;	

}

The	conversion	from	String	to	int	is	done	via	the	method	parseInt.	This	method	throws
NumberFormatException	when	the	input	is	not	a	number.	Try	to	run	the	game,	use	the	browser,
and	see	how	Jetty	handles	the	case	when	the	servlet	throws	an	exception.	How	much
valuable	information	do	you	see	in	the	browser	that	can	be	used	by	a	potential	hacker?
Fix	the	code	so	that	it	asks	the	user	again	if	any	of	the	numbers	are	not	well	formatted!

Storing	state	on	the	server
The	application	state	should	usually	not	be	saved	on	the	client.	There	may	be	some	special	case	in
addition	to	the	one	where	you	write	educational	code	and	want	to	demonstrate	how	to	do	it.	Generally,	the
state	of	the	application	related	to	the	actual	use	is	stored	in	the	session	object	or	on	some	database.	This
is	especially	important	when	the	application	requests	the	user	to	enter	a	lot	of	data	and	does	not	want	the
user	to	lose	the	work	if	there	is	some	hiccup	in	the	client	computer.

You	spend	a	lot	of	time	selecting	the	appropriate	items	in	an	online	shop,	choosing	the	appropriate	items
that	work	together,	creating	a	configuration	of	your	new	model	airplane,	and	all	of	a	sudden,	there	is	a
blackout	in	your	home.	If	the	state	were	stored	on	the	client	you'd	have	had	to	start	from	scratch.	If	the
state	is	stored	on	the	server,	the	state	is	saved	to	disk;	the	servers	are	duplicated,	fed	by	battery-backed
power	supplies,	and	when	you	reboot	your	client	machine	when	the	power	comes	back	in	your	home,	you
log	in,	and	miraculously,	the	items	are	all	there	in	your	shopping	basket.	Well,	it	is	not	a	miracle;	it	is	web
programming.

In	our	case,	the	second	version	will	store	the	state	of	the	game	in	the	session.	This	will	let	the	user	have
the	game	restore	so	long	as	the	session	is	there.	If	the	user	quits	and	restarts	the	browser,	the	session	gets
lost	and	a	new	game	can	start.

Since	there	is	no	need	to	send	the	actual	colors	and	matching	in	hidden	fields	this	time,	the	HTML
generation	is	modified	a	bit,	and	the	generated	HTML	will	also	be	simpler:

<html>	

<head>	

				<link	rel="stylesheet"	type="text/css"	href="colors.css">	

				<title>Mastermind	guessing</title>	

<body>	

<form	method="POST"	action="master">	

				<div	class="color3"></div>	

				<div	class="spacer"></div>	

				<div	class="color2"></div>	

				<div	class="spacer"></div>	

				<div	class="color1"></div>	

				<div	class="spacer"></div>	

				<div	class="color0"></div>	

				<div	class="spacer"></div>0	

				<div	class="spacer"></div>2<p>	

				<div	class="color5"></div>	

...	

				<div	class="spacer"></div>	

				<div	class="color1"></div>	

				<div	class="spacer"></div>	

				<input	type="text"	name="full2"	value="0"	size="1"><input	type="text"	name="partial2"	value="0"	size="1">	

				<p>	

								<input	type="submit"	value="submit">	

</form>	

</body>	

</head></html>

The	number	of	full	and	partially	matching	colors	is	displayed	as	a	simple	number,	so	this	version	does	not
allow	cheating	or	changing	previous	results.	(These	are	the	numbers	0	and	2	after	the	div	tags	that	have	the
CSS	class	spacer.)

The	handle	method	in	MastermindHandler	also	changes,	as	shown	in	the	following:

public	void	handle(HttpServletRequest	request,	

																			HttpServletResponse	response)	

								throws	ServletException,	IOException	{	

				Game	game	=	buildGameFromSessionAndRequest(request);	

				Guess	newGuess	=	guesser.guess();	

				response.setContentType("text/html");	

				PrintWriter	out	=	response.getWriter();	

				if	(game.isFinished()	||	newGuess	==	Guess.none)	{	

								displayGameOver(out);	

				}	else	{	

								log.debug("Adding	new	guess	{}	to	the	game",	newGuess);	

								game.addGuess(newGuess,	0,	0);	

								sessionSaver.save(request.getSession());	

								displayGame(out);	

				}	

				bodyEnd(out);	

}

This	version	of	the	class	gets	a	SessionSaver	object	injected	by	the	Guice	injector.	This	is	a	class	that	we
create.	This	class	will	convert	the	current	Table	into	something	that	is	stored	in	the	session,	and	it	also
recreates	the	table	from	the	data	stored	in	the	session.	The	handle	method	uses	the
buildGameFromSessionAndRequest	method	to	restore	the	table	and	to	add	the	full	and	partial	match	answers	that
the	user	just	gave	in	the	request.	When	the	method	creates	a	new	guess	and	fills	it	in	the	table,	and	also
sends	it	to	the	client	in	the	response,	it	saves	the	state	in	the	session	by	calling	the	save	method	via	the
sessionSaver	object.

The	buildGameFromSessionAndRequest	method	replaces	the	other	version,	which	we	named	buildGameFromRequest:

private	Game	buildGameFromSessionAndRequest(HttpServletRequest	request)	{	

				Game	game	=	buildGameFromMap(sessionSaver.restore(request.getSession()));	

				Map<String,	String>	params	=	toMap(request);	

				int	row	=	getLastRowIndex(params);	

				log.debug("last	row	is	{}",	row);	

				if	(row	>=	0)	{	

								final	int	full	=	Integer.parseInt(params.get(html.paramNameFull(row)));	

								final	int	partial	=	Integer.parseInt(params.get(html.paramNamePartial(row)));	

								log.debug("setting	full	{}	and	partial	{}	for	row	{}",	full,	partial,	row);	

								table.setPartial(row,	partial);	

								table.setFull(row,	full);	

								if	(full	==	table.nrOfColumns())	{	

												game.setFinished();	

								}	

				}	

				return	game;	

}

Note	that	this	version	has	the	same	illness	of	using	the	parseInt	method	from	the	Integer	class	in	JDK,	which
throws	an	exception.

The	GameSessionSaver	class
This	class	has	three	public	methods:

save:	This	saves	a	table	to	the	user	session
restore:	This	gets	a	table	from	the	user	session
reset:	This	deletes	any	table	that	may	be	in	the	session

The	code	of	the	class	is	the	following:

public	class	GameSessionSaver	{	

				private	static	final	String	STATE_NAME	=	"GAME_STATE";	

				@Inject	

				private	HtmlTools	html;	

				@Inject	

				Table	table;	

				@Inject	

				ColorManager	manager;	

				public	void	save(HttpSession	session)	{	

								Map<String,String>	params	=	convertTableToMap();	

								session.setAttribute(STATE_NAME,params);	

				}	

				public	void	reset(HttpSession	session)	{	

								session.removeAttribute(STATE_NAME);	

				}	

				public	Map<String,String>	restore(HttpSession	session){	

								Map<String,String>	map=	

																				(Map<String,String>)	

																												session.getAttribute(STATE_NAME);	

								if(map	==	null){	map	=	new	HashMap<>();	}	

								return	map;	

				}	

				private	Map<String,String>	convertTableToMap()	{	

								Map<String,	String>	params	=	new	HashMap<>();	

								for	(int	row	=	0;	row	<	table.nrOfRows();	row++)	{	

												for	(int	column	=	0;	

																	column	<	table.nrOfColumns();	column++)	{	

																params.put(html.paramNameGuess(row,column),	

																											table.getColor(row,column).toString());	

												}	

												params.put(html.paramNameFull(row),	

																											""+table.getFull(row));	

												params.put(html.paramNamePartial(row),	

																											""+table.getPartial(row));	

								}	

								return	params;	

				}	

}

When	we	save	the	session	and	convert	the	table	to	a	map,	we	use	a	HashMap.	The	implementation	in	this
case	is	important.	The	HashMap	class	implements	the	Serializable	interface;	therefore,	we	can	be	safe	putting
it	to	the	session.	This	alone	does	not	guarantee	that	everything	in	HashMap	is	Serializable.	The	keys	and	the
values	in	our	case	are	Strings,	and	fortunately,	the	String	class	also	implements	the	Serializable	interface.
This	way,	the	converted	HashMap	object	can	be	safely	stored	in	the	session.

Also	note	that,	although	serialization	can	be	slow,	storing	HashMap	in	a	session	is	so	frequent	that	it
implements	its	own	serialization	mechanism.	This	implementation	is	optimized	and	avoids	serialization
being	dependent	on	the	internal	structure	of	the	map.

It	is	time	to	think	about	why	we	have	the	convertTableToMap	method	in	this	class	and
buildGameFromMap	in	MastermindHandler.	Converting	the	game	and	the	table	in	it	to	a	Map	and	the
other	way	round	should	be	implemented	together.	They	are	just	two	directions	of	the	same
conversion.	On	the	other	hand,	the	implementation	of	the	Table	to	Map	direction	should	use
a	Map	version	that	is	Serializable.	This	is	very	much	related	to	session	handling.	Converting
a	Map	object,	in	general,	to	a	Table	object	is	one	level	higher,	restoring	the	table	from
wherever	it	was	stored:	client,	session,	database,	or	in	the	moisture	of	the	cloud.	Session
storage	is	only	one	possible	implementation,	and	methods	should	be	implemented	in	the
class	that	meets	the	abstraction	level.
The	best	solution	could	be	to	implement	these	in	a	separate	class.	You	have	homework!

The	reset	method	is	not	used	from	the	handler.	This	is	invoked	from	the	Mastermind	class,	that	is,	the	servlet
class	to	reset	the	game	when	we	start	it:

public	void	doGet(HttpServletRequest	request,	

																		HttpServletResponse	response)	

								throws	ServletException,	IOException	{	

				GameSessionSaver	sessionSaver	=	new	GameSessionSaver();	

				sessionSaver.reset(request.getSession());	

				doPost(request,	response);	

}

Without	this,	playing	the	game	against	the	machine	once	would	just	display	the	finished	game	every	time
we	want	to	start	it	again,	until	we	exit	the	browser	and	restart	it	or	explicitly	delete	the	JSESSIONID	cookie
somewhere	in	the	advanced	menu	of	the	browser.	Calling	reset	does	not	delete	the	session.	The	session
remains	the	same,	and	thus	the	value	of	JSESSIONID	too,	but	the	game	is	deleted	from	the	session	object	that
the	servlet	container	maintains.

Running	the	Jetty	web	servlet
Since	we	have	included	the	Jetty	plugin	into	our	Gradle	build,	the	targets	of	the	plugin	are	available.	To
start	Jetty	is	as	easy	as	typing	the	following:	gradle	jettyRun

This	will	compile	the	code,	build	the	WAR	file,	and	start	the	Jetty	servlet	container.	To	help	us	remember,
it	also	prints	the	following	on	the	command	line:	Running	at	http://localhost:8080//hello

We	can	open	this	URL	and	see	the	opening	screen	of	the	game	with	the	colors	that	the	program	created	as
a	first	guess:

Now	it	is	time	to	have	some	fun	and	play	with	our	game,	giving	answers	to	the	program.	Do	not	make	it

easy	for	the	code!	Refer	to	the	following	screenshot:	

At	the	same	time,	if	you	look	at	the	console	where	you	have	typed	gradle	jettyRun,	you	will	see	that	the
code	is	printing	out	log	messages,	as	shown	in	the	following	screenshot:	

These	printouts	come	through	the	logger	that	we	have	in	our	code.	In	the	previous	chapters,	we	used	the
System.out.println	method	calls	to	send	informational	messages	to	the	console.	This	is	a	practice	that	should
not	be	followed	in	any	program	that	is	more	complex	than	a	hello	world

	

Logging
	

There	are	several	logging	frameworks	available	for	Java	and	each	has	advantages	and	disadvantages.
There	is	one	built	into	JDK	in	the	java.util.logging	package	and	accessing	the	logger	is	supported	by	the
System.getLogger	method:	the	System.Logger	and	System.LoggerFinder	classes.	Even	though	java.util.logging	has
been	available	in	Java	since	JDK	1.4,	a	lot	of	programs	use	other	logging	solutions.	In	addition	to	the
built-in	logging,	we	have	to	mention	log4j,	slf4j	and	Apache	Commons	Logging.	Before	getting	into	the
details	of	the	different	frameworks,	let's	discuss	why	it	is	important	to	use	logging	instead	of	just	printing
to	the	standard	output.

	

	

Configurability
The	most	important	reason	is	configurability	and	ease	of	use.	We	use	logging	to	record	information	about
the	operation	of	code.	This	is	not	the	core	functionality	of	the	application	but	is	inevitable	to	have	a
program	that	can	be	operated.	There	are	messages	we	print	out	to	the	log,	which	can	be	used	by	the
operating	personnel	to	identify	environmental	issues.	For	example,	when	an	IOException	is	thrown	and	it
gets	logged,	the	operation	may	look	at	the	logs	and	identify	that	the	disk	got	full.	They	may	delete	files,	or
add	a	new	disk	and	extend	the	partition.	Without	the	logs,	the	only	information	would	be	that	the	program
does	not	work.

The	logs	are	also	used	many	times	to	hunt	down	bugs.	Some	of	the	bugs	do	not	manifest	in	the	test
environment	and	are	very	difficult	to	reproduce.	In	such	a	case,	the	logs	that	print	out	detailed	information
about	the	execution	of	the	code	are	the	only	source	of	finding	the	root	cause	of	some	error.

Since	logging	needs	CPU,	IO	bandwidth,	and	other	resources,	it	should	be	carefully	examined	what	and
when	to	log.	This	examination	and	the	decisions	could	be	done	during	programming,	and	as	a	matter	of
fact,	that	is	the	only	possibility	if	we	used	System.out.println	for	logging.	If	we	need	to	find	a	bug,	we
should	log	a	lot.	If	we	log	a	lot,	the	performance	of	the	system	will	go	down.	The	conclusion	is	that	we
have	to	log	only	if	it	is	needed.	If	there	is	a	bug	in	the	system	that	cannot	be	reproduced,	the	developers
ask	the	operation	to	switch	on	debug	logging	for	a	short	period.	Switching	on	and	off	different	parts	of
logging	is	not	possible	when	System.out.println	is	used.	When	the	debug	level	log	is	switched	on,	the
performance	may	go	down	for	a	while,	but	at	the	same	time,	the	logs	become	available	for	analysis.	At	the
same	time,	the	analysis	is	simpler	when	we	have	to	find	the	log	lines	that	are	relevant	(and	you	do	not
know	beforehand	which	are	relevant)	if	there	is	a	small	(a	few	hundred	megabytes	log	file)	rather	than	a
lot	of	2-GB	compressed	log	files	to	find	the	lines	in.

Using	a	log	framework,	you	can	define	loggers	that	identify	the	source	of	the	log	messages	and	log	levels.
A	string	usually	identifies	the	logger,	and	it	is	a	common	practice	to	use	the	name	of	the	class	from	which
the	log	message	is	created.	This	is	such	a	common	practice	that	the	different	log	frameworks	provide
factory	classes	that	get	the	class	itself,	instead	of	its	name,	to	get	a	logger.

The	possible	logging	levels	may	be	slightly	different	in	different	logging	frameworks,	but	the	most
important	levels	are	as	follows:

FATAL:	This	is	used	when	the	log	message	is	about	some	error	that	prevents	the	program	from
continuing	its	execution.
ERROR:	This	is	used	when	there	is	some	severe	error,	but	the	program	can	still	go	on	functioning
although,	probably,	in	some	limited	manner.
WARNING:	This	is	used	when	there	is	some	condition	that	is	not	a	direct	problem	but	may	later	lead	to	an
error	if	not	attended.	For	example,	the	program	recognizes	that	a	disk	is	near	full,	some	database
connections	answer	within	limits	but	close	to	the	timeout	value,	and	similar	situations.
INFO:	This	is	used	to	create	messages	about	normal	operations	that	may	be	interesting	to	operate	and
are	not	an	error	or	warning.	These	messages	may	help	the	operation	to	debug	the	operational
environment	settings.
DEBUG:	This	is	used	to	log	information	about	the	program	that	is	detailed	enough	(hopefully)	to	find	a

bug	in	the	code.	The	trick	is	that	when	we	put	the	log	statement	into	the	code,	we	do	not	know	what
bug	it	could	be.	If	we	knew,	we	better	fixed	it.
TRACE:	This	is	even	more	detailed	information	about	the	execution	of	the	code.

The	log	frameworks	are	usually	configured	using	some	configuration	file.	The	configuration	may	limit	the
logging,	switching	off	certain	levels.	In	a	normal	operational	environment,	the	first	three	levels	are
usually	switched	on,	and	INFO,	DEBUG,	and	TRACE	are	switched	on	when	really	needed.	It	is	also	possible	to
switch	on	and	off	certain	levels	only	for	certain	loggers.	If	we	know	that	the	error	is	certainly	in	the
GameSessionSaver	class,	then	we	can	switch	on	the	DEBUG	level	only	for	that	class.

Log	files	may	also	contain	other	information	that	we	did	not	directly	code	and	would	be	very	cumbersome
to	print	to	the	standard	output.	Usually,	each	log	message	contains	the	precise	time	when	the	message	was
created,	the	name	of	the	logger,	and,	many	times,	the	identifier	of	the	thread.	Imagine	if	you	were	forced	to
put	all	this	to	each	and	every	println	argument;	you	would	probably	soon	write	some	extra	class	to	do	that.
Don't!	It	has	already	been	done	professionally:	it	is	the	logger	framework.

Loggers	can	also	be	configured	to	send	the	message	to	different	locations.	Logging	to	the	console	is	only
one	possibility.	Logging	frameworks	are	prepared	to	send	messages	to	files,	database,	Windows	Event
Recorder,	syslog	service,	or	to	any	other	target.	This	flexibility,	which	message	to	print,	what	extra
information	to	print,	and	where	to	print	is	reached	by	separating	the	different	tasks	that	the	logger
framework	does	into	several	classes	following	the	single	responsibility	principle.

The	logger	frameworks	usually	contain	loggers	that	create	the	logs,	formatters	that	format	the	message
from	the	original	log	information,	many	times,	adding	information	such	as	thread	ID	and	time	stamp,	and
appenders	that	append	the	formatted	message	to	some	destination.	These	classes	implement	interfaces
defined	in	the	logging	framework	and	nothing	but	the	size	of	the	book	stops	us	from	creating	our	own
formatters	and	appenders.

When	a	log	is	configured,	the	appenders	and	formatters	are	configured,	given	the	class	that	implements
them.	Therefore,	when	you	want	to	send	some	logs	to	some	special	destination,	you	are	not	limited	to	the
appenders	that	are	provided	by	the	authors	of	the	framework.	There	are	a	lot	of	independent	open-source
projects	for	different	logging	frameworks	providing	appenders	for	different	targets.

Performance
The	second	reason	to	use	a	logging	framework	is	performance.	Although	it	is	not	good	to	optimize	for
performance	before	we	profile	the	code	(premature	optimization),	using	some	methodology	known	to	be
slow	and	inserting	several	lines	into	our	performance-critical	code,	invoking	slow	methods	is	not	really
professional	either.	Using	a	well-established,	highly	optimized	framework	in	a	way	that	is	industry	best
practice	should	not	be	questionable.

Using	System.out.println	sends	the	message	to	a	stream	and	returns	only	when	the	IO	operation	is	done.
Using	real	logging	handles	the	information	to	the	logger	and	lets	the	logger	do	the	logging	asynchronously,
and	it	does	not	wait	for	completion.	It	is	really	a	drawback	that	log	information	may	be	lost	if	there	is
some	system	failure,	but	this	is	usually	not	a	serious	issue	considering	how	rarely	that	happens	and	what
is	on	the	other	side	of	the	wage:	performance.	What	do	we	lose	if	there	is	a	missing	debug	log	line	when
the	disk	got	full,	anyway	rendering	the	system	unusable?

There	is	one	exception	to	this:	audit	logging—when	some	log	information	about	the
transactions	of	the	system	has	to	be	saved	for	legal	reasons	so	that	the	operation	and	the
actual	transactions	can	be	audited.	In	such	a	case,	the	log	information	is	saved	in	a
transactional	manner,	making	the	log	part	of	the	transaction.	Because	that	is	a	totally
different	type	of	requirement,	audit	logging	is	not	usually	done	with	any	of	these
frameworks.

Also,	System.out.println	is	not	synchronized	and	that	way	different	threads	may	just	garble	the	output.	Log
frameworks	pay	attention	to	this	issue.

Log	frameworks
The	most	widely	used	logging	framework	is	Apachelog4j.	It	currently	has	a	second	version	that	is	a	total
rewrite	of	the	first	version.	It	is	very	versatile	and	has	many	appenders	and	formatters.	The	configuration
of	log4j	can	be	in	XML	or	properties	file	format,	and	it	can	also	be	configured	through	API.

The	author	of	log4j	version	1	created	a	new	logging	framework:	slf4j.	This	logging	library	is	essentially	a
façade	that	can	be	used	together	with	any	other	logging	framework.	Thus,	when	you	use	slf4j	in	a	library
you	develop,	and	your	code	is	added	to	a	program	as	a	dependency	that	uses	a	different	logging
framework,	it	is	easy	to	configure	slf4j	to	send	the	logs	to	the	loggers	of	the	other	framework.	Thus,	the
logs	will	be	handled	together	and	not	in	separate	file,	which	is	desirable	to	decrease	the	cost	of
operation.	When	developing	your	library	code	or	an	application	that	uses	slf4j,	there	is	no	need	to	select
another	log	framework	to	slf4j.	It	has	its	own	simple	implementation	called	backlog.

Apache	Commons	Logging	is	also	a	façade	with	its	own	logging	implementation	if	nothing	else	fails.	The
major	difference	from	slf4j	is	that	it	is	more	flexible	in	configuration	and	what	underlying	logging	to	use,
and	it	implements	a	run-time	algorithm	to	discover	which	logging	framework	is	available	and	is	to	be
used.	The	industry	best	practice	shows	that	this	flexibility,	which	also	comes	with	higher	complexity	and
cost,	is	not	needed.

Java	9	logging
Java	9	includes	a	facade	implementation	for	logging.	The	use	is	very	simple	and	we	can	expect	that
logging	frameworks	will	very	soon	start	to	support	this	façade.	The	fact	that	this	façade	is	built	into	the
JDK	has	two	major	advantage:

The	libraries	that	want	to	log	do	not	need	to	have	any	dependency	on	any	logging	framework	or
logging	façade	any	more.	The	only	dependency	is	the	JDK	log	façade	that	is	there	anyway.
The	JDK	libraries	that	log	themselves	use	this	façade	and	thus	they	will	log	into	the	same	log	file	as
the	application.

If	we	use	the	JDK-provided	logging	façade	the	start	of	the	ColorManager	class	will	be	changed	to	the
following:

package	packt.java9.by.example.mastermind;	

import	javax.inject.Inject;	

import	javax.inject.Named;	

import	javax.inject.Singleton;	

import	java.util.HashMap;	

import	java.util.Map;	

import	java.lang.System.Logger;	

import	static	java.lang.System.Logger.Level.DEBUG;	

@Singleton	

public	class	ColorManager	{	

				protected	final	int	nrColors;	

				protected	final	Map<Color,	Color>	successor	=	new	HashMap<>();	

				private	Color	first;	

				private	final	ColorFactory	factory;	

				private	static	final	Logger	log	=	System.getLogger(ColorManager.class.getName());	

				@Inject	

				public	ColorManager(@Named("nrColors")	int	nrColors,	

																																											ColorFactory	factory)	{	

								log.log(DEBUG,"creating	colorManager	for	{0}	colors",	

																																											nrColors);

In	this	version	we	do	not	import	the	slf4j	classes.	Instead	we	import	the	java.lang.System.Logger	class.

Note	that	we	do	not	need	to	import	the	System	class,	because	the	classes	from	the	java.lang
package	are	automatically	imported.	This	is	not	true	for	the	classes	that	are	nested
classes	in	the	System	class.

To	get	access	to	the	logger	the	System.getLogger	static	method	is	called.	This	method	finds	the	actual	logger
that	is	available	and	returns	one	for	the	name	that	we	pass	as	argument.	There	is	no	version	of	the	method
getLogger	that	accepts	the	class	as	the	argument.	If	we	want	to	stick	to	the	convention	then	we	have	to	write
ColorManager.class.getName()	to	get	the	name	of	the	class	or	we	can	write	there	the	name	of	the	class	as	a
string.	The	second	approach	has	the	drawback	that	it	does	not	follow	the	change	of	the	name	of	the	class.
Intelligent	IDEs	like	IntelliJ,	Eclipse,	or	Netbeans	rename	the	references	to	classes	automatically	but	they
have	a	hard	time	when	the	name	of	the	class	is	used	in	a	string.

The	interface	System.Logger	does	not	declare	the	convenience	methods	error,	debug,	warning,	and	so	on,	that	are
familiar	from	other	logging	frameworks	and	façade.	There	is	only	one	method	named	log	and	the	first

argument	of	this	method	is	the	level	of	the	actual	log	we	issue.	There	are	eight	levels	defined:	ALL,	TRACE,
DEBUG,	INFO,	WARNING,	ERROR,	and	OFF.	When	creating	a	log	message	we	are	supposed	to	use	one	of	the	middle
six	levels.	ALL	and	OFF	are	meant	to	be	passed	to	the	isLoggable	method.	This	method	can	be	used	to	check	if
the	actual	logging	level	gets	logged	or	not.	For	example,	if	the	level	is	set	to	INFO	then	messages	sent	with
DEBUG	or	TRACE	will	not	be	printed.

The	actual	implementation	is	located	by	the	JDK	using	the	service	loader	functionality.	The	log
implementation	has	to	be	in	a	module	that	provides	the	interface	java.lang.System.LoggerFinder	via	some
implementation.	In	other	words	the	module	should	have	a	class	that	implements	the	LoggerFinder	interface
and	the	module-info.java	should	declare	which	class	it	is	using	the	code:

provides	java.lang.System.LoggerFinder	with	

																												packt.java9.by.example.MyLoggerFinder;

The	MyLoggerFinder	class	has	to	extend	the	LoggerFinder	abstract	class	with	the	method	getLogger.

Logging	practice
The	practice	of	logging	is	very	simple.	If	you	do	not	want	to	spend	too	much	time	experimenting	with
different	logging	solutions	and	you	do	not	have	some	special	requirement,	then	simply	go	with	slf4j,	add
the	JAR	to	the	dependency	list	as	a	compile	dependency,	and	start	using	logging	in	the	source	code.

Since	logging	is	not	instance-specific,	and	loggers	implement	thread	safety,	the	log	objects	that	we	usually
use	are	stored	in	a	static	field,	and	since	they	are	used	as	long	as	the	class	is	used,	the	program	running	the
field	is	also	final.	For	example	using	the	slf4j	façade	we	can	get	a	logger	with	the	following	command:
private	static	final	Logger	log	=	
LoggerFactory.getLogger(MastermindHandler.class);

To	get	the	logger,	the	logger	factory	is	used,	which	just	creates	the	logger	or	returns	the	one	that	is	already
available.

The	name	of	the	variable	is	usually	log	or	logger,	but	do	not	be	surprised	if	you	see	LOG	or
LOGGER.	The	reason	for	uppercasing	the	name	of	the	variable	is	that	some	static	code
analysis	checkers	treat	static	final	variables	as	constants,	as	they	really	are,	and	the
convention	in	the	Java	community	is	to	use	uppercase	names	for	such	variables.	It	is	a
matter	of	taste;	many	times	log	and	logger	are	used	in	lowercase.

To	create	a	log	item	the	methods	trace,	debug,	info,	warn,	and	error	create	a	message	with	the	respective	level
as	the	name	implies.	For	example,	consider	the	following	line:

log.debug("Adding	new	guess	{}	to	the	game",	newGuess);

It	creates	a	debug	message.	Slf4j	has	support	for	formatting	using	the	{}	literal	inside	strings.	This	way,
there	is	no	need	to	append	the	string	from	small	parts,	and	in	case	the	actual	log	item	is	not	sent	to	the	log
destination,	the	formatting	will	not	perform.	If	we	use	String	concatenation	in	any	form	to	pass	a	string	as
an	argument,	then	the	formatting	will	happen	even	if	debug	logging	is	not	desired	as	per	the	example.

The	logging	methods	also	have	a	version	that	gets	only	two	arguments:	a	String	message	and	Throwable.	In
this	case,	the	logging	framework	will	take	care	of	the	output	of	the	exception	and	the	stack	trace	along
with	it.	If	you	log	something	in	exception	handling	code,	log	the	exception	and	let	the	logger	format	it.

Other	technologies
We	discussed	the	servlet	technology,	a	bit	of	JavaScript,	HTML,	and	CSS.	When	programming	in	a	real
professional	environment,	these	technologies	are	generally	used.	The	creation	of	the	user	interface	of
applications,	however,	was	not	always	based	on	these	technologies.	Older	operating	system-native	GUI
applications	as	well	as	Swing,	AWT,	and	SWT	use	a	different	approach	to	create	UI.	They	build	up	the	UI
facing	the	user	from	program	code,	and	the	UI	is	built	as	a	hierarchical	structure	of	components.	When
web	programming	started,	Java	developers	had	experience	with	technologies	like	these	and	projects
created	frameworks	that	tried	to	hide	the	web	technology	layer.

One	technology	worth	mentioning	is	Google	Web	Toolkit,	which	implements	the	server	as	well	as	the
browser	code	in	Java,	but	since	there	is	no	Java	environment	implemented	in	the	browsers,	it	transpiles
(converts)	the	client	part	of	the	code	from	Java	to	JavaScript.	The	last	release	of	the	toolkit	was	created
two	years	ago	in	2014	and	since	then	Google	has	released	other	types	of	web	programming	toolkits	that
support	native	JavaScript,	HTML,	and	CSS	client	development.

Vaadin	is	also	a	toolkit	that	you	may	come	across.	It	lets	you	write	GUI	code	on	the	server	in	Java.	It	is
built	on	top	of	GWT	and	is	commercially	supported.	It	may	be	a	good	choice	in	case	there	are	developers
available	who	have	experience	with	GUI	development	in	Java	but	not	in	web	native	technologies,	and	the
application	does	not	require	special	usability	tuning	on	the	client	side.	A	typical	intranet	corporate
application	can	select	it	as	a	technology.

Java	Server	Faces	(JSF)	is	a	technology	that	tries	to	offload	the	client-side	development	of	the
application	from	the	developers	providing	widgets	ready	to	be	used	and	the	server	side.	It	is	a	collection
of	several	Java	Specification	Requests	(JSR)	and	there	are	several	implementations.	The	components
and	their	relations	are	configured	in	XML	files	and	the	server	creates	the	client	native	code.	In	this
technology,	there	is	no	transpilation	from	Java	to	JavaScript.	It	is	more	like	using	a	limited	but	huge	set	of
widgets,	limiting	the	use	to	those	only,	and	giving	up	direct	programming	of	the	web	browser.	If	one	has
the	experience	and	knowledge,	however,	they	can	create	new	widgets	in	HTML,	CSS,	and	JavaScript.

There	are	many	other	technologies	that	were	developed	to	support	web	applications	in	Java.	The	modern
approach	advocated	by	most	of	the	big	players	is	to	develop	the	server	side	and	the	client	side	using
separate	toolsets	and	methodologies,	and	connect	the	two	using	REST	communication.

	

Summary
	

In	this	chapter,	you	learnt	the	structure	of	web	programming.	This	was	not	possible	without	understanding
the	basics	of	TCP/IP	networking,	which	is	the	protocol	of	the	Internet.	The	application	level	protocol	that
is	used	over	that	is	HTTP,	currently	in	a	very	new	version	2.0,	which	is	still	not	supported	by	the	servlet
standard.	We	created	a	version	of	the	Mastermind	game	that,	this	time,	can	really	be	played	using	the
browser	and	we	started	it	in	a	development	environment	using	Jetty.	We	examined	how	to	store	the	game
state	and	implemented	two	versions.	Finally,	we	learned	the	basics	of	logging	and	we	looked	at	other
technologies.	At	the	same	time,	we	also	looked	at	the	dependency	injection	implementation	Guice	from
Google,	and	we	studied	how	it	works	under	the	hood,	and	why	and	how	to	use	it.

After	this	chapter,	you	will	be	able	to	start	the	development	of	a	web	application	in	Java	and	will
understand	the	architecture	of	such	a	program.	You	will	understand	what	is	under	the	hood	when	you	start
learning	how	to	program	web	applications	using	the	Spring	framework,	which	hides	many	of	the
complexities	of	web	programming.

	

	

Building	a	Commercial	Web	Application	Using
REST
We	were	playing	around	till	now,	but	Java	is	not	a	toy.	We	want	to	use	Java	for	something	real	and
serious,	commercial	and	professional.	In	this	chapter,	we	will	do	that.	The	example	is	not	something	that
is	only	interesting	to	play	with,	such	as	Mastermind	in	the	previous	three	chapters,	but	rather	a	real
commercial	application.	Not	a	real-life	application	actually.	You	should	not	expect	anything	like	that	in	a
book.	It	would	be	too	long	and	not	educating	enough.	However,	the	application	that	we	will	develop	in
this	chapter	can	be	extended	and	can	be	used	as	a	core	for	a	real-life	application	in	case	you	decided	to
do	so.

In	the	previous	chapter,	we	created	servlets.	To	do	so,	we	used	the	servlet	specification,	and	we	hand-
implemented	servlets.	That	is	something	you	will	rarely	do	these	days.	Instead,	we	will	use	a	readily
available	framework,	this	time,	Spring.	It	is	the	most	widely	used	framework	for	Java	commercial
applications,	and	I	dare	say	it	is	the	de	facto	standard.	It	will	do	all	the	tedious	work	that	we	had	to	do	(at
least	to	understand	and	learn	how	a	servlet	works)	in	the	previous	chapter.	We	will	also	use	Spring	for
dependency	injection	(why	use	two	frameworks	when	one	does	it	all?),	and	we	will	use	Tomcat.

In	the	previous	chapter,	we	used	Guice	as	a	DI	framework	and	Jetty	as	a	servlet
container.	They	can	be	a	perfectly	good	choice	for	some	projects.	For	other	projects,
other	frameworks	do	better.	To	have	the	opportunity	to	look	at	different	tools	in	this	book,
we	will	use	different	frameworks	even	though	all	the	examples	could	be	created	by	simply
using	Tomcat	and	Spring.

The	commercial	application	we	will	develop	will	be	an	ordering	system	targeting	resellers.	The	interface
we	will	provide	to	the	users	will	not	be	a	web	browser;	rather,	it	will	be	REST.	The	users	will
themselves	develop	applications	that	communicate	with	our	system	and	place	orders	for	different
products.	The	structure	of	the	application	we	will	develop	will	be	microservices	architecture,	and	we
will	use	soapUI	to	test	the	application,	in	addition	to	the	standard	Chrome	developer	tool	features.

	

The	MyBusiness	web	shop
	

Imagine	that	we	have	a	huge	trading	and	logistics	company.	There	are	tens	of	thousands	of	different
products	on	the	shelves;	hundreds	of	lorries	come	to	our	warehouse	bringing	new	goods,	and	hundreds	of
lorries	deliver	goods	to	our	customers.	To	manage	the	information,	we	have	an	inventory	system	that
keeps	track	of	the	goods	every	day,	hour,	and	minute	to	know	what	we	actually	have	in	the	warehouse.	We
serve	our	customers	without	humans	managing	the	warehouse	information.	Formerly,	there	were	phones,
fax	machines,	and	even	telex,	but	today,	all	we	use	is	the	Internet	and	web	services.	We	do	not	provide	a
website	for	our	customers.	We	have	never	directly	served	the	end	users	in	our	imagined	business,	but
these	days,	we	have	a	subsidiary	that	we	started	off	as	a	separate	company	to	do	just	that.	They	have	a
website,	and	it	is	totally	independent	from	us.	They	are	just	one	of	our	hundreds	of	registered	partners
who	each	use	a	web	service	interface	to	see	the	products	we	have,	order	products,	and	track	the	order
status.

	

	

Sample	business	architecture
Our	partners	are	also	large	companies	with	automated	administration,	with	several	programs	running	on
several	machines.	We	have	no	interest	in	their	architecture	and	the	technology	they	use,	but	we	want	to
integrate	their	operations.	We	want	to	serve	them	in	a	way	that	doesn't	require	any	human	interaction	for
the	administration	to	order	goods	on	either	of	our	sides.	To	do	so,	a	web	service	interface	is	provided	that
can	be	utilized	no	matter	what	IT	infrastructure	they	use.

On	our	side,	as	we	imagine	the	example,	we	recently	replaced	our	monolithic	application	with
microservices	architecture,	and	though	there	are	still	some	SOAP-based	solutions	in	the	system,	most	of
the	backend	modules	communicate	using	HTTPS	and	REST	protocols.	Some	of	the	modules	still	rely	on
asynchronous	file	transfers	done	on	a	daily	basis	using	FTP	started	from	a	UNIX	cron	job.	The	General
Ledger	system	was	programmed	in	COBOL.	Fortunately,	we	do	not	need	to	deal	with	these	dinosaurs.

All	this	structure	is	an	imagined	setup	but	a	realistic	one.	I	made	up	and	described	these
parts	to	give	you	a	picture	of	how	you	may	see	mixed	technologies	in	a	large	enterprise.
What	I	described	here	is	a	very	simple	setup.	There	are	companies	that	have	more	than	a
thousand	software	modules	in	their	systems	using	different	technologies	and	totally
different	interfaces,	all	interconnected	with	each	other.	This	is	not	because	they	like	the
mess,	but	that	is	the	way	it	becomes	after	30	years	of	continuous	IT	development.	New
technologies	come	and	old	technologies	fade	out.	The	business	changes	and	you	cannot
stick	to	the	old	technologies	if	you	want	to	stay	competitive.	At	the	same	time,	you	just
cannot	replace	the	entire	infrastructure	instantaneously.	The	result	is	that	we	see	in	an
enterprise	fairly	old	technologies	still	running	and,	many	times,	new	technologies.	Old
technologies	get	rolled	out	by	time.	They	do	not	stay	forever,	and	still,	we	are	surprised
sometimes	when	a	dinosaur	comes	in	front	of	us.

What	we	have	to	deal	with	is	the	two	frontend	components	that	we	will	develop.	These	are	as	follows:

Product	Information
Order	Placement	and	Tracking

In	the	following	image,	you	can	see	the	architectural	UML	diagram	of	the	structure	that	we	look	at.	The
parts	we	will	have	interaction	with	are	only	the	frontend	components,	but	it	helps	understand	the	working
and	their	role	if	we	have	a	bigger	picture:

Product	Information	delivers	information	about	a	single	product,	but	it	can	also	deliver	a	list	of	products
based	on	the	query	criteria.	Order	Placement	and	Tracking	provides	functions	to	place	an	order	and	also
lets	the	client	to	query	the	state	of	past	orders.

To	provide	product	information,	we	need	access	to	the	Product	Catalog	module	that	holds	the	actual
product	details.

There	can	be	a	lot	of	other	tasks	that	the	Product	Catalog	does,	and	that	is	the	reason	it
is	a	separate	module.	It	can	have,	for	example,	a	workflow	and	approval	engine	that	lets
product	administrators	to	enter	product	data	and	managers	to	check	and	approve	the
data.	Approval	is	usually	a	complex	process,	considering	typos	and	legal	questions	(we
do	not	want	to	trade	unlicensed	drugs,	explosives,	and	so	on),	and	checking	the	quality
and	approval	state	of	the	source	of	the	goods.	Many	complex	tasks	are	included	that	make
it	a	backend	module.	In	large	enterprise	applications,	the	frontend	systems	rarely	do
anything	else	other	than	the	very	basic	functionality	of	serving	the	outside	parties.	But
this	is	good	for	us;	we	can	focus	on	the	service	that	we	have	to	deliver.	And	this	is	also
good	for	the	architecture.	It	is	the	same	principle	as	in	object-oriented	programming:
single	responsibility.

The	Product	Information	module	also	has	to	consult	with	the	Access	Control	module	to	see	if	a	certain
product	can	be	delivered	to	the	actual	customer,	and	with	the	inventory	to	see	if	there	is	any	product	left,
so	we	do	not	offer	a	product	that	is	out	of	stock.

The	Order	Placement	and	Tracking	also	needs	access	to	Product	Inventory	and	Access	Control	modules	to
check	whether	the	order	can	be	fulfilled.	At	the	same	time,	it	also	needs	services	from	the	Pricing	module,
which	can	calculate	the	price	for	the	order,	and	from	the	Logistics	module,	which	triggers	the	collection
of	goods	from	the	inventory	locations	and	shipment	to	the	customer.	Logistics	also	has	a	connection	to

invoicing,	which	has	a	connection	to	the	General	Ledger,	but	these	are	on	the	picture	only	to	show	that	the
travel	of	information	does	not	end	there.	There	are	many	other	modules	that	run	the	company,	all	of	which
are	none	of	our	interest	at	the	moment.

Microservices
The	architecture	described	in	the	previous	chapter	is	not	a	clean	microservice	architecture.	You	will
never	meet	one	in	its	pure	form	in	any	enterprise.	It	is	more	like	something	that	we	really	meet	in	a	real
company	moving	from	monolithic	to	microservices.

We	talk	about	the	microservice	architecture	when	the	application	is	developed	in	the	form	of	many	small
services	that	communicate	with	each	other	using	some	simple	API,	usually	over	HTTP	and	REST.	The
services	implement	business	functionalities	and	can	be	deployed	independently.	Many	times,	it	is
desirable	that	the	service	deployment	is	automated.

The	individual	services	can	be	developed	using	different	programming	languages,	can	use	different	data
storage,	and	can	run	on	different	operating	systems;	thus,	they	are	highly	independent	of	each	other.	They
can	be,	and	usually	are,	developed	by	different	teams.	The	important	requirement	is	that	they	can
cooperate;	thus,	the	API	one	service	implements	is	usable	by	the	other	services	that	build	upon	it.

The	microservice	architecture	is	not	the	Holy	Grail	of	all	architectures.	It	gives	different	answers	to	some
problems	from	monolithic	architectures,	and	many	times,	these	answers	work	better	using	modern	tools.
The	applications	still	have	to	be	tested	and	debugged,	performance	has	to	be	managed,	and	bugs	and
issues	have	to	be	addressed.	The	difference	is	that	testing	can	be	separated	along	different	technologies;
debugging	may	need	more	network-related	work.	These	may	be	good,	bad,	or	both	at	the	same	time.	For
the	developers,	however,	the	advantage	is	clear.	They	can	work	on	a	smaller	unit	independently	and	can
see	the	result	of	their	work	faster.	When	developing	a	single	module	of	a	monolithic	application,	the	result
can	be	seen	when	the	entire	application	gets	deployed.	In	the	case	of	a	large	application,	that	may	be	rare.
A	typical	deployment	cycle	in	a	large	corporate	developing	monolithic	is	every	few	months,	say	3,	but	it
is	not	rare	to	see	the	release	development	twice	or	even	once	a	year.	Developing	microservices,	the	new
module	can	be	deployed	as	soon	as	it	is	ready	and	tested.

If	you	want	to	read	more	on	microservices,	the	first	and	the	most	authentic	source	is	the	article	by	Martin
Fowler	(http://www.martinfowler.com/articles/microservices.html).

http://www.martinfowler.com/articles/microservices.html

Service	interface	design
We	design	the	two	interfaces	that	we	will	implement.	When	we	design	interfaces,	we	focus	on	the
functionality	first.	Formatting	and	protocol	come	later.	Interfaces	generally	should	be	simple	and,	at	the
same	time,	should	accommodate	the	future	change.	This	is	a	hard	problem	because	we	cannot	see	the
future.	Business,	logistics,	and	all	other	experts	may	see	some	part	of	the	future:	how	the	world	will
change	and	what	it	will	impose	on	the	operation	of	the	company	and,	especially,	on	the	interface	we
provide	for	our	partners.

The	stability	of	an	interface	is	of	utmost	importance	because	the	partners	are	outside	entities.	We	cannot
refactor	the	code	they	use.	When	we	change	a	Java	interface	in	our	code,	the	compiler	will	complain	at
all	the	code	locations	where	the	change	should	be	followed.	In	case	of	an	interface	that	is	used	outside	of
our	realm,	this	is	not	the	case.	Even	if	it	is	only	a	Java	interface	that	we	publish	as	open	source	on
GitHub,	we	should	be	prepared	that	our	users	will	face	issues	if	we	change	the	library	in	an	incompatible
way.	In	that	case,	their	software	will	not	compile	and	work	with	our	library.	In	the	case	of	an	ordering
system,	it	means	that	they	will	not	order	from	us	and	we	will	soon	be	out	of	business.

This	is	one	of	the	reasons	why	interfaces	should	be	simple.	Although	this	is	generally	true	for	most	of	the
things	in	life,	it	is	extremely	important	for	such	interfaces.	It	is	tempting	to	provide	convenience	features
for	the	partners	because	they	are	easy	to	implement.	In	the	long	run,	however,	these	features	may	become
very	expensive	as	they	need	maintenance,	should	be	kept	backward	compatible,	and,	in	the	long	run,	may
not	gain	as	much	as	they	cost.

To	access	product	information,	we	need	two	functions.	One	of	them	lists	certain	products	and	another
returns	the	details	of	a	specific	product.	If	it	were	a	Java	API,	it	would	look	as	follows:

List<ProductId>	query(String	query);	

ProductInformation	byId(ProductId	id);

Similarly,	order	placement	may	look	as	shown	in	the	following:

OrderId	placeOrder(Order	order);

We	provide	these	functionalities	in	our	application	via	a	web	service	interface	and,	more	specifically,
REST	using	JSON.	We	will	discuss	these	technologies	in	a	bit	more	detailed	manner	along	with	the
Spring	framework	and	Model	View	Controller	design	pattern,	but	first	let's	look	at	the	product
information	controller	to	get	some	feeling	of	how	our	program	will	look:

package	packt.java9.by.example.mybusiness.productinformation;	

import	...	

@RestController	

public	class	ProductInformationController	{	

				@Autowired	

				ProductLookup	lookup;	

				@RequestMapping("/pi/{productId}")	

				public	ProductInformation	

											getProductInformation(@PathVariable	String	productId)	{	

								ProductInformation	productInformation	=	

																																lookup.byId(productId);	

								return	productInformation;	

				}	

				@RequestMapping("/query/{query}")	

				public	List<String>	lookupProductByTitle(@PathVariable	String	query,	HttpServletRequest	request)	{	

								//to	be	developed	later	

				}	

}

If	you	compare	the	code	of	the	servlet	with	the	preceding	code,	you	can	see	that	this	is	much	simpler.	We
do	not	need	to	deal	with	the	HttpServletRequest	object,	call	an	API	to	get	a	parameter,	or	create	an	HTML
output	and	write	it	to	the	response.	The	framework	does	this.	We	annotate	the	@RestController	class,	telling
Spring	that	this	is	a	controller	that	utilizes	the	REST	web	services;	thus,	it	will	by	default	create	a	JSON
response	from	the	object	we	return.	We	do	not	need	to	care	about	the	conversion	of	the	object	to	JSON,
although	we	can	if	there	is	really	a	need.	The	object	will	automatically	be	converted	to	JSON	using	the
field	names	used	in	the	class	and	the	field	values	of	the	instance	we	return.	If	the	object	contains	more
complex	structures	than	just	plain	String,	int,	and	double	values,	then	the	converter	is	prepared	for	nested
structures	and	the	most	common	data	types.

To	have	different	code	handling	and	different	URLs	on	the	servlet,	all	we	need	to	do	is	to	annotate	the
method	with	@RequestMapping,	providing	the	path	part	of	the	URL.	The	{productId}	notation	inside	the	mapping
string	is	readable	and	easy	to	maintain.	Spring	just	cuts	the	value	from	there	and	puts	it	for	us	in	the
productId	variable,	as	requested	by	the	@PathVariable	annotation.

The	actual	lookup	of	the	product	is	not	implemented	in	the	controller.	That	is	not	the	function	of	the
controller.	The	controller	only	decides	what	business	logic	to	invoke	and	what	view	to	use.	A	part	of	it	is
implemented	in	the	framework,	and	the	very	small	part	you	can	see	the	preceding	code.	The	business
logic	is	implemented	in	a	service	class.	An	instance	of	this	class	is	injected	to	the	lookup	field.	This	is	also
done	by	Spring.	The	actual	work	we	have	to	do	is	to	invoke	the	business	logic,	which	this	time,	since	we
have	only	one,	is	fairly	easy.

Most	of	these	things	seem	magic	without	some	more	details	about	what	the	framework	does	for	us.
Therefore,	before	going	on,	we	will	have	a	look	at	the	building	blocks:	JSON,	REST,	MVC,	and	a	bit	of
the	Spring	framework.

JSON
JSON	stands	for	JavaScript	Object	Notation.	It	is	defined	on	the	site,	http://www.json.org/.	This	is	a	textual
notation	in	the	same	way	as	the	object	literals	are	defined	in	JavaScript	.	An	object	representation	starts
with	the	{	character	and	ends	with	the	}	character.	The	text	in	between	defines	the	fields	of	the	objects	in
the	form,	string	:	value.	The	string	is	the	name	of	the	field,	and	since	JSON	wants	to	be	language	agnostic,
it	allows	any	characters	to	be	a	part	of	the	name	of	a	field,	and	thus	this	string	(as	well	as	any	string	in
JSON)	should	start	and	end	with	the	"	characters.

This	may	seem	strange	and,	many	times,	when	you	start	working	with	JSON,	it	is	easy	to
forget	and	write	{	myObject	:	"has	a	string"	}	instead	of	the	correct	{	"myObject"	:	"has	a	string"
}	notation.

Commas	separate	the	fields.	You	can	also	have	arrays	in	JSON.	They	start	and	end	with	[and]
characters,	respectively,	and	they	contain	comma-separated	values.	The	value	in	an	object	field	or	in	an
array	can	be	a	string,	a	number,	an	object,	an	array,	or	one	of	the	constants,	true,	false,	and	null.

Generally	speaking,	JSON	is	a	very	simple	notation	to	describe	data	that	can	be	stored	in	an	object.	It	is
easy	to	write	using	text	editors	and	easy	to	read,	and	thus	it	is	easier	to	debug	any	communication	that	uses
JSON	instead	of	more	complex	formats.	Ways	to	convert	JSON	to	a	Java	object	and	the	other	way	round,
are	readily	available	in	libraries	that	we	will	use	in	this	chapter.	A	sample	JSON	object	that	describes	a
product	from	our	sample	code	is	also	available	in	the	source	code	of	the	program,	as	follows:

{"id":"125","title":"Bar	Stool","description":"another	furniture","size":[20.0,2.0,18.0],"weight":300.0}

Note	that	the	formatting	of	JSON	does	not	require	a	new	line,	but	at	the	same	time,	this	is	also	possible.
Program-generated	JSON	objects	are	usually	compact	and	are	not	formatted.	When	we	edit	some	object
using	a	text	editor,	we	tend	to	format	the	indentation	of	the	fields	in	the	same	way	as	we	usually	do	in	Java
programming.

http://www.json.org/

REST
There	is	no	exact	definition	of	the	REST	protocol.	It	stands	for	Representational	state	transfer,	which
probably	does	not	mean	a	thing	to	someone	who	has	never	heard	of	it.	When	we	program	the	REST	API,
we	use	the	HTTP(S)	protocol.	We	send	simple	requests	to	the	server,	and	we	get	simple	answers	that	we
program.	This	way,	the	client	of	the	web	server	is	also	a	program	(by	the	way,	the	browser	is	also	a
program)	that	consumes	the	response	from	the	server.	The	format	of	the	response,	therefore,	is	not	HTML
formatted	using	CSS	and	enriched	by	client-side	functionalities	by	JavaScript,	but	rather	some	data
descriptive	format	such	as	JSON.	REST	does	not	set	restrictions	on	the	actual	format,	but	these	days,
JSON	is	the	most	widely	used.

The	wiki	page	that	describes	REST	is	available	at	https://en.wikipedia.org/wiki/Representational_state_transfer.	REST
interfaces	are	usually	made	simple.	The	HTTP	requests	almost	always	use	the	GET	method.	It	also	makes
the	testing	of	REST	services	simple	since	nothing	is	easier	than	issuing	a	GET	request	from	a	browser.	POST
requests	are	only	used	when	the	service	performs	some	transaction	or	change	on	the	server,	and	that	way,
the	request	is	sending	data	to	the	server	rather	than	getting	some	data.

In	our	application,	we	will	use	the	GET	method	to	query	a	list	of	products	and	get	information	about	a
product,	and	we	will	only	use	POST	to	order	products.	The	application	that	serves	these	requests	will	run	in
a	servlet	container.	You	have	learnt	how	to	create	a	naked	servlet	without	the	use	of	a	framework.	In	this
chapter,	we	will	use	the	Spring	framework,	which	offloads	many	of	the	tasks	from	the	developer.	There
are	many	program	constructs	in	servlet	programming	that	are	just	the	same	most	of	the	time.	They	are
called	boilerplate	code.	The	Spring	framework	utilizes	the	Model	View	Controller	design	pattern	to
develop	web	applications;	thus,	we	will	look	at	it	in	brief,	before	discussing	Spring	in	general.

https://en.wikipedia.org/wiki/Representational_state_transfer

Model	View	Controller
Model	View	Controller	(MVC)	is	a	design	pattern.	Design	patterns	are	programming	constructs:	simple
structures	that	give	some	hint	on	how	to	solve	some	specific	problems.	The	term,	design	pattern	was
coined	and	formally	described	in	the	book,	Design	Patterns,	Elements	of	Reusable	Object-Oriented
Software,	written	by	Erich	Gamma,	Richard	Helm,	Ralph	Johnson,	and	John	Vlissides.	The	book	defines
a	design	pattern	as	a	structure	with	a	name,	a	problem,	and	a	solution.	The	name	describes	the	pattern
and	gives	the	vocabulary	for	the	developer	community	to	use	when	talking	about	these	patterns.	It	is
important	that	different	developers	use	the	same	language	terminology	in	order	to	understand	each	other.
The	problem	describes	the	situation,	that	is,	the	design	problem	where	the	pattern	can	be	applied.	The
solution	describes	classes	and	objects	and	the	relations	between	them,	which	contribute	to	a	good	design.

One	of	them	is	MVC,	which	is	suitable	for	programming	web	applications	but	generally	for	any
application	that	has	a	user	interface.	In	our	case,	we	do	not	have	a	classical	user	interface	because	the
client	is	also	a	program;	still,	MVC	can	be	and	is	a	good	choice	to	use.

The	MVC	pattern,	as	the	name	also	indicates,	has	three	parts:	a	model,	a	view,	and	a	controller.	This
separation	follows	the	single	responsibility	principle,	requiring	one	part	for	each	distinct	responsibility.
The	controller	is	responsible	for	handling	the	inputs	of	the	system,	and	it	decides	what	model	and	view	to
use.	It	controls	the	execution	but	usually	does	not	do	any	business	logic.	The	model	does	the	business
logic	and	contains	the	data.	View	converts	the	model	data	to	a	representation	that	is	consumable	by	the
client.

MVC	is	a	well-known	and	widely	used	design	pattern,	and	it	is	directly	supported	by	Spring	in	such	a

way	that	when	you	create	a	web	application,	you	program	the	controller	built	into	the	framework,	using
annotations;	thus,	you	essentially	configure	it.	You	can	program	the	view,	but	it	is	more	likely	that	you	will
use	one	that	is	built	into	the	framework.	You	will	want	to	send	data	to	the	client	in	XML,	JSON,	or
HTML.	If	you	are	very	exotic,	you	may	want	to	send	YAML,	but	generally,	that	is	it.	You	do	not	want	to
implement	a	new	format	that	needs	to	be	programmed	on	the	server	and,	since	this	is	new,	also	on	the
client.

We	create	the	model,	and	this	time,	we	also	program	it.	After	all,	that	is	the	business	logic.	Frameworks
can	do	many	things	for	us,	mainly	the	things	that	are	the	same	for	most	of	the	applications	but	for	the
business	logic.	Business	logic	is	the	code	that	distinguishes	our	code	from	other	programs.	That	is	what
we	have	to	program.

On	the	other	hand,	that	is	what	we	like	to	do.	Focus	on	the	business	code	and	avoid	all	boilerplate
provided	by	the	framework.

Now	that	we	know	what	JSON,	REST,	and	the	general	Model	View	Controller	design	pattern	are,	let's
look	at	how	these	are	managed	by	Spring	and	how	we	can	put	these	technologies	into	action.

	

Spring	framework
	

The	Spring	framework	is	a	huge	one	with	several	modules.	The	first	version	of	the	framework	was
released	in	2003,	and	since	then,	there	have	been	four	major	releases	delivering	new	and	enhanced
features.	Currently,	Spring	is	the	de	facto	enterprise	framework	used,	perhaps	more	widely	than	the
standard	EJB	3.0

Spring	supports	dependency	injection,	Aspect-Oriented	Programming	(AOP),	persistence	for	SQL	and
NoSQL	databases	in	a	conventional	and	Object	Relational	Mapping	way,	transactional	support,
messaging,	web	programming,	and	many	other	features.	You	can	configure	it	using	XML	configuration
files,	annotations,	or	Java	classes.

	

	

Architecture	of	Spring
Spring	is	not	monolithic.	You	can	use	a	part	of	it,	or	only	some	of	the	features.	You	can	include	some	of
the	modules	of	Spring	that	you	need	and	leave	out	others.	Some	modules	depend	on	some	others,	but
Gradle,	Maven,	or	some	other	build	tool	handles	that.

The	following	image	shows	you	the	modules	of	the	Spring	framework	for	version	4:

Spring	is	constantly	developing	since	its	first	release,	and	it	is	still	considered	as	a	modern	framework.
The	core	of	the	framework	is	a	dependency	injection	container	similar	to	the	one	we	saw	in	the	previous
chapter.	As	the	framework	developed,	it	also	supported	AOP	and	many	other	enterprise	functionalities,
such	as	message	oriented	patterns	and	web	programming	with	an	implementation	of	Model	View
Controller,	supporting	not	only	servlets	but	also	portlets	and	WebSockets.	Since	Spring	targets	the
enterprise	application	arena,	it	also	supports	database	handling	in	many	different	ways.	It	supports	JDBC
using	templates,	Object	Relational	Mapping	(ORM),	and	transaction	management.

In	the	sample	program,	we	use	a	fairly	recent	module:	Spring	boot.	This	module	makes	it	extremely	easy
to	start	writing	and	running	applications,	assuming	a	lot	of	configurations	that	are	usually	the	same	for
many	programs.	It	contains	an	embedded	servlet	container	that	it	configures	for	default	settings	and
configures	Spring	wherever	it	is	possible,	so	we	can	focus	on	the	programming	aspect	rather	than	on	the
Spring	configuration.

Spring	core
The	central	element	of	the	core	module	is	the	context.	When	a	Spring	application	starts,	the	container
needs	a	context	in	which	the	container	can	create	different	beans.	This	is	very	general	and	true	for	any
dependency	injection	container.	If	we	programmatically	create	two	different	contexts,	they	may	live
independent	of	each	other	in	the	same	JVM.	If	there	is	a	bean	declared	as	a	singleton	so	that	there	should
be	only	one	single	instance	of	it,	then	the	container	will	create	a	single	instance	of	it	for	a	context	when
we	need	one	instance.	The	objects	representing	the	context	have	a	reference	to	the	object	that	we	have
already	created.	If	there	are	multiple	contexts,	however,	they	will	not	know	that	there	is	another	context	in
the	JVM	that	already	has	an	instance,	and	the	container	will	create	a	new	instance	of	the	singleton	bean
for	the	other	context.

Usually,	we	do	not	use	more	than	one	context	in	a	program,	but	there	are	numerous	examples	of	there
being	many	contexts	in	a	single	JVM.	When	different	servlets	run	in	the	same	servlet	container,	they	run	in
the	same	JVM	separated	by	the	class	loader	and	they	may	each	use	Spring.	In	this	case,	the	context	will
belong	to	the	servlet	and	each	will	have	a	new	context.

In	the	previous	chapter,	we	used	Guice.	The	Spring	context	is	similar	to	the	Guice
injector.	In	the	previous	chapter,	I	was	cheating	a	bit	because	I	was	programming	Guice
to	create	a	new	injector	for	each	request.	This	is	far	from	optimal,	and	Guice	provides	an
injector	implementation	that	can	handle	servlet	environments.	The	reason	for	cheating
was	that	I	wanted	to	focus	more	on	the	DI	architecture	essentials,	and	I	did	not	want	to
complicate	the	code	by	introducing	a	complex	(well,	more	complex)	implementation	of	the
injector.

In	the	Spring	context	behavior,	what	it	does,	is	defined	by	the	interface	ApplicationContext.	There	are	two
extensions	of	this	interface	and	many	implementations.	ConfigurableApplicationContext	extends
ApplicationContext,	defining	setters,	and	ConfigurableWebApplicationContext	defines	methods	needed	in	the	web
environment.	When	we	program	web	applications,	we	usually	do	not	need	to	interfere	directly	with	the
context.	The	framework	configures	the	servlet	container	programmatically,	and	it	contains	servlets	that
create	the	context	and	invoke	our	methods.	This	is	all	boilerplate	code	created	for	us.

The	context	keeps	track	of	the	beans	created,	but	it	does	not	create	them.	To	create	beans,	we	need	bean
factories	(at	least	one).	The	topmost	interface	of	bean	factories	in	Spring	is	BeanFactory.	The	difference
between	an	object	and	a	bean	is	that	a	bean	factory	creates	the	bean,	it	is	registered	in	the	context,	and	it
has	a	String	name.	This	way,	the	program	can	refer	to	the	bean	by	the	name.

Different	beans	can	be	configured	in	several	different	ways	in	Spring.	The	oldest	approach	is	to	create	an
XML	file	that	describes	the	different	beans,	specifying	the	names,	the	class	that	has	to	be	instantiated	to
create	the	bean,	and	fields	in	case	the	bean	needs	other	beans	to	be	injected	for	its	creation.

The	motivation	behind	this	approach	is	that	this	way,	the	bean	wiring	and	configuration	can	be	totally
independent	of	the	application	code.	It	becomes	a	configuration	file	that	can	be	maintained	separately.	If
we	have	a	large	application	that	may	work	in	several	different	environments,	the	access	to	inventory	data
may	be	available	in	multitude	ways.	In	one	environment,	the	inventory	is	available	by	calling	SOAP

services.	In	another	environment,	the	data	is	accessible	in	an	SQL	database.	In	the	third	environment,	it
can	be	available	in	some	NoSQL	store.	Each	of	these	accesses	is	implemented	as	a	separate	class,
implementing	a	common	inventory	access	interface.	The	application	code	depends	only	on	the	interface,
and	it	is	the	container	that	has	to	provide	one	or	the	other	implementation.

When	the	configuration	of	the	bean	wiring	is	in	XML,	then	only	this	XML	file	is	to	be	edited,	and	the	code
can	be	started	with	the	implementation	of	the	interface	that	is	suitable	for	that	environment.

The	next	possibility	is	to	configure	the	beans	using	annotations.	Many	times,	we	use	beans	and	Spring	not
because	there	are	many	implementations	for	a	bean	functionality,	but	because	we	want	to	separate	the
creation	of	the	object	instance	from	the	functionality.	This	is	a	good	style:	separation	of	the	concerns	even
if	the	implementation	is	single	without	alternatives.	However,	in	this	case,	creating	the	XML	configuration
is	redundant.	If	there	is	an	interface	and	a	single	implementation	of	it	in	our	code,	then	why	should	I
specify	in	an	XML	that	by	creating	an	object	with	a	class	that	implements	that	interface,	I	should	use	the
class	that	implements	that	interface?	Quite	obvious,	isn't	it?	We	do	not	like	programming	things	that	can	be
automated.

To	signal	that	a	class	can	be	used	as	a	bean,	and	to	possibly	provide	a	name,	we	can	use	the	@Component
annotation.	We	do	not	need	to	provide	a	name	as	an	argument.	In	that	case,	the	name	will	be	an	empty
string,	but	why	have	a	name	if	we	do	not	refer	to	it?	Spring	scans	all	the	classes	that	are	on	the	classpath
and	recognizes	the	classes	annotated,	and	it	knows	that	they	are	the	candidates	to	be	used	for	bean
creation.	When	a	component	needs	another	bean	to	be	injected,	the	field	can	be	annotated	with	@Autowired
or	@Inject.	The	@Autowired	annotation	is	a	Spring	annotation	and	existed	before	the	@Inject	annotation	was
standardized.	If	you	intend	to	use	your	code	outside	of	the	Spring	container,	it	is	recommended	to	use
standard	annotations.	Functionally,	they	are	equivalent.

In	our	code,	when	Spring	creates	an	instance	of	the	ProductInformationController	component,	it	sees	that	it
needs	an	instance	of	ProductLookup.	This	is	an	interface,	and	thus,	Spring	starts	to	look	for	some	class	that
implements	this	interface,	creates	an	instance	of	it,	possibly	first	creating	other	beans,	and	then	injects	it,
setting	the	field.	You	can	decide	to	annotate	the	setter	of	the	field	instead	of	the	field	itself.	In	such	a	case,
Spring	will	invoke	the	setter	even	if	the	setter	is	private.	You	can	inject	dependencies	through	constructor
arguments.	The	major	difference	between	the	setter,	field	injection,	and	constructor	injection	is	that	you
cannot	create	a	bean	without	dependency	in	case	you	use	constructor	injection.	When	the	bean	is
instantiated,	it	should	and	will	have	all	other	beans	injected	so	that	it	depends	on	using	the	constructor
injection.	At	the	same	time,	the	dependencies	that	need	to	be	injected	through	the	setter	injection,	or
directly	into	a	field,	could	be	instantiated	later	by	the	container	sometime	between	instantiating	the	class
and	readying	the	bean.

This	slight	difference	may	not	seem	interesting	or	important	until	your	constructor	code	may	become	more
complex	than	the	simple	dependency	settings	or	until	the	dependencies	become	complex.	In	the	case	of	a
complex	constructor,	the	code	should	pay	attention	to	the	fact	that	the	object	is	not	fully	created.	This	is
generally	true	for	any	constructor	code,	but	in	the	case	of	beans	created	by	a	dependency	injection
container,	it	is	even	more	important.	Thus,	it	may	be	advisable	to	use	constructor	injection.	In	that	case,
the	dependencies	are	there;	if	a	programmer	makes	a	mistake,	forgetting	that	the	object	is	not	fully
initialized,	and	uses	it	in	the	constructor	or	a	method	that	is	called	from	a	constructor,	the	dependency	is
there.	Also,	it	is	clean	and	well-structured	to	use	the	constructor	to	initialize	the	dependencies	and	have

those	fields	declared	final.

On	the	other	hand,	constructor	injection	has	its	downsides.

If	different	objects	depend	on	each	other	and	there	is	a	ring	in	the	dependency	graph,	then	Spring	will	face
a	hard	time	if	you	use	constructor	dependencies.	When	class	A	needs	class	B	and	the	other	way	round,	as
the	simplest	circle,	then	neither	A	nor	B	can	be	created	without	the	other	if	the	dependency	injection	is
constructor	dependency.	In	situations	like	this,	the	constructor	injection	cannot	be	used,	and	the	circle
should	be	broken	at	least	as	a	single	dependency.	In	situations	like	this,	setter	injection	is	inevitable.

Setter	injection	may	also	be	better	when	there	are	optional	dependencies.	Many	times,	some	class	may	not
need	all	its	dependencies	at	the	same	time.	Some	class	may	use	a	database	connection	or	a	NoSQL
database	handle	but	not	both	at	the	same	time.	Although	it	may	also	be	a	code	smell	and	probably	a	sign	of
poor	OO	design,	it	may	happen.	It	may	be	a	deliberate	decision	to	do	that	because	the	pure	OO	design
would	result	in	too	deep	object	hierarchies	and	too	many	classes,	beyond	the	maintainable	limit.	If	such	is
the	situation,	the	optional	dependencies	may	be	better	handled	using	setter	injection.	Some	are	configured
and	set;	some	are	left	with	default	values,	usually	null.

Last	but	not	least,	we	can	configure	the	container	using	Java	classes	in	case	the	annotations	are	not
enough.	For	example,	there	are	multiple	implementations	of	the	ProductLookup	interface,	as	it	is,	in	our	code
base.	(Don't	worry	if	you	did	not	recognize	that;	I	have	not	told	you	about	that	yet.)	There	is	a
ResourceBasedProductLookup	class	that	reads	properties	files	from	the	package	and	is	mainly	to	test	the
application,	and	there	is	RestClientProductLookup,	which	is	a	production-like	implementation	of	the	interface.
If	I	have	no	other	configuration	than	annotating	the	lookup	field	with	@Autowired,	Spring	will	not	know	which
implementation	to	use	and	will	reward	the	use	during	startup	with	the	following	error	message:

Error	starting	ApplicationContext.	To	display	the	auto-configuration	report	re-run	your	application	with	'debug'	enabled.	

2016-11-03	07:25:01.217	ERROR	51907	---	[restartedMain]	o.s.b.d.LoggingFailureAnalysisReporter			:		

APPLICATION	FAILED	TO	START	

Description:	

Parameter	0	of	constructor	in	packt.java9.by.example.mybusiness.productinformation.ProductInformationController	required	a	single	bean,	but	2	were	found:	

								-	resourceBasedProductLookup:	defined	in	file	[/.../sources/ch07/productinformation/build/classes/main/packt/java9/by/example/mybusiness/productinformation/lookup/ResourceBasedProductLookup.class]	

								-	restClientProductLookup:	defined	in	file	[/.../sources/ch07/productinformation/build/classes/main/packt/java9/by/example/mybusiness/productinformation/lookup/RestClientProductLookup.class]	

Action:	

Consider	marking	one	of	the	beans	as	@Primary,	updating	the	consumer	to	accept	multiple	beans,	or	using	@Qualifier	to	identify	the	bean	that	should	be	consumed

This	is	a	fairly	self-explanatory	error	message;	it	tells	a	lot.	Now	is	the	time	when	we	can	configure	the
bean	in	XML,	but	at	the	same	time,	we	can	also	configure	it	using	Java.

Many	developers	do	not	get	the	point	the	first	time.	I	did	not	get	it	either.	The	whole	XML	configuration
was	to	separate	the	configuration	from	the	code.	It	was	to	create	the	possibility	that	a	system	administrator
changes	the	configuration	and	is	free	to	select	one	or	the	other	implementation	of	some	interface,	wiring
the	application	together.	Now	Spring	tells	me	that	it	is	better	to	return	to	the	programmatic	way?

At	the	same	time,	I	could	hear	concerns	for	many	years	that	XML	is	not	really	any	better	than	Java	code.
XML	writing	is	essentially	programming,	except	that	the	tooling	and	IDE	support	is	not	as	good	for	XML

as	it	is	for	Java	code	(the	latter	developed	a	lot	in	recent	years,	although	for	Spring	XML	configuration).

To	understand	the	concept	of	returning	to	Java	code	from	XML,	we	have	to	get	back	to	the	pure	reason
and	aim	of	the	XML	way	of	configuration.	The	main	advantage	of	XML	Spring	configuration	is	not	that	the
format	is	not	programmatic	but	rather	that	the	configuration	code	is	separated	from	application	code.	If	we
write	the	configuration	in	Java	and	keep	those	configuration	classes	to	the	bare	minimum,	and	they	stay	as
they	should,	then	the	separation	of	application	versus	configuration	code	still	stands.	It	is	only	the	format
of	the	configuration	that	we	change	from	XML	to	Java.	The	advantages	are	numerous.	One	is	that	the
names	of	the	classes	are	recognized	by	the	IDE	as	we	edit	and	we	can	have	autocomplete	in	Java	(note
that	this	also	works	using	XML	in	some	of	the	IDEs	utilizing	some	of	the	extensions	of	plugins).	In	the
case	of	Java,	IDE	support	is	ubiquitous.	Java	is	more	readable	than	XML.	Well,	this	is	a	matter	of	taste,
but	most	of	us	like	Java	more	than	XML.

System	administrators	can	also	edit	Java	code.	When	they	edit	the	XML	configuration,	they	usually	have
to	extract	it	from	a	JAR	or	WAR	file,	edit	it,	and	then	package	the	archive	again.	In	the	case	of	Java
editing,	they	also	have	to	issue	a	gradle	war	command	or	something	similar.	This	should	not	be	a
showstopper	for	a	system	manager	who	runs	Java	applications	on	a	server.	And	again,	it	is	not	Java
programming.	It	is	only	editing	some	Java	code	files	and	replacing	some	class	name	literals	and	string
constants.

We	follow	this	approach	in	our	sample	application	code.	We	have	two	configuration	files	in	the
application:	one	for	local	deployment	and	testing	and	another	for	production.	The	@Profile	annotation
specifies	which	profile	the	configuration	should	use.	The	profile,	when	the	code	is	executed,	can	be
specified	on	the	command	line	as	a	system	property,	as	follows:

$	gradle	-Dspring.profiles.active=local	bootRun

The	configuration	class	is	annotated	with	@Configuration.	The	methods	that	are	bean	factories	are	annotated
with	@Bean:

package	packt.java9.by.example.mybusiness.productinformation;	

import	...	

@Configuration	

@Profile("local")	

public	class	SpringConfigurationLocal	{	

				@Bean	

				@Primary	

				public	ProductLookup	productLookup()	{	

								return	new	ResourceBasedProductLookup();	

				}	

				@Bean	

				public	ProductInformationServiceUrlBuilder	urlBuilder(){	

								return	null;	

				}	

}

The	bean	factory	simply	returns	a	new	instance	of	the	ResourceBasedProductLookup	class	that	implements	the
ProductLookup	interface.	This	implementation	can	be	used	to	run	the	application	for	local	testing	when	there
are	no	external	services	to	rely	on.	This	implementation	reads	the	product	data	from	local	resource	files
packaged	into	the	JAR	application.

The	production	version	of	the	configuration	is	not	much	different,	but	as	it	may	be	expected,	there	are	a
few	more	things	to	configure:

@Configuration	

@Profile("production")	

public	class	SpringConfiguration	{	

				@Bean	

				@Primary	

				public	ProductLookup	productLookup()	{	

								return	new	RestClientProductLookup(urlBuilder());	

				}	

				@Bean	

				public	ProductInformationServiceUrlBuilder	urlBuilder(){	

								return	new	ProductInformationServiceUrlBuilder(

																																									"http://localhost");	

				}	

}

This	version	of	the	ProductLookup	service	class	uses	an	external	REST	service	to	retrieve	the	data	that	it
will	present	to	the	clients.	To	do	so,	it	needs	the	URLs	of	these	services.	Such	URLs	should	usually	be
configured.	In	our	example,	we	implement	a	solution	where	these	URLs	can	be	computed	on	the	fly.	I	tried
to	make	up	a	situation	where	it	may	be	needed	in	real	life,	but	all	reasoning	was	contorted	and	I	gave	up.
The	real	reason	is	that,	this	way,	we	can	see	code	that	contains	a	bean	that	needs	another	bean	to	be
injected.	For	now,	note	that	the	ProductInformationServiceUrlBuilder	instance	bean	is	defined	in	the	same	way
as	the	ProductLookup	bean,	and	when	it	has	to	be	injected	into	the	constructor	of	the	ProductLookup	bean,	its
defining	bean	method	is	used	and	not	the	following	expression	directly:

new	ProductInformationServiceUrlBuilder("http://localhost");

The	latter	may	work,	but	not	in	all	situations	and	we	should	not	use	it.	For	the	reasons,	we	will	return
when	we	discuss	AOP	with	Spring	in	a	subsequent	section.

Also	note	that	there	is	no	need	to	define	an	interface	to	define	a	bean.	The	type	that	the	bean	method
returns	can	also	be	a	class.	The	context	will	use	the	method	that	fits	the	needed	type,	and	if	there	are	more
than	one	suitable	types	and	the	configuration	is	not	precise	enough,	as	we	saw,	the	container	will	log	an
error	and	will	not	work.

In	the	configuration	that	serves	the	local	profile,	we	create	a	null	value	for	ProductInformationServiceBuilder.
This	is	because	we	do	not	need	it	when	we	use	local	testing.	Also,	if	any	method	from	this	class	is
invoked,	it	will	be	an	error.	Errors	should	be	detected	as	soon	as	possible;	thus,	a	null	value	is	a	good
choice.

The	ProductInformationServiceUrlBuilder	class	is	very	simple:

package	packt.java9.by.example.mybusiness.productinformation;	

public	class	ProductInformationServiceUrlBuilder	{	

				private	final	String	baseUrl;	

				public	ProductInformationServiceUrlBuilder(String	baseUrl)	{	

								this.baseUrl	=	baseUrl;	

				}	

				public	String	url(String	service,	String	parameter)	{	

								final	String	serviceUrl;	

								switch	(service)	{	

												case	"pi":	

																serviceUrl	=		

																		baseUrl	+	":8081/product/{id}";	

																break;	

												case	"query":	

																serviceUrl	=		

																		baseUrl	+	":8081/query/{query}";	

																break;	

												case	"inventory":	

																serviceUrl	=		

																		baseUrl	+	":8083/inventory/{id}";	

																break;	

												default:	

																serviceUrl	=	null;	

																break;	

								}	

								return	serviceUrl;	

				}	

}

This	bean	also	needs	a	constructor	parameter,	and	we	used	a	string	constant	in	the	configuration.	This
clearly	shows	that	it	is	possible	to	use	a	simple	object	to	initialize	some	of	the	dependencies	(what	would
stop	us,	it	is	pure	Java	after	all),	but	it	may	hinder	the	working	of	some	Spring	features.

Service	classes
We	have	two	service	classes.	These	classes	serve	the	controllers	with	data	and	implement	the	business
logic,	no	matter	how	simple	they	are.	One	of	the	service	class	implementations	calls	REST-based
services,	while	the	other	one	reads	data	from	properties	files.	The	latter	can	be	used	to	test	the
application	offline.	The	one	that	calls	REST	services	is	used	in	the	production	environment.	Both	of	them
implement	the	ProductLookup	interface:

package	packt.java9.by.example.mybusiness.productinformation;	

import	java.util.List;	

public	interface	ProductLookup	{	

				ProductInformation	byId(String	id);	

				List<String>	byQuery(String	query);	

}

ResourceBasedProductLookup	stores	the	whole	database	in	a	map	called	products.	It	is	filled	from	the	properties
files	when	one	of	the	service	methods	is	invoked.	The	private	method	loadProducts	is	invoked	from	each	of
the	service	methods	when	they	start,	but	it	loads	the	data	only	if	it	is	not	loaded	yet:

package	packt.java9.by.example.mybusiness.productinformation.lookup;	

import...	

@Service	

public	class	ResourceBasedProductLookup	implements	ProductLookup	{	

				private	static	Logger	log	=	LoggerFactory.getLogger(ResourceBasedProductLookup.class);

The	class	is	annotated	using	@Service.	This	annotation	is	practically	equivalent	to	the	@Component	annotation.
This	is	only	an	alternative	name	to	the	same	annotation.	Spring	also	handles	the	@Component	annotation	such
that	if	an	annotation	interface	is	annotated	using	the	@Component	annotation,	the	annotation	can	also	be	used	to
signal	that	a	class	is	a	Spring	component.	You	can	write	your	own	annotation	interfaces	if	you	want	to
signal	for	better	readability	that	a	class	is	not	a	simple	component	but	some	other	special	type.

For	example,	start	up	your	IDE	and	navigate	to	the	source	code	of	the	org.springframework.stereotype.Service
interface:

private	ProductInformation	

																		fromProperties(Properties	properties)	{	

								final	ProductInformation	pi	=	new	ProductInformation();	

								pi.setTitle(properties.getProperty("title"));	

								pi.setDescription(properties.getProperty("description"));	

								pi.setWeight(

											Double.parseDouble(properties.getProperty("weight")));	

								pi.getSize()[0]	=	

											Double.parseDouble(properties.getProperty("width"));	

								pi.getSize()[1]	=		

											Double.parseDouble(properties.getProperty("height"));	

								pi.getSize()[2]	=		

											Double.parseDouble(properties.getProperty("depth"));	

								return	pi;	

				}

The	fromProperties	method	creates	an	instance	of	ProductInformation	and	fills	it	from	the	parameters	given	in
the	Properties	object.	The	Properties	class	is	an	old	and	widely	used	type.	Although	there	are	more	modern
formats	and	classes,	this	is	still	widely	used	and	it	is	likely	that	you	will	meet	this	class.	This	is	the	very
reason	we	use	it	here.

ProductInformation	is	a	simple	Data	Transfer	Object	(DTO)	that	contains	no	logic,	only
fields,	setters,	and	getters.	It	also	contains	a	constant,	emptyProductInformation,	holding	a
reference	to	an	instance	of	the	class	with	empty	values.

A	Properties	object	is	similar	to	a	Map	object.	It	contains	String	values	assigned	to	String	keys.	There	are
methods,	as	we	will	see	in	our	examples,	that	help	the	programmer	to	load	a	Properties	object	from	a	so-
called	properties	file.	Such	a	file	usually	has	the	.properties	extension,	and	it	contains	key	value	pairs	in
the	following	format:

key=value

For	example,	the	123.properties	file	contains	the	following:

id=123	

title=Book	Java	9	by	Example	

description=a	new	book	to	learn	Java	9	

weight=300	

width=20	

height=2	

depth=18

The	properties	files	are	used	to	store	simple	configuration	values	and	are	almost	exclusively	used	to
contain	language-specific	constants.	This	is	a	very	contorted	use	because	properties	files	are	ISO	Latin-1
encoded	files,	and	in	case	you	need	to	use	some	special	UTF-8	characters,	you	have	to	type	them	using	the
\uXXXX	format	or	using	the	native2ascii	converter	program.	You	cannot	save	them	simply	as	UTF-8.
Nevertheless,	this	is	the	file	format	used	for	language-specific	strings	used	for	program
internationalization	(also	abbreviated	as	i18n	because	there	are	18	characters	between	the	starting	i	and
the	last	n).
To	get	the	Properties	object,	we	have	to	read	the	files	in	the	project	and	get	them	packaged	into	a	JAR	file.
The	Spring	class,	PathMatchingResourcePatternResolver,	helps	us	in	doing	so.

Gosh,	yes,	I	know!	We	have	to	get	used	to	these	long	names	when	we	use	Spring.	Anyway,
such	long	and	descriptive	names	are	widely	used	in	an	enterprise	environment	and	they
are	needed	to	explain	the	functionality	of	the	classes.

We	declare	a	map	that	will	contain	all	the	products	during	the	testing:

final	private	Map<String,	ProductInformation>	

																												products	=	new	HashMap<>();

The	key	is	the	product	ID,	which	is	a	string	in	our	example.	The	values	are	the	ProductInformation	objects
that	we	fill	up	using	the	fromProperties	method:

private	boolean	productsAreNotLoaded	=	true;

The	next	field	signals	that	the	products	are	not	loaded:

Novice	programmers	usually	use	the	opposite	value	with	the	name	productsAreLoaded	and	set
to	false	by	default.	In	that	case,	the	only	place	where	we	will	read	a	value	will	negate	the
value,	or	the	main	branch	of	the	if	command	becomes	the	do	nothing	part.	Neither	is	a
best	practice.

private	void	loadProducts()	{	

								if	(productsAreNotLoaded)	{	

												try	{	

																Resource[]	resources	=	

																			new	PathMatchingResourcePatternResolver()	

																												.getResources(

																															"classpath:products/*.properties");	

																for	(Resource	resource	:	resources)	{	

																				loadResource(resource);	

																				}	

																}	

																productsAreNotLoaded	=	false;	

												}	catch	(IOException	ex)	{	

																log.error("Test	resources	can	not	be	read",ex);	

												}	

								}	

				}

The	getResources	method	returns	all	the	resources	(files)	that	are	on	the	classpath	under	the	products
directory	and	that	have	a.properties	extension:

private	void	loadResource(Resource	resource)	throws	IOException	{	

				final	int	dotPos	=	resource.getFilename().lastIndexOf('.');	

				final	String	id	=	resource.getFilename().substring(0,	dotPos);	

				Properties	properties	=	new	Properties();	

				properties.load(resource.getInputStream());	

				final	ProductInformation	pi	=	fromProperties(properties);	

				pi.setId(id);	

				products.put(id,	pi);	

}

The	product	ID	is	given	by	the	name	of	the	file.	This	is	calculated	using	simple	string	manipulation,
cutting	off	the	extension.	The	Resource	can	also	provide	an	input	stream	that	the	Properties	class's	load	method
can	use	to	load	all	the	properties	at	once	from	the	file.	Finally,	we	save	the	new	ProductInformation	object	in
the	map.

We	also	have	a	special	noProduct	list	that	is	empty.	This	is	returned	if	there	is	no	product	for	the	query
when	we	want	to	search	for	products:

private	static	final	List<String>	noProducts	=	

																																												new	LinkedList<>();

The	product	lookup	service	just	takes	a	product	from	the	Map	and	returns	it,	or	if	it	does	not	exist,	it	returns
an	empty	product:

@Override	

public	ProductInformation	byId(String	id)	{	

				loadProducts();	

				if	(products.containsKey(id))	{	

								return	products.get(id);	

				}	else	{	

								return	ProductInformation.emptyProductInformation;	

				}	

}

The	query	is	a	bit	more	complex.	It	implements	searching	for	a	product	by	title.	Real-life	implementations
may	implement	a	more	complex	logic,	but	this	version	is	for	local	testing	only;	thus,	the	search	by	title	is
enough,	perhaps	even	more	complex	than	would	be	really	necessary:

@Override	

public	List<String>	byQuery(String	query)	{	

				loadProducts();	

				List<String>	pis	=	new	LinkedList<>();	

				StringTokenizer	st	=	new	StringTokenizer(query,	"&=");	

				while	(st.hasMoreTokens())	{	

								final	String	key	=	st.nextToken();	

								if	(st.hasMoreTokens())	{	

												final	String	value	=	st.nextToken();	

												log.debug("processing	{}={}	query",	key,	value);	

												if	(!"title".equals(key))	{	

																return	noProducts;	

												}	

												for	(String	id	:	products.keySet())	{	

																ProductInformation	pi	=	products.get(id);	

																if	(pi.getTitle().startsWith(value))	{	

																				pis.add(id);	

																}	

												}	

								}	

				}	

				return	pis;	

}

The	service	class	that	implements	the	production	functionality	is	much	simpler.	Strange,	but	many	times
the	test	code	is	more	complex	than	the	production	code:

package	packt.java9.by.example.mybusiness.productinformation.lookup;	

import	...	

@Component	

public	class	RestClientProductLookup	implements	ProductLookup	{	

				private	static	Logger	log	=	LoggerFactory.getLogger(RestClientProductLookup.class);	

				final	private	ProductInformationServiceUrlBuilder	piSUBuilder;	

				public	RestClientProductLookup(

															ProductInformationServiceUrlBuilder	piSUBuilder)	{	

								this.piSUBuilder	=	piSUBuilder;	

				}

The	constructor	is	used	to	inject	the	URL	builder	bean	and	this	is	all	the	auxiliary	code	the	class	has.	The
rest	are	the	two	service	methods:

@Override	

				public	ProductInformation	byId(String	id)	{	

								Map<String,	String>	uriParameters	=	new	HashMap<>();	

								uriParameters.put("id",	id);	

								RestTemplate	rest	=	new	RestTemplate();	

								InventoryItemAmount	amount	=	rest.getForObject(

																								piSUBuilder.url("inventory"),	

																								InventoryItemAmount.class,	

																								uriParameters);	

								if	(amount.getAmount()	>	0)	{	

												return	rest.getForObject(piSUBuilder.url("pi"),	

																				ProductInformation.class,	

																				uriParameters);	

								}	else	{	

												return	ProductInformation.emptyProductInformation;	

								}	

				}

The	byId	method	first	calls	the	inventory	service	to	see	if	there	are	any	products	on	the	inventory.	This
REST	service	returns	a	JSON	that	has	the	format,	{	amount	:	nnn	};	thus,	we	need	a	class	(so	simple	that	we
do	not	list	here)	that	has	the	int	amount	field,	the	setter,	and	the	getter.

The	Spring	RestTemplate	provides	an	easy	way	to	access	a	REST	service.	All	it	needs	is	the	URL	template,
a	type	that	is	used	to	convert	the	result,	and	a	Map	object	with	the	parameters.	The	URL	template	string	may
contain	parameters	in	the	same	way	as	the	request	mapping	in	the	Spring	controllers,	the	name	of	the
parameter	being	between	the	{	and	}	characters.	The	template	class	provides	simple	methods	to	access

REST	services.	It	automatically	does	marshaling,	sending	parameters,	and	un-marshaling,	receiving	the
response.	In	the	case	of	a	GET	request,	the	marshaling	is	not	needed.	The	data	is	in	the	request	URL,	and	the
{xxx}	placeholders	are	replaced	with	the	values	from	the	map	supplied	as	a	third	argument.	The	un-
marshaling	is	readily	available	for	most	of	the	formats.	In	our	application,	the	REST	service	sends	JSON
data,	and	it	is	indicated	in	the	response	Content-Type	HTTP	header.	RestTemplate	converts	the	JSON	to	the
type	provided	as	argument.	If	ever	the	server	decides	to	send	the	response	in	XML,	and	it	will	also	be
indicated	in	the	HTTP	header,	RestTemplate	will	handle	the	situation	automatically.	As	a	matter	of	fact,
looking	at	the	code,	we	cannot	tell	how	the	response	is	encoded.	This	is	also	nice	because	it	makes	the
client	flexible	and	at	the	same	time,	we	do	not	need	to	deal	with	such	technical	details.	We	can	focus	on
the	business	logic.

At	the	same	time,	the	class	also	provides	configuration	parameters	in	the	case	of	marshaling	or	some	other
functionality	so	that	it	automatically	needs	that.	You	can,	for	example,	provide	marshaling	methods,	though
I	recommend	that	you	use	whatever	is	available	by	default.	In	most	cases,	when	a	developer	thinks	that
there	is	a	need	for	a	special	version	of	any	of	these	functions,	the	original	design	of	their	code	is	flawed.

The	business	logic	is	very	simple.	We	first	ask	the	inventory	if	there	is	any	product	in	stock.	If	there	is
(more	than	zero),	then	we	query	the	product	information	service	and	return	the	details.	If	there	is	none,
then	we	return	an	empty	record.

The	other	service	is	even	simpler.	It	simply	calls	the	underpinning	service	and	returns	the	result:

@Override	

				public	List<String>	byQuery(String	query)	{	

								Map<String,	String>	uriParameters	=	new	HashMap<>();	

								uriParameters.put("query",	query);	

								RestTemplate	rest	=	new	RestTemplate();	

								return	rest.getForObject(

																		piSUBuilder.url("query"),	

																		List.class,	

																		uriParameters);	

				}	

}

Compiling	and	running	the	application
We	use	gradle	to	compile	and	run	the	application.	Since	the	application	does	not	have	any	specific
configuration	that	would	not	appear	in	most	similar	applications,	it	is	wise	to	use	the	Spring	boot.	The
Spring	boot	makes	it	extremely	simple	to	create	and	run	a	web	application.	We	need	a	Java	standard	public
static	void	main	method	that	starts	up	the	application	via	Spring:	package
packt.java9.by.example.mybusiness.productinformation;	
import	...	
@SpringBootApplication(
scanBasePackageClasses	=	
packt.java9.by.example.mybusiness.SpringScanBase.class)	
public	class	Application	{	
public	static	void	main(String[]	args)	{	
SpringApplication.run(Application.class,	args);	
}	
}

The	method	does	nothing	but	start	the	StringApplication	class's	run	method.	It	passes	the	original	arguments
and	also	the	class	that	the	application	is	in.	Spring	uses	this	class	to	read	the	annotation.	The
@SpringBootApplication	annotation	signals	that	this	class	is	a	Spring	boot	application	and	provides	arguments
to	configure	the	packages	that	contain	the	application.	To	do	so,	you	can	provide	the	name	of	the	package
that	contains	the	classes,	but	you	can	also	provide	a	class	in	the	base	package	that	contains	all	the	classes
that	Spring	has	to	be	aware	of.	You	may	not	be	able	to	use	the	class	version	of	the	annotation	parameter
because	the	root	package	may	not	contain	any	class,	only	sub-packages.	At	the	same	time,	providing	the
name	of	the	root	package	as	String,	will	not	reveal	any	typo	or	misalignment	during	compile	time.	Some
IDE	may	recognize	that	the	parameter	is	supposed	to	be	a	package	name,	or	it	may	scan	the	strings	of	the
program	for	package	names	when	you	refactor	or	rename	a	package	and	give	you	support	for	that,	but	this
is	more	heuristics	only.	It	is	a	common	practice	to	create	a	placeholder	class	that	does	nothing	in	the	root
package	in	case	there	is	no	class	there.	This	class	can	be	used	to	specify	scanBasePackageClasses	as	an
annotation	parameter	instead	of	scanBasePackages	that	needs	String.	In	our	example,	we	have	an	empty
interface,	SpringScanBase,	as	a	placeholder.

Spring	scans	all	the	classes	that	are	on	the	classpath,	recognizes	the	components	and	field	annotations	that
it	can	interpret,	and	uses	this	knowledge	to	create	beans	without	configuration	when	needed.

Note	that	the	abstract	class,	ClassLoader,	included	in	the	JDK	does	not	provide	any	class
scanning	method.	Since	Java	environments	and	frameworks	can	implement	their	own
ClassLoaders,	it	is	possible	(but	very	unlikely)	that	some	implementation	does	not	provide
the	scanning	functionality	provided	by	the	URLClassLoader.	URLClassLoader	is	a	non-abstract
implementation	of	the	class	loading	functionality	and	is	a	part	of	the	JDK	just	as	well	as
ClassLoader.	We	will	discuss	the	intricacies	of	the	class	loading	mechanism	in	the
subsequent	chapters.

The	gradle	build	file	contains	the	usual	things.	It	specifies	the	repositories,	the	plugins	for	Java,	the	IDEs,

and	also	for	Spring	boot.	It	also	specifies	the	name	of	the	JAR	file	that	it	generates	during	build.	The	most
important	part	is	the	dependency	list:	buildscript	{	
repositories	{	
mavenCentral()	
}	
dependencies	{	
classpath("org.springframework.boot:spring-boot-gradle-plugin:1.4.1.RELEASE")	
}	
}	

apply	plugin:	'java'	
apply	plugin:	'eclipse'	
apply	plugin:	'idea'	
apply	plugin:	'spring-boot'	

jar	{	
baseName	=	'packt-ch07-microservice'	
version	=	'1.0.0'	
}	

repositories	{	
mavenCentral()	
}	

bootRun	{	
systemProperties	System.properties	
}	

sourceCompatibility	=	1.9	
targetCompatibility	=	1.9	

dependencies	{	
compile("org.springframework.boot:spring-boot-starter-web")	
compile("org.springframework.boot:spring-boot-devtools")	
compile("org.springframework:spring-aop")	
compile("org.springframework:spring-aspects")	
testCompile("org.springframework.boot:spring-boot-starter-test")	
}

We	depend	on	Spring	boot	packages,	some	test	packages,	AOP	support	(which	we	will	look	at	soon),	and
also	on	Spring	boot	devtools.

Spring	boot	devtools	make	it	possible	to	restart	a	web	application	whenever	it	is	recompiled,	without
restarting	the	built-in	Tomcat	server.	Suppose,	we	start	the	application	using	the	following	command	line:
gradle	-Dspring.profiles.active=production	bootRun

The	Gradle	starts	up	the	application	and	whenever	it	sees	that	the	classes	it	runs	are	modified,	it	reloads
them,	and	we	can	test	the	modified	application	within	a	few	seconds.

The	-Dspring.profiles.active=production	argument	specifies	that	the	production	profile	should	be	active.	To	be
able	to	use	this	command	line	parameter,	we	will	also	need	the	bootRun{}	configuration	closure	in	the	build
file.

	

Testing	the	application
	

The	application	should	have	unit	tests	for	each	and	every	class	it	has	except,	perhaps,	for	the	DTO	classes
that	contain	no	functionality.	The	setters	and	getters	are	created	by	the	IDE	and	are	not	typed	in	by	the
programmer,	so	it	is	unlikely	that	there	will	be	any	errors	in	those.	If	there	is	some	error	related	to	those
classes,	it	is	more	likely	that	it	is	some	integration	problem	that	cannot	be	discovered	using	unit	tests.
Since	we	discussed	unit	tests	in	the	previous	chapters	in	detail,	we	will	focus	more	on	integration	tests
and	application	tests	here.

	

	

Integration	test
Integration	tests	are	very	similar	to	unit	tests,	and	many	times,	novice	programmers	claim	they	do	unit
testing	when	they	actually	do	integration	testing.

Integration	tests	drive	the	code	but	do	not	test	the	individual	classes	(units)	in	isolation,	mocking
everything	that	the	class	may	use.	Rather,	they	test	the	functionality	of	most	of	the	classes	that	are	needed
to	perform	a	test.	This	way,	the	integration	test	does	test	that	the	classes	are	able	to	work	together	and	not
only	satisfy	their	own	specifications	but	also	ensure	that	these	specifications	work	together.

In	integration	test,	the	external	world	(like	external	services)	and	access	to	database	are	mocked	only.
That	is	because	the	integration	tests	are	supposed	to	run	on	integration	servers,	in	the	same	environment
where	the	unit	tests	are	executed,	and	there	these	external	interfaces	may	not	be	available.	Many	times,
databases	are	mocked	using	in-memory	SQL,	and	external	services	are	mocked	using	some	mock	classes.

Spring	provides	a	nice	environment	to	execute	such	integration	tests.	In	our	project,	we	have	a	sample
integration	test:

package	packt.java9.by.example.mybusiness.productinformation;	

import	...		

@RunWith(SpringRunner.class)	

@SpringBootTest(classes	=	Application.class)	

@AutoConfigureMockMvc	

@ActiveProfiles("local")	

public	class	ProductInformationControllerTest	{	

				@Autowired	

				private	MockMvc	mockMvc;	

				@Test	

				public	void	noParamGreetingShouldReturnDefaultMessage()		

																																													throws	Exception	{	

								this.mockMvc.perform(get("/pi")).andDo(print())	

																.andExpect(status().isNotFound());	

				}	

				@Test	

				public	void	paramGreetingShouldReturnTailoredMessage()	

																																													throws	Exception	{	

								this.mockMvc.perform(get("/pi/123"))	

																.andDo(print()).andExpect(status().isOk())	

																.andExpect(jsonPath("$.title")	

																.value("Book	Java	9	by	Example"));	

				}	

}

This	is	far	from	being	a	complete	and	full-fledged	integration	test.	There	are	many	situations	that	are	not
tested,	but	here	it	is	good	as	an	example.	To	have	all	the	support	for	the	Spring	environment,	we	have	to
use	the	SpringRunner	class.	The	@RunWith	annotation	is	handled	by	the	JUnit	framework,	all	other	annotations
are	for	Spring.	When	the	JUnit	framework	sees	that	there	is	a	@RunWith	annotation	and	a	runner	class
specified,	it	starts	that	class	instead	of	the	standard	runner.	SpringRunner	sets	up	a	Spring	context	for	the	test
and	handles	the	annotations.

@SpringBootTest	specifies	the	applications	that	we	need	to	test.	This	helps	Spring	to	read	that	class	and	the
annotation	on	that	class,	identifying	the	packages	to	be	scanned.

@AutoConfigureMockMvc	tells	Spring	to	configure	a	mock	version	of	the	Model	View	Controller	framework,

which	can	be	executed	without	a	servlet	container	and	web	protocol.	Using	that,	we	can	test	our	REST
services	without	really	going	to	the	network.

@ActiveProfiles	tells	Spring	that	the	active	profile	is	local	and	that	Spring	has	to	use	the	configuration	that	is
denoted	by	the	annotation,	@Profile("local").	This	is	a	version	that	uses	the	.properties	files	instead	of
external	HTTP	services;	thus,	this	is	appropriate	for	integration	testing.

The	test	performs	GET	requests	inside	the	mocking	framework,	executes	the	code	in	the	controller,	and	tests
the	returned	value	using	the	mocking	framework	and	fluent	API	in	a	very	readable	way.

Note	that	using	the	properties	files	and	having	the	service	implementation	based	on
properties	file	is	a	bit	of	an	overkill.	I	created	this	so	that	it	is	possible	to	start	up	the
application	interactively	without	any	real	backing	service.	Consider	the	following
command:	gradle	-Dspring.profiles.active=local	bootRun	.
If	we	issue	the	preceding	command,	then	the	server	starts	up	using	this	local
implementation.	If	we	only	aim	for	integration	testing,	then	the	local	implementation	of
the	service	classes	should	be	under	the	test	directory	and	should	be	much	simpler,	mainly
only	returning	constant	responses	for	any	expected	request	and	throwing	errors	if	any
non-expected	request	comes.

Application	test
Consider	the	following	command:

gradle	-Dspring.profiles.active=production	bootRun

If	we	start	up	the	application	issuing	the	preceding	command	and	fire	up	the	browser	to	the	URL,
http://localhost:8080/pi/123,	we	will	get	a	fat	error	message	on	the	browser	screen.	Ouch...

It	says	Internal	Server	Error,	status=500	or	something	similar.	That	is	because	our	code	wants	to	connect	to
the	backing	services,	but	we	do	not	have	any	yet.	To	have	some	to	test	the	application	on	this	level,	we
should	create	the	backing	services	or	at	least	something	that	mocks	them.	The	easiest	way	is	to	use	the
soapUI	program.

The	soapUI	is	a	Java	program	available	from	https://www.soapui.org/.	There	is	an	open	source	and	free	version
of	it,	and	there	is	a	commercial	version.	For	our	purposes,	the	free	version	is	enough.	We	can	install	it	in
the	simplest	click-forward	way	as	it	has	a	setup	wizard.	After	that,	we	can	start	it	up	and	use	the	graphical
user	interface.

We	create	a	new	test	project,	Catalog	and	inventory,	and	set	up	two	REST	mock	services	in	it:	Catalog
and	Inventory,	as	shown	in	the	following	screenshot:

We	set	up,	for	each	of	the	mock	services,	requests	to	be	matched	and	responses.	The	content	of	the
response	is	text	and	can	be	typed	into	the	text	field	on	the	user	interface.	It	is	important	that	we	do	not
forget	to	set	the	media	type	of	the	response	to	application/json	(the	default	is	XML).

https://www.soapui.org/

Before	starting	the	services,	we	have	to	set	the	port	numbers	by	clicking	on	the	cogwheel	to	something
that	is	available	on	the	server.	Since	8080	is	used	by	the	Tomcat	server	executed	by	Gradle,	and	8082	is
used	by	soapUI	to	list	the	mock	services	that	are	currently	running,	I	set	the	catalog	to	listen	on	8081	and
inventory	on	8083.	You	can	also	see	these	port	numbers	in	the	listing	of	the
ProductInformationServiceUrlBuilder	class.

The	soapUI	saves	the	project	in	an	XML	file,	and	it	is	available	for	you	on	GitHub	in	the	project	directory.

After	starting	the	mock	services,	the	error	message	disappears	from	the	browser	screen	when	we	press
refresh:

What	we	see	is	exactly	what	we	typed	into	soapUI.

If	now	I	change	the	inventory	mock	service	to	return	0	instead	of	100,	as	in	the	original	version,	what	I	get
is	the	following	empty	record:

{"id":"","title":"","description":"","size":[0.0,0.0,0.0],"weight":0.0}

The	testing	even	on	this	level	can	be	automated.	Now,	we	were	playing	around	using	the	browser	and	this
is	something	nice.	Somehow,	I	feel	I	am	producing	something	when	there	is	a	program	that	is	really	doing
something,	when	I	can	see	that	there	is	some	response	in	the	browser	window.	However,	after	a	while,
this	becomes	boring	and	testing	manually	that	the	application	is	still	working	is	cumbersome.	It	is
especially	boring	for	those	functions	that	were	not	changed.	The	fact	is	that	they	do	change	miraculously
many	times	even	when	we	do	not	touch	the	code	that	influences	them.	We	touch	the	code	that	does
influence	the	function	except	that	we	are	not	aware	of	it.	Poor	design,	poor	coding,	or	maybe	we	just
forgot,	but	it	happens.	Regression	test	is	inevitable.

Although	browser	testing	user	interfaces	can	also	be	automated,	this	time,	we	are	having	a	REST	service
that	we	can	test	and	that	is	what	soapUI	is	for.	We	have	already	installed	the	tool,	we	have	already	started
it,	and	we	have	some	mock	services	running	in	it.	The	next	thing	is	to	add	a	New	REST	service	from	URI
to	the	project	and	specify	the	URL,	http://localhost:8080/pi/{id},	exactly	the	same	way	as	we	did	for	Spring:

When	we	have	a	REST	service	defined	in	the	project,	we	can	create	a	new	Test	Suite	and	a	Test	Case
inside	the	suite.	We	can	then	add	a	step	to	the	Test	Case	that	will	call	the	REST	service	using	the
parameter	123	if	we	modify	the	default	value,	which	is	the	same	as	the	name	of	the	parameter,	in	this	case,
id.	We	can	run	the	test	step	using	the	green	triangle	on	the	upper-left	corner	of	the	window,	and	since	we
have	the	tested	application	and	the	soapUI	mock	services	running,	we	should	get	an	answer	in	JSON.	We
have	to	select	JSON	on	the	response	side;	otherwise,	soapUI	tries	to	interpret	the	response	as	XML,	and
since	we	have	a	JSON	response,	it	is	not	too	fruitful.	What	we	see	is	the	following	window:

It	is	the	same	response	that	we	saw	in	the	browser.	There	are	no	miracles	when	we	program	computers.
Sometimes,	we	do	not	understand	what	happens,	and	some	things	are	so	complex	that	they	seem	to	be	a
miracle,	but	they	are	actually	not.	There	is	an	explanation	for	everything,	it	may	just	not	be	known	to	us.	In
this	case,	we	certainly	know	what	is	happening,	but	why	is	it	any	better	to	see	the	JSON	on	the	screen	of
soapUI	than	it	is	on	the	browser?	The	reason	is	that	soapUI	can	execute	assertions	and	in	some	cases,
further	test	steps	based	on	the	result	of	the	REST	invocation,	and	the	final	result	is	a	simple	YES	or	NO.
The	test	is	OK,	or	it	FAILS.

To	add	an	assertion,	click	on	the	Assertions	text	on	the	lower-left	corner	of	the	window.	As	you	can	see	in
the	preceding	screenshot,	I	have	already	added	one	that	compares	the	"title"	field	of	the	returned	JSON
with	the	text	"Bar	Stool".	When	we	add	the	assertion,	the	default	value	it	suggests	is	the	one	that	was
actually	returned,	which	is	just	a	very	handy	feature.

After	this,	running	the	whole	test	suite	again	will	run	all	the	test	cases	(we	have	only	one),	and	all	the	test
steps,	one	after	the	other	(we	again	have	only	one),	and	finally	it	will	display	a	green	FINISHED	bar	on
the	UI,	as	shown	in	the	following	screenshot:

This	is	not	all	that	soapUI	can	do.	This	is	a	well-developed	test	tool	that	has	been	in	the	market	for	many
years.	soapUI	can	test	SOAP	services	and	REST	services,	and	it	can	handle	JMS	messages.	You	can
create	tests	of	many	steps	with	these	calls,	loops,	and	assertions	in	calls	or	in	separate	tests,	and	in	case
all	else	fails,	you	can	do	just	anything	by	creating	programmed	steps	in	the	Groovy	language	or	creating
extensions	in	Java.

Servlet	filters
The	services	work	fine	by	now	and	anyone	can	query	the	details	of	our	products.	That	may	be	a	problem.
The	details	of	the	products	are	not	necessarily	public	information.	We	have	to	ensure	that	we	serve	the
data	only	to	partners	who	are	eligible	to	see	it.

To	ensure	that,	we	need	something	in	the	request	that	proves	that	the	request	comes	from	a	partner.	This
information	is	typically	a	password	or	some	other	secret.	It	could	be	placed	into	the	GET	request
parameters	or	into	the	HTTP	request	header.	It	is	better	to	put	it	into	the	header	because	the	information	is
secret	and	not	to	be	seen	by	anybody.

The	GET	parameters	are	a	part	of	the	URL,	and	the	browser	history	remembers	that.	It	is
also	very	easy	to	enter	this	information	into	the	browser	location	window,	copy	paste	it,
and	send	it	over	a	chat	channel	or	over	e-mail.	This	way,	a	user	of	the	application,	who	is
not	so	educated	and	concerned	about	security,	may	disclose	secret	information.	Although
it	is	not	impossible	to	do	the	same	with	information	that	is	sent	in	an	HTTP	header,	it	is
not	likely	to	happen.	If	the	information	is	in	the	header	and	somebody	sends	the
information	in	an	e-mail,	they	probably	know	what	they	are	doing;	they	cross	a	security
border	willingly	and	not	by	simple	negligence.

To	send	authentication	information	along	the	HTTP	request,	Spring	provides	a	security	module	that	can
easily	be	configured	with	annotations	and	configuration	XMLs	and/or	classes.	This	time,	we	will	do	it	a
bit	differently	to	introduce	servlet	filters.

We	will	require	that	the	vendors	insert	the	X-PartnerSecret	header	into	the	request.	This	is	a	non-standard
header,	and	thus	it	must	have	the	X-	prefix.	Following	this	approach	is	also	some	extra	security	feature.
This	way,	we	can	prevent	the	user	from	reaching	the	service	using	a	simple	browser.	There	is,	at	least,	a
need	for	some	extra	plugin	that	can	insert	a	custom	header	or	some	other	program	such	as	soapUI.	This
way,	it	will	ensure	that	our	partners	will	use	the	interface	programmatically,	or	if	ever	they	need	to	test
the	interface	ad	hoc,	only	users	with	a	certain	level	of	technology	can	do	so.	This	is	important	to	keep	the
support	costs	controlled.

Since	this	secret	has	to	be	checked	in	the	case	of	each	and	every	service,	we	better	not	insert	the	checking
code	into	each	and	every	service	controller.	Even	if	we	create	the	code	properly	and	factor	the	check	for
the	secret	into	a	separate	class,	the	invocation	of	the	method	asserting	that	the	secret	is	there	and	is	correct
will	have	to	be	inserted	in	each	and	every	controller.	The	controller	does	the	service;	checking	the	client
authenticity	is	an	infrastructure	issue.	They	are	different	concerns,	and	thus,	they	have	to	be	separated.

The	best	way	that	the	servlet	standard	provides	for	us	is	a	servlet	filter.	A	servlet	filter	is	a	class	invoked
by	the	servlet	container	before	the	servlet	itself	if	the	filter	is	configured.	The	filter	can	be	configured	in
the	web.xml	configuration	file	of	the	servlet	container	or	by	using	an	annotation	when	we	use	the	Spring
boot.	The	filter	does	not	only	get	the	request	and	response	as	parameters	but	also	a	third	argument	of	the
FilterChain	type	that	it	should	use	to	call	the	servlet	or	the	next	filter	in	the	chain.

There	can	be	more	than	one	filter	defined	and	they	get	chained	up.	The	filter	may,	at	its	discretion,	decide

to	call	or	not	to	call	the	next	in	the	chain.

We	put	our	servlet	filter	into	the	auth	sub-package	of	our	application:

package	packt.java9.by.example.mybusiness.productinformation.auth;	

import	...	

@Component	

public	class	AuthFilter	implements	Filter	{	

				private	static	Logger	log	=	

											LoggerFactory.getLogger(AuthFilter.class);	

				public	static	final	int	NOT_AUTHORIZED	=	401;	

				@Override	

				public	void	init(FilterConfig	filterConfig)	

																																throws	ServletException	{	

				}	

				@Override	

				public	void	doFilter(ServletRequest	request,	

																									ServletResponse	response,	

																									FilterChain	chain)	

																										throws	IOException,	ServletException	{	

								HttpServletRequest	httpRequest	=	

																					(HttpServletRequest)	request;	

								final	String	secret	=	

																					httpRequest.getHeader("X-PartnerSecret");	

								log.info("Partner	secret	is	{}",	secret);	

								if	("packt".equals(secret))	{	

												chain.doFilter(request,	response);	

								}	else	{	

												HttpServletResponse	httpResponse	=	

																					(HttpServletResponse)	response;	

												httpResponse.sendError(NOT_AUTHORIZED);	

								}	

				}	

				@Override	

				public	void	destroy()	{	

				}	

}

The	filter	implements	the	Filter	interface	that	defines	three	methods.	In	our	case,	we	do	not	have	any
parameters	to	consider	in	the	filter,	and	we	do	not	allocate	any	resources	to	release;	thus,	both	init	and
destroy	methods	are	empty.	The	main	work	of	the	filter	is	the	doFilter	method.	It	has	three	parameters,	two
of	them	are	the	same	as	the	parameters	of	a	servlet	and	the	third	is	FilterChain.

The	request	is	converted	to	HttpServletRequest,	so	we	can	get	access	to	the	X-PartnerSecret	header	through	the
getHeader	method.	If	the	value	sent	in	this	header	field	is	good,	we	call	the	next	in	the	chain.	In	our
application,	there	are	no	more	filters	configured;	therefore,	the	next	in	the	chain	is	the	servlet.	If	the	secret
is	not	acceptable,	then	we	do	not	call	the	next	in	the	chain.	Instead,	we	return	the	401	Not	Authorized
HTTP	error	to	the	client.

In	this	application,	the	secret	is	very	simple.	This	is	the	constant	string	packt.	This	is	not
really	a	big	secret,	especially	now	that	it	is	published	in	this	book.	A	real-life	application
would	require	something	more	cryptic	and	less	known.	It	is	very	probable	that	each
partner	would	use	different	secrets	and	that	the	secret	has	to	change	from	time	to	time.

When	there	is	an	error	condition	in	a	servlet	that	our	program	handles,	it	is	a	good	practice	to	use	the
HTTP	error	handling	mechanism.	Instead	of	sending	back	a	message	with	the	status	code	200	OK	and
explaining,	for	example,	in	a	JSON	format	that	the	authentication	was	not	successful,	we	have	to	send
back	the	401	code.	This	is	defined	by	the	standard	and	does	not	need	any	further	explanation	or
documentation.

There	is	one	thing	left	in	our	program,	and	that	is	audit	logging.

Audit	logging	and	AOP
We	have	logging	in	our	sample	code	and	for	that	we	use	slf4j,	which	we	covered	in	the	previous	chapter.
Logging	is	more	or	less	the	decision	of	the	developer	and	supports	technical	levels	of	operation.	There,
we	also	touched	on	a	few	sentence	audit	loggings.	This	type	of	logging	is	usually	explicitly	required	in	a
functional	requirement.

Generally,	AOP	is	separating	the	different	aspects	of	code	functionality	into	separate	code	fragments,	and
implementing	them	independent	of	each	other.	This	is	very	much	the	single	responsibility	principle.	This
time,	it	is	implemented	in	a	way	that	not	only	the	different	functionalities	are	implemented	separately	but
also	how	we	connect	them	together	is	defined	separately.	What	is	executed	before	and	after	what	other
parts	are	encoded	separately	gets	to	the	Spring	configuration.	We	have	seen	something	similar	already.
The	dependencies	that	a	class	needs	to	properly	operate	are	defined	in	a	separate	segment	(XML	or	Java
code).	It	is	not	a	surprise	that	in	the	case	of	AOP,	the	same	is	done	using	Spring.	Aspects	are	configured	in
the	configuration	file	or	class.

A	typical	aspect	is	audit	logging,	and	we	will	use	this	as	an	example.	There	are	many	topics	that	can	be
implemented	using	aspects,	and	some	of	them	are	even	worth	implementing	that	way.

We	do	not	want	to	implement	the	audit	logging	code	in	each	business	method	or	class	that	needs	it.
Instead,	we	implement	a	general	aspect	and	configure	the	wiring	such	that	whenever	a	bean	method	that
needs	audit	logging	is	invoked,	Spring	invokes	the	audit	logging.

There	are	other	important	terminologies	that	we	should	understand	for	AOP	and	especially	how	AOP	can
be	configured	in	Spring.

The	first	and	most	important	is	the	aspect.	This	is	the	functionality	that	we	want	to	implement,	in	our
example,	the	audit	logging.

Join	point	is	the	point	in	execution	when	an	aspect	is	invoked.	When	using	a	full-scale	aspect	solution	in
Java	that	modifies	the	byte	code	of	the	generated	class,	a	join	point	can	be	almost	anything.	It	can	be
access	to	a	field,	read	or	write;	it	can	be	the	invocation	of	a	method	or	exception	throwing.	In	the	case	of
Spring,	the	class	byte	code	is	not	modified;	thus,	Spring	is	not	able	to	identify	the	access	of	a	field	or	an
exception	throwing.	Using	Spring,	a	join	point	is	always	used	when	a	method	is	invoked.

An	advice	is	how	the	aspect	is	invoked	at	the	join	point.	It	can	be	before	advice,	after	advice,	or	around
advice.	When	the	advice	is	before,	the	aspect	is	invoked	before	the	method	is	called.	When	the	advice	is
after,	the	aspect	is	invoked	after	the	method	is	invoked.	Around	means	that	the	aspect	is	invoked	before
the	method	call,	and	the	aspect	also	has	an	argument	to	call	the	method	and	still	perform	some	actions
after	the	method	is	called.	This	way,	the	around	advice	is	very	similar	to	servlet	filters.

The	before	advice	is	called	before	the	method	call,	and	after	it	returns,	the	framework	will	invoke	the
method.	There	is	no	way	for	the	aspect	to	prevent	the	invocation	of	the	original	method.	The	only
exception	is	when	the	aspect,	well,	throws	an	exception.

The	after	advice	is	also	affected	by	exceptions.	There	can	be	an	after	returning	advice	that	is	invoked
when	the	method	is	returning.	The	after	throwing	is	invoked	only	if	the	method	were	throwing	an
exception.	After	finally	is	invoked	in	the	case	of	an	exception	or	return.

Pointcut	is	a	special	string	expression	that	identifies	join	points.	A	pointcut	expression	may	match	zero,
one,	or	more	join	points.	When	the	aspect	is	associated	with	a	pointcut	expression,	the	framework	will
know	the	join	points	and	when	and	where	to	invoke	the	aspect.	In	other	words,	pointcut	is	the	string	that
tells	when	and	for	which	method	to	invoke	the	aspect.

Even	though	Spring	implementation	of	AOP	does	not	use	AspectJ	and	does	not	modify	the	byte	code	that
was	created	for	the	classes,	it	supports	the	pointcut	expression	language.	Although	this	expression
language	provides	more	features	than	what	Spring	implements,	it	is	a	well-established	and	widely	used
and	accepted	expression	language	to	describe	pointcuts,	and	it	just	would	not	make	sense	to	invent
something	new.

Introduction	is	adding	methods	or	fields	to	a	type	that	already	exists	and	doing	it	during	runtime.	Spring
allows	this	AOP	functionality	to	add	an	interface	to	an	existing	type	and	add	an	implementation	of	the
interface	in	the	form	of	an	advice	class.	In	our	example,	we	do	not	use	this	functionality.

Target	object	is	the	object	that	is	being	advised	by	the	aspect.	This	is	the	bean	that	contains	the	method
around	the	aspect,	that	is,	before	or	after	the	aspect	is	invoked.

That	was	just	a	condensed	set	of	definitions,	almost	like	in	a	math	book.	If	you	did	not	get	the	point	just
reading	it,	don't	worry.	I	did	not	understand	it	either.	That	is	why	we	have	the	following	example,	after
which	all	we	just	covered	will	make	more	sense:

package	packt.java9.by.example.mybusiness.productinformation;	

import	...	

@Configuration	

@Aspect	

public	class	SpringConfigurationAspect	{	

				private	static	Logger	log	=	

														LoggerFactory.getLogger("AUDIT_LOG");	

				@Around("execution(*	byId(..))")	

				public	ProductInformation	byIdQueryLogging(

																												ProceedingJoinPoint	jp)	

																																									throws	Throwable	{	

								log.info("byId	query	is	about	to	run");	

								ProductInformation	pi	=	

													(ProductInformation)	jp.proceed(jp.getArgs());	

								log.info("byId	query	was	executed");	

								return	pi;	

				}	

				@Around("execution(*	url(..))")	

				public	String	urlCreationLogging(ProceedingJoinPoint	jp)	

																																												throws	Throwable	{	

								log.info("url	is	to	be	created");	

								String	url	=	(String)	jp.proceed(jp.getArgs());	

								log.info("url	created	was	"+url);	

								return	url;	

				}	

}

The	class	is	annotated	with	the	@Configuration	annotation	so	that	Spring	knows	that	this	class	contains	the
configuration.	The	@Aspect	annotation	denotes	that	this	configuration	may	also	contain	aspect	definitions.

The	@Around	annotation	on	the	methods	gives	the	type	of	advice,	and	the	argument	string	for	the	annotation	is
the	pointcut	expression.	If	the	type	of	advice	is	different,	one	of	the	annotations,	@Before,	@After,
@AfterReturning,	or	@AfterThrowing,	should	be	used.

In	our	example,	we	use	the	@Around	aspect	to	demonstrate	the	most	complex	scenario.	We	log	the	execution
of	the	target	method	before	and	after	the	execution	of	the	method,	and	we	also	call	the	original	method
through	the	ProceedingJoinPoint	object.	Because	the	two	objects	return	different	types	and	we	want	to	log
differently,	we	define	two	aspect	methods.

The	argument	of	the	advice	annotation	is	the	pointcut	string.	In	this	case,	it	is	a	simple	one.	The	first	one,
execution(*	byId(..)),	says	that	the	aspect	should	be	invoked	for	any	execution	of	any	method	that	has	the
name	byId	and	has	any	arguments.	The	second	is	very	similar,	except	the	name	of	the	method	is	different.
These	are	simple	pointcut	expressions,	but	in	a	large	application	that	heavily	uses	AOP,	they	can	be	very
complex.

The	pointcut	expression	syntax	in	Spring	mainly	follows	the	syntax	used	by	AspectJ.	The	expression	uses
the	notion	of	point	cut	designator	(PCD)	that	is	usually	execution.	It	is	followed	by	the	pattern	that
defines	which	method	to	intercept.	The	general	format	is	as	follows:

execution(modifiers-pattern?	ret-type-pattern	declaring-type-pattern?name-pattern(param-pattern)	throws-pattern?)

Except	for	the	return	type	part,	all	other	parts	are	optional.	For	example,	we	can	write	the	following:

execution(public	*	*(..))

This	will	intercept	all	public	methods.	The	following	expression	intercepts	all	methods	that	have	a	name
starting	with	set:

execution(*	set*(..))

We	can	use	the	*	character	as	a	joker	in	the	same	way	as	we	can	use	it	on	the	command	line	in	Windows
or	Unix	shell.	The	argument	matching	definition	is	a	bit	more	complex.	(..)	means	any	arguments,	()	means
no	arguments,	and	(*)	means	exactly	one	argument	of	any	type.	The	last	one	can	also	be	used	when	there
are	more	arguments;	for	example,	(*,Integer)	means	that	there	are	two	arguments,	the	second	being	an
Integer,	and	we	just	do	not	care	what	the	type	of	the	first	one	is.

Pointcut	expressions	can	be	more	complex,	joining	together	match	expressions	with	the	&&	(and)	and	||
(or)	logical	operators,	or	using	the	!	(negation)	unary	operator.

Using	the	@Pointcut()	annotation,	the	configuration	can	define	pointcuts	putting	the	annotations	on	methods.
For	example,	consider	the	following:

@Pointcut("execution(*	packt.java.9.by.example.service.*.*(..))")		

public	void	businessService()	{}

It	will	define	a	join	point	for	any	method	that	is	implemented	in	any	class	in	the
packt.java.9.by.example.service	package.	This	merely	defines	the	pointcut	expression	and	assigns	it	to	the
name	businessService,	which	is	given	by	the	name	of	the	method.	Later,	we	can	refer	to	this	expression	in
aspect	annotations,	for	example:

@After("businessService()")

Note	that	the	use	of	the	method	is	purely	for	its	name.	This	method	is	not	invoked	by	Spring.	It	is	only
used	to	borrow	its	name	to	the	expression	that	is	defined	on	it	using	the	@Pointcut	annotation.	There	is	a
need	for	something,	such	as	a	method,	to	put	this	annotation	on,	and	since	methods	have	names,	why	not
use	it:	Spring	does	it.	When	it	scans	the	configuration	classes	and	sees	the	annotation,	it	assigns	it	in	its
internal	structures	to	the	name	of	the	method,	and	when	that	name	(along	with	the	parenthesis,	to	confuse
the	novice	programmer	mimicking	a	method	call)	is	used,	it	looks	up	the	expression	for	that	name.

AspectJ	defines	other	designators.	Spring	AOP	recognizes	some	of	them,	but	it	throws
IllegalArgumentException	because	Spring	implements	only	method	execution	pointcuts.	AspectJ,	on	the	other
hand,	can	also	intercept	object	creation	for	which	the	PCD	is	initialization,	as	an	example.	Some	other
PCDs,	in	addition	to	execution,	can	limit	an	execution	PCD.	For	example,	the	PCD,	within,	can	be	used	to
limit	the	aspect	to	join	points	belonging	to	classes	within	certain	packages,	or	the	@target	PCD	can	be	used
to	limit	the	matching	to	methods	in	objects	that	have	the	annotation	given	between	(and)	after	the
keyword	@target	in	the	pointcut	expression.

There	is	a	PCD	that	Spring	uses	that	does	not	exist	in	AspectJ.	This	is	a	bean.	You	can	define	a	pointcut
expression	that	contains	bean(name	pattern)	to	limit	the	join	point	to	method	executions	that	are	in	the	named
bean.	The	pattern	can	be	the	entire	name	or	it	can	be,	as	almost	any	PCD	expression	matching,	*	as	a	joker
character.

Dynamic	proxy-based	AOP
Spring	AOP,	when	first	presented	to	Java	programmers,	seems	like	magic.	How	does	it	happen	that	we
have	a	variable	of	classX	and	we	call	some	method	on	that	object,	but	instead,	it	executes	some	aspect
before	or	after	the	method	execution,	or	even	around	it,	intercepting	the	call

The	technique	that	Spring	does	is	called	dynamic	proxy.	When	we	have	an	object,	which	implements	an
interface,	we	can	create	another	object—the	proxy	object—that	also	implements	that	interface,	but	each
and	every	method	implementation	invokes	a	different	object	called	handler,	implementing	the	JDK
interface,	InvocationHandler.	When	a	method	of	the	interface	is	invoked	on	the	proxy	object,	it	will	call	the
following	method	on	the	handler	object:

public	Object	invoke(Object	target,	Method	m,	Object[]	args)

This	method	is	free	to	do	anything,	even	calling	the	original	method	on	the	target	object	with	the	original
or	modified	argument.

When	we	do	not	have	an	interface	at	hand	that	the	class	to	be	proxied	implements,	we	cannot	use	JDK
methods.	Luckily,	there	are	widely	used	libraries,	such	as	cglib,	which	are	also	used	by	Spring	and	that
can	do	something	similar.	Cglib	can	create	a	proxy	object	that	extends	the	original	class	and	implements	its
methods,	invoking	the	handler	object's	invoke	method	in	a	way	similar	to	how	the	JDK	version	does	for
the	interface	methods.

These	technologies	create	and	load	classes	into	the	Java	memory	during	runtime,	and
they	are	very	deep	technical	tools.	They	are	advanced	topics.	I	do	not	say	not	to	play	with
them	while	being	a	novice	Java	programmer.	After	all,	what	can	happen?	Java	is	not	a
loaded	gun.	It	is,	however,	important	that	you	do	not	lose	your	interest	when	you	do	not
understand	some	of	the	details	or	something	does	not	work	first.	Or	second.	Or	third...
Keep	swimming.

AOP	implementation	in	Spring	works	by	generating	proxy	objects	for	the	target	objects,	and	the	handlers
invoke	the	aspects	that	we	define	in	the	Spring	configuration.	This	is	the	reason	you	cannot	put	aspects	on
final	classes	or	on	final	methods.	Also,	you	cannot	configure	aspects	on	private	or	protected	methods.	The
protected	methods	could	be	proxied	in	principle,	but	this	is	not	a	good	practice,	and	thus	Spring	AOP	does
not	support	it.	Similarly,	you	cannot	put	aspects	on	classes	that	are	not	Spring	beans.	They	are	created	by

the	code	directly	and	not	through	Spring	and	have	no	chance	to	return	a	proxy	instead	of	the	original
object	when	the	object	is	created.	Simply	put,	if	Spring	is	not	asked	to	create	the	object,	it	cannot	create	a
custom	one.	The	last	thing	we	want	to	do	is	to	execute	the	program	and	see	how	the	aspects	perform.	The
implementation	of	our	audit	logging	is	extremely	simple.	We	use	the	standard	logging,	which	is	not	really
sufficient	for	a	real-life	application	of	audit	logging.	The	only	special	thing	we	do	is	that	we	use	a	logger
identified	by	the	name,	AUDIT_LOG	and	not	by	the	name	of	a	class.	This	is	a	legitimate	use	of	the	loggers	in
most	of	the	logging	frameworks.	In	spite	of	the	fact	that	we	usually	use	the	class	to	identify	the	logger,	it	is
absolutely	possible	to	use	a	string	to	identify	a	logger.	In	the	case	of	our	logging,	this	string	will	also	be
printed	on	the	console	in	the	log	lines,	and	it	will	visually	stand	out.

Consider	the	following	command:

gradle	-Dspring.profiles.active=production	bootRun

If	we	again	start	the	application	with	the	preceding	command,	start	soapUI	for	the	project,	start	the	mock
services,	and	execute	the	test,	we	will	see	on	the	console	the	following	log	lines	that	the	aspects	print:

2016-11-10	19:14:09.559		INFO	74643	---	[nio-8080-exec-1]	o.a.c.c.C.[Tomcat].[localhost].[/]							:	Initializing	Spring	FrameworkServlet	'dispatcherServlet'

2016-11-10	19:14:09.567		INFO	74643	---	[nio-8080-exec-1]	o.s.web.servlet.DispatcherServlet								:	FrameworkServlet	'dispatcherServlet':	initialization	started

2016-11-10	19:14:09.626		INFO	74643	---	[nio-8080-exec-1]	o.s.web.servlet.DispatcherServlet								:	FrameworkServlet	'dispatcherServlet':	initialization	completed	in	59	ms

2016-11-10	19:14:09.629		INFO	74643	---	[nio-8080-exec-1]	p.j.b.e.m.p.auth.AuthFilter														:	Partner	secret	is	packt

2016-11-10	19:14:09.655		INFO	74643	---	[nio-8080-exec-1]	AUDIT_LOG																																:	byId	query	is	about	to	run

2016-11-10	19:14:09.666		INFO	74643	---	[nio-8080-exec-1]	AUDIT_LOG																																:	url	is	to	be	created

2016-11-10	19:14:09.691		INFO	74643	---	[nio-8080-exec-1]	AUDIT_LOG																																:	url	created	was	http://localhost:8083/inventory/{id}

2016-11-10	19:14:09.715		INFO	74643	---	[nio-8080-exec-1]	p.j.b.e.m.p.l.RestClientProductLookup				:	amount	{id:	123,	amount:	100}.

2016-11-10	19:14:09.716		INFO	74643	---	[nio-8080-exec-1]	p.j.b.e.m.p.l.RestClientProductLookup				:	There	items	from	123.	We	are	offering

2016-11-10	19:14:09.716		INFO	74643	---	[nio-8080-exec-1]	AUDIT_LOG																																:	url	is	to	be	created

2016-11-10	19:14:09.716		INFO	74643	---	[nio-8080-exec-1]	AUDIT_LOG																																:	url	created	was	http://localhost:8081/product/{id}

2016-11-10	19:14:09.725		INFO	74643	---	[nio-8080-exec-1]	AUDIT_LOG																																:	byId	query	was	executed

Summary
In	this	chapter,	we	built	a	simple	business	application	that	supports	business-to-business	transactions.	We
implemented	a	REST	service	in	a	microservices	(almost)	architecture	using	the	features	that	are	provided
by	the	de	facto	standard	enterprise	framework:	Spring.	Looking	back	at	the	chapter,	it	is	amazing	how	few
lines	of	code	we	wrote	to	achieve	all	the	functionality,	and	that	is	good.	The	less	code	we	need	to
develop	what	we	want,	the	better.	This	proves	the	power	of	the	framework.

We	discussed	microservices,	HTTP,	REST,	JSON,	and	how	to	use	them	using	the	MVC	design	pattern.
We	learned	how	Spring	is	built	up,	what	modules	are	there,	how	dependency	injection	works	in	Spring,
and	we	even	touched	a	bit	of	AOP.	This	was	very	important	because	along	with	AOP,	we	discovered	how
Spring	works	using	dynamic	proxy	objects,	and	this	is	something	that	is	very	valuable	when	you	need	to
debug	Spring	or	some	other	framework	that	uses	a	similar	solution	(and	there	are	a	few	frequently	used).

We	started	to	test	our	code	using	a	simple	browser,	but	after	that	we	realized	that	REST	services	are
better	tested	using	some	professional	testing	tool,	and	for	that	we	used	soapUI	and	built	up	a	simple	REST
test	suite	with	REST	test	steps	and	mock	services.

Having	learnt	all	that,	nothing	will	stop	us	from	extending	this	application	using	very	modern	and
advanced	Java	technologies,	such	as	reflection	(which	we	have	already	touched	on	a	bit	when	we
discussed	the	JDK	dynamic	proxy),	Java	streams,	lambda	expressions,	and	scripting	on	the	server	side.

	

Extending	Our	E-Commerce	Application
	

In	the	last	chapter,	we	started	developing	an	e-commerce	application	and	we	created	the	functionality	to
look	up	products	based	on	their	ID	and,	also,	by	some	parameters.	In	this	chapter,	we	will	extend	the
functionality	so	that	we	can	also	order	the	products	we	selected.	While	doing	so,	we	will	learn	new
technologies,	focusing	on	functional	programming	in	Java	and	on	some	other	language	features,	such	as
reflection	and	annotation	handling	during	runtime,	and	scripting	interface.

As	we	did	in	the	previous	chapters,	we	will	develop	the	application	step	by	step.	As	we	discover	the
newly	learnt	technologies,	we	will	refactor	the	code	to	enroll	the	new	tools	and	methods	to	produce	more
readable	and	effective	code.	We	will	also	mimic	the	development	of	real-life	projects	in	the	sense	that	at
the	start,	we	will	have	simple	requirements,	and	later,	new	requirements	will	be	set	as	our	imagined
business	develops	and	sells	more	and	more	products.	We	will	become	imagined	millionaires.

We	will	use	the	code	base	of	the	previous	chapter,	and	we	will	develop	it	further,	though,	in	a	new
project.	We	will	use	Spring,	Gradle,	Tomcat,	and	soapUI,	which	are	not	new	after	we	got	acquainted	with
these	in	the	previous	chapter.	In	this	chapter,	you	will	learn	the	following	topics:

Annotation	processing
Using	reflection
Functional	programming	in	Java	using:

Lambda	expressions
Streams
Invoking	scripts	from	Java

	

The	MyBusiness	ordering
The	ordering	process	is	a	little	bit	more	complicated	than	just	looking	up	products.	The	order	form	itself
lists	products	and	amounts,	and	identifies	who	the	customer	for	that	order	is.	Identifiers	give	the	products.
All	that	we	have	to	do	is	check	that	the	products	are	available	in	our	store,	and	we	can	deliver	them	to	the
given	customer.	This	is	the	simplest	approach;	however,	with	some	products,	there	are	more	restrictions.
For	example,	when	somebody	orders	a	desk-side	lamp,	we	deliver	the	power	cord	separately.	The	reason
for	this	is	that	the	power	cord	is	specific	to	the	country.	We	deliver	different	power	cords	to	the	United
Kingdom	and	to	Germany.	One	possible	approach	could	be	to	identify	the	country	of	the	customer.	But	this
approach	does	not	take	into	account	that	our	customers	are	resellers.	All	customers	could	be	located	in
the	United	Kingdom,	and	at	the	same	time	they	may	want	to	deliver	the	lamp	with	the	power	cable	to
Germany.	To	avoid	such	situations	and	ambiguity,	it	would	be	apt	that	our	customers	order	the	desk-side
lamp	and	the	power	cord	as	separate	items	in	the	same	order.	In	some	cases,	we	deliver	the	desk-side
lamp	without	the	power	cord,	but	this	is	a	special	case.	We	need	some	logic	to	identify	these	special
cases.	Therefore,	we	have	to	implement	logic	to	see	if	there	is	a	power	cord	for	a	desk-side	lamp	and	if
there	is	no	automatic	handling	of	the	order,	it	is	refused.	It	does	not	mean	that	we	will	not	deliver	the
product.	We	will	only	put	the	order	in	a	queue	and	some	operator	will	have	to	look	at	it.

The	problem	with	this	approach	is	that	the	desk-side	lamp	is	only	one	product	that	needs	configuration
support.	The	more	products	we	have,	the	more	specialities	they	may	have,	and	the	piece	of	code	that
checks	the	consistency	of	an	order	becomes	more	and	more	complex	until	it	reaches	a	level	of	complexity
that	is	not	manageable.	When	a	class	or	method	becomes	too	complex,	the	programmers	refactor	it,
splitting	up	the	method	or	class	into	smaller	pieces.	We	have	to	do	the	same	with	the	product	checking.
We	shouldn't	try	to	create	one	huge	class	that	checks	for	the	product	and	all	the	possible	order
constellations,	but	rather	we	should	have	many	smaller	checks	so	that	each	checks	only	one	small	set.

Checking	for	consistency	is	simpler	in	some	cases.	Checking	whether	the	lamp	has	a	power	cord	has	a
complexity	any	novice	programmer	can	program.	We	use	this	example	in	our	code	because	we	want	to
focus	on	the	actual	structure	of	the	code,	and	not	on	the	complex	nature	of	the	check	itself.	In	real	life,
however,	the	checks	can	be	fairly	complex.	Imagine	a	shop	that	sells	computers.	It	puts	a	configuration
together:	power	supply,	graphic	cards,	and	motherboard,	the	appropriate	CPU,	and	the	memory.	There	are
many	choices	and	some	of	them	may	not	work	together.	In	a	real-life	situation,	we	need	to	check	that	the
motherboard	is	compatible	with	the	memory	selected,	that	it	has	as	many	banks	as	are	in	the	order,	that
they	are	appropriately	paired	(some	memories	can	only	be	installed	in	pairs),	that	there	is	a	compatible
slot	for	the	graphics	card,	and	that	the	power	has	enough	watts	to	reliably	run	the	whole	configuration.
This	is	very	complex	and	is	better	not	mixed	up	with	the	code	that	checks	if	there	is	a	power	cord	for	a
lamp.

	

Setting	up	the	project
	

Since	we	are	still	using	Spring	boot,	the	build	file	does	not	need	any	modification;	we	will	use	it	as	we
will	use	the	same	file	as	in	the	last	chapter.	The	package	structure,	however,	is	a	bit	different.	This	time,
we	do	something	more	complicated	than	getting	a	request	and	responding	to	whatever	the	backend
services	deliver	to	us.	Now,	we	have	to	implement	complex	business	logic	that,	as	we	will	see,	needs
many	classes.	When	we	have	more	than	10	classes,	give	or	take,	in	a	certain	package,	it	is	time	to	think
about	putting	them	into	separate	packages.	The	classes	that	are	related	to	each	other	and	have	a	similar
functionality	should	be	put	into	one	package.	This	way,	we	will	have	a	package	for	the	following:

The	controllers	(though	we	have	only	one	in	this	example,	but	usually	there	are	more)
Data	storing	beans	that	have	no	more	functionality	than	storing	data,	thus,	fields,	setters,	and	getters
Checkers	that	will	help	us	check	power	cords	when	a	desk-side	lamp	is	ordered
Services	that	perform	different	services	for	the	controller
The	main	package	for	our	program	that	contains	the	Application	class,	SpringConfiguration,	and	some
interfaces

	

Order	controller	and	DTOs
When	a	request	comes	to	the	server	to	order	a	bunch	of	products,	it	comes	in	an	HTTPS	POST	request.	The
body	of	the	request	is	encoded	in	JSON.	Till	now,	we	had	controllers	that	were	handling	GET	parameters,
but	handling	POST	requests	is	not	much	more	difficult	when	we	can	rely	on	the	data	marshalling	of	Spring.
The	controller	code	itself	is	simple:

package	packt.java9.by.example.mybusiness.bulkorder.controllers;	

import	...	

@RestController	

public	class	OrderController	{	

				private	Logger	log	=	

																LoggerFactory.getLogger(OrderController.class);	

				private	final	Checker	checker;	

				public	OrderController(@Autowired	Checker	checker)	{	

								this.checker	=	checker;	

				}	

				@RequestMapping("/order")	

				public	Confirmation	getProductInformation(@RequestBody	Order	order)	{	

								if	(checker.isConsistent(order))	{	

												return	Confirmation.accepted(order);	

								}	else	{	

												return	Confirmation.refused(order);	

								}	

				}	

}

There	is	only	one	request	that	we	handle	in	this	controller:	order.	This	is	mapped	to	the	URL,	/order.	The
order	is	automatically	converted	from	JSON	to	an	order	object	from	the	request	body.	This	is	what	the
@RequestBody	annotation	asks	Spring	to	do	for	us.	The	functionality	of	the	controller	simply	checks	the
consistency	of	the	order.	If	the	order	is	consistent,	then	we	accept	the	order;	otherwise,	we	refuse	it.	The
real-life	example	will	also	check	that	the	order	is	not	only	consistent	but	also	comes	from	a	customer	who
is	eligible	for	buying	those	products	and	that	the	products	are	available	in	the	warehouse	or,	at	least,	can
be	delivered,	based	on	the	promises	and	lead	time	from	the	producers.

To	check	the	consistency	of	the	order,	we	need	something	that	does	this	job	for	us.	As	we	know	that	we
have	to	modularize	the	code	and	not	implement	too	many	things	in	a	single	class,	we	need	a	checker
object.	This	is	provided	automatically	based	on	the	annotation	on	the	class	and	also	on	the	constructor	of
the	controller	by	@Autowired.

The	Order	class	is	a	simple	bean,	simply	listing	the	items:

package	packt.java9.by.example.mybusiness.bulkorder.dtos;	

import	...;	

public	class	Order	{	

				private	String	orderId;	

				private	List<OrderItem>	items;	

				private	String	customerId;	

...	setters	and	getters	...	

}

The	name	of	the	package	is	dtos,	which	stands	for	the	plural	of	Data	Transfer	Object
(DTO).	DTOs	are	objects	that	are	used	to	transfer	data	between	different	components,

usually	over	the	network.	Since	the	other	side	can	be	implemented	in	any	language,	the
marshaling	can	be	JSON,	XML,	or	some	other	format	that	is	capable	of	delivering
nothing	but	data.	These	classes	do	not	have	real	methods.	DTOs	usually	have	only	fields,
setters,	and	getters.

The	following	is	the	class	that	contains	one	item	in	an	order:

package	packt.java9.by.example.mybusiness.bulkorder.dtos;	

public	class	OrderItem	{	

				private	double	amount;	

				private	String	unit;	

				private	String	productId;	

...	setters	and	getters	...	

}

The	order	confirmation	is	also	in	this	package,	and	though	this	is	also	a	true	DTO,	it	has	some	simple
auxiliary	methods:

package	packt.java9.by.example.mybusiness.bulkorder.dtos;	

public	class	Confirmation	{	

				private	final	Order	order;	

				private	final	boolean	accepted;	

				private	Confirmation(Order	order,	boolean	accepted)	{	

								this.order	=	order;	

								this.accepted	=	accepted;	

				}	

				public	static	Confirmation	accepted(Order	order)	{	

								return	new	Confirmation(order,	true);	

				}	

				public	static	Confirmation	refused(Order	order)	{	

								return	new	Confirmation(order,	false);	

				}	

				public	Order	getOrder()	{	

								return	order;	

				}	

				public	boolean	isAccepted()	{	

								return	accepted;	

				}	

}

We	provide	two	factory	methods	for	the	class.	This	is	a	little	violation	of	the	single	responsibility
principle	that	purists	hate.	Most	of	the	time,	when	the	code	becomes	more	complex,	such	short	cuts	bite
back,	and	the	code	has	to	be	refactored	to	be	cleaner.	The	purist	solution	would	be	to	create	a	separate
factory	class.	The	use	of	the	factory	methods	either	from	this	class	or	from	a	separated	class	makes	the
code	of	the	controller	more	readable.

The	major	task	we	have	is	the	consistency	check.	The	code,	till	this	point,	is	almost	trivial.

Consistency	checker
We	have	a	consistency	checker	class,	and	an	instance	of	it	is	injected	into	the	controller.	This	class	is
used	to	check	the	consistency,	but	it	does	not	actually	perform	the	check	itself.	It	only	controls	the
different	checkers	that	we	provide	and	invokes	them	one	by	one	to	do	the	real	work.

We	require	that	a	consistency	checker,	such	as	the	one	that	checks	whether	the	order	contains	a	power
cord	when	a	desk-side	lamp	is	ordered,	implements	the	ConsistencyChecker	interface:

package	packt.java9.by.example.mybusiness.bulkorder;	

import	...	

public	interface	ConsistencyChecker	{	

				boolean	isInconsistent(Order	order);	

}

The	method	isInconsistent	should	return	true	if	the	order	is	inconsistent.	It	returns	false	if	it	does	not	know
whether	the	order	is	inconsistent	or	not,	but	from	the	aspect	that	the	actual	checker	examines	the	order,
there	is	no	inconsistency.	Having	several	ConsistencyChecker	classes,	we	have	to	invoke	one	after	the	other
until	one	returns	true	or	we	are	out	of	them.	If	none	of	them	returns	true,	then	we	can	safely	assume,	at	least
from	the	automated	checkers'	point	of	view,	that	the	order	is	consistent.

We	know	at	the	start	of	the	development	that	we	will	really	have	a	lot	of	consistency	checkers	and	not	all
are	relevant	for	all	of	the	orders.	We	want	to	avoid	the	invocation	of	each	checker	for	each	order.	To	do
so,	we	implement	some	filtering.	We	let	products	specify	what	type	of	checks	they	need.	This	is	a	piece	of
product	information,	such	as	the	size	or	the	description.	To	accommodate	this,	we	need	to	extend	the
ProductInformation	class.

We	will	create	each	ConsistencyChecker	interface,	implementing	the	class	to	be	a	Spring	bean	(annotated	with
the	@Component	annotation),	and	at	the	same	time,	we	will	annotate	them	with	an	annotation	that	specifies
what	type	of	checks	they	implement.	At	the	same	time,	ProductInformation	is	extended,	containing	a	set	of
Annotation	class	objects	that	specify	which	checkers	to	invoke.	We	could	simply	list	the	checker	classes
instead	of	the	annotations,	but	this	gives	us	some	extra	freedom	in	configuring	the	mapping	between	the
products	and	the	annotations.	The	annotation	specifies	the	type	of	the	products,	and	the	checker	classes
are	annotated.	The	desk-side	lamp	has	the	PoweredDevice	type,	and	the	checker	class,	NeedPowercord,	is
annotated	with	the	@PoweredDevice	annotation.	If	there	is	any	other	type	of	products	that	also	needs	a	power
cord,	then	the	annotation	of	that	type	should	be	added	to	the	NeedPowercord	class,	and	our	code	will	work.
Since	we	start	diving	deep	into	annotations	and	annotation	handling,	we	have	to	first	learn	what
annotations	really	are.	We	have	already	used	annotations	since	Chapter	3,	Optimizing	the	Sort,	Making
Code	Professional	but	all	we	knew	was	how	to	use	them,	and	that	is	usually	dangerous	without
understanding	what	we	did.

Annotations
Annotations	are	used	with	the	@	character	in	front	of	them	and	can	be	attached	to	packages,	classes,
interfaces,	fields,	methods,	method	parameters,	generic	type	declaration	and	use,	and,	finally,	to
annotations.	Annotations	can	be	used	almost	everywhere	and	they	are	used	to	describe	some	program
meta	information.	For	example,	the	@RestController	annotation	does	not	directly	alter	the	behavior	of	the
OrderController	class.	The	behavior	of	the	class	is	described	by	the	Java	code	that	is	inside.	The	annotation
helps	Spring	to	understand	what	the	class	is	and	how	it	can	and	should	be	used.	When	Spring	scans	all	the
packages	and	classes	to	discover	the	different	Spring	beans,	it	sees	the	annotation	on	the	class	and	takes	it
into	account.	There	can	be	other	annotations	on	the	class	that	Spring	does	not	understand.	They	may	be
used	by	some	other	framework	or	program	code.	Spring	ignores	them	as	any	well-behaving	framework.
For	example,	as	we	will	see	later,	we	have	in	our	code	base,	the	NeedPowercord	class	,	which	is	a	Spring
bean	and,	as	such,	annotated	with	the	@Component	annotation.	At	the	same	time,	it	is	also	annotated	with	the
@PoweredDevice	annotation.	Spring	has	no	idea	about	what	a	powered	device	is.	This	is	something	that	we
define	and	use.	Spring	ignores	this.

Packages,	classes,	interfaces,	fields,	and	so	on,	can	have	many	annotations	attached	to	them.	These
annotations	should	simply	be	written	in	front	of	the	declaration	of	the	syntactical	unit	they	are	attached	to.

In	the	case	of	packages,	the	annotation	has	to	be	written	in	front	of	the	package	name	in
the	package-info.java	file.	This	file	can	be	placed	in	the	directory	of	the	package	and	can	be
used	to	edit	the	JavaDoc	for	the	package	and	also	to	add	an	annotation	to	the	package.
This	file	cannot	contain	any	Java	class	since	the	name,	package-info,	is	not	a	valid
identifier.

We	cannot	just	write	anything	in	front	of	anything	as	an	annotation.	Annotations	should	be	declared.	They
are	in	the	runtime	of	Java	special	interfaces.	The	Java	file	that	declares	the	@PoweredDevice	annotation,	for
example,	looks	like	this:

package	packt.java9.by.example.mybusiness.bulkorder.checkers;	

import	java.lang.annotation.Retention;	

import	java.lang.annotation.RetentionPolicy;	

@Retention(RetentionPolicy.RUNTIME)	

public	@interface	PoweredDevice	{	

}

The	@	character	in	front	of	the	interface	keyword	shows	us	that	this	is	a	special	one:	an	annotation	type.
There	are	some	special	rules;	for	example,	an	annotation	interface	should	not	extend	any	other	interface,
not	even	an	annotation	one.	On	the	other	hand,	the	compiler	automatically	makes	the	annotation	interface
so	that	it	extends	the	JDK	interface,	java.lang.annotation.Annotation.

Annotations	are	in	the	source	code,	and	thus,	they	are	available	during	the	compilation	process.	They	can
also	be	retained	by	the	compiler	and	put	into	the	generated	class	files,	and	when	the	class	loader	loads	the
class	file,	they	may	also	be	available	during	runtime.	The	default	behavior	is	that	the	compiler	stores	the
annotation	along	with	the	annotated	element	in	the	class	file,	but	the	class	loader	does	not	keep	it
available	for	runtime.

To	handle	annotations	during	the	compilation	process,	the	Java	compiler	has	to	be	extended	using
annotation	processors.	This	is	a	fairly	advanced	topic	and	there	are	only	a	few	examples	you	can	meet
while	working	with	Java.	An	annotation	processor	is	a	Java	class	that	implements	a	special	interface	and
is	invoked	by	the	compiler	when	it	processes	an	annotation	in	the	source	file	that	the	processor	is
declared	to	have	an	interest	in.

Annotation	retention
Spring	and	other	frameworks	usually	handle	annotations	during	runtime.	The	compiler	and	the	class
loader	have	to	be	instructed	that	the	annotation	is	to	be	kept	available	during	runtime.	To	do	so,	the
annotation	interface	itself	has	to	be	annotated	using	the	@Retention	annotation.	This	annotation	has	one
parameter	of	the	RetentionPolicy	type,	which	is	an	enum.	We	will	soon	discuss	how	annotation	parameters
should	be	defined.

It	is	interesting	to	note	that	the	@Retention	annotation	on	the	annotation	interface	has	to	be	available	in	the
class	file;	otherwise,	the	class	loaders	would	not	know	how	to	treat	an	annotation.	How	do	we	signal	that
an	annotation	is	to	be	kept	by	the	compiler	after	the	compilation	process?	We	annotate	the	annotation
interface	declaration.	Thus,	the	declaration	of	@Retention	is	annotated	by	itself	and	it	is	declared	to	be
available	in	runtime.

The	annotation	declaration	can	be	annotated	using	@Retention(RetentionPolicy.SOURCE),
@Retention(RetentionPolicy.CLASS),	or	@Retention(RetentionPolicy.RUNTIME).

	

Annotation	target
	

The	last	retention	type	will	be	the	most	frequent	used.	There	are	also	other	annotations	that	can	be	used	on
annotation	declarations.	The	@Target	annotation	can	be	used	to	restrict	the	use	of	the	annotation	to	certain
locations.	The	argument	to	this	annotation	is	either	a	single	java.lang.annotation.ElementType	value	or	an	array
of	these	values.	There	is	a	good	reason	to	restrict	the	use	of	annotations.	It	is	much	better	to	get	a
compilation	time	error	when	we	place	an	annotation	in	the	wrong	place	than	hunting	during	runtime	why
the	framework	ignores	our	annotation.

	

	

Annotation	parameters
Annotations,	as	we	saw,	can	have	parameters.	To	declare	these	parameters	in	the	@interface	declaration	of
the	annotation,	we	use	methods.	These	methods	have	a	name	and	a	return	value,	but	they	should	not	have
an	argument.	You	may	try	to	declare	some	parameters,	but	the	Java	compiler	will	be	strict	and	will	not
compile	your	code.

The	values	can	be	defined	at	the	place	where	the	annotation	is	used,	using	the	name	of	the	method	and
with	the	=	character,	assigning	to	them	some	value	that	is	compatible	with	the	type	of	the	method.	For
example,	let's	suppose	that	we	modify	the	declaration	of	the	annotation	PoweredDevice	to	the	following:

public	@interface	ParameteredPoweredDevice	{	

				String	myParameter();	

}

In	such	a	case,	at	the	use	of	the	annotation,	we	should	specify	some	value	for	the	parameter,	such	as	the
following:

@Component	

@ParameteredPoweredDevice(myParameter	=	"1966")	

public	class	NeedPowercord	implements	ConsistencyChecker	{	

...

If	the	name	of	the	parameter	is	a	value	and	at	the	place	of	use	of	the	annotation	there	is	no	other	parameter
defined,	then	the	name,	"value",	may	be	skipped.	For	example,	modifying	the	code	as	follows	is	a	handy
shorthand	when	we	have	only	one	parameter:

public	@interface	ParameteredPoweredDevice{	

				String	value();	

}	

...	

@Component	

@ParameteredPoweredDevice("1966")	

public	class	NeedPowercord	implements	ConsistencyChecker	{	

...

We	can	define	optional	parameters	also	using	the	default	keyword	following	the	method	declaration.	In
this	case,	we	have	to	define	a	default	value	for	the	parameter.	Modifying	the	sample	annotation	we	have
further,	we	still	can,	but	need	not,	specify	the	value.	In	the	latter	case,	it	will	be	an	empty	string:

public	@interface	ParameteredPoweredDevice	{	

				String	value()	default	"";	

}

Since	the	value	we	specify	should	be	constant	and	calculable	during	compile	time,	there	is	not	much	use
of	complex	types.	Annotation	parameters	are	usually	strings,	integers,	and	sometimes,	doubles,	or	other
primitive	types.	The	exact	list	of	the	types	given	by	the	language	specification	is	as	follows:

Primitive	(double,	int,	and	so	on)
String
Class
An	enum
Another	annotation

An	array	of	any	of	the	aforementioned	types

We	have	seen	examples	of	String	and	also	that	enum:Retention	and	Target	both	have	enum	parameters.	The
interesting	part	we	want	to	focus	on	is	the	last	two	items	of	the	preceding	list.

When	the	value	of	the	parameter	is	an	array,	the	value	can	be	specified	as	comma-separated	values
between	the	{	and}	characters.	For	example:

String[]	value();

This	can	then	be	added	to	the	@interface	annotation	we	can	write:

@ParameteredPoweredDevice({"1966","1967","1991"})

However,	in	case	there	is	only	one	value	we	want	to	pass	as	the	parameter	value,	we	can	still	use	the
format:

@ParameteredPoweredDevice("1966")

In	this	case,	the	value	of	the	attribute	will	be	an	array	of	length	1.	When	the	value	of	an	annotation	is	an
array	of	annotation	types,	things	get	a	bit	more	complex.	We	create	an	@interface	annotation	(note	the	plural
in	the	name):

@Retention(RetentionPolicy.RUNTIME)	

public	@interface	PoweredDevices	{	

ParameteredPoweredDevice[]	value()	default	{};	

}

The	use	of	this	annotation	could	be	as	follows:

@PoweredDevices(

								{@ParameteredPoweredDevice("1956"),	@ParameteredPoweredDevice({"1968",	"2018"})}	

)

Note	that	this	is	not	the	same	as	having	the	ParameteredPoweredDevice	annotation	with	three	parameters.	This	is
an	annotation	that	has	two	parameters.	Each	parameter	is	an	annotation.	The	first	has	one	string	parameter
and	the	second	has	two.

As	you	can	see,	annotations	can	be	fairly	complex,	and	some	of	the	frameworks	(or	rather
the	programmers	who	created	them)	ran	amok	using	them.	Before	you	start	writing	a
framework,	research	to	see	whether	there	is	already	a	framework	that	you	can	use.	Also,
check	whether	there	is	some	other	way	to	solve	your	problem.	99%	of	annotation
handling	code	could	be	avoided	and	made	simpler.	The	less	code	we	write	for	the	same
functionality,	the	happier	we	are.	We	programmers	are	the	lazy	types	and	this	is	the	way
it	has	to	be.

The	last	example,	where	the	parameter	of	the	annotation	is	an	array	of	annotations,	is	important	to
understand	how	we	can	create	repeatable	annotations.

Repeatable	annotations
Annotate	the	declaration	of	the	annotation	with	@Repeatable	to	denote	that	the	annotation	can	be	applied
multiple	times	at	one	place.	The	parameter	to	this	annotation	is	an	annotation	type	that	should	have	a
parameter	of	type,	which	is	an	array	of	this	annotation.	Don't	try	to	understand!	I'll	give	an	example
instead.	I	already	have,	in	fact:	we	have	@PoweredDevices.	It	has	an	argument	that	is	an	array	of
@ParameteredPoweredDevice.	Consider	that	we	now	annotate	this	@interface	as	the	following:

...	

@Repeatable(PoweredDevices.class)	

public	@interface	ParameteredPoweredDevice	{	

...

Then,	we	can	simplify	the	use	of	@ParameteredPoweredDevice.	We	can	repeat	the	annotation	multiple	times	and
the	Java	runtime	will	automatically	enclose	it	in	the	wrapping	class,	which,	in	this	case,	is	@PoweredDevices.
In	this	case,	the	following	two	will	be	equivalent:

...	

@ParameteredPoweredDevice("1956")	

@ParameteredPoweredDevice({"1968",	"2018"})	

public	class	NeedPowercord	implements	ConsistencyChecker	{	

...	

@PoweredDevices(

								{@ParameteredPoweredDevice("1956"),	@ParameteredPoweredDevice({"1968",	"2018"})}	

)	

public	class	NeedPowercord	implements	ConsistencyChecker	{	

...

The	reason	for	this	complex	approach	is	again	an	example	of	backward	compatibility	that	Java	strictly
follows.	Annotations	were	introduced	in	Java	1.5	and	repeatable	annotations	have	been	available	only
since	version	1.8.	We	will	soon	talk	about	the	reflection	API	that	we	use	to	handle	the	annotations	during
runtime.	This	API	in	the	java.lang.reflect.AnnotatedElement	interface	has	a	getAnnotation(annotationClass)	method,
which	returns	an	annotation.	If	a	single	annotation	can	appear	more	than	once	on	a	class,	method,	and	so
on,	then	there	is	no	way	of	calling	this	method	to	get	all	the	different	instances	with	all	the	different
parameters.	Backward	compatibility	was	ensured	by	introducing	the	containing	type	that	wraps	the
multiple	annotations.

	

Annotation	inheritance
	

Annotations,	just	like	methods	or	fields,	can	be	inherited	between	class	hierarchies.	If	an	annotation
declaration	is	marked	with	@Inherited,	then	a	class	that	extends	another	class	with	this	annotation	can
inherit	it.	The	annotation	can	be	overridden	in	case	the	child	class	has	the	annotation.	Because	there	is	no
multiple	inheritance	in	Java,	annotations	on	interfaces	cannot	be	inherited.	Even	when	the	annotation	is
inherited,	the	application	code	that	retrieves	the	annotation	of	a	certain	element	can	distinguish	between
the	annotations	that	are	inherited	and	those	that	are	declared	on	the	entity	itself.	There	are	methods	to	get
the	annotations	and	separate	methods	to	get	the	declared	annotations	that	are	declared	on	the	actual
element,	and	not	inherited.

	

	

	

@Documented	annotations
	

The	@Documented	annotation	expresses	the	intent	that	the	annotation	is	part	of	the	contract	of	the	entity	and,
this	way,	it	has	to	get	into	the	documentation.	This	is	an	annotation	that	the	JavaDoc	generator	looks	at
when	creating	the	documentation	for	an	element	that	references	the	@Documented	annotation.

	

	

JDK	annotations
There	are	other	annotations	defined	in	the	JDK	in	addition	to	those	that	are	to	be	used	to	define
annotations.	We	have	already	seen	some	of	these.	The	most	frequently	used	is	the	@Override	annotation.
When	the	compiler	sees	this	annotation,	it	checks	that	the	method	really	overrides	some	inherited	method.
Failing	to	do	so	will	result	in	an	error,	saving	us	from	miserable	runtime	debugging.

The	@Deprecated	annotation	signals	in	the	documentation	of	a	method,	class,	or	some	other	element	that	the
element	is	not	to	be	used.	It	is	still	there	in	the	code,	because	some	users	may	still	use	it,	but	in	the	case	of
a	new	development	that	depends	on	the	library	containing	the	element,	the	newly	developed	code	should
not	use	it.	The	annotation	has	two	parameters.	One	parameter	is	since,	which	can	have	a	string	value	and
may	deliver	version	information	about	how	long	or	since	which	version	of	the	method,	or	class	is
deprecated.	The	other	parameter	is	forRemoval,	which	should	be	true	if	the	element	will	not	appear	in	the
future	versions	of	the	library.	Some	methods	may	be	deprecated	because	there	are	better	alternatives	but
the	developers	do	not	intend	to	remove	the	method	from	the	library.	In	such	a	case,	the	forRemoval	can	be	set
to	false.

The	@SuppressWarning	annotation	is	also	a	frequently	used	one,	though	its	use	is	questionable.	It	can	be	used
to	suppress	some	of	the	warnings	of	the	compiler.	It	is	recommended	to	write	code,	if	possible,	which	can
be	compiled	without	any	warning.

The	@FunctionalInterface	annotation	declares	that	an	interface	intends	to	have	only	one	method.	Such
interfaces	can	be	implemented	as	lambda	expressions.	You	will	learn	about	lambda	expressions	later	in
this	chapter.	When	this	annotation	is	applied	on	an	interface	and	there	is	more	than	one	method	declared	in
the	interface,	the	compiler	will	signal	compilation	error.	This	will	prevent	any	developer	early	on	from
adding	another	method	to	an	interface	intended	to	be	used	together	with	functional	programming	and
lambda	expressions.

	

Using	reflection
	

Now	that	you	have	learnt	how	to	declare	annotations	and	how	to	attach	them	to	classes	and	methods,	we
can	return	to	our	ProductInformation	class.	Recall	that	we	wanted	to	specify	the	type	of	products	in	this	class
and	that	each	product	type	is	represented	by	an	@interface	annotation.	We	have	already	listed	it	in	the
previous	few	pages,	the	one	we	will	implement	in	our	@PoweredDevice	example.	We	will	develop	the	code
assuming	that	later	there	will	be	many	such	annotations,	product	types,	and	consistency	checkers	that	are
annotated	with	@Component	and	with	one	or	more	of	our	annotations.

	

	

Getting	annotations
We	will	extend	the	ProductInformation	class	with	the	following	field:

private	List<Class<?	extends	Annotation>>	check;

Since	this	is	a	DTO,	and	Spring	needs	the	setters	and	getters,	we	will	also	add	a	new	getter	and	setter	to
it.	This	field	will	contain	the	list	of	classes	that	each	class	implement	one	of	our	annotations	and	also	the
built-in	JDK	interface,	Annotation,	because	that	is	the	way	the	Java	compiler	generates	them.	At	this	point,
this	may	be	a	bit	murky	but	I	promise	that	the	dawn	will	break	and	there	will	be	light	as	we	go	on.

To	get	the	product	information,	we	have	to	look	it	up	by	ID.	This	is	the	interface	and	service	that	we
developed	in	the	last	chapter,	except,	this	time,	we	have	another	new	field.	This	is,	in	fact,	a	significant
difference	although	the	ProductLookup	interface	did	not	change	at	all.	In	the	last	chapter,	we	developed	two
versions.	One	of	the	versions	was	reading	the	data	from	a	properties	file,	the	other	one	was	connecting	to
a	REST	service.

Properties	files	are	ugly	and	old	technology	but	a	must	if	ever	you	intend	to	pass	a	Java
interview	or	work	on	enterprise	applications	developed	at	the	start	of	the	21st	century.	I
had	to	include	it	in	the	last	chapter.	It	was	my	own	urge	to	include	it	in	the	book.	At	the
same	time,	while	coding	for	this	chapter,	I	did	not	have	the	stomach	to	keep	using	it.	I
also	wanted	to	show	you	that	the	same	content	could	be	managed	in	a	JSON	format.

Now,	we	will	extend	the	implementation	of	ResourceBasedProductLookup	to	read	the	product	information	from
JSON	formatted	resource	files.	Most	of	the	code	remains	the	same	in	the	class;	therefore,	we	only	list	the
difference	here:

package	packt.java9.by.example.mybusiness.bulkorder.services;	

import	...	

@Service	

public	class	ResourceBasedProductLookup	implements	ProductLookup	{	

				private	static	final	Logger	log	=	LoggerFactory.getLogger(ResourceBasedProductLookup.class);	

				private	ProductInformation	fromJSON(InputStream	jsonStream)	

																																														throws	IOException	{	

								ObjectMapper	mapper	=	new	ObjectMapper();	

								return	mapper.readValue(jsonStream,	

																																			ProductInformation.class);	

				}	

...	

				private	void	loadProducts()	{	

								if	(productsAreNotLoaded)	{	

												try	{	

																Resource[]	resources	=		

																					new	PathMatchingResourcePatternResolver().	

																								getResources("classpath:products/*.json");	

																for	(Resource	resource	:	resources)	{	

																				loadResource(resource);	

																}	

																productsAreNotLoaded	=	false;	

												}	catch	(IOException	ex)	{	

																log.error("Test	resources	can	not	be	read",	ex);	

												}	

								}	

				}	

				private	void	loadResource(Resource	resource)	

																																							throws	IOException	{	

								final	int	dotPos	=	

																						resource.getFilename().lastIndexOf('.');	

								final	String	id	=	

																						resource.getFilename().substring(0,	dotPos);	

								final	ProductInformation	pi	=	

																						fromJSON(resource.getInputStream());	

								pi.setId(id);	

								products.put(id,	pi);	

				}	

...

In	the	project	resources/products	directory	we	have	a	few	JSON	files.	One	of	them	contains	the	desk	lamp
product	information:

{	

		"id"	:	"124",	

		"title":	"Desk	Lamp",	

		"check":	[

				"packt.java9.by.example.mybusiness.bulkorder.checkers.PoweredDevice"	

],	

		"description":	"this	is	a	lamp	that	stands	on	my	desk",	

		"weight":	"600",	

		"size":	["300",	"20",	"2"]	

}

The	type	of	product	is	specified	in	a	JSON	array.	In	this	example,	this	array	has	only	one	element	and	that
element	is	the	fully	qualified	name	of	the	annotation	interface	that	represents	the	type	of	product.	When	the
JSON	marshaller	converts	the	JSON	to	a	Java	object,	it	recognizes	that	the	field	that	needs	this
information	is	a	List,	so	it	converts	the	array	to	a	list	and,	also,	the	elements	from	String	to	Class	objects
representing	the	annotation	interface.

Now	that	we	have	the	resources	loaded	from	JSON	formatted	resources	and	we	saw	how	easy	it	is	to
read	JSON	data	when	using	Spring,	we	can	get	back	to	the	order	consistency	check.	The	Checker	class
implements	the	logic	to	collect	the	pluggable	checkers	and	to	invoke	them.	It	also	implements	the
annotation-based	screening	so	as	not	to	invoke	the	checkers	we	don't	really	need	for	the	actual	products	in
the	actual	order:

package	packt.java9.by.example.mybusiness.bulkorder.services;	

import	...	

@Component()	

@RequestScope	

public	class	Checker	{	

				private	static	final	Logger	log	=	

																								LoggerFactory.getLogger(Checker.class);	

				private	final	Collection<ConsistencyChecker>	checkers;	

				private	final	ProductInformationCollector	piCollector;	

				private	final	ProductsCheckerCollector	pcCollector;	

				public	Checker(

														@Autowired	Collection<ConsistencyChecker>	checkers,	

														@Autowired	ProductInformationCollector	piCollector,	

														@Autowired	ProductsCheckerCollector	pcCollector)	{	

								this.checkers	=	checkers;	

								this.piCollector	=	piCollector;	

								this.pcCollector	=	pcCollector;	

				}	

				public	boolean	isConsistent(Order	order)	{	

								Map<OrderItem,	ProductInformation>	map	=	

																piCollector.collectProductInformation(order);	

								if	(map	==	null)	{	

												return	false;	

								}	

								Set<Class<?	extends	Annotation>>	annotations	=		

																pcCollector.getProductAnnotations(order);	

								for	(ConsistencyChecker	checker	:		

																checkers)	{	

												for	(Annotation	annotation	:		

																				checker.getClass().getAnnotations())	{	

																if	(annotations.contains(

																																	annotation.annotationType()))	{	

																				if	(checker.isInconsistent(order))	{	

																								return	false;	

																				}	

																				break;	

																}	

												}	

								}	

								return	true;	

				}	

}

One	of	the	interesting	things	to	mention	is	that	the	Spring	auto-wiring	is	very	clever.	We	have	a	field	with
the	Collection<ConsistencyChecker>	type.	Usually,	auto-wiring	works	if	there	is	exactly	one	class	that	has	the
same	type	as	the	resources	to	wire.	In	our	case,	we	do	not	have	any	such	candidate	since	this	is	a
collection,	but	we	have	many	ConsistencyChecker	classes.	All	our	checkers	implement	this	interface	and
Spring	recognizes	it,	instantiates	them	all,	magically	creates	a	collection	of	them,	and	injects	the
collection	into	this	field.

Usually	a	good	framework	works	logically.	I	was	not	aware	of	this	feature	of	Spring,	but	I
thought	that	this	would	be	logical	and,	magically,	it	worked.	If	things	are	logical	and	just
work,	you	do	not	need	to	read	and	remember	the	documentation.	A	bit	of	caution	does	not
harm	however.	After	I	experienced	that	this	functionality	works	this	way,	I	looked	it	up	in
the	documentation	to	see	that	this	is	really	a	guaranteed	feature	of	Spring	and	not
something	that	just	happens	to	work	but	may	change	in	future	versions	without	notice.
Using	only	guaranteed	features	is	extremely	important	but	is	neglected	many	times	in	our
industry.

When	the	isConsistent	method	is	invoked,	it	first	collects	the	product	information	into	HashMap,	assigning	a
ProductInformation	instance	to	each	OrderItem.	This	is	done	in	a	separate	class.	After	this,
ProductsCheckerCollector	collects	the	ConsistencyChecker	instances	needed	by	one	or	more	product	items.	When
we	have	this	set,	we	need	to	invoke	only	those	checkers	that	are	annotated	with	one	of	the	annotations	that
are	in	this	set.	We	do	that	in	a	loop.

In	this	code,	we	use	reflection.	We	loop	over	the	annotations	that	each	checker	has.	To	get	the	collection
of	annotations,	we	invoke	checker.getClass().getAnnotations().	This	invocation	returns	a	collection	of	objects.
Each	object	is	an	instance	of	some	JDK	runtime	generated	class	that	implements	the	interface	we	declared
as	an	annotation	in	its	own	source	file.	There	is	no	guarantee,	though,	that	the	dynamically	created	class
implements	only	our	@interface	and	not	some	other	interfaces.	Therefore,	to	get	the	actual	annotation	class,
we	have	to	invoke	the	annotationType	method.

The	ProductCheckerCollector	and	ProductInformationCollector	classes	are	very	simple,	and	we	will
discuss	them	later	when	we	learn	about	streams.	They	will	serve	as	a	good	example	at
that	place,	when	we	implement	them	using	loops	and,	right	after	that,	using	streams.

Having	them	all,	we	can	finally	create	our	actual	checker	classes.	The	one	that	helps	us	see	that	there	is	a
power	cord	ordered	for	our	lamp	is	the	following:

package	packt.java9.by.example.mybusiness.bulkorder.checkers;	

import	...	

@Component	

@PoweredDevice	

public	class	NeedPowercord	implements	ConsistencyChecker	{	

				private	static	final	Logger	log	=	

															LoggerFactory.getLogger(NeedPowercord.class);	

				@Override	

				public	boolean	isInconsistent(Order	order)	{	

								log.info("checking	order	{}",	order);	

								CheckHelper	helper	=	new	CheckHelper(order);	

								return	!helper.containsOneOf("126",	"127",	"128");	

				}	

}

The	helper	class	contains	simple	methods	that	will	be	needed	by	many	of	the	checkers,	for	example:

public	boolean	containsOneOf(String...	ids)	{	

				for	(final	OrderItem	item	:	order.getItems())	{	

								for	(final	String	id	:	ids)	{	

												if	(item.getProductId().equals(id))	{	

																return	true;	

												}	

								}	

				}	

				return	false;	

}

Invoking	methods
In	this	example,	we	used	only	one	single	reflection	call	to	get	the	annotations	attached	to	a	class.
Reflection	can	do	many	more	things.	Handling	annotations	is	the	most	important	use	for	these	calls	since
annotations	do	not	have	their	own	functionality	and	cannot	be	handled	in	any	other	way	during	runtime.
Reflection,	however,	does	not	stop	telling	us	what	annotations	a	class	or	any	other	annotable	element	has.
Reflection	can	be	used	to	get	a	list	of	the	methods	of	a	class,	the	name	of	the	methods	as	strings,	the
implemented	interfaces	of	a	class,	the	parent	class	it	extends,	the	fields,	the	types	of	fields,	and	so	on.
Reflection	generally	provides	methods	and	classes	to	walk	through	the	actual	code	structure	down	to	the
method	level,	programmatically.

This	walkthrough	does	not	only	allow	reading	types	and	code	structure	but	also	makes	it	possible	to	set
field	values	and	call	methods	without	knowing	the	methods'	name	at	compile	time.	We	can	even	set	fields
that	are	private	and	are	not	generally	accessible	by	the	outside	world.	It	is	also	to	note	that	accessing	the
methods	and	fields	through	reflection	is	usually	slower	than	through	compiled	code	because	it	always
involves	lookup	by	the	name	of	the	element	in	the	code.

The	rule	of	thumb	is	that	if	you	see	that	you	have	to	create	code	using	reflection,	then
realize	that	you	are	probably	creating	a	framework	(or	writing	a	book	about	Java	that
details	reflection).	Does	it	sound	familiar?

Spring	also	uses	reflection	to	discover	the	classes,	methods,	and	fields,	and	also	to	inject	an	object.	It
uses	the	URL	class	loader	to	list	all	the	JAR	files	and	directories	that	are	on	the	class	path,	loads	them,
and	examines	the	classes.

For	a	contrived	example,	for	the	sake	of	demonstration,	let's	assume	that	the	ConsistencyChecker
implementations	were	written	by	many	external	software	vendors,	and	the	architect	who	originally
designed	the	program	structure	just	forgot	to	include	the	isConsistent	method	in	the	interface.	(At	the	same
time,	to	save	our	mental	health,	we	can	also	imagine	that	this	person	is	not	working	anymore	in	the
company	for	doing	so.)	As	a	consequence,	the	different	vendors	delivered	Java	classes	that	"implement"
this	interface	but	we	cannot	invoke	the	method,	not	only	because	we	do	not	have	a	common	parent
interface	that	has	this	method	but	also	because	the	vendors	just	happened	to	use	different	names	for	their
methods.

What	can	we	do	in	this	situation?	Business-wise,	asking	all	the	vendors	to	rewrite	their	checkers	is	ruled
out	because	them	knowing	we	are	in	trouble	attaches	a	hefty	price	tag	to	the	task.	Our	managers	want	to
avoid	that	cost	and	we	developers	also	want	to	show	that	we	can	mend	the	situation	and	do	miracles.
(Later,	I	will	have	a	comment	on	that.)

We	could	just	have	a	class	that	knows	every	checker	and	how	to	invoke	each	of	them	in	many	different
ways.	This	would	require	us	to	maintain	the	said	class	whenever	a	new	checker	is	introduced	to	the
system,	and	we	want	to	avoid	that.	The	whole	plugin	architecture	we	are	using	was	invented	for	this	very
purpose	in	the	first	place.

How	can	we	invoke	a	method	on	an	object	that	we	know	has	only	one	declared	method,	which	accepts	an

order	as	a	parameter?	That	is	where	reflection	comes	into	the	picture.	Instead	of	calling
checker.isInconsistent(order),	we	implement	a	small	private	method,	isInconsistent,	which	calls	the	method,
whatever	its	name	is,	via	reflection:

private	boolean	isInconsistent(ConsistencyChecker	checker,	Order	order)	{	

				Method[]	methods	=	checker.getClass().getDeclaredMethods();	

				if	(methods.length	!=	1)	{	

								log.error(

																"The	checker	{}	has	zero	or	more	than	one	methods",	

																checker.getClass());	

								return	false;	

				}	

				final	Method	method	=	methods[0];	

				final	boolean	inconsistent;	

				try	{	

								inconsistent	=	(boolean)	method.invoke(checker,	order);	

				}	catch	(InvocationTargetException	|	

												IllegalAccessException	|	

												ClassCastException	e)	{	

								log.error("Calling	the	method	{}	on	class	{}	threw	exception",	

																method,	checker.getClass());	

								log.error("The	exception	is	",	e);	

								return	false;	

				}	

				return	inconsistent;	

}

We	can	get	the	class	of	the	object	by	calling	the	getClass	method,	and	on	the	object	that	represents	the	class
itself,	we	can	call	getDeclaredMethods.	Fortunately,	the	checker	classes	are	not	littered	by	many	methods,	so
we	check	that	there	is	only	one	method	declared	in	the	checker	class.	Note	that	there	is	also	a	getMethods
method	in	the	reflection	library	but	it	always	will	return	more	than	one	method.	It	returns	the	declared	and
the	inherited	methods.	Because	each	and	every	class	inherits	from	java.lang.Object,	at	least	the	methods	of
the	Object	class	will	be	there.

After	this,	we	try	to	invoke	the	class	using	the	Method	object	that	represents	the	method	in	the	reflection
class.	Note	that	this	Method	object	is	not	directly	attached	to	an	instance.	We	retrieved	the	method	from	the
class,	and	thus,	when	we	invoke	it,	we	should	pass	the	object	it	should	work	on	as	a	first	parameter.	This
way,	x.y(z),	becomes	method.invoke(x,z).	The	last	parameter	of	invoke	is	a	variable	number	of	arguments	that
are	passed	as	an	Object	array.	In	most	cases,	when	we	invoke	a	method,	we	know	the	arguments	in	our
code	even	if	we	do	not	know	the	name	of	the	method	and	have	to	use	reflection.	When	even	the	arguments
are	not	known	but	are	available	as	a	matter	of	calculation,	then	we	have	to	pass	them	as	an	Object	array.

Invoking	a	method	via	reflection	is	a	risky	call.	If	we	try	to	call	a	method	the	normal	way,	which	is	private,
then	the	compiler	will	signal	an	error.	If	the	number	of	arguments	or	types	are	not	appropriate,	the
compiler	will	again	will	give	us	an	error.	If	the	returned	value	is	not	boolean,	or	there	is	no	return	value	at
all,	then	we	again	get	a	compiler	error.	In	the	case	of	reflection,	the	compiler	is	clueless.	It	does	not	know
what	method	we	will	invoke	when	the	code	is	executing.	The	invoke	method,	on	the	other	hand,	can	and
will	notice	all	these	failures	when	it	is	invoked.	If	any	of	the	aforementioned	problems	occur,	then	we
will	get	exceptions.	If	the	invoke	method	itself	sees	that	it	cannot	perform	what	we	ask	of	it,	then	it	will
throw	InvocationTargetException	or	IllegalAccessException.	If	the	conversion	from	the	actual	return	value	to
boolean	is	not	possible,	then	we	will	get	ClassCastException.

About	doing	magic,	it	is	a	natural	urge	that	we	feel	like	making	something	extraordinary,	something
outstanding.	This	is	okay	when	we	are	experimenting	with	something,	doing	a	hobby	job.	On	the	other
hand,	this	is	strongly	not	okay	when	we	are	working	on	a	professional	job.	Average	programmers,	who	do

not	understand	your	brilliant	solution,	will	maintain	the	code	in	an	enterprise	environment.	They	will	turn
your	nicely	combed	code	into	haystack	while	fixing	some	bugs	or	implementing	some	minor	new	features.
Even	if	you	are	the	Mozart	of	programming,	they	will	be,	at	best,	no-name	singers.	A	brilliant	code	in	an
enterprise	environment	can	be	a	requiem,	with	all	the	implications	of	that	metaphor.

Last	but	not	least,	the	sad	reality	is	that	we	are	usually	not	the	Mozarts	of	programming.

Note	that	in	case	the	return	value	of	the	original	value	is	primitive,	then	it	will	be	converted	to	an	object
by	reflection,	and	then	we	will	convert	it	back	to	the	primitive	value.	If	the	method	does	not	have	a	return
value,	in	other	words,	if	it	is	void,	then	the	reflection	will	return	a	java.lang.Void	object.	The	Void	object	is
only	a	placeholder.	We	cannot	convert	it	to	any	primitive	value	or	any	other	type	of	objects.	It	is	needed
because	Java	is	strict	and	invoke	has	to	return	an	Object,	so	the	runtime	needs	something	that	it	can	return.
All	we	can	do	is	check	that	the	returned	value	class	is	really	Void.

Let's	go	on	with	the	storyline	and	our	solution.	We	submitted	the	code	and	it	works	in	production	for	a
while	till	a	new	update	from	a	software	vendor	breaks	it.	We	debug	the	code	in	the	test	environment	and
see	that	the	class	now	contains	more	than	one	method.	Our	documentation	clearly	states	that	they	should
only	have	one	public	method,	and	they	provided	a	code	that	has...hmm...we	realize	that	the	other	methods
are	private.	They	are	right;	they	can	have	private	methods	according	to	the	contract,	so	we	have	to	amend
the	code.	We	replace	the	lines	that	look	up	the	one	and	only	method:

Method[]	methods	=	checker.getClass().getDeclaredMethods();	

if	(methods.length	!=	1)	{	

...	

}	

final	Method	method	=	methods[0];

The	new	code	will	be	as	follows:

final	Method	method	=	getSingleDeclaredPublicMethod(checker);	

if	(method	==	null)	{	

				log.error(

												"The	checker	{}	has	zero	or	more	than	one	methods",	

												checker.getClass());	

				return	false;	

}

The	new	method	we	write	to	look	up	the	one	and	only	public	method	is	as	follows:

private	Method	getSingleDeclaredPublicMethod(

																											ConsistencyChecker	checker)	{	

				final	Method[]	methods	=	

								checker.getClass().getDeclaredMethods();	

				Method	singleMethod	=	null;	

				for	(Method	method	:	methods)	{	

								if	(Modifier.isPublic(method.getModifiers()))	{	

												if	(singleMethod	!=	null)	{	

																return	null;	

												}	

												singleMethod	=	method;	

								}	

				}	

				return	singleMethod;	

}

To	check	whether	the	method	is	public	or	not,	we	use	a	static	method	from	the	Modifier	class.	There	are
methods	to	check	all	possible	modifiers.	The	value	that	the	getModifiers	method	returns	is	an	int	bit	field.

Different	bits	have	different	modifiers	and	there	are	constants	that	define	these.	This	simplification	leads
to	inconsistency,	which	you	can	check	if	a	method	is	an	interface	or	volatile,	that	is,	actually	nonsense.
The	fact	is	that	bits	that	can	only	be	used	for	other	types	of	reflection	objects	will	never	be	set.

There	is	one	exception,	which	is	volatile.	This	bit	is	reused	to	signal	bridge	methods.
Bridge	methods	are	created	by	the	compiler	automatically	and	can	have	deep	and
complex	issues	that	we	do	not	discuss	in	this	book.	The	reuse	of	the	same	bit	does	not
cause	confusion	because	a	field	can	be	volatile,	but	as	a	field,	it	cannot	be	a	bridge
method.	Obviously,	a	field	is	a	field	and	not	a	method.	In	the	same	way,	a	method	cannot
be	a	volatile	field.	The	general	rule	is:	do	not	use	methods	on	reflection	objects	where
they	do	not	have	a	meaning;	or	else,	know	what	you	do.

Making	the	storyline	even	more	intricate,	a	new	version	of	a	checker	accidentally	implements	the
checking	method	as	a	package	private.	The	programmer	simply	forgot	to	use	the	public	keyword.	For	the
sake	of	simplicity,	let's	assume	that	the	classes	declare	only	one	method	again,	but	it	is	not	public.	How
do	we	solve	this	problem	using	reflection?

Obviously,	the	simplest	solution	is	to	ask	the	vendors	to	fix	the	problem:	it	is	their	fault.	In	some	cases,
however,	we	must	create	a	workaround	over	some	problems.	There	is	another	solution:	creating	a	class
with	a	public	method	in	the	same	package,	invoking	the	package	private	methods	from	the	other	class,	thus
relaying	the	other	class.	As	a	matter	of	fact,	this	solution,	as	a	workaround	for	such	a	bug,	seems	to	be
more	logical	and	cleaner,	but	this	time,	we	want	to	use	reflection.

To	avoid	java.lang.IllegalAccessException,	we	have	to	set	the	method	object	as	accessible.	To	do	so,	we	have
to	insert	the	following	line	in	front	of	the	invocation:

method.setAccessible(true);

Note	that	this	will	not	change	the	method	to	public.	It	will	only	make	the	method	accessible	for	invocation
through	the	very	instance	of	the	method	object	that	we	set	as	accessible.

I	have	seen	code	that	checks	whether	a	method	is	accessible	or	not	by	calling	the	isAccessible	method	and
saves	this	information;	it	sets	the	method	as	accessible	if	it	was	not	accessible	and	restores	the	original
accessibility	after	the	invocation.	This	is	totally	useless.	As	soon	as	the	method	variable	goes	out	of	scope,
and	there	is	no	reference	to	the	object	we	set	the	accessibility	flag	to,	the	effect	of	the	setting	wears	off.
Also,	there	is	no	penalty	for	setting	the	accessibility	of	a	public	or	an	otherwise	callable	method.

Setting	fields
We	can	also	call	setAccessible	on	Field	objects	and	then	we	can	even	set	the	value	of	private	fields	using
reflection.	Without	further	fake	stories,	just	for	the	sake	of	the	example,	let's	make	a	ConsistencyChecker
named	SettableChecker:

@Component	

@PoweredDevice	

public	class	SettableChecker	implements	ConsistencyChecker	{	

				private	static	final	Logger	log	=	LoggerFactory.getLogger(SettableChecker.class);	

				private	boolean	setValue	=	false;	

				public	boolean	isInconsistent(Order	order)	{	

								return	setValue;	

				}	

}

This	checker	will	return	false,	unless	we	set	the	field	to	true	using	reflection.	We	do	set	it	as	such.	We
create	a	method	in	the	Checker	class	and	invoke	it	from	the	checking	process	for	each	checker:

private	void	setValueInChecker(ConsistencyChecker	checker)	{	

				Field[]	fields	=	checker.getClass().getDeclaredFields();	

				for(final	Field	field	:	fields){	

								if(field.getName().equals("setValue")	&&	

												field.getType().equals(boolean.class)){	

												field.setAccessible(true);	

												try	{	

																log.info("Setting	field	to	true");	

																field.set(checker,true);	

												}	catch	(IllegalAccessException	e)	{	

																log.error("SNAFU",e);	

												}	

								}	

				}	

}

The	method	goes	through	all	the	declared	fields	and	if	the	name	is	setValue	and	the	type	is	boolean,	then	it
sets	it	to	true.	This	will	essentially	render	all	orders	that	contain	a	powered	device	as	rejected.

Note	that	although	boolean	is	a	built-in	language	primitive,	which	is	not	a	class	by	any	means,	it	still	has	a
class	so	that	reflection	can	compare	the	type	of	the	field	gainst	he	class	that	boolean	artificially	has.	Now
boolean.class	is	a	class	literal	in	the	language,	and	for	each	primitive,	a	similar	constant	can	be	used.	The
compiler	identifies	these	as	class	literals	and	creates	the	appropriate	pseudo	class	references	in	the	byte
code	so	that	primitives	can	also	be	checked	in	this	way,	as	demonstrated	in	the	sample	code	of	the
setValueInChecker	method.

We	checked	that	the	field	has	the	appropriate	type,	and	we	also	called	the	setAccessible	method	on	the	field.
Even	though	the	compiler	does	not	know	that	we	really	did	everything	to	avoid	IllegalAccessException,	it	still
believes	that	calling	set	on	field	can	throw	such	an	exception,	as	it	is	declared.	However,	we	know	that	it
should	not	happen.	(Famous	last	words	of	a	programmer?)	To	handle	this	situation,	we	surround	the
method	call	with	a	try	block,	and	in	the	catch	branch,	we	log	the	exception.

Functional	programming	in	Java
Since	we	have	created	a	lot	of	code	in	our	example	for	this	chapter,	we	will	look	at	the	functional
programming	features	of	Java,	which	will	help	us	delete	many	lines	from	our	code.	The	less	code	we
have,	the	easier	it	is	to	maintain	the	application;	thus,	programmers	love	functional	programming.	But	this
is	not	the	only	reason	why	functional	programming	is	so	popular.	It	is	also	an	excellent	way	to	describe
certain	algorithms	in	a	more	readable	and	less	error	prone	manner	than	conventional	loops.

Functional	programming	is	not	a	new	thing.	The	mathematical	background	was	developed	for	it	in	the
1930s.	One	of	the	first	(if	not	the	first)	functional	programming	languages	is	LISP.	It	was	developed	in	the
1950s	and	it	is	still	in	use,	so	much	that	there	is	a	version	of	the	language	implemented	on	the	JVM
(Clojure).

Functional	programming,	in	short,	means	that	we	express	the	program	structure	in	terms	of	functions.	In
this	meaning,	we	should	think	of	functions	as	in	mathematics	and	not	as	the	term	is	used	in	programming
languages	such	as	C.	In	Java,	we	have	methods,	and	when	we	are	following	the	functional	programming
paradigm,	we	create	and	use	methods	that	behave	like	mathematical	functions.	A	method	is	functional	if	it
gives	the	same	result	no	matter	how	many	times	we	invoke	it,	just	as	sin(0)	is	always	zero.	Functional
programming	avoids	changing	the	state	of	objects,	and	because	the	state	is	not	changing,	the	results	are
always	the	same.	This	also	eases	debugging.

If	a	function	has	once	returned	a	certain	value	for	the	given	arguments,	it	will	always	return	the	same
value.	We	can	also	read	the	code	as	a	declaration	of	the	calculation	more	than	as	commands	that	are
executed	one	after	the	other.	If	the	execution	order	is	not	important,	then	the	readability	of	the	code	may
also	increase.

Java	helps	functional	programming	style	with	lambda	expressions	and	streams.	Note	that	these	streams
are	not	I/O	streams	and	do	not	really	have	any	relation	to	those.

We	will	first	take	a	short	look	at	lambda	expressions	and	what	streams	are,	and	then,	we	will	convert
some	parts	of	our	program	to	use	these	programming	constructs.	We	will	also	see	how	much	more
readable	these	codes	become.

Readability	is	a	debatable	topic.	A	code	may	be	readable	to	one	developer	and	may	be	less	readable	to
another.	It	very	much	depends	on	what	they	got	used	to.	I	experience	many	times	that	developers	get
distracted	with	streams.	When	developers	first	meet	streams,	the	way	to	think	about	them	and	how	they
look	is	just	strange.	But	this	is	the	same	as	starting	to	learn	using	a	bicycle.	While	you	are	still	learning	its
use	and	you	fall	more	than	you	roll,	it	is	definitely	slower	than	walking.	On	the	other	hand,	once	you	have
learnt	how	to	ride	a	bike...

Lambda
We	have	already	used	lambda	expressions	in	Chapter	3,	Optimizing	the	Sort	-	Making	Code	Professional
when	we	wrote	the	exception-throwing	test.	In	that	code,	we	set	the	comparator	to	a	special	value	that
was	throwing	RuntimeException	at	each	invocation:

sort.setComparator((String	a,	String	b)	->	{	

								throw	new	RuntimeException();	

				});

The	argument	type	is	Comparator;	therefore,	what	we	have	to	set	there	should	be	an	instance	of	a	class	that
implements	the	java.util.Comparator	interface.	That	interface	defines	only	one	method	that	implementations
have	to	define:	compare.	Thus,	we	can	define	it	as	a	lambda	expression.	Without	lambda,	if	we	need	an
instance,	we	have	to	type	a	lot.	We	have	to	create	a	class,	name	it,	declare	the	compare	method	in	it,	and
write	the	body	of	the	method,	as	shown	in	the	following	code	segment:

public	class	ExceptionThrowingComparator	implements	Comparator	{	

		public	int	compare(T	o1,	T	o2){	

				throw	new	RuntimeException();	

		}	

}

At	the	location	of	use,	we	should	instantiate	the	class	and	pass	it	as	an	argument:

sort.setComparator(new	ExceptionThrowingComparator());

We	may	save	a	few	characters	if	we	define	the	class	as	an	anonymous	class	but	the	overhead	is	still	there.
What	we	really	need	is	the	body	of	the	one	and	single	method	that	we	have	to	define.	This	is	where
lambda	comes	into	the	picture.

We	can	use	a	lambda	expression	in	any	place	where	we	would	otherwise	need	an	instance	of	a	class	that
has	to	define	only	one	method.	The	methods	that	are	defined	and	inherited	from	Object	do	not	count,	and	we
also	do	not	care	about	the	methods	that	are	defined	as	default	methods	in	the	interface.	They	are	there.
Lambda	defines	the	one	that	is	not	yet	defined.	In	other	words,	lambda	clearly	depicts,	with	much	less
overhead	as	an	anonymous	class,	that	the	value	is	a	functionality	that	we	pass	as	a	parameter.

The	simple	form	of	a	lambda	expression	is	as	follows:

parameters	->	body

The	parameters	can	be	enclosed	between	parentheses	or	can	only	stand	without.	The	body	similarly	can
be	enclosed	between	the	{	and}	characters	or	it	can	be	a	simple	expression.	This	way	a	lambda
expression	can	reduce	the	overhead	to	a	minimum,	using	the	parentheses	only	where	they	are	really
needed.

It	is	also	an	extremely	useful	feature	of	lambda	expressions	that	we	do	not	need	to	specify	the	types	of	the
parameters	in	case	it	is	obvious	from	the	context	where	we	use	the	expression.	Thus,	the	preceding	code
segment	can	even	be	shorter,	as	follows:

sort.setComparator((a,	b)	->	{	

				throw	new	RuntimeException();	

});

The	parameters,	a	and	b,	will	have	the	type	as	needed.	To	make	it	even	simpler,	we	can	also	omit	the	(
and)	characters	around	the	parameters	in	case	there	is	only	one.

The	parentheses	are	not	optional	if	there	is	more	than	one	parameter.	This	is	to	avoid
ambiguity	in	some	situations.	For	example,	the	method	call,	f(x,y->x+y)	could	have	been	a
method	with	two	arguments:	x	and	a	lambda	expression	that	has	one	parameter,	y.	At	the
same	time,	it	could	also	be	a	method	call	with	a	lambda	expression	that	has	two
parameters,	x	and	y.

Lambda	expressions	are	very	handy	when	we	want	to	pass	functionality	as	an	argument.	The	declaration
of	the	type	of	argument	at	the	place	of	the	method	declaration	should	be	a	functional	interface	type.	These
interfaces	can	optionally	be	annotated	using	@FunctionalInterface.	The	Java	runtime	has	many	such	interfaces
defined	in	the	java.util.function	package.	We	will	discuss	some	of	them	in	the	next	section	along	with	their
use	in	streams.	For	the	rest,	the	standard	Java	documentation	is	available	from	Oracle.

Streams
Streams	were	also	new	in	Java	8,	just	like	lambda	expressions.	They	work	together	very	strongly,	so	their
appearance	at	the	same	time	is	not	a	surprise.	Lambda	expressions	as	well	as	streams	support	the
functional	programming	style.

The	very	first	thing	to	clarify	is	that	streams	do	not	have	anything	to	do	with	input	and	output	streams,
except	the	name.	They	are	totally	different	things.	Streams	are	more	like	collections	with	some	significant
differences.	(If	there	were	no	differences,	they	would	just	have	been	collections.)	Streams	are	essentially
pipelines	of	operations	that	can	run	sequentially	or	in	parallel.	They	obtain	their	data	from	collections	or
other	sources,	including	data	that	is	manufactured	on-the-fly.

Streams	support	the	execution	of	the	same	calculation	on	multiple	data.	This	structure	is	referred	to	as
Single	Instruction	Multiple	Data	(SIMD).	Don't	be	afraid	of	the	expression.	This	is	a	very	simple	thing.
We	have	already	done	that	many	times	in	this	book.	Loops	are	also	kind	of	SIMD	structures.	When	we
loop	through	the	checker	classes	to	see	whether	any	of	those	opposes	the	order,	we	perform	the	same
instruction	for	each	and	every	checker.	Multiple	checkers	are	multiple	data.

One	problem	with	loops	is	that	we	define	the	order	of	execution	when	it	is	not	needed.	In	the	case	of
checkers,	we	do	not	really	care	what	order	the	checkers	are	executed	in.	All	we	care	about	is	that	all	are
okay	with	the	order.	We	still	specify	some	order	when	we	program	the	loop.	This	comes	from	the	nature
of	loops,	and	there	is	no	way	we	could	change	that.	That	is	how	they	work.	However,	it	would	be	nice	if
we	could	just,	somehow,	say	"do	this	and	that	for	each	and	every	checker".	This	is	one	point	where
streams	come	into	the	picture.

Another	point	is	that	code	that	uses	loops	is	more	imperative	rather	than	descriptive.	When	we	read	the
program	of	a	loop	construct,	we	focus	on	the	individual	steps.	We	first	see	what	the	commands	in	the	loop
do.	These	commands	work	on	the	individual	elements	of	the	data	and	not	on	the	whole	collection	or	array.

Later	putting	the	individual	steps	together	in	our	brain	we	realize	what	the	big	picture	is,	what	the	loop	is
for.	In	the	case	of	streams,	the	description	of	operations	is	a	level	higher.	Once	we	learn	the	stream
methods,	it	is	easier	to	read	them.	Stream	methods	work	on	the	whole	stream	and	not	on	the	individual
elements,	and	thus	are	more	descriptive.

java.lang.Stream	is	an	interface.	An	object	with	a	type	implementing	this	interface	represents	many	objects
and	provides	methods	that	can	be	used	to	perform	instructions	on	these	objects.	The	objects	may	or	may
not	be	available	when	we	start	the	operation	on	one	of	them,	or	may	just	be	created	when	needed.	This	is
up	to	the	actual	implementation	of	the	Stream	interface.	For	example,	suppose	we	generate	a	stream	that
contains	int	values	using	the	following	code:

IntStream.iterate(0,	(s)	->	s+1)

In	the	preceding	code	snippet,	all	the	elements	cannot	be	generated	because	the	stream	contains	an	infinite
number	of	elements.	This	example	will	return	the	numbers	0,	1,	2,	and	so	on	until	further	stream
operations,	which	are	not	listed	here,	terminate	the	calculation.

When	we	program	Stream,	we	usually	create	a	stream	from	a	Collection—not	always,	but	many	times.	The
Collection	interface	was	extended	in	Java	8	to	provide	the	stream	and	parallelStream	methods.	Both	of	them
return	stream	objects	that	represent	the	elements	of	the	collection.	While	stream	returns	the	elements	in	the
same	order	as	they	are	in	the	collection	in	case	there	is	a	natural	order,	the	parallelStream	creates	a	stream
that	may	be	worked	on	in	a	parallel	manner.	In	this	case,	if	some	of	the	methods	that	we	use	on	the	stream
are	implemented	in	that	way,	the	code	can	use	the	multiple	processors	available	in	the	computer.

As	soon	as	we	have	a	stream,	we	can	use	the	methods	that	the	Stream	interface	defines.	The	one	to	start
with	is	forEach.	This	method	has	one	argument,	which	is	usually	provided	as	a	lambda	expression	and	will
execute	the	lambda	expression	for	each	element	of	the	stream.

In	the	Checker	class,	we	have	the	isConsistent	method.	In	this	method,	there	is	a	loop	that	goes	through	the
annotations	of	the	checker	class.	If	we	wanted	to	log	the	interfaces	that	the	annotation	in	the	loop
implements,	we	could	add	the	following:

for	(ConsistencyChecker	checker	:checkers)	{	

		for	(Annotation	annotation	:	

checker.getClass().getAnnotations())	{	

Arrays.stream(annotation.getClass().getInterfaces())	

.forEach(

t	->log.info("annotation	implemented	interfaces	{}",t)	

);	

...

In	this	example,	we	create	a	stream	from	an	array	using	the	factory	method	from	the	Arrays	class.	The	array
contains	the	interfaces	returned	by	the	reflection	method,	getInterfaces.	The	lambda	expression	has	only
one	parameter;	thus,	we	do	not	need	to	use	parentheses	around	it.	The	body	of	the	expression	is	a	method
call	that	returns	no	value;	thus,	we	also	omit	the	{	and	}	characters.

Why	all	this	hassle?	What	is	the	gain?	Why	couldn't	we	just	write	a	simple	loop	that	logs
the	elements	of	the	array?
The	gains	are	readability	and	maintainability.	When	we	create	a	program,	we	have	to
focus	on	what	the	program	should	do	and	not	on	how	it	should	do	it.	In	an	ideal	world,	a
specification	would	just	be	executable.	We	may	actually	get	there	in	the	future	when
programming	work	will	be	replaced	by	artificial	intelligence.	(Not	the	programmers,
though.)	We	are	not	there,	yet.	We	have	to	tell	the	computers	how	to	do	what	we	want	to
achieve.	We	used	to	have	to	enter	binary	codes	on	the	console	of	PDP-11	to	get	machine
code	deployed	into	the	memory	to	have	it	executed.	Later,	we	had	assemblers;	still	later,
we	had	FORTRAN	and	other	high-level	programming	languages	that	have	replaced	much
of	the	programming	work	as	it	was	40	years	ago.	All	these	developments	in	programming
shift	the	direction	from	how	towards	what.	Today,	we	program	in	Java	9,	and	the	road	still
has	miles	to	go.
The	more	we	can	express	what	to	do	instead	of	how	to	do,	the	shorter	and	more
understandable	our	programs	will	be.	It	will	contain	the	essence	and	not	some	artificial
litter	that	is	needed	by	the	machines	to	just	do	what	we	want.
When	I	see	a	loop	in	a	code	I	have	to	maintain,	I	assume	that	there	is	some	importance	of
the	order	in	which	the	loop	is	executed.	There	may	be	no	importance	at	all.	It	may	be
obvious	after	a	few	seconds.	It	may	need	minutes	or	more	to	realize	that	the	ordering	is
not	important.	This	time	is	wasted	and	can	be	saved	with	programming	constructs	that

better	express	the	what	to	do	part	instead	of	the	how	to	do.

Functional	interfaces
The	argument	to	the	method	should	be	java.util.function.Consumer.	This	is	an	interface	that	requires	the	accept
method	to	be	defined,	and	this	method	is	void.	The	lambda	expression	or	a	class	that	implements	this
interface	will	consume	the	argument	of	the	accept	method	and	does	not	produce	anything.

There	are	several	other	interfaces	defined	in	that	package,	each	serving	as	a	functional	interface	used	to
describe	some	method	arguments	that	can	be	given	as	lambda	expressions	in	the	actual	parameters.

For	example,	the	opposite	of	Consumer	is	Supplier.	This	interface	has	a	method	named	get	that	does	not	need
any	argument	but	gives	some	Object	as	a	return	value.

If	there	is	an	argument	and	also	a	returned	value,	the	interface	is	called	Function.	If	the	returned	value	has
to	be	the	same	type	as	the	argument,	then	the	UnaryOperator	interface	is	our	friend.	Similarly,	there	is	a
BinaryOperator	interface,	which	returns	an	object	of	the	same	type	as	the	arguments.	Just	as	we	got	from
Function	to	UnaryOperator,	we	can	see	that	in	the	other	direction,	there	is	also	BiFunction	in	case	the	arguments
and	the	return	values	do	not	share	the	type.

These	interfaces	are	not	defined	independently	of	each	other.	If	a	method	requires	Function
and	we	have	UnaryOperator	to	pass,	it	should	not	be	a	problem.	UnaryOperator	is	nothing	else
but	Function	that	has	the	same	type	of	arguments.	A	method	that	can	work	with	Function,
which	accepts	an	object	and	returns	an	object,	should	not	have	a	problem	if	they	have	the
same	type.	Those	can	be,	but	need	not	be,	different.
To	let	that	happen,	the	UnaryOperator	interface	extends	Function	and	thus	can	be	used	in	the
place	of	Function.

The	interfaces	in	this	class	we	met	so	far	are	defined	using	generics.	Because	generic	types	cannot	be
primitives,	the	interfaces	that	operate	on	primitive	values	should	be	defined	separately.	Predicate,	for
example,	is	an	interface	that	defines	booleantest(T	t).	It	is	a	function	that	returns	a	boolean	value	and	is	used
many	times	in	stream	methods.

There	are	also	interfaces,	such	as	BooleanSupplier,	DoubleConsumer,	DoubleToIntFunction,	and	more,	that	work	with
primitive	boolean,	double,	and	int.	The	number	of	possible	combinations	of	the	different	argument	types	and
return	values	is	infinite...	almost.

Fun	fact:	To	be	very	precise,	it	is	not	infinite.	A	method	can	have	at	most	254	arguments.
This	limit	is	specified	in	the	JVM	and	not	in	the	Java	language	specification.	Of	course,
one	is	useless	without	the	other.	There	are	8	primitive	types	(plus	Object,	plus	the
possibility	that	there	are	less	than	254	arguments),	which	means	that	the	total	number	of
possible	functional	interfaces	is	10254,	give	or	take,	a	few	magnitudes.	Practically,
infinite!

We	should	not	expect	to	have	all	the	possible	interfaces	defined	in	the	JDK	in	this	package.	These	are
only	those	interfaces	that	are	the	most	useful.	There	is	no	interface,	for	example,	that	uses	short	or	char.	If
we	need	anything	like	that,	then	we	can	define	the	interface	in	our	code.	Or	just	think	hard	and	find	out	how

to	use	an	already	defined	one.	(I	have	never	used	the	short	type	during	my	professional	carrier.	It	was
never	needed.)

How	are	these	functional	interfaces	used	in	streams?	The	Stream	interface	defines	the	methods	that	have
some	functional	interface	types	as	arguments.	For	example,	the	allMatch	method	has	a	Predicate	argument
and	returns	a	Boolean	value,	which	is	true	if	all	the	elements	in	the	stream	match	Predicate.	In	other	words,
this	method	returns	true	if	and	only	if	Predicate,	supplied	as	an	argument,	returns	true	for	each	and	every
element	of	the	stream.

In	the	following	code,	we	will	rewrite	some	of	the	methods	that	we	implemented	in	our	sample	code
using	loops	to	use	streams,	and	through	these	examples,	we	will	discuss	the	most	important	methods	that
streams	provide.	We	saved	up	two	classes,	ProductsCheckerCollector	and	ProductInformationCollector,	to
demonstrate	the	stream	usage.	We	can	start	with	these.	ProductsCheckerCollector	goes	through	all	the	products
that	are	contained	in	the	Order	and	collects	the	annotations	that	are	listed	in	the	products.	Each	product	may
contain	zero,	one,	or	many	annotations.	These	are	available	in	a	list.	The	same	annotation	may	be
referenced	multiple	times.	To	avoid	duplicates,	we	use	HashSet,	which	will	contain	only	one	instance	of	the
elements	even	if	there	are	multiple	instances	in	the	products:

public	class	ProductsCheckerCollector	{	

				private	final	ProductInformationCollector	pic;	

				public	ProductsCheckerCollector(@Autowired	

						ProductInformationCollector	pic)	{	this.pic	=	pic;	}	

				public	Set<Class<?	extends	Annotation>>	

																							getProductAnnotations(Order	order)	{	

								Map<OrderItem,	ProductInformation>	piMap	=	

																										pic.collectProductInformation(order);	

								final	Set<Class<?	extends	Annotation>>	

																												annotations	=	new	HashSet<>();	

								for	(OrderItem	item	:	order.getItems())	{	

												final	ProductInformation	pi	=	piMap.get(item);	

												if	(pi	!=	null	&&	pi.getCheck()	!=	null)	{	

																for	(Class<?	extends	Annotation>	check	:	

																																														pi.getCheck())	{	

																				annotations.addAll(pi.getCheck());	

																}	

								}	

								return	annotations;	

				}	

}

Now,	let's	see	how	this	method	looks	when	we	recode	it	using	streams:

public	Set<Class<?	extends	Annotation>>	

																getProductAnnotations(Order	order)	{	

				Map<OrderItem,	ProductInformation>	piMap	=	

																						pic.collectProductInformation(order);	

				return	order.getItems().stream()	

												.map(piMap::get)	

												.filter(Objects::nonNull)	

												.peek(pi	->	{	

																if	(pi.getCheck()	==	null)	{	

																				log.info("Product	{}	has	no	annotation",	

																																																		pi.getId());	

																}	

												})	

												.filter(pi	->	pi.getCheck()	!=	null)	

												.peek(pi	->	log.info("Product	{}	is	annotated	with	class	{}",	pi.getId(),	pi.getCheck()))	

												.flatMap(pi	->	pi.getCheck().stream())	

												.collect(Collectors.toSet());	

}

The	major	work	of	the	method	gets	into	a	single,	though	huge,	stream	expression.	We	will	cover	the
elements	of	the	expression	in	the	coming	pages.	List	returned	by	order.getItems	is	converted	calling	the
stream	method:

returnorder.getItems().stream()

As	we	have	already	mentioned	it	briefly,	the	stream	method	is	part	of	the	Collection	interface.	Any	class	that
implements	the	Collection	interface	will	have	this	method,	even	those	that	were	implemented	before
streams	were	introduced	in	Java	8.	This	is	because	the	stream	method	is	implemented	in	the	interface	as	a
default	method.	This	way,	if	we	happen	to	implement	a	class	implementing	this	interface,	even	if	we	do	not
need	streams,	we	get	it	for	free	as	an	extra.

The	default	methods	in	Java	8	were	introduced	to	support	backward	compatibility	of
interfaces.	Some	of	the	interfaces	of	the	JDK	were	to	be	modified	to	support	lambda	and
functional	programming.	One	example	is	the	stream	method.	With	the	pre-Java	8	feature
set,	the	classes	implementing	some	of	the	modified	interfaces	should	have	been	modified.
They	would	have	been	required	to	implement	the	new	method.	Such	a	change	is	not
backward	compatible,	and	Java	as	a	language	and	JDK	was	paying	keen	attention	to	be
backward	compatible.	Thus,	default	methods	were	introduced.	These	let	a	developer
extend	an	interface	and	still	keep	it	backward	compatible,	providing	a	default
implementation	for	the	methods,	which	are	new.
Contrary	to	this	philosophy,	brand	new	functional	interfaces	of	Java	8	JDK	also	have
default	methods,	though,	having	no	prior	version	in	the	JDK,	they	have	nothing	to	be
compatible	with.	In	Java	9,	interfaces	were	also	extended	and	now	they	can	contain	not
only	default	and	static	methods	but	also	private	methods.	This	way,	interfaces	became	kind
of	equivalent	to	abstract	classes,	though	there	are	no	fields	in	an	interface	except
constant	static	fields.	This	interface	functionality	open	up	is	a	much	criticized	feature,
which	just	poses	the	programming	style	and	structural	issues	that	other	languages
allowing	multiple	class	inheritance	face.	Java	was	avoiding	this	till	Java	8	and	Java	9.
What	is	the	take-away	from	this?	Be	careful	with	default	methods	and	also	with	private
methods	in	interfaces.	Use	them	wisely	if	at	all.

The	elements	of	this	stream	are	OrderItem	objects.	We	need	ProductInformation	for	each	OrderItem.

Method	references
Lucky	that	we	have	Map,	which	pairs	order	items	with	product	information,	so	we	can	invoke	get	on	Map:

.map(piMap::get)

The	map	method	is	again	something	that	has	the	same	name	as	something	else	in	Java	and	should	not	be
confused.	While	the	Map	class	is	a	data	structure,	the	map	method	in	the	Stream	interface	performs	mapping	of
the	stream	elements.	The	argument	of	the	method	is	a	Function	(recall	that	this	is	a	functional	interface	we
recently	discussed).	This	function	converts	a	value,	T,	which	is	available	as	the	element	of	the	original
stream	(Stream<T>)	to	a	value,	R,	and	the	return	value	of	the	map	method	is	Stream<R>.	The	map	method	converts
Stream<T>	to	Stream<R>	using	the	given	Function<T,R>,	calling	it	for	each	element	of	the	original	stream	and
creating	a	new	stream	from	the	converted	elements.

We	can	say	that	the	Map	interface	maps	keys	to	values	in	a	data	structure	in	a	static	way,	and	the	Stream
method,	map,	maps	one	type	of	values	to	another	(or	the	same)	type	of	values	dynamically.

We	have	already	seen	that	we	can	provide	an	instance	of	a	functional	interface	in	the	form	of	a	lambda
expression.	This	argument	is	not	a	lambda	expression.	This	is	a	method	reference.	It	says	that	the	map
method	should	invoke	the	get	method	on	Map	piMap	using	the	actual	stream	element	as	an	argument.	We	are
lucky	that	get	also	needs	one	argument,	aren't	we?	We	could	also	write	as	follows:

.map(orderItem	->piMap.get(orderItem))

However,	this	would	have	been	exactly	the	same	as	piMap::get.

This	way,	we	can	reference	an	instance	method	that	works	on	a	certain	instance.	In	our	example,	the
instance	is	the	one	referenced	by	the	piMap	variable.	It	is	also	possible	to	reference	static	methods.	In	this
case,	the	name	of	the	class	should	be	written	in	front	of	the	::	characters.	We	will	soon	see	an	example	of
this	when	we	will	use	the	static	method,	nonNull,	from	the	Objects	class	(note	that	the	class	name	is	in	plural,
and	it	is	in	the	java.util	package	and	not	java.lang).

It	is	also	possible	to	reference	an	instance	method	without	giving	the	reference	on	which	it	should	be
invoked.	This	can	be	used	in	places	where	the	functional	interface	method	has	an	extra	first	parameter,
which	will	be	used	as	the	instance.	We	have	already	used	this	in	Chapter	3,	Optimizing	the	Sort	-	Making
Code	Professional,	when	we	passed	String::compareTo,	when	the	expected	argument	was	a	Comparator.	The
compareTo	method	expects	one	argument,	but	the	compare	method	in	the	Comparator	interface	needs	two.	In	such
a	situation,	the	first	argument	will	be	used	as	the	instance	on	which	compare	has	to	be	invoked	and	the
second	argument	is	passed	to	compare.	In	this	case,	String::compareTo	is	the	same	as	writing	the	lambda
expression	(String	a,	String	b)	->	a.compareTo(b).

Last	but	not	least,	we	can	use	method	references	to	constructors.	When	we	need	a	Supplier	of	(let's	be
simple)	Object,	we	can	write	Object::new.

The	next	step	is	to	filter	out	the	null	elements	from	the	stream.	Note	that,	at	this	point,	the	stream	has
ProductInformation	elements:

.filter(Objects::nonNull)

The	filter	method	uses	Predicate	and	creates	a	stream	that	contains	only	the	elements	that	match	the
predicate.	In	this	case,	we	used	the	reference	to	a	static	method.	The	filter	method	does	not	change	the
type	of	stream.	It	only	filters	out	the	elements.

The	next	method	we	apply	is	a	bit	anti-functional.	Pure	functional	stream	methods	do	not	alter	the	state	of
any	object.	They	create	new	objects	that	they	return	but,	other	than	that,	there	is	no	side	effect.	peek	itself	is
no	different	because	it	only	returns	a	stream	of	the	same	elements	as	the	one	it	is	applied	on.	However,
this	no-operation	feature	lures	the	novice	programmer	to	do	something	non-functional	and	write	code
with	side-effects.	After	all,	why	use	it	if	there	is	no	(side)	effect	in	calling	it?

.peek(pi	->	{	

				if	(pi.getCheck()	==	null)	{	

								log.info("Product	{}	has	no	annotation",	pi.getId());	

				}	

})

While	the	peek	method	itself	does	not	have	any	side	effects,	the	execution	of	the	lambda	expression	may
have.	However,	this	is	also	true	for	any	of	the	other	methods.	It	is	just	the	fact	that,	in	this	case,	it	is	more
tempting	to	do	something	inadequate.	Don't.	We	are	disciplined	adults.	As	the	name	of	the	method
suggests,	we	may	peek	into	the	stream	but	we	are	not	supposed	to	do	anything	else.	With	programming
being	a	particular	activity,	in	this	case,	peeking,	is	adequate.	And	that	is	what	we	actually	do	in	our	code:
we	log	something.

After	this,	we	get	rid	of	the	elements	that	have	no	ProductInformation;	we	also	want	to	get	rid	of	the	elements
that	have,	but	there	is	no	checker	defined:

.filter(pi	->pi.getCheck()	!=	null)

In	this	case,	we	cannot	use	method	references.	Instead,	we	use	a	lambda	expression.	As	an	alternative
solution,	we	may	create	a	boolean	hasCheck	method	in	ProductInformation,	which	returns	true	if	the	private	field
check	is	not	null.	This	would	then	read	as	follows:

.filter(ProductInformation::hasCheck)

This	is	totally	valid	and	works,	although	the	class	does	not	implement	any	functional	interface	and	has
many	methods,	not	only	this	one.	However,	the	method	reference	is	explicit	and	specifies	which	method	to
invoke.

After	this	second	filter,	we	log	the	elements	again:

.peek(pi	->	log.info(

					"Product	{}	is	annotated	with	class	{}",	pi.getId(),	

																																												pi.getCheck()))

The	next	method	is	flatMap	and	this	is	something	special	and	not	easy	to	comprehend.	At	least	for	me,	it
was	a	bit	more	difficult	than	understanding	map	and	filter	when	I	learned	functional	programming:

.flatMap(pi	->pi.getCheck().stream())

This	method	expects	that	the	lambda,	method	reference,	or	whatever	is	passed	to	it	as	an	argument,

creates	a	whole	new	stream	of	objects	for	each	element	of	the	original	stream	the	method	is	invoked	on.
The	result	is,	however,	not	a	stream	of	streams,	which	also	could	be	possible,	but	rather	the	returned
streams	are	concatenated	into	one	huge	stream.

If	the	stream	we	apply	it	to	is	a	stream	of	integer	numbers,	such	as	1,	2,	3,	...,	and	the	function	for	each
number	n	returns	a	stream	of	three	elements	n,	n+1,	and	n+2,	then	the	resulting	stream,	flatMap,	produces	a
stream	containing	1,	2,	3,	2,	3,	4,	3,	4,	5,	4,	5,	6,	and	so	on.

Finally,	the	stream	we	have	should	be	collected	to	a	Set.	This	is	done	by	calling	the	collector	method:

.collect(Collectors.toSet());

The	argument	to	the	collector	method	is	(again	a	name	overuse)	Collector.	It	can	be	used	to	collect	the
elements	of	the	stream	into	some	collection.	Note	that	Collector	is	not	a	functional	interface.	You	cannot
just	collect	something	using	a	lambda	or	a	simple	method.	To	collect	the	elements,	we	definitely	need
some	place	where	the	elements	are	collected	as	the	ever-newer	elements	come	from	the	stream.	The
Collector	interface	is	not	simple.	Fortunately,	the	java.util.streams.Collectors	class	(again	note	the	plural)	has
a	lot	of	static	methods	that	create	and	return	Object	that	create	and	return	Collector	objects.

One	of	these	is	toSet,	which	returns	a	Collector	that	helps	collect	the	elements	of	the	stream	into	a	Set.	The
collect	method	will	return	the	Set	when	all	the	elements	are	there.	There	are	other	methods	that	help	collect
the	stream	elements	by	summing	up	the	elements,	calculating	the	average,	or	to	a	List,	Collection,	or	to	a	Map.
Collecting	elements	to	a	Map	is	a	special	thing,	since	each	element	of	a	Map	is	actually	a	key-value	pair.	We
will	see	the	example	for	that	when	we	look	at	ProductInformationCollector.

The	ProductInformationCollector	class	code	contains	the	collectProductInformation	method,	which	we	will	use	from	the
Checker	class	as	well	as	from	the	ProductsCheckerCollector	class:

private	Map<OrderItem,	ProductInformation>	map	=	null;	

public	Map<OrderItem,	ProductInformation>		

																		collectProductInformation(Order	order)	{	

				if	(map	==	null)	{	

								map	=	new	HashMap<>();	

								for	(OrderItem	item	:	order.getItems())	{	

												final	ProductInformation	pi	=	

																					lookup.byId(item.getProductId());	

												if	(!pi.isValid())	{	

																map	=	null;	

																return	null;	

												}	

												map.put(item,	pi);	

								}	

				}	

				return	map;	

}

The	simple	trick	is	to	store	the	collected	value	in	Map,	and	if	that	is	not	null,	then	just	return	the	already
calculated	value,	which	may	save	a	lot	of	service	calls	in	case	this	method	is	called	more	than	once
handling	the	same	HTTP	request.

There	are	two	ways	of	coding	such	a	structure.	One	is	checking	the	non-nullity	of	the	Map
and	returning	if	the	Map	is	already	there.	This	pattern	is	widely	used	and	has	a	name.	This
is	called	guarding	if.	In	this	case,	there	is	more	than	one	return	statement	in	the	method,

which	may	be	seen	as	a	weakness	or	anti-pattern.	On	the	other	hand,	the	tabulation	of	the
method	is	one	tab	shallower.
It	is	a	matter	of	taste	and	in	case	you	find	yourself	in	the	middle	of	a	debate	about	one	or
the	other	solution,	just	do	yourself	a	favor	and	let	your	peer	win	on	this	topic	and	save
your	stamina	for	more	important	issues,	for	example,	whether	you	should	use	streams	or
just	plain	old	loops.

Now,	let's	see	how	we	can	convert	this	solution	into	a	functional	style:

public	Map<OrderItem,	ProductInformation>	collectProductInformation(Order	order)	{	

				if	(map	==	null)	{	

								map	=	

								order.getItems()	

																.stream()	

																.map(item	->	tuple(item,	item.getProductId()))	

																.map(t	->	tuple(t.r,	lookup.byId((String)	t.s)))	

																.filter(t	->	((ProductInformation)t.s).isValid())	

																.collect(

																				Collectors.toMap(t	->	(OrderItem)t.r,	

																																						t	->	(ProductInformation)t.s	

)	

);	

								if	(map.keySet().size()	!=	order.getItems().size())	{	

												log.error("Some	of	the	products	in	the	order	do	not	have	product	information,	{}	!=	{}	",map.keySet().size(),order.getItems().size());	

												map	=	null;	

								}	

				}	

				return	map;	

}

We	use	a	helper	class,	Tuple,	which	is	nothing	but	two	Object	instances	named	r	and	s.	We	will	list	the	code
for	this	class	later.	It	is	very	simple.

In	the	streams	expression,	we	first	create	the	stream	from	the	collection,	and	then	we	map	the	OrderItem
elements	to	a	stream	of	OrderItem	and	productId	tuples.	Then	we	map	these	tuples	to	tuples	that	now	contain
OrderItem	and	ProductInformation.	These	two	mappings	could	be	done	in	one	mapping	call,	which	would
perform	the	two	steps	only	in	one.	I	decided	to	create	the	two	to	have	simpler	steps	in	each	line	in	a	vain
hope	that	the	resulting	code	will	be	easier	to	comprehend.

The	filter	step	is	also	nothing	new.	It	just	filters	out	invalid	product	information	elements.	There	should
actually	be	none.	It	happens	if	the	order	contains	an	order	ID	to	a	non-existent	product.	This	is	checked	in
the	next	statement	when	we	look	at	the	number	of	collected	product	information	elements	to	see	that	all	the
items	have	proper	information.

The	interesting	code	is	how	we	collect	the	elements	of	the	stream	into	a	Map.	To	do	so,	we	again	use	the
collect	method	and	also	the	Collectors	class.	This	time,	the	toMap	method	creates	the	Collector.	This	needs	two
Function	resulting	expressions.	The	first	one	should	convert	the	element	of	the	stream	to	the	key	and	the
second	should	result	in	the	value	to	be	used	in	the	Map.	Because	the	actual	type	of	the	key	and	the	value	is
calculated	from	the	result	of	the	passed	lambda	expressions,	we	explicitly	have	to	cast	the	fields	of	the
tuple	to	the	needed	types.

Finally,	the	simple	Tuple	class	is	as	follows:

public	class	Tuple<R,	S>	{	

				final	public	R	r;	

				final	public	S	s;	

				private	Tuple(R	r,	S	s)	{	

								this.r	=	r;	

								this.s	=	s;	

				}	

				public	static	<R,	S>	Tuple	tuple(R	r,	S	s)	{	

								return	new	Tuple<>(r,	s);	

				}	

}

There	are	still	some	classes	in	our	code	that	deserve	to	be	converted	to	functional	style.	These	are	the
Checker	and	CheckerHelper	classes.

In	the	Checker	class,	we	can	rewrite	the	isConsistent	method:

public	boolean	isConsistent(Order	order)	{	

				Map<OrderItem,	ProductInformation>	map	=	

																		piCollector.collectProductInformation(order);	

				if	(map	==	null)	{	return	false;	}	

				final	Set<Class<?	extends	Annotation>>	annotations	=	

																							pcCollector.getProductAnnotations(order);	

				return	!checkers.stream().anyMatch(

																	checker	->	Arrays.stream(

																														checker.getClass().getAnnotations()	

).filter(

																														annotation	->	

																																annotations.contains(

																																						annotation.annotationType())	

).anyMatch(

																														x	->		

																																checker.isInconsistent(order)	

));	

}

Since	you	have	already	learnt	most	of	the	important	stream	methods,	there	is	hardly	any	new	issue	here.
We	can	mention	the	anyMatch	method,	which	will	return	true	if	there	is	at	least	one	element	so	that	the
Predicate	parameter	passed	to	anyMatch	is	true.	It	may	also	need	some	accommodation	so	that	we	could	use	a
stream	inside	another	stream.	It	very	well	may	be	an	example	when	a	stream	expression	is
overcomplicated	and	needs	to	split	up	into	smaller	pieces	using	local	variables.

Finally,	before	we	leave	the	functional	style,	we	rewrite	the	containsOneOf	method	in	the	CheckHelper	class.
This	contains	no	new	elements	and	will	help	you	check	what	you	have	learned	about	map,	filter,	flatMap,
and	Collector.	Note	that	this	method,	as	we	discussed,	returns	true	if	order	contains	at	least	one	of	the	order
IDs	given	as	strings:

public	boolean	containsOneOf(String...	ids)	{	

				return	order.getItems().stream()	

												.map(OrderItem::getProductId)	

												.flatMap(itemId	->	Arrays.stream(ids)	

																				.map(id	->	tuple(itemId,	id)))	

												.filter(t	->	Objects.equals(t.s,	t.r))	

												.collect(Collectors.counting())	>	0;	

}

We	create	the	stream	of	the	OrderItem	objects,	and	then	we	map	it	to	a	stream	of	the	IDs	of	the	products
contained	in	the	stream.	Then	we	create	another	stream	for	each	of	the	IDs	with	the	elements	of	the	ID	and
one	of	the	string	IDs	given	as	the	argument.	Then,	we	flatten	these	substreams	into	one	stream.	This	stream
will	contain	order.getItems().size()	times	ids.length	elements:	all	possible	pairs.	We	will	filter	out	those
pairs	that	contain	the	same	ID	twice,	and	finally,	we	will	count	the	number	of	elements	in	the	stream.

Scripting	in	Java	9
We	are	almost	ready	with	our	sample	program	for	this	chapter.	There	is	one	issue,	though	it	is	not
professional.	When	we	have	a	new	product	that	needs	a	new	checker,	we	have	to	create	a	new	release	of
the	code.

Programs	in	professional	environments	have	releases.	When	the	code	is	modified,	bugs	are	fixed,	or	a
new	function	is	implemented,	there	are	numerous	steps	that	the	organization	requires	before	the
application	can	go	into	production.	These	steps	compose	the	release	process.	Some	environments	have
lightweight	release	processes;	others	require	rigorous	and	expensive	checks.	It	is	not	because	of	the	taste
of	the	people	in	the	organization,	though.	When	the	cost	of	a	non-working	production	code	is	low	and	it
does	not	matter	if	there	is	an	outage	or	wrong	functioning	in	the	program,	then	the	release	process	can	be
simple.	This	way,	releases	get	out	faster	and	cheaper.	An	example	can	be	some	chat	program	that	is	used
for	fun	by	the	users.	In	such	a	situation,	it	may	be	more	important	to	release	new	fancy	features	than
ensuring	bug-free	working.	On	the	other	end	of	the	palette,	if	you	create	code	that	controls	an	atomic
power	plant,	the	cost	of	failure	can	be	pretty	high.	Serious	testing	and	careful	checking	of	all	the	features,
even	after	the	smallest	change,	can	pay	off.

In	our	example,	simple	checkers	may	be	an	area	that	is	not	likely	to	induce	serious	bugs.	It	is	not
impossible	but	the	code	is	so	simple...Yes,	I	know	that	such	an	argument	is	a	bit	fishy,	but	let's	assume	that
these	small	routines	could	be	changed	with	less	testing	and	in	an	easier	way	than	the	other	parts	of	the
code.	How	to	separate	the	code	for	these	little	scripts,	then,	so	that	they	do	not	require	a	technical	release,
a	new	version	of	the	application,	and	not	even	restarting	the	application?	We	have	a	new	product	that
needs	a	new	check	and	we	want	to	have	some	way	to	inject	this	check	into	the	application	environment
without	any	service	disruption.

The	solution	we	choose	is	scripting.	Java	programs	can	execute	scripts	written	in	JavaScript,	Groovy,
Jython	(which	is	the	JVM	version	of	the	language	Python),	and	many	other	languages.	Except	JavaScript,
the	language	interpreters	of	these	languages	are	not	a	part	of	the	JDK,	but	they	all	provide	a	standard
interface,	which	is	defined	in	the	JDK.	The	consequence	is	that	we	can	implement	script	execution	in	our
code	and	the	developers,	who	provide	the	scripts,	are	free	to	choose	any	of	the	available	languages;	we
do	not	need	to	care	to	execute	a	JavaScript	code.	We	will	use	the	same	API	as	to	execute	Groovy	or
Jython.	The	only	thing	we	should	know	is	what	language	the	script	is	in.	This	is	usually	simple:	we	can
guess	that	from	the	file	extension,	and	if	guessing	is	not	enough,	we	can	demand	that	the	script	developers
put	JavaScript	into	files	with	the	.js	extension,	Jython	into	files	with	.jy	or	.py,	Groovy	into	files	with
.groovy,	and	so	on.	It	is	also	important	to	note	that	if	we	want	our	program	to	execute	one	of	these
languages,	we	should	make	sure	that	the	interpreter	is	on	the	classpath.	In	the	case	of	JavaScript,	this	is
given;	therefore,	as	a	demonstration	in	this	chapter,	we	will	write	our	scripts	in	JavaScript.	There	will
not	be	a	lot;	this	is	a	Java	book	and	not	a	JavaScript	book	after	all.

Scripting	is	usually	a	good	choice	when	we	want	to	pass	the	ability	of	programmatically	configuring	or
extending	our	application.	This	is	our	case	now.

The	first	thing	we	have	to	do	is	to	extend	the	production	information.	In	case	there	is	a	script	that	checks
the	consistency	of	an	order	that	a	product	is	in,	we	need	a	field	where	we	can	specify	the	name	of	the

script:

private	String	checkScript;	

				public	String	getCheckScript()	{	

								return	checkScript;	

				}	

				public	void	setCheckScript(String	checkScript)	{	

								this.checkScript	=	checkScript;	

				}

We	do	not	want	to	specify	more	than	one	script	per	product;	therefore,	we	do	not	need	a	list	of	script
names.	We	have	only	one	script	specified	by	the	name.

To	be	honest,	the	data	structure	for	the	checker	classes	and	the	annotations,	allowing
multiple	annotations	per	product	and	also	per	checker	class,	was	too	complicated.	We
could	not	avoid	that,	though,	to	have	a	complex	enough	structure	that	could	demonstrate
the	power	and	capability	of	stream	expressions.	Now	that	we	are	over	that	subject,	we
can	go	on	using	simpler	data	structures	focusing	on	script	execution.

We	also	have	to	modify	the	Checker	class	to	not	only	use	the	checker	classes	but	also	the	scripts.	We	cannot
throw	away	the	checker	classes	because,	by	the	time	we	realize	that	we	better	need	scripts	for	the
purpose,	we	already	have	a	lot	of	checker	classes	and	we	have	no	financing	to	rewrite	them	to	be	scripts.
Well	yes,	we	are	in	a	book	and	not	in	real	life,	but	in	an	enterprise,	that	would	be	the	case.	That	is	why
you	should	be	very	careful	while	designing	solutions	for	a	corporate.	The	structures	and	the	solutions	will
be	there	for	a	long	time	and	it	is	not	easy	to	throw	a	piece	of	code	out	just	because	it	is	technically	not	the
best.	If	it	works	and	is	already	there,	the	business	will	be	extremely	reluctant	to	spend	money	on	code
maintenance	and	refactoring.

Summary:	we	modify	the	Checker	class.	We	need	a	new	class	that	can	execute	our	scripts;	thus,	the
constructor	is	modified:

private	final	CheckerScriptExecutor	executor;	

				public	Checker(

								@Autowired	Collection<ConsistencyChecker>	checkers,	

								@Autowired	ProductInformationCollector	piCollector,	

								@Autowired	ProductsCheckerCollector	pcCollector,	

								@Autowired	CheckerScriptExecutor	executor)	{	

								this.checkers	=	checkers;	

								this.piCollector	=	piCollector;	

								this.pcCollector	=	pcCollector;	

								this.executor	=	executor;	

				}

We	also	have	to	use	this	executor	in	the	isConsistent	method:

public	boolean	isConsistent(Order	order)	{	

								final	Map<OrderItem,	ProductInformation>	map	=	

																piCollector.collectProductInformation(order);	

								if	(map	==	null)	{	

												return	false;	

								}	

								final	Set<Class<?	extends	Annotation>>	annotations	=	

																pcCollector.getProductAnnotations(order);	

								Predicate<Annotation>	annotationIsNeeded	=	annotation	->	

																annotations.contains(annotation.annotationType());	

								Predicate<ConsistencyChecker>	productIsConsistent	=	

																checker	->	

																Arrays.stream(checker.getClass().getAnnotations())	

																								.parallel().unordered()	

																								.filter(annotationIsNeeded)	

																								.anyMatch(

																													x	->	checker.isInconsistent(order));	

								final	boolean	checkersSayConsistent	=	!checkers.stream().	

																anyMatch(productIsConsistent);	

								final	boolean	scriptsSayConsistent	=	

																!map.values().	

																								parallelStream().	

																								map(ProductInformation::getCheckScript).	

																								filter(Objects::nonNull).	

																								anyMatch(s	->	

																											executor.notConsistent(s,order));	

								return	checkersSayConsistent	&&	scriptsSayConsistent;	

				}

Note	that	in	this	code,	we	use	parallel	streams	because,	why	not?	Whenever	it	is	possible,	we	can	use
parallel	streams,	even	unordered,	to	tell	the	underlying	system	and	also	to	the	programmer	fellows
maintaining	the	code	that	order	is	not	important.

We	also	modify	one	of	our	product	JSON	files	to	reference	a	script	instead	of	a	checker	class	through
some	annotation:

{	

		"id"	:	"124",	

		"title":	"Desk	Lamp",	

		"checkScript"	:	"powered_device",	

		"description":	"this	is	a	lamp	that	stands	on	my	desk",	

		"weight":	"600",	

		"size":	["300",	"20",	"2"]	

}

Even	JSON	is	simpler.	Note	that	as	we	decided	to	use	JavaScript,	we	do	not	need	to	specify	the	file	name
extension	when	we	name	the	script.

We	may	later	consider	further	development	when	we	will	allow	the	product	checker	script
maintainers	to	use	different	scripting	languages.	In	such	a	case,	we	may	still	require	that
they	specify	the	extension,	and	in	case	there	is	no	extension,	it	will	be	added	by	our
program	as	.js.	In	our	current	solution,	we	do	not	check	that,	but	we	may	devote	a	few
seconds	to	think	about	it	to	be	sure	that	the	solution	can	be	further	developed.	It	is
important	that	we	do	not	develop	extra	code	for	the	sake	of	further	development.
Developers	are	not	fortunetellers	and	cannot	tell	reliably	what	the	future	needs	will	be.
That	is	the	task	of	the	business	people.

We	put	the	script	into	the	resource	directory	of	our	project	under	the	scripts	directory.	The	name	of	the	file
has	to	be	powered_device.js	because	this	is	the	name	we	specified	in	the	JSON	file:

function	isInconsistent(order){	

				isConsistent	=	false	

				items	=	order.getItems()	

				for(i	in	items){	

				item	=	items[i]	

				print(item)	

								if(item.getProductId()	==	"126"	||	

												item.getProductId()	==	"127"	||	

												item.getProductId()	==	"128"){	

												isConsistent	=	true	

												}	

				}	

				return	!	isConsistent	

}

This	is	an	extremely	simple	JavaScript	program.	As	a	side	note,	when	you	iterate	over	a	list	or	an	array	in
JavaScript,	the	loop	variable	will	iterate	over	the	indexes	of	the	collection	or	the	array.	Since	I	rarely
program	in	JavaScript,	I	fell	into	this	trap	and	it	took	me	more	than	half	an	hour	to	debug	the	error	I	made.

We	have	prepared	everything	we	need	to	call	the	script.	We	still	have	to	invoke	it.	To	do	so,	we	use	the
JDK	scripting	API.	First,	we	need	a	ScriptEngineManager.	This	manager	is	used	to	get	access	to	the
JavaScript	engine.	Although	the	JavaScript	interpreter	has	been	a	part	of	the	JDK	since	Java	7,	it	is	still
managed	in	an	abstract	way.	It	is	one	of	the	many	possible	interpreters	that	a	Java	program	can	use	to
execute	script.	It	just	happens	to	be	there	in	the	JDK,	so	we	do	not	need	to	add	the	interpreter	JAR	to	the
classpath.	ScriptEngineManager	discovers	all	the	interpreters	that	are	on	the	classpath	and	registers	them.

It	does	so	using	the	Service	Provider	specification,	which	has	been	a	part	of	the	JDK	for	a	long	time,	and
by	Java	9,	it	also	got	extra	support	in	module	handling.	This	requires	the	script	interpreters	to	implement
the	ScriptEngineFactory	interface	and	also	to	list	the	class	that	does	it	in	the	META-
INF/services/javax.script.ScriptEngineFactory	file.	These	files,	from	all	the	JAR	files	that	are	part	of	the
classpath,	are	read	as	resources	by	ScriptEngineManager,	and	through	this,	it	knows	which	classes	implement
script	interpreters.	The	ScriptEngineFactory	interface	requires	that	the	interpreters	provide	methods	such	as
getNames,	getExtensions,	and	getMimeTypes.	The	manager	calls	these	methods	to	collect	the	information	about	the
interpreters.	When	we	ask	a	JavaScript	interpreter,	the	manager	will	return	the	one	created	by	the	factory
that	said	that	one	of	its	names	is	JavaScript.

To	get	access	to	the	interpreters	through	the	name,	file	name	extension	or	mime-type	is	only	one	of	the
functions	of	ScriptEngineManager.	The	other	one	is	to	manage	Bindings.

When	we	execute	a	script	from	within	the	Java	code,	we	don't	do	it	because	we	want	to	increase	our
dopamine	levels.	In	the	case	of	scripts,	it	does	not	happen.	We	want	some	results.	We	want	to	pass
parameters	and	after	the	execution	of	the	script,	we	want	values	back	from	the	script	that	we	can	use	in	the
Java	code.	This	can	happen	in	two	ways.	One	is	by	passing	parameters	to	a	method	or	function
implemented	in	the	script	and	getting	the	return	value	from	the	script.	This	usually	works,	but	it	may	even
happen	that	some	scripting	language	does	not	even	have	the	notion	of	the	function	or	method.	In	such	a
case,	it	is	not	a	possibility.	What	is	possible	is	to	pass	some	environment	to	the	script	and	read	values
from	the	environment	after	the	script	is	executed.	This	environment	is	represented	by	Bindings.

Bindings	is	a	map	that	has	String	keys	and	Object	values.

In	the	case	of	most	scripting	languages,	for	example,	in	JavaScript,	Bindings	is	connected	to	global
variables	in	the	script	we	execute.	In	other	words,	if	we	execute	the	following	command	in	our	Java
program	before	invoking	the	script,	then	the	JavaScript	global	variable,	globalVariable,	will	reference	the
myObject	object:

myBindings.put("globalVariable",myObject)

We	can	create	Bindings	and	pass	it	to	ScriptEngineManager	but	just	as	well	we	can	use	the	one	that	it	creates
automatically,	and	we	can	call	the	put	method	on	the	engine	object	directly.

There	are	two	Bindings	when	we	execute	scripts.	One	is	set	on	the	ScriptEngineManager	level.	This	is	named
global	binding.	There	is	also	one	managed	by	ScriptEngine	itself.	This	is	the	local	Bindings.	From	the	script

point	of	view,	there	is	no	difference.	From	the	embedding	side,	there	is	some	difference.	In	case	we	use
the	same	ScriptEngineManager	to	create	multiple	ScriptEngine	instances,	then	the	global	bindings	are	shared	by
them.	If	one	gets	a	value,	all	of	them	see	the	same	value;	if	one	sets	a	value,	all	others	will	later	see	that
changed	value.	The	local	binding	is	specific	to	the	engine	it	is	managed	by.	Since	we	only	introduce	Java
scripting	API	in	this	book,	we	do	not	get	into	more	details	and	we	will	not	use	Bindings.	We	are	good	with
invoking	a	JavaScript	function	and	to	get	the	result	from	it.

The	class	that	implements	the	script	invocation	is	CheckerScriptExecutor:

package	packt.java9.by.example.mybusiness.bulkorder.services;	

import	...	

@Component	

public	class	CheckerScriptExecutor	{	

				private	static	final	Logger	log	=	...	

				private	final	ScriptEngineManager	manager	=	

																													new	ScriptEngineManager();	

				public	boolean	notConsistent(String	script,	Order	order)	{	

								try	{	

												final	Reader	scriptReader	=	getScriptReader(script);	

												final	Object	result	=		

																									evalScript(script,	order,	scriptReader);	

												assertResultIsBoolean(script,	result);	

												log.info("Script	{}	was	executed	and	returned	{}",	

																																																	script,	result);	

												return	(boolean)	result;	

								}	catch	(Exception	wasAlreadyHandled)	{	

												return	true;	

								}	

				}

The	only	public	method,	notConsistent,	gets	the	name	of	the	script	to	execute	and	also	order.	The	latter	has	to
be	passed	to	the	script.	First	it	gets	Reader,	which	can	read	the	script	text,	evaluates	it,	and	finally	returns
the	result	in	case	it	is	boolean	or	can	at	least	be	converted	to	boolean.	If	any	of	the	methods	invoked	from
here	that	we	implemented	in	this	class	is	erroneous,	it	will	throw	an	exception,	but	only	after
appropriately	logging	it.	In	such	cases,	the	safe	way	is	to	refuse	an	order.

Actually,	this	is	something	that	the	business	should	decide.	If	there	is	a	check	script	that	cannot	be
executed,	it	is	clearly	an	erroneous	situation.	In	this	case,	accepting	an	order	and	later	handling	the
problems	manually	has	certain	costs.	Refusing	an	order	or	confirmation	because	of	some	internal	bug	is
also	not	a	happy	path	of	the	order	process.	We	have	to	check	which	approach	causes	the	least	damage	to
the	company.	It	is	certainly	not	the	duty	of	the	programmer.	In	our	situation,	we	are	in	an	easy	situation.

We	assume	that	the	business	representatives	said	that	the	order	in	such	a	situation	should	be	refused.	In
real	life,	similar	decisions	are	many	times	refused	by	the	business	representatives	saying	that	it	just
should	not	happen	and	the	IT	department	has	to	ensure	that	the	program	and	the	whole	operation	is	totally
bug	free.	There	is	a	psychological	reason	for	such	a	response,	but	this	really	leads	us	extremely	far	from
Java	programming.

Engines	can	execute	a	script	passed	through	Reader	or	as	String.	Because	now	we	have	the	script	code	in	a
resource	file,	it	seems	to	be	a	better	idea	to	let	the	engine	read	the	resource	instead	of	reading	it	to	a
String:

								private	Reader	getScriptReader(String	script)	

																																throws	IOException	{	

								final	Reader	scriptReader;	

								try	{	

												final	InputStream	scriptIS	=	new	ClassPathResource(

																				"scripts/"	+	script	+	".js").getInputStream();	

												scriptReader	=	new	InputStreamReader(scriptIS);	

								}	catch	(IOException	ioe)	{	

												log.error("The	script	{}	is	not	readable",	script);	

												log.error("Script	opening	exception",	ioe);	

												throw	ioe;	

								}	

								return	scriptReader;	

				}

To	read	the	script	from	a	resource	file,	we	use	the	Spring	ClassPathResource	class.	The	name	of	the	script	is
prepended	with	the	scripts	directory	and	appended	by	the.js	extension.	The	rest	is	fairly	standard	and
nothing	we	have	not	seen	in	this	book.	The	next	method	that	evaluates	the	script	is	more	interesting:

private	Object	evalScript(String	script,	

																														Order	order,	

																														Reader	scriptReader)		

												throws	ScriptException,	NoSuchMethodException	{	

								final	Object	result;	

								final	ScriptEngine	engine	=	

																										manager.getEngineByName("JavaScript");	

								try	{	

												engine.eval(scriptReader);	

												Invocable	inv	=	(Invocable)	engine;	

												result	=	inv.invokeFunction("isInconsistent",	order);	

								}	catch	(ScriptException	|	NoSuchMethodException	se)	{	

												log.error("The	script	{}	thruw	up",	script);	

												log.error("Script	executing	exception",	se);	

												throw	se;	

								}	

								return	result;	

				}

To	execute	the	method	in	the	script,	first	of	all,	we	need	a	script	engine	that	is	capable	of	handling
JavaScript.	We	get	the	engine	from	the	manager	by	its	name.	If	it	is	not	JavaScript,	we	should	check	that
the	returned	engine	is	not	null.	In	the	case	of	JavaScript,	the	interpreter	is	part	of	the	JDK	and	checking
that	the	JDK	conforms	to	the	standard	would	be	paranoid.

If	ever	we	want	to	extend	this	class	to	handle	not	only	JavaScript	but	also	other	types	of	scripts,	this
check	has	to	be	done,	and	also	the	script	engine	should	probably	be	requested	from	the	manager	by	the	file
name	extension,	which	we	do	not	have	access	to	in	this	private	method.	But	that	is	future	development,	not
in	this	book.

When	we	have	the	engine,	we	have	to	evaluate	the	script.	This	will	define	the	function	in	the	script	so	that
we	can	invoke	it	afterwards.	To	invoke	it,	we	need	some	Invocable	object.	In	the	case	of	JavaScript,	the
engine	also	implements	an	Invocable	interface.	Not	all	script	engines	implement	this	interface.	Some	scripts
do	not	have	functions	or	methods,	and	there	is	nothing	to	invoke	in	them.	Again,	this	is	something	to	do
later,	when	we	want	to	allow	not	only	JavaScript	scripting	but	also	other	types	of	scripting.

To	invoke	the	function,	we	pass	its	name	to	the	invokeFunction	method	and	also	the	arguments	that	we	want
to	pass	on.	In	this	case,	this	is	the	order.	In	the	case	of	JavaScript,	the	integration	between	the	two
languages	is	fairly	developed.	As	in	our	example,	we	can	access	the	field	and	the	methods	of	the	Java
objects	that	are	passed	as	arguments	and	the	returned	JavaScript	true	or	false	value	is	also	converted	to
Boolean	magically.	There	are	some	situations	when	the	access	is	not	that	simple	though:

private	void	assertResultIsBoolean(String	script,	

																																							Object	result)	{	

								if	(!(result	instanceof	Boolean))	{	

												log.error("The	script	{}	returned	non	boolean",	

																																																				script);	

												if	(result	==	null)	{	

																log.error("returned	value	is	null");	

												}	else	{	

																log.error("returned	type	is	{}",	

																																	result.getClass());	

												}	

												throw	new	IllegalArgumentException();	

								}	

				}	

}

The	last	method	of	the	class	checks	that	the	returned	value,	which	can	be	anything	since	this	is	a	script
engine,	is	convertible	to	boolean.

It	is	important	to	note	that	the	fact	that	some	of	the	functionality	is	implemented	in	script	does	not
guarantee	that	the	application	works	seamlessly.	There	may	be	several	issues	and	scripts	may	affect	the
inner	working	of	the	entire	application.	Some	scripting	engines	provide	special	ways	to	protect	the
application	from	bad	scripts,	others	do	not.	The	fact	that	we	do	not	pass	but	order	to	the	script	does	not
guarantee	that	a	script	cannot	access	other	objects.	Using	reflection,	static	methods,	and	other	techniques
there	can	be	ways	to	access	just	anything	inside	our	Java	program.	We	may	be	a	bit	easier	with	the	testing
cycle	when	only	a	script	changes	in	our	code	base,	but	it	does	not	mean	that	we	should	blindly	trust	any
script.

In	our	example,	it	probably	would	be	a	very	bad	idea	to	let	the	producers	of	the	products	upload	scripts	to
our	system.	They	may	provide	their	check	scripts,	but	these	scripts	have	to	be	reviewed	from	the	security
point	of	view	before	being	deployed	into	the	system.	If	this	is	properly	done,	then	scripting	is	an
extremely	powerful	extension	to	the	Java	ecosystem,	giving	great	flexibility	to	our	programs.

	

Summary
	

In	this	chapter,	we	have	developed	the	ordering	system	of	our	enterprise	application.	Along	with	the
development	of	the	code,	we	met	many	new	things.	You	learned	about	annotations	and	how	they	can	be
handled	by	reflections.	Although	not	strongly	related,	you	learned	how	to	use	lambda	expressions	and
streams	to	express	some	programming	constructs	simpler	than	conventional	loops.	In	the	last	part	of	the
chapter,	we	extended	the	application	using	scripting,	by	invoking	JavaScript	functions	from	Java	and	also
by	invoking	Java	methods	from	JavaScript.

In	fact,	with	all	this	knowledge,	we	matured	to	a	Java	level	that	is	needed	for	enterprise	programming.
The	rest	of	the	topics	the	book	covers	are	for	the	aces.	But	you	want	to	be	one,	don't	you?	This	is	why	I
wrote	the	rest	of	the	chapters.	Read	on!

	

	

	

Building	an	Accounting	Application	Using
Reactive	Programming
	

In	this	chapter,	we	will	develop	a	sample	program	that	does	the	inventory	management	part	of	the
company	we	created	the	order	handling	code	for.	Do	not	expect	a	fully	developed,	ready-to-use,
professional	application,	and	also,	do	not	expect	that	we	will	get	into	the	details	of	accounting	and
bookkeeping.	That	is	not	our	aim.	We	will	focus	more	on	the	programming	technique	that	is	of	our	interest
—reactive	programming.	Sorry	pals,	I	know	that	bookkeeping	and	accounting	is	fun,	but	this	is	not	that
book.

Reactive	programming	is	an	old	(well,	what	is	old	in	computer	science?)	approach	that	has	come	recently
to	Java.	Java	9	is	the	first	release	that	supports	some	of	the	aspects	of	reactive	programming	in	the
standard	JDK.	In	one	sentence,	reactive	programming	is	about	focusing	more	on	how	the	data	flows	and
less	on	how	the	implementation	handles	the	data	flow.	As	you	may	recall,	this	is	also	a	step	towards
describing	what	we	want	to	do	from	the	description	of	how	to	do	it.

After	going	through	this	chapter,	you	will	understand	what	reactive	programming	is	and	what	tools	there
are	in	Java	that	you	can	utilize.	You	will	also	understand	what	reactive	programming	is	good	for	and
when	and	how	you	can	utilize	this	principle	in	the	future,	as	there	will	be	more	and	more	frameworks
supporting	reactive	programming	in	Java.	In	this	chapter,	you	will	learn	the	following	topics:

Reactive	programming	in	general
Reactive	streams	in	Java
How	to	implement	our	sample	code	in	a	reactive	way

	

Reactive...	what?
There	are	reactive	programming,	reactive	systems,	and	reactive	streams.	These	are	three	different	things
related	to	each	other.	It	is	not	without	reason	that	all	the	three	are	called	reactive.

Reactive	programming	is	a	programming	paradigm	similar	to	object-oriented	programming	and
functional	programming.	A	reactive	system	is	a	system	design	that	sets	certain	aims	and	technological
constraints	on	how	a	certain	type	of	information	systems	should	be	designed	to	be	reactive.	There	are	a
lot	of	resemblances	to	reactive	programming	principles	in	this.	A	reactive	stream	is	a	set	of	interface
definitions	that	helps	to	achieve	similar	coding	advantage	to	reactive	systems	and	which	can	be	used	to
create	reactive	systems.	Reactive	stream	interfaces	are	a	part	of	JDK	9,	but	are	available	not	only	in	Java,
but	also	in	other	languages.

We	will	look	at	these	in	separate	sections,	at	the	end	of	which,	you	will	presumably	have	a	better
understanding	of	why	each	of	them	is	called	reactive.

Reactive	programming	in	a	nutshell
Reactive	programming	is	a	paradigm	that	focuses	more	on	where	the	data	flows	during	computation	than
on	how	to	compute	the	result.	If	the	problem	is	best	described	as	several	computations	that	depend	on	the
output	of	each	other	but	several	may	be	executed	independent	of	the	other,	reactive	programming	may
come	into	the	picture.	As	a	simple	example,	we	can	have	the	following	computation	that	calculates	the
value	of	h	from	some	given	b,	c,	e,	and	f	values,	using	f1,	f2,	f3,	f4,	and	f5	as	simple	computational	steps:

a	=	f1(b,c)	

d	=	f2(e,f)	

k	=	f3(e,c)	

g	=	f4(b,f,k)	

h	=	f5(d,a,g)

If	we	write	these	in	Java	in	the	conventional	way,	the	methods	f1	to	f5	will	be	invoked	one	after	the	other.
If	we	have	multiple	processors	and	are	able	to	parallelize	the	execution,	we	may	perform	some	of	the
methods	in	parallel.	This,	of	course,	assumes	that	these	methods	are	purely	computational	methods	and	do
not	change	the	state	of	the	environment,	and,	in	this	way,	can	be	executed	independent	of	each	other.	For
example,	f1,	f2,	and	f3	can	be	executed	independent	of	each	other.	The	execution	of	the	function	f4	depends
on	the	output	of	f3,	and	the	execution	of	f5	depends	on	the	output	of	f1,	f2,	and	f4.

If	we	have	two	processors,	we	can	execute	f1	and	f2	together,	followed	by	the	execution	of	f3,	then	f4,	and
finally,	f5.	These	are	four	steps.	If	we	look	at	the	preceding	calculation	not	as	commands	but	rather	as
expressions	and	how	the	calculations	depend	on	each	other,	then	we	do	not	dictate	the	actual	execution
order	and	the	environment	may	decide	to	calculate	f1	and	f3	together,	then	f2	and	f4,	and	finally	f5,	saving
one	step.	This	way,	we	can	concentrate	on	the	data	flow	and	let	the	reactive	environment	act	upon	it
without	putting	extra	constraints.

This	is	a	very	simple	approach	of	reactive	programming.	The	description	of	the	calculation	in	the	form	of
expressions	gives	the	data	flow,	but	in	the	explanation,	we	still	assumed	that	the	calculation	is	executed
synchronously.	If	the	calculations	are	executed	on	different	processors	that	are	on	different	machines

connected	to	a	network,	then	the	calculation	may	not	and	does	not	need	to	be	synchronous.	Reactive
programs	can	be	asynchronously	executed	if	the	environment	is	asynchronous.	It	may	happen	that	the
different	calculations,	f1	to	f4,	are	implemented	and	deployed	on	different	machines.	In	such	a	case,	the
values	calculated	are	sent	from	one	to	the	other	over	the	network	and	the	nodes	execute	the	calculation
every	time	there	is	a	change	in	the	inputs.	This	is	very	similar	to	good	old	analog	computers	that	were
created	using	simple	building	blocks	and	the	calculations	were	done	using	analogue	signals.

The	program	was	implemented	as	an	electronic	circuit,	and	when	the	input	voltage	or	current	(usually
voltage)	changed	in	the	inputs,	the	analog	circuits	followed	it	in	light's	speed,	and	the	result	appeared	in
the	output.	In	such	a	case,	the	signal	propagation	was	limited	by	the	speed	of	light	on	the	wires	and	analog
circuitry	speed	in	the	wired	modules,	which	was	extremely	fast	and	may	beat	digital	computers.

When	we	talk	about	digital	computers	the	propagation	of	the	signal	is	digital,	and	this	way,	it	needs	to	be
sent	from	one	calculation	node	to	the	other	one,	be	it	some	object	in	JVM	or	some	program	on	the
network.	A	node	has	to	execute	its	calculation	if:

Some	of	the	values	in	the	input	have	changed
The	output	of	the	calculation	is	needed

If	the	input	has	not	changed,	then	the	result	should	eventually	be	the	same	as	the	last	time;	thus,	the
calculation	does	not	need	to	be	executed	again—it	would	be	a	waste	of	resources.	If	the	result	of	the
calculation	is	not	needed,	then	there	is	no	need	to	perform	the	calculation	even	if	the	result	would	not	be
the	same	as	the	last	one.	No	one	cares.

To	accommodate	this,	reactive	environments	implement	two	approaches	to	propagate	the	values.	The
nodes	may	pull	the	values	from	the	output	of	other	modules.	This	will	ensure	that	no	calculation	that	is	not
needed	will	be	executed.	The	modules	may	push	their	output	to	the	next	module	that	depends	on	them.
This	approach	will	ensure	that	only	changed	values	ignite	calculation.	Some	of	the	environments	may
implement	a	hybrid	solution.

When	values	change	in	the	system,	the	change	is	propagated	towards	the	other	nodes	that	again	propagate
the	changes	to	another	node	and	so	on.	If	we	imagine	the	calculation	dependencies	as	a	directed	graph,
then	the	changes	travel	towards	the	transitive	closure	of	the	changed	values	along	the	nodes	connected.
The	data	may	travel	with	all	the	values	from	one	node	output	to	the	other	node	input	or	only	the	change
may	travel.	The	second	approach	is	more	complex	because	it	needs	the	changed	data	and	also	meta
information	that	describes	what	has	changed.	On	the	other	hand,	the	gain	may	be	significant	when	the
output	and	input	set	of	data	is	huge	and	only	a	small	portion	of	it	is	changed.	It	may	also	be	important	to
calculate	and	propagate	only	the	actual	delta	of	the	change	when	there	is	a	high	probability	that	some	of
the	nodes	do	not	change	the	output	for	many	of	the	different	inputs.	In	such	a	case,	the	change	propagation
may	stop	at	the	node	where	there	is	no	real	change	in	spite	of	the	changed	input	values.	This	can	save	up	a
lot	of	calculation	in	some	of	the	networks.

In	the	configuration	of	the	data	propagation,	the	directed	acyclic	graph	can	be	expressed	in	the	code	of	the
program,	it	can	be	configured	or	it	can	even	be	set	up	and	changed	during	the	execution	of	the	code
dynamically.	When	the	program	code	contains	the	structure	of	the	graph,	the	routes	and	the	dependencies
are	fairly	static.	To	change	the	data	propagation,	the	code	of	the	program	has	to	be	changed,	recompiled,

and	deployed.	In	the	case	of	multiple	network	node	programs,	this	may	even	need	multiple	deployments
that	should	be	carefully	furnished	to	avoid	different	incompatible	versions	running	on	different	nodes.
There	should	be	similar	considerations	when	the	graph	is	described	in	some	configuration.	In	such	a	case,
the	compilation	of	the	program(s)	may	not	be	needed	when	only	the	wiring	of	the	graph	is	changed,	but	the
burden	to	have	compatible	configuration	on	different	nodes	in	the	case	of	a	network	execution	is	still
there.

Letting	the	graph	change	dynamically	also	does	not	solve	this	problem.	The	setup	and	the	structure	are
more	flexible	and,	at	the	same	time,	more	complex.	The	data	propagated	along	the	edges	of	the	graph	may
contain	not	only	computational	data	but	also	data	that	drives	change	in	the	graph.	Many	times,	this	leads	to
a	very	flexible	model	called	higher-order	reactive	programming.

Reactive	programming	has	a	lot	of	benefits	but,	at	the	same	time,	may	be	very	complex,	sometimes	too
complex,	for	simple	problems.	It	is	to	be	considered	when	the	problem	to	be	solved	can	easily	be
described	using	data	graph	and	simple	data	propagations.	We	can	separate	the	description	of	the	problem
and	the	order	of	the	execution	of	the	different	blocks.	This	is	the	same	consideration	that	we	discussed	in
the	previous	chapter.	We	describe	more	about	the	what	to	do	part	and	less	about	the	how	to	do	part.

On	the	other	hand,	when	the	reactive	system	decides	the	order	of	execution,	what	is	changed,	and	how	that
should	be	reflected	on	the	output	of	other	blocks,	it	should	do	so	without	knowing	the	core	of	the	problem
that	it	is	solving.	In	some	situations,	coding	the	execution	order	manually	based	on	the	original	problem
could	perform	better.

This	is	similar	to	the	memory	management	issue.	In	modern	runtime	environments,	such
as	the	JVM,	Python	runtime,	Swift	programming,	or	even	Golang,	there	is	some
automated	memory	management.	When	programming	in	C,	the	programmer	has	full
control	over	memory	allocation	and	memory	release.	In	the	case	of	real-time
applications,	where	the	performance	and	response	time	is	of	the	utmost	importance,	there
is	no	way	to	let	an	automated	garbage	collector	take	time	and	delay	the	execution	from
time	to	time.	In	such	a	case,	the	C	code	can	be	optimized	to	allocate	memory	when
needed;	there	is	a	resource	for	the	allocation	and	release	of	memory	when	possible	and
there	is	time	to	manage	memory.	These	programs	are	better	performing	than	the	ones
created	for	the	same	purpose	using	a	garbage	collector.	Still,	we	do	not	use	C	in	most	of
the	applications	because	we	can	afford	the	extra	resource	needed	for	automated	memory
collection.	Even	though	it	would	be	possible	to	write	a	faster	code	managing	the	memory
manually,	automated	code	is	faster	than	what	an	average	programmer	would	have
created	using	C,	and	also,	the	frequency	of	programming	errors	is	much	lower.

Just	as	there	are	some	issues	that	we	have	to	pay	attention	to	when	using	automated	memory	management,
we	have	to	pay	attention	to	some	issues	in	a	reactive	environment,	which	would	not	exist	in	the	case	of
manual	coding.	Still,	we	use	the	reactive	approach	for	its	benefits.

The	most	important	issue	is	to	avoid	loops	in	the	dependency	graph.	Although	it	is	absolutely	perfect	to
write	the	definition	of	calculations,	a	reactive	system	would	probably	not	be	able	to	cope	with	these
definitions.	Some	reactive	systems	may	resolve	in	some	simple-case	cyclic	redundancy,	but	that	is	some
extra	feature	and	we	generally	just	have	to	avoid	that.	Consider	the	following	computations:

a	=	b	+	3	

b	=	4	/	a

Here,	a	depends	on	b,	so	when	b	changes,	a	is	calculated.	However,	b	also	depends	on	a,	which	is
recalculated	and,	in	this	way,	the	system	gets	into	an	infinite	loop.	The	preceding	example	seems	to	be
simple,	but	that	is	the	feature	of	a	good	example.	Real-life	problems	are	not	simple,	and	in	a	distributed
environment,	it	is	extremely	hard	sometimes	to	find	cyclic	redundancy.

Another	problem	is	called	glitch.	Consider	the	following	definition:

a	=	b	+	3	

q	=	b	+	a

When	the	parameter	b	is	changed,	for	example,	from	3	to	6,	the	value	of	a	will	change	from	6	to	9,	and	thus,
q	will	change	from	9	to	15.	This	is	very	simple.	However,	the	execution	order	based	on	the	recognition	of
the	changes	may	first	alter	the	value	of	q	from	9	to	12	before	modifying	it	to	15	in	a	second	step.	This	can
happen	if	the	calculating	node	responsible	for	the	calculation	of	q	recognizes	the	change	in	b	before	the
value	of	a	as	a	consequence	of	the	change	in	the	value	of	b.	For	a	short	period	of	time,	the	value	of	q	will
be	12,	which	does	not	match	the	previous	and	also	does	not	the	changed	state.	This	value	is	only	a	glitch	in
the	system	that	happens	after	an	input	changes	and	also	disappears	without	any	further	change	in	the	input
in	the	system.

If	you	have	ever	learnt	the	design	of	logical	circuits,	then	static	hazards	may	ring	a	bell.	They	are	exactly
the	same	phenomenon.

Reactive	programming	also	assumes	that	the	calculations	are	stateless.	The	individual	nodes	that	perform
the	calculation	may	have	a	state	in	practice	and,	many	times,	they	do.	It	is	not	inherently	evil	to	have	a
state	in	some	calculation.	However,	debugging	something	that	has	a	state	is	significantly	more	complex
than	debugging	something	that	is	stateless,	functional.

It	is	also	an	important	aid	to	the	reactive	environment,	letting	it	perform	different	optimizations	based	on
the	fact	that	the	calculations	are	functional.	If	the	nodes	have	a	state,	then	the	calculations	may	not	be

rearranged	freely	because	the	outcome	may	depend	on	the	actual	evaluation	order.	These	systems	may	not
really	be	reactive,	or,	at	least,	it	may	be	debated.

	

Reactive	systems
	

Reactive	system	is	defined	in	the	reactive	manifesto	at	http://www.reactivemanifesto.org/.	The	creators	of	the
manifesto	realized	that	with	the	change	of	technology,	new	system	patterns	will	need	to	be	developed	in
enterprise	computing	to	leverage	the	new	technology	and	yield	better	outcomes.	The	manifesto	envisions
systems	that	are:

Responsive
Resilient
Elastic
Message-driven.

The	first	three	features	are	user	values;	the	last	one	is	more	of	a	technological	approach	to	get	the	values.

	

	

http://www.reactivemanifesto.org/

Responsive
A	system	is	responsive	if	it	gives	results	in	a	reliable	manner.	If	you	talk	to	me,	I	will	answer	your
question	or,	at	least,	tell	you	that	I	do	not	know	the	answer	or	that	I	was	not	able	to	understand	the
question.	Better	if	you	get	the	answer,	but	if	a	system	cannot	give	that	to	you	it	is	still	expected	to	give
something	back.	If	you	have	past	experience	with	client	operating	systems	from	just	ten	years	ago	and
some	old	computers,	you	can	understand	this.	Getting	a	rotating	hourglass	is	frustrating.	You	just	do	not
know	whether	the	system	is	working	to	get	you	the	answer	or	is	totally	frozen.

A	reactive	system	has	to	be	responsive.	The	response	should	come	in	a	timely	manner.	The	actual	timing
depends	on	the	actual	system.	It	may	be	milliseconds,	seconds,	or	even	hours	in	case	the	system	is	running
on	a	space	ship	travelling	towards	the	other	side	of	Jupiter.	The	important	thing	is	that	the	system	should
guarantee	some	soft	upper	limit	for	the	response	time.	This	does	not	necessarily	mean	that	the	system
should	be	a	real-time	solution,	which	is	a	much	stricter	requirement.

The	advantage	of	responsiveness	is	not	only	that	the	user	does	not	become	nervous	in	front	of	the
computer.	After	all,	most	of	these	services	are	used	by	other	services	that	mainly	communicate	with	each
other.	The	real	advantage	is	that	error	discovery	is	more	reliable.	If	a	reactive	system	element	becomes
non	responsive,	it	is	certainly	an	error	condition,	and	something	should	be	done	about	it,	out	of	the	scope
of	normal	operations	(replace	a	faulty	communication	card,	restart	a	system,	and	so	on).	The	sooner	we
can	identify	an	error	state,	the	cheaper	it	is	to	fix	it.	The	more	we	can	identify	where	the	problem	is,	the
less	time	and	money	we	could	spend	localizing	the	error.	Responsiveness	is	not	about	speed.	It	is	about
better	operation,	better	quality.

Resilient
Resilient	systems	keep	working	even	when	there	is	some	error.	Well,	not	any	error.	That	would	be	a
miracle,	or	simply	nonsense!	An	error	generally	is	an	error.	If	the	Armageddon	comes	and	it	is	the	end	of
the	world	as	we	know	it,	even	resilient	systems	will	not	be	responsive.	For	smaller	disruptions,	however,
there	may	be	some	cure	to	make	the	systems	resilient.

There	are	techniques	that	may	help	if	only	a	disk	fails,	there	is	a	power	outage,	or	there	is	a	programming
error.	Systems	may	be	replicated,	so	when	one	of	the	instances	stops	responding,	some	other	instance	may
take	up	the	task	of	the	failing	one	and	can	go	on	working.	Systems	prone	to	errors	may	be	isolated	from
each	other	in	terms	of	space	or	time.	When	there	is	an	earthquake	or	flood	at	one	location,	the	other
location	may	still	go	on	working.	If	different	components	do	not	need	to	communicate	in	real	time	and
messages	are	stored	and	forwarded	in	a	reliable	manner,	then	this	is	not	a	problem	even	if	the	two
systems	are	never	available	at	the	same	time.	They	can	still	cooperate	taking	up	the	messages,	performing
the	task	they	are	supposed	to,	and	sending	out	the	resulting	message	afterwards.

Errors	in	the	system	have	to	be	addressed	even	if	the	system	remains	responsive.	Errors	do	not	affect	the
responsiveness	of	a	resilient	system,	but	the	level	of	resilience	decreases	and	should	be	restored.

Elastic
Elasticity	means	that	the	system	is	adapting	to	the	load.	We	can	have	a	huge	system,	with	lots	of
processors	capable	of	serving	the	largest	anticipated	demand.	That	is	not	elasticity.	Since	the	demand	is
not	constant	and,	most	of	the	time,	is	smaller	than	the	maximum,	the	resources	of	such	a	system	are	idle.
This	causes	waste	of	time,	CPU	cycle,	energy,	and,	thus,	ecological	footprint.

Having	systems	run	on	the	cloud	can	avoid	such	losses.	The	cloud	is	nothing	but	many	computers	that
somebody	operates	for	multiple	applications,	for	multiple	corporations	even,	and	each	rents	only	the	CPU
cycles	that	it	really	needs	and	only	when	it	needs.	Other	times,	when	the	load	is	smaller	the	CPU	and	the
electric	power	can	be	used	by	someone	else.	Since	different	applications	and	different	corporations	have
different	peak	times,	the	loss	of	resources	is	less	with	this	model.	There	are	many	issues	that	have	to	be
solved,	such	as	data	isolation	and	protection	of	information	from	eavesdropping,	but	these	are	mainly
solved.	Secret	service	corporations	will	not	rent	resources	from	a	cloud	service	to	run	their	computations
(perhaps,	they'd	do	for	some	other	purpose)	and	some	other	paranoid	companies	may	also	refrain	from
doing	that,	but	most	of	the	companies	will	do.	It	is	more	effective	and	is	thus	cheaper	even	after
considering	all	the	side	effects	one	can	consider.

Elasticity	means	that	the	allocated	resources	follow,	or	rather	anticipate	the	coming	needs.	When	the
system	anticipates	higher	capacity	needs,	it	allocates	more	resources	and	at	off-peak	time,	it	releases	the
resources	so	that	other	cloud	customers	can	use	it.

Elasticity	also	assumes	that	the	system	is	scalable.	The	two	things,	elasticity	and	scalability,	are	closely
related	but	are	not	the	same.	Scalability	means	that	the	application	can	accommodate	higher	load,
allocating	more	resources.	Scalability	does	not	care	whether	this	allocation	is	static	buying	and	powering
of	huge	computer	boxes	in	a	computing	center	dedicated	to	the	application	or	dynamic	allocation	of
resources	from	the	cloud	on	demand.	Scalability	simply	means	that	if	the	demand	doubles,	then	the
resources	can	also	be	multiplied	to	meet	the	demand.	If	the	multiplication	factor	in	the	resources	needed
is	the	same	or	is	not	more	than	the	factor	in	demand,	then	the	application	is	scalable.	If	we	need	more
resources	to	meet	the	demand,	or	if	we	cannot	meet	the	demand	even	if	the	demand	increases	only
moderately,	then	the	application	is	not	scalable.	Elastic	applications	are	always	scalable;	otherwise,	they
cannot	be	elastic.

Message-driven
Reactive	systems	are	message-driven;	not	because	we	need	message-driven	systems	but	much	rather
because	message-driven	systems	are	those	that	can	deliver	responsiveness,	resilience,	and	elasticity	at	the
same	time.

Message-driven	architecture	means	that	the	information	travels	between	the	components	disconnected.
One	component	sends	a	message	and	then	forgets	it.	It	does	not	wait	for	the	other	component	to	act	upon
the	message.	When	the	message	is	sent,	all	the	tasks	on	behalf	of	the	sending	component	are	performed
and	all	the	resources	needed	to	handle	the	tasks	are	released,	resulting	in	the	message	being	released	and
ready	to	be	used	for	the	next	task.

Message-driven	does	not	necessarily	mean	networking.	Messages	can	travel	between	objects,	threads,
and	processes	inside	the	same	machine.	On	the	other	hand,	if	the	interfaces	to	the	messaging	architecture
are	well-designed,	then	the	components	do	not	need	to	be	modified	if	the	infrastructure	changes	and	the
messages	that	were	previously	passing	between	threads	will	now	have	to	travel	through	the	ocean	in	IP
packets.

Sending	messages	makes	it	possible	to	isolate	the	sender	and	the	receiver	in	space	and	time,	just	as	we
described,	as	a	means	for	elasticity.	The	receiver	may	pick	up	the	message	some	time	after	it	arrived,
when	it	has	the	resources	to	do	so.	Responsiveness,	though,	requires	that	this	time	is	not	in	the
unreachable	distant	future	but	in	some	limited	distance.	If	the	message	cannot	be	processed	successfully,
another	message	may	signal	the	error.	An	error	message	is	not	the	result	we	expect,	but	it	is	still	some
response	and	the	system	remains	responsive	with	all	the	benefits	it	means.

Back-pressure
Message	handling,	with	the	appropriate	messaging	interfaces	and	implementation,	supports	back-pressure.
Back-pressure	is	a	means	to	lessen	the	burden	on	a	component	when	it	cannot	or	can	barely	handle	more
messages.	Messages	may	be	queuing	for	processing,	but	no	real-life	queue	has	unlimited	capacity	and
reactive	systems	should	not	lose	a	message	uncontrolled.	Back-pressure	signals	the	load	of	the	component
to	the	message	producers,	asking	them	to	lessen	the	production.	It	is	like	a	water	pipe.	If	you	start	closing
the	outlet	of	the	pipe,	the	pressure	starts	to	increase	in	the	pipe	backward,	the	water	source	forcing	it	to
deliver	less	and	less	water.

Back-pressure	is	an	effective	way	of	handling	load	because	it	moves	load	handling	to	the	component	that
can	really	do	it.	In	old-fashioned	queuing	systems,	there	is	a	queue	that	stores	the	items	till	the	component
receiving	them	can	consume	them,	doing	its	job.	A	queue	design	can	be	good	if	there	is	a	well-defined
limit	for	the	size	of	the	load	and	for	the	maximum	size	of	the	queue.	If	ever	the	queue	is	full,	the	items
cannot	be	delivered	and	the	system	stalls.

Applying	back-pressure	is	a	bit	different.	A	queue	may	still	be	used	in	front	of	the	components	for
performance	optimization	and	to	ensure	responsiveness.	The	producer	of	the	item	can	still	put	the
produced	item	in	the	queue	and	return	to	attending	to	its	own	duties	and	does	not	need	to	wait	till	the
consumer	can	attend	to	the	item.	This	is	decoupling,	as	we	mentioned	earlier.	Seeing	that	the	queue	is	full
or	almost	full	can	also	act	as	a	very	simple	back-pressure.	It	is	not	true	if	someone	says	that	queues	are
totally	missing	this	feature.	At	times,	it	may	simply	be	totally	sufficient	just	to	look	at	the	capacity	of	a
queue,	and	also	the	items	in	it,	to	see	if	there	is	some	need	to	lessen	the	load	on	the	receiver	the	queue
belongs	to.	But	the	producer	does	this,	not	the	receiver,	and	that	is	an	essential	problem.

The	producer	sees	that	the	receiver	is	not	keeping	pace	with	the	supply	but	the	producer	does	not	have	any
information	about	the	cause,	and	not	knowing	the	cause	cannot	predict	the	future	behavior.	Having	a	back-
pressure	information	channel	from	the	receiver	to	the	producer	makes	the	story	more	fine	grained.

The	producer	may	see	that	there	are,	say,	10	slots	in	the	queue	and	it	thinks	that	there	is
no	problem;	the	producer	decides	to	deliver	eight	more	items	in	the	next	150ms.	One	item
usually	takes	10ms	to	process,	give	or	take;	thus	the	items	are	expected	to	be	processed	in
less	than	100ms,	which	is	just	better	than	the	required	200ms	maximum.	The	producer
only	knows	that	an	item	usually	takes	10ms	to	process.
The	receiver,	on	the	other	hand,	sees	that	the	last	item	it	got	into	the	queue	requires	so
much	processing	that,	by	itself,	it	will	require	200ms.	To	signal	this,	it	can	tell	the
producer	over	the	back-pressure	not	to	deliver	new	items	till	further	notice.	The	receiver
knows	that	the	items	would	have	fit	in	the	queue	fine	but	would	not	be	processed	in	a
timely	manner.	Using	this	information,	the	producer	will	issue	some	commands	to	the
cloud	control	to	allocate	another	processing	and	sends	the	next	eight	items	to	the	new
receiver,	letting	the	old	one	do	its	cumbersome	job	it	has	to	with	that	far	above	than
average	item.

Back-pressure	lets	you	aid	the	data	load	control,	with	information	created	by	the	receivers	that	have	the
most	information	about	processing	the	items.

Reactive	streams
Reactive	streams	started	as	an	initiative	to	provide	a	standard	of	handling	data	streams	in	an
asynchronous	mode	by	regulating	the	push	of	the	data	using	back-pressure.	The	original	site	of	the	project
is	http://www.reactive-streams.org/.

Reactive	streams	are	now	implemented	in	JDK	9	in	the	java.util.concurrent	package.

The	aim	of	the	definition	of	reactive	streams	is	to	define	the	interface	that	can	handle	the	propagation	of
the	generated	data	in	a	totally	asynchronous	way	without	the	need	on	the	receiving	side	to	buffer	the
unlimited	created	data.	When	data	is	created	in	a	stream	and	is	made	available	to	be	worked	on	the
worker	that	gets	the	data,	has	to	be	fast	enough	to	handle	all	the	data	that	is	generated.	The	capacity	should
be	high	enough	to	handle	the	highest	production.	Some	intermediate	buffers	may	handle	peaks,	but	if	there
is	no	control	that	stops	or	delays	production	when	the	consumer	is	at	the	top	of	its	capacity,	the	system
will	fail.	Reactive	system	interfaces	are	designed	to	provide	a	way	to	support	back-pressure.	Back-
pressure	is	a	process	to	signal	the	producer	of	the	data	to	slow	down	or	even	to	stop	the	production	to	the
level	that	fits	the	consumer.	Every	call	the	interfaces	define	is	asynchronous	so	that	the	performance	of
one	part	is	not	affected	by	the	delays	in	the	execution	of	other	parts.

The	initiative	did	not	aim	to	define	the	way	in	which	data	is	transferred	between	production	and
consumption.	It	focuses	on	the	interfaces	to	give	a	clear	structure	for	the	programs	and	also	to	give	an	API
that	will	work	with	all	the	implementations.

http://www.reactive-streams.org/

Reactive	programming	in	Java
Java	is	not	a	reactive	language.	This	does	not	mean	that	we	cannot	create	reactive	programs	in	Java.
There	are	libraries	that	support	different	reactive	programming	approaches.	It	is	to	mention	the	Akka
framework	and	the	ReactiveX	that	also	exist	for	other	languages	as	well.	With	Java	9,	the	JDK	starts	to
support	reactive	programming,	providing	a	few	classes	and	interfaces	for	the	purpose.	We	will	focus	on
these	features.

The	JDK	contains	the	java.util.concurrent.Flow	class,	which	contains	related	interfaces	and	some	static
methods	to	support	flow	controlled	programs.	The	model	that	this	class	supports	is	based	on	Publisher,
Subscriber,	and	Subscription.

As	a	very	simple	explanation,	a	Publisher	accepts	a	subscription	from	a	Subscriber.	A	Subscriber	gets	the	data
it	subscribed	to	when	the	data	is	available.	The	interfaces	focus	on	the	very	core	of	the	data	flow	control
of	the	communication	and	are	a	bit	abstract.	No	surprise,	they	are	interfaces.	However,	it	may	not	be
simple	to	understand	their	working	at	first.

The	Publisher	interface	defines	the	subscribe	method.	This	is	the	only	method	this	interface	defines	and	that
is	because	this	is	the	only	thing	that	a	real	publisher	can	be	asked.	You	can	subscribe	to	the	publications.
The	argument	of	the	method	is	a	Subscriber	that	subscribes	to	the	publications:

void	subscribe(Flow.Subscriber<?	super	T>	subscriber)

There	is	a	readily	available	Publisher	class	in	the	JDK	that	we	will	look	at	later.	When	the	subscribe	method
of	the	Publisher	is	called,	it	has	to	decide	if	the	subscriber	can	get	the	subscription	or	not.	Usually,	the
subscription	is	accepted	but	the	implementation	has	the	freedom	to	refuse	a	subscription	attempt.	Publisher
may	refuse	a	subscription	if,	for	example,	the	subscription	for	the	actual	subscriber	was	already
performed	and	the	Publisher	implementation	does	not	allow	multiple	subscriptions	from	the	same
subscriber.

The	implementation	of	the	method	is	required	to	call	the	onError	method	of	subscriber,	with	Throwable	as	the
argument.	In	the	case	of	multiple	subscriptions,	IllegalStateException	seems	to	be	suitable,	as	the	JDK
documentation	defines	at	the	moment.

If	the	subscription	is	successful,	Publisher	is	expected	to	call	the	onSubscribe	method	of	subscriber.	The
argument	to	this	method	is	a	Subscription	object	(an	instance	of	a	class	that	implements	the	interface
Subscription).	This	way,	the	Publisher	notifies	the	Subscriber	that	the	subscription	request	was	accepted,	and
also	passes	an	object	to	manage	the	subscription.

Managing	the	subscription	as	an	abstraction	could	be	imagined	as	a	complex	task,	but	in	the	case	of
reactive	streams,	it	is	very	simple.	All	the	subscriber	can	and	should	do	is	to	set	the	number	of	items	it
can	receive	at	the	moment,	and	the	subscription	can	be	cancelled.

Why	should	the	Publisher	call	back	the	onSubscribe	method	of	Subscriber?	Why	doesn't	it
simply	return	the	subscription	or	throw	some	error?	The	reason	for	this	complex	behavior
is	that	it	may	not	be	the	Subscriber	that	invokes	the	subscribe	method.	Just	as	in	real	life,	I

can	subscribe	and	pay	for	a	year	of	a	magazine	subscription	as	a	Christmas	gift.	(This	is
the	season	when	I	am	writing	this	part	of	the	book.)	In	our	code,	some	wiring	component
responsible	for	who	is	notified	about	a	certain	data	change	calls	subscribe	and	not
necessarily	the	subscriber.	The	Subscriber	is	only	responsible	for	the	minimal	things	that	a
subscriber	should	be	responsible	for.
The	other	reason	is	that	the	whole	approach	is	asynchronous.	When	we	subscribe	to
something,	the	subscription	may	not	be	available	and	ready	immediately.	There	could	be
some	long-running	processes	that	need	to	finish	till	the	subscription	will	be	available
and	the	caller	that	is	calling	subscribe	does	not	need	to	wait	for	the	completion	of	the
process.	When	the	subscription	is	ready	it	is	passed	to	the	subscriber,	to	the	very	entity
that	really	needs	it.

The	Subscriber	interface	defines	the	onSubscribe,	onError	(we	have	already	talked	about	these),	onComplete	and
onNext	methods.

It	is	important	in	the	definition	of	these	interfaces	that	the	subscriber	gets	the	items	from	Publisher	or	from
some	other	object	to	which	the	Publisher	delegates	this	task	via	some	push.	The	subscriber	does	not	need	to
go	to	the	newsstand	to	get	the	next	issue;	someone	calling	the	onNext	method	delivers	the	issue	to	it
directly.

This	also	bears	the	consequence	that	unless	there	are	some	controls	in	the	hands	of	the	Subscriber,	it	could
happen	that	the	Publisher	floods	the	Subscriber	with	items.	Not	every	Subscriber	is	capable	of	handling
unlimited	items.	The	Subscriber	gets	a	Subscription	object	upon	performing	the	subscription	and	this	object
can	be	used	to	control	the	flow	of	the	item	objects.

The	Publisher	creates	the	Subscription	object	and	the	interface	defines	two	methods:	cancel	and	request.	The
cancel	method	should	be	called	by	the	Subscriber	to	notify	the	Publisher	that	it	should	not	deliver	more	items.
The	subscription	is	cancelled.	The	request(long	n)	method	specifies	that	the	subscriber	is	prepared	to	get	at
most	n	items	via	subsequent	calls	to	the	onNext	method:

If	the	subscriber	has	already	invoked	the	request	method,	the	specified	number	is	added	to	the	subscription
counter.	In	other	words,	the	specified	long	value	does	not	reflect	the	actual	state	of	the	subscriber.	It	is	a

delta,	increasing	some	counters	maintained	by	the	Publisher	that	counts	the	number	of	items	that	can	be
delivered	adding	the	value	of	the	long	argument	and	decrementing	by	one	on	each	item	delivered	to	the
Subscriber.	The	most	usual	approach	is	to	call	request(1)	each	time	the	Subscriber	has	finished	processing	a
request.

If	the	request	method	is	invoked	with	the	Long.MAX_VALUE	argument,	the	Publisher	may	just	send	any	item	that	it
can	without	counting	and	without	limit.	This	is	essentially	switching	off	the	back-pressure	mechanism.

The	specification	also	mentions	that	the	call	to	cancel	does	not	necessarily	mean	that	there	will	be	no	more
issues	delivered	at	all.	Cancellation	is	done	on	best	effort.	Just	as	in	real	life,	when	you	send	your	mail	to
the	daily	paper	with	your	intent	to	cancel	the	subscription,	the	publisher	will	not	send	an	agent	to	stop	the
postman	before	he	drops	the	issue	to	your	mailbox.	If	something	was	already	on	its	way	when	the
cancellation	arrived	to	the	publisher	it	goes	its	way.	If	the	Publisher	has	already	started	some	asynchronous
process	that	cannot	reasonably	be	stopped,	then	the	method	onNext	method	will	be	invoked	with	some	of
the	elements.

The	Publisher	and	Subscriber	interfaces	have	a	generic	parameter,	T.	This	is	the	type	of	items	that	the	Publisher
interface	publishes	and	the	Subscriber	interface	gets	in	the	onNext	method.	To	be	a	bit	more	precise,	the
Subscriber	interface	can	have	an	R	type,	which	is	a	superclass	of	T;	thus,	it	is	compatible	with	the	Publisher
interface.	For	example,	if	Publisher	publishes	Long	values,	then	the	Subscriber	interface	can	accept	Long,	Number,
or	Object	in	the	argument	of	the	onNext	method,	depending	on	the	declaration	of	the	class	that	implements
Subscriber.

The	Flow	class	also	contains	a	Processor	interface	that	extends	both	Publisher	and	Subscriber.	This	interface	is
there	to	be	implemented	by	classes	that	also	accept	data	and	send	data	to	other	components	in	the	reactive
flow.	Such	elements	are	very	common	in	reactive	stream	programs	because	many	elements	that	perform
some	tasks	get	the	items	to	work	on	from	other	reactive	stream	elements;	thus,	they	are	Subscribers	and,	at
the	same	time,	they	send	it	after	they	have	finished	their	tasks;	thus,	they	are	Publishers.

Implementing	inventory
Now	that	we	have	discussed	a	lot	of	technologies	and	programming	approach,	it	is	very	much	the	time	to
implement	some	sample	code.	We	will	implement	inventory	keeping	in	our	application	using	reactive
streams.	For	the	example,	the	inventory	will	be	very	simple.	It	is	a	Map<Product,InventoryItem>	that	holds	the
number	of	items	for	each	product.	The	actual	map	is	ConcurrentHashMap	and	the	InventoryItem	class	is	a	bit
more	complex	than	a	Long	number	to	properly	handle	concurrency	issues.	When	we	design	a	program	that
is	built	on	responsive	streams,	we	do	not	need	to	deal	with	much	concurrency	locking,	but	we	still	should
be	aware	that	the	code	runs	in	a	multithread	environment	and	may	exhibit	strange	behavior	if	we	do	not
follow	some	rules.

The	code	for	the	Inventory	class	is	fairly	simple	since	it	handles	only	a	map:

package	packt.java9.by.example.mybusiness.inventory;	

import	...;	

@Component	

public	class	Inventory	{	

				private	final	Map<Product,	InventoryItem>	inventory	=	

												new	ConcurrentHashMap<>();	

				private	InventoryItem	getItem(Product	product)	{	

								inventory.putIfAbsent(product,	new	InventoryItem());	

								return	inventory.get(product);	

				}	

				public	void	store(Product	product,	long	amount)	{	

								getItem(product).store(amount);	

				}	

				public	void	remove(Product	product,	long	amount)	

												throws	ProductIsOutOfStock	{	

								if	(getItem(product).remove(amount)	!=	amount)	

												throw	new	ProductIsOutOfStock(product);	

				}	

}

The	inventory	item	maintaining	the	class	is	a	bit	more	complex	since	this	is	the	level	where	we	handle	a
bit	of	concurrency	or,	at	least,	this	is	the	class	where	we	have	to	pay	some	attention:

package	packt.java9.by.example.mybusiness.inventory;	

import	java.util.concurrent.atomic.AtomicLong;	

public	class	InventoryItem	{	

				private	final	AtomicLong	amountOnStock	=	

												new	AtomicLong(0);	

				void	store(long	n)	{	

								amountOnStock.accumulateAndGet(n,	

																(stock,	delta)	->	stock	+	delta);	

				}	

				long	remove(long	delta)	{	

								class	ClosureData	{	

												long	actNr;	

								}	

								ClosureData	d	=	new	ClosureData();	

								amountOnStock.accumulateAndGet(delta,	

																(stock,	n)	->	

																								stock	>=	n	?	

																																stock	-	(d.actNr	=	n)	

																																:	

																																stock	-	(d.actNr	=	0)	

);	

								return	d.actNr;	

				}	

}

When	we	add	products	to	the	inventory,	we	have	no	limit.	The	storage	shelves	are	extremely	huge	and	we
do	not	model	that	they	once	may	get	full	and	the	inventory	may	not	be	able	to	accommodate	more	items.
When	we	want	to	remove	items	from	the	repository,	however,	we	have	to	deal	with	the	fact	that	there	may
not	be	enough	items	from	the	product.	In	such	a	case,	we	do	not	remove	any	items	from	the	repository.	We
serve	the	customer	to	full	satisfaction	or	we	do	not	serve	at	all.

To	maintain	the	number	of	the	items	in	the	inventory,	we	use	AtomicLong.	This	class	has	the	accumulateAndGet
method.	This	method	gets	a	Long	parameter	and	a	LongBinaryOperator	that	we	provide	in	our	code	as	a	lambda.
This	code	is	invoked	by	the	accumulateAndGet	method	to	calculate	the	new	value	of	the	stock.	If	there	are
enough	items,	then	we	remove	the	requested	number	of	items.	If	there	are	not	enough	items	on	stock,	then
we	remove	zero.	The	method	returns	the	number	of	items	that	we	actually	return.	Since	that	number	is
calculated	inside	the	lambda,	it	has	to	escape	from	there.	To	do	so,	we	use	ClosureData	defined	inside	the
method.

Note	that,	for	example,	in	Groovy	we	could	simply	use	a	Long	d	variable	and	alter	the
variable	inside	the	closure.	Groovy	calls	lambda	to	closures,	so	to	say.	In	Java	we	cannot
do	so	because	the	variables	that	we	can	access	from	inside	the	method	should	be
effectively	final.	However,	this	is	nothing	more	than	a	bit	more	explicit	notation	that
belongs	to	the	closure	environment.	The	ClosureData	d	object	is	final	as	opposed	to	the	field
the	class	has,	which	can	be	modified	inside	the	lambda.

The	most	interesting	class	that	we	are	really	interested	in	this	chapter	is	InventoryKeeper.	This	class
implements	the	Subscriber	interface	and	is	capable	of	consuming	orders	to	maintain	the	inventory:

package	packt.java9.by.example.mybusiness.inventory;	

import	...	

public	class	InventoryKeeper	implements	Flow.Subscriber<Order>	{	

				private	static	final	Logger	log	=	

												LoggerFactory.getLogger(InventoryKeeper.class);	

				private	final	Inventory	inventory;	

				public	InventoryKeeper(@Autowired	Inventory	inventory)	{	

								this.inventory	=	inventory;	

				}	

				private	Flow.Subscription	subscription	=	null;	

				private	static	final	long	WORKERS	=	3;	

				@Override	

				public	void	onSubscribe(Flow.Subscription	subscription)	{	

								log.info("onSubscribe	was	called");	

								subscription.request(WORKERS);	

								this.subscription	=	subscription;	

				}

The	onSubscribe	method	is	invoked	after	the	object	is	subscribed.	The	subscription	is	passed	to	the	object
and	is	also	stored	in	a	field.	Since	the	subscriber	needs	this	subscription	in	subsequent	calls,	when	an
item	passed	in	onNext	is	processed	and	a	new	item	is	acceptable,	a	field	is	a	good	place	to	store	this	object
in.	In	this	method,	we	also	set	the	initial	request	to	three	items.	The	actual	value	is	simply	demonstrative.
Enterprise	environments	should	be	able	to	configure	such	parameters:

private	ExecutorService	service	=		

																			Executors.newFixedThreadPool((int)	WORKERS);

The	most	important	part	of	the	code	is	the	onNext	method.	What	it	does	is	actually	goes	through	all	the	items
of	the	order	and	removes	the	number	of	items	from	the	inventory.	If	some	of	the	items	are	out	of	stock,	then
it	logs	an	error.	This	is	the	boring	part.	The	interesting	part	is	that	it	does	this	through	an	executor	service.
This	is	because	the	call	to	onNext	should	be	asynchronous.	The	publisher	calls	onNext	to	deliver	the	item,	but
we	should	not	make	it	wait	for	the	actual	processing.	When	the	postman	brings	your	favorite	magazine,
you	don't	start	reading	it	immediately	and	make	the	postman	wait	for	your	signature	approving	acceptance.
All	you	have	to	do	in	onNext	is	fetch	the	next	order	and	make	sure	that	this	will	be	processed	in	due	time:

@Override	

				public	void	onNext(Order	order)	{	

								service.submit(()	->	{	

																				int	c	=	counter.incrementAndGet();	

																				for	(OrderItem	item	:	order.getItems())	{	

																								try	{	

																												inventory.remove(item.getProduct(),	

																																															item.getAmount());	

																								}	catch	(ProductIsOutOfStock	exception)	{	

																												log.error("Product	out	of	stock");	

																								}	

																				}	

																				subscription.request(1);	

																				counter.decrementAndGet();	

																}	

);	

				}	

				@Override	

				public	void	onError(Throwable	throwable)	{	

								log.info("onError	was	called	for	{}",	throwable);	

				}	

				@Override	

				public	void	onComplete()	{	

								log.info("onComplete	was	called");	

				}	

}

The	actual	implementation	in	this	code	uses	ThreadPool	with	three	threads	in	it.	Also,	the	number	of
required	items	is	three.	This	is	a	logical	coincidence:	each	thread	works	on	a	single	item.	It	does	not	need
to	be	like	that,	even	if	in	most	cases	it	is.	Nothing	can	stop	us	from	making	more	threads	working	on	the
same	item	if	that	makes	sense.	The	opposite	is	also	true.	One	single	thread	may	be	created	to	work	on
multiple	items.	These	codes	will	probably	be	more	complex	and	the	whole	idea	of	these	complex
execution	models	is	to	make	the	coding	and	the	logic	simpler,	move	the	multithreading,	coding,	and
implementation	issues	into	the	framework,	and	focus	on	the	business	logic	in	the	application	code.	But	I
cannot	tell	that	there	may	not	be	an	example	for	a	subscriber	working	multiple	threads	on	multiple	items,
intermingled.

The	last	code	we	have	to	look	at	in	this	chapter	is	the	unit	test	that	drives	the	code	with	some	examples:

public	void	testInventoryRemoval()	{	

								Inventory	inventory	=	new	Inventory();	

								SubmissionPublisher<Order>	p	=	

																									new	SubmissionPublisher<>();

We	create	Publisher	using	the	JDK	class,	SubmissionPublisher,	which	neatly	implements	this	interface
delivering	multithread	functionality	for	us	without	much	hassle:

p.subscribe(new	InventoryKeeper(inventory));

We	create	an	inventory	keeper	and	we	subscribe	to	the	publisher.	This	does	not	start	delivering	anything
because	there	are	no	publications	yet,	but	it	creates	a	bond	between	the	subscriber	and	the	publisher
telling,	them	that	whenever	there	is	a	product	submitted,	the	subscriber	wants	it.

After	that,	we	create	the	products	and	store	them	in	the	inventory,	20	pieces	altogether,	and	we	also	create
an	order	that	wants	10	products	to	be	delivered.	We	will	execute	this	order	many	times.	This	is	a	bit	of
simplification,	but	for	the	test,	there	is	no	reason	to	create	separate	order	objects	that	have	the	same
products	and	the	same	amounts	in	the	list	of	items:

Product	product	=	new	Product();	

								inventory.store(product,	20);	

								OrderItem	item	=	new	OrderItem();	

								item.setProduct(product);	

								item.setAmount(10);	

								Order	order	=	new	Order();	

								List<OrderItem>	items	=	new	LinkedList<>();	

								items.add(item);	

								order.setItems(items);

After	all	this	has	been	done,	we	submit	the	order	to	the	Publisher	10	times.	It	means	that	there	are	10	orders
for	the	same	product,	each	asking	for	10	pieces,	that	is,	100	pieces	together.	Those	are	100	pieces	against
the	warehouse	where	we	have	only	20	of	it.	What	we	should	expect	is	that	only	the	first	two	orders	will
be	fulfilled	and	the	rest	will	be	rejected	and	that	is	what	will	actually	happen	when	we	execute	this	code:

for	(int	i	=	0;	i	<	10;	i++)	

												p.submit(order);	

								log.info("All	orders	were	submitted");

After	all	the	orders	are	published,	we	wait	for	half	a	second	so	that	the	other	threads	have	time	to	execute
and	then	we	finish:

for	(int	j	=	0;	j	<	10;	j++)	{	

												log.info("Sleeping	a	bit...");	

												Thread.sleep(50);	

								}	

								p.close();	

								log.info("Publisher	was	closed");	

				}

Note	that	this	is	not	a	regular	unit	test	file.	It	is	some	test	code	to	play	around,	which	I	also	recommend	for
you	to	execute,	debug,	and	look	at	the	different	log	outputs.

Summary
In	this	short	chapter,	we	had	a	look	at	reactive	programming,	reactive	systems,	and	reactive	streams.	We
discussed	the	similarities	and	the	differences	between	these	that	may	lead	to	confusions.	We	paid	special
attention	to	Java	9	reactive	streams	that	have	practically	nothing	to	do	with	Stream	classes	and	methods.

In	the	second	half	of	the	chapter,	we	discussed	a	very	simple	example	that	uses	reactive	streams.

After	reading	this	chapter,	you	have	learned	a	lot	about	the	Java	language	and	programming.	We	did	not
detail	all	the	small	bits	of	Java,	but	that	is	not	possible	in	a	book.	I	dare	say	that	there	is	no	man	(or
woman	for	that	matter)	on	the	Earth	or	around	it	on	an	orbital	route,	wherever	humans	are,	who	knows
everything	about	Java.	We,	however,	know	enough	by	now	to	start	coding	in	an	enterprise	environment
and	to	learn	more	and	more	on	the	go	till	we	retire,	or	even	after	that.	What	is	still	left	is	a	little	bit	of
programming.	In	the	previous	sentence	I	said	coding	to	make	some	distinction.	Coding	is	not	the	same	as
programming.	Coding	is	a	technique	used	in	the	profession	of	programming.	During	the	next,	and	last,
chapter	we	will	see	the	aspects	of	programming	and	how	it	can,	and	should,	be	done	in	professional
manner.	This	is	rarely	a	part	of	an	introductory	book,	but	I	am	happy	that	we	could	agree	on	this	topic
with	the	publisher.	This	way,	you	can	finish	the	book	not	only	with	the	knowledge	that	you	learn	from	this
book,	but	also	with	a	vision,	looking	ahead	on	the	road	you	will	walk	up	the	hillside	to	the	top.	You	will
know	the	topics,	areas,	and	subjects	that	you	can	go	on	learning.

	

Finalizing	Java	Knowledge	to	a	Professional
Level
	

By	now,	you	have	learned	the	most	important	areas	and	topics	needed	for	a	professional	Java	developer.
What	we	still	have	ahead	of	us	in	this	book	is	to	discuss	some	topics	that	will	lead	you	from	being	a
junior	developer	to	a	senior	developer.	Reading	this	chapter	will	not	make	anyone	a	senior	developer,
though.	The	previous	chapters	were	the	roads	that	we	walked	through.	This	chapter	is	only	the	map.	If
each	of	the	previous	chapters	covered	a	short	walk	of	a	few	miles	in	the	journey	of	coding	to	reach	the
harbor,	then	this	chapter	is	the	nautical	map	to	discover	a	new	continent.

We	will	briefly	bite	into	some	very	deep	and	high-level	professional	areas,	such	as	creating	a	Java	agent,
compile-time	annotation	processing,	polyglot	programming,	a	bit	of	architecture	design	and	tools,	and
techniques	to	work	in	teams.	We'll	do	it	just	for	the	taste.	Now,	you	have	enough	knowledge	to	understand
the	importance	of	these	topics,	and	getting	a	taste	will	create	an	appetite	for	the	coming	years	of	self-
development,	or,	at	least,	that	is	my	intention	to	make	you,	the	reader,	addicted.

	

	

	

Java	deep	technologies
	

In	this	section,	we	will	list	three	technologies:

Java	agent
Polyglot	programming
Annotation	processing

Knowing	them	is	not	a	must	for	a	Java	professional.	Knowing	about	them	is.	Java	agents	are	used	mainly
in	development	environments	and	in	operation.	They	are	complex	runtime	technologies	that	interact	with
the	already	running	JVM.	Annotation	processing	is	the	other	end.	Annotation	processors	are	plugged	into
the	Java	compiler.	Polyglot	programming	is	in	the	middle.	It	is	JVM	programming,	just	like	programming
in	Java,	but	by	using	some	different	language	or,	perhaps,	some	different	language	and	Java	together.	Or
even	many	languages,	such	as	Jython,	Groovy,	Clojure,	and	Java	together.

We	will	discuss	these	technologies	so	that	we	will	get	some	idea	about	what	they	are	and	where	to	look
for	further	information	in	case	we	want	to	learn	more	about	them.

	

	

Java	agent
A	Java	agent	is	a	Java	program	that	is	loaded	by	the	Java	runtime	in	a	special	way	and	can	be	used	to
interfere	with	the	byte	code	of	the	loaded	classes,	altering	them.	They	can	be	used	to:

List	or	log,	and	report	the	loaded	classes	during	runtime,	as	they	are	loaded
Modify	the	classes	so	that	the	methods	will	contain	extra	code	to	report	runtime	behavior
Support	debuggers	to	alter	the	content	of	a	class	as	the	developer	modifies	the	source	code

This	technology	is	used	in,	for	example,	the	products	JRebel	and	XRebel	from	https://zeroturnaround.com/.

Although	Java	agents	work	in	the	deep	details	of	Java,	they	are	not	magic.	They	are	a	bit	complex	and	you
need	a	deep	understanding	of	Java,	but	anyone	who	can	program	in	Java	can	write	a	Java	agent.	All	that	is
required	is	that	the	class,	which	is	the	agent,	has	some	predefined	methods	packaged	into	a	JAR	file	along
with	the	other	classes	of	the	agent	and	has	a	META-INF/MANIFEST.MF	file	that	defines	the	names	of	the	classes
implementing	the	premain	and/or	agentmain	methods,	and	some	other	fields.

The	detailed	and	precise	reference	documentation	is	part	of	the	JDK	JavaDoc	available	at	http://download.java
.net/java/jdk9/docs/api/	in	the	documentation	of	the	java.lang.instrument	package.

When	a	Java	application	is	started	with	a	Java	agent,	the	command	line	has	to	contain	the	following
option:

-javaagent:jarpath[=options]

Here,	jarpath	points	to	the	JAR	file	that	contains	the	agent	class	and	the	manifest	file.	The	class	must	have
a	method	named	premain	or	agentmain.	It	may	have	one	or	two	arguments.	The	JVM	tries	to	call	the	two-
argument	version	first	after	the	JVM	is	initialized:

public	static	void	premain(String	agentArgs,	Instrumentation	inst);

If	a	two-argument	version	does	not	exist,	then	the	one-argument	version	is	used,	which	is	essentially	the
same	as	the	two-argument	version	but	misses	the	instrumentation	argument,	which,	in	my	opinion,	does	not
make	too	much	sense	since	a	Java	agent	cannot	do	much	without	the	Instrumentation	object:

public	static	void	premain(String	agentArgs);

The	agentArgs	parameter	is	the	string	passed	as	an	option	on	the	command	line.	The	second	argument,
Instrumentation,	provides	methods	to	register	class	transformers	that	can	modify	class	byte	codes	and	also
methods	that	can	ask	the	JVM	to	perform	redefinition	or	retransformation	of	classes	during	runtime.

Java	applications	can	also	load	an	agent	after	the	program	has	already	started.	In	such	a	case,	the	agent
cannot	be	invoked	before	the	main	method	of	the	Java	application,	since	it	has	already	started	by	that
time.	To	separate	the	two	cases,	JVM	calls	agentmain	in	such	a	scenario.	Note	that	either	premain	or	agentmain
is	invoked	for	an	agent	and	never	both.	A	single	agent	can	implement	both	so	that	it	is	capable	of
performing	its	task	loaded	at	the	startup,	specified	on	the	command	line	or	after	the	JVM	started.

https://zeroturnaround.com/
http://download.java.net/java/jdk9/docs/api/

If	agentmain	is	used,	it	has	the	same	arguments	as	premain.

There	is	one	major	and	important	difference	between	the	invocation	of	premain	and	agentmain.	If	an	agent
cannot	be	loaded	during	startup,	for	example,	if	it	cannot	be	found,	if	the	JAR	file	does	not	exist,	if	the
class	does	not	have	the	premain	method,	or	if	it	throws	an	exception,	the	JVM	will	abort.	If	the	agent	is
loaded	after	the	JVM	is	started	(in	this	case,	agentmain	is	to	be	used),	the	JVM	will	not	abort	if	there	is
some	error	in	the	agent.

This	approach	is	fairly	reasonable.	Imagine	that	there	is	a	server	application	that	runs
on	the	Tomcat	servlet	container.	When	a	new	version	is	started,	the	system	is	down	for	a
maintenance	period.	If	the	new	version	cannot	be	started	because	the	agent	is	not
behaving	well,	then	it	is	better	not	started.	The	damage	to	debug	the	situation	and	fix	it,
or	roll	back	the	application	to	the	old	version	and	call	for	a	longer	fixing	session	may	be
less	than	starting	up	the	application	and	not	having	the	proper	agent	functionality.	If	the
application	starts	up	only	without	the	agent,	then	the	suboptimal	operation	may	not
immediately	be	recognized.
On	the	other	hand,	when	an	agent	is	attached	later,	the	application	is	already	running.	An
agent	is	attached	to	an	already	running	application	to	get	information	from	an	already
running	instance.	To	stop	the	already	running	instance	and	fail	it,	especially	in	an
operational	environment,	is	more	damaging	than	just	not	attaching	the	agent.	It	may	not
go	unnoticed	anyway	because	the	agent	that	is	most	probably	attached	is	used	by
operational	personnel.

A	premain	or	agentmain	agent	gets	an	Instrumentation	object	as	the	second	argument.	This	object	implements
several	methods.	One	of	them	is:

void	addTransformer(ClassFileTransformer	transformer)

The	agent	implements	the	transformer,	and	it	has	the	transform	method	signature:

byte[]	transform(Module	module,	ClassLoader	loader,	

																	String	className,	

																	Class<?>	classBeingRedefined,	

																	ProtectionDomain	protectionDomain,	

																	byte[]	classfileBuffer)	

throws	IllegalClassFormatException

This	method	is	called	by	the	JVM	when	a	class	is	loaded	or	when	it	is	to	be	transformed.	The	method	gets
the	class	object	itself,	but,	more	importantly,	it	gets	the	byte	array	containing	the	byte	code	of	the	class.
The	method	is	expected	to	return	the	byte	code	of	the	transformed	class.	Modifying	the	byte	code	needs
some	knowledge	of	how	the	byte	code	is	built	and	what	the	structure	of	a	class	file	is.	There	are	libraries
that	help	to	do	that,	such	as	Javassist	(http://www.javassist.org/)	or	ASM	(http://asm.ow2.org/).	Nevertheless,	I	will
not	start	coding	before	getting	acquainted	with	the	structure	of	the	byte	code.

Agents,	running	in	a	separate	thread	and	presumably	interacting	with	the	user	or	the	filesystem	and	based
upon	some	external	observation	at	any	time,	may	call	the	following	method	to	perform	the
retransformation	of	the	classes	using	the	registered	transformers:

void	retransformClasses(Class<?>...	classes)

http://www.javassist.org/
http://asm.ow2.org/

The	agent	can	also	call	the	following	method,	which	will	redefine	the	classes	given	as	arguments:

void	redefineClasses(ClassDefinition...	definitions)

The	ClassDefinition	class	is	simply	a	Class	and	a	byte[]	pair.	This	will	redefine	the	classes	through	the	class
maintaining	mechanism	of	the	JVM.

Note	that	these	methods	and	Java	agents	interact	with	the	deep,	low-level	part	of	the	JVM.	This	also	bears
the	consequence	that	it	is	very	easy	to	destroy	the	whole	JVM.	The	byte	code	is	not	checked,	unlike	during
the	loading	of	the	class,	and	thus,	if	there	is	some	error	in	it,	the	consequence	may	not	only	be	an
exception	but	also	the	crashing	of	the	JVM.	Also,	the	redefinition	and	the	transformations	should	not	alter
the	structure	of	the	classes.	They	should	not	change	their	inheritance	footprint,	add,	rename,	or	remove
methods,	or	change	the	signature	of	the	methods,	and	this	is	also	true	for	fields.

Also	note	that	the	already	created	objects	will	not	be	affected	by	the	changes;	they	will	still	use	the	old
definition	of	the	class	and	only	new	instances	will	be	affected.

Polyglot	programming
Polyglot	programming	is	the	technique	when	there	are	different	programming	languages	used	in	the	same
application.	Such	an	approach	is	not	only	appropriate	when	a	different	part	of	the	application	runs	on	a
different	environment.	For	example,	the	client	executes	in	the	browser	using	JavaScript,	CSS,	and	HTML
while	the	server	is	programmed	to	run	in	a	Tomcat	environment	in	Java.	This	is	a	different	story,	and,
usually,	this	is	not	the	typical	use	when	someone	is	speaking	about	polyglot	programming.

When	the	application	that	runs	on	the	server	partially	runs	in	Java	and	also	in	some	other	language,	then
we	can	speak	about	polyglot	programming.	For	example,	we	create	the	order	handling	application	in	Java
and	some	of	the	code	that	checks	the	correctness	of	the	order	based	on	the	product-specific	codes	that	the
order	contains	is	written	in	JavaScript.	Does	it	ring	a	bell?	We	have	already	done	that	in	this	book	to
demonstrate	the	scripting	API	of	the	JDK.	That	was	real	polyglot	programing	even	if	we	did	not	mention
it	that	way.

The	JVM	that	runs	the	compiled	Java	code	is	a	very	good	target	for	different	language	compilers,	and
thus,	there	are	many	languages	that	compile	for	it.	When	the	JVM	runs	the	byte	code	of	a	class,	it	does	not
know	what	the	source	language	was,	and	it	does	not	really	care;	some	compiler	created	the	byte	code	and
it	just	executes	that.

We	can	use	different	languages,	such	as	Jython,	Groovy,	and	Scala,	to	name	a	few	popular	ones	that
compile	for	the	JVM.	We	can	write	one	class	using	one	language	and	the	other	one	using	another.	When
they	are	put	together	into	a	JAR,	WAR,	or	an	EAR	file,	the	runtime	system	will	just	run	them.

When	do	we	use	polyglot	programming?

Polyglot	configuration
Usually,	we	turn	towards	polyglot	programming	when	we	want	to	create	an	application	that	is	more
flexible	and	more	configurable.	Applications	that	get	installed	in	many	instances,	usually,	at	different
customer	sites	have	some	configurations.	These	configurations	can	be	XML	files,	properties	files,	and	INI
files	(those	come	from	Windows).	As	the	programs	develop	sooner	or	later,	these	static	configuration
possibilities	reach	their	limits.	Application	developers	soon	see	that	they	need	to	configure	some
functionality	that	is	cumbersome	to	describe	using	these	technologies.	Configuration	files	start	being
larger	and,	also,	the	code	that	reads	and	interprets	the	configuration	files	grow	large.	Good	developers
have	to	realize	that	this	is	the	situation,	and	before	the	configuration	files	and	the	code	handling	them
become	unmanageable,	some	scripting	configuration,	polyglot	programming	has	to	be	implemented.

Decent	developer	teams	may	reach	a	point	when	they	develop	their	configuration	language	and	the
interpreter	of	that	language.	It	can	be	based	on	XML,	or	it	can	just	be	any	other	language.	After	all,
writing	a	language	is	fun;	I	have	done	it	a	few	times	myself.	Most	of	these	were,	however,	hobbies	and	not
professional	projects.	Usually,	there	is	no	customer	value	in	crafting	another	language.	We	can	better	use
an	existing	one.

In	the	case	of	configuration,	Groovy	is	a	very	handy	language	that	supports	complex	closure	and	meta-
class	syntax	and	implementation.	This	way,	the	language	is	extremely	suitable	to	create	a	domain-specific
language.	Since	Groovy	is	compiled	to	JVM,	Groovy	classes	can	be	invoked	directly	from	Java,	and	in
the	other	way	round,	reading	the	configuration	is	essentially	invoking	the	class	compiled	from	the
configuration	file.	The	compilation	can	be	during	application	build	time,	but	in	the	case	of	configuration,
it	makes	more	sense	to	do	it	during	application	startup.	We	have	already	seen	that	the	Groovy
implementation	of	the	scripting	API	or	the	special	API	that	Groovy	provides	is	absolutely	capable	of
doing	that.

Have	we	seen	examples	of	this	in	our	book?	It	may	be	a	surprise	to	you,	but	we	have	in	fact	used	Groovy
to	describe	some	configuration	many	times.	Gradle	build	files	are	nothing	more	than	Groovy	DSL
developed	mainly	in	Groovy	to	support	project	build	configuration.

Polyglot	scripting
Configuration	is	not	the	only	application	of	polyglot	programming.	Configuration	is	executed	at	the
program	startup	and	the	configuration	data	is	used	as	static	data	afterwards.	We	can	execute	scripts	during
the	application's	execution	any	time	and	not	only	during	its	startup.	This	can	be	used	to	provide	extra
functionality	to	the	program's	user	with	installations	that	use	the	same	application	but	are	furnished	with
different	scripts.

One	of	the	first	applications	that	provided	such	scripting	capability	was	the	emacs	editor.
The	core	of	the	application	was	written	in	C	language	and	it	contained	a	Lisp	interpreter
that	let	the	user	to	write	scripts,	which	were	executed	in	the	editor	environment.	The
engineering	program,	AutoCAD,	also	used	a	Lisp	interpreter	for	similar	purposes.	Why
was	Lisp	used	for	this	purpose?
Lisp	has	very	simple	syntax,	and	therefore,	it	is	easy	to	parse	Lisp	code.	At	the	same	time,
the	language	is	powerful,	and	last	but	not	least,	there	were	open	source	Lisp	interpreters
(at	least	one)	available	by	the	time.

To	get	this	kind	of	flexibility,	applications,	many	times,	provide	plugin	APIs,	which	a	developer	can	use
to	extend	the	application.	This,	however,	requires	that	the	developer	sets	up	coding	tools,	including	IDE,
build	tool,	continuous	integration,	and	so	on,	that	is,	a	professional	programming	environment.	When	the
task	to	be	solved	by	the	plugin	is	simple,	the	overhead	is	simply	too	large.	In	such	a	case,	a	scripting
solution	is	handier.

Scripting	is	not	a	solution	for	everything.	When	the	scripts	extending	the	application	tend	to	become	too
complex,	it	means	that	the	scripting	possibility	is	just	too	much.	It	is	difficult,	however,	to	take	back	a	toy
from	a	child.	If	users	get	used	to	the	scripting	possibility,	then	they	will	not	take	it	easy	if	the	next	version
of	the	application	we	release	does	not	provide	that	possibility.	Thus,	it	is	extremely	important	to	assess
the	possible	use	of	the	scripting	capability	in	our	application.	Scripting	and,	more	generally,	any	feature
of	our	program	will	not	be	used	for	what	we	intended	them	for.	They	will	be	used	for	whatever	it	is
possible	to	use	them	for.	Users	can	go	beyond	all	imagination	when	it	comes	to	abusing	some	feature.	It
may	be	a	good	idea	to	think	about	limiting	the	scripting	possibility	beforehand,	limiting	the	running	time	of
the	scripts	or	the	size	of	the	script	our	program	agrees	to	work	with.	If	these	limitations	are	set
reasonably,	and	the	users	understand	and	accept	these,	a	plugin	structure	in	addition	to	the	scripting
capability	has	to	be	considered.

The	security	of	an	application,	including	plugin	or	scripting	extension,	is	also	very	important.	The	scripts
or	plugins	run	on	the	same	JVM	as	the	core	application.	Some	scripting	languages	provide	some	fence
around	the	scripts	that	limits	the	access	to	the	core	application's	objects	and	classes,	but	this	is	an
exception.	Usually,	scripts	run	with	the	same	privilege	as	the	core	application	and	that	way	they	can	do
just	anything.	Thus,	scripts	should	be	trusted	the	same	way	as	the	core	application.	Script	installation	or
modification	should	never	be	possible	for	an	unprivileged	user	of	the	application.	Such	an	action	is
almost	always	reserved	for	the	system	administrator.

If	an	unprivileged	user	can	upload	a	script	to	the	server	and	then	have	it	executed,	we	just	opened	a
security	hole	in	our	application.	Since	access	restrictions	are	enforced	by	the	application,	it	is	easy	to

override	these	limitations	using	an	uncontrolled	script.	The	hacker	can	just	access	other	users'	data	easily,
which	he	is	not	entitled	to,	and	read	and	modify	our	database.

Business	DSL
Polyglot	programming	may	also	come	into	the	picture	when	the	application's	code	can	be	separated	into
business	code	and	technology	code.	The	business	code	contains	the	top-level	business	logic	that	we
actually	write	the	application	for,	and	this	is	the	code	that	contains	the	logic	that	the	customer	pays	for.
The	technology	code	is	to	support	the	algorithms	coded	in	the	business	DSL.

Most	of	the	enterprise	applications	contain	these	two	types	of	code	but	many	do	not	separate	them.	This
leads	to	a	monolithic	application	that	contains	repetitive	code.	When	you	feel	that	you	are	writing	the
same	type	of	code	when	you	need	persistence	or	networking,	and	again	the	same	type	of	code	while
coding	some	business	rules,	then	this	is	the	code	smell	that	suggests	that	the	two	code	types	are	not
separated.	DSL	and	scripting	are	not	a	magic	wand	and	do	not	solve	all	the	problems	that	stem	from	a
wrong	application	structure.	In	such	a	situation,	the	code	has	to	be	refactored	first	to	separate	the	business
logic	and	the	infrastructure	code,	and	it	is	only	the	second	step	to	implement	a	DSL	and	a	business	API
supporting	it	and	to	rewrite	the	business	code	into	the	DSL.	Every	step	of	such	a	project	delivers	value
for	the	application	and	even	if	it	never	gets	to	DSL	and	scripting,	the	effort	invested	is	not	wasted.

The	business	DSL	scripting	is	very	similar	to	pluggable	scripts,	except	that	this	time	it	is	not	the
application	that	calls	the	scripts	from	time	to	time	to	execute	some	special	extension	functionality.	Instead,
the	DSL	code	calls	the	application	through	the	business	API	that	it	provides.	The	advantage	of	providing
the	API	and	using	a	DSL	is	that	the	code	that	implements	the	business	logic	gets	rid	of	the	technical
details,	can	be	very	abstract,	and,	this	way,	be	much	closer	to	a	business-level	description	of	the	problem
rather	than	just	program	code.	Even	some	businessperson	can	understand	a	business	DSL,	and	though	it	is
not	a	goal	in	real-life	examples,	they	could	even	write	code.

At	TU	Vienna,	we	also	used	a	similar	approach	to	make	semiconductor	simulation	more
usable	for	the	semiconductor	design	engineer.	The	core	calculating	code	was	written	in
Fortran.	A	C	language	framework	that	handled	the	massive	simulation	data	input	and
output	and	that	embedded	the	XLISP	interpreter	executed	these	programs.	The	Lisp	code
contained	the	simulation	configuration	data	and	could	also	contain	simple	loops	when
the	simulation	was	to	be	executed	for	many	configuration	points.
It	was	polyglot	programming,	except	that	we	did	not	know	that	this	is	going	to	be	the
name	years	after	this	application	coding	style.

Problems	with	polyglot
Polyglot	programming	is	not	only	all	about	advantages.	Before	jumping	into	this	direction,	developers
making	the	decision	have	to	consider	a	lot	of	things.

Using	another	language	for	the	application	needs	knowledge.	Finding	people	who	can	code	in	the
languages	that	are	used	is	eventually	more	difficult	than	finding	developers	who	only	know	Java.	(This	is
also	true	if	the	kernel	application	language	is	not	Java.)	Different	languages	require	different	mindsets
and,	many	times,	different	people.	The	team	should	also	have	some	members	who	are	proficient	in	both
languages,	and	it	is	also	an	advantage	if	most	of	the	people	know	at	least	a	bit	about	the	other	language.

The	toolset	supporting	Java	is	outstanding.	The	build	tools,	integrated	development	environment,
libraries,	debugging	possibilities,	and	logging	frameworks,	to	name	a	few,	are	all	extremely	good
compared	with	other	languages.	Polyglot	development	needs	support	for	the	other	language	as	well,
which	may	not	be	as	advanced	as	the	support	for	Java.	Many	times,	it	is	really	an	issue	to	debug	DSL
solutions	and	IDE	support	may	also	be	lagging.

When	we	program	in	Java,	many	times,	we	take	for	granted	that	the	IDE	reads	the	meta-data	of	the
libraries	and	whenever	we	need	to	call	a	method,	or	reference	a	class,	the	IDE	suggests	the	best
possibility.	XML	and	properties	files	may	also	be	supported	and	the	IDE	may	know	some	of	the	most	used
frameworks,	such	as	Spring,	and	understand	the	XML	configuration	handling	the	names	of	the	classes	as
hyperlinks,	even	when	the	class	names	are	inside	some	attribute	strings.

This	is	far	from	being	this	easy	in	the	case	of	other	languages.	For	the	languages	that	have	a	wide	user
base,	the	tooling	support	may	be	good,	but	if	you	pick	some	exotic	language,	you	are	on	your	own.	The
more	exotic	the	language	the	less	support	you	may	have.

You	can	create	some	tool	to	support	your	DSL	that	you	develop.	It	is	not	hard	to	do	so	using	tools	such	as	
http://www.eclipse.org/Xtext/.	In	such	a	case,	you	are	tied	to	Eclipse,	which	may	or	may	not	be	a	problem.	You
can	pick	a	special	language,	for	example,	Kotlin,	which	is	extensively	supported	by	IntelliJ,	because	the
same	company	supports	the	language	and	the	IDE,	but	again,	you	buy	into	a	special	technology	that	can	be
expensive	to	replace	in	case	you	have	to.	It	is	generally	true	not	only	for	languages	but	also	for	any
technology	you	include	into	your	development.	When	you	select	one,	you	should	consider	the	support	and
the	cost	of	getting	off	the	horse	if	or	when	it	starts	dying.

http://www.eclipse.org/Xtext/

Annotation	processing
We	have	already	discussed	annotations	in	great	detail.	You	may	recall	that	we	defined	our	annotation
interfaces	using	the	following	annotation:

@Retention(RetentionPolicy.RUNTIME)

This	told	the	Java	compiler	to	keep	the	annotation	and	put	it	into	the	JVM	code	so	that	the	code	can	access
it	during	runtime	using	reflection.	The	default	value	is	RetentionPolicy.CLASS,	which	means	that	the	annotation
gets	into	the	byte	code,	but	the	JVM	does	not	make	it	available	for	the	runtime	system.	If	we	use
RetentionPolicy.SOURCE,	the	annotation	does	not	even	get	into	the	class	file.	In	this	case,	there	is	only	one
possibility	to	do	anything	with	the	annotation:	compile	time.

How	can	we	write	code	that	runs	during	compile	time?	Java	supports	the	notion	of	annotation	processors.
If	there	is	a	class	on	the	classpath	of	the	compiler	that	implements	the	javax.annotation.processing.Processor
interface,	then	the	compiler	will	invoke	the	implemented	methods	one	or	more	times,	passing	information
about	the	source	file	that	the	compiler	is	actually	processing.	The	methods	will	be	able	to	access	the
compiled	methods,	classes,	or	whatever	is	annotated,	and	also	the	annotation	that	triggered	the	processor
invocation.	It	is	important,	however,	that	this	access	is	not	the	same	as	in	runtime.	What	the	annotation
processor	accesses	is	neither	a	compiled	nor	a	loaded	class,	that	is,	it	is	available	when	the	code	uses
reflection.	The	source	file	at	this	time	is	under	compilation;	thus,	the	data	structures	that	describe	the	code
are	actually	structures	of	the	compiler,	as	we	will	see	in	our	next	example.

The	annotation	processor	is	called	one	or	more	times.	The	reason	it	is	invoked	many	times	is	that	the
compiler	makes	it	possible	for	the	annotation	processors	to	generate	source	code	based	on	what	it	sees	in
the	partially	compiled	source	code.	If	the	annotation	processor	generates	any	Java	source	file,	the
compiler	has	to	compile	the	new	source	code	and	perhaps	compile	some	of	the	already	compiled	files
again.	This	new	compilation	phase	needs	annotation	processor	support	until	there	are	no	more	rounds	to
execute.

Annotation	processors	are	executed	one	after	the	other,	and	they	work	on	the	same	set	of	source	files.
There	is	no	way	to	specify	the	order	of	the	annotation	processor	executions;	thus,	two	processors	working
together	should	perform	their	tasks,	no	matter	in	what	order	they	are	invoked.	Also,	note	that	these	codes
run	inside	the	compiler.	If	an	annotation	processor	throws	an	exception,	then	the	compilation	process	will
most	probably	fail.	Thus,	throwing	an	exception	out	of	the	annotation	processor	should	only	be	done	if
there	is	an	error	that	cannot	be	recovered	and	the	annotation	processor	decides	that	the	compilation	after
that	error	cannot	be	complete.

When	the	compiler	gets	to	the	phase	to	execute	the	annotation	processors,	it	looks	at	the	classes	that
implement	the	javax.annotation.processing.Processor	interface	and	creates	instances	of	these	classes.	These
classes	have	to	have	a	public	no-argument	constructor.	To	streamline	the	execution	of	the	processors	and
to	invoke	a	processor	only	for	the	annotations	that	it	can	handle,	the	interface	contains	two	methods:

getSupportedSourceVersion	to	return	the	latest	version	the	annotation	processor	can	support
getSupportedAnnotationTypes	to	return	a	set	of	String	objects	containing	the	fully	qualified	class	name	of

the	annotations	that	this	processor	can	handle

If	an	annotation	processor	was	created	for	Java	1.8,	it	may	work	with	Java	9,	but	it	may	also	not	work.	If
it	declares	that	the	latest	supported	version	is	1.8,	then	the	compiler	in	a	Java	9	environment	will	not
invoke	it.	It	is	better	not	to	invoke	an	annotation	processor	than	calling	it	and	messing	up	the	compilation
process,	which	may	even	create	compiled	but	erroneous	code.

The	values	returned	by	these	methods	are	fairly	constant	for	an	annotation	processor.	An	annotation
processor	will	return	the	same	source	version	it	can	handle	and	will	return	the	same	set	of	annotations.
Therefore,	it	would	be	clever	to	have	some	way	to	define	these	values	in	the	source	code	in	a	declarative
manner.

It	can	be	done	when	we	extend	the	javax.annotation.processing.AbstractProcessor	class	instead	of	directly
implementing	the	Processor	interface.	This	abstract	class	implements	these	methods.	Both	of	them	get	the
information	from	the	annotation	so	that	we	can	decorate	the	class	that	extends	the	abstract	class.	For
example,	the	getSupportedAnnotationTypes	method	looks	at	the	SupportedAnnotationTypes	annotation	and	returns	an
array	of	annotation	type	strings	that	are	listed	in	the	annotation.

Now,	this	is	a	bit	brain	twisting	and	can	also	be	confusing	at	first.	We	are	executing	our	annotation
processor	during	compile	time.	But	the	compiler	itself	is	a	Java	application,	and	in	this	way,	the	time	is
runtime	for	the	code	that	runs	inside	the	compiler.	The	code	of	AbstractProcessor	accesses	the
SupportedAnnotationTypes	annotation	as	a	runtime	annotation	using	reflection	methods.	There	is	no	magic	in	it.
The	method	in	the	JDK	9	is	as	follows:

public	Set<String>	getSupportedAnnotationTypes()	{	

				SupportedAnnotationTypes	sat	=	this.getClass().getAnnotation	

				(SupportedAnnotationTypes.class);	

				if		(sat	==	null)	{	

								...	error	message	is	sent	to	compiler	output	...	

								return	Collections.emptySet();	

				}	

				else	

								return	arrayToSet(sat.value());	

}

(The	code	has	been	edited	for	brevity.)

To	have	an	example,	we	will	sort	of	look	at	the	code	of	a	polyglot	annotation	processor.	Our	very	simple
annotation	processor	will	process	one	simple	annotation:	com.javax0.scriapt.CompileScript,	which	can	specify
a	script	file.	The	annotation	processor	will	load	the	script	file	and	execute	it	using	the	scripting	interface
of	Java	9.

This	code	was	developed	as	a	demonstration	code	by	the	author	of	this	book	a	few	years
ago	and	is	available	with	the	Apache	license	from	GitHub.	Thus,	the	package	of	the
classes	is	retained.

The	annotation	processor	contains	two	code	files.	One	of	the	annotation	itself	that	the	processor	will
work	on:

@Retention(RetentionPolicy.SOURCE)	

@Target(ElementType.TYPE)	

public	@interface	CompileScript	{	

				String	value();	

				String	engine()	default	"";	

}

As	you	can	see,	this	annotation	will	not	get	into	the	class	file	after	compilation;	thus,	there	will	be	no
trace	during	runtime	so	that	any	class	source	may	occasionally	use	this	annotation.	Target	of	the	annotation
is	ElementType.TYPE,	meaning	that	this	annotation	can	only	be	applied	to	those	Java	9	language	constructs	that
are	some	kind	of	types:	class,	interface,	and	enum.

The	annotation	has	two	parameters.	The	value	should	specify	the	name	of	the	script	file,	and	the	engine
may	optionally	define	the	type	of	the	script	that	is	in	that	file.	The	implementation	we'll	create	will	try	to
identify	the	type	of	the	script	from	the	filename	extension,	but	if	somebody	would	like	to	bury	some
Groovy	code	into	a	file	that	has	the	.jy	extension	(which	is	usually	for	Jython),	so	be	it.

The	processor	extends	AbstractProcessor	and,	in	this	way,	some	of	the	methods	are	inherited	at	the	expense
of	some	annotations	used	in	the	class:

package	com.javax0.scriapt;	

import	...	

@SupportedAnnotationTypes("com.javax0.scriapt.CompileScript")	

@SupportedSourceVersion(SourceVersion.RELEASE_9)	

public	class	Processor	extends	AbstractProcessor	{

There	is	no	need	to	implement	the	getSupportedAnnotationTypes	and	getSupportedSourceVersion	methods.	These	are
replaced	by	the	use	of	the	annotations	on	the	class.	We	support	only	one	annotation	in	this	processor,	the
one	that	we	defined	in	the	previously	listed	source	file,	and	we	are	prepared	to	manage	the	source	code
up	to	Java	version	9.	The	only	method	we	have	to	override	is	process:

@Override	

public	boolean	process(

				final	Set<?	extends	TypeElement>	annotations,	

				final	RoundEnvironment	roundEnv)	{	

								for	(final	Element	rootElement	:	

												roundEnv.getRootElements())	{	

																try	{	

																				processClass(rootElement);	

																}		

																catch	(Exception	e)	{	

																				throw	new	RuntimeException(e);	

																}	

												}	

								return	false;	

				}

This	method	gets	two	arguments.	The	first	is	the	set	of	annotations	that	it	was	invoked	for.	The	second	is
the	round	environment.	Because	the	processor	can	be	invoked	many	times,	the	different	invocations	may
have	different	environments.	Each	invocation	is	in	a	round	and	the	RoundEnvironment	argument	is	an	object
that	can	be	used	to	get	information	about	the	given	round.	It	can	be	used	to	get	the	root	elements	of	the
round	for	which	this	annotation	is	invoked.	In	our	case,	this	will	be	a	set	of	class	elements	that	have	the
CompileScript	annotation.	We	iterate	over	this	set,	and	for	each	class,	we	invoke	the	processClass	method	(see
the	next	code	snippet).	The	method	may	throw	some	checked	exception	and	the	method	process	cannot
because	it	should	match	the	same	method	of	the	interface.	Thus,	we	catch	any	exception	that	may	be
thrown	and	we	re-throw	these	encapsulated	in	RunTimeException.	If	any	of	these	exceptions	are	thrown	by	the
called	method,	then	the	compilation	could	not	run	the	scripts	and	it	should	be	treated	as	failed.	The
compilation	should	not	succeed	in	such	a	case:

private	void	processClass(final	Element	element)	

				throws	ScriptException,	FileNotFoundException	{	

								for	(final	AnnotationMirror	annotationMirror	:	

												element.getAnnotationMirrors())	{	

																processAnnotation(annotationMirror);	

								}	

				}

The	actual	annotation	is	not	available	during	compile	time	as	we	already	mentioned.	Hence,	what	we
have	available	is	only	a	compile	time	mirror	image	of	the	annotation.	It	has	the	AnnotationMirror	type,	which
can	be	used	to	get	the	actual	type	of	the	annotation	and,	also,	the	values	of	the	annotation.	The	type	of	the
annotation	is	available	during	compile	time.	The	compiler	needs	it;	otherwise,	it	could	not	compile	the
annotation.	The	values	are	available	from	the	annotation	itself.	Our	processAnnotation	method	handles	each
annotation	it	gets	as	an	argument:

private	void	processAnnotation(

				final	AnnotationMirror	annotationMirror)	

				throws	ScriptException,	FileNotFoundException	{	

								final	String	script	=	

												FromThe.annotation(annotationMirror).	

												getStringValue();	

								final	String	engine	=	

												FromThe.annotation(annotationMirror).	

												getStringValue("engine");	

								execute(script,	engine);	

				}

Our	@CompileScript	annotation	defines	two	parameters.	The	first	value	is	the	script	filename	and	the	second
one	is	the	scripting	engine	name.	If	the	second	one	is	not	specified,	then	an	empty	string	is	set	as	the
default	value.	The	execute	method	is	called	for	each	and	every	occasion	of	the	annotation:

private	void	execute(final	String	scriptFileName,	

																				final	String	engineName)	

				throws	ScriptException,	FileNotFoundException	{	

								final	ScriptEngineManager	factory	=	

								new	ScriptEngineManager();	

								final	ScriptEngine	engine;	

								if	(engineName	!=	null	&&	engineName.length()	>	0)	{	

												engine	=	factory.getEngineByName(engineName);	

								}		

								else	{	

												engine	=	

												factory.getEngineByExtension	

												(getExtensionFrom(scriptFileName));	

								}	

								Reader	scriptFileReader	=	new	FileReader	

								(new	File(scriptFileName));	

								engine.eval(scriptFileReader);	

				}

The	method	tries	to	load	the	script,	based	on	the	filename,	and	tries	to	instantiate	the	script	engine,	based
on	the	given	name.	If	there	is	no	name	given,	then	the	filename	extension	is	used	to	identify	the	scripting
engine.	By	default,	the	JavaScript	engine	is	on	the	classpath	as	it	is	part	of	the	JDK.	If	any	other	JVM-
based	scripting	engine	is	in	use,	then	it	has	to	be	made	available	on	the	classpath	or	on	the	module	path.

The	last	method	of	the	class	is	a	simple	script	manipulation	method,	nothing	special.	It	just	chops	off	the
filename	extension	so	that	the	engine	can	be	identified	based	on	the	extension	string:

private	String	getExtensionFrom(final	String	scriptFileName)	{	

				final	int	indexOfExtension	=	scriptFileName.lastIndexOf('.');	

				if	(indexOfExtension	==	-1)	{	

								return	"";	

				}		

				else	{	

								return	scriptFileName.substring(indexOfExtension	+	1);	

				}	

}

And	just	for	the	sake	of	completeness,	we	have	the	closing	brace	of	the	class:

}

Programming	in	the	enterprise
When	a	professional	works	for	an	enterprise,	she	does	not	work	alone.	There	are	a	lot	of	people,
developers	as	well	as	other	coworkers,	we	have	to	cooperate	with.	The	older	the	IT	department	of	the
enterprise	is,	and	the	larger	the	enterprise	is,	the	more	specialized	roles	people	are	in.	You	will	certainly
meet	business	analysts,	project	managers,	test	engineers,	build	engineers,	subject-matter	experts,	testers,
architects,	scrum	masters,	and	automation	engineers,	to	name	a	few	roles.	Some	of	these	roles	may
overlap,	no	person	may	have	more	than	one	responsibility,	and	while	in	other	cases,	some	roles	could
even	be	more	specialized.	Some	of	the	roles	are	very	technical	and	require	less	business-related
knowledge;	others	are	more	business	oriented.

Working	together	as	a	team	with	so	many	people	and	with	so	many	different	roles	is	not	simple.	The
complexity	of	the	task	may	be	overwhelming	for	a	novice	developer	and	cannot	be	done	without	definite
policies	that	all	members	of	the	operation	follow,	more	or	less.	Perhaps	your	experience	will	show	that	it
is	more	times	less	than	more,	but	that	is	a	different	story.

For	the	way	developers	work	together,	there	are	well-established	industry	practices.	These	support	the
Software	Development	Lifecycle	(SDLC)	using	waterfall,	agile,	or	a	mix	of	the	two	models	in	some
way.	In	the	following	sections,	we	will	look	at	tools	and	techniques	that	are,	or	at	least	should	have	been,
used	in	every	software	development	organization.	These	are:

Static	code	analysis	tools	that	control	the	quality	of	the	code	examining	the	source	code
Source	code	version	control	that	stores	all	the	versions	of	the	source	code	and	help	get	the	source
code	for	any	old	version	of	the	development
Software	versioning	to	keep	some	order	of	how	we	identify	the	different	versions	and	do	not	get	lost
among	the	different	versions
Code	review	and	tools	that	help	in	pin-pointing	bugs	that	are	not	revealed	by	tests	and	aid
knowledge	sharing
Knowledge	base	tools	to	record	and	document	the	findings
Issue	tracking	tools	that	record	bugs,	customer	issues,	and	other	tasks	that	somebody	has	to	attend	to
Selection	process	and	considerations	for	external	products	and	libraries
Continuous	integration	that	keeps	the	software	in	a	consistent	state	and	reports	immediately	if	there	is
some	error	in	it	before	the	error	propagates	to	other	versions	or	other	code,	depending	on	how	the
erroneous	code	gets	developed
Release	management,	which	keeps	track	of	the	different	release	versions	of	the	software
Code	repository,	which	stores	the	compiled	and	packed	artifacts

The	following	diagram	shows	the	most	widely	used	tools	for	these	tasks:

Static	code	analysis
Static	code	analysis	tools	read	the	code	just	like	the	compiler	and	analyze	it,	but	instead	of	compilation,
they	try	to	find	errors	or	mistakes	in	it.	Not	the	syntax	errors.	For	that,	we	already	have	the	Java	compiler.
Mistakes,	such	as	using	a	loop	variable	outside	a	loop,	which	may	be	absolutely	valid	but	is	usually	bad
style	and,	many	times,	such	usage	comes	from	some	simple	mistakes.	They	also	check	that	the	code
follows	the	styling	rules	that	we	set.

Static	code	analyzers	help	identify	many	small	and	obvious	errors	in	the	code.	Sometimes,	they	are
annoying,	warning	about	something	that	may	not	be	really	a	problem.	In	such	a	case,	it	is	better	to	code	the
program	a	bit	differently,	not	because	we	want	the	static	code	analysis	to	run	without	warning.	We	should
never	modify	the	code	because	of	a	tool.	If	we	code	something	in	such	a	way	that	it	passes	some	quality
check	tool	and	not	because	it	is	better	that	way,	then	we	are	serving	the	tools	instead	of	the	tools	serving
us.

The	reason	to	change	the	code	to	pass	the	code	analysis	is	that	it	is	very	probable	that	the	code	is	more
readable	to	an	average	programmer	if	it	does	not	violate	the	coding	style.	You	or	the	other	team	members
can	be	excellent	programmers	who	understand	the	code	very	easily	even	if	it	uses	some	special	construct.
However,	you	cannot	say	that	about	all	the	programmers	who	will	maintain	your	code	in	the	future.	The
code	lives	a	long	life.	I	work	with	some	programs	that	have	been	written	50	years	ago.	They	are	still
running	and	maintained	by	young	professionals	around	the	age	of	30.	It	means	that	they	were	not	even	born
when	the	code	was	developed.	It	can	easily	happen	that	the	person	maintaining	your	code	is	not	even	born
by	the	time	you	write	the	code.	You	cannot	tell	anything	about	their	cleverness	and	coding	practices.	The
best	we	can	do	is	to	prepare	for	the	average	and	that	is	exactly	what	static	code	analysis	tools	are	set	for.

The	checks	that	these	tools	perform	are	not	hardwired	into	the	tools.	Some	special	language	inside	the
tools	describes	the	rules	and	they	can	be	deleted,	other	rules	can	be	added,	and	rules	can	be	modified.
This	way,	you	can	accommodate	the	coding	standards	of	the	enterprise	you	work	for.	The	different	rules
can	be	categorized	as	cosmetic,	minor,	major,	and	critical.	Cosmetic	things	are	mainly	warnings	and	we
do	not	really	care	about	them,	even	though	it	is	nice	to	fix	even	these	issues.	Sometimes,	these	small	things
may	signal	some	really	big	issue.	We	can	set	limits	for	the	number	of	minor	and	major	bugs	before	the
check	is	declared	as	failing	and	also	for	the	critical	errors.	In	the	last	case,	this	limit	is	usually	zero.	If	a
coding	error	seems	to	be	critical,	then	better	not	have	any	in	the	code.

The	most	frequently	used	tools	are	Checkstyle,	FindBugs,	and	PMD.	The	execution	of	these	tools	is
usually	automated,	and	though	they	can	be	executed	from	the	IDE	or	from	the	developer's	command	line,
their	main	use	is	on	the	continuous	integration	(CI)	server.	During	the	build,	these	tools	are	configured
on	the	CI	server	to	run,	and	it	can	be	configured	such	that	the	build	should	be	broken	if	the	static	code
analysis	fails	with	some	limit.	Executing	the	static	code	analysis	is	usually	the	next	step	after	compilation
and	unit	test	execution,	and	before	the	actual	packaging.

The	SonarQube	tool	(https://www.sonarqube.org/)	is	a	special	tool	in	addition	to	being	a	static	code	analysis
tool.	SonarQube	maintains	the	history	of	the	previous	checks	as	well	as	supports	unit	test	code	coverage
and	can	report	the	change	of	the	quality	over	time.	This	way,	you	can	see	how	the	quality,	coverage
percentage,	and	number	of	different	qualifications	of	code	style	errors	have	changed.	Many	times,	you	can

https://www.sonarqube.org/

see	that	when	approaching	the	release	date,	the	code	quality	decreases	as	people	are	in	a	rush.	This	is
very	bad	because	this	is	the	time	when	most	of	the	bugs	should	be	eliminated.	Having	a	statistic	about	the
quality	may	help	change	the	practice	by	seeing	the	trends	before	the	quality,	and	thus	the	maintainability	of
the	code	gets	out	of	hand.

Source	code	version	control
Source	code	version	control	systems	store	different	versions	of	the	source	code.	These	days,	we	cannot
imagine	professional	software	development	without	it.	This	was	not	always	the	case,	but	the	availability
of	free	online	repositories	encouraged	hobby	developers	to	use	some	version	control,	and	when	these
developers	worked	for	enterprises	later,	it	was	evident	that	the	use	of	these	systems	is	kind	of	a	must.

There	are	many	different	revision	control	systems.	The	most	widely	used	one	is	Git.	The	version	control
that	was	previously	widely	used	was	SVN	and,	even	before	that,	CVS.	These	are	less	and	less	used	these
days.	We	can	see	SVN	as	a	successor	of	CVS	and	Git	as	a	successor	of	SVN.	In	addition	to	these,	there
are	other	version	control	systems	such	as	Mercurial,	Bazaar,	or	Visual	Studio	Team	Services.	For	a
comprehensive	list	of	the	available	tools,	visit	the	Wikipedia	page	at	https://en.wikipedia.org/wiki/List_of_version_con
trol_software.

My	bet	is	that	you	will	meet	Git	in	the	first	place	and	there	is	a	high	probability	of	you	coming	across
SVN	when	programming	for	an	enterprise.	Mercury	may	appear	in	your	practice	but	any	of	the	others	that
currently	exist	are	very	rare,	are	used	for	a	specific	area,	or	are	simply	extinct.

Version	control	systems	allow	the	development	team	to	store	the	different	versions	of	the	software	in	an
organized	manner	on	a	storage	that	is	maintained	(backed	up	regularly	in	a	reliable	manner).	This	is
important	for	different	purposes.

The	first	thing	is	that	different	versions	of	the	software	may	be	deployed	to	different	instances.	If	we
develop	software	for	clients	and	we	have	many	clients	with	whom	we	hope	to	have	to	make	a	terrific
business,	then	different	clients	may	have	different	versions.	This	is	not	only	because	some	clients	are
reluctant	to	pay	for	the	upgrade,	and	we	just	do	not	want	to	give	the	new	version	for	free.	Many	times,	the
costs	that	rise	on	the	side	of	the	customer	prevent	the	upgrade	for	a	long	time.	Software	products	do	not
work	on	their	own	in	an	isolated	environment.	Different	clients	have	different	integrated	environments;	the
software	communicates	with	different	other	applications.	When	a	new	version	is	to	be	introduced	in	an
enterprise	environment,	it	has	to	be	tested	for	whether	it	works	with	all	the	systems	it	has	to	cooperate
with.	This	testing	takes	a	lot	of	effort	and	money.	If	the	new	features	or	other	values	that	the	new	version
delivers	over	the	old	one	do	not	justify	the	cost,	then	it	would	be	waste	of	money	to	deploy	the	new
version.	The	fact	that	there	is	a	new	version	of	our	software	does	not	mean	that	the	old	versions	are	not
usable.

If	there	is	some	bug	at	the	customer's	end,	then	it	is	vital	that	we	fix	the	bug	in	that	version.	To	do	so,	the
bug	has	to	be	reproduced	in	the	development	environment,	which	eventually	means	that	the	source	code
for	that	version	has	to	be	available	for	the	developers.

This	does	require	the	customer	database	to	contain	references	to	the	different	versions	of
our	software	products	that	are	installed	at	the	customer	site.	To	make	it	more
complicated,	a	customer	may	have	more	than	one	version	at	a	time	in	different	systems
and	may	also	have	different	licenses,	so	the	issue	is	more	complex	than	it	first	seems.	If
we	do	not	know	which	version	the	client	has,	then	we	are	in	trouble.
Since	the	database	registering	the	versions	for	the	customers	and	real	life	may	get

https://en.wikipedia.org/wiki/List_of_version_control_software

unsynchronized,	software	products	log	their	version	at	startup.	We	have	a	separate
section	about	versioning	in	this	chapter.

If	the	bug	is	fixed	in	the	version	that	the	client	has,	the	incident	at	the	customer's	end	may	be	solved	after
deployment.	The	problem,	though,	still	remains	if	the	version	is	not	the	previous	version	of	the	software.
The	bug	fix	introduced	to	an	old	version	of	the	software	may	still	be	lurking	around	in	the	later	or,	for	that
matter,	earlier	versions.	The	development	team	has	to	identify	which	versions	are	relevant	to	clients.	For
example,	an	old	version	that	is	not	installed	any	more	at	any	of	the	clients'	sites	does	not	deserve	the
investigation.	After	that,	the	relevant	versions	have	to	be	investigated	to	check	whether	they	exhibit	the
bug.	This	can	only	be	done	if	we	have	the	source	version.	Some	old	versions	may	not	have	the	bug	if	the
code	causing	the	bug	is	introduced	in	later	versions.	Some	new	versions	may	also	be	immune	to	the	bug
because	the	bug	was	already	fixed	in	the	previous	version,	or	simply	because	the	piece	of	code	that
caused	the	bug	was	refactored	even	before	the	bug	manifested.	Some	bugs	may	even	affect	a	specific
version	instead	of	a	range	of	products.	Big	fixing	may	be	applied	to	different	versions	and	they	may	need
slightly	different	fixes.	All	this	needs	a	maintained	source	version	repository.

Even	when	we	do	not	have	different	customers	with	different	versions,	it	is	more	than	likely	that	we	have
more	than	one	version	of	our	software	in	development.	The	development	of	a	major	release	is	coming	to
an	end,	and	therefore,	one	part	of	the	team	responsible	for	testing	and	bug	fixing	focuses	on	those
activities.	At	the	same	time,	the	development	of	features	for	the	next	version	still	goes	on.	The	code
implementing	the	functionalities	for	the	next	version	should	not	get	into	the	version	that	is	about	to	be
released.	The	new	code	may	be	very	fresh,	untested,	and	may	introduce	new	bugs.	It	is	very	common	to
introduce	freeze	times	during	the	release	process.	For	example,	it	may	be	forbidden	to	implement	any	new
feature	of	the	upcoming	release.	This	is	called	feature	freeze.

Revision	control	systems	deal	with	these	freeze	periods,	maintaining	different	branches	of	the	code.	The
release	will	be	maintained	in	one	branch	and	the	version	for	later	releases	in	a	different	one.	When	the
release	goes	out,	the	bug	fixes	that	were	applied	to	it	should	also	be	propagated	to	the	newer	version;
otherwise,	it	might	so	happen	that	the	next	version	will	contain	bugs	that	were	already	fixed	in	the
previous	version.	To	do	so,	the	release	branch	is	merged	with	the	ongoing	one.	Thus,	version	control
systems	maintain	a	graph	of	the	versions,	where	each	version	of	the	code	is	a	node	in	the	graph	and	the
changes	are	vertices.

Git	goes	very	far	in	this	direction.	It	supports	branch	creation	and	merging	so	well	that	developers	create
separate	branches	for	each	change	that	they	create	and	then	they	merge	it	back	with	the	master	branch
when	the	feature	development	is	done.	This	also	makes	for	a	good	opportunity	for	code	review.	The
developer	making	the	feature	development	or	bug	fix	creates	a	pull	request	in	the	GitHub	application,	and
another	developer	is	requested	to	review	the	change	and	perform	the	pull.	This	is	a	kind	of	four-eyed
principle	applied	to	code	development.

Some	of	the	revision	control	systems	keep	the	repository	on	a	server	and	any	change	gets	to	the	server.
The	advantage	of	this	is	that	any	change	committed	gets	to	a	server	disk	that	is	regularly	backed	up	and	is
thus	safe.	Since	the	server-side	access	is	controlled,	any	code	sent	to	the	server	cannot	be	rolled	back
without	trace.	All	versions,	even	the	wrong	versions,	are	stored	on	the	server.	This	may	be	required	by
some	legal	control.	On	the	other	hand,	if	commit	requires	network	access	and	server	interaction,	it	may	be
slow	and	this	will,	in	the	long	run,	motivate	developers	not	to	commit	their	changes	frequently.	The	longer

a	change	remains	on	the	local	machine,	the	more	risk	we	have	of	losing	some	of	the	code,	and	merging
becomes	more	and	more	difficult	with	time.	To	heal	this	situation,	Git	distributes	the	repository	and	the
commit	happens	to	the	local	repository,	which	is	exactly	the	same	as	the	remote	one	on	some	server.	The
repositories	are	synchronized	when	one	repository	pushes	the	changes	to	another	one.	This	encourages	the
developers	to	make	frequent	commits	to	the	repository,	giving	short	commit	messages,	which	helps	in
tracking	the	change	made	to	the	code.

Some	older	version	control	systems	support	file	locking.	This	way,	when	a	developer	checks	out	a	code
file,	others	cannot	work	on	the	same	piece	of	code.	This	essentially	avoids	the	collisions	during	code
merging.	Over	the	years,	this	approach	did	not	seem	to	fit	the	development	methodologies.	Merge	issues
are	less	of	a	problem	than	files	that	are	checked	out	and	forgotten.	SVN	supports	file	locking	but	this	is
not	really	serious	and	does	not	prevent	one	developer	to	commit	changes	to	a	file	that	somebody	else
locked.	It	is	more	of	only	a	suggestion	than	real	locking.

Source	code	repositories	are	very	important	but	should	not	be	confused	with	release	repositories,	which
store	the	compiled	released	version	of	the	code	in	binary.	Source	and	release	repositories	work	together.

Software	versioning
Software	versioning	is	magic.	Think	about	the	different	versions	of	Windows	or	Star	Wars	movies.	Well,
the	latter	is	not	really	software	versioning	but	it	shows	that	the	issue	is	very	general.	In	the	case	of	Java,
versioning	is	not	that	complex.	First	of	all,	the	version	of	Java	we	use	now	is	9.	The	previous	version
was	1.8,	before	that	1.7,	and	so	on,	down	to	1.0.	Earlier	versions	of	Java	were	called	Oak	but	that	is
history.	After	all,	that	is,	who	can	tell	what	Java	2	was?

Fortunately,	when	we	create	a	Java	application,	the	situation	is	simpler.	There	has	been	a	suggestion	from
Oracle,	from	the	time	of	Java	1.3,	about	how	to	version	JARs:

http://docs.oracle.com/javase/7/docs/technotes/guides/extensions/versioning.html

This	document	distinguishes	between	specification	version	and	implementation	version.	If	the
specification	of	a	JAR	content	changes,	the	code	has	to	behave	differently	from	how	it	was	behaving	till
then;	the	specification	version	should	change.	If	the	specification	is	not	changed	but	the	implementation
does--for	example,	when	we	fix	a	bug--then	the	implementation	version	changes.

In	practice,	nobody	has	used	this	scheme,	although	it	is	a	brilliant	idea	to	separate	the	implementation	and
specification	versions,	at	least,	in	theory.	I	even	bet	that	most	of	your	colleagues	have	not	even	ever	heard
about	this	versioning.	What	we	use	in	practice	is	semantic	versioning.

Semantic	versioning	(http://semver.org/)	mixes	the	specification	and	implementation	versions	into	one	single
version	number	triplet.	This	triplet	has	the	format	of	mmp,	that	is:

m:	major	version	number
m:	minor	version	number
p:	patch	number

The	specification	says	that	these	numbers	start	with	zero	and	increase	by	one.	If	the	major	number	is	zero,
it	means	that	the	software	is	still	in	development.	In	this	state,	the	API	is	not	stable	and	may	change
without	a	new	major	version	number.	The	major	version	number	gets	to	1	when	the	software	is	released.
Later	it	has	to	be	increased	when	the	API	of	the	application	(library)	has	changed	from	the	previous
version	and	the	application	is	not	backward	compatible	with	the	previous	version.	The	minor	version
number	is	increased	when	the	change	effects	only	the	implementation	but	the	change	is	significant,
perhaps,	even	the	API	is	also	changing	but	in	a	backward-compatible	manner.	The	patch	version	is
increased	when	some	bug	is	fixed,	but	the	change	is	not	major	and	the	API	does	not	change.	The	minor
and	the	patch	levels	have	to	be	reset	to	zero	if	any	version	number	in	the	triplet	in	front	of	any	of	them	is
increased:	major	version	number	increase	resets	both	minor	and	patch	version;	minor	version	number
increase	resets	patch	number.

This	way,	semantic	versioning	keeps	the	first	element	of	the	triplet	for	the	specification	version.	The
minor	is	a	mix	of	the	specification	and	implementation	versions.	A	patch	version	change	is	clearly	an
implementation	version	change.

http://docs.oracle.com/javase/7/docs/technotes/guides/extensions/versioning.html
http://semver.org/

In	addition	to	these,	semantic	versioning	allows	appending	a	pre-release	string,	such	as	-RC1	and	-RC2.	It
also	allows	the	appending	of	metadata,	such	as	a	date	after	a	plus	sign,	for	example,	+20160120	as	a	date.

The	use	of	semantic	versioning	helps	those	that	use	the	software	to	easily	spot	compatible	versions	and	to
see	which	version	is	older	and	which	is	newer.

Code	review
When	we	create	programs	in	a	professional	way,	it	is	done	in	teams.	There	is	no	one-man	show
programming	other	than	in	a	hobby	or	going	along	with	the	tutorials.	It	is	not	only	because	it	is	more
effective	to	work	in	teams	but	also	because	one	person	is	vulnerable.	If	you	work	alone	and	get	hit	by	the
bus	or	you	hit	the	lottery	and	lose	your	ability	or	motivation	to	work	on	the	project,	your	customer	is	in
trouble.	That	is	not	professional.	Professional	projects	should	be	resilient	to	any	member	falling	off.

Teamwork	needs	cooperation	and	one	form	of	cooperation	is	code	review.	This	is	the	process	when	a
developer	or	a	group	of	developers	reads	a	part	of	the	code	that	some	other	team	members	have	written.
There	are	direct	gains	from	this	activity;

The	developers	reading	the	code	get	more	knowledge	about	the	code;	they	learn	the	code.	This	way,
if	the	developer	creating	the	code	gets	out	of	the	process	for	any	reason,	the	others	can	continue	the
work	with	minimal	bump.
Coding	styles	can	be	aligned.	Developers,	even	seniors,	paying	careful	attention	make	coding
mistakes.	This	may	be	a	bug	or	it	may	be	a	coding	style	violation.	Coding	style	is	important	because
the	more	readable	the	code	is,	the	less	possibility	of	it	having	unnoticed	bugs.	(Also	see	the	next
bullet	point.)	It	is	also	important	that	the	coding	style	is	the	same	for	the	team.	All	team	members
should	use	the	same	style.	Looking	at	a	code	that	has	a	different	style	from	the	one	I	wrote	is	a	bit
harder	to	follow	and	understand.	The	differences	may	distract	the	reader	and	the	team	members	have
to	be	able	to	read	the	code.	The	code	belongs	to	the	team	and	not	a	single	developer.	Any	team
member	should	know	the	code	and	be	able	to	modify	it.
During	code	review,	a	lot	of	bugs	can	be	discovered.	The	parties	looking	at	the	code	and	trying	to
understand	the	working	of	it	may	occasionally	discover	bugs	from	the	structure	of	the	code,	which
are	otherwise	hard	to	discover	using	tests.	If	you	want,	code	review	is	the	whitest	white	box	test.
People	think	differently	and	different	mindsets	catch	different	bugs.

Code	review	can	be	done	online	and	offline.	It	can	be	done	in	teams	or	peer-to-peer.

Most	teams	follow	the	code	review	process	that	GitHub	supports,	which	is	the	simplest.	Changes	to	the
code	are	committed	to	a	branch	and	are	not	merged	with	the	code	directly	but,	rather,	a	pull	request	is
created	on	the	web	interface.	The	local	policy	may	require	that	a	different	developer	perform	the	pull.
The	web	interface	will	highlight	the	changes	and	we	can	add	comments	to	the	changed	code.	If	the
comments	are	significant,	then	the	original	developer	requesting	the	pull	should	modify	the	code	to
answer	the	comments	and	request	the	pull	again.	This	ensures	that	at	least	two	developers	see	any	change;
the	knowledge	is	shared.

Feedback	is	peer-to-peer.	It	is	not	a	senior	teaching	a	junior.	That	needs	a	different	channel.	Comments	in
GitHub	are	not	good	for	this	purpose;	at	least,	there	are	better	channels.	Perhaps	talking	face	to	face.
Comments	may	come	from	a	senior	to	a	junior	or	from	a	junior	to	a	senior.	In	this	work,	giving	feedback
on	the	quality	of	the	code,	seniors	and	juniors,	are	equal.

The	simplest	and	perhaps	the	most	frequent	comment	is	the	following:
I	can	see	that	Xyz.java	was	changed	in	the	modification	but	I	see	no	change	made	to

XyzTest.java.	This	is	almost	an	instant	refusal	for	the	merge.	If	a	new	feature	is
developed,	unit	tests	have	to	be	created	to	test	that	feature.	If	a	bug	is	fixed,	then	unit
tests	have	to	be	created	to	prevent	the	bug	from	coming	back.	I	personally	got	this
comment	many	times,	even	from	juniors.	One	of	them	told	me,	"We	know	that	you	were
testing	us	if	we	dared	to	give	feedback."
God	knows	I	was	not.	They	did	not	believe.

While	change	review	and	GitHub	is	a	good	tool	during	development,	it	may	not	be	appropriate	when	a
larger	chunk	of	code	has	to	be	reviewed.	In	such	a	case,	other	tools,	such	as	FishEye,	have	to	be	used.
In	this	tool,	we	can	select	the	source	files	for	review	even	if	they	were	not	recently	changed.	We	can
also	select	reviewers	and	deadlines.	Commenting	is	similar	to	GitHub.	Finally,	this	type	of	code	review
finishes	with	a	code	review	session,	where	the	developers	gather	and	discuss	the	code	in	person.

While	organizing	such	a	session,	it	is	important	that	a	person	who	has	experience	managing	other
people	mediates	these	sessions.	Code	and	discussion	on	styles	can	get	very	personal.	At	the	same	time,
when	attending	such	a	meeting,	you	should	also	pay	attention	so	as	not	to	get	personal.	There	will	be
enough	participants	who	may	not	know	this	or	are	less	disciplined.

Never	attend	a	review	session	without	reviewing	the	code	first	using	the	online	tools.	When	you	make
comments,	the	language	should	be	very	polite	for	the	reason	I	have	already	mentioned.	Finally,	the
mediator	of	the	meeting	should	be	able	to	separate	important	and	not	so	important	issues	and	to	stop
debate	on	bagatelle	things.	Somehow,	the	less	important	issues	are	more	sensitive.	I	personally	do	not
care	about	formatting	the	tab	size	if	it	is	two	or	four	spaces	and	if	the	file	should	contain	only	spaces
or	if	tab	characters	are	allowed,	but	people	tend	to	like	to	waste	time	on	such	issues.

The	most	important	issue	during	code	review	sessions	is	that	we	are	professional	and	it	may	happen
that	I	review	and	comment	your	code	today,	but	tomorrow,	it	will	be	just	the	opposite,	and	we	work
together	and	we	have	to	work	together	as	a	team.

Knowledge	base
Knowledge	base	was	a	buzzword	a	few	years	ago.	Few	companies	were	evangelizing	the	idea	of	wiki
technology	and	nobody	was	using	it.	Today,	the	landscape	of	knowledge	base	is	totally	different.	All
enterprises	use	some	kind	of	wiki	implementation	that	is	there	to	share	knowledge.	They	mostly	use
Confluence,	but	there	are	also	other	wiki	solutions	available,	commercial	and	free	as	well.

Knowledge	bases	store	information	that	you,	as	a	developer,	would	write	down	in	a	paper	notebook	for
your	later	reference,	for	example,	the	IP	address	of	the	development	server,	directories	where	to	install
the	JAR	files,	what	commands	to	use,	what	libraries	you	have	collected,	and	why	you	use	them.	The
major	difference	is	that	you	write	it	in	a	formatted	way	into	a	wiki	and	it	is	available	immediately	for
other	developers.	It	is	a	bit	of	a	burden	on	the	developer	to	write	these	pages,	and	it	needs	some	self-
discipline	first.	Sticking	to	the	example	of	the	IP	address	of	the	development	server	and	the	install
directories,	you	have	to	write	not	only	the	IP	address	of	the	server	but	also	some	text	explaining	what	the
information	is,	because	the	others	may	not	understand	it	otherwise.	It	is	also	a	bit	of	work	to	place	the
page	with	the	information	in	the	wiki	system	with	a	good	name,	linking	it	to	other	pages,	or	finding	the
appropriate	position	of	the	page	in	the	tree	of	pages.	If	you	were	using	the	paper	notebook,	you	could	just
write	down	the	IP	address	and	the	directories	on	the	first	free	page	of	the	book	and	you	would	just
remember	all	others.

The	wiki	approach	will	pay	back	when	coworkers	do	not	need	to	find	the	information	themselves;	you	can
find	the	information	in	an	easier	way	because	other	coworkers	have	also	recorded	their	findings	in	the
knowledge	base	and,	last	but	not	least,	a	few	months	later,	you	find	the	information	you	recorded	yourself.
In	the	case	of	a	paper	notebook,	you	would	turn	the	pages	to	find	the	IP	address	and	you	may	or	may	not
remember	which	one	is	the	primary	and	which	is	the	secondary	server.	You	may	even	forget	by	then	that
there	are	two	servers	(or	was	it	a	double	cluster?).

To	have	a	long	list	of	available	wiki	software,	visit	https://en.wikipedia.org/wiki/Comparison_of_wiki_software.

https://en.wikipedia.org/wiki/Comparison_of_wiki_software

Issue	tracking
Issue	tracking	systems	keep	track	of	issues,	bugs,	and	other	tasks.	The	first	issue	tracking	systems	were
created	to	maintain	the	list	of	bugs	and	also	the	state	of	the	bug	fixing	process	to	ensure	that	a	bug,
identified	and	recorded,	will	not	get	forgotten.	Later,	these	software	solutions	developed	and	became	full-
fledged	issue	trackers	and	are	unavoidable	project	management	tools	in	every	enterprise.

The	most	widely	used	issue	tracking	application	used	in	many	enterprises	is	Jira,	but	on	the	https://en.wikipedia
.org/wiki/Comparison_of_issue-tracking_systems	page,	you	can	find	many	other	applications	listed.

The	most	important	feature	of	an	issue	tracker	application	is	that	it	has	to	record	an	issue	in	detail	in	an
editable	manner.	It	has	to	record	the	person	who	recorded	the	issue	in	case	more	information	is	needed
during	issue	handling.	The	source	of	the	issue	is	important.	Similarly,	issues	have	to	be	assigned	to	some
responsible	person,	who	is	accountable	for	the	progress	of	issue	handling.

Modern	issue	tracking	systems	provide	complex	access	control,	workflow	management,	relation
management,	and	integration	with	other	systems.

Access	control	will	only	allow	the	person	who	has	something	to	do	with	an	issue	access	to	it,	so	others
cannot	alter	the	state	of	an	issue	or	even	read	the	information	attached	to	it.

An	issue	may	go	through	different	workflow	steps	depending	on	the	type	of	issue:	a	bug	may	be	reported
or	reproduced,	a	root	cause	analyzed,	a	fix	developed	or	tested,	a	patch	created,	a	fix	merged	with	the
next	release	version	or	published	in	the	release.	This	is	a	simple	workflow	with	a	few	states.

Relation	management	allows	setting	different	relations	between	issues	and	allowing	the	user	to	navigate
from	issue	to	issue	along	these	relations.	For	example,	a	client	reports	a	bug,	and	the	bug	is	identified	as
being	the	same	as	another	already	fixed.	In	such	a	case,	it	would	be	insane	to	go	through	the	original
workflow	and	creating	a	new	patch	for	the	same	bug.	Instead,	the	issue	gets	a	relation	pointing	to	the
original	issue	and	sets	the	state	to	be	closed.

Integration	with	other	systems	is	also	useful	to	keep	a	consistent	development	state.	Version	control	may
require	that,	for	every	commit,	the	commit	message	contains	a	reference	to	the	issue	that	describes	the
requirement,	bug,	or	change	that	the	code	modification	supports.	Issues	may	be	linked	to	knowledge	base
articles	or	agile	project	management	software	tools	using	web	links.

https://en.wikipedia.org/wiki/Comparison_of_issue-tracking_systems

Testing
We	have	already	discussed	testing	when	we	talked	about	unit	testing.	Unit	testing	is	extremely	important	in
agile	development	and	it	helps	keep	the	code	clean	and	reduce	the	number	of	errors.	But	this	is	not	the
only	type	of	testing	that	you	will	see	in	enterprise	development.

Types	of	tests
Testing	is	performed	for	many	reasons	but	there	are	at	least	two	reasons	that	we	have	to	mention.	One	is
to	hunt	the	bugs	and	create	error-free	code	as	much	as	possible.	The	other	is	to	prove	that	the	application
is	usable	and	can	be	utilized	for	the	purpose	it	was	meant	for.	It	is	important	from	the	enterprise	point	of
view	and	considers	a	lot	of	aspects	that	unit	test	does	not.	While	unit	test	focuses	on	one	unit	and,	thus,	is
an	extremely	good	tool	to	point	out	where	the	error	is,	it	is	totally	unusable	when	it	comes	to	discovering
bugs	that	come	from	erroneous	interfaces	between	modules.	The	unit	tests	mock	external	modules	and,
thus,	test	that	the	unit	works	as	expected.	However,	if	there	is	an	error	in	this	expectation	and	the	other
modules	do	not	behave	in	the	same	way	as	the	unit	test	mock,	the	error	will	not	be	discovered.

To	discover	the	errors	on	this	level,	which	is	the	next	level	above	unit	test,	we	have	to	use	integration
tests.	During	integration	tests,	we	test	how	individual	units	can	work	together.	When	we	program	in	Java,
the	units	are	usually	classes;	thus,	the	integration	test	will	test	how	the	different	classes	work	together.
While	there	is	a	consensus	(more	or	less)	about	what	a	unit	test	is	in	Java	programming,	this	is	less	so	in
the	case	of	integration	tests.

In	this	regard,	the	external	dependencies,	such	as	other	modules	reachable	via	the	network	or	database
layers	may	be	mocked,	or	may	be	set	up	using	some	test	instance	during	integration	testing.	The	argument
is	not	about	whether	these	parts	should	be	mocked	or	not,	only	the	terminology.	Mocking	some
components	such	as	the	database	has	advantages	as	well	as	drawbacks.	As	in	the	case	of	any	mock,	the
drawback	is	the	cost	of	setting	up	the	mock	as	well	as	the	fact	that	the	mock	behaves	differently	from	the
real	system.	Such	a	difference	may	result	in	some	bugs	still	remaining	in	the	system	and	lurking	there	until
a	later	case	of	testing	or,	God	forgive,	production	is	used.

Integration	tests	are	usually	automated	in	a	way	similar	to	unit	tests.	However,	they	usually	require	more
time	to	execute.	This	is	the	reason	why	these	tests	are	not	executed	at	each	source	code	change.	Usually,	a
separate	maven	or	Gradle	project	is	created	that	has	a	dependency	on	the	application	JAR	and	contains
only	integration	test	code.	This	project	is	usually	compiled	and	executed	daily.

It	may	happen	that	daily	execution	is	not	frequent	enough	to	discover	the	integration	issues	in	a	timely
manner,	but	a	more	frequent	execution	of	the	integration	tests	is	still	not	feasible.	In	such	a	case,	a	subset
of	the	integration	test	cases	is	executed	more	frequently,	for	example,	every	hour.	This	type	of	testing	is
called	smoke	testing.
The	following	diagram	shows	the	position	of	the	different	testing	types:

When	the	application	is	tested	in	a	fully	set	up	environment,	the	testing	is	called	system	testing.	Such
testing	should	discover	all	the	integration	bugs	that	may	have	been	lurking	and	covered	during	the
previous	testing	phases.	The	different	type	of	system	tests	can	also	discover	non-functional	issues.	Both
functional	testing	and	performance	testing	are	done	on	this	level.

Functional	testing	checks	the	functions	of	the	application.	It	ensures	that	the	application	functions	as
expected	or	at	least	has	functions	that	are	worth	installing	in	the	production	environment	and	can	lead	to
cost	saving	or	profit	increase.	In	real	life,	programs	almost	never	deliver	all	the	functions	that	were
envisioned	in	any	requirement	documentation,	but	if	the	program	is	usable	in	a	sane	manner,	it	is	worth
installing	it,	assuming	that	there	are	no	security	issues	or	other	issues.

In	case	there	are	a	lot	of	functions	in	the	application,	functional	testing	may	cost	a	lot.	In	such	a	case,	some
companies	perform	a	sanity	test.	This	test	does	not	check	the	full	functionality	of	the	application,	only	a
subset	to	ensure	that	the	application	reaches	a	minimal	quality	requirement	and	it	is	worth	spending	the
money	on	the	functional	testing.

There	may	be	some	test	cases	that	are	not	envisioned	when	the	application	was	designed	and	thus	there	is
no	test	case	in	the	functional	test	plan.	It	may	be	some	weird	user	action,	a	user	pressing	a	button	on	the
screen	when	nobody	thought	it	was	possible.	Users,	even	if	benevolent,	happen	to	press	or	touch	anything
and	enter	all	possible	unrealistic	inputs	into	a	system.	Ad-hoc	testing	tries	to	amend	this	shortage.	A	tester
during	ad-hoc	testing	tries	all	the	possible	ways	of	use	of	the	application	that	he	or	she	can	imagine	at	the
moment	the	test	is	executed.

This	is	also	related	to	security	testing,	also	called	penetration	testing	when	the	vulnerabilities	of	the
system	are	discovered.	These	are	special	types	of	tests	that	are	performed	by	professionals	who	have
their	core	area	of	expertise	in	security.	Developers	usually	do	not	have	that	expertise,	but	at	least,	the
developers	should	be	able	to	discuss	issues	that	are	discovered	during	such	a	test	and	amend	the	program
to	fix	the	security	holes.	This	is	extremely	important	in	the	case	of	Internet	applications.

Performance	testing	checks	that	the	application,	in	a	reasonable	environment,	can	handle	the	expected
load	that	the	user	puts	on	the	system.	A	load	test	emulates	the	users	who	attack	the	system	and	measures
the	response	times.	If	the	response	time	is	appropriate,	that	is,	lower	than	the	required	maximum	under	the
maximum	load,	then	the	test	passes;	otherwise,	it	fails.	If	a	load	test	fails,	it	is	not	necessarily	a	software
error.	It	may	so	happen	that	the	application	needs	more	or	faster	hardware.	Load	tests	usually	test	the
functionality	of	the	application	in	only	a	limited	way	and	only	test	use	scenarios	that	pose	read	load	on	the
application.

Many	years	ago,	we	were	testing	a	web	application	that	had	to	have	a	response	time	of	2
seconds.	The	load	test	was	very	simple:	issue	GET	requests	so	that	there	are	a	maximum	of
10,000	requests	active	at	the	same	time.	We	started	with	10	clients,	and	then	a	script	was
increasing	the	concurrent	users	to	100,	then	1,000,	and	then	stepping	up	by	thousand
every	minute.	This	way,	the	load	test	was	12	minutes	long.	The	script	printed	the	average
response	time,	and	we	were	ready	to	execute	the	load	test	at	4:40	pm	on	a	Friday.
The	average	response	time	started	from	a	few	milliseconds	and	went	up	to	1.9	seconds	as
the	load	was	increased	to	5,000	concurrent	users,	and	from	there,	it	was	descending	down
to	1	second	as	the	load	was	increased	to	10,000	users.	You	can	understand	the	attitude	of
the	people	on	a	Friday	afternoon,	being	happy	that	we	met	the	requirements.	My
colleagues	left	for	the	weekend	happily.	I	remained	testing	a	bit	more	because	I	was
bothered	by	the	phenomenon	that	the	response	time	decreases	as	we	increase	the	load
above	5,000.	First,	I	reproduced	the	measurement	and	then	started	looking	at	the	log
files.	At	7	pm,	I	already	knew	what	the	reason	was.
When	the	load	went	above	5,000,	the	connections	the	Apache	server	was	managing
started	to	exhaust	and	the	web	server	started	to	send	back	500	internal	error	codes.	That
is	something	that	Apache	can	very	effectively	do.	It	is	very	fast	in	telling	you	that	you
cannot	be	served.	When	the	load	was	around	10,000	concurrent	users,	70%	of	the
responses	already	had	500	errors.	The	average	went	down,	but	the	users	were	actually
not	served.	I	reconfigured	the	Apache	server	so	that	it	could	serve	all	the	requests	and
forward	each	to	our	application	just	to	learn	that	the	response	time	of	our	application
was	around	10	seconds	at	the	maximum	load.	Around	10	pm,	when	my	wife	was	calling	my
mobile	the	third	time,	I	also	knew	how	large	a	memory	I	should	set	in	the	Tomcat	startup
file	in	the	options	for	the	JVM	to	get	the	desired	2-second	response	time	in	case	of	10,000
concurrent	users.

Stress	test	is	also	a	type	of	performance	test	that	you	may	also	face.	This	type	of	test	increases	the	load	on
the	system	until	it	cannot	handle	the	load.	That	test	should	ensure	that	the	system	can	recover	from	the
extreme	load	automatically	or	manually	but,	in	no	case,	will	do	something	that	it	shouldn't	at	all.	For
example,	a	baking	system	should	not	ever	commit	an	unconfirmed	transaction,	no	matter	how	big	the	load
there	is.	If	the	load	is	too	high,	then	it	should	leave	the	dough	raw	but	should	not	bake	extra	bread.

The	most	important	test	at	the	top	of	the	hierarchy	is	the	user	acceptance	test.	This	is	usually	an	official
test	that	the	customer,	who	buys	the	software,	executes	and	in	the	case	of	successful	execution,	pays	the
price	for	the	software.	Thus,	this	is	extremely	important	in	professional	development.

Test	automation
Tests	can	be	automated.	It	is	not	a	question	of	whether	it	is	possible	to	automatize	a	test,	only	whether	it	is
worth	doing	so.	Unit	tests	and	integration	tests	are	automated,	and	as	time	advances,	more	and	more	tests
get	automated	as	we	move	along	to	higher	steps	towards	the	user	acceptance	test	(UAT).	UAT	is	not
likely	to	be	automated.	After	all,	this	test	checks	the	integration	between	the	application	and	the	user.
While	the	user,	as	an	external	module,	can	be	mocked	using	automation	in	lower	levels,	we	should	reach
the	level	when	the	integration	test	happens	without	mocks.

There	are	many	tools	that	help	the	automation	of	tests.	The	blocker	for	test	automation,	these	days,	is	the
cost	of	the	tools	to	do	so,	the	cost	of	learning	and	developing	the	tests,	and	the	fear	that	the	automated	tests
are	not	discovering	some	of	the	errors.

It	is	true	that	it	is	easier	to	do	something	wrong	with	a	program	than	without.	This	is	so	true	for	almost
anything	not	only	for	testing.	And	still	we	do	use	programs;	why	else	would	you	read	this	book?	Some	of
the	errors	may	not	be	discovered	during	automated	functional	testing,	which	would	otherwise	have	been
discovered	using	manual	tests.	At	the	same	time,	when	the	same	test	is	executed	the	hundredth	time	by	the
same	developer,	it	is	extremely	easy	to	skip	an	error.	An	automated	test	will	not	ever	do	that.	And	most
importantly,	the	cost	of	the	automated	test	is	not	100	times	the	cost	of	running	it	once.

We	have	used	test	automation	tools	in	this	book.	SoapUI	is	a	tool	that	helps	you	create	tests	that	can	be
executed	automatically.	Other	testing	tools	that	are	worth	looking	at	are	Cucumber,	Concordion,
Fintnesse,	and	JBehave.	There	is	a	good	comparison	of	tools	at	https://www.qatestingtools.com/.

https://www.qatestingtools.com/

Black	box	versus	white	box
You	may	have	heard	many	times	that	a	test	is	a	black	box	test.	This	simply	means	that	the	test	does	not
know	anything	about	how	the	system	under	test	(SUT)	is	implemented.	The	test	relies	only	on	the	interface
of	the	SUT	that	is	exported	for	the	outside	world.	A	white	box	test,	on	the	other	end	of	the	scale,	tests	the
internal	working	of	the	SUT	and	very	much	relies	on	the	implementation:	

Both	the	approaches	have	advantages	and	disadvantages.	We	should	use	one,	or	the	mixture	of	the	two
approaches,	a	way	that	fits	the	purpose	of	the	actual	testing	needs	the	most.	A	black	box	test	not	relying	on
the	implementation	does	not	need	to	change	if	the	implementation	changes.	If	the	interface	of	the	tested
system	changes,	then	the	test	should	also	be	changed.	A	white	box	test	may	need	changes	if	the
implementation	changes,	even	if	the	interface	remains	the	same.	The	advantage	of	the	white	box	test	is
that,	many	times,	it	is	easier	to	create	such	a	test	and	the	testing	can	be	more	effective.

To	get	the	best	of	both	worlds,	systems	are	designed	to	be	testable.	Be	careful,	though.	It	means	many
times	that	the	functionality	internal	to	the	tested	system	is	propagated	to	the	interface.	That	way,	the	test
will	use	only	the	interface	and,	thus,	can	be	declared	to	be	a	black	box,	but	it	does	not	help.	If	something
changes	in	the	internal	working	of	the	tested	system,	the	test	has	to	follow	it.	The	only	difference	is	that
you	may	call	it	a	black	box	test	if	the	interface	also	changes.	That	does	not	save	any	work.	Rather,	it
increases	it:	we	have	to	check	all	the	modules	that	rely	on	the	interface	if	they	also	need	any	change.

I	do	not	say	that	we	should	not	pay	attention	to	creating	testable	systems.	Many	times	making	a	system
testable	results	in	cleaner	and	simpler	code.	If	the	code,	however,	gets	messier	and	much	longer	because
we	want	to	make	it	testable,	then	we	are	probably	not	going	in	the	right	way.

Selecting	libraries
Programming	for	the	enterprise	or	even	programming	a	moderately	sized	project	cannot	be	done	without
the	use	of	external	libraries.	In	the	Java	world,	most	of	the	libraries	that	we	use	are	open	source	and,
more	or	less,	free	to	use.	When	we	buy	a	library	that	is	sold	for	money,	there	is	usually	a	standard	process
enforced	by	the	purchasing	department.	In	such	a	case,	there	is	a	written	policy	about	how	to	select	the
vendor	and	the	library.	In	the	case	of	"free"	software,	they	do	not	usually	care,	though	they	should.	In	such
a	case,	the	selection	process	mainly	lies	with	the	IT	department	and	it	is	therefore	important	to	know	the
major	points	to	be	considered	before	selecting	a	library	even	if	for	free.

In	the	previous	paragraph,	I	put	the	word	free	between	quotes.	That	is	because	there	is	no	software,	which
is	free.	There	is	no	such	thing	as	a	free	lunch,	as	they	say.	You	have	heard	this	many	times	but	it	may	not
be	obvious	in	the	case	of	an	open	source	code	library	or	framework	you	are	going	to	select.	The	major
selection	factor	for	any	purchase	or	implementation	is	the	cost,	the	price.	If	the	software	is	free,	it	means
that	you	do	not	need	to	pay	an	upfront	fee	for	the	software.	However,	there	is	a	cost	in	integrating	it	and
using	it.	Support	costs	money.	Somebody	may	say	that	the	support	is	community	support	and	also
available	free	of	charge.	The	thing	is	that	the	time	you	spend	hunting	for	a	workaround	that	helps	you	to
get	over	a	bug	is	still	money.	It	is	your	time,	or	in	case	you	are	a	manager,	it	is	the	time	of	the	professional
in	your	department	whose	time	you	pay	for,	or,	as	a	matter	of	fact,	it	can	be	an	external	contractor	who
will	hand	you	a	huge	bill	in	case	you	do	not	have	the	expertise	in-house	to	solve	the	issue.

Since	free	software	does	not	have	a	price	tag	attached,	we	have	to	look	at	the	other	factors	that	are
important	in	the	selection	process.	At	the	end	of	the	day,	they	all	will	affect	the	cost	in	some	way.
Sometimes,	the	way	a	criterion	alters	the	cost	is	not	obvious	or	easily	calculable.	However,	for	each	one,
we	can	set	no-go	levels	that	are	based	on	technology	decisions,	and	we	can	compare	libraries	for	being
better	or	worse	along	with	each	of	the	criteria.

	

Fit	for	the	purpose
	

Perhaps,	this	is	the	most	important	factor.	Other	factors	may	be	argued	about	in	terms	of	the	scale	of
importance,	but	if	a	library	is	not	appropriate	for	the	purpose	we	want	to	use,	then	this	is	certainly	not
something	to	select,	no	matter	what.	It	may	be	obvious	in	many	cases,	but	you	may	be	surprised	how	many
times	I	have	seen	a	product	selected	because	it	was	the	favorite	of	a	person	in	some	other	project	and	the
library	was	forced	for	use	in	the	new	project	even	though	the	requirements	were	totally	different.

	

	

License
The	license	is	an	important	question	as	not	all	free	software	is	free	for	all	uses.	Some	of	the	licenses
allow	free	use	for	hobby	projects	and	education	but	require	you	to	purchase	the	software	for	professional,
profit-oriented	use.

The	most	widely	used	licenses	and	their	explanation	(and	the	whole	text	of	the	license)	is	available	on	the
web	page	of	the	Open	Source	Initiative	(https://opensource.org/licenses).	It	lists	nine	different	licenses,	and	to
make	the	situation	a	bit	more	complex,	these	licenses	have	versions.

One	of	the	oldest	licenses	is	the	General	Public	License	(GPL)	standing	for	GNU.	This	license	contains
the	following	sentences:

For	example,	if	you	distribute	copies	of	such	a	program,	whether	gratis	or	for	a	fee,	you	must	pass	on
to	the	recipients	the	same	freedoms	that	you	received.	You	must	make	sure	that	they,	too,	receive	or	can
get	the	source	code.

If	you	create	software	for	a	for-profit	enterprise	and	the	company	intends	to	sell	software,	you	probably
cannot	use	any	line	of	code	that	is	from	a	GPL-licensed	software.	It	would	imply	that	you	are	required	to
pass	on	your	own	source	code,	which	may	not	be	the	best	sales	strategy.	Apache	license,	on	the	other
hand,	may	be	okay	for	your	company.	This	is	something	that	the	lawyers	should	decide.

Even	though	this	is	the	lawyers'	work,	there	is	one	important	point	that	we	developers	must	be	aware	of
and	pay	close	attention	to.	Sometimes,	the	libraries	contain	code	from	other	projects	and	their	license,	as
advertised,	may	not	be	the	real	one.	A	library	may	be	distributed	under	the	Apache	license	but	contains
code	that	is	GPL-licensed.	This	is	obviously	a	violation	of	the	GPL	license,	which	was	committed	by
some	open	source	developers.	Why	would	you	care?	Here	comes	the	explanation	via	an	imagined
situation.

You	develop	software	for	an	enterprise.	Let's	say	that	this	company	is	one	of	the	largest	car	manufacturers
of	the	world,	or	it	is	one	of	the	largest	banks,	pharma,	whatever.	The	owner	of	the	GPL	software	seeks
remedies	for	the	misuse	of	her	software.	Will	she	sue	the	software	developer,	John	Doe,	who	has	a	total
wealth	of	200K,	or	your	company,	claiming	that	you	did	not	duly	check	the	license	of	the	code?	She
certainly	will	not	dig	for	gold	where	there	is	none.	Suing	the	company	you	work	for	may	not	be
successful,	but	certainly	not	a	good	process	you	or	anyone	at	the	company	wants.

What	can	we	as	software	professionals	do?

We	have	to	use	libraries	that	are	well	known,	used	widely.	We	can	check	the	source	code	of	the	library	to
see	whether	there	is	some	copied	code.	Some	package	names	may	present	some	clue.	You	can	Google
some	part	of	the	source	code	to	find	matches.	Last	but	not	least,	the	company	can	subscribe	to	services
that	provide	similar	research	for	the	libraries.

https://opensource.org/licenses

	

Documentation
	

Documentation	is	an	important	aspect.	If	the	documentation	is	not	appropriate,	it	will	be	hard	to	learn	how
to	use	the	library.	Some	of	the	team	members	may	have	already	known	the	library,	but,	again,	this	may	not
be	the	case	for	later	team	members.	We	should	consider	our	colleagues,	who	are	expected	to	be	average
programmers,	and	they	will	have	to	learn	the	use	of	the	library.	Thus	documentation	is	important.

When	we	speak	about	documentation,	we	should	not	only	think	about	the	JavaDoc	reference
documentation	but	also	tutorials	and	books	if	they	are	available.

	

	

Project	alive
It	is	important	not	to	select	a	library	for	use	that	is	not	alive.	Have	a	look	at	the	roadmap	of	the	library,	the
last	time	a	release	was	shipped,	and	the	frequency	of	the	commits.	If	the	library	is	not	alive,	we	should
consider	not	using	it.	Libraries	work	in	an	environment	and	the	environment	changes.	The	library	may
connect	to	a	database.	The	new	version	of	the	database	may	provide	new	features	that	give	us	better
performance	only	if	the	library	is	modified	to	accommodate	these	new	features.	The	library	communicates
over	HTTP;	will	it	support	the	new	2.0	version	of	the	protocol?	If	nothing	else,	the	version	of	the	Java
environment	will	change	over	the	years	and	the	library	we	use	should	sooner	or	later	follow	it	to	leverage
the	new	features.

There	is	no	guarantee	that	an	alive	library	will	always	stay	alive.	However,	a	library	that	is	already	dead
will	certainly	not	resurrect.

Even	if	the	project	is	alive	at	the	moment,	there	are	some	points	that	may	give	some	hints	about	the	future
of	the	library.	If	the	company	developing	it	is	well-established	and	financially	stable,	and	the	library	is
developed	with	a	reasonable	business	model,	then	there	is	a	low	risk	that	the	project	dies.	If	there	are	a
lot	of	companies	who	use	the	library,	then	it	is	likely	that	the	project	will	stay	alive	even	if	the	original
team	stops	working	on	it	or	the	original	financing	structure	changes.	However,	these	are	only	small	factors
and	not	well-established	facts.	There	is	no	guarantee,	and	telling	the	future	is	more	an	art	than	a	science.

Maturity
Maturity	is	similar	to	the	previous	criterion.	A	project	may	very	well	be	alive	just	starting	up,	but	if	it	is
in	its	infancy,	we	better	not	use	the	library	for	a	large	project.	When	a	project	is	in	its	early	phase,	a	lot	of
bugs	can	be	in	the	code,	the	API	may	change	radically,	and	presumably,	there	may	only	be	a	small	number
of	companies	relying	on	the	code.	This	also	means	that	the	community	support	is	lower.

Of	course,	if	all	the	projects	select	only	mature	open	source	code,	then	no	open	source	project	would	ever
get	to	the	mature	state.	We	should	assess	the	importance	of	the	project.	Is	the	project	business-critical?
Will	the	project	become	business-critical?

If	the	project	is	not	business-critical,	the	company	may	afford	to	invent	a	fresh	library	that	is	not	that
mature.	It	may	be	reasonable	if	there	are	no	mature	libraries	for	the	purpose	because	the	technology	you
are	going	to	use	is	relatively	new.	In	such	a	case,	the	project	in	the	company	is	probably	also	new	and	not
business-critical	yet.	It	will	be	business-critical,	we	hope,	after	some	time,	but	by	that	time,	the	library
will	be	mature,	or	may	just	die	and	we	can	select	a	competing	solution	before	the	project	becomes	too
expensive	to	switch.

Judging	the	maturity	of	a	library	is	always	difficult	and	has	to	be	aligned	with	the	maturity	and	importance
of	the	project	that	we	want	to	use	the	library	for.

	

Number	of	users
	

If	the	library	is	alive	and	mature	but	there	are	not	many	users,	then	something	is	smelly.	Why	don't	people
use	the	library	if	it	is	good?	If	the	number	of	users	for	a	library	or	framework	is	low	and	there	are	no
large	corporations	among	the	users,	then	it	is	probably	not	a	good	one.	Nobody	using	it	may	signal	that	our
assessment	of	the	other	criteria	may	not	be	appropriate.

Also	note	that	if	there	are	only	a	few	users	of	the	library,	then	the	knowledge	in	the	community	is	also
scarce	and	we	may	not	be	able	to	get	community	support.

	

	

	

The	"I	like	it"	factor
	

Last	but	not	least,	the	I	like	it	factor	is	extremely	important.	The	question	is	not	whether	you	like	the
library	but	rather	how	much	the	developers	like	it.	Developers	will	like	a	library	that	is	easy	to	use	and
fun	to	work	with,	and	this	will	result	in	low	cost.	If	the	library	is	hard	to	use	and	developers	do	not	like	it,
then	they	will	not	learn	to	use	it	to	the	level	of	profession	required	for	good	quality,	only	to	the	level	that
is	just	needed.	The	end	result	will	be	suboptimal	software.

	

	

Continuous	integration	and	deployment
Continuous	integration	means	that	whenever	a	new	version	is	pushed	to	the	source	code	repository,	the
continuous	integration	server	kicks	in,	pulls	the	code	to	its	disk,	and	starts	the	build.	It	compiles	the	code
first,	then	runs	the	unit	tests,	fires	the	static	code	analysis	tools,	and,	if	all	goes	right,	it	packages	a
snapshot	release	and	deploys	it	on	a	development	server.

CI	servers	have	web	interfaces	that	can	be	used	to	create	a	release.	In	such	a	case,	the	deployment	can
even	go	to	the	test	servers	or	even	to	production	depending	on	local	business	needs	and	on	the	policy	that
was	created	accordingly.

Automating	the	build	and	deployment	process	has	the	same	advantages	as	any	other	automation:	repeated
tasks	can	be	performed	without	manual	intervention,	which	is	tedious,	boring,	and,	thus,	error-prone	if
done	by	a	human.	The	outstanding	advantage	is	that	if	there	is	some	error	in	the	source	code	that	can	be
discovered	by	the	automated	build	process,	it	will	be	discovered.	Novice	developers	say	that	it	is
cheaper	and	easier	to	build	the	code	locally,	which	the	developers	do	anyway,	and	then	push	the	code	to
the	server	if	the	build	process	is	already	checked.	It	is	partly	true.	Developers	have	to	check	that	the	code
is	of	good	quality	and	builds	well,	before	sending	it	to	the	central	repo.	However,	this	cannot	always	be
achieved.	Some	errors	may	not	manifest	on	local	environments.

It	may	so	happen	that	one	developer	accidentally	uses	a	newer	version	of	Java	than	the	one	supported	and
uses	a	new	feature	of	the	new	version.	Enterprises	do	not	generally	use	the	latest	technology.	They	tend	to
use	versions	that	are	proven,	have	many	users,	and	are	mature.	This	year,	in	2017,	when	Java	9	is	going	to
be	released	in	July,	huge	enterprises	still	use	Java	1.6	and	1.7.	Since	Java	9	has	many	new	features	that
are	not	trivial	to	implement,	I	expect	that	the	adoption	of	the	technology	may	take	even	longer	than	the
adoption	of	Java	1.8,	which	gave	us	functional	programming	and	lambda.

It	may	also	happen	that	a	new	library	is	added	to	the	dependencies	of	the	build	and	the	developer	who
added	it	to	the	build	file	(pom.xml,	or	build.gradle)	could	use	it	without	any	problem	on	her	local	machine.	It
does	not	mean	that	the	library	is	officially	added	to	the	project,	and	it	may	not	be	available	in	the	central
code	repository	(Artifactory,	Nexus,	or	other	implementations	of	the	code	repository).	The	library	may
have	only	been	on	the	local	repository	of	the	developer,	and	she	may	have	assumed	that	since	the	code
compiles,	the	build	is	OK.

Some	large	organizations	use	different	code	repositories	for	different	projects.	The
libraries	get	into	these	repositories	following	meticulous	examination	and	decisions.
Some	libraries	may	get	there,	while	others	may	not.	The	reason	to	have	different
repositories	could	be	numerous.	Some	project	is	developed	for	one	customer	who	has	a
different	policy	about	an	open	source	project	than	the	other.	If	the	enterprise	develops
code	for	itself,	it	may	so	happen	that	some	library	is	phased	out	or	not	supported
anymore,	and	can	only	be	used	for	projects	that	are	old.	A	maintenance	release	may	not
need	to	replace	a	library,	but	new	projects	may	be	not	be	allowed	to	use	a	dying	software
library.

The	CI	server	can	run	on	a	single	machine	or	it	can	run	on	several	machines.	In	case	it	serves	many

projects,	it	may	be	set	up	as	a	central	server	with	many	agents	running	on	different	machines.	When	some
build	process	has	to	be	started,	the	central	server	delegates	this	task	to	one	of	the	agents.	The	agents	may
have	different	loads,	running	several	different	build	processes,	and	may	have	different	hardware
configuration.	The	build	process	may	have	requirements	regarding	the	speed	of	the	processor	or	about	the
available	memory.	Some	agent	may	run	simpler	builds	for	smaller	projects	but	would	fail	to	execute	the
build	of	a	large	project	or	of	some	small	project	that	still	has	a	huge	memory	requirement	to	execute	some
tests.

When	a	build	fails,	the	build	server	sends	out	e-mails	to	the	developers,	and	the	person	who	sent	the	last
update	to	the	code	repository	is	obligated	to	fix	the	bug	without	delay.	This	encourages	the	developers	to
commit	frequently.	The	smaller	the	change,	the	fewer	chances	there	are	of	a	build	problem.	The	build
server	web	interface	can	be	used	to	see	the	actual	state	of	the	projects,	which	project	is	failing	to	build,
and	which	is	just	fine.	If	a	build	fails,	there	is	a	red	sign	in	the	line	of	the	build,	and	if	the	build	is	OK,	the
sign	is	green.

Many	times,	these	reports	are	continually	displayed	on	some	old	machine	using	a	huge	display	so	that
every	developer	or	just	anybody	who	enters	the	room	can	see	the	actual	state	of	the	builds.	There	is	even
special	hardware	that	you	can	buy	that	has	red,	yellow,	and	green	lamps	to	follow	the	state	of	the	build
and	ring	a	bell	when	the	build	fails.

Release	management
Developing	software	means	a	continuously	changing	code	base.	Not	every	version	of	the	software	is
supposed	to	be	installed	in	production.	Most	of	the	versions	are	pushed	to	the	repository	on	a	branch	half
complete.	Some	versions	are	meant	only	for	testing	and	a	few	are	meant	to	be	installed	in	production	even
if	only	some	of	those	will	finally	get	to	production.

Almost	all	the	time,	the	releases	follow	the	semantic	versioning	that	we	discussed	in	an	earlier	section.
The	versions	that	are	meant	only	to	be	tested	usually	have	the	-SNAPSHOT	modifier	at	the	end	of	the	version
number.	For	example,	the	1.3.12-SNAPSHOT	version	is	the	version	that	was	once	debugged,	and	is	going	to
become	the	1.3.12	version.	The	snapshot	versions	are	not	definite	versions.	They	are	the	code	as	it	is	by
then.	Because	a	snapshot	release	never	gets	installed	in	production,	it	is	not	needed	to	reproduce	a
snapshot	version	for	maintenance.	Thus,	the	snapshot	versions	are	not	increased	continually.	Sometimes,
they	may	be	changed,	but	that	is	a	rare	exception.

It	may	so	happen	that	we	work	on	a	bug	fix,	1.3.12-SNAPSHOT,	and	during	the	development,	we	change	so
much	code	that	we	decide	that	it	has	to	be	1.4.0	when	it	is	released,	and	we	rename	the	snapshot	as	1.4.0-
SNAPSHOT.	This	is	a	rare	case.	Many	times,	the	release	creation	creates	a	1.4.0	version	from	1.3.12-SNAPSHOT	as
the	decision	about	the	new	release	number	is	taken	by	the	time	the	release	is	created.

When	the	release	process	is	started,	usually	from	the	web	interface	of	the	CI	server,	the	developer
creating	the	release	has	to	specify	the	release	version.	This	is	usually	the	same	as	the	snapshot	version
without	the	-SNAPSHOT	postfix.	The	build	process	not	only	creates	the	build	in	this	case	but	also	tags	the
source	code	repository	version	it	was	using	and	loads	the	packaged	program	(artifact)	to	the	code
repository.	The	tag	can	be	used	later	to	access	the	exact	version	of	the	source	code	that	was	used	to	create
the	release.	If	there	is	a	bug	in	a	specific	version,	then	this	version	has	to	be	checked	out	on	a	developer
machine	to	reproduce	the	bug	and	find	the	root	cause.

If	the	build	of	a	release	fails,	it	can	be	rolled	back,	or	you	better	just	skip	that	release	number	and	note	it
as	a	failed	release	build.	An	existing	release	can	never	have	two	versions.	The	source	code	is	the	only
one	that	is	for	that	release	and	the	generated	code	has	to	be	exactly	the	one	in	any	storage.	Subsequent
compilation	of	the	same	source	may	result	in	slightly	different	code,	for	example,	if	a	different	version	of
Java	is	used	to	create	the	latter	one.	Even	in	such	a	case,	the	one	that	was	created	by	the	build	server	in
the	first	place	is	the	version	that	belongs	to	the	release.	When	a	bug	is	reproduced	and	the	code	is
recompiled	from	the	exact	same	source,	it	is	already	a	snapshot	version.	Multiple	releases	may	be
possible	from	the	same	source	version,	for	example,	compiled	with	Java	versions	from	1.5	to	1.8	and
version	9	but	a	single	release	always	belongs	to	the	exact	same	source	code.

If	a	release	that	was	supposed	to	be	a	release	version	fails	during	QA	checks,	then	a	new	release	has	to
be	created	and	the	failed	release	has	to	be	noted	as	such.	The	version	that	marketing	uses	to	name	the
different	versions	should	not	have	a	relation	to	the	technical	version	numbers	we	work	with.	Many	times,
it	is,	and	it	causes	much	headache.	If	you	realize	that	the	two	are	totally	different	things	and	one	does	not
have	to	do	anything	with	the	other,	life	gets	simpler.	Look	at	the	different	versioning	of	the	Windows
operating	system	or	Java.	As	marketing,	Java	used	1.0	then	1.1,	but	Java	1.2	was	advertised	as	Java	2	and
still	the	code	contained	1.2	(which	now	seven	major	releases	later	also	becomes	9	instead	of	1.9)

The	last	part	of	release	management	is	that	deployments	should	register	the	version	numbers.	The
company	has	to	know	which	release	is	installed	on	which	server,	and	of	which	client.

Code	repository
Code	repository	stores	the	libraries	and	helps	manage	the	dependencies	of	the	different	libraries.	In	the
old	times,	when	Java	projects	used	ANT	as	a	build	tool	and	without	the	later	added	Ivy	dependency
management,	the	libraries	that	were	needed	by	a	project	were	downloaded	to	the	source	code,	usually	to
the	lib	library.	If	a	library	needed	another	library,	then	those	were	also	downloaded	and	stored	manually,
and	this	continued	until	all	the	libraries	that	one	of	the	already	downloaded	libraries	needed	were	copied
to	the	source	code	tree.

This	was	a	lot	of	manual	work	and,	also,	the	library	code	was	stored	in	the	source	code	repository	in
many	copies.	A	compiled	library	is	not	source	code	and	has	nothing	to	do	in	the	source	code	repository.
Manual	work	that	can	be	automated	has	to	be	automated.	Not	because	developers	are	lazy	(yes,	we	are
and	we	have	to	be)	but	because	manual	work	is	error	prone	and,	thus,	expensive.

This	was	when	Apache	Ivy	was	invented	and	Maven,	following	ANT,	already	supported	repository
management	built	in.	They	all	stored	the	libraries	structured	in	directories	and	supported	metadata	that
described	the	dependencies	to	other	libraries.	Lucky	that	Gradle	did	not	invent	its	own	code	repository.
Instead,	it	supports	both	Maven	and	Ivy	repositories.

Using	the	repository,	the	build	tools	automatically	download	the	libraries	that	are	needed.	In	case	a
library	has	a	new	version,	then	the	developer	only	has	to	update	the	version	of	the	needed	library	in	the
build	configuration	and	all	tasks,	including	downloading	all	the	new	versions	of	the	other	libraries	that
are	needed	by	that	version,	are	done	automatically.

Walking	up	the	ladder
At	this	point,	you	have	got	a	lot	of	information	that	will	rocket	your	start	as	an	enterprise	Java	developer.
You	have	got	a	base	knowledge	that	you	can	build	on.	There	is	a	long	way	to	become	a	professional	Java
developer.	There	is	a	lot	of	documentation	to	read,	a	lot	of	code	to	scan	and	understand,	and	also	a	lot	of
code	to	write	till	you	can	claim	to	be	a	professional	Java	developer.	You	may	probably	face	many	years
of	continuous	education.	The	good	thing	is	that	even	after	that,	you	can	continue	your	journey	and	you	can
educate	yourself,	as	being	a	professional	Java	developer	is	rarely	a	job	people	retire	from.	No,	no!	Not
because	they	die	while	at	it!	Rather,	professional	software	developers	gaining	experience	start	to	code
less	and	less	and	support	the	development	process	in	different	ways,	which	leverages	more	of	their
experience.	They	can	become	business	analysts,	project	managers,	test	engineers,	subject-matter	experts,
architects,	scrum	masters,	automation	engineers,	and	so	on.	Is	it	a	familiar	list?	Yes,	these	are	the	people
you	will	work	with	as	a	developer.	Many	of	them	may	have	started	as	a	developer	themselves.
The	following	diagram	shows	the	relative	position	of	these	roles:

Let's	take	a	bit	more	detailed	look	into	what	these	roles	perform	in	enterprise	development:

Business	analysts	work	with	the	client	and	create	the	documents,	specifications,	use	cases,	and	user
stories	needed	by	the	developers	to	develop	the	code.
Project	managers	administer	the	projects	and	help	the	team	in	getting	things	done	in	cooperation	with
other	teams,	caring	for	all	the	project	matters	that	developers	cannot	attend	to	or	would
unnecessarily	burn	their	time	that	they	should	have	devoted	to	coding.
Subject-matter	experts	are	more	advanced	in	knowing	the	business	needs,	so	it	is	a	bit	rare	for	a
developer	to	become	one,	but	in	case	the	industry	you	work	in	is	technology	oriented,	it	may	not	be
incredible	to	become	one.
Test	engineers	control	the	QA	process	and	understand	not	only	the	test	methodologies	and
requirements	of	testing	but	also	the	development	process	so	that	they	can	support	bug	fixes	and	not

only	identify	them,	which	would	be	poor.
Architects	work	with	BAs	and	design	a	high-level	structure	of	the	applications	and	code,	and
document	it	in	a	way	that	helps	the	developers	to	focus	on	the	actual	tasks	they	have	to	perform.
Architects	are	also	responsible	for	the	solution	to	use	technologies,	solutions,	and	structures	which
fit	the	purpose,	are	future	proof,	affordable,	and	so	on.
Scrum	mates	help	the	development	team	to	follow	the	agile	methodology	and	help	the	team	in
controlling	the	administration	and	resolving	problems.

There	are	many	ways	to	go	as	a	software	developer	and	I	only	listed	some	of	the	positions	that	you	can
find	in	an	enterprise	today.	As	technology	develops,	I	can	imagine	that	in	20	years	from	today,	software
developers	will	teach	and	curate	artificial	intelligence	systems	and	that	will	be	what	we	refer	to	as
programming	today.	Who	can	tell?

	

Summary
	

Going	in	this	direction	is	a	good	choice.	Being	a	Java	developer	and	becoming	a	professional	in	it	is	a
profession	that	will	pay	well	in	the	coming	10	to	20	years	for	sure	and	perhaps	even	later.	At	the	same
time,	I	personally	find	this	technology	fascinating	and	interesting,	and	after	more	than	10	years	of	Java
programming	and	more	than	35	years	of	programming,	I	still	learn	something	new	in	it	every	day.

In	this	book,	you	learned	the	basics	of	Java	programming.	From	time	to	time,	I	also	mentioned	issues,
suggested	directions,	and	warned	you	about	pitfalls	that	are	not	Java-specific.	However,	we	also	did	the
homework	of	learning	the	Java	language,	the	infrastructure,	the	libraries,	development	tools,	and
networking	in	Java.	You	also	learned	the	most	modern	approaches	that	came	only	with	Java	8	and	9,	such
as	functional	programming	in	Java,	streams,	and	reactive	programming.	If	you	know	all	that	I	have	written
in	this	book,	you	can	start	working	as	a	Java	developer.	What's	next?	Go,	and	find	your	treasure	in
programming	and	in	Java!

	

	

	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions

	Getting Started with Java 9
	Getting started with Java
	Installing Java
	Installation on Windows
	Installation on MAC OS X
	Installation on Linux
	Setting JAVA_HOME

	Executing jshell
	Looking at the byte code

	Packaging classes into a JAR file
	Managing the running Java application
	Using an IDE
	NetBeans
	Eclipse
	IntelliJ
	IDE services
	IDE screen structure
	Editing files
	Managing projects
	Build the code and run it
	Debugging Java

	Summary

	The First Real Java Program - Sorting Names
	Getting started with sorting
	Bubble sort

	Getting started with project structure and build tools
	Make
	Ant
	Installing Ant
	Using Ant

	Maven
	Installing Maven
	Using Maven

	Gradle
	Installing Gradle

	Setting up the project with Maven
	Coding the sort
	Understanding the algorithm and language constructs
	Blocks
	Variables
	Types
	Arrays
	Expressions
	Loops
	Conditional execution
	Final variables
	Classes
	Inner, nested, local, and anonymous classes
	Packages
	Methods
	Interfaces
	Argument passing
	Fields
	Modifiers
	Object initializers and constructors

	Compiling and running the program
	Summary

	Optimizing the Sort - Making Code Professional
	The general sorting program
	A brief overview of various sorting algorithms
	Quick sort

	Project structure and build tools
	Maven dependency management

	Code the sort
	Creating the interfaces
	Creating BubbleSort
	Amending the interfaces
	Architectural considerations

	Creating unit tests
	Adding JUnit as dependency
	Writing the BubbleSortTest class
	Good unit tests
	A good unit test is readable
	Unit tests are fast
	Unit tests are deterministic
	Assertions should be as simple as possible
	Unit tests are isolated
	Unit tests cover the code
	Refactor the test

	Collections with wrong elements
	Handling exceptions
	Generics
	Test Driven Development
	Implementing QuickSort
	The partitioning class
	Recursive sorting
	Non-recursive sorting
	Implementing the API class

	Creating modules
	Why modules are needed
	What is a Java module

	Summary

	Mastermind - Creating a Game
	The Game
	The model of the game
	Java collections
	Interface collection
	Set
	Hash functions
	Method equals
	Method hashCode
	Implementing equals and hashCode
	HashSet
	EnumSet
	LinkedHashSet

	SortedSet
	NavigableSet
	TreeSet

	List
	LinkedList
	ArrayList

	Queue
	Deque
	Map
	HashMap
	IdentityHashMap

	Dependency injection
	Implementing the game
	ColorManager
	The class color
	JavaDoc and code comments
	Row
	Table
	Guesser
	UniqueGuesser
	GeneralGuesser

	The Game class
	Creating an integration test
	Summary

	Extending the Game - Run Parallel, Run Faster
	How to make Mastermind parallel
	Refactoring
	Processes
	Threads
	Fibers
	java.lang.Thread
	Pitfalls
	Deadlocks
	Race conditions
	Overused locks
	Starving

	ExecutorService
	ForkJoinPool

	Variable access
	The CPU heartbeat
	Volatile variables
	Synchronized block
	Wait and notify
	Lock
	Condition
	ReentrantLock
	ReentrantReadWriteLock

	Atomic classes
	BlockingQueue
	LinkedBlockingQueue
	LinkedBlockingDeque
	ArrayBlockingQueue
	LinkedTransferQueue

	IntervalGuesser
	ParallelGamePlayer
	Microbenchmarking
	Summary

	Making Our Game Professional - Do it as a Webapp
	Web and network
	IP
	TCP/IP
	DNS

	The HTTP protocol
	HTTP methods
	Status codes

	HTTP/2.0
	Cookies
	Client server and web architecture
	Writing servlets
	Hello world servlet

	Java Server Pages
	HTML, CSS, and JavaScript
	Mastermind servlet
	Storing state
	HTTP session
	Storing state on the client
	Dependency injection with Guice
	The MastermindHandler class
	Storing state on the server
	The GameSessionSaver class

	Running the Jetty web servlet
	Logging
	Configurability
	Performance
	Log frameworks
	Java 9 logging
	Logging practice

	Other technologies
	Summary

	Building a Commercial Web Application Using REST
	The MyBusiness web shop
	Sample business architecture
	Microservices
	Service interface design
	JSON
	REST
	Model View Controller
	Spring framework
	Architecture of Spring
	Spring core

	Service classes
	Compiling and running the application
	Testing the application
	Integration test
	Application test

	Servlet filters
	Audit logging and AOP
	Dynamic proxy-based AOP
	Summary

	Extending Our E-Commerce Application
	The MyBusiness ordering
	Setting up the project
	Order controller and DTOs
	Consistency checker
	Annotations
	Annotation retention
	Annotation target
	Annotation parameters
	Repeatable annotations
	Annotation inheritance
	@Documented annotations
	JDK annotations

	Using reflection
	Getting annotations
	Invoking methods
	Setting fields

	Functional programming in Java
	Lambda
	Streams
	Functional interfaces
	Method references

	Scripting in Java 9
	Summary

	Building an Accounting Application Using Reactive Programming
	Reactive... what?
	Reactive programming in a nutshell
	Reactive systems
	Responsive
	Resilient
	Elastic
	Message-driven
	Back-pressure

	Reactive streams
	Reactive programming in Java
	Implementing inventory

	Summary

	Finalizing Java Knowledge to a Professional Level
	Java deep technologies
	Java agent
	Polyglot programming
	Polyglot configuration
	Polyglot scripting
	Business DSL
	Problems with polyglot

	Annotation processing

	Programming in the enterprise
	Static code analysis
	Source code version control
	Software versioning
	Code review
	Knowledge base
	Issue tracking
	Testing
	Types of tests
	Test automation
	Black box versus white box

	Selecting libraries
	Fit for the purpose
	License
	Documentation
	Project alive
	Maturity
	Number of users
	The "I like it" factor

	Continuous integration and deployment
	Release management
	Code repository
	Walking up the ladder

	Summary

