
Java

Generics & Collections

Generics

2Prepared By - Rifat Shahriyar

Generics

• Many algorithms are logically the same no matter
what type of data they are being applied to (Stack of
Integer, String or Thread)

• Generics (introduced by JDK 5) allows to create
classes, interfaces, and methods that will work in a
type-safe manner with various kinds of data

• Generics allows to define an algorithm once,
independently of any specific type of data

– The expressive power generics added to the language
fundamentally changed the way that Java code is written

3Prepared By - Rifat Shahriyar

Generics

• The term generics means parameterized types

• It enables to create classes, interfaces, and methods
in which the type of data upon which they operate is
specified as a parameter

• Using generics, it is possible to create a single class,
for example, that automatically works with different
types of data

4Prepared By - Rifat Shahriyar

Generics

• Java has always given you the ability to create
generalized classes, interfaces, and methods by
operating through references of type Object

• In pre-generics code, generalized classes, interfaces,
and methods used Object references to operate on
various types of objects

• The problem is that they could not do so with type
safety

5Prepared By - Rifat Shahriyar

Generics

• Generics added the type safety that was lacking

• They also streamlined the process

– it is no longer necessary to explicitly employ casts to
translate between Object and the type of data that is
actually being operated upon

• With generics, all casts are automatic and implicit

6Prepared By - Rifat Shahriyar

Generic Class

public class MyGenerics<T>

• Here, T is the name of a type parameter. This name is
used as a placeholder for the actual type that will be
passed to MyGenerics when an object is created

MyGenerics<Integer> myGenerics = new MyGenerics<>()

• MyGenerics uses a type parameter, MyGenerics is a
generic class

• Type parameters can be bounded

• Example: MyGenerics(1-3).java

7Prepared By - Rifat Shahriyar

Generics Only with Reference Types

• When declaring an instance of a generic type, the
type argument passed to the type parameter must
be a reference type

• You cannot use a primitive type, such as int or char

• The following declaration is illegal:

MyGenerics<int> intOb = new MyGenerics<int>();

// Error, can't use primitive type

8Prepared By - Rifat Shahriyar

Generic Method

• Methods inside a generic class can make use of a
class’ type parameter

• However, it is possible to declare a generic method
that uses one or more type parameters of its own

• Furthermore, it is possible to create a generic
method that is enclosed within a non-generic class

• It is possible for constructors to be generic, even if
their class is not

• Example: MyGenerics4.java

9Prepared By - Rifat Shahriyar

Generic Interface

• In addition to generic classes and methods, you can
also have generic interfaces

• Generic interfaces are specified like generic classes

• The generic interface offers two benefits

– It can be implemented for different types of data

– It allows to put constraints (that is, bounds) on the types of
data for which the interface can be implemented

• Example: MyGenerics5.java

10Prepared By - Rifat Shahriyar

Wildcard and Bounded Wildcard

• The wildcard argument is specified by the ?, and it
represents an unknown type

– MyClass<?> matches any MyClass object

• Wildcard arguments can be bounded in much the
same way that a type parameter can be bounded

– A bounded wildcard is important when you are creating a
generic type that will operate on a class hierarchy

• Example: MyGenerics(6-7).java

11Prepared By - Rifat Shahriyar

Collections

12Prepared By - Rifat Shahriyar

Collections

• The java.util package contains one of the Java’s most
powerful framework - Collections

• Collections is significantly affected by generics

• This framework defines several classes, such as lists
and maps, that manage massive number of objects

• The collection classes have always been able to work
with any type of object

• With generics the collection classes can now be used
with complete type safety

13Prepared By - Rifat Shahriyar

Collection Interface

• It is the foundation upon which the Collection
framework is built (interface Collection<E>)

• It must be implemented by any class that defines a
collection

• Some functions

boolean add(E obj) boolean addAll(Collection c)

void clear() boolean contains(Object obj)

boolean isEmpty() int size()

boolean remove(Object obj) boolean removeAll(Collection c)

14Prepared By - Rifat Shahriyar

List Interface

• interface List<E>

• Some functions

void add(int index, E obj)

boolean addAll(int index, Collection c)

E get(int index)

int indexOf(Object obj)

int lastIndexOf(Object obj)

E remove(int index)

15Prepared By - Rifat Shahriyar

Deque Interface

• interface Deque<E>

• Some functions

void addFirst(E obj) void addLast(E obj)

E getFirst() E getLast()

E peekFirst() E peekLast()

E pollFirst() E pollLast()

E pop() void push(E obj)

E removeFirst() E removeLast()

16Prepared By - Rifat Shahriyar

ArrayList

• It extends the AbstractList class and implements the
List Interface.

• It is a variable length array of object references that
can dynamically increase or decrease in size
(dynamic array)

• ArrayList is better for storing and accessing data

• ArrayList is non-synchronized

• Example: ArrayListDemo(1‐3).java

17Prepared By - Rifat Shahriyar

LinkedList

• It extends the AbstractSequentialList class and
implements the List, Deque and Queue Interface

• It provides a linked‐list data structure

• LinkedList internally uses a doubly linked list to store
the elements

• LinkedList is better for manipulating data

• LinkedList is non-synchronized

• Example: LinkedListDemo.java

18Prepared By - Rifat Shahriyar

Arrays

• The Arrays class provides various methods that are
useful when working with arrays

• Some methods such as binarySearch, copyOf,
copyOfRange, fill, sort are there

• Example: ArraysDemo.java

19Prepared By - Rifat Shahriyar

Vector

• It extends the AbstractList class and implements the
List Interface

• It implements a dynamic array same as ArrayList

• Vector is synchronized

• ArrayList increments 50% of the current array size if
the number of elements exceeds its capacity

• Vector increments 100% essentially doubling the
current array size

• Example: VectorDemo.java

20Prepared By - Rifat Shahriyar

HashTable

• It stores key‐value pairs

• Neither keys nor values can be null

• When using HashTable, you specify an object that is
used as a key and the value you want linked to that
key

• The key is then hashed and the resulting hash code is
used as the index at which the value is stored within
the table

• Example: HashTableDemo.java

21Prepared By - Rifat Shahriyar

HashMap

• It also stores key‐value pairs like HashTable

• Differences:

• Use ConcurrentHashMap for multi-threading

• Example: HashMapDemo.java

22

HashMap HashTable

Synchronized No Yes

Thread-Safe No Yes

Keys and values One null key, any null values Not permit null keys and values

Performance Fast Slow in comparison

Superclass AbstractMap Dictionary

Prepared By - Rifat Shahriyar

Custom Comparator

• Required to sort a collection/array of custom objects

• Must implement the Comparable interface

• Must implement the following method

public int compareTo(Object o) {

}

• Example: ComparatorDemo.java

23Prepared By - Rifat Shahriyar

