
GUI & Event Driven Programming GUI & Event Driven Programming
using Javausing Java

- Introduction- Introduction

 Graphical user interface (GUI)Graphical user interface (GUI)
 Presents a user-friendly mechanism for Presents a user-friendly mechanism for

interacting with an applicationinteracting with an application
 Often contains title bar, menu bar containing Often contains title bar, menu bar containing

menus, buttons and combo boxesmenus, buttons and combo boxes
 Built from GUI componentsBuilt from GUI components

Graphical ComponentsGraphical Components

button menus title bar menu bar combo box

scroll
bars

4

Simple GUI-Based Input/Output with Simple GUI-Based Input/Output with JOptionPaneJOptionPane

 Dialog boxesDialog boxes
 Used by applications to interact with the Used by applications to interact with the

useruser
 Provided by Java’s Provided by Java’s JOptionPaneJOptionPane class class

 Contains input dialogs and message dialogsContains input dialogs and message dialogs

5OutlineOutline

 Addition.javaAddition.java

(1 of 2)(1 of 2)

Show input dialog to receive first
integer

Show input dialog to receive
second integer

Show message dialog to output sum
to user

6OutlineOutline

 Addition.javaAddition.java

(2 of 2)(2 of 2)

Input dialog displayed by lines 10–11

Input dialog displayed by lines 12–13

Message dialog displayed by lines 22–23

Text field in which
the user types a
value

Prompt to the user

When the user clicks OK,

 showInputDialog returns

to the program the 100

typed by the user as a
String. The program

must convert the String
to an int

title bar

When the user clicks OK,

the
 message dialog is dismissed

(removed from the screen)

7

Fig. 11.3 Fig. 11.3 | | JOptionPaneJOptionPane staticstatic constants for message dialogs. constants for message dialogs.

8

11.3 Overview of Swing Components11.3 Overview of Swing Components

 Swing GUI componentsSwing GUI components
 Declared in package Declared in package javax.swingjavax.swing
 Most are pure Java componentsMost are pure Java components
 Part of the Java Foundation Classes (JFC)Part of the Java Foundation Classes (JFC)

10

Swing vs. AWTSwing vs. AWT

 Abstract Window Toolkit (AWT)Abstract Window Toolkit (AWT)
 Precursor to SwingPrecursor to Swing
 Declared in package Declared in package java.awtjava.awt
 Does not provide consistent, cross-platform Does not provide consistent, cross-platform

look-and-feellook-and-feel

11

Portability Tip 11.1Portability Tip 11.1

 Swing components are implemented Swing components are implemented
in Java, so they are more portable in Java, so they are more portable
and flexible than the original Java and flexible than the original Java
GUI components from package GUI components from package
java.awtjava.awt, , which were based on the which were based on the
GUI components of the underlying GUI components of the underlying
platform. For this reason, Swing GUI platform. For this reason, Swing GUI
components are generally preferred.components are generally preferred.

12

Lightweight vs. Heavyweight GUI ComponentsLightweight vs. Heavyweight GUI Components

 Lightweight componentsLightweight components
 Not tied directly to GUI components Not tied directly to GUI components

supported by underlying platformsupported by underlying platform
 Heavyweight componentsHeavyweight components

 Tied directly to the local platformTied directly to the local platform
 AWT componentsAWT components
 Some Swing componentsSome Swing components

13

Superclasses of Swing’s Lightweight GUI ComponentsSuperclasses of Swing’s Lightweight GUI Components

 Class Class ComponentComponent (package (package java.awtjava.awt))
 Subclass of Subclass of ObjectObject
 Declares many behaviors and attributes Declares many behaviors and attributes

common to GUI componentscommon to GUI components
 Class Class ContainerContainer (package (package java.awtjava.awt))

 Subclass of Subclass of ComponentComponent
 Organizes Organizes ComponentComponentss

 Class Class JComponentJComponent (package (package
javax.swingjavax.swing))
 Subclass of Subclass of ContainerContainer
 Superclass of all lightweight Swing Superclass of all lightweight Swing

componentscomponents

14

Superclasses of Swing’s Lightweight GUI ComponentsSuperclasses of Swing’s Lightweight GUI Components

 Common lightweight component featuresCommon lightweight component features
 Pluggable look-and-feel to customize the Pluggable look-and-feel to customize the

appearance of componentsappearance of components
 Shortcut keys (called mnemonics)Shortcut keys (called mnemonics)
 Common event-handling capabilitiesCommon event-handling capabilities
 Brief description of component’s purpose Brief description of component’s purpose

(called tool tips)(called tool tips)
 Support for localizationSupport for localization

Swing Components

 Swing is a collection of libraries that contains
primitive widgets or controls used for
designing Graphical User Interfaces (GUIs).

 Commonly used classes in javax.swing
package:
 JButton, JTextBox, JTextArea, JPanel, JFrame,

JMenu, JSlider, JLabel, JIcon, …
 There are many, many such classes to do

anything imaginable with GUIs
 Here we only study the basic architecture and do

simple examples

Swing components, cont.

 Each component is a Java class with a fairly
extensive inheritency hierarchy:

Object

Component

Container

JComponent

JPanel

Window

Frame

JFrame

Using Swing Components

 Very simple, just create object from
appropriate class – examples:
 JButton but = new JButton();
 JTextField text = new JTextField();
 JTextArea text = new JTextArea();
 JLabel lab = new JLabel();

 Many more classes. Don’t need to
know every one to get started.

 See ch. 9 Hortsmann

Adding components

 Once a component is created, it can be
added to a container by calling the
container’s add method:

Container cp = getContentPane();

cp.add(new JButton(“cancel”));

cp.add(new JButton(“go”));

How these are laid out is determined by the layout
manager.

This is required

Laying out components

 Not so difficult but takes a little
practice

 Do not use absolute positioning –
not very portable, does not resize
well, etc.

Laying out components

 Use layout managers – basically tells form
how to align components when they’re
added.

 Each Container has a layout manager
associated with it.

 A JPanel is a Container – to have different
layout managers associated with different
parts of a form, tile with JPanels and set the
desired layout manager for each JPanel,
then add components directly to panels.

Layout Managers

 Java comes with 7 or 8. Most
common and easiest to use are
 FlowLayout
 BorderLayout
 GridLayout

 Using just these three it is possible
to attain fairly precise layout for
most simple applications.

Setting layout managers

 Very easy to associate a layout manager with
a component. Simply call the setLayout
method on the Container:

 JPanel p1 = new JPanel();
p1.setLayout(new FlowLayout(FlowLayout.LEFT));

JPanel p2 = new JPanel();
p2.setLayout(new BorderLayout());

As Components are added to the container, the layout
manager determines their size and positioning.

Layouts

BorderLayout

Position must be specified, e.g. add (“North”, myComponent)

Layouts

FlowLayout

FlowLayout is the default layout manager for every JPanel.

It simply lays out components from left to right, starting new

rows if necessary

Layouts
GridLayout

GridLayout simply makes a bunch of components equal in size and

displays them in the requested number of rows and columns .

Event handling

What are events?

 All components can listen for one or more
events.

 Typical examples are:
 Mouse movements
 Mouse clicks
 Hitting any key
 Hitting return key
 etc.

 Telling the GUI what to do when a particular
event occurs is the role of the event handler.

ActionEvent

 In Java, most components have a
special event called an ActionEvent.

 This is loosely speaking the most
common or canonical event for that
component.

 A good example is a click for a
button.

 To have any component listen for
ActionEvents, you must register the
component with an ActionListener.
e.g.
 button.addActionListener(new

MyAL());

Delegation, cont.

 This is referred to as the Delegation
Model.

 When you register an ActionListener
with a component, you must pass it
the class which will handle the
event – that is, do the work when
the event is triggered.

 For an ActionEvent, this class must
implement the ActionListener
interface.

 This is simple a way of
guaranteeing that the
actionPerformed method is defined.

actionPerformed

 The actionPerformed method has the
following signature:
void actionPerformed(ActionEvent)

 The object of type ActionEvent passed to the
event handler is used to query information
about the event.

 Some common methods are:
 getSource()

 object reference to component generating event
 getActionCommand()

 some text associated with event (text on button, etc).

actionPerformed, cont.

 These methods are particularly
useful when using one eventhandler
for multiple components.

Simplest GUI

import javax.swing.JFrame;
class SimpleGUI extends JFrame{

SimpleGUI(){
 setSize(400,400); //set frames size in pixels
 setDefaultCloseOperation(EXIT_ON_CLOSE);

 show();
 }

 public static void main(String[] args){
 SimpleGUI gui = new SimpleGUI();
 System.out.println(“main thread coninues”);
 }
}

Another Simple GUI

import javax.swing.*;
class SimpleGUI extends JFrame{

SimpleGUI(){
 setSize(400,400); //set frames size in pixels
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 JButton but1 = new JButton(“Click me”);

 Container cp = getContentPane();//must do this
 cp.add(but1);

 show();
 }

 public static void main(String[] args){
 SimpleGUI gui = new SimpleGUI();
 System.out.println(“main thread coninues”);
 }}

Add Layout Manager

import javax.swing.*; import java.awt.*;
class SimpleGUI extends JFrame{

SimpleGUI(){
 setSize(400,400); //set frames size in pixels
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 JButton but1 = new JButton(“Click me”);

 Container cp = getContentPane();//must do this
 cp.setLayout(new FlowLayout(FlowLayout.CENTER);

 cp.add(but1);
 show();

 }

 public static void main(String[] args){
 SimpleGUI gui = new SimpleGUI();
 System.out.println(“main thread coninues”);
 }}

Add call to event handler

import javax.swing.*; import java.awt.*;
class SimpleGUI extends JFrame{

SimpleGUI(){
 setSize(400,400); //set frames size in pixels
 setDefaultCloseOperation(EXIT_ON_CLOSE);
 JButton but1 = new JButton(“Click me”);

 Container cp = getContentPane();//must do this
 cp.setLayout(new FlowLayout(FlowLayout.CENTER);

 but1.addActionListener(new MyActionListener());
 cp.add(but1);
 show();

 }
 public static void main(String[] args){
 SimpleGUI gui = new SimpleGUI();
 System.out.println(“main thread coninues”);
 }}

Event Handler Code
class MyActionListener implements ActionListener{
 public void actionPerformed(ActionEvent ae){
 JOptionPane.showMessageDialog(“I got clicked”, null);
 }

}

Add second button/event

class SimpleGUI extends JFrame{
SimpleGUI(){

 /* */
 JButton but1 = new JButton(“Click me”);

 JButton but2 = new JButton(“exit”);
 MyActionListener al = new MyActionListener();

 but1.addActionListener(al);
 but2.addActionListener(al);
 cp.add(but1);

 cp.add(but2);
 show();

 }
}

How to distinguish events –Less
good way

class MyActionListener implents ActionListener{
 public void actionPerformed(ActionEvent ae){
 if (ae.getActionCommand().equals(“Exit”){

System.exit(1);
 }
 else if (ae.getActionCommand().equals(“Click me”){
 JOptionPane.showMessageDialog(null, “I’m clicked”);
 }

}

Good way

class MyActionListener implents ActionListener{
 public void actionPerformed(ActionEvent ae){
 if (ae.getSource() == but2){

System.exit(1);
 }
 else if (ae.getSource() == but1){
 JOptionPane.showMessageDialog(null, “I’m clicked”);
 }
}

Question: How are but1, but2 brought into scope to do this?
Question: Why is this better?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

