
COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others

COMP-202

Java Libraries and Methods

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others

Chapter Outline
• Using Library Methods

• Java.Math example
• Writing your own Methods

• Void Methods
• Methods with Return Value

• Writing Comments

2

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others

COMP-202

Using Library Methods

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others 4

• The Java Development Kit comes with many
libraries which contain classes and methods for you
to use

• These are classes and methods that other people
have written to solve common tasks

• Some of these include:
• a Math library (java.lang.Math)
• String library (java.lang.String)
• Graphics library (java.awt.* and javax.swing.*)
• Networking library (java.net)

Java Libraries

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others 5

• Math class
• Provides many methods that you can use “off the shelf”

• No need to know how they are implemented
• Contains constants such as E and PI

• To access:
• Math.x or Math.m() , where x stands for the name

of the constant / m for the name of the method you want
to use

The Math Library

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others

Math Library Examples
double positiveNumber = Math.abs(-10);
double twoCubed = Math.pow(2,3);
double someTrigThingy = Math.sin(Math.PI);

6

To discover the details of a method
(i.e. how to call it),

look at the online documentation!

 http://download.oracle.com/javase/6/docs/api/java/lang/Math.html

For each method it lists what the method needs as
input and what it returns as output.

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others 7

How to Call a Static Method

Name of Class . Name of Method Parameter)
(Values for each Parameter,

Separated by Commas)

(

Parentheses are
mandatory, even

if there are no Parameters!

• Look at the method headers in the Javadoc to
determine the number of parameters and their types!

• http://download.oracle.com/javase/6/docs/api/

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others 8

• Class: java.lang.Math
• Provides many useful mathematical functions
• static double sin(double a)
• static double sqrt(double a)
• static double pow(double a, double b)
• static int abs(int a)
• static int max(int a, int b)

Example: Math

Name of the
Method

Method Parameters,
i.e. what the Method

Requires as Input

Return Type,
i.e. what the Method
Produces as Output

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others 9

• static double sin(double a)

• The sin method expects as parameter one double expression
• When you call sin, you must put an expression that evaluates

to a double between the ()
• Examples:
• ... Math.sin(3.0)
• ... Math.sin(2 * Math.PI)

• Bad Examples:
• ... Math.sin()
• ... Math.sin(2.3, 5.2)
• ... Math.sin(“3.0”)

Detailed Example: sin (Parameters)

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others 10

• static double sin(double a)

• The sin method produces as return value a double
• You must call sin in a place where a double expression is valid
• Examples:
• double angle = Math.sin(3.0);
• System.out.println(Math.pow(Math.sin(angle),2));

• Bad Example:
• int angle = Math.sin(3.0);

Detailed Example: sin (Return Type)

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others 11

• There are many other libraries that come with the Java
SDK

• See http://download.oracle.com/javase/6/docs/api/
• They are organized in packages
• Anything in the java.lang package is available to

your program by default
• Anything else needs to be imported
• Example:

• To use the Scanner class in java.util, write:
• import java.util.Scanner;

Other Libraries

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others

COMP-202

Writing Your Own Methods

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others 13

• Often, we can use a library method to solve our problem
• Why reinvent the wheel?

• Sometimes we can’t do this, because:
• Our need is very specific, and so no one else has

bothered to write a library
• The is a library method that solves our need, but not in a

satisfactory way
• Too slow
• Uses too much memory

• That’s when you write your own method!

Methods

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others 14

• Convert a decimal number (which is assumed to be
smaller than 128) to binary format

Example: Convert Numbers to Binary

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others 15

import java.util.Scanner;
public class BinaryConversion {
 public static void main(String [] args) {
 Scanner keyboard = new Scanner(System.in);
 System.out.println(“Please type a positive number < 128:”);
 byte number = keyboard.nextByte();

 System.out.print(number + " decimal = ");
 // print out one digit after the other
 System.out.print(number/64);
 System.out.print((number%64)/32);
 System.out.print((number%32)/16);
 System.out.print((number%16)/8);
 System.out.print((number%8)/4);
 System.out.print((number%4)/2);
 System.out.print(number%2);
 System.out.println(" binary.");
 }
}

Binary Conversion (1)

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others 16

• What if we want to display the number together with the 4
following ones in binary?

• Possible Solution: Copy Paste!

Binary Conversion (2)

import java.util.Scanner;
public class BinaryConversion {
 public static void main(String [] args) {
 Scanner keyboard = new Scanner(System.in);
 System.out.println(“Please type a positive number < 128:”);
 byte number = keyboard.nextByte();

 System.out.print(number + " decimal = ");
 System.out.print(number/64);
 System.out.print((number%64)/32);
 System.out.print((number%32)/16);
 System.out.print((number%16)/8);
 System.out.print((number%8)/4);
 System.out.print((number%4)/2);
 System.out.print(number%2);
 System.out.println(" binary.");

 System.out.print(number + 1 + " decimal = ");
 System.out.print((number+1)/64);
 System.out.print(((number+1)%64)/32);
 System.out.print(((number+1)%32)/16);
 System.out.print(((number+1)%16)/8);
 System.out.print(((number+1)%8)/4);
 System.out.print(((number+1)%4)/2);
 System.out.print((number+1)%2);
 System.out.println(" binary.");

 System.out.print(number + 2 + " decimal = ");
 System.out.print((number+2)/64);
 System.out.print(((number+2)%64)/32);

 System.out.print(((number+2)%32)/16);
 System.out.print(((number+2)%16)/8);
 System.out.print(((number+2)%8)/4);
 System.out.print(((number+2)%4)/2);
 System.out.print((number+2)%2);
 System.out.println(" binary.");

 System.out.print(number + 3 + " decimal = ");
 System.out.print((number+3)/64);
 System.out.print(((number+3)%64)/32);
 System.out.print(((number+3)%32)/16);
 System.out.print(((number+3)%16)/8);
 System.out.print(((number+3)%8)/4);
 System.out.print(((number+3)%4)/2);
 System.out.print((number+3)%2);
 System.out.println(" binary.");

 System.out.print(number + 4 + " decimal = ");
 System.out.print((number+4)/64);
 System.out.print(((number+4)%64)/32);
 System.out.print(((number+4)%32)/16);
 System.out.print(((number+4)%16)/8);
 System.out.print(((number+4)%8)/4);
 System.out.print(((number+4)%4)/2);
 System.out.print((number+4)%2);
 System.out.println(" binary.");

 }
}

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others 17

• Very long repetitive code is not readable
• Error-prone

• Wrong adjustments after Copy / Paste
• What if we discover that our initial code was

wrong?
• We have to change the code many times

• Better solution: write a method and call it multiple
times!

Problems with Copy / Paste

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others 18

Before Writing a Method
• To write the method, we need to determine:

• What name do we want to give the method?
• How many parameters does it need?

• (i.e. How many inputs does the method need)
• What are the types of each parameter?
• What names should we give the parameters?
• Should the method be usable in an expression?

• If yes, determine the return type of the method
• If no, the return type is void

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others 19

Binary Conversion (3)
• What name do we want to give the method?
• displayInBinary

• How many parameters does it need?
• 1

• What are the types of each parameter?
• byte

• What names should we give the parameters?
• n

• Should the method be usable in an expression?
• No ⇒ the return type is void

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others 20

 public static void displayInBinary(byte n) {
 System.out.print(n + " decimal = ");
 // print out one digit after the other
 System.out.print(n/64);
 System.out.print((n%64)/32);
 System.out.print((n%32)/16);
 System.out.print((n%16)/8);
 System.out.print((n%8)/4);
 System.out.print((n%4)/2);
 System.out.print(n%2);
 System.out.println(" binary.");
 }

Binary Conversion (4)

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others 21

• When we call a method, we must provide values of the
correct type for each parameter of the method

• Example: public static displayInBinary(byte n)
• The method requires one value of type byte

• Actual call: BinaryConversion.displayInBinary(27);
• When executing the code inside the method, the variable
n takes the value 27

Parameter Passing

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others 22

• Call the Method as often as desired, passing a
different value as a parameter

Binary Conversion (5)

import java.util.Scanner;
public class BinaryConversion {
 public static void displayInBinary(byte n) {
 // see previous slide
 }
 public static void main(String [] args) {
 Scanner keyboard = new Scanner(System.in);
 System.out.println(“Please type a positive number < 128:”);
 byte number = keyboard.nextByte();

 displayInBinary(number); // or BinaryConversion.displayInBinary
 displayInBinary(number + 1);
 displayInBinary(number + 2);
 displayInBinary(number + 3);
 displayInBinary(number + 4);
 }
}

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others 23

Binary Conversion Execution
import java.util.Scanner;
public class BinaryConversion {
 public static void displayInBinary(byte n) {
 System.out.print(n + " decimal = ");
 System.out.print(n/64);
 System.out.print((n%64)/32);
 System.out.print((n%32)/16);
 System.out.print((n%16)/8);
 System.out.print((n%8)/4);
 System.out.print((n%4)/2);
 System.out.print(n%2);
 System.out.println(" binary.");
 }
 public static void main(String [] args) {
 Scanner keyboard = new Scanner(System.in);
 System.out.println(“Please type a positive number < 128:”);
 byte number = keyboard.nextByte();
 displayInBinary(number);
 displayInBinary(number + 1);
 displayInBinary(number + 2);
 displayInBinary(number + 3);
 displayInBinary(number + 4);
 }
} Execution starts here

When a Method is Called,
The Flow of Control

Jumps Into the Method

When a Method is Done,
The Flow of Control Jumps Back to

Where it Came From

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others

Void Methods
• When a method returns void, you can't use it as

part of an expression
• The purpose of the method is to have a side-effect,

not to perform a direct computation
• One possible side-effect is to display something on

the screen
• System.out.println() is a void method

24

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others 25

• If you want to use a result from a computation in your
method in an expression, you have to do the following:

• Change the method header to specify the type of data you want your
method to produce

• Add at least one return statement in the method definition
• The expression after in the return statement must be of the same type as what is

specified in the method header

• Now we can call the method

Methods with Return Value

 public static double hypotenuse(double a, double b) {
 double h = Math.sqrt(Math.pow(a,2.0) + Math.pow(b,2.0));
 return h;
 }

double x = 3.0;
double y = 4.0;
double z = hypotenuse(x,y);

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others

Example: Method that tests if a Number is Even

• Method Header
boolean isEven(int n)

• Implementation
boolean isEven(int n) {
 return (n%2 == 0);
}

26

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others

Pro’s and Con’s of Methods
• Advantages of Methods

• Code reusability
• Reduces code duplication
• Easier debugging
• Problems are decomposed
• Hides tricky logic
• Easier to read and understand

• Disadvantages of Methods
• It takes initially a little more time to set them up

27

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others

Method Exercises
• Write a method called “sayGreeting” that displays a

greeting message on the screen. The method should take as
input two Strings. One String should be the name of the
speaker, the other String should be the name of the listener.

• Write a method called “computeAreaCircle”. The method
should take as input the radius of the circle and return a
double representing the area of the circle.

• Write a main program that asks the user to enter 3 numbers
(one at a time) and for each of these output the area of a
circle with that radius.

28

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others

COMP-202

Writing Comments

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others

Syntax for Comments
• Single line comments

• Write // anywhere in the code, and the rest of the line
is ignored by the compiler

• Multi-line comments
• Write /* anywhere in the code, and everything that

follows is ignored by the compiler until it sees */

30

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others

Purpose of Comments
• Comments are generally used to help a programmer

understand what the code is doing.
• This is useful both for when other people read your code or if you go

back to your code at a later point.
• A good comment will make it clear what a complicated piece

of code will do.
• A bad comment will either mislead the user or provide

unnecessary information (i.e. over commenting)
• Generally, it's better to err on the side of too many comments.
• Every method should be preceeded by a brief comment

saying what it's purpose is.

31

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others

Good Comment Example (1)
// This method takes as input a double representing a
// radius of a circle. It calculates the area of a circle
// using the equation PI*r^2.
// The method returns a double representing the area.
public static double computeAreaCircle(double radius) {
 return radius * radius * Math.PI;
}

32

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others

Bad Comment Example (1)
// This method takes as input a thing that represents the
// thing that measures how long it takes to go from
// the center of a round circle to the outer edge of it. I
// learned in elementary school that the equation for
// this is to take the number PI and multiply it by
// that distance and then multiply it by that distance
// again. The number PI does not really have anything
// to do with apple pie, although I kind of wish it did
// because it's really delicious. However, one thing the
// two have in common is they both are round.
public static double computeAreaCircle(double radius) {
 return radius * radius * Math.PI;
}

33

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others

Good Comment Example (2)
// This method converts the number n, which
// must be strictly smaller than 128, to binary format
// and displays the result on the screen
static void displayInBinary(byte n) {
 // TODO: make sure method also works with negative numbers
 System.out.print(n + " decimal = ");
 // print out one digit after the other
 System.out.print(n/64);
 System.out.print((n%64)/32);
 System.out.print((n%32)/16);
 System.out.print((n%16)/8);
 System.out.print((n%8)/4);
 System.out.print((n%4)/2);
 System.out.print(n%2);
 System.out.println(" binary.");
}

34

COMP-202 - Java Library and Methods, © 2013 Jörg Kienzle and others

Bad Comment Examples (2)
// sometimes I believe the compiler ignores all my comments

/*
* You may think you know what the following code does.
* But you dont. Trust me.
* Fiddle with it, and you’ll spend many a sleepless
* night cursing the moment you thought you’d be clever
* enough to "optimize" the code below.
* Now close this file and go play with something else.
*/

// drunk, fix later

35

