
Java Programming

Copyright © 2005, Infosys Technologies
Ltd

2

Our Agenda

Introduction to OOPS

What is Java?

The building Blocks of Java-- JDK

Java architecture

The java.lang. package

Basic program constructs

Applets v/s Applications

Copyright © 2005, Infosys Technologies
Ltd

3

Agenda Continued

The Utilities in util package

User interface & Event Handling

Exceptions Handling

Copyright © 2005, Infosys Technologies
Ltd

4

Before the first Cup….

Before we begin something on installation

– Have jdk1.2.2 installed

– you get an exe version

– set path after installation

– to test open a command window and type javac

– if it gives a help for the command the installation is OK

Copyright © 2005, Infosys Technologies
Ltd

5

Introducing to OOPS

You need to familiarize yourself with some terms like “Class”, “Object”,

“Inheritance”, “Polymorphism” etc etc….

The programming style that you use in C where importance is given for

functions can be called as structured programming

Importance is given only to functionality, no importance is associated

with the Data.

Copyright © 2005, Infosys Technologies
Ltd

6

Class…..Objects….

What is a Class?

– A class is a blueprint or prototype that defines the variables and the methods

common to all objects of a certain kind.

So what is an Object?

– An object is a software bundle of related variables and methods. Software

objects are often used to model real-world objects you find in everyday life.

Copyright © 2005, Infosys Technologies
Ltd

7

Representation of Object

Copyright © 2005, Infosys Technologies
Ltd

8

The Object

The object diagrams show that the object's variables make up the center,

or nucleus, of the object

Methods surround and hide the object's nucleus from other objects in the

program. Packaging an object's variables within the protective custody of

its methods is called encapsulation

Copyright © 2005, Infosys Technologies
Ltd

9

State & Behavior

The functions are called methods and the variables attributes

The “value” of the attributes is called the state.

Somebody calling a method on an object and the method getting

executed by making use of current state is invoking the behavior

Copyright © 2005, Infosys Technologies
Ltd

10

How do you write a class

In Java we use a key word class

– A class is defined as follows

class Employ {
String Name;//attribute
int Age;//attribute

//a behavior
void printDetails(){

System.out.println(“Name is”+Name);
System.out.println(“Age is”+Age);
}

}

Copyright © 2005, Infosys Technologies
Ltd

11

Inheritance

Now you have understood a Class let us look at what is inheritance.

A class inherits state and behavior from its super-class. Inheritance

provides a powerful and natural mechanism for organizing and

structuring software programs.

Copyright © 2005, Infosys Technologies
Ltd

12

Inheritance

However, subclasses are not limited to the state and behaviors provided

to them by their superclass.

Subclasses can add variables and methods to the ones they inherit from

the superclass.

Copyright © 2005, Infosys Technologies
Ltd

13

Overriding
Subclasses can also override inherited methods and provide

specialized implementations for those methods.

You are not limited to just one layer of inheritance. The inheritance

tree, or class hierarchy, can be as deep as needed.

Methods and variables are inherited down through the levels

Copyright © 2005, Infosys Technologies
Ltd

14

Inheritance

Inheritance offers the following benefits:

• Subclasses provide specialized behaviors from the basis of common elements

provided by the super class

Programmers can implement super-classes called abstract classes that

define "generic" behaviors.

– The abstract superclass defines and may partially implement the behavior, but

much of the class is undefined and unimplemented

Copyright © 2005, Infosys Technologies
Ltd

15

What is Java?

A language developed at Sun Microsystems

A general-purpose language

High-level language

Developed initially for consumer devices

Help in building a dynamic Web

Supported today by most of the big players like IBM, Netscape, Oracle,
Inprise etc.

Copyright © 2005, Infosys Technologies
Ltd

16

Features Of Java

Object-oriented

Simple

Robust

Secure

Architecture Neutral / Portable

Multithreaded

Distributed

Copyright © 2005, Infosys Technologies
Ltd

17

Java - The Basics

Draws features from OO languages like Smalltalk, C++, Ada

An interpreted language

Uses a virtual machine called Java Virtual Machine (JVM)

A very exhaustive OO library

Copyright © 2005, Infosys Technologies
Ltd

18

Hello World

We will have the source code first

Type this into any text editor

public class HelloWorldApp {

public static void main(String[]args){

System.out.println(“Hello World!”);

}

}

Save this as HelloWorldApp.java (take care case matters…..)

Copyright © 2005, Infosys Technologies
Ltd

19

Some Rules

The name of the file must always be the name of the “public class”

It is 100% case sensitive

You can have only one public class in a file(i.e. in one .java file)

Every “stand alone” Java program must have a public static void main

defined

– it is the starting point of the program.

Copyright © 2005, Infosys Technologies
Ltd

20

To Compile

Open a command prompt

Go to the directory you have saved your program.

Type javac HelloWorldApp.java.

– If it says bad command or file name set the path

– If it does not say anything and get the prompt the compilation was successful.

Copyright © 2005, Infosys Technologies
Ltd

21

To execute

Type in the command prompt

“java HelloWorldApp”

The result

Copyright © 2005, Infosys Technologies
Ltd

22

So How did this work…….

Copyright © 2005, Infosys Technologies
Ltd

23

Platform independence…...

Java is a language that is platform independent.

A platform is the hardware or software environment in which a program

runs

Once compiled code will run on any platform without recompiling or any

kind of modification.

This is made possible by making use of a Java Virtual Machine a.k.a. JVM

Copyright © 2005, Infosys Technologies
Ltd

24

Java Virtual Machine

JVM can be considered as a processor purely implemented with

software.

The .class file that is generated is the machine code of this processor.

The interface that the JVM has to the .class file remains the same

irrespective of the underlying platform .

This makes platform independence possible

Copyright © 2005, Infosys Technologies
Ltd

25

Platform independence

The JVM interprets the .class file to the machine language of the

underlying platform .

The underlying platform processes the commands given by the JVM and

returns the result back to JVM which displays it for you.

Copyright © 2005, Infosys Technologies
Ltd

26

The life cycle

The Java programming language is unusual in that a program is both

compiled and interpreted

With the compiler, first you translate a program into an intermediate

language called Java bytecodes-the platform-independent codes

interpreted by the interpreter on the Java platform

Copyright © 2005, Infosys Technologies
Ltd

27

A Diagrammatic Representation

Copyright © 2005, Infosys Technologies
Ltd

28

JDK

JDK or Java Development Kit is a free software that can be used to write

and compile Java programs.

Currently version 1.3 has been released but we will be using version 1.2.2

It has lots of examples and the Standard Java Class Library also called

the API

Copyright © 2005, Infosys Technologies
Ltd

29

JDK

We will be making use of the Classes defined in the standard library by

creating objects or inheriting from those classes.

We use the javac compiler provided with JDK

We have tools like javadoc, rmiregistry, appletviewer etc which we may

make use of

Copyright © 2005, Infosys Technologies
Ltd

30

The Java Platform

The Java platform has two components:

• The Java Virtual Machine (Java VM)

• The Java Application Programming Interface (Java API)

The Java API is a large collection of ready-made software components

that provide many useful capabilities, such as graphical user interface

(GUI) widgets.

Copyright © 2005, Infosys Technologies
Ltd

31

The Java Definition

The Java programming language is a high-level language that can be

characterized by all of the following buzzwords:

Simple, Architecture-neutral, Object-oriented, Portable, Distributed, High-

performance, Interpreted, Multithreaded, Robust, Dynamic and Secure

Copyright © 2005, Infosys Technologies
Ltd

32

Constituents of a Class

Variables or Data Members

Constructors

Functions or Methods

Classes, also called Inner Classes

Startup function, if it is a starter class

Copyright © 2005, Infosys Technologies
Ltd

33

Data Types

Strongly typed language

Two types of variables

– Primitive type

– Reference type

– null is a special type

Reference types cannot be cast to primitive types

Copyright © 2005, Infosys Technologies
Ltd

34

Primitive Data Types

byteByte-length integer 8-bit two's complement

short Short integer 16-bit two's complement

int Integer 32-bit two's complement

longLong integer 64-bit two's complement(real numbers)

Copyright © 2005, Infosys Technologies
Ltd

35

Primitive Data Types

float Single-precision floating point 32-bit IEEE 754

double Double-precision floating point 64-bit IEEE 754

char A single character 16-bit Unicode character

boolean A boolean value (true or false) true or

false

Copyright © 2005, Infosys Technologies
Ltd

36

References…..

Arrays, classes, and interfaces are reference types

A reference is called a pointer, or a memory address in other languages

The Java programming language does not support the explicit use of

addresses like other languages do

Copyright © 2005, Infosys Technologies
Ltd

37

Reference...

Copyright © 2005, Infosys Technologies
Ltd

38

Access Specifiers

There are four access specifiers:

– public

– private

– “ ” - package

– protected

Copyright © 2005, Infosys Technologies
Ltd

39

Access for Types

Access specifiers could be used on classes in Java

All classes belong to packages in Java

“public” types are only accessible outside the package

private and protected specifier are invalid for classes

Copyright © 2005, Infosys Technologies
Ltd

40

Modifiers in Java

Access specifiers

static

final

abstract

native

synchronized

Copyright © 2005, Infosys Technologies
Ltd

41

“final” Modifier

“final” modifier has a meaning based on its usage

For variable:

– Primitives: read-only

– Objects: reference is read-only

– use all upper case letters

For methods: no overriding

For classes: no inheritance

Copyright © 2005, Infosys Technologies
Ltd

42

“abstract” Modifier

“abstract” modifier is used to defer an operation

Cannot be used for variables

For methods: no implementation

For classes: no instantiation

A concrete class can be made abstract by using the modifier for the class

Copyright © 2005, Infosys Technologies
Ltd

43

Rules to Follow

The following cannot be marked with “abstract” modifier

– Constructors

– Static methods

– Private methods

– Methods marked with “final” modifier

Copyright © 2005, Infosys Technologies
Ltd

44

“native” Modifier

“native” modifier is used to indicate implementation of the method in a

non-Java language, like C/C++

The library where the method is implemented should be loaded before

invoking native methods

“synchronized” Modifier

Discussed in the module on threading

Copyright © 2005, Infosys Technologies
Ltd

45

Variables

The Java programming language has two categories of data types:

primitive and reference.

A variable of primitive type contains a single value of the appropriate size

and format for its type: a number, a character, or a boolean value

Copyright © 2005, Infosys Technologies
Ltd

46

Scope of variables

A variable's scope is the region of a program within which the variable

can be referred to by its simple name.

Scope also determines when the system creates and destroys memory

for the variable

Don’t confuse Scope with Visibility

Copyright © 2005, Infosys Technologies
Ltd

47

Scope….

Copyright © 2005, Infosys Technologies
Ltd

48

Member Variables

A member variable is a member of a class or an object.

It is declared within a class but outside of any method or constructor.

A member variable's scope is the entire declaration of the class.

The declaration of a member needs to appear before it is used

Copyright © 2005, Infosys Technologies
Ltd

49

Local Variables

You declare local variables within a block of code

The scope of a local variable extends from its declaration to the end of
the code block in which it was declared

Copyright © 2005, Infosys Technologies
Ltd

50

Parameter Scope

Parameters are formal arguments to methods or constructors and are
used to pass values into methods and constructors.
The scope of a parameter is the entire method or constructor for
which it is a parameter.

Exception-handler parameters are similar to parameters but are

arguments to an exception handler rather than to a method or a

constructor

Copyright © 2005, Infosys Technologies
Ltd

51

Final variables

You can declare a variable in any scope to be final .

The value of a final variable cannot change after it has been

initialized.

Such variables are similar to constants in other programming

languages.

To declare a final variable, use the final keyword in the variable

declaration before the type: final int Var = 0;

Copyright © 2005, Infosys Technologies
Ltd

52

Visibility

Visibility is set with an access modifier

Applies only to member variables and determines whether the variable

can be used from outside of the class within which it is declared.

The access modifiers are public, protected, private and default(when

none specified)

The default scope is Package.

Copyright © 2005, Infosys Technologies
Ltd

53

Public-Private

Public variables and methods are those which can be accessed from any

where i.e. From the class, outside the class and outside the package.

Private variables are those which can be accessed only within the class.

They are not visible outside that class.

Copyright © 2005, Infosys Technologies
Ltd

54

Protected

Protected variables re those which are visible only inside the class and

the children classes of that class.

If your class extends a base class then your derived class will be able to

access the variables and methods of the base class that are declared as

protected

(and public of course….)

Copyright © 2005, Infosys Technologies
Ltd

55

Default Scope

The default Scope i.e. if you don’t specify any access modifiers the scope

is package scope.

It means that within the package the class is it will be accessible but

outside the package it is not accessible.

Copyright © 2005, Infosys Technologies
Ltd

56

Class Member Access

Private Friendly Protected Public

Same class Yes Yes Yes Yes
Same
Package
subclass

No Yes Yes Yes

Same
Package
non-subclass

No Yes Yes Yes

Different
Package
subclass

No No Yes Yes

Different
Package
non-subclass

No No No Yes

Copyright © 2005, Infosys Technologies
Ltd

57

The syntax...

Java follows exactly the syntax of C with some minor differences.

A happy news --------

THERE IS NO POINTERS IN JAVA

But we have a concept called reference that we have discussed already

Copyright © 2005, Infosys Technologies
Ltd

58

Interfaces
(Inheritance in Java]

Class A

Class B

Class A Class B

Allowed in Java Not Allowed in Java

Class C Class C

Copyright © 2005, Infosys Technologies
Ltd

59

Interface

Following are the code for the diagram in the slide shown
before :

Class B extends A
{

}

Class C extends B
{

}

Class B extends A
{

}

Class C extends B
{

}

Class C extends A , B
{

}

Class C extends A , B
{

}

The code written above is
not acceptable by Java

Copyright © 2005, Infosys Technologies
Ltd

60

Implementing Multiple Inheritance in Java

Inter A Inter B Inter C

Class E

INTERFACE

Class E implements A, B, C

{

. ;

}

Class E implements A, B, C

{

. ;

}

Class E can inherit from
interface A, B and C in
the following manner :

Copyright © 2005, Infosys Technologies
Ltd

61

Another way of implementing multiple Inheritance

inter B Inter C

Class E

INTERFACE

Class E extends A implements B, C

{

. ;

}

Class E extends A implements B, C

{

. ;

}

Class E can inherit from
classes A,& implements B

and C in another way as
shown here :

Class A

E
X
T
E
N
D
S

Copyright © 2005, Infosys Technologies
Ltd

62

Creating an interface class

public interface myinterface

{

public void add(int x, int y) ;

}

public interface myinterface

{

public void add(int x, int y) ;

}

In Java interfacing is done
in the following manner :

When the code is executed
as given below,

“myinterface”.class file will
be created in the folder

“JavaProgs”

When the code for interface is executed as given below :

javac –d c:\JavaProgs\ myinterface . java

Copyright © 2005, Infosys Technologies
Ltd

63

Using interface in Programs

import java.io.* ;

import mypackage.* ;

Class demo implements myinterface

{

public void add(int x., int y)

{

System.out.println(“ ” + (x + y);

}

}

Public static void main(String args[])

{

deno d = new demo () ;

d.add (10 , 20) ;

}

import java.io.* ;

import mypackage.* ;

Class demo implements myinterface

{

public void add(int x., int y)

{

System.out.println(“ ” + (x + y);

}

}

Public static void main(String args[])

{

deno d = new demo () ;

d.add (10 , 20) ;

}

Importing the folder
where myinterface.class

file is stored

Copyright © 2005, Infosys Technologies
Ltd

64

Interfaces Contd…

Comparable to a pure abstract class

Classes implement, by providing definitions to the methods of the

interface

Inheritance is possible in interfaces, even multiple inheritance is possible

Copyright © 2005, Infosys Technologies
Ltd

65

Why use Packages ?

Just think of Writing the
code from the scratch,
each time you create an
application

You’ll end up spending your
precious time and energy and
finally land up with a Huge
code accumulated before

you.

Copyright © 2005, Infosys Technologies
Ltd

66

Reusing The Existing Code
Reusability of code is one of
the most important
requirements in the software
industry.

Reusability saves time, effort
and also ensures consistency.

A class once developed
can be reused by any
number of programs

wishing to incorporate
the class in that

particular program.

Copyright © 2005, Infosys Technologies
Ltd

67

Concept of Packages

In Java, the codes which can be reused by
other programs is put into a “Package”.

A Package is a collection of classes, interfaces
and/or other packages.

interfaces

Packa
ge

classe
s

packag
es

Packages are
essentially a
means of
organizing
classes together
as groups.

Copyright © 2005, Infosys Technologies
Ltd

68

Features of Packages

Packages are useful for the following purposes: Packages allow you to
organize your classes into smaller units (such as folders) and make it
easy to locate and use the appropriate class file.

It helps to avoid naming conflicts. When you are working with a number of
classes, it becomes difficult to decide on names of the classes & methods.
At times you would want to use the same name, which belongs to an
another class. Package, basically hides the classes and avoids conflicts in
names.

Packages allow you to protect your classes, data and methods in a larger
way than on a class-to-class basis.

Package names can be used to identify your classes.

Copyright © 2005, Infosys Technologies
Ltd

69

An Example on the use of Packages

To find the area of a circle on the front
face of the cube, we need not write a
code explicitly to find the area of the
circle

We will import the package into our
program and make use of the area
method already present in the package
“circle”.

Method to
find area of
the circle

Package Circle

Some
Method

Some
Method

Import

Class

Copyright © 2005, Infosys Technologies
Ltd

70

Importing a Package

In Java, the Packages (where the required method is already created) can
be imported into any program where the method is to be used.

We can import a Package in the following manner :

import package_name . class_name ;

Suppose you wish to use a class say My_Class whose location is as
follows :

This class can be imported as follows :

import My_Package . MySub_Package . My_Class ;

My_Package My_Sub_Package My_Class

Copyright © 2005, Infosys Technologies
Ltd

71

Creating a Package

package mypackage ;

public class calculate

{

public int add(int x, int
y)

{

return(x + y) ;

}

}

package mypackage ;

public class calculate

{

public int add(int x, int
y)

{

return(x + y) ;

}

}

In Java Packages are
created in the following
manner :

Package package_name ;

mypackage

Method
to add()

Copyright © 2005, Infosys Technologies
Ltd

72

Compiling the package

javac -d c:\ JavaProgs Calculate.javajavac -d c:\ JavaProgs Calculate.java

JavaProgs

mypackage
Calculate . Class

When the above command
is executed on the

command prompt, the
compiler creates a folder

called “mypackage” in our
JavaProgs directory and

stores the
“Calculate.class” into this

folder

Copyright © 2005, Infosys Technologies
Ltd

73

Standard Java Packages
The Three Java Packages that are essential to any Java program
are :

java . langjava . lang

java . iojava . io

java . utiljava . util

java .lang

Contains classes that form the basis of
the design of the programming
language of Java

java .io

The use of streams for all input output
operations in Java is handled by the
java.io package

java . util

Contains classes and interfaces that provide additional utility but
may not be always vital.

Copyright © 2005, Infosys Technologies
Ltd

74

java.lang package
One of the most important classes defined in this package is Object and it
represents the root of the java class hierarchy.

This package also holds the “wrapper” classes such as Boolean,
Characters, Integer, Long, Float and Double.

Many a times it is necessary to treat the non-object primitive datatypes of
int, char, etc. as objects.

Thus Java defines “wrapper” classes that enable us to treat even primitive
data types as objects.These wrapper classes are found in the package
“java.lang”.

Other classes found in this package are :

Math – which provides commonly used mathematical functions like sine,
cosine and square root.

String & String Buffer – Encapsulate commonly used operations on
character strings.

Copyright © 2005, Infosys Technologies
Ltd

75

• int abs(int i) -- returns the absolute value of I

•long abs(long l) -- returns the absolute value of l

•float abs(float f) -- returns the absolute value of f

•double abs(double d) -- returns the absolute value of d

•double ceil(double d) -- returns as a double the smallest integer that
is not less than d

• double floor(double d) --- returns as a double the largest integer

Some of the important methods of Math class

Copyright © 2005, Infosys Technologies
Ltd

76

java.io package

This package has two very important abstract classes :

Input Stream – This class defines the basic behavior required for input.

Output stream – This class is the basis of all the classes that deal with
output operations in Java.

Since these are abstract classes, they cannot be used directly but must
be inherited, so that the abstract methods can be implemented.

All I/O stream classes are derived from either of these classes.

Copyright © 2005, Infosys Technologies
Ltd

77

java.io package

The classes derived in Inputstream and Outputstream can only read from
or write to the respective files.

We cannot use the same class for both reading and writing operations.

An exception to this rule is the class “RandomAccessFile”.

This is the class used to handle files that allow random access and is
capable of mixed reading and writing operations on a file.

There are two additional interface to this package :

• Data input

• Data output

•These classes are used to transfer data other than bytes or
characters

Copyright © 2005, Infosys Technologies
Ltd

78

Java.util package

One of the most important package in this package is the class “Date”,
which can be used to represent or manipulate date and time information.

In addition, the class also enable us to account for time zones .

Java helps us to change the size of an array which is usually fixed, by
making use of the class “Vector”. This class also enable us to add,
remove and search for items in the array.

Copyright © 2005, Infosys Technologies
Ltd

79

Tips on using packages

The statement :

import java.awt.* ;

Will include all the classes available in the “awt” subdirectory
present in the java directory.

While creating a package, care should be taken that the
statement for creating a package must be written before any
other import statements

LEG
AL

ILLEGA
L

package mypackage ;

import java . io;

import java . io;

package mypackage ;

Copyright © 2005, Infosys Technologies
Ltd

80

Important Packages in Java
You don’t need to explicitly import this package. It is always
imported for you.

This package consists of classes that help you for all the
Input and Output operations.

This package consists of classes that you need, to execute
an applet in the browser or an appletviewer.

This package is useful to create GUI applications.

This package provides a variety of classes and interfaces
for creating lists, calendar, date, etc.

This package provides classes and interfaces for TCP/IP
network programming.

java.lang

java.io

java.applet

java.awt

java.util

java.net

Declaring and Access Control

Copyright © 2005, Infosys Technologies
Ltd

82

Arrays

An array is a data structure which defines an ordered collection of a fixed

number of homogeneous data elements

The size of an array is fixed and cannot increase to accommodate more

elements

In Java, array are objects and can be of primitive data types or reference

types

All elements in the array must be of the same data type

Copyright © 2005, Infosys Technologies
Ltd

83

Arrays
Declaring Arrays Variables

<elementType>[] <arrayName>;
or
<elementType> <arrayName>[];
where <elementType> can be any primitive data type or reference type
Example:
int IntArray[];
Pizza[] mediumPizza, largePizza;

Copyright © 2005, Infosys Technologies
Ltd

84

Arrays
Constructing an Array
<arrayName> = new <elementType>[<noOfElements>];

Example:
IntArray = new int[10];
mediumPizza = new Pizza[5];
largePizza = new Pizza[2];

Declaration and Construction combined
int IntArray = new int[10];
Pizza mediumPizza = new Pizza[5];

Copyright © 2005, Infosys Technologies
Ltd

85

Arrays

Initializing an Array
<elementType>[] <arayName> = {<arrayInitializerCode>};

Example:
int IntArray[] = {1, 2, 3, 4};

char charArray[] = {‘a’, ‘b’, ‘c’};

Object obj[] = {new Pizza(), new Pizza()};

String pets[] = {“cats”, “dogs”};

IO Facilities in Java

Copyright © 2005, Infosys Technologies
Ltd

87

Overview

IO Streams in Java

Understanding some fundamental streams

Creating streams for required functionality

Some advanced streams

Copyright © 2005, Infosys Technologies
Ltd

88

Streams
Streams are channels of communication
Provide a good abstraction between the source and destination
Could also act as a shield to lower transport implementation
Most of Java’s IO is based on streams

– Byte-oriented streams
– Character-oriented streams

Copyright © 2005, Infosys Technologies
Ltd

89

Concatenating Streams

File
Object

File
InputStream

Data
InputStream

Input & Output Streams

Copyright © 2005, Infosys Technologies
Ltd

91

Streams

A stream can be thought of as a Conduit (pipe) for data between a source

and the destination.

Two types of Streams are

1. Low level streams

2. High level streams

Copyright © 2005, Infosys Technologies
Ltd

92

Low level streams & High level streams

Streams which carries bytes are called low level streams.

Examples are FileInputStream and FileOutputStream.

Streams which carries primitive data types are called high

level streams. Examples are DataInputStream and

DataOutputStream.

Copyright © 2005, Infosys Technologies
Ltd

93

InputStream & OutputStream

InputStreams are used for reading the data from the source.

OutputStreams are used for writing the data to the

destination.

Copyright © 2005, Infosys Technologies
Ltd

94

Source
bytes

Destination
bytes

FileOutputStream

FileInputStream

DataOutputStream

DataInputStream

Java
program

int,float,double.

bytes

bytes

Copyright © 2005, Infosys Technologies
Ltd

95

Writing Primitives to a File

DataOutputStream dos =

new DataOutputStream(new

FileOutputStream("item.dat"));

dos.writeFloat(itemPrice);

dos.writeInt(itemQty);

dos.writeChars(itemNo);

Copyright © 2005, Infosys Technologies
Ltd

96

Filter Streams

Filter contents as they pass through the stream

Filters can be concatenated as seen before

Some filter streams

– Buffered Streams

– LineNumberInputStream

– PushBackInputStream

– PrintStream

Copyright © 2005, Infosys Technologies
Ltd

97

Conversion Streams

InputStreamReader: bridge from byte streams to character streams

BufferedReader in = new

BufferedReader(new

InputStreamReader(System.in));

OutputStreamWriter: bridge from chararcter streams to byte streams

Copyright © 2005, Infosys Technologies
Ltd

98

Review

Streams are the basis of Java’s IO

Pre-defined streams for many situations

Streams need to be concatenated

Conversion streams available for byte to character and vice-versa

conversion

Copyright © 2005, Infosys Technologies
Ltd

99

String class

A string is a collection of characters

Has equals() method that should be used to compare the actual string

values

Lot of other methods are available which are for the manipulation of

characters of the string

Copyright © 2005, Infosys Technologies
Ltd

100

public class Stringcomparison

{

public static void main(String args[]) {

String ss1=new String("Rafiq");

String ss2=new String("Rafiq");

String s1="Rafiq";

String s2="Rafiq";

System.out.println(" == comparison for StringObjects: "+(ss1==ss2));

System.out.println(" == comparison for StringLiterals: "+(s1==s2));

System.out.println(" equals() comparison for StringObjects:
"+(ss1.equals(ss2)));

System.out.println(" equals() comparison for StringLiterals:
"+(s1.equals(s2)));

}

}

Copyright © 2005, Infosys Technologies
Ltd

101

class checkstring
{ public static void main(String args[]){

String str="HELLO guys & girls";
System.out.println("The String is:"+str);
System.out.println("Length of the String is:"+str.length());
System.out.println("Character at specified

position:"+str.charAt(4));
System.out.println("substring of the String

is:"+str.substring(6,10));
System.out.println("Index of the specified

character:"+str.indexOf("g"));
System.out.println("conversion to

uppercase:"+str.toUpperCase());
System.out.println("conversion to

uppercase:"+str.toLowerCase());
}

}

Copyright © 2005, Infosys Technologies
Ltd

102

•The prime difference between String & StringBuffer class is that the
stringBuffer represents a string that can be dynamically modified.

•StringBuffer’s capacity could be dynamically increased eventhough it’s
capacity is specified in the run time.

Constructors

StringBuffer()

StringBuffer(int capacity)

StringBuffer(String str)

Methods

int length()

int capacity()

void setLength(int len)

String Buffer

Copyright © 2005, Infosys Technologies
Ltd

103

String Buffer
char charAt(int where)

void setCharAt(int where, char ch)

StringBuffer append(String str)

StringBuffer append(int num)

StringBuffer append(Object obj)

StringBuffer insert(int index,String str)

StringBuffer insert(int index,char ch)

StringBuffer insert(int index,Object obj)

StringBuffer reverse()

Copyright © 2005, Infosys Technologies
Ltd

104

java.util Package

Has utility classes like Date

Properties

HashTable

Vector e.t.c

Copyright © 2005, Infosys Technologies
Ltd

105

Vector()
Vector(int size)
Vector(int size, int incr)

The following are few Vector methods:

final void addElement(Object element)
final int capacity()
final boolean contains(Object element)
final Object elementAt(int index)
final Object firstElement()

Vector

Copyright © 2005, Infosys Technologies
Ltd

106

final void insertElementAt(Object element, int index)
final Object lastElement()
final boolean removeElement(Object element)
final void removeElementAt(int index)
final int size()

Vector

Copyright © 2005, Infosys Technologies
Ltd

107

Date

import java.util.Date;
class DateDemo{
public static void main(String args[])
{

//Instantiating a Date Object
Date date=new Date();

System.out.println("current date is"+date);
System.out.println("current day is"+date.getDay());
System.out.println("current month is"+date.getMonth());
System.out.println("current Year is"+date.getYear());
long msec=date.getTime();
System.out.println("Milliseconds since Jan. 1,1970 ="+msec);

}
}

Copyright © 2005, Infosys Technologies
Ltd

108

Applications and Applets
(The difference)

These are some of the difference between an Application and
an Applet :

1. Used for Internet programming.

2. Applications cannot run by itself and

requires a Browser software to run it.

3. Since applets runs inside the Browser, it

enjoys all the inbuilt facilities of some event

handling.

. There is some control over the execution of the

program.

1. Standalone program.

2. Applications can run by itself.

3. Since it can be run independently, so

utilities like event handling, user

interface, etc. should be explicitly

written by the programmer.

. No Control over the low of the program

Java AppletJava Application

Copyright © 2005, Infosys Technologies
Ltd

109

Applet

What is an applet?

A small Java program that runs on a Browser

The applet runs on JVM embedded in the browser

import java.applet.Applet;
import java.awt.Graphics;

public class HelloWorld extends Applet {
public void paint(Graphics g) {

g.drawString("Hello world!", 50, 25);
}

}

Copyright © 2005, Infosys Technologies
Ltd

110

Life Cycle of an Applet

Applet
Working

Applet
Born

Applet
Displayed

Idle
State

Applet
Destroyed

Initialization
state

If start()
called again

start()

paint()

stop()

destroy()

Redraw Applet

Destroy
Applet

init()

Start state

Copyright © 2005, Infosys Technologies
Ltd

111

Applet Life Cycle..

The Browser creates an Object of the applet and then it calls a sequence

of methods on that object.

The first method to be called is init()

Then the start() method is called.

Then repaint().

Finally to remove destroy() is called.

So there is no need for a public static void main in the applet to work

because the browser creates the object and calls the method on that.

Copyright © 2005, Infosys Technologies
Ltd

112

Life cycle Applet...

Every time you move out of the HTML that contains your applet and then

come back the start() is called.

init() is called only once.

When ever you lose scope and return the paint() is called.

All these calls are done by the browser(not by you)

Copyright © 2005, Infosys Technologies
Ltd

113

Applet……...

You need to override only the methods you want, the others are

redirected to the base class.

If you need to repaint the applet display you can do it by calling

repaint().(You are not supposed to call directly-

public void paint(Graphics g))

Why?????????????

Copyright © 2005, Infosys Technologies
Ltd

114

Some code review..

We used import statements

We inherited from Applet class

We did some overriding

We called some behavior

We learnt to embed Java programs in HTML

Exception Handling

Copyright © 2005, Infosys Technologies
Ltd

116

Exceptions and Errors

Exceptions are situations within the control of an application, that it

should try to handle

Errors indicate serious problems and abnormal conditions that most

applications should not try to handle

Copyright © 2005, Infosys Technologies
Ltd

117

Overview

What is an Exception?

Errors and Exceptions

The try-catch-finally block(s)

Catching multiple exceptions

Copyright © 2005, Infosys Technologies
Ltd

118

Exceptions

An exception is an event that occurs during the execution of a program

that disrupts the normal flow of instructions.

The exception object contains information about the exception, including

its type and the state of the program when the error occurred.

Helpful in separating the execution code from the error handler

Copyright © 2005, Infosys Technologies
Ltd

119

Exception’s

The Java programming language provides a mechanism

known as exceptions to help programs report and handle

errors.

When an error occurs, the program throws an exception.

It means that the normal flow of the program is interrupted and

that the runtime attempts to find an exception handler--a block

of code that can handle a particular type of error

Copyright © 2005, Infosys Technologies
Ltd

120

Exceptions

The exception handler can attempt to recover from the error or, if it

determines that the error is unrecoverable, provide a gentle exit from the

program.

Three statements play a part in handling exceptions: try-catch-finally

Java enforces exceptions to be handled by the programmer, resulting in

compile errors otherwise

Copyright © 2005, Infosys Technologies
Ltd

121

Java’s Exception Hierarchy

Throwable

Error Exception

Runtime
Exception

Copyright © 2005, Infosys Technologies
Ltd

122

Try catch -finally

The finally statement is associated with a try statement and

identifies a block of statements that are executed regardless of

whether or not an error occurs within the try block.

try { statement(s)

}

catch (exceptiontype name) {

statement(s) }

finally { statement(s)

}

Copyright © 2005, Infosys Technologies
Ltd

123

The “finally” Block

Defines the code that is executed always

In the normal execution it is executed after the try block

When an exception, it is executed after the handler or before propagation

as the case may be

Copyright © 2005, Infosys Technologies
Ltd

124

Throwing Exceptions

Exceptions in Java are compulsorily of type Throwable

Use the throw clause to throw an exception

Can also be used to rethrow an exception
public void read() throws IOException
{

// Some code that cause IO Exception
throw new IOException();

}

Copyright © 2005, Infosys Technologies
Ltd

125

Some Java Exceptions

ArithmeticException

ClassCastException

IllegalStateExecption

IndexOutOfBoundsException

InstantiationException

NullPointerException

SecurityException

Copyright © 2005, Infosys Technologies
Ltd

126

Some Java Errors

ClassFormatError

InternalError

LinkageError

OutOfMemoryError

StackOverflowError

VirtualMachineError

UnknownError

Copyright © 2005, Infosys Technologies
Ltd

127

Throws-Throw

These are two key words that you may use

The Throws keyword is used along with the declaration of a method that

can throw an exception.

This makes it mandatory for anyone calling the method to have it in try

block.

Else the compiler will give an error.

Copyright © 2005, Infosys Technologies
Ltd

128

Throw

All Java methods use the throw statement to throw an exception.

The throw statement requires a single argument: a throwable object.

If you attempt to throw an object that is not throwable, the compiler

refuses to compile your program

Copyright © 2005, Infosys Technologies
Ltd

129

Throw

It is used as follows- in a case where you want to throw an exception

if(accountIsValid()){

continue}

else{

throw new InvalidAccontException();

}

Copyright © 2005, Infosys Technologies
Ltd

130

The Hierarchy

Copyright © 2005, Infosys Technologies
Ltd

131

Errors

– When a dynamic linking failure or some other "hard" failure in the

virtual machine occurs, the virtual machine throws an Error.

– Typical Java programs should not catch Errors. In addition, it's

unlikely that typical Java programs will ever throw Errors either.

GUI Programming using AWT

Copyright © 2005, Infosys Technologies
Ltd

133

JAVA GUI Components

AWT provides us with predefined classes and methods to help
in creating various GUI components.
Following are the various GUI components available in the
‘java.awt’ package :
Button : push button
Canvas : drawing surface
Checkbox : option button
Choice : combo box
Label : static text
List : list box
Scrollbar : scrolling capability
TextComponent : base class for text components
Container : base class for all GUI containers

Copyright © 2005, Infosys Technologies
Ltd

134

Java AWT components

Copyright © 2005, Infosys Technologies
Ltd

135

Building applications with graphical user
interfaces

Creating the interface

• Creating the window

• Adding components

• Layout

• Another Container

Defining the behavior

• WindowEvent and WindowListener

• ItemEvent and ItemListener

Copyright © 2005, Infosys Technologies
Ltd

136

AWT hierarchy

Component
– Button
– Canvas
– Checkbox
– Choice
– Container

• Panel
• ScrollPane
• Window

– Dialog
» FileDialog

– Frame
– Label
– List
– Scrollbar
– TestComponent

• TextArea
• TextField

Copyright © 2005, Infosys Technologies
Ltd

137

Creating the window

• Use Containers
• containers hold the Components and helps to organize the

components into manageable groups.
• provides the basic window and dialog services.
• top-level windows are represented by the Frame class.

Copyright © 2005, Infosys Technologies
Ltd

138

Defining the types of container

Frame : It is a fully functioning window with its own title and
icons.

Other containers:
Panel : A pure container and not a window in itself. Sole purpose
is to organize the components on to a window.
Dialog : pop-up window that pops out when an error message has
to be displayed. Not a fully functioning window like the Frame.

Copyright © 2005, Infosys Technologies
Ltd

139

Frames

Are subclasses of Window
Have title and resize corner
Inherit from Component class and add components with the add
method
Have Border Layout as the default layout manager
Use the setLayout method to change the default layout manager

Copyright © 2005, Infosys Technologies
Ltd

140

Frames

Copyright © 2005, Infosys Technologies
Ltd

141

Panels

Provide a space for components

Allow subpanels to have their own layout manager

Add components with the add method

Default layout manager is the FlowLayout layout manager

Copyright © 2005, Infosys Technologies
Ltd

142

Panel

Copyright © 2005, Infosys Technologies
Ltd

143

Adding components

Components need to be added to a window

– Create an instance

– Add it to a window by calling add()

– Removing with remove()

Except labels all other components generate events when accessed.

– You need to handle the events

Copyright © 2005, Infosys Technologies
Ltd

144

Layout Managers

• Used to display the components on the target screen.
• Java being platform independent, employs a unique way to display the

components on the screen, independent of the platform.
• Java provides five different ways of sectioning the display area.
• Each of these ways of displaying components on different screen

sections is handled by the Layout Manager.

Copyright © 2005, Infosys Technologies
Ltd

145

Layout managers

• The five Layout managers available are :

• Flow Layout

• Grid Layout

• Border Layout

• Card Layout

• GridBag Layout

Copyright © 2005, Infosys Technologies
Ltd

146

Flow Layout Manger

Arranges components from left-to-right in top-to-down fashion.

1. The first component is placed at the Top-left corner.
2. The successive components will be placed next to the one before

it till a border of the display is encountered.
3. The remaining components will be displayed in the next row in a

similar fashion.

Copyright © 2005, Infosys Technologies
Ltd

147

Flow Layout Manager

4. The horizontal alignment of components is possible
The options available for horizontal alignment are :

Left
Right
Center

By default, the components are center aligned.
5. It is also possible to specify the vertical and horizontal spacing

between the components.

Copyright © 2005, Infosys Technologies
Ltd

148

Grid Layout Manager

1. The display area is divided into a grid composing of rows and
columns and further into number of cells.

2. Components are placed in the cells one after another in a row-
wise fashion.

3. Relative placement of the components remain the same
irrespective of the size of the Applet.

4. Possible to vary the space between components placed on a
Grid Layout.

The dimension of Applets in the HTML page do not affect the
placement of components in the GridLayout.

Copyright © 2005, Infosys Technologies
Ltd

149

Border Layout Manager

1. It uses the Graphic directions of East, West, North, South and
Center.

2. The components are arranged along the borders of the Layout
area.

3. The space left in the center is given to the component with
center as its position.

• The Border Layout manager is the default layout manager for
Dialog and Frame.

Copyright © 2005, Infosys Technologies
Ltd

150

Card Layout Manager

1. The Card Layout components are arranged into individual cards.
2. All the components are not visible at the same time. These cards

can only be viewed one at a time.
3. In Card Layout, the components are placed in different Panels.

Copyright © 2005, Infosys Technologies
Ltd

151

GridBag Layout Manager

• Most powerful Layout Manager.
• Arranges the components in Grids.
• Most complex of all Layout Managers.
• Most flexible of all the five Layout Managers available.
• Some controls provided by GridBag Layout Manager are :

• Span of Cells.
• Arrangement of Components in the cells.
• Space proportions between rows and columns.

• These controls are managed by the class called GridBagConstraints.

Event handling

Copyright © 2005, Infosys Technologies
Ltd

153

Events
An event is an object that represents some activity to which we may
want to respond
Example:

– a mouse is moved
– a mouse button is clicked
– a mouse is dragged
– a graphical button is clicked
– a keyboard key is pressed
– a timer expires

Often events correspond to user actions, but not always

Copyright © 2005, Infosys Technologies
Ltd

154

Events…
The Java standard class library contains several classes that represent typical
events

Certain objects, such as an applet or a graphical button, generate (fire) an event
when it occurs

Other objects, called listeners, respond to events

We can write listener objects to do whatever we want when an event occurs

Copyright © 2005, Infosys Technologies
Ltd

155

Events…

The java.awt.event package defines classes to different type of events.
Events correspond to :

– Physical actions (eg.,mouse button down, Key press/release)
– Logical events (e.g. gotfocus - receiving focus on a component)

Copyright © 2005, Infosys Technologies
Ltd

156

Some Event Classes

Present in java.awt.event class

ActionEvent – a button pressed, a menu item selected, etc.

ItemEvent – a check box or list item is clicked, etc.

ComponentEvent – a component is hidden, moved, resized, or becomes

visible

KeyEvent – keyboard events like key pressed, released, etc

MouseEvent –mouse clicked, dragged, etc

WindowEvent – minimized, maximized, resized, etc

Copyright © 2005, Infosys Technologies
Ltd

157

Events and Listeners

Generator

This object may
generate an event

Listener

This object waits for and
responds to an event

Event

When an event occurs, the generator calls the appropriate method of
the listener, passing an object that describes the event

Copyright © 2005, Infosys Technologies
Ltd

158

Delegation Event Model

Events are fired by event sources.

An event listener registers with an event source and receives

notifications about the events of a particular type.

The java.awt.event package defines events and event listeners, as well as

event listener adapters

Copyright © 2005, Infosys Technologies
Ltd

159

Listener Interfaces
We can create a listener object by writing a class that implements a
particular listener interface

The Java standard class library contains several interfaces that
correspond to particular event categories

– E.g. the MouseListener interface contains methods that
correspond to mouse events

After creating the listener, we add the listener to the component
that might generate the event to set up a formal relationship
between the generator and listener

Copyright © 2005, Infosys Technologies
Ltd

160

Some Listener Interfaces

ActionListener – for receiving action events
– E.g. mouse creates action on being clicked

ItemListener – for receiving item events
– E.g. list can be selected or deselected

KeyListener- for receiving keyboard events (keystrokes).

MouseListener

MouseMotionListener

WindowListener

Copyright © 2005, Infosys Technologies
Ltd

161

Mouse Events

The following are mouse events:
– mouse pressed - the mouse button is pressed down
– mouse released - the mouse button is released
– mouse clicked - the mouse button is pressed and released
– mouse entered - the mouse pointer is moved over a particular component
– mouse exited - the mouse pointer is moved off of a particular component

Any given program can listen for some, none, or all of these

Copyright © 2005, Infosys Technologies
Ltd

162

Event Based Programming
Create a listener class implementing the appropriate listener
interface.

Register the listener with the required components.
– The event listeners will be listening for the events.

When any event occurs, the event source creates an appropriate
event object & invokes the appropriate method of the registered
listener.

Copyright © 2005, Infosys Technologies
Ltd

163

Event Hierarchy

AWTEvent
ActionEvent
AdjustmentEvent
ComponentEvent
– ContainerEvent
– FocusEvent
– InputEvent

• MouseEvent
• KeyEvent

– WindowEvent
ItemEvent
TextEvent

Abstract Class

Copyright © 2005, Infosys Technologies
Ltd

164

Event classes
ActionEvent

– Generated when a button is pressed, a list is double-clicked, or a menu

item is selected.

AdjustmentEvent

– Generated when a scroll bar is manipulated.

ComponentEvent

– Generated when a component is hidden, moved, resized or becomes visible

– ContainerEvent

• Generated when a component is added to or removed from a

container.

– FocusEvent

• Generated when a component gains or loses keyboard focus.

Copyright © 2005, Infosys Technologies
Ltd

165

Event classes
– InputEvent

• Abstract super class for all component input event
classes.

– KeyEvent
» Generated when input is received from the

keyboard.
– MouseEvent

» Generated when the mouse is dragged,
moved, clicked, pressed, or released;also
generated when a mouse enters or exits a
component.

– WindowEvent
• Generated when a window is activated, closed,

deactivated, deiconified, iconified, opened, or quit.
ItemEvent
– Generated when an item is selected or deselected

TextEvent
– Generated when the value of a text area or text field is

changed.

Copyright © 2005, Infosys Technologies
Ltd

166

Event Sources

Button

– Generates action events when the button is pressed

CheckBox

– Generates item events when the check box is selected or deselected

Choice

– Generates item events when the choice is changed.

List

– Generates action events when an item is double-clicked

– Generates item events when an item is selected or deselected

Copyright © 2005, Infosys Technologies
Ltd

167

Event Sources

Menu Item

– Generates action events when a menu item is selected

– Generates item events when a checkable menu item is selected or deselected

Scrollbar

– Generates adjustment events when the scroll bar is manipulated

Text components

– Generates text events when the user enters a character

Window

– Generates window events when a window is activated, closed, deactivated,

deiconified, opened,or quit.

Copyright © 2005, Infosys Technologies
Ltd

168

Listener Interfaces
ActionListener
– void actionPerformed(ActionEvent)
AdjustmentListener
– void adjustmentValueChanged(AdjustmentEvent)
ComponentListener
– void componentResized(ComponentEvent e)
– void componentMoved(ComponentEvent e)
– void componentShown(ComponentEvent e)
– void componentHidden(ComponentEvent e)

ContainerListener
– void componentAdded(ContainerEvent e)
– void componentRemoved(ContainerEvent e)

Copyright © 2005, Infosys Technologies
Ltd

169

Listener Interfaces…
FocusListener

– void focusGained(FocusEvent e)
– void focusLost(FocusEvent e)

ItemListener
– void itemStateChange(ItemEvent e)

KeyListener
– void keyPressed(KeyEvent e)
– void keyReleased(KeyEvent e)
– void keyTyped(KeyEvent e)

MouseMotionListener
– void mouseDragged(MouseEvent e)
– void mouseMoved(MouseEvent e)

TextListener
– void textChanged(TextEvent e)

Copyright © 2005, Infosys Technologies
Ltd

170

Listener Interfaces…

MouseListener
– void mouseClicked(MouseEvent e)
– void mouseEntered(MouseEvent e)
– void mouseExited(MouseEvent e)
– void mousePressed(MouseEvent e)
– void mouseReleased(MouseEvent e)

WindowListener
– void windowActivated(WindowEvent e)
– void windowClosed(WindowEvent e)
– void windowClosing(WindowEvent e)
– void windowDeactivated(WindowEvent e)
– void windowDeiconified(WindowEvent e)
– void windowIconified(WindowEvent e)
– void windowOpened(WindowEvent e)

Copyright © 2005, Infosys Technologies
Ltd

171

A Simple Event Handler

import java.awt.*;

public class TestButton{
public static void main(String args[])
{

Frame f = new Frame(“Test”);
Button b = new Button(“Press Me”);
b.addActionListener(new ButtonHandler());
f.add(b);
f.pack();
f.setVisible(true);

} }

Copyright © 2005, Infosys Technologies
Ltd

172

A Simple Event Handler

import java.awt.event.*;

public class ButtonHandler implements ActionListener {
public void actionPerformed(ActionEvent e)
{

System.out.println(“Action occurred”);
System.out.println(“Button’s label is” +

e.getActionCommand());
}

}

Copyright © 2005, Infosys Technologies
Ltd

173

Recap

Why Java

Basic programming constructs

Interfaces & packages

Applets

Exception Handling

Event Handling

End of session

