
JAVA PROGRAMMING

©2016 UMBC Training Centers
i

Training Centers
6996 Columbia Gateway Drive

Suite 100
Columbia, MD 21046

Tel: 443-692-6600
http://www.umbctraining.com

JAVA PROGRAMMING

Course # TCPRG2000
Rev. 3/8/2016

JAVA PROGRAMMING

©2016 UMBC Training Centers
ii

This Page Intentionally Left Blank

JAVA PROGRAMMING

©2016 UMBC Training Centers
iii

Course Objectives

• At the conclusion of this course, students will be able to:

 Compile and run a Java application.

 Understand the role of the Java Virtual Machine in achieving
platform independence.

 Navigate through the API docs.

 Use the Object Oriented paradigm in Java programs.

 Understand the division of classes into Java packages.

 Use Exceptions to handle run time errors.

 Select the proper I/O class among those provided by the JDK.

 Use threads in order to create more efficient Java programs.

JAVA PROGRAMMING

©2016 UMBC Training Centers
iv

This Page Intentionally Left Blank

JAVA PROGRAMMING

©2016 UMBC Training Centers
v

Table of Contents

CHAPTER 1: INTRODUCTION
What is Java? ... 1-2
Versioning... 1-3
The Java Virtual Machine ... 1-4
Writing a Java Program .. 1-5
Packages.. 1-7
Simple Java Programs.. 1-11

CHAPTER 2: LANGUAGE COMPONENTS
Primitive Data Types... 2-2
Comments .. 2-5
Control Flow Statements .. 2-6
The if Statement... 2-7
The switch Statement .. 2-8
The while and do while Statements.. 2-9
The for Statement... 2-10
The break Statement .. 2-11
The continue Statement .. 2-12
Operators.. 2-13
Casts and Conversions... 2-14
Keywords.. 2-16

CHAPTER 3: OBJECT-ORIENTED PROGRAMMING
Defining New Data Types ... 3-2
Constructors ... 3-8
The String Class.. 3-9
String Literals .. 3-12
Documentation.. 3-14
Packages.. 3-16
The StringBuffer Class... 3-17
Naming Conventions .. 3-19
The Date Class.. 3-20
The import Statement .. 3-22
Deprecation .. 3-23
The StringTokenizer Class .. 3-24
The DecimalFormat Class... 3-25

CHAPTER 4: METHODS
Introduction... 4-2
Method Signatures.. 4-3
Arguments and Parameters.. 4-4
Passing Objects to Methods ... 4-5
Method Overloading ... 4-8
Static Methods.. 4-9

JAVA PROGRAMMING

©2016 UMBC Training Centers
vi

The Math Class.. 4-12
The System Class.. 4-13
Wrapper Classes .. 4-15

CHAPTER 5: ARRAYS
Introduction... 5-2
Processing Arrays... 5-3
Copying Arrays ... 5-4
Passing Arrays to Methods... 5-6
Arrays of Objects .. 5-7
The Arrays Class .. 5-10
Command Line Arguments ... 5-11
Multidimensional Arrays.. 5-12

CHAPTER 6: ENCAPSULATION
Introduction... 6-2
Constructors ... 6-3
The this Reference .. 6-6
Data Hiding... 6-10
public and private Members.. 6-11
Access Levels... 6-15
Composition.. 6-16
Static Data Members .. 6-18

CHAPTER 7: INHERITANCE & POLYMORPHISM
Introduction... 7-2
A Simple Example .. 7-3
The Object Class.. 7-6
Method Overriding .. 7-8
Polymorphism... 7-9
Additional Inheritance Examples... 7-11
Other Inheritance Issues... 7-15

CHAPTER 8: ABSTRACT CLASSES AND INTERFACES
Introduction... 8-2
Abstract Classes... 8-3
Abstract Class Example.. 8-4
Extending an Abstract Class... 8-5
Interfaces.. 8-8

CHAPTER 9: EXCEPTIONS
Introduction... 9-2
Exception Handling... 9-4
The Exception Hierarchy .. 9-6
Checked Exceptions ... 9-7
Advertising Exceptions with throws .. 9-10
Developing Your Own Exception Classes .. 9-11
The finally Block.. 9-15

JAVA PROGRAMMING

©2016 UMBC Training Centers
vii

CHAPTER 10: INPUT AND OUTPUT IN JAVA
Introduction... 10-2
The File Class.. 10-3
Standard Streams... 10-4
Keyboard Input ... 10-5
File I/O Using Byte Streams.. 10-6
Character Streams.. 10-8
File I/O Using Character Streams... 10-9
Buffered Streams.. 10-10
File I/O Using a Buffered Stream.. 10-11
Keyboard Input Using a Buffered Stream ... 10-12
Writing Text Files .. 10-13

CHAPTER 11: COLLECTIONS
Introduction... 11-2
Vectors ... 11-3
Hashtables.. 11-4
Enumerations.. 11-6
Properties ... 11-9
Collection Framework Hierarchy... 11-11
Lists .. 11-13
Sets .. 11-14
Maps... 11-15
The Collections Class ... 11-16

CHAPTER 12: NETWORKING
Networking Fundamentals .. 12-2
The Client/Server Model ... 12-4
InetAddress .. 12-6
URLs... 12-8
Sockets... 12-11
A Time-of-Day Client .. 12-13
Writing Servers ... 12-14
Client/Server Example .. 12-15

CHAPTER 13: THREADS
Threads vs. Processes ... 13-2
Creating Threads by Extending Thread .. 13-3
Creating Threads by Implementing Runnable... 13-5
Advantages of Using Threads... 13-6
Daemon Threads.. 13-9
Thread States ... 13-11
Thread Problems .. 13-15
Synchronization .. 13-17

JAVA PROGRAMMING

©2016 UMBC Training Centers
viii

This Page Intentionally Left Blank

JAVA PROGRAMMING CHAPTER 1: INTRODUCTION

©2016 UMBC Training Centers
1-1

Chapter 1:
Introduction

1) What is Java? ... 1-2

2) Versioning... 1-3

3) The Java Virtual Machine... 1-4

4) Writing a Java Program.. 1-5

5) Packages.. 1-7

6) Simple Java Programs... 1-11

JAVA PROGRAMMING CHAPTER 1: INTRODUCTION

©2016 UMBC Training Centers
1-2

What is Java?

• Java is a Programming Language developed at Sun
Microsystems beginning in 1991.

 The credit for Java is usually given to James Gosling who led a
group of engineers on a project named OAK. The project,
based on C++, had as its goal the control of consumer devices.

 The first public release of Java was in 1996 and was called the
Java Development Kit (JDK). It has seen become known as the
Software Development Kit (SDK).

• Java has been described in various ways.

 Simple - Java is simple compared to C++.

 Object-Oriented - A style of programming emphasizing the
marriage of data and methods rather than algorithms directly.

 Distributed - Java has built-in networking capabilities.

 Interpreted - The Java interpreter executes bytecodes on any
machine to which the interpreter has been ported.

 Robust - During bytecode generation, Java checks for any
possible errors rather than allowing an error to propagate to the
run-time environment.

 Architecture Neutral - When a Java program is compiled, the
result is an architecture independent bytecode file. The
bytecode file is designed to run on what is called the Java
Virtual Machine (JVM).

 Secure - Java promises that a program cannot overwrite
memory outside of its own process space, or read or write local
files when invoked through an applet in a Web Browser.

 Portable - Many of the problems from C and C++ are removed.
For example, an int is always 32 bits, regardless of the
machine. Strings are encoded using Unicode. Floating-point
numbers are stored in a fixed format.

JAVA PROGRAMMING CHAPTER 1: INTRODUCTION

©2016 UMBC Training Centers
1-3

Versioning

• SUN delivers different versions of the SDK in terms of
their functionality. The versions are listed below.

 The Micro Edition (Java ME)

• Specifically addresses the vast consumer space.
• This covers the range of extremely tiny commodities such as

smart cards or pagers, all the way up to the set-top box, an
appliance almost as powerful as a computer.

 The Standard Edition (Java SE)

• Features a development and deployment environment
designed from the ground up for the Web.

• It provides cross-platform compatibility, safe network
delivery, and smart card to supercomputer scalability.

 The Enterprise Edition (Java EE)

• Defines the standard for developing and deploying
enterprise applications.

• It includes the latest versions of Enterprise JavaBeans,
JavaServer Pages, Java Servlet APIs, the Java API for XML
Parsing (JAXP), the Java Authentication and Authorization
Service (JAAS) API, and other API’s.

JAVA PROGRAMMING CHAPTER 1: INTRODUCTION

©2016 UMBC Training Centers
1-4

The Java Virtual Machine

• The Java Virtual Machine (JVM) is a computer (in
software) with Java bytecodes as the instruction set.

 A developer uses an editor to create a Java source file whose
name ends with the .java extension.

 A Java Compiler converts this to a file of bytecodes whose
name ends with the .class extension.

• The JVM interprets and verifies the bytecodes of a file as
it is loaded.

 If the class file passes the verifier, it is loaded and translated
into specific OS instructions and executed on the target
machine.

• The compiled .class files are architecture neutral.

 The language that produces the bytecode is irrelevant.

 Currently, any compiler can output Java bytecode.

• Therefore, the target platform for Java code is not any
particular machine.

• It is a virtual machine (i.e., any computer that can translate
the bytecodes into native code).

• Performance at runtime can be somewhat slower than
traditional compilation because of verification, conversion
to native machine code, array bounds checking and
automatic garbage collection.

JAVA PROGRAMMING CHAPTER 1: INTRODUCTION

©2016 UMBC Training Centers
1-5

Writing a Java Program

• Writing a Java program requires some tools and
administration.

• The process generally proceeds as follows.

 Enter Java text into a file with any text editor.

• Java source files must end with the suffix .java.
• The name of the file must match the name of the public

class.

Hello.java

1. public class Hello {
2. public static void main(String args[]) {
3. System.out.println("Hello World");
4. }
5. }

 Compile the source code.

• The Java compiler is named javac.
javac Hello.java

• If there are no errors, the output from the compiler is a file
whose name has the name of the .java file but with the
.class extension. (Hello.class in this case.)

• This file contains platform independent bytecodes.

 Execute the program using the Java interpreter on the .class
file.

• The name of the interpreter is java.
java Hello
Hello World

JAVA PROGRAMMING CHAPTER 1: INTRODUCTION

©2016 UMBC Training Centers
1-6

Writing a Java Program

• The Hello program is intentionally simple in order to pick
out the basic parts of a Java program.

• All Java files consist of one or more classes.

 Of these, exactly one of them can be made public.

 The name of the file must be the name of the public class.

• When a Java source file is compiled, a .class file is built
for each class in the source file.

• A class can have more than one method.

• When an application is executed, the starting point for the
application is always the following main method.

public static void main(String args[]){}

 void: means that the method, main, does not return a value.
However, some methods do return a value.

 public: is a keyword that controls access to this code. Code
in other classes has access to a public method. There are
other access levels other than public that will be introduced
later in the course.

 static: implies the method is not associated with an object
but instead is associated with a class.

 The println method is a way of sending output to the
standard output file.

JAVA PROGRAMMING CHAPTER 1: INTRODUCTION

©2016 UMBC Training Centers
1-7

Packages

• A package is a collection of related classes that:

 makes the classes easier to find and use;

 assists in avoiding naming conflicts; and

 assists in controlling access to the classes.

• To specify the package of a class, you put a package
statement at the top of the source file of the class.

 If a package statement is not used, the class ends up in the
default package, which is a package that has no name.

• The previous Hello application is an example of a class in
the default package.

• It is recommended that all classes generally belong in a
named package.

• Classes in a package need to be placed in a directory
structure that matches the package name.

 For example, many of the classes in this course could have
been grouped into a package named examples.

 Since the course has many chapters, it might be better to
subdivide the classes into sub-packages.

• The classes in this chapter can be further grouped into a
package named examples.intro.

 Therefore, if we were to place Hello.java into this package
we would use the following statement at the top of the class.

package examples.intro;

JAVA PROGRAMMING CHAPTER 1: INTRODUCTION

©2016 UMBC Training Centers
1-8

Packages

• If the Hello class is specified as being in the
examples.intro package, the compiled Hello.class
needs to be placed in a directory named intro, which in
turn needs to be placed in a directory named examples.

 Although the source file, Hello.java, can be stored
anywhere, it is recommended that source files be maintained in
the same package structure as the .class files.

• Below is a new version of Hello.java that has been
placed in the examples.intro package.

Hello.java

1. package examples.intro;
2. public class Hello {
3. public static void main(String args[]) {
4. System.out.println("Hello Again");
5. }
6. }

 Hello.java is located in the following sub-directory of the
labfiles directory:

• examples\intro

 Therefore, to compile Hello.java, we would change to the
above directory and run the compiler, resulting in a file named
Hello.class in the examples\intro directory.

• cd javalabs\examples\intro
• javac Hello.java

JAVA PROGRAMMING CHAPTER 1: INTRODUCTION

©2016 UMBC Training Centers
1-9

Packages

• Keep in mind that we now have two Hello.class files.

 C:\javalabs\Hello.class

 C:\javalabs\examples\intro\Hello.class

• To properly reference a class file in Java, you must supply
the fully qualified name of the class, which always
includes the package name.

 the.package.name.ClassName

• To demonstrate how each of the above .class files can
be run, we will first change the command prompt to the
C:\javalabs directory.

 Since the first Hello class we defined had no package
specified, it is in the default package that has no name.

• Therefore, to run the first Hello program we would simply
type the following at the prompt.
C:\javalabs>java Hello

• This results in the following output.

Hello World

 The second Hello class we defined specified a package of
examples.intro.

• So, to run the second Hello program we would type
C:\javalabs>java examples.intro.Hello

• This results in the following output.
Hello Again

JAVA PROGRAMMING CHAPTER 1: INTRODUCTION

©2016 UMBC Training Centers
1-10

Packages

• Both the JVM and the Java compiler rely on an
environmental variable named CLASSPATH to locate class
files.

 If the CLASSPATH is not specified, it defaults to the current
directory.

 To simplify our development environment, we will set the
CLASSPATH to the directory containing the examples directory.

• There is a file in the javalabs directory named
setenv.cmd, which should have the following entry added.
set CLASSPATH=C:\javalabs

• Running this script will set up our environment so that the
JVM and the compiler will always begin looking for .class
files it needs in the javalabs directory.

• Keep in mind that for the remainder of the course, all classes

will be organized into packages, and that to run a program
you will need to provide the fully qualified name of the class
on the command line.
java examples.intro.Hello

• The environment being set by the setenv.cmd script is
only set for that shell window.

 If a new window is opened, the sentenv.cmd script would
need to be run inside of that window as well.

JAVA PROGRAMMING CHAPTER 1: INTRODUCTION

©2016 UMBC Training Centers
1-11

Simple Java Programs

• Below is a second program that builds upon the previous
information by providing additional statements.

AddIntegers.java

1. package examples.intro;
2. public class AddIntegers {
3. public static void main(String args[]) {
4. int x = 10;
5. int y = 20;
6. System.out.print("Sum of ");
7. System.out.print(x);
8. System.out.print(" and ");
9. System.out.println(y);
10. System.out.print("is ");
11. System.out.println(x + y);
12. }
13. }

 Compile the class by typing the following on the command line.

javac AddIntegers.java

 Run the program by typing the following on the command line.

java examples.intro.AddIntegers

 The output from executing the program is shown below:

Sum of 10 and 20
is 30

 Note that the println method adds a newline character to the
output, whereas the print method does not.

• The above example defined a few variables of type int.

 Soon you will see additional data types.

JAVA PROGRAMMING CHAPTER 1: INTRODUCTION

©2016 UMBC Training Centers
1-12

Simple Java Programs

• The program on the previous page could have been
written in many different ways.

AddAgain.java

1. package examples.intro;
2. public class AddAgain {
3. public static void main(String args[]) {
4. int x = 10, y = 20;
5. System.out.print(x + " + " + y);
6. System.out.println(" is " + (x + y));
7. }
8. }

 The output of the above program is shown below.

10 + 20 is 30

• When a String data type is added to any other data
type, the + operator concatenates the values rather than
adding them as shown in the example below.

Concatenation.java

1. package examples.intro;
2. public class Concatenation {
3. public static void main(String args[]) {
4. int x = 10, y = 20;
5. System.out.println(x + y + " is " + x + y);
6. }
7. }

 The output of the above program is: 30 is 1020

• Developers need to be aware of the dual purpose of the +
operator in Java.

JAVA PROGRAMMING CHAPTER 1: INTRODUCTION

©2016 UMBC Training Centers
1-13

Simple Java Programs

• A method in Java cannot stand alone.

 It must be embedded in some class.

 The following code will not compile because the main method
is not embedded in a class.

1. public static void main(String args[]) {
2. int x = 10, y = 20;
3. System.out.println(x + y + " is " + x + y);
4. }

• The program below has a main method but the parameter
list is incorrect.

 This program will compile but cannot be executed as an
application.

Wrong.java

1. package examples.intro;
2. public class Wrong {
3. public static void main() {
4. int x = 10, y = x * 2;
5. System.out.println(x + y + " is " + x + y);
6. }
7. }

JAVA PROGRAMMING CHAPTER 1: INTRODUCTION

©2016 UMBC Training Centers
1-14

Exercises
1. The following program contains multiple errors.

 Correct each of the errors until the program compiles and
executes without any errors.

• A copy of this file can be found in the starters directory for
this chapter.

1. package starters.intro.ex1;
2. Public Class MyNewClass {
3. public void static main(String s){
4. integer a = 5
5. system.out.println("a = ", a);
6. }
7. }

2. Write a program that includes in its main method, the

three lines of code shown below.

int a = 17, b = 4, c;
c = a + b;
System.out.println(a + " + " + b + " = " + c);

 Run the program and interpret the results.

 Reusing the variable c, add similar statements for the / and %
operators so that the results of all three calculations appear in
the output.

JAVA PROGRAMMING CHAPTER 2: LANGUAGE COMPONENTS

©2016 UMBC Training Centers
2-1

Chapter 2:
Language Components

1) Primitive Data Types ... 2-2

2) Comments ... 2-5

3) Control Flow Statements... 2-6

4) The if Statement... 2-7

5) The switch Statement ... 2-8

6) The while and do while Statements .. 2-9

7) The for Statement .. 2-10

8) The break Statement.. 2-11

9) The continue Statement .. 2-12

10) Operators .. 2-13

11) Casts and Conversions... 2-14

12) Keywords .. 2-16

JAVA PROGRAMMING CHAPTER 2: LANGUAGE COMPONENTS

©2016 UMBC Training Centers
2-2

Primitive Data Types

• Java supports a wide range of data types. The eight
fundamental (or primitive) data types are shown below.

byte myByte = 0; // 8 bits
short myShort = 15000; // 16
int myInteger = 42; // 32
int myHexInt = 0xA; // 32
long myLong = 8000000000L; // 64
float myFloat = 3.14159f; // 32
double myDouble = 2.3E24; // 64
boolean myTruth = true; // 1
char myChar = 'A'; // 16
char yourChar = '\t'; // 16
char aChar = '\u03C0'; // 16

• Constants of any of the above types can be created by
using the keyword final.

final double TAX_RATE = 0.06;

• Single quotes are used for a literal char.

char letter = 'A';

• Local data (variables declared inside methods) must be
initialized before being used.

 Object data, which we will discuss later, will be automatically
initialized.

• The print and println methods can have any of the
above types as an argument.

 This is known as method overloading and will be discussed in
more detail in a later chapter.

JAVA PROGRAMMING CHAPTER 2: LANGUAGE COMPONENTS

©2016 UMBC Training Centers
2-3

Primitive Data Types

• Characters use the Unicode character set so that non-
English characters can be easily encoded

 Unicode is a standard designed to consistently encode
characters used in written languages throughout the world.

 The Unicode standard uses hexadecimal to express a
character.

 When the specification for the Java language was created, the
Unicode standard was accepted and the char primitive was
defined as a 16-bit data type, with characters in the
hexadecimal range from 0x0000 to 0xFFFF.

• A char became insufficient to define all characters in use
throughout the world as the Unicode standard was extended
to over one million characters.

• The definition of a character in the Java programming
language could not be changed from 16 bits to 32 bits
without causing millions of Java applications to no longer run
properly.

• To correct the definition the characters with values that are
outside of the 16-bit range, and within the range from
0x10000 to 0x10FFFF, are called supplementary characters
and are defined as a pair of char values.

• More information about Unicode and its implementation
within the Java programming language can be found at
the following URLs.

 http://www.unicode.org

 https://docs.oracle.com/javase/tutorial/i18n/text/unicode.html

JAVA PROGRAMMING CHAPTER 2: LANGUAGE COMPONENTS

©2016 UMBC Training Centers
2-4

Primitive Data Types

• The program below illustrates some of the primitive Java
data types.

DataTypes.java

1. package examples.language;
2. public class DataTypes {
3. public static void main(String args[]) {
4. int a = 10, b = 3;
5. System.out.print(a + " * " + b + " = ");
6. System.out.println(a * b);
7.
8. double x = 3.5;
9. System.out.print(a + " + " + a + " * " + x);
10. System.out.println(" = " + (a + a * x));
11.
12. System.out.println("A can be represented as:");
13. System.out.print("A" + " or " + 'A' + " or ");
14. System.out.println('\u0041');
15.
16. System.out.println("Water Freezes @ 32\u00B0");
17. boolean c;
18. c = a == b;
19. System.out.print("The statement " + a);
20. System.out.println(" == " + b + " is " + c);
21.
22. c = a != b;
23. System.out.print("The statement " + a);
24. System.out.println(" != " + b + " is " + c);
25. }
26. }

• Below is the output from the above program.

10 * 3 = 30
10 + 10 * 3.5 = 45.0
A can be represented as:
A or A or A
Water Freezes @ 32°
The statement 10 == 3 is false
The statement 10 != 3 is true

JAVA PROGRAMMING CHAPTER 2: LANGUAGE COMPONENTS

©2016 UMBC Training Centers
2-5

Comments

• Java allows three distinct comment types.

 C style

• Typically be used to comment a large section of text.
/* a large
 section
 of text
*/

 C++ style

• Used most effectively to comment a single line or the last
portion of a line.
// This is an entire line of commentary
// So is this

int x = 0;
x = x + 1; // add one to x

 Javadoc style

• Is used to define special comments, which can be used by
the javadoc utility in the SDK to produce HTML
documentation for your Java code (i.e., to produce Java
documentation).
/**
 * This describes the variable
 * declaration below
 */
int x = 10;

JAVA PROGRAMMING CHAPTER 2: LANGUAGE COMPONENTS

©2016 UMBC Training Centers
2-6

Control Flow Statements

• The statements inside of a method are generally executed
in the order that they appear.

 Control flow statements, however, break up the flow of
execution.

• This section describes the following three types of control
flow statements supported by the Java programming
language:

 Decision-making statements (if-then, if-then-else, switch),

 Looping statements (for, while, do-while), and

 Branching statements (break, continue).

• All of the control flow constructs contain opening and
closing braces that are optional, provided that the body of
the construct contains only one statement.

 If the construct contains more than one statement in its body,
then the opening and closing curly braces are required.

 Deciding when to omit the braces is a matter of personal
preference.

• Omitting them can make for a common mistake if a second
statement is later added and the now required braces are
forgotten.

• This omission will generally mean you'll just get the wrong
results.

JAVA PROGRAMMING CHAPTER 2: LANGUAGE COMPONENTS

©2016 UMBC Training Centers
2-7

The if Statement

• The if statement tells your program to execute a certain
section of code only if a particular test evaluates to true.

 The following example tests to see if the value of x is even.
int x = 10;
if (x % 2 == 0)
 System.out.println(x + " is even");

• If this test evaluates to false (meaning x is not even),

control jumps to the end of the if statement.
 The if-else statement provides an alternate path of
execution when an if statement evaluates to false.
int x = 7;
if (x % 2 == 0)
 System.out.println(x + " is even");
else
 System.out.println(x + " is odd");

• The following program prints out a message based on
what time of day it is.

IfTest.java

1. package examples.language;
2. public class IfTest {
3. public static void main(String args[]) {
4. int hour = 2;
5. if (hour < 6)
6. System.out.println("Too early");
7. else if (hour < 12) {
8. System.out.print("Good morning, ");
9. System.out.println("how are you?");
10. }
11. else if (hour < 18)
12. System.out.println("Good afternoon");
13. else
14. System.out.println("Good evening");
15. }
16. }

JAVA PROGRAMMING CHAPTER 2: LANGUAGE COMPONENTS

©2016 UMBC Training Centers
2-8

The switch Statement

• A switch statement can be used as an alternative to a
set of if else constructs.

 It is often a matter of style with regard to which construct to use.

SwitchTest.java

1. package examples.language;
2. public class SwitchTest {
3. public static void main(String args[]) {
4. int i = 5;
5. System.out.print(i + " is: ");
6. switch(i) {
7. case 0:
8. System.out.print("very ");
9. case 1:
10. case 2:
11. System.out.println("small");
12. break;
13. case 3:
14. case 4:
15. case 5:
16. System.out.println("bigger");
17. break;
18. case 6:
19. case 7:
20. System.out.println("large");
21. break;
22. default:
23. System.out.println("biggest");
24. } // end of switch
25. }
26. }

• The primitives used in an expression in a switch
statement must be a single char, byte, short, or int.

 The expression may also be a String object.

JAVA PROGRAMMING CHAPTER 2: LANGUAGE COMPONENTS

©2016 UMBC Training Centers
2-9

The while and do while Statements

• A while loop continually executes a block of statements
while a particular condition is true.

WhileTest.java

1. package examples.language;
2. public class WhileTest {
3. public static void main(String args[]) {
4. int low = 10, high = 20, sum = 0;
5. int save = low;
6. while(low <= high) {
7. sum += low++;
8. System.out.println("Partial Sum:" + sum);
9. }
10. System.out.print("Sum of ints from ");
11. System.out.print(save + " to " + high);
12. System.out.println(" is " + sum);
13. }
14. }

• There is also a do while construct that differs from both
the while in that the loop test is performed at the bottom
of the loop as shown in the example below.

DoWhileTest.java

1. package examples.language;
2. public class DoWhileTest {
3. public static void main(String args[]) {
4. int i = 1, sum = 0;
5. do {
6. sum += i++;
7. } while(i <= 10);
8. System.out.println(sum);
9. }
10. }

JAVA PROGRAMMING CHAPTER 2: LANGUAGE COMPONENTS

©2016 UMBC Training Centers
2-10

The for Statement

• A for statement provides a compact way to iterate over a
range of values.

 The general form of the for statement is as follows:.

for (initialization; test; modification) {
 // body of the loop goes here;
}
• The initialization expression initializes the loop; it's

executed once, as the loop begins.
• When the test expression evaluates to false, the loop

terminates.
• The modification expression is invoked after each

iteration of the loop; this expression may increment or
decrement a value.

• The example below uses a for loop that sums the
integers from 1 to 50.

Sums.java

1. package examples.language;
2. public class Sums {
3. public static void main(String args[]) {
4. int sum = 0;
5. for (int i = 1; i <= 50; i = i + 1) {
6. sum = sum + i;
7. }
8. System.out.println("Sum = " + sum);
9. }
10. }

 Notice the declaration of the variable i in the initialization part
of the for loop.

• Note that the scope of that variable is within the loop itself.

JAVA PROGRAMMING CHAPTER 2: LANGUAGE COMPONENTS

©2016 UMBC Training Centers
2-11

The break Statement

• In Java, any looping construct can have the flow altered
through the use of a break or continue statement.

 break breaks the current loop.

 continue continues with the next iteration of the loop.

• For example, the code below breaks out of the for loop
when the value of i squared is greater than 500.

BreakTest.java

1. package examples.language;
2. public class BreakTest {
3. public static void main(String args[]) {
4. int i;
5. for (i = 1; i <= 100; i = i + 1){
6. if (i * i > 500)
7. break;
8. }
9. System.out.println("i is " + i);
10. }
11. }

• In the event that you need to break from inside of a nested
loop, you can break with a label.

NestedBreakTest.java

1. package examples.language;
2. public class NestedBreakTest {
3. public static void main(String args[]) {
4. int i,j;
5. outer: for (i = 0; i < 10; i++)
6. for (j = 0; j < 10; j++)
7. if (i + j > 15)
8. break outer;
9. System.out.println("i is " + i);
10. }
11. }

JAVA PROGRAMMING CHAPTER 2: LANGUAGE COMPONENTS

©2016 UMBC Training Centers
2-12

The continue Statement

• To demonstrate the continue statement, the code below
shows one way of adding up all those numbers below 100
that are not divisible by 3. It uses the % operator that
gives the remainder of dividing one number by another.

 When a continue is executed in a for loop, the next
executed statement is the modification part of the for loop.

 If a continue is executed in a while, the next executed
statement is the while test.

ContinueDemo.java

1. package examples.language;
2. public class ContinueDemo {
3. public static void main(String args[]) {
4. // for loop example
5. int i, sum = 0;
6. for (i = 1; i <= 100; i = i + 1){
7. if ((i % 3) == 0)
8. continue;
9. sum = sum + i;
10. }
11. System.out.println("sum " + sum);
12.
13. //while loop example
14. i = 0;
15. sum = 0;
16. while (++i <= 100){
17. if ((i % 3) == 0)
18. continue;
19. sum = sum + i;
20. }
21. System.out.println("sum " + sum);
22. }
23. }

JAVA PROGRAMMING CHAPTER 2: LANGUAGE COMPONENTS

©2016 UMBC Training Centers
2-13

Operators

• Operators are special symbols that perform specific
operations on one, two, or three operands, and then
return a result.

1 [] array subscript
 . class method qualifier
 () function invocation

2 ! logical not
 ~ 1’s complement
 ++ auto increment
 -- auto decrement
 + unary plus
 - unary minus
 (cast) explicit conversion
 new object creation

3 * multiplication
 / division
 % modulus

4 + addition
 - subtraction

5 << left shift
 >> right shift sign fill
 >>> right shift 0 fill

6 < less than
 <= less than or equal
 > greater than
 >= greater than or equal
 instanceof run time type id

7 == equality
 != inequality

8 & Bitwise and
9 ^ Bitwise exclusive or
10 | Bitwise inclusive or
11 && Logical and
12 || Logical or
13 ?: Ternary conditional operator
14 = assignment operator
 += -= *= /= %= &= other assignment ops
 |= ^= <<= >>= >>>=

 All operators are left to right associative except those on lines 2
and 14.

JAVA PROGRAMMING CHAPTER 2: LANGUAGE COMPONENTS

©2016 UMBC Training Centers
2-14

Casts and Conversions

• Both variables and constants have a type in Java.

 Since Java is very strict about type conversions, there are a few
rules that you will need to understand.

• Each of the following initializations is illegal because each
violates the size restriction of the data type.
char c = 65536;
byte b = 128;
short s = 32768;
int i = 2147483648;

• All integral arithmetic is carried out as int unless one of
the operands is a long, in which case, the result is a
long. This means that all of the assignments below will
cause a compiler error.
byte b = 5;
b = b + 10; // compiler error

short s = 5;
s = s + 5; // compiler error

long el = 10;
int val = 20;
val = val + el; // compiler error

• There are times when you need to perform some of the
operations above.

 For these instances, you can use a cast, an explicit instruction
to the compiler to make a conversion.

JAVA PROGRAMMING CHAPTER 2: LANGUAGE COMPONENTS

©2016 UMBC Training Centers
2-15

Casts and Conversions

• It is often necessary to perform an explicit cast when
performing integral arithmetic as shown below.
byte b = 5;
b = (byte) (b + 10); // compiles ok

short s = 5;
s = (short) (s + 5); // compiles ok

long el = 10;
int val = 20;
val = (int) (val + el); // compiles ok

• Interestingly, the following will not cause a compiler error
but will result in an uncaught overflow error in your
program.
byte b = 127;
b +=1
System.out.println(b); // -128

• Since constants have a type, the first line below will cause
a compiler error.
float x = 2.0; // compiler error since 2.0 is double:

float x = 2.0f; // one fix
float x = (float) 2.0; // another fix

• Whenever any double precision computations are carried
out, the compiler follows this rule.

 If either of the operands is a double, the other is converted to
double; otherwise,

 If either of the operands is a float, the other is converted to a
float.

JAVA PROGRAMMING CHAPTER 2: LANGUAGE COMPONENTS

©2016 UMBC Training Centers
2-16

Keywords

• The table below is a list the Java keywords that are
reserved. This means you cannot use them as names in
your Java programs. In addition, true, false, and null
are reserved words and, therefore, you cannot use them
as names in your programs either.

Java Keywords
abstract double int super
assert else interface switch
boolean enum long synchronized
break extends native this
byte final new throw
case finally package throws
catch float private transient
char for protected try
class goto * public void
const * if return volatile
continue implements short while
default import static
do instanceof strictfp **

* indicates a keyword that is not currently used
** indicates a keyword that was added for Java 2

JAVA PROGRAMMING CHAPTER 2: LANGUAGE COMPONENTS

©2016 UMBC Training Centers
2-17

Exercises

1. Write a Java program which uses a for loop to compute
the sum of the odd integers from 1 to 100.

2. Use nested for loops to produce the following output.

1
2 1
3 2 1
4 3 2 1
5 4 3 2 1
6 5 4 3 2 1
7 6 5 4 3 2 1

3. Use nested while loops to produce the following output.

1 2 3 4 5 6 7
1 2 3 4 5 6
1 2 3 4 5
1 2 3 4
1 2 3
1 2
1

4. Print a table showing the even integers between 20 and
60 in the first column, their squares in the 2nd column,
and their cubes in the 3rd column.

JAVA PROGRAMMING CHAPTER 2: LANGUAGE COMPONENTS

©2016 UMBC Training Centers
2-18

Exercises

5. Add statements inside the for loop below such that the
following output is produced.

for (int i = -4; i <= 4; i++) {
}

-4 is negative and even
-3 is negative and odd
-2 is negative and even
-1 is negative and odd
0 is even
1 is positive and odd
2 is positive and even
3 is positive and odd
4 is positive and even

6. Write a program that uses a while loop to compute 10

factorial.

 What is the largest factorial that can be fit inside a variable of
type int?

7. Write a program that produces those sets of consecutive
integers totaling exactly 10,000.

8. Given the following variable declarations:

short x = 10;
byte b = 20;
float f = 2.0f;
long val = 1;

 What are the types of the following expressions?

x + x
x + b
x + f
10 + 'A'
x + b + val

JAVA PROGRAMMING CHAPTER 2: LANGUAGE COMPONENTS

©2016 UMBC Training Centers
2-19

This Page Intentionally Left Blank

JAVA PROGRAMMING CHAPTER 3: OBJECT-ORIENTED PROGRAMMING

©2016 UMBC Training Centers
3-1

Chapter 3:
Object-Oriented Programming

1) Defining New Data Types.. 3-2

2) Constructors ... 3-8

3) The String Class ... 3-9

4) String Literals... 3-12

5) Documentation ... 3-14

6) Packages.. 3-16

7) The StringBuffer Class ... 3-17

8) Naming Conventions.. 3-19

9) The Date Class .. 3-20

10) The import Statement ... 3-22

11) Deprecation... 3-23

12) The StringTokenizer Class.. 3-24

13) The DecimalFormat Class... 3-25

JAVA PROGRAMMING CHAPTER 3: OBJECT-ORIENTED PROGRAMMING

©2016 UMBC Training Centers
3-2

Defining New Data Types

• Primitive types are provided in Java for the solution of
general-purpose problems.

• For solutions to specific problems, Java allows you to
define your own data types. New data types are created
using the class keyword.

• New data types are created in order to fill in the gaps left
by general purpose programming languages.

• Once a new data type has been defined, programmers
can create instances of them. Each instance of a new
data type is called an object.

• In the real world, an object is an idea or a “thing” that is
physical or conceptual. Software is easier to understand
and maintain when code can be mapped to the physical
problem for which the software is designed.

 For example if you are simulating an elevator in software, it
would be nice to have an object of data type Elevator with
operations up, down, pickup, discharge, and stop.

• All objects have two general characteristics: behavior and
attributes.

 For example, any object of type Automobile would have the
following common attributes and behavior.

• attributes: weight, length, color, fuelCapacity
• behaviors: start, stop, accelerate, turn

JAVA PROGRAMMING CHAPTER 3: OBJECT-ORIENTED PROGRAMMING

©2016 UMBC Training Centers
3-3

Defining New Data Types

• Suppose we model a Person.

 Each object of type Person would have the following
characteristics.

• attributes: age, weight, height, eyeColor
• behavior: eat, sleep, talk, walk

• An object's attributes and behavior are described by a
class definition.

 Sometimes attributes are called fields or data.

• The collection of all the data for an object is called the state
of the object.

 A behavioral characteristic is called a function, an action, or a
method.

• The complete set of public methods for a class is typically
called the public interface.

• A class can also represent an idea or a concept. Note the
methods and data fields for each item below.

 An object of type File would have:

• attributes: size, type, createDate
• behaviors: open, close, read, write

 An object of type Fraction would have:

• attributes: numerator, denominator
• behaviors: add, print, multiply

JAVA PROGRAMMING CHAPTER 3: OBJECT-ORIENTED PROGRAMMING

©2016 UMBC Training Centers
3-4

Defining New Data Types

• In a Java Program, to define any of these new types using
object-oriented principles, we would first map each of
them into a class.

 The class keyword is used to define new data types.

• Before an Automobile object can be defined, a class
named Automobile would be created.
public class Automobile{
 // Attributes represented as variables here
 // Behaviors represented as methods here
}

• Before a File object can be defined, a class named File
would be created.
public class File{
 // Attributes represented as variables here
 // Behaviors represented as methods here
}

• Before a Fraction object can be defined, a class named
Fraction would be created.
public class Fraction{
 // Attributes represented as variables here
 // Behaviors represented as methods here
}

 Therefore, a class combines data and methods and acts as a
template or blue print for constructing objects of that data type.

• To define a new data type, you must specify both the
attributes for the new data type and the methods for the new
data type.

• The packaging of these two characteristics is known as
encapsulation.

JAVA PROGRAMMING CHAPTER 3: OBJECT-ORIENTED PROGRAMMING

©2016 UMBC Training Centers
3-5

Defining New Data Types

• Suppose you wish to define a new data type called a
Loan.

 The first step would be to define a class named Loan, as
shown below.

// characteristics of a Loan will be placed within
// the class definition
public class Loan {

}

 An object of type Loan would have a name, amount, interest
rate, and length of loan to which it is associated. These pieces
of data would be defined as variables inside of the class as
shown below.

public class Loan {
 // Loan attributes declared here
 String name;
 double amount, rate;
 int years;
}

 An object of type Loan would also have some behavior, such
as the ability to set the name of the loan. Therefore, also
appearing in the template for a loan would be the methods that
realize the behavior of a loan.

public class Loan {
 // Loan attributes declared here
 String name;
 double amount, rate;
 int years;

 // Loan behavior declared here
 public void setName(String n) {
 // method functionality would be placed here
 }
}

JAVA PROGRAMMING CHAPTER 3: OBJECT-ORIENTED PROGRAMMING

©2016 UMBC Training Centers
3-6

Defining New Data Types

• A complete definition for the Loan class is shown below.

Loan.java

1. package examples.ooprogramming;
2. public class Loan {
3. String name;
4. double amount, rate;
5. int years;
6.
7. public void setName(String n) {
8. name = n;
9. }
10. public void setAmount(double a) {
11. amount = a;
12. }
13. public void setRate(double r) {
14. rate = r;
15. }
16. public void setYears(int y) {
17. years = y;
18. }
19. public String getName() {
20. return name;
21. }
22. public double getAmount() {
23. return amount;
24. }
25. public double getRate() {
26. return rate;
27. }
28. public int getYears() {
29. return years;
30. }
31. }

 The above class encapsulates both the data and methods of
the class.

• Note that the above class does not contain a main method.
• The idea behind this class is that it can be used by any

number of programs.

JAVA PROGRAMMING CHAPTER 3: OBJECT-ORIENTED PROGRAMMING

©2016 UMBC Training Centers
3-7

Defining New Data Types

• Although many programs could use the Loan data type,
we present a small test program below. The test program
simply:

 creates a new object of type Loan using the new operator;

 sets the data inside the new object by calling methods on the
object; and

 gets the data from the object by calling methods on the object.

LoanTest.java

1. package examples.ooprogramming;
2. public class LoanTest {
3. public static void main(String args[]) {
4. Loan myLoan = new Loan();
5.
6. myLoan.setName("James");
7. myLoan.setAmount(250000);
8. myLoan.setRate(4.0);
9. myLoan.setYears(30);
10.
11. String theName = myLoan.getName();
12. System.out.println(theName);
13. // Could have been combined as
14. // System.out.println(myloan.getName());
15.
16. System.out.println(myLoan.getAmount());
17. System.out.println(myLoan.getRate());
18. System.out.println(myLoan.getYears());
19. }
20. }

• Our final topic on defining a class will be about
constructors.

 There are many additional topics to discuss about Object
Orientation but, because the topic is extensive, we defer much
of this information until later chapters.

JAVA PROGRAMMING CHAPTER 3: OBJECT-ORIENTED PROGRAMMING

©2016 UMBC Training Centers
3-8

Constructors

• You probably noticed that the data for a Loan object was
given through a set of methods.
Loan myLoan = new Loan();
myLoan.setName("James");
myLoan.setAmount(250000);
myLoan.setRate(4.0);
myLoan.setYears(30);

• It might have been easier if the data could have been
given during the construction of the new object.
Loan myLoan= new Loan("James", 250000, 4.0, 30);

 Such a method is in fact called a constructor.

• Classes usually provide one or more of them.
• Full details about constructors will be given later.

 For now we merely state that a constructor is a method that:

• must have the same name as the class; and
• cannot have a return value.

• Therefore, a Loan constructor might look like what is
shown below.
public Loan(String n, double a, double r, int y) {
 name = n;
 amount = a;
 rate = r;
 years = y;
}

 The above constructor would be added to the existing Loan
class.

JAVA PROGRAMMING CHAPTER 3: OBJECT-ORIENTED PROGRAMMING

©2016 UMBC Training Centers
3-9

The String Class

• At this time, we will present some simple classes that are
part of the SDK.

• The first class we will discuss is the String class.

 This class has already been built. Therefore, a variety of
methods already exists for this class.

 We will demonstrate a few of them in the example that follows.

 Keep in mind that the String class can be thought of as part
of a library.

• Somewhere in the SDK is a file named String.java that
has been compiled into a file called String.class.

• These files are analogous to the Loan.java and
Loan.class files that we developed on the previous pages.

JAVA PROGRAMMING CHAPTER 3: OBJECT-ORIENTED PROGRAMMING

©2016 UMBC Training Centers
3-10

The String Class
StringTest.java

1. package examples.ooprogramming;
2. public class StringTest {
3. public static void main(String args[]) {
4.
5. String name = new String("Jeremy Walker");
6. System.out.println("Name is " + name);
7.
8. int len = name.length();
9. System.out.println("length is " + len);
10.
11. int place = name.indexOf(' ');
12. System.out.print("a space was found ");
13. System.out.println("at position " + place);
14.
15. String first = name.substring(0, place);
16. System.out.println("First Name is " + first);
17.
18. String last = name.substring(place + 1);
19. System.out.println("Last Name is " + last);
20.
21. char firstNameInit = first.charAt(0);
22. char lastNameInit = last.charAt(0);
23.
24. System.out.println("Initials are " +
25. firstNameInit + lastNameInit);
26. }
27. }

 In the above code, we have used several String methods.

name.indexOf(' ');
name.length();
first.charAt(0);
name.substring(0, place);
name.substring(place + 1);

 Note that the last two methods have the same name but
different parameter lists. This is called method overloading.

 Note also the use of a String constructor.

String name = new String("Jeremy Walker");

JAVA PROGRAMMING CHAPTER 3: OBJECT-ORIENTED PROGRAMMING

©2016 UMBC Training Centers
3-11

The String Class

• String objects are not primitive data. They are reference
data. We will take a careful look at this.

 When one defines an int and then assigns a value to the
storage for that int, the situation looks like what is shown
below.

int value; value = 50;

value value
??? 50

 The situation is slightly different for String (or any other)
objects. String objects are references to values – not values
themselves.

String name; name = new String("mike");

name name
??? mike

• String objects are immutable. This means that the actual
object to which the reference points cannot be altered.

 Therefore, in the code shown below:

String name = new String("Michael");
name = name + "Rodriguez";

• the first line creates a new String object; and.
• the second line results in name now referencing a completely

different String object that is a result of concatenating
"Rodriguez" to the value of the existing object.

• Soon, we will introduce the StringBuffer class, which
is a better choice when a String needs manipulating.

JAVA PROGRAMMING CHAPTER 3: OBJECT-ORIENTED PROGRAMMING

©2016 UMBC Training Centers
3-12

String Literals

• In order to create an object in Java, you must use the new
operator to explicitly create an object.
Loan m = new Loan();
String x = new String("Michael Saltzman");

• However, since String objects are so commonly used,
Java relaxes this rule through the use of a literal String.
String x = "Hello";
String text = "This literal String is "
 + "concatenated to this literal String";

 Keep in mind that the String class is the only class that does
not require the use of the new keyword to create an object.

• When you create a String with the new keyword, Java
always creates a new object.

String x = new String("Some Data");
String y = new String("Some Data");

x y

Some Data Some Data

• However, when you use the short form, you do not always
get a new object.

String a = "Hello";
String b = "Hello";

a b

Hello

• In the diagram above, both a and b reference the same
String object.

JAVA PROGRAMMING CHAPTER 3: OBJECT-ORIENTED PROGRAMMING

©2016 UMBC Training Centers
3-13

String Literals

• The use of String literals leads to some tricky idioms
that must be understood. All of them can be
demonstrated with the following program.

StringComparisons.java

1. package examples.ooprogramming;
2. public class StringComparisons {
3. public static void main(String args[]){
4. String x = new String("mike");
5. String y = new String("mike");
6. System.out.println(x == y);
7. String b = "mike";
8. String c = "mike";
9. System.out.println(b == c);
10. System.out.println(x == c);
11. x = "mike";
12. y = "mike";
13. System.out.println(x == y);
14. System.out.println(x == c);
15. }
16. }

 The output of the above program is shown below.

false
true
false
true
true

• To determine if the sequence of characters in two String
objects are equal rather than testing the references, the
equals method of the String class can be used rather
than the == operator.

String x = new String("some data to test");
String y = new String("some data to test");
String z = new String("some Data to test");
boolean result = x.equals(y); //would result in true
result = x.equals(z); //would result in false

JAVA PROGRAMMING CHAPTER 3: OBJECT-ORIENTED PROGRAMMING

©2016 UMBC Training Centers
3-14

Documentation

• Now that we have presented a few methods from the
String class, how do we determine the names of all of
the methods available?

 When you download the SDK, you will also want to download
the documentation files.

 The documentation files ("docs") are delivered as a zip file.
They are typically unzipped to the same directory as the SDK.

 The picture below illustrates a partial directory structure of the
SDK installation including the documentation - the "docs"
directory.

bin demo docs include jre lib

api guide images relnotes tooldocs

JAVA_HOME

index.html

 JAVA_HOME is usually the value of an environment variable
specifying the actual location and name of the directory where
the SDK was installed. For example, on my machine this is
C:\Program Files\Java\jdk1.8.0_66

• Opening the index.html file (the one located in the api
directory) in a browser should display the window shown on
the next page.

JAVA PROGRAMMING CHAPTER 3: OBJECT-ORIENTED PROGRAMMING

©2016 UMBC Training Centers
3-15

Documentation

• Below is a picture of the index.html file.

 Frame 1 (upper left)

• Since the available classes number in the hundreds, they
are organized into packages of similar classes. Each
package is listed in this frame.

 Frame 2 (lower left)

• This contains a list of all the classes provided in the SDK.
• Clicking on a specific package name in frame 1 limits the list

of classes in frame 2 to those within the specified package.
 Frame 3 (right)

• This provides details for each class chosen from frame 2.

• As you go through this course, you will become very
familiar with some of the standard Java packages.

JAVA PROGRAMMING CHAPTER 3: OBJECT-ORIENTED PROGRAMMING

©2016 UMBC Training Centers
3-16

Packages

• The first package we will study is the java.lang
package.

 If you wish to see only the classes in this package, just click on
it in the upper left-hand frame.

 The lower left-hand frame will list only the classes in the
java.lang package.

 This package is the only package that the commands, javac
and java, will find without any help from the programmer.

• For other packages, you will have to import them as you will
soon see.

• The java.lang package consists of some fundamental
classes, such as the String class, as well as some
others that we will soon see.

• As you go through this course, you will become familiar
with the core Java packages.

 java.lang Standard Language classes

 java.util Utility classes

 java.io Input and Output classes

 java.net Networking classes

JAVA PROGRAMMING CHAPTER 3: OBJECT-ORIENTED PROGRAMMING

©2016 UMBC Training Centers
3-17

The StringBuffer Class

• The StringBuffer class is another class in the
java.lang package.

• A StringBuffer is like a String, except that it can be
modified - unlike a String, which is immutable.

 The principal operations on a StringBuffer are the append
and insert methods.

• The append methods always add to the end of the buffer.
• The insert methods add to a specified point in the buffer.

 The toString method returns the contents of the
StringBuffer as a String.

 A StringBuffer has both a length and a capacity
method.

• The length method returns the current number of
characters stored in the StringBuffer.

• The capacity method returns the number of characters
that the StringBuffer is capable of storing before it has to
dynamically resize itself to fit more.

• The example on the next page demonstrates several of
the methods in the StringBuffer class discussed
above.

JAVA PROGRAMMING CHAPTER 3: OBJECT-ORIENTED PROGRAMMING

©2016 UMBC Training Centers
3-18

The StringBuffer Class

• The example below demonstrates several of the methods
available in the StringBuffer class.

StringBufferTest.java

1. package examples.ooprogramming;
2. public class StringBufferTest{
3. public static void main(String args[]){
4. StringBuffer sb = new StringBuffer();
5. System.out.print("length:" + sb.length());
6. System.out.println(" cap:" + sb.capacity());
7. System.out.println();
8. sb.append(123456789);
9. System.out.println(sb.toString());
10. System.out.print("length:" + sb.length());
11. System.out.println(" cap:" + sb.capacity());
12. System.out.println();
13. sb.insert(0, "abcdefghi");
14. System.out.println(sb.toString());
15. System.out.print("length:" + sb.length());
16. System.out.println(" cap:" + sb.capacity());
17. System.out.println();
18. sb.replace(2, 5, "Hello");
19. System.out.println(sb.toString());
20. System.out.print("length:" + sb.length());
21. System.out.println(" cap:" + sb.capacity());
22. System.out.println();
23. }
24. }

 Below is the output from the example.

length:0 cap:16

123456789
length:9 cap:16

abcdefghi123456789
length:18 cap:34

abHellofghi123456789
length:20 cap:34

JAVA PROGRAMMING CHAPTER 3: OBJECT-ORIENTED PROGRAMMING

©2016 UMBC Training Centers
3-19

Naming Conventions

• Now that we have seen some examples of variable
names, methods, and classes, it is important to point out
that Sun Microsystems has established some de facto
standards on naming conventions.

 It is strongly suggested that you stick with these conventions
since experience has shown that doing so saves time and effort
in the end.

• Variable names should begin with a lowercase letter of the
alphabet followed by letters, digits, underscores(_), and
dollar signs ($).

 Words within the name of the variable should have their first
letter capitalized. Here are some examples.

data myName dayOfTheWeek employeeName

• Method names should obey the same rules as variables.
sqrt toString actionPerformed readLine

• Class names should obey the same rules as variables,
except the first letter of a class should be capitalized.

StringBuffer String Loan Button

• Constants should be capitalized and contain the
underscore(_) between "words."

TAX_RATE PI

JAVA PROGRAMMING CHAPTER 3: OBJECT-ORIENTED PROGRAMMING

©2016 UMBC Training Centers
3-20

The Date Class

• We have been referring to Java classes by their class
name only. For example, we have referred to the String
class and the StringBuffer class.

• In reality, since most classes are contained in a package,
the package name is also part of the name for a class.
Therefore, we speak of the fully qualified name for a class.

 For example, the fully qualified name of the:

• String class is java.lang.String; and
• StringBuffer class is java.lang.StringBuffer.

• When your code is compiled, each class encountered that
is not a part of the java.lang package must have its
fully qualified name specified in some way in your code.

• The Date class is the first class that we examine, which is
not a part of the java.lang package.

 The Date class exists in the java.util package so you must
do only one of the following.

• Use the fully qualified name of the class in the body of the
code as shown here.

 java.util.Date today = new java.util.Date();

• Use an import statement at the top of the source file
allowing the class to be referenced by its short name, as
demonstrated in the example on the next page.

JAVA PROGRAMMING CHAPTER 3: OBJECT-ORIENTED PROGRAMMING

©2016 UMBC Training Centers
3-21

The Date Class

• The example below demonstrates the use of an import
statement to use a class that is not part of the java.lang
package.

DateTest.java

1. package examples.ooprogramming;
2. import java.util.Date;
3. public class DateTest {
4. public static void main(String args[]) {
5. Date now = new Date();
6. System.out.println(now.toString());
7. System.out.println(now);
8.
9. System.out.print("Day of the Week: ");
10. System.out.println(now.getDay());
11.
12. System.out.print("Day of the Month: ");
13. System.out.println(now.getDate());
14.
15. System.out.print("Month: ");
16. System.out.println(now.getMonth());
17.
18. System.out.print("Year: ");
19. System.out.println(now.getYear());
20.
21. System.out.print("Time: ");
22. System.out.println(now.getTime());
23. }
24. }

 Note that the Date constructor creates a Date object with
today's date in it.

 In the first println above, the toString method was called
on the Date object to convert it to a String for printing
purposes.

 When a reference type is given as an argument to the println
method, the toString method is called automatically, making
the second println above equivalent to the first.

JAVA PROGRAMMING CHAPTER 3: OBJECT-ORIENTED PROGRAMMING

©2016 UMBC Training Centers
3-22

The import Statement

• You may have noticed the import statement for the
java.util.Date class in the previous example.

• Sometimes there exists more than one class from the
same package that you wish to import.
import java.util.Date;
import java.util.StringTokenizer;

• There is a way of telling the Java compiler that you wish to
import all of the classes in the same package.
import java.util.*;

• There are tradeoffs about which style to use.

 The short style is simpler to code

 The longer style is more revealing.

• The choice of style has no effect on execution speed of
the program.

JAVA PROGRAMMING CHAPTER 3: OBJECT-ORIENTED PROGRAMMING

©2016 UMBC Training Centers
3-23

Deprecation

• When you look at the documentation for many of the
methods in the Date class, you will see that they have
been deprecated.

 This means that at some future point, these methods will no
longer be allowed.

 Nobody seems to know when that date will arrive, but it is a
good idea to follow the fixes as indicated in the documentation.

• You may also notice that when you compile the code on
the previous page, you will get a deprecation message.

 The actual output of the compiler depends on the version of the
JDK you are using.

 The -deprecation or -Xlint:deprecation options to the
compiler can be used to see more information regarding the
deprecated methods.

JAVA PROGRAMMING CHAPTER 3: OBJECT-ORIENTED PROGRAMMING

©2016 UMBC Training Centers
3-24

The StringTokenizer Class

• Another useful class in the java.util package is the
StringTokenizer class.

 This is used when you need to separate a long string into
component words. Below is an example of how you might use
this class.

StringTokenizerTest.java

1. package examples.ooprogramming;
2. import java.util.StringTokenizer;
3. public class StringTokenizerTest {
4. public static void main(String args[]) {
5. String text = "Mon Tue Wed Thu Fri Sat Sun";
6. StringTokenizer st;
7. st = new StringTokenizer(text);
8. while(st.hasMoreTokens()) {
9. System.out.println(st.nextToken());
10. }
11.
12. System.out.println("---------------");
13.
14. text = "Data,More Data-StillMoreData";
15. st = new StringTokenizer(text, ",-");
16. int numTokens = st.countTokens();
17. for(int i = 0; i < numTokens; i++){
18. System.out.println(st.nextToken());
19. }
20. }
21. }

 Notice that the StringTokenizer has several constructors,
each of which takes a different set of arguments (another
example of method overloading).

• The constructor that takes two String objects uses each of
the characters in the second String as individual delimiters
to separate the tokens in the first String.

JAVA PROGRAMMING CHAPTER 3: OBJECT-ORIENTED PROGRAMMING

©2016 UMBC Training Centers
3-25

The DecimalFormat Class

• Finally, we show some methods of the DecimalFormat
class from the java.text package.

 As the name suggests, this class is useful in formatting decimal
values.

 The example below demonstrates several formats for both a
double and an int.

DecimalFormatTest.java

1. package examples.ooprogramming;
2. import java.text.DecimalFormat;
3. public class DecimalFormatTest {
4. public static void main(String args[]) {
5. double value1 = 10000/6.0;
6. int value2 = 25;
7. DecimalFormat dfA =
8. new DecimalFormat(".##");
9. DecimalFormat dfB =
10. new DecimalFormat(".00");
11. DecimalFormat dfC =
12. new DecimalFormat(".###");
13. DecimalFormat dfD =
14. new DecimalFormat("##,###.##");
15. DecimalFormat dfE =
16. new DecimalFormat("00,000.##");
17.
18. System.out.println(dfA.format(value1));
19. System.out.println(dfB.format(value1));
20. System.out.println(dfC.format(value1));
21. System.out.println(dfD.format(value1));
22. System.out.println(dfE.format(value1));
23.
24. System.out.println(dfA.format(value2));
25. System.out.println(dfB.format(value2));
26. System.out.println(dfC.format(value2));
27. System.out.println(dfD.format(value2));
28. System.out.println(dfE.format(value2));
29.
30. }
31. }

JAVA PROGRAMMING CHAPTER 3: OBJECT-ORIENTED PROGRAMMING

©2016 UMBC Training Centers
3-26

Exercises

1. Create an application that loops through a String object
and copies the characters into a StringBuffer object,
stripping all vowels in the process.

 The code below can be used as a starting point.

public class StripVowels {
 public static void main(String args[]) {
 String input = new String("Now is the time");
 StringBuffer output = new StringBuffer();

 // Fill in missing code here

 // Print the results
 System.out.println(output);
 }
}

 The expected output should be similar to what is shown below.

java solutions.ooprogramming.StripVowels
Nw s th tm

2. Create a class named Person that represents a person's
first name, last name and age.

 The class should have the following constructors.

public Person(String first, String last, int age){}
public Person(String fullName, int age){}

 The class should have the following methods.

public String getFirstName(){}
public String getLastName(){}
public String getFullName(){}
public int getAge(){}
public String toString(){}

 Create another class that has a main method that creates
several Person objects and tests the methods defined in the
class.

JAVA PROGRAMMING CHAPTER 3: OBJECT-ORIENTED PROGRAMMING

©2016 UMBC Training Centers
3-27

Exercises

3. Write a class named PaddedString that will represent a
new data type that can be padded with whitespace.

 It is recommended that the data in the class be stored in a
StringBuffer to allow it to be manipulated easily.

StringBuffer data;

 The constructors for this class should be able to handle either a
String, an int, or a double as the parameter, even though it
will be stored in the StringBuffer.

public PaddedString(String input){ }
public PaddedString(double input){ }
public PaddedString(int input){ }

 The class should have the following methods.
// removes leading and trailing whitespace
public void trimBlanks(){ }

// adds whitespace to the left until the
// overall length is equal to fieldWidth
public void padLeft(int fieldWidth){ }

// adds whitespace to the right until the
// overall length is equal to fieldWidth
public void padRight(int fieldWidth){ }

// Methods to replace values after construction
public void replace(String input){ }
public void replace(double input){ }
public void replace(int input){ }

// Return the data as a String object
public String toString(){ }

// return the number of characters in the data
public int length(){ }

 To test the class defined above, create another class named
PadTest with a main method that creates and manipulates
several PaddedString objects.

JAVA PROGRAMMING CHAPTER 3: OBJECT-ORIENTED PROGRAMMING

©2016 UMBC Training Centers
3-28

Exercises

4. Write a class named SimpleDate that represents a
month, day, and year.

 This class should provide constructors that enable a user to
create SimpleDate objects in the following ways.

// user supplies the month, day and year
SimpleDate sd1 = new SimpleDate(12, 31, 2004);

// user only supplies the month and day
// constructor will determine current year
SimpleDate sd2 = new SimpleDate(10,31);

// user only supplies the day
// constructor will determine month & year
SimpleDate sd3 = new SimpleDate(15);

//user does not supply anything
//constructor will determine month, day & year
SimpleDate sd4 = new SimpleDate();

 The class should have the following methods.

public void setDay(int d){}
public void setMonth(int m){}
public void setYear(int y){}
public int getDay(){}
public int getMonth(){}
public int getYear() {}
public String toString(){}

 Finally, you should create an application named
SimpleDateTest, whose main method creates several
SimpleDate objects and calls several of the available
methods on each of the objects.

JAVA PROGRAMMING CHAPTER 4: METHODS

©2016 UMBC Training Centers
4-1

Chapter 4:
Methods

1) Introduction.. 4-2

2) Method Signatures ... 4-3

3) Arguments and Parameters .. 4-4

4) Passing Objects to Methods .. 4-5

5) Method Overloading.. 4-8

6) Static Methods.. 4-9

7) The Math Class .. 4-12

8) The System Class ... 4-13

9) Wrapper Classes .. 4-15

JAVA PROGRAMMING CHAPTER 4: METHODS

©2016 UMBC Training Centers
4-2

Introduction

• We have already seen that a class defines a new data
type.

Loan String StringBuffer

 Each class encapsulates data and methods.

 Each method describes an action capable of being performed
on an object of the class or by an object of the class.

• This section concentrates on methods.

 The general form of a method is:

modifier return_type name(parameter_list) {
 // body of method
}

 The modifier usually refers to an access level.

• We will assume public for now and revisit this topic later.

 The return_type refers to the data type of the value that is
returned by the method or void if no value is returned.

• Legitimate values that can be returned by a method include
Java primitive types or Java reference types.

 The parameter_list refers to the list of variables (and their
types) that will be receiving values from the call to this function.
This data is necessary so that the method can do its job.

• For example, the setRate method of the Loan class needs
to be passed a value so the new rate can be set for this
Loan.

JAVA PROGRAMMING CHAPTER 4: METHODS

©2016 UMBC Training Centers
4-3

Method Signatures

• In order to invoke a method properly, one must know the:

 name of the method;

 parameter list of the method; and

 return type of the method.

• The first two items above are known as the signature of
the method.

 The Java docs provide signatures for all methods of the SDK.

• In Java, all methods must be contained inside of a class
definition.

JAVA PROGRAMMING CHAPTER 4: METHODS

©2016 UMBC Training Centers
4-4

Arguments and Parameters

• When a method is defined, it must specify the parameters
needed to perform its task.

 Recall the setRate method of the Loan class from the
previous chapter.

public void setRate(double r){
 // body of method
}

• The method defines a single parameter of type double that
it needs to perform its task.

• The choice of the variable name r is arbitrary.

• To invoke a method, the proper arguments must be
supplied.

 The arguments sent to the method must match the parameter
list defined for the method in both number and data type.

double defaultAPR = 8.0;
Loan myLoan = new Loan();
myLoan.setRate(defaultAPR);

• The above code is an example of passing a primitive to a
method.

 A copy of the value defaultApr is passed to the parameter
r. This is called a pass-by-value.

 Now we need to discuss what happens when a reference
variable is passed as a parameter to a method.

• This is called a pass-by-reference, since it is a copy of the
reference (not the actual object) that is passed.

JAVA PROGRAMMING CHAPTER 4: METHODS

©2016 UMBC Training Centers
4-5

Passing Objects to Methods

• To demonstrate the passing of objects to methods, the
Loan class will be enhanced by adding a method allowing
one person to assume the loan of another person.

 The revised version of the Loan class is shown below.

Loan.java

1. package examples.methods;
2. public class Loan {
3. String name;
4. double amount, rate;
5. int years;
6.
7. public Loan(String n, double a, double r, int y){
8. name = n;
9. amount = a;
10. rate = r;
11. years = y;
12. }
13. public void assume(Loan source){
14. double temp = source.amount;
15. amount = amount + temp;
16. source.amount = 0.0;
17. }
18. public String toString(){
19. StringBuffer sb = new StringBuffer();
20. sb.append(name);
21. sb.append(", ");
22. sb.append(amount);
23. sb.append(", ");
24. sb.append(rate);
25. sb.append(", ");
26. sb.append(years);
27. return sb.toString();
28. }
29. // remainder of methods not shown but
30. // exist in source file
31. }

 toString method is added to simplify printing of a Loan
object.

JAVA PROGRAMMING CHAPTER 4: METHODS

©2016 UMBC Training Centers
4-6

Passing Objects to Methods

• The example below creates several Loan objects and
calls the assume method.

AssumeLoan.java

1. package examples.methods;
2. public class AssumeLoan {
3. public static void main(String args[]) {
4. Loan loanA =
5. new Loan("Mike", 100000.0, 9.0, 30);
6. Loan loanB =
7. new Loan("Alan", 50000.0, 6.0, 30);
8. System.out.println("Before: " + loanA);
9. System.out.println("Before: " + loanB);
10. loanA.assume(loanB);
11. System.out.println("After: " + loanA);
12. System.out.println("After: " + loanB);
13. }
14. }

 The variable loanA is a reference to a Loan object and the
variable loanB is a reference to a different Loan object, as
shown below.

name

amount

rate years

loanA

"Mike"100000.0

309.0

name

amount

rate years

loanB

50000.0

306.0

"Alan"

 When the assume method is invoked on loanA with the
argument loanB, a copy of the reference to loanB (not the
data to which it refers) is passed to the parameter source of
the assume method.

 Therefore, inside the assume method, source refers to the
same object which loanB refers to, as shown on the next page.

JAVA PROGRAMMING CHAPTER 4: METHODS

©2016 UMBC Training Centers
4-7

Passing Objects to Methods

• The assume method in Loan was called from the main
method of AssumeLoan as follows.

loanA.assume(loanB);

 The assume method itself is shown below.

public void assume(Loan source){
 double temp = source.getAmount();
 amount = amount + temp;
 source.setAmount(0.0);
}

 Inside of the assume method, source is referencing the data
in the object to which loanB refers.

name

amount

rate years

loanB

50000.0

306.0

"Alan"

source

 The unqualified amount variable is the value for the amount of
the object the method was called upon (the host object).

JAVA PROGRAMMING CHAPTER 4: METHODS

©2016 UMBC Training Centers
4-8

Method Overloading

• You may have noticed that any of the primitive Java types
can be printed with the println method.

double x = 50;
int y = 20;
System.out.println(x);
System.out.println(y);

 The println methods used above have different signatures.

public void println(int val);
public void println(double val);

• This is an example of method overloading (more than
one method has the same name), which is allowed in
Java as long as the parameter lists are different.

• You will often see constructors overloaded. A few from
the StringBuffer class are shown below.

public StringBuffer();
public StringBuffer(int length);
public StringBuffer(String text);

• Any method can be overloaded. For example, there might
be two setRate methods.
public void setRate(double r){
 // body of method
}
public void setRate() {
 // set rate to some default value
}

JAVA PROGRAMMING CHAPTER 4: METHODS

©2016 UMBC Training Centers
4-9

Static Methods

• As we have seen, many methods are executed on
objects, and typically operate on data within an object.
Loan myLoan = new Loan("Alan", 100000.0, 8.0, 30);
double r = myLoan.getRate();

StringBuffer sb = new StringBuffer("Boston");
sb.append(" Red Sox");

Date today = new Date();
int year = today.getYear();

 Methods that are executed on an object are called instance
methods.

• This is because an object is an instance of a class.

 The data stored inside an object is called object data or
instance data.

• However, some methods are not executed on objects and
make no use of the data inside of an object.

 This type of method is called a static method.

 Static methods use the static qualifier in their definition.

 Static methods are viewed as utility functions that perform
some type of generic calculation.

 A static method invocation typically has the name of the class in
which it is defined to the left of the dot (ClassName.method).

• The example on the next page demonstrates the defining
and use of static methods.

JAVA PROGRAMMING CHAPTER 4: METHODS

©2016 UMBC Training Centers
4-10

Static Methods

• The example below defines a static method named boxIt
that is called from within the main method.

BorderPrinter.java

1. package examples.methods;
2. public class BorderPrinter {
3. public static void main(String args[]){
4. String s = "Border Printer";
5. BorderPrinter.boxIt(s);
6. s = "Place a border around this also";
7. boxIt(s);
8. }
9.
10. public static void boxIt(String data){
11. int len = data.length();
12. for(int i = 0; i < len + 4; i++){
13. System.out.print('*');
14. }
15. System.out.println();
16. System.out.println("* " + data + " *");
17. for(int i = 0; i < len + 4; i++){
18. System.out.print('*');
19. }
20. System.out.println('\n');
21. }
22. }

 Neither main nor boxIt are called on objects.

• Each is defined as a static method using the keyword
static.

• boxIt is called from within the class where it is defined and
therefore, it is permissible to exclude the class name as a
qualifier.

• The example on the next page expands upon the use of
static methods.

JAVA PROGRAMMING CHAPTER 4: METHODS

©2016 UMBC Training Centers
4-11

Static Methods

• The example below defines a static method named
titleCase and also calls the static method boxIt from
the previous example.

MessagePrinter.java

1. package examples.methods;
2. import java.util.*;
3. public class MessagePrinter {
4. public static void main(String args[]){
5. String s = "Static Method Demo";
6. BorderPrinter.boxIt(s);
7. String msg = "message to be converted";
8. titleCase(msg);
9. msg = "another simple message";
10. titleCase(msg);
11. }
12. public static void titleCase(String s){
13. StringTokenizer st = new StringTokenizer(s);
14. String tmp;
15. String first;
16. while(st.hasMoreTokens()){
17. tmp = st.nextToken();
18. first = tmp.substring(0,1).toUpperCase();
19. System.out.print(first);
20. System.out.print(tmp.substring(1) + " ");
21. }
22. System.out.println();
23. }
24. }

• Since the boxIt method is not defined in the same class
as where it is being called, it is required that it be qualified
with the class name in order for the compiler to know
where to find the definition.

BorderPrinter.boxIt(s);

• The titleCase method does not have to be qualified
since it is defined in the same class from which it is being
called.

JAVA PROGRAMMING CHAPTER 4: METHODS

©2016 UMBC Training Centers
4-12

The Math Class

• This class is a little different from other classes for several
reasons.

 There can be no objects defined.

 All of the methods in this class are static.

• It is expected that the methods in the Math class will be
used in a wide variety of applications, which may need
some mathematical functionality.

 These methods are to be viewed as utility functions and are not
executed on objects.

 The example below tests several methods in the Math class.

MathTest.java

1. package examples.methods;
2. public class MathTest {
3. public static void main(String args[]) {
4. double y;
5.
6. // square root of a number
7. y = Math.sqrt(25.0);
8. System.out.println("Sqrt: " + y);
9.
10. // 3 raised to the 4th power
11. y = Math.pow(3.0, 4.0);
12. System.out.println("Powers: " + y);
13.
14. // random number between 0 and 1
15. y = Math.random();
16. System.out.println("Random: " + y);
17.
18. // Round a number to nearest long
19. long z;
20. z = Math.round(-2.6);
21. System.out.println("Rounding: " + z);
22. }
23. }

JAVA PROGRAMMING CHAPTER 4: METHODS

©2016 UMBC Training Centers
4-13

The System Class

• The System class is another useful class that consists
mainly of static methods.

• The exit method terminates the currently running JVM.

 The int argument passed to this method serves as a status
code.

• By convention, a nonzero status code indicates abnormal
termination.

• The currentTimeMillis method returns a long which
is the number of milliseconds that have elapsed since the
beginning of Jan 1, 1970.

 The Date class has a constructor that takes a long to create a
Date object.

 Calling currentTimeMillis twice within a program can
provide the ability to determine the length of time elapsed, by
calculating the difference between the two values.

• The example on the next page demonstrates calling some
static methods from the System class.

JAVA PROGRAMMING CHAPTER 4: METHODS

©2016 UMBC Training Centers
4-14

The System Class
SystemStuff.java

1. package examples.methods;
2. import java.util.Date;
3. public class SystemStuff {
4. public static void main(String args[]) {
5. long t1 = System.currentTimeMillis();
6. System.out.println("ms = " + t1);
7.
8. Date today = new Date(t1);
9. System.out.println("Today is: " + today);
10.
11. if(Math.random() < .5){
12. String s = "JVM terminating early";
13. System.out.println(s);
14. System.exit(1);
15. }
16.
17. long day = 1000*60*60*24;
18. Date tomorrow = new Date(t1 + day);
19. System.out.println("Tomorrow: " + tomorrow);
20.
21. long t2 = System.currentTimeMillis();
22. System.out.println("# of ms: " + (t2-t1));
23.
24. System.out.println("JVM terminating");
25. }
26. }

• The example above will terminate in one of two ways,
depending on the random value obtained inside the if
statement.

JAVA PROGRAMMING CHAPTER 4: METHODS

©2016 UMBC Training Centers
4-15

Wrapper Classes

• There is a set of classes in Java which provide object
versions of the primitive data types.

 These classes are collectively referred to as wrapper classes.

 The class names are based on the primitive data type names
and are listed below.

Byte Double Float Integer
Long Short Boolean Character

 The benefit of wrapping a primitive inside an object will be
studied in a later chapter.

• The wrapper classes also contain many static methods for
converting a primitive to a String or a String to a
primitive.

 Several examples of these static methods are shown below.

• Converting a String to an int
int val = Integer.parseInt("1234");

• Converting an int to a String
String s = Integer.toString(1234);

• Converting a String to a double
double val = Double.parseDouble("12.34");

• Determining the type of a particular character
String text = "abc ABC 123";
for(int i = 0; i < text.length(); i++){
 char c = text.charAt(i);
 System.out.println(Character.isLowerCase(c));
 System.out.println(Character.isWhitespace(c));
 System.out.println(Character.isDigit(c));
}

JAVA PROGRAMMING CHAPTER 4: METHODS

©2016 UMBC Training Centers
4-16

Exercises
1. Write an application that generates random numbers.

 Generate at least 10,000 numbers, keeping two counts:

• those that are greater than .5; and
• those that are less than or equal to .5.

 Print the results of the two counts.

 After 10,000 numbers have been generated, continue to
generate random numbers and update the two counts, until one
of the two conditions below is met.

• The two counts are equal
• 1,000,000 numbers have been generated

 When either condition is met:

• print out the time it took to run the program using the
currentTimeMillis method from the System class; and

• terminate the program using the exit method of the
System class, passing an argument of 1 to the exit
method if the counts are equal or an argument of 2 if
1,000,000 is reached.

2. Write a class named Count, which contains static

methods that determine the number of characters of
certain types held in a String or StringBuffer.

 The class should not have any constructors but should have the
following static methods.

public static int digits(String text){}
public static int whitespace(String text){}
public static int digits(StringBuffer text){}
public static int whitespace(StringBuffer text){}

• This class can be used as a utility class similar to the Math
class.

JAVA PROGRAMMING CHAPTER 4: METHODS

©2016 UMBC Training Centers
4-17

Exercises

3. Modify the SimpleDate class created as an exercise in
the previous chapter so that it allows a user to construct a
SimpleDate by passing a String of the form
"m/d/yyyy."

 A copy of SimpleDate.java can be found in the starters
directory of this chapter if necessary (but it is recommended
that you use the one you developed previously).

4. Make the following changes to a copy of the Loan class
that can be found in the starters directory for this chapter.

 Add a method to compute the amount of the monthly payment
based on the formula below.

M = P * (J / (1 - ((1 + J) ** - N)))

where

M = Monthly payment
P = Initial Loan Amount
I = Interest rate
J = I / (12 x 100) Monthly Interest in decimal form
N = Number of months over which loan is amortized

 Test your program by computing the monthly payments for a
$200000 mortgage at 7.5% over 30 years.

• The result should be 1398.43.

JAVA PROGRAMMING CHAPTER 4: METHODS

©2016 UMBC Training Centers
4-18

This Page Intentionally Left Blank

JAVA PROGRAMMING CHAPTER 5: ARRAYS

©2016 UMBC Training Centers
5-1

Chapter 5:
Arrays

1) Introduction.. 5-2

2) Processing Arrays .. 5-3

3) Copying Arrays .. 5-4

4) Passing Arrays to Methods ... 5-6

5) Arrays of Objects ... 5-7

6) The Arrays Class.. 5-10

7) Command Line Arguments... 5-11

8) Multidimensional Arrays .. 5-12

JAVA PROGRAMMING CHAPTER 5: ARRAYS

©2016 UMBC Training Centers
5-2

Introduction

• An array is an ordered collection of data items all of
whose types are the same.

• In Java, an array is an object, so it must have a reference
pointing to it.

 The reference can be declared in either of the following ways.

• We will use an array of int data types for our examples, but
any data type would do.
int values[];
int [] values;

• Either of the above defines a reference to an array of
integers. However, there is no array yet.

 The storage for the above code looks like what is shown below.
values
????

 To make the variable values reference an array, we must
construct the array object using the new operator.

values = new int[4];

• Now the storage changes to the following.

values

0
0
0
0

• The declaration and initialization could be combined as:

int values[] = new int[4];

JAVA PROGRAMMING CHAPTER 5: ARRAYS

©2016 UMBC Training Centers
5-3

Processing Arrays

• Since an array is an object, it has certain properties.

 The length property is provided for all arrays.

• length is a property (not a method), so it is not followed by
a set of parenthesis.
int x = values.length; //length of array

• Arrays are typically processed with loops.

 The code below demonstrates this by setting each element of
the array and then by totaling these elements.

int sum = 0, i;
int values[] = new int[5];
for(i = 0; i < values.length; i++)
 values[i] = i;
for(i = 0; i < values.length; i++)
 sum += values[i];

• An array can also be created and initialized with the
following syntax.

int values [] = {0, 1, 2, 3, 4};

JAVA PROGRAMMING CHAPTER 5: ARRAYS

©2016 UMBC Training Centers
5-4

Copying Arrays

• Since an array is a reference type, you need to be careful
when you are copying one array to another.

 Examine the following code and accompanying pictures.

int values[] = {10, 20, 30};
int data[] = {40, 50, 60};

values

10
20
30

data
40
50
60

 When you attempt to copy one to the other using an
assignment operator, only the reference is copied.

values = data;

values
10
20
30

data
40
50
60

• This is not a true copy in that only one set of values exists,
and any change to the object referenced by values will
result in a change to the object referenced by data.

• Nothing is referencing the object containing the values {10,
20, 30} and, as such, this object and the memory it occupies
is available for garbage collection.

• If a true copy of an array of primitives is desired, Java
provides a static method named arraycopy in the
System class as shown on the next page.

JAVA PROGRAMMING CHAPTER 5: ARRAYS

©2016 UMBC Training Centers
5-5

Copying Arrays

• Using the System.arraycopy method to copy one array
to another is detailed below.
System.arraycopy(src, srcPos, dest, destPos, length);

 The parameters of the arraycopy method follow.

• src - source array (copy from)
• srcPos - starting index in source array
• dest - destination array (copy to)
• destPos - starting index in destination array
• length - number of elements to be copied

• The code below demonstrates the use of the arraycopy
as a way of setting values equal to an actual copy of
data.

int values[] = {10, 20, 30};
int data[] = {40, 50, 60};

values

10
20
30

data
40
50
60

 System.arraycopy(data, 0, values, 0, 3);

values

40
50
60

data
40
50
60

 Below is an example of copying only part of an array into
another using the arraycopy method.

System.arraycopy(data, 0, values, 1, 2);

JAVA PROGRAMMING CHAPTER 5: ARRAYS

©2016 UMBC Training Centers
5-6

Passing Arrays to Methods

• The example below demonstrates what happens when an
array is passed as an argument to a method.

 Since an array is a reference type, only the reference is
passed, rather than the object itself.

 This results in the method having direct access to all the
elements of the array.

PassAnArray.java

1. package examples.arrays;
2. public class PassAnArray {
3. public static void main(String args[]) {
4. int [] x = { 1, 2, 3, 4, 5};
5. print(x);
6. multiply(x, 3);
7. print(x);
8. }
9. public static void multiply(int [] p, int val){
10. for(int i = 0; i < p.length; i++)
11. p[i] *= val;
12. }
13. public static void print(int [] p) {
14. for(int i = 0; i < p.length; i++)
15. System.out.print(p[i] + " ");
16. System.out.println();
17. }
18. }

 Inside the print and multiply methods above, the reference
p refers to the same object that is referenced by x.

• Now that we have demonstrated several issues of dealing
with an array of primitives, there are a few other details to
investigate when dealing with an array of reference types.

• The example on the next page defines a Point class that
will be used to investigate arrays of objects.

JAVA PROGRAMMING CHAPTER 5: ARRAYS

©2016 UMBC Training Centers
5-7

Arrays of Objects

• The examples below define a Point class and an
application that creates an array of Point objects.

Point.java

1. package examples.arrays;
2. public class Point {
3. int xc, yc;
4.
5. public Point(int x, int y) {
6. xc = x;
7. yc = y;
8. }
9. public int getXc() {
10. return xc;
11. }
12. public int getYc() {
13. return yc;
14. }
15. public String toString() {
16. return xc + "," + yc;
17. }
18. }

PointTest.java

1. package examples.arrays;
2. public class PointTest {
3. public static void main(String args[]) {
4. Point data[];
5. data = new Point[3];
6. data[0] = new Point(2,3);
7. data[1] = new Point(4,5);
8. data[2] = new Point(6,7);
9. for (int i = 0; i < data.length; i++)
10. System.out.println(data[i]);
11. }
12. }

JAVA PROGRAMMING CHAPTER 5: ARRAYS

©2016 UMBC Training Centers
5-8

Arrays of Objects

• The diagrams below demonstrate the memory allocation
for each object as the main method is executed.
Point data[];

data
????

data = new Point[3];

data

null
null
null

data[0] = new Point(2,3);

data

2
xc

3
yc

null
null

data[1] = new Point(4,5);

data

2
xc

3
yc

null

4
xc

5
yc

data[2] = new Point(6,7);

data

2
xc

3
yc

4
xc

5
yc

6
xc

7
yc

 The code could also have been written as follows.

Point data[] = {new Point(2,3),
 new Point(4,5),
 new Point(6,7)};

JAVA PROGRAMMING CHAPTER 5: ARRAYS

©2016 UMBC Training Centers
5-9

Arrays of Objects

• As with arrays of primitives, you should be careful when
copying arrays of objects.

 The two arrays shown below will be used to demonstrate the
details of copying arrays of objects.

Point values[] = {new Point(2,3), new Point(4,5)};
Point data[] = {new Point(6,7), new Point(8,9)};

values 2
xc

3
yc

4
xc

5
yc

data 6
xc

7
yc

8
xc

9
yc

 Assigning values equal to data merely results in the two
references pointing to the same array of references as shown
below.

values = data;

values 2
xc

3
yc

4
xc

5
yc

data 6
xc

7
yc

8
xc

9
yc

 Even if System.arraycopy is used, only the references in the
array are copied.

System.arraycopy(data, 0, values, 0, 2);

values 2
xc

3
yc

4
xc

5
yc

data 6
xc

7
yc

8
xc

9
yc

JAVA PROGRAMMING CHAPTER 5: ARRAYS

©2016 UMBC Training Centers
5-10

The Arrays Class

• The Arrays class is another utility class in the
java.util package containing several overloaded static
methods for manipulating an array of any data type.

 The example below demonstrates several of these methods.

ManipulateArrays.java

1. package examples.arrays;
2. import java.util.Arrays;
3. public class ManipulateArrays {
4. public static void main(String args[]){
5. int x [] = {3, 7, 1, 9, 2, 10};
6. String s [] = {"Mike", "Alan", "Susan"};
7. printArray(x);
8. printArray(s);
9. System.out.println("\nSorted Order");
10. Arrays.sort(x);
11. Arrays.sort(s);
12. printArray(x);
13. printArray(s);
14. System.out.print("Filling an array: ");
15. Arrays.fill(s, "NotUsed");
16. printArray(s);
17. }
18. public static void printArray(int a[]){
19. for(int i = 0; i < a.length; i++)
20. System.out.print(a[i] + " ");
21. System.out.println();
22. }
23. public static void printArray(String s[]){
24. for(int i = 0; i < s.length; i++)
25. System.out.print(s[i] + " ");
26. System.out.println();
27. }
28. }

JAVA PROGRAMMING CHAPTER 5: ARRAYS

©2016 UMBC Training Centers
5-11

Command Line Arguments

• In Java, command line arguments are passed to the main
method of the application as an array of String objects.
This is demonstrated in the following example.

Arguments.java

1. package examples.arrays;
2. public class Arguments {
3. public static void main(String args[]) {
4. if (args.length == 0){
5. System.out.println("Need arguments");
6. System.exit(1);
7. }
8. System.out.println("FORWARD");
9. for (int i = 0; i < args.length; i++)
10. System.out.println(args[i]);
11. System.out.println("\nBACKWARD");
12. for (int i = args.length - 1; i >= 0; i--)
13. System.out.println(args[i]);
14. }
15. }

 When a Java program is executing, all array references are
checked to see that they are within the bounds of the array.

• An array subscript less than zero or greater than or equal to
the upper bound of the array will cause a run time error.

• Some of these errors can be subtle as shown below.
OffByOne.java

1. package examples.arrays;
2. public class OffByOne {
3. public static void main(String args[]) {
4. for (int i = 0; i <= args.length; i++)
5. System.out.println(args[i]);
6. }
7. }

 If the application above is run, the JVM will throw an exception
at runtime.

JAVA PROGRAMMING CHAPTER 5: ARRAYS

©2016 UMBC Training Centers
5-12

Multidimensional Arrays

• Arrays can be of any number of dimensions.

 Of course, the more dimensions an array has, the less common
they are in programming problems.

 Two and three-dimensional arrays are extremely common.

• Below is an example of a two-dimensional array.

 This reference type is best thought of as being composed of
several one-dimensional arrays.

 Keep in mind that a one-dimensional array is itself a reference
type.

int data[][] = new int[3][3];

 You can reference an entry in the array above as follows.

data[0][0] = 1;

• If you wanted a two-dimensional array, which was not
rectangular, you could build it as follows.
int vals[][] = new int[3][];
vals[0] = new int[4];
vals[1] = new int[3];
vals[2] = new int[2];
int count = 1;
for (int i = 0; i < vals.length; i++)
 for (int j = 0; j < vals[i].length; j++)
 vals[i][j] = count++;

vals 1 2 3 4

5 6 7

8 9

JAVA PROGRAMMING CHAPTER 5: ARRAYS

©2016 UMBC Training Centers
5-13

Exercises

1. Write a class named StringOrganizer, which
encapsulates an array of String objects and defines
several methods that can be performed on the data.

 The class should define the following.
// instance variables
String data [];

// constructors
public StringOrganizer (String [] args){}

// instance methods
public void reverse(){}
public void ascendingSort(){}
public void descendingSort(){}
public String getString(int index){}
public String toString(){}

 Create a program whose main method creates a new
StringOrganizer object with the data received from the
command line and tests the methods defined in the
StringOrganizer class.

2. Create a program named TemperatureConverter,
which takes three values from the command line: a
beginning temp (celsius), an ending temp (celsius), and
an increment value.

 The program should produce a table of temperature
conversions as shown below.
java solutions.arrays.TemperatureConverter 0 30 10
CELSIUS FAHRENHEIT
0 32.0
10 50.0
20 68.0
30 86.0

 The equation for converting Celsius to Fahrenheit is:

f = 1.8 * c + 32

JAVA PROGRAMMING CHAPTER 5: ARRAYS

©2016 UMBC Training Centers
5-14

Exercises

3. Write a class named Assets, which tracks your favorite
items.

 Objects of this class should contain a few arrays so that when
users add an item, the object can store its name and its value.

 Your class should have the following.
// instance variables
String names[];
double values[];
int size, capacity;

// constructor
public Assets(int maxSize){}

// methods

// add an item and its value to this object
public void addElement(String item, double itemVal){}

// number of items currently stored
public int size(){}

// number of items capable of storing
public int capacity(){}

// total dollar value of all assets being tracked
public double getTotalValue(){}

// return a String that contains name and value
// of a particular item
public String getItem(int whichItem){}

// table of item names and values
public String toString(){}

 The file named TestAssets.java in the starters directory for
this chapter is already completed and can be used to test the
above methods in your Assets class.

JAVA PROGRAMMING CHAPTER 5: ARRAYS

©2016 UMBC Training Centers
5-15

Exercises

4. Start with the Loan class in the starters directory.

 In this exercise you will add a few arrays to the Loan class:
interest, principal, and balance.

 These arrays will keep track of:

• interest - The interest due each month
• principal - The principal being paid off each month
• balance - The total balance due after the payment has

 been made for that month.

 Add a method to produce a table for the first n months.

public void printTable(int months)

 Use the DecimalFormat class so that the output values show
two decimal digits.

 Add another method that computes the total interest paid over
the lifetime of the loan.

public double totalInterest()

JAVA PROGRAMMING CHAPTER 5: ARRAYS

©2016 UMBC Training Centers
5-16

This Page Intentionally Left Blank

JAVA PROGRAMMING CHAPTER 6: ENCAPSULATION

©2016 UMBC Training Centers
6-1

Chapter 6:
Encapsulation

1) Introduction.. 6-2

2) Constructors ... 6-3

3) The this Reference .. 6-6

4) Data Hiding... 6-10

5) public and private Members... 6-11

6) Access Levels .. 6-15

7) Composition.. 6-16

8) Static Data Members ... 6-18

JAVA PROGRAMMING CHAPTER 6: ENCAPSULATION

©2016 UMBC Training Centers
6-2

Introduction

• We have seen many examples of classes in previous
chapters.

 Recall that a class defines a new data type.

• A data type has a representation and a set of operations
that realize the behavior of the type.

 For example, an int is a data type. It is represented in
memory by 32 bits and a coding scheme that is the binary
number system.

• Homegrown data types, like the Loan type, have their
own representation and operations.

 The operations for a Loan are defined by a set of methods that
are encoded within the Loan class definition.

• The coupling of data + methods is known as
encapsulation.

 This section gives many of the details of classes related to
encapsulation.

 The next chapter gives additional Object-Oriented related
information, namely inheritance and polymorphism.

JAVA PROGRAMMING CHAPTER 6: ENCAPSULATION

©2016 UMBC Training Centers
6-3

Constructors

• A constructor is a special (possibly overloaded) method
that bears the name of the class.

 Its principal function is initialization, but it can do anything that
other methods can do except return a value.

 Constructors are called automatically when the new keyword is
used to instantiate an object.

 Although constructors behave largely like other methods, they
cannot have a return type – not even void.

 In the absence of a specific constructor, the compiler will supply
a default constructor, which merely allocates space for the
object and fills in data members with default values.

• If a class has one or more constructors, then the set of
them describes how objects of that class can be
constructed.

• It is perfectly legitimate for more than one method or
constructor within a class to have the same name as long
as their parameter lists are different.

 This concept is called method overloading.

• The example on the next page revisits the Point class to
study some of the details related to constructors.

JAVA PROGRAMMING CHAPTER 6: ENCAPSULATION

©2016 UMBC Training Centers
6-4

Constructors

• When a constructor is executed, there is an order of
events that occurs as detailed below.

 All object data is set to default values:

• 0 for numeric types
• '\0' for char types
• false for boolean types
• null for reference types

 If any object data is initialized, it is then set to the initialization
value.

 The body of the constructor is then executed.

• To demonstrate how the above rules apply, the Point
class studied earlier has been rewritten as shown below.

Point.java

1. package examples.encapsulation;
2. public class Point {
3. int xc = 1;
4. int yc = 2;
5.
6. public Point(int x, int y) {
7. xc = x;
8. yc = y;
9. }
10. public int getXc() {
11. return xc;
12. }
13. public int getYc() {
14. return yc;
15. }
16. public String toString() {
17. return xc + "," + yc;
18. }
19. }

JAVA PROGRAMMING CHAPTER 6: ENCAPSULATION

©2016 UMBC Training Centers
6-5

Constructors

• The diagrams below demonstrate the events that occur
when the following statement is executed.

Point p = new Point(4, 5);

 First, an object of type Point is created, and its instance data
is set to 0.

0
xc

0
yc

 Then, the initializers apply and any object data that was
declared with an initial value will have that value set.

1
xc

2
yc

 Finally, the body of the constructor is executed.

4
xc

5
yc

 Upon completion of the construction of the object, a reference
to the object is stored in the variable p.

p

4
xc

5
yc

JAVA PROGRAMMING CHAPTER 6: ENCAPSULATION

©2016 UMBC Training Centers
6-6

The this Reference

• When a method is called on an object, the object upon
which it is called is referred to as the host object.

 The method being called is automatically passed a reference to
the host object.

 Inside the method, the reference is named this.

• In other words, the this reference is alive only inside
instance methods of a class and always references the
host object.

 Whenever instance data is mentioned inside a method of a
class, it is as though it were qualified by the this reference.

• In other words, the Point class could have been written as
shown below.

Point.java

1. package examples.encapsulation;
2. public class Point {
3. int xc = 1
4. int yc = 2;
5.
6. public Point(int x, int y) {
7. this.xc = x;
8. this.yc = y;
9. }
10. public int getXc() {
11. return this.xc;
12. }
13. public int getYc() {
14. return this.yc;
15. }
16. public String toString() {
17. return this.xc + "," + this.yc;
18. }
19. }

JAVA PROGRAMMING CHAPTER 6: ENCAPSULATION

©2016 UMBC Training Centers
6-7

The this Reference

• Sometimes a method of a class needs to call, or can
benefit from calling, another method of the same class.

 Suppose the methods shown below are added to the Point
class. Each of these methods defines a way to shift a Point a
certain amount along the x-axis or y-axis.

public void shiftX(int x) {
 xc += x;
 // could have been written as this.xc += x
}
public void shiftY(int y) {
 yc += y;
 // could have been written as this.yc += y
}

 With the two methods above added, suppose we now want to
define a method named shift that takes both the x amount
and y amount as parameters to shift the point.

• The method to be defined can take advantage of the two
methods already defined, as shown below.
public void shift (int x, int y){
 this.shiftX(x); // call shiftX from same class
 this.shiftY(y); // call shiftY from same class
}

• Since the use of the variable this is mostly optional (see
note below) the method could be written as shown below.
public void shift (int x, int y){
 shiftX(x);
 shiftY(y);
}

 Note: When a parameter of a method has the same name as
an instance variable being referred to within the method - the
use of this is required in order to distinguish between them.

public void shiftY(int yc) {
 this.yc += yc;
}

JAVA PROGRAMMING CHAPTER 6: ENCAPSULATION

©2016 UMBC Training Centers
6-8

The this Reference

• There is another use for the this reference. If a class
has a set of overloaded constructors, you can use the
functional form of the this reference to call one
constructor from another.

 To demonstrate the functional form of this, we will start by
defining a Circle class with several constructors as shown
below.

Circle.java

1. package examples.encapsulation;
2. public class Circle {
3. int xc, yc, radius;
4. public Circle(int x, int y, int rad){
5. xc = x;
6. yc = y;
7. radius = rad;
8. }
9. public Circle(int x, int y) {
10. xc = x;
11. yc = y;
12. radius = 1;
13. }
14. public Circle(int rad) {
15. xc = 0;
16. yc = 0;
17. radius = rad;
18. }
19. public Circle() {
20. xc = 0;
21. yc = 0;
22. radius = 1;
23. }
24. public double calcArea() {
25. return Math.PI * radius * radius;
26. }
27. public String toString() {
28. return xc + "," + yc + ": rad = " + radius;
29. }
30. }

JAVA PROGRAMMING CHAPTER 6: ENCAPSULATION

©2016 UMBC Training Centers
6-9

The this Reference

• Much of the work that each constructor needs to
accomplish in the Circle class is similar. The example
below demonstrates the use of the functional form of
this to call one constructor from another.

public Circle(int x, int y, int rad){
 xc = x;
 yc = y;
 radius = rad;
}
public Circle(int x, int y) {
 this(x, y, 1);
}
public Circle(int rad) {
 this(0, 0, rad);
}
public Circle() {
 this(0, 0, 1);
}

• When the above technique is used, the functional form of
this must be the first statement inside the constructor.

JAVA PROGRAMMING CHAPTER 6: ENCAPSULATION

©2016 UMBC Training Centers
6-10

Data Hiding

• The Circle class is represented by a pair of integers for
the center of the circle and another integer for the radius
of the circle.

 The representation is chosen by the designer(s) of the class.

 User code should never be written with knowledge of this
representation, because if the developer later changes the
representation, all user code would fail with the new version of
the class.

• For example, the developer of the Circle class may later
decide to represent the three integers as an array of
integers.

 If user code can directly access instance data of the Circle
class, careless errors such as the one below can easily result.

Circle c1 = new Circle();
c1.radius = -5;

• A better solution is to define a setRadius method in the
Circle class.

• This allows the developer to check for any unacceptable
values prior to storing the value in the instance variable of
the object.
c1.setRadius(-5);

• The example on the next page is a revised version of the
Circle class that, among other things, prevents a user of
the class from setting the radius to a negative value.

JAVA PROGRAMMING CHAPTER 6: ENCAPSULATION

©2016 UMBC Training Centers
6-11

public and private Members

• The example below shows the changes made to the
Circle class pertaining to hidden data.

1. package examples.encapsulation;
2. public class Circle {
3. private int xc, yc, radius;
4. public Circle(int x, int y, int rad){
5. xc = x;
6. yc = y;
7. if(rad < 0){
8. print("Bad radius: " + rad);
9. print("Default value of 1 being used");
10. rad = 1;
11. }
12. radius = rad;
13. }
14. public void setRadius(int r){
15. if(r < 0){
16. print("Bad radius: " + r);
17. print("radius " + radius + "unchanged");
18. return;
19. }
20. radius = r;
21. }
22. private void print(String msg){
23. System.out.println(msg);
24. }
25. // remainder of class not shown
26. }

• With the instance data of the Circle class being defined
as private, only methods within the Circle class can
access the object data directly.

 The compiler will complain if any other class attempts to
execute code such as the ones after the constructor below.

Circle c1 = new Circle();
c1.radius = 5; // private access violation
c1.xc = 0; // private access violation
c1.yc = 10; // private access violation

JAVA PROGRAMMING CHAPTER 6: ENCAPSULATION

©2016 UMBC Training Centers
6-12

public and private Members

• Methods can also be declared as private.

 In this case, these methods can only be called from within
methods of this same class.

 For example, the print method defined in the Circle class
on the previous page has been declared as a private
method. It is intended to be called only by the constructor of
the class and the setRadius method.

• Since the constructor and the setRadius method are both
defined in the same class as the print method, both
methods are able to call the print method.

• On the other hand, the main method (or any other method)
inside of a class named TestCircle (or any other class)
would not be able to call a private method within the
Circle class.

• The example on the next page defines a Fraction class
that will incorporate all of the topics discussed in this
chapter.

 The class has a set of overloaded constructors that will rely on
the functional form of the this reference.

 The constructor's parameter list will have the same names as
the instance variables, requiring the use of the this reference.

 Instance data will be declared as private.

 A method to determine the greatest common divisor of two
numbers intended to be used internally by methods of the
class, will be declared as private.

JAVA PROGRAMMING CHAPTER 6: ENCAPSULATION

©2016 UMBC Training Centers
6-13

public and private Members
Fraction.java

1. package examples.encapsulation;
2. public class Fraction {
3. private int numer, denom;
4.
5. public Fraction(int numer, int denom){
6. // use of "this" is required here
7. this.numer = numer;
8. this.denom = denom;
9. }
10. public Fraction(){
11. this(0,1);
12. }
13. public Fraction multiply(Fraction p) {
14. Fraction temp = new Fraction();
15. // use of "this" is optional here
16. // simply used for clarity
17. temp.numer = this.numer * p.numer;
18. temp.denom = this.denom * p.denom;
19. return temp;
20. }
21. public String toString() {
22. int val = this.gcd(numer, denom);
23. return numer/val + "/" + denom/val;
24. }
25. private int gcd(int top, int bot) {
26. int rem;
27. rem = top % bot;
28. while(rem != 0) {
29. top = bot;
30. bot = rem;
31. rem = top % bot;
32. }
33. return bot;
34. }
35. }

• The example on the next page tests the Fraction class
above.

JAVA PROGRAMMING CHAPTER 6: ENCAPSULATION

©2016 UMBC Training Centers
6-14

public and private Members
FractionTest.java

1. package examples.encapsulation;
2. public class FractionTest {
3. public static void main(String args[]) {
4. Fraction a = new Fraction(3,7);
5. Fraction b = new Fraction(2,3);
6. Fraction c = a.multiply(b);
7. System.out.println(c);
8. }
9. }

• The multiply method called above deals with the
following three Fraction objects: the host object (a), the
argument to the method (b), and the object returned (c) .

 The diagram below represents the memory allocated prior to
the multiply method being called.

a

3
numer

7
denom

b

2
numer

3
denom

 Inside the mutiply method, the pictures changes as shown
below.

a

3
numer

7
denom

b

2
numer

3
denom

temp

6
numer

21
denom

this p

• Note that inside of the multiply method, the variables a

and b are not available.

JAVA PROGRAMMING CHAPTER 6: ENCAPSULATION

©2016 UMBC Training Centers
6-15

Access Levels

• The examples shown so far have demonstrated the
difference between public and private access to both
the data and methods of a class.

• In fact, there are four access levels in Java.

 public – access from methods

 private – access limited to class methods

 protected – access limited to class methods, subclass
methods, and those methods in the same package

 default – access limited to those methods in the same package

• The most typical situation is to have private data
members and a set of public methods.

 The set of public methods for a class is called the public
interface.

 Data hiding is implemented by using the public interface to
access private data.

• The protected mechanism will be visited when we study
inheritance in the next chapter.

• If a method or instance data has no access level, then
default access level is implied (often referred to as
package access).

 This means that only methods in the same package have
access to this item.

JAVA PROGRAMMING CHAPTER 6: ENCAPSULATION

©2016 UMBC Training Centers
6-16

Composition

• Once a class has been created, it can be used as
instance data in other classes.

 For example, a Line may be composed of a pair of x and y
coordinates, and a length.

• But we already have a class named Point that is composed
of an x-coordinate and a y-coordinate.

• Therefore, a Line can be designed as being composed of
two Point objects and a length.

Line.java

1. package examples.encapsulation;
2. public class Line {
3.
4. private Point p1;
5. private Point p2;
6. private double length;
7.
8. public Line(Point p1, Point p2) {
9. this.p1 = p1;
10. this.p2 = p2;
11. length = distance(p1, p2);
12. }
13. public Line(int x1, int y1, int x2, int y2) {
14. this(new Point(x1,y1), new Point(x2,y2));
15. }
16. private double distance(Point p1, Point p2) {
17. double xd = p1.getXc() - p2.getXc();
18. double yd = p1.getYc() - p2.getYc();
19. return Math.sqrt(xd * xd + yd * yd);
20. }
21. public double getLength () {
22. return length;
23. }
24. public String toString() {
25. return p1.toString()+ "; " + p2.toString();
26. }
27. }

JAVA PROGRAMMING CHAPTER 6: ENCAPSULATION

©2016 UMBC Training Centers
6-17

Composition

• Below is an application that tests both of the constructors
in the Line class and the methods of the class.

LineTest.java

1. package examples.encapsulation;
2. public class TestLine {
3. public static void main(String args[]) {
4. Point p1 = new Point(0,0);
5. Point p2 = new Point(3,4);
6. Line lineA = new Line(p1,p2);
7. System.out.println("Line A: " + lineA);
8. System.out.println(lineA.getLength());
9.
10. Line lineB = new Line(0,0,6,8);
11. System.out.println("Line B: " + lineB);
12. System.out.println(lineB.getLength());
13. }
14. }

• The output from running the above application is shown
below.

java examples.encapsulation.LineTest
Line A: 0,0; 3,4
5.0
Line B: 0,0; 6,8
10.0

JAVA PROGRAMMING CHAPTER 6: ENCAPSULATION

©2016 UMBC Training Centers
6-18

Static Data Members

• To now, we have seen the difference between static and
instance methods.

• Now we look at the difference between class data and
instance data.

• When an object is created, the data that it encapsulates is
called instance or object data.

• There are occasions when a class needs to share data
among all objects of the class.

 This sharable data is not part of each object, but rather it is part
of the class and is accessible by methods of the class.

 Some uses of shared data might be as follows.

• We may want to track the number of Point objects in a
program.

• We may want to know the name of the borrower with the
largest Loan.

• We might want to assign each borrower a unique account
number.

• Class data in Java is accomplished using the static key
word. An example follows on the next page.

JAVA PROGRAMMING CHAPTER 6: ENCAPSULATION

©2016 UMBC Training Centers
6-19

Static Data Members
Account.java

1. package examples.encapsulation;
2. public class Account {
3. private static int counter = 1000;
4. private String name;
5. private int accountNum;
6. public Account(String n) {
7. name = n;
8. accountNum = counter++;
9. }
10. public String toString() {
11. return name + " has account # " + accountNum;
12. }
13. public static int nextNumber() {
14. return counter;
15. }
16. }

AccountTest.java

1. package examples.encapsulation;
2. public class AccountTest {
3. public static void main(String args[]) {
4. System.out.print("Next # is ");
5. System.out.println(Account.nextNumber());
6. Account workers [] = { new Account("Mike"),
7. new Account("Susan"),
8. new Account("Alan") };
9. for (int i = 0; i < workers.length; i++)
10. System.out.println(workers[i]);
11. System.out.print("Next # is ");
12. System.out.println(Account.nextNumber());
13. }
14. }

 The output from the above application is shown below.
java examples.encapsulation.AccountTest
Next # is 1000
Mike has account # 1000
Susan has account # 1001
Alan has account # 1002
Next # is 1003

JAVA PROGRAMMING CHAPTER 6: ENCAPSULATION

©2016 UMBC Training Centers
6-20

Exercises

1. Make the following modifications to the Fraction class
used earlier in this chapter.

 Prevent a user from being able to instantiate a Fraction
object with a denominator of zero.

 Add the following methods to the class.

public Fraction add(Fraction f) {}
public Fraction subtract(Fraction f) {}
public Fraction divide(Fraction f) {}

2. Add the following methods to the SimpleDate class

completed as an exercise in an earlier chapter.

 The code below can be found in the starters directory of this
chapter in a file named SimpleDateAdditions.txt.

public String getMonthAsString(){}
public int getDayOfYear(){}
public int getDaysLeftInYear(){}

• The following static arrays might be helpful.
private static int months[] = {31, 28, 31, 30, 31, 30,
 31, 31, 30, 31, 30, 31};
private static String names[]=
 {"January", "February", "March", "April", "May",
 "June", "July", "August", "September", "October",
 "November", "December"};

• The following method determines if the year is a leap year.
public boolean isLeapYear(){
 // assuming instance variable is named "year"
 return year % 400 == 0 ||
 ((year % 4 == 0) && (year % 100 != 0))
}

 A test application named SimpleDateTester.java can be
found in the starters directory for this chapter.

JAVA PROGRAMMING CHAPTER 6: ENCAPSULATION

©2016 UMBC Training Centers
6-21

Exercises

3. Write a class named IDGenerator that hands out a new
id each time its issueNext method is called.

 This class should be able to be used in various scenarios.

• It may be used to generate employee ids of the form:
emp101 emp102 emp103 ...

• It may be used to generate account numbers such as:
acc1000 acc1001 acc2002

• Or to generate a generic id such as:
id500 id501 id502

 Since this class can be used in various scenarios, it will
maintain a String for the prefix to be used.

 The class should also have an int that maintains the next
number that will be used whenever issueNext is called.

• The issueNext method will return the actual id as the prefix
and number concatenated together as a String.

 The class should have an overloaded set of constructors
including one that:

• takes no parameters and simply relies on a default prefix
and starting number;

• permits a String to be as the prefix and relies on a default
starting number; and

• will take a String as the prefix and an int as the starting
value.

 The starter code shown on the following page can be found in
the starters directory for this chapter.

JAVA PROGRAMMING CHAPTER 6: ENCAPSULATION

©2016 UMBC Training Centers
6-22

Exercises
IDGenerator.java

1. package starters.encapsulation;
2. public class IDGenerator{
3. private String prefix;
4. private int number;
5.
6. // supplies a default prefix
7. // supplies a default starting number
8. public IDGenerator() {}
9.
10. // user supplies prefix
11. // supplies a default starting number
12. public IDGenerator(String prefix){ }
13.
14. // user supplies prefix
15. // user supplies starting number
16. public IDGenerator(String prefix, int start){ }
17.
18. // issue an id and increment number
19. public String issueNext(){ }
20.
21. // return id but do not increment
22. public String viewNext(){ }
23. }

JAVA PROGRAMMING CHAPTER 6: ENCAPSULATION

©2016 UMBC Training Centers
6-23

Exercises

4. Write a class named Employee, which is composed of
the following.

• A SimpleDate object representing the date the employee
was hired

• A String object representing the name of the employee
• A String representing the employee id

 The class should also have a static IDGenerator object
that will be used by the Employee constructor to assign an id
to each employee created.

 The starter code shown below can be found in the starters
directory for this chapter.

Employee.java

1. package starters.encapsulation;
2. public class Employee {
3. // instance data
4. private String name;
5. private String id;
6. private SimpleDate hireDate;
7.
8. // static data
9. private static IDGenerator idg
10. = new IDGenerator("emp", 1);
11.
12. // constructors
13. public Employee (String name, SimpleDate hd){ }
14.
15. // methods
16. public String getName() { }
17.
18. public String getID() { }
19.
20. public SimpleDate getHireDate() { }
21.
22. public String toString() { }
23. }

JAVA PROGRAMMING CHAPTER 6: ENCAPSULATION

©2016 UMBC Training Centers
6-24

This Page Intentionally Left Blank

JAVA PROGRAMMING CHAPTER 7: INHERITANCE & POLYMORPHISM

©2016 UMBC Training Centers
7-1

Chapter 7:
Inheritance & Polymorphism

1) Introduction.. 7-2

2) A Simple Example.. 7-3

3) The Object Class ... 7-6

4) Method Overriding .. 7-8

5) Polymorphism .. 7-9

6) Additional Inheritance Examples... 7-11

7) Other Inheritance Issues ... 7-15

JAVA PROGRAMMING CHAPTER 7: INHERITANCE & POLYMORPHISM

©2016 UMBC Training Centers
7-2

Introduction

• Often, a class is needed, which is a specialization of an
existing class.

 In object-oriented languages such as Java, you can build a
specialized class in such a way that the methods from the
existing class can be reused without being re-coded.

 The new class can add methods to implement its special
behavior. Data can also be added to the data that is inherited
from the original class.

• The building of specialized classes from existing classes
in this way is known as inheritance.

 The relationship between the existing class and the newly
created class is called the is-a relationship.

• In Java, the two classes are referred to as the subclass
and superclass.

 In this terminology, the superclass is the original class.

• Other terminology refers to these two classes as the type
and sub-type.

• C++ uses the terms base class and derived class.

• This process can be repeated giving rise to a hierarchy of
classes originating from one class.

• Inheritance gives the advantage of code reuse (i.e., new
classes can use existing methods from classes higher in
the hierarchy).

 Inheritance is one of the signature characteristics of object-
oriented languages.

JAVA PROGRAMMING CHAPTER 7: INHERITANCE & POLYMORPHISM

©2016 UMBC Training Centers
7-3

A Simple Example

• Suppose the need arises to create a class named
Point3D to represent a three-dimensional point.

 Since we already have a class named Point, we can derive a
Point3D from Point.

• The extends keyword is used to derive one class from
another.

 The newly derived Point3D class (the subclass) will have
additional data and methods not found in the Point class (the
superclass).

 Keep in mind that a Point3D inherits the methods and data
items of the Point class, and is responsible for initializing all of
its inherited data members.

 A skeleton version of this class might look like the following.

Point3D.java

1. package examples.inheritance;
2. public class Point3D extends Point {
3. private int zc;
4.
5. public Point3D(int xc, int yc, int zc){ }
6.
7. public int getZc() { }
8.
9. public String toString() { }
10. }

JAVA PROGRAMMING CHAPTER 7: INHERITANCE & POLYMORPHISM

©2016 UMBC Training Centers
7-4

A Simple Example

• The super keyword is used to call a constructor from the
superclass to initialize the inherited instance data.
public Point3D(int xc, int yc, int zc){
 super(xc, yc);
 this.zc = zc;
}

 The functional form of super can only be used inside of a
constructor and must be the first statement in the constructor.

 If the super call is omitted, the compiler automatically calls the
constructor in the superclass that takes no parameters.

• If such a constructor does not exist in the superclass, the
subclass will not compile.

• Since the variables xc and yc, inherited from the Point
class, are defined as private, trying to define the
toString method in the Point3D class as follows would
result in an access level error at compile time.
public String toString() {
 return xc + "," + yc + "," + zc;
}

 Since the getXc and getYc methods that are inherited are
defined as public, the toString method could be defined as
follows.

public String toString() {
 return getXc() + "," + getYc() + "," + zc;
}

 The following form of super provides a simpler definition.

public String toString() {
 return super.toString() + "," + zc;
}

JAVA PROGRAMMING CHAPTER 7: INHERITANCE & POLYMORPHISM

©2016 UMBC Training Centers
7-5

A Simple Example

• The completed Point3D class is shown below.

Point3D.java

1. package examples.inheritance;
2. public class Point3D extends Point {
3. private int zc;
4.
5. public Point3D(int xc, int yc, int zc){
6. super(xc, yc);
7. this.zc = zc;
8. }
9.
10. public int getZc() {
11. return zc;
12. }
13.
14. public String toString() {
15. return super.toString() + "," + zc;
16. }
17. }

 Notice that the Point3D class does not define methods getXc
and getYc but instead inherits them from the Point class.

 This is a good example of code reuse and is one of the major
benefits of inheritance.

 The application below tests the Point3D class defined above.

Test3D.java

1. package examples.inheritance;
2. public class Test3D {
3. public static void main(String args[]) {
4. Point3D p1 = new Point3D(1,2,3);
5. System.out.println(p1);
6. System.out.println(p1.getXc());
7. System.out.println(p1.getYc());
8. System.out.println(p1.getZc());
9. }
10. }

JAVA PROGRAMMING CHAPTER 7: INHERITANCE & POLYMORPHISM

©2016 UMBC Training Centers
7-6

The Object Class

• Java classes ultimately derive from a root class whose
name is Object.

 This means that even if you do not explicitly use the extends
keyword, your class extends Object.

 Therefore, the following two class definitions are equivalent.

• Implicitly extending from the Object class
public class Point {
}

• Explicitly extending from the Object class

public class Point extends Object{
}

• This means that all classes inherit some methods from the
Object class.

 One of the methods is the toString method.

• If your class does not define a toString method, the one
from the Object class is used.

• The toString method inherited from the Object class is
designed to print the name of the class, followed by the @
symbol, followed by a hashcode, uniquely identifying the
object.

• Since the above representation is usually not desired, each
class would typically provide its own version of the
toString method as we have been doing.

 Another method provided by the Object class is the equals
method.

• The method as defined in the Object class simply tests
references, not the actual data inside of the object.

JAVA PROGRAMMING CHAPTER 7: INHERITANCE & POLYMORPHISM

©2016 UMBC Training Centers
7-7

The Object Class

• The application below demonstrates the behavior
inherited from the equals method in the Object class.

EqualityTest.java

1. package examples.inheritance;
2. public class EqualityTest {
3. public static void main(String args[]) {
4.
5. Point p1 = new Point(2,3);
6. Point p2 = new Point(2,3);
7. Point p3 = new Point(7,8);
8.
9. if (p1.equals(p2))
10. System.out.println(p1 + " = " + p2);
11. else
12. System.out.println(p1 + " != " + p2);
13.
14. if (p1.equals(p3))
15. System.out.println(p1 + " = " + p3);
16. else
17. System.out.println(p1 + " != " + p3);
18.
19. p1 = p3;
20. if (p1.equals(p3))
21. System.out.println(p1 + " = " + p3);
22. else
23. System.out.println(p1 + " != " + p3);
24. }
25. }

java examples.inheritance.EqualityTest
2,3 != 2,3
2,3 != 7,8
7,8 = 7,8

• Much like the toString method, if the behavior of the
inherited equals method is not what you would prefer,
the Point class would provide its own version of the
equals method as shown on the next page.

JAVA PROGRAMMING CHAPTER 7: INHERITANCE & POLYMORPHISM

©2016 UMBC Training Centers
7-8

Method Overriding

• The Point class might provide its own definition of the
equals method, which checks the data in the objects
rather than just the references as shown below.

public boolean equals (Point p) {
 return this.xc == p.xc && this.yc == p.yc;
}

• The fact that a subclass has its own version of a method
in a superclass is called method overriding.

 A method which overrides another method must have the exact
signature as the overridden method.

• Do not confuse method overriding with method
overloading, which we studied earlier.

 Method overloading

• occurs when two or more methods in the same class have
the same name but a different parameter list.

 Method overriding

• occurs when methods from different classes in an
inheritance hierarchy have the same name and the same
parameter list.

• The toString method defined in the Point class uses
the functionality of the toString method from its
superclass in the process of overriding it to change its
behavior.

public String toString() {
 return super.toString() + "," + zc;
}

JAVA PROGRAMMING CHAPTER 7: INHERITANCE & POLYMORPHISM

©2016 UMBC Training Centers
7-9

Polymorphism

• Recall that the inheritance relationship models the is-a
relationship.

 Since a variable defined as type Point is capable of
referencing any Point object, and a Point3D is-a Point, it
follows that a variable of type Point should be able to
reference a Point3D object.

Point p;
p = new Point3D(1, 2, 3);

 However, what happens if we now try to print the object to
which p1 points? Which toString method gets called?

• During the compilation of the program, p1 is defined as a
reference of type Point, and therefore one might argue that
the toString method in the Point class will be called.

• During the execution of the program, p1 points to a
Point3D object and therefore another might argue that the
toString method in the Point3D class is used.

• In Java, it is always the run-time (or late) type to which the
object is being pointed which dictates the correct method
to use.

 This concept is called polymorphism due to the fact that the
reference can refer to more than one type.

• Polymorphism provides great flexibility and low
maintenance to programs.

 The example on the next page demonstrates one of the
advantages of polymorphism.

JAVA PROGRAMMING CHAPTER 7: INHERITANCE & POLYMORPHISM

©2016 UMBC Training Centers
7-10

Polymorphism
PolyTest.java

1. package examples.inheritance;
2. public class PolyTest {
3. public static void main(String args[]) {
4. Point data [] = { new Point(1,2),
5. new Point3D(1,2,3),
6. new Point(2,3),
7. new Point3D(2,3,4) };
8.
9. for (int i = 0; i < data.length; i++)
10. System.out.println(data[i]);
11. }
12. }

java PolyTest
1,2
1,2,3
2,3
2,3,4

• The important thing to notice above is that the correct
toString method was called without the program
needing to concern itself with the type of the reference.

 If there is a need to determine the actual run-time type of the
object being referenced, the instanceof operator can be
used.

for (int i = 0; i < data.length; i++){
 if(data[i] instanceof Point3D)
 System.out.println("a Point3D object");
}
// Example of a cast to recognize the specialized
//behavior of the subclass
for (int i = 0; i < data.length; i++){
 if(data[i] instanceof Point3D){
 Point3D temp = (Point3D) data[i];
 System.out.println(temp.getZc());
 }
}

JAVA PROGRAMMING CHAPTER 7: INHERITANCE & POLYMORPHISM

©2016 UMBC Training Centers
7-11

Additional Inheritance Examples

• Say that we needed to define a couple of new classes
called a CarLoan and a BusinessLoan.

 These classes could be designed from the ground up, or we
could re-use the functionality already designed into the Loan
class studied earlier.

• Both a CarLoan and a BusinessLoan can be thought of
as special types of the Loan class with some extra data and
methods.

• The CarLoan can simply extend the Loan class as
shown below.

CarLoan.java

1. package examples.inheritance;
2. public class CarLoan extends Loan {
3. private String make;
4. private String model;
5. public CarLoan(String n, double a, double r,
6. int y, String mk, String mod) {
7. super(n, a, r, y);
8. make = mk;
9. model = mod;
10. }
11. public String getMake() { return make; }
12. public String getModel(){ return model; }
13. public String toString(){
14. StringBuffer sb
15. = new StringBuffer(super.toString());
16. sb.append(", ");
17. sb.append(make);
18. sb.append(", ");
19. sb.append(model);
20. return sb.toString();
21. }
22. }

JAVA PROGRAMMING CHAPTER 7: INHERITANCE & POLYMORPHISM

©2016 UMBC Training Centers
7-12

Additional Inheritance Examples

• The BusinessLoan can also extend the Loan class as
shown below.

BusinessLoan.java

1. package examples.inheritance;
2. public class BusinessLoan extends Loan {
3. private int zipCode;
4. private double sales;
5. public BusinessLoan(String n, double a, double r,
6. int y, int z, double sa) {
7. super(n, a, r, y);
8. zipCode = z;
9. sales = sa;
10. }
11. public int getZip() {
12. return zipCode;
13. }
14. public double getSales() {
15. return sales;
16. }
17. public String toString(){
18. StringBuffer sb
19. = new StringBuffer(super.toString());
20. sb.append(", ");
21. sb.append(zipCode);
22. sb.append(", ");
23. sb.append(sales);
24. return sb.toString();
25. }
26. }

• Other loan types are possible as well.

 The new loan types could extend directly from the Loan class.

 They might also extend from one of the newly designed
subclasses such that a NewCarLoan and a UsedCarLoan
class might extend from CarLoan.

JAVA PROGRAMMING CHAPTER 7: INHERITANCE & POLYMORPHISM

©2016 UMBC Training Centers
7-13

Additional Inheritance Examples

• The class hierarchy for the Loan class and its subclasses
is shown below.

Object

Loan

CarLoan BusinessLoan

• The application below demonstrates how any method that
accepts a Loan as an argument will also accept a
CarLoan or BusinessLoan as an argument.

 It also demonstrates the ability to obtain the actual run-time
type of the object being referenced and the steps necessary to
then call methods on that object that are not inherited from the
superclass.

LoanTests.java

1. package examples.inheritance;
2. public class LoanTests{
3. public static void main(String args[]){
4.
5. Loan loans[] = {
6. new Loan("Susan", 50000, 6.0, 30),
7. new BusinessLoan("Alan", 75000, 7.0,
8. 30, 21046, 1000000),
9. new CarLoan("Michael", 30000, 4.5,
10. 5, "Mazda", "Miata")};
11. for(int i = 0; i < loans.length; i++){
12. displayLoanInfo(loans[i]);
13. }
14. System.out.print("Total interest: ");
15. System.out.println(calcInterest(loans));
16. }
17.

JAVA PROGRAMMING CHAPTER 7: INHERITANCE & POLYMORPHISM

©2016 UMBC Training Centers
7-14

Additional Inheritance Examples
LoanTests.java continued

18. public static void displayLoanInfo(Loan loan){
19. print(" Name : " + loan.getName());
20. print("Amount : " + loan.getAmount());
21. print(" Rate : " + loan.getRate());
22. print("Years : " + loan.getYears());
23. print("Payment: " + loan.computePayment());
24. print("");
25. }
26.
27. public static double calcInterest(Loan loans []){
28. double total = 0.0;
29. for(int i = 0; i < loans.length; i++){
30. total += loans[i].totalInterest();
31. }
32. return total;
33. }
34.
35. public static void print(String s){
36. System.out.println(s);
37. }
38. }

JAVA PROGRAMMING CHAPTER 7: INHERITANCE & POLYMORPHISM

©2016 UMBC Training Centers
7-15

Other Inheritance Issues

• This section has revealed the details of inheritance of
implementation.

 Subclasses inherit implementations from superclasses by
extending them.

• Subclasses are free to use each method from its
superclass as a default, or they may override any needed
methods.

 For example, each class will usually override the toString
and the equals methods inherited from the Object class.

• Any class can extend only one other class. That is, there
is no multiple inheritance of implementation in Java.

• If you wish to prevent a class from being extended, the
final keyword can be used as demonstrated below.

public final class MyClass{
 // data and methods of class here
}

• Inheritance of implementation is not the only kind of
inheritance.

 The next chapter discusses how a class can be defined to
inherit one or more interfaces.

 This is known as multiple inheritance of interface.

JAVA PROGRAMMING CHAPTER 7: INHERITANCE & POLYMORPHISM

©2016 UMBC Training Centers
7-16

Exercises

1. Extend the SimpleDate class to create a Holiday and
Appointment class.

 A Holiday is a SimpleDate with an associated String for
the name of the holiday.

 An Appointment is a SimpleDate with the following.

• A String for the place of the appointment
• A String for the name of the person with whom the

appointment is made
2. Create a class named Planner that is composed of a

single array containing any mixture of SimpleDate,
Holiday, and Appointment objects.

 The starter file shown below can be found in the starters
directory for this chapter.

Planner.java

1. package starters.inheritance;
2. public class Planner{
3. private SimpleDate sd [];
4. private int capacity;
5. private int size;
6.
7. public Planner(int capacity){ }
8.
9. public int getCapacity(){ }
10.
11. public int getSize(){ }
12.
13. public void addDate(SimpleDate d){ }
14.
15. public String toString(){ }
16.
17. public Appointment [] getAppointments(){ }
18.
19. public Holiday [] getHolidays(){ }
20. }

JAVA PROGRAMMING CHAPTER 8: ABSTRACT CLASSES AND INTERFACES

©2016 UMBC Training Centers
8-1

Chapter 8:
Abstract Classes and Interfaces

1) Introduction.. 8-2

2) Abstract Classes ... 8-3

3) Abstract Class Example .. 8-4

4) Extending an Abstract Class... 8-5

5) Interfaces .. 8-8

JAVA PROGRAMMING CHAPTER 8: ABSTRACT CLASSES AND INTERFACES

©2016 UMBC Training Centers
8-2

Introduction

• A set of classes in an inheritance hierarchy is not built
overnight. It takes much thought and a lot of design.

• One way of thinking about a large set of classes is to
factor out the functionality that would apply to all classes
and let this functionality “bubble” to the top of the class
hierarchy.

 For example, a large set of classes in a DataStructure
hierarchy might have an isEmpty method and a length
method.

 Therefore, it would make sense for this method to be encoded
at the top of the hierarchy and reused by all subclasses.

• Likewise, a calcArea method and a calcPerimeter
method might also seem like candidates for a top-level
class in a Shape hierarchy.

 However, these methods would have a different implementation
in each subclass because every concrete Shape has it own
way of calculating its area and perimeter.

 We could still factor up the interface for the calcArea and
calcPerimeter methods and leave the actual implementation
to each class that extends Shape.

• This section describes how all of this is done in Java.

JAVA PROGRAMMING CHAPTER 8: ABSTRACT CLASSES AND INTERFACES

©2016 UMBC Training Centers
8-3

Abstract Classes

• All of the classes we have seen so far are concrete in that
they represent real things.

• In contrast, some classes are more general and represent
an abstraction.

 For example, a shape is an abstract notion compared to a
circle, a square, or rectangle, all of which are concrete.

 Yet, a Shape class can represent the behavior of a set of
concrete classes.

 In Java, you can represent this behavior with some abstract
methods (i.e., methods that have no behavior).

• Therefore, an abstract class represents an abstract
concept and cannot be instantiated, but rather
subclassed.

 An abstract class may consist of one or more methods that are
abstract and describe a programming interface.

 The implementation for these abstract methods is left to classes
that extend this abstract class.

 Abstract classes can also have real methods and data.

• The following example defines an abstract class named
DataStructure.

 There is one abstract method named addElement whose
implementation will be provided by any subclass of
DataStructure.

 The class also contains some concrete methods and data that
are inherited by any subclass of DataStructure.

JAVA PROGRAMMING CHAPTER 8: ABSTRACT CLASSES AND INTERFACES

©2016 UMBC Training Centers
8-4

Abstract Class Example
DataStructure.java

1. package examples.abstract;
2. public abstract class DataStructure{
3. // protected data:
4. // only subclasses have direct access
5. protected int size = 0;
6.
7. // abstract method whose implementation
8. // is left to the subclass to define
9. public abstract boolean addElement(int element);
10.
11. // concrete methods that are
12. // inherited by any subclass
13. public boolean isEmpty(){
14. return size == 0;
15. }
16.
17. public int size(){
18. return size;
19. }
20. }

• Each class that is derived from DataStructure would
have a mandate to define the addElement method.

 The isEmpty and size methods would be inherited and
reused by each class derived from DataStructure.

• The next page defines two classes, IntList and
IntSet, which are concrete implementations of
DataStructure.

 IntList implements the addElement method in such a way
that duplicate values can be added.

 IntSet implements the addElement method in such a way
that duplicate values are not permitted.

JAVA PROGRAMMING CHAPTER 8: ABSTRACT CLASSES AND INTERFACES

©2016 UMBC Training Centers
8-5

Extending an Abstract Class

• The example below is a concrete implementation of the
DataStructure class.

IntList.java

1. package examples.abstract;
2. public class IntList extends DataStructure {
3. private int capacity;
4. private int data [];
5.
6. public IntList(int capacity){
7. this.capacity = capacity;
8. data = new int[capacity];
9. }
10.
11. public boolean addElement(int element){
12. if(size < capacity){
13. data[size] = element;
14. size++;
15. return true;
16. }
17. else
18. return false;
19. }
20.
21. public String toString(){
22. StringBuffer sb = new StringBuffer();
23. for(int i = 0; i < size; i++){
24. sb.append(data[i]);
25. if(i < size -1)
26. sb.append(", ");
27. }
28. return sb.toString();
29. }
30. }

JAVA PROGRAMMING CHAPTER 8: ABSTRACT CLASSES AND INTERFACES

©2016 UMBC Training Centers
8-6

Extending an Abstract Class

• The example below is another concrete implementation of
the DataStructure class.

IntSet.java

1. package examples.abstracts;
2. public class IntSet extends DataStructure {
3. private int capacity;
4. private int data [];
5.
6. public IntSet(int capacity){
7. this.capacity = capacity;
8. data = new int[capacity];
9. }
10. public boolean addElement(int element){
11. boolean unique = true;
12. boolean success = false;
13. if(size < capacity){
14. for(int i = 0; i < size; i++){
15. if(data[i] == element){
16. unique = false;
17. break;
18. }
19. }
20. if(unique){
21. data[size] = element;
22. size++;
23. success = true;
24. }
25. }
26. return success;
27. }
28. public String toString(){
29. StringBuffer sb = new StringBuffer();
30. for(int i = 0; i < size; i++){
31. sb.append(data[i]);
32. if(i < size -1)
33. sb.append(", ");
34. }
35. return sb.toString();
36. }
37. }

JAVA PROGRAMMING CHAPTER 8: ABSTRACT CLASSES AND INTERFACES

©2016 UMBC Training Centers
8-7

Extending an Abstract Class

• Since DataStructure is abstract, the following would
result in a compiler error because you cannot create an
object of this type.

DataStructure ds = new DataStructure();

• However, you are able to define a variable of type
DataStructure, as long as it ultimately references an
object of a subclass that implements the abstract methods
in the DataStructure.

DataStructure myList = new IntList(100);
DataStructure mySet = new IntSet(50);

• The application below creates a DataStructure from all
of the values passed in on the command line.

DataStructureTest.java

1. package examples.abstracts;
2. public class DataStructureTest {
3. public static void main(String args[]){
4. DataStructure myData =
5. new IntList(args.length);
6. int x;
7. for(int i = 0; i < args.length; i++){
8. x = Integer.parseInt(args[i]);
9. myData.addElement(x);
10. }
11. System.out.println("Size =" + myData.size());
12. System.out.println(myData);
13. }
14. }

 If duplicates are not desired, the only change needed to the
above application is the type of DataStructure created.

DataStructure myData = new IntSet(args.length);

JAVA PROGRAMMING CHAPTER 8: ABSTRACT CLASSES AND INTERFACES

©2016 UMBC Training Centers
8-8

Interfaces

• An interface is a collection of abstract methods and
possibly, some static constant values.

 Interfaces are somewhat like abstract classes except that they
can be implemented by a set of classes not related in the same
inheritance hierarchy.

 Although a class cannot extend more than one class, a class
can implement more than one interface.

 It is also possible for a class to extend one class, and in
addition, implement one or more interfaces.

• The following examples demonstrate how an interface
allows unrelated classes to exhibit some common
behavior.

• To start, we will define three classes that are unrelated to
one another.

Car.java

1. package examples.abstracts;
2. public class Car {
3. private String make, model;
4. public Car (String make, String model) {
5. this.make = make;
6. this.model = model;
7. }
8. public String getMake() { return make; }
9. public String getModel(){ return model; }
10. public String toString(){
11. return make + " " + model;
12. }
13. }

JAVA PROGRAMMING CHAPTER 8: ABSTRACT CLASSES AND INTERFACES

©2016 UMBC Training Centers
8-9

Interfaces
Book.java

1. package examples.abstracts;
2. public class Book {
3. private String title, author;
4. public Book (String title, String author) {
5. this.title = title;
6. this.author = author;
7. }
8. public String getTitle() { return title; }
9. public String getAuthor(){ return author; }
10. public String toString(){
11. return title + " " + author;
12. }
13. }

Computer.java

1. package examples.abstracts;
2. public class Computer {
3. private String brand, chip;
4. public Computer (String brand, String chip) {
5. this.brand = brand;
6. this.chip = chip;
7. }
8. public String getBrand() { return brand; }
9. public String getChip() { return chip; }
10. public String toString(){
11. return brand + " " + chip;
12. }
13. }

• Suppose we wanted to create an application capable of
auctioning items to the highest bidder.

 To list the items in an auction, it would be convenient if the
application could describe each item and its condition.

• As long as the application can obtain the description and
condition of an item, the item can be auctioned.

• The auction application can then maintain the high bidder
and high bid for any object that is in the auction.

JAVA PROGRAMMING CHAPTER 8: ABSTRACT CLASSES AND INTERFACES

©2016 UMBC Training Centers
8-10

Interfaces

• We will create an interface named Auctionable to
define the methods that are necessary for the application
to interact with any item that is available to be auctioned.

Auctionable.java

1. package examples.abstracts;
2. public interface Auctionable {
3. // available conditions
4. public static final int NEW = 0;
5. public static final int LIKE_NEW = 1;
6. public static final int REFURBISHED = 2;
7. public static final int USED = 3;
8.
9. // abstract methods to be implemented
10. public String getDescription();
11. public int getCondition();
12. }

 The static constants defined in the Auctionable interface set
the acceptable conditions for an Auctionable object.

• The Auction application on the next page demonstrates
how any object that implements the Auctionable
interface can be auctioned to the highest bidder.

 The class as written will not compile due to a problem in the
main method shown below.

public static void main(String args[]){
 Auctionable a = new Car("Ford", "Mustang");
 auctionIt(a);
}

• The Car class does not yet implement the Auctionable
interface.

JAVA PROGRAMMING CHAPTER 8: ABSTRACT CLASSES AND INTERFACES

©2016 UMBC Training Centers
8-11

Interfaces
Auction.java

1. package examples.abstracts;
2. public class Auction{
3. public static String [] people =
4. {"Joe", "Sue", "Lynn", "Bob"};
5. public static String [] conditions =
6. {"New", "Like New", "Refurbished", "Used"};
7.
8. public static void main(String args[]){
9. Auctionable a = new Car("Ford", "Mustang");
10. auctionIt(a);
11. }
12. public static void auctionIt(Auctionable item){
13. double highBid = 0;
14. String highBidder = null;
15.
16. // bidding process
17. for(int i = 0; i < people.length; i++){
18. double bid = getRandomBid();
19. print(people[i] + " bidding " + bid);
20. if(bid > highBid){
21. highBidder = people[i];
22. highBid = bid;
23. }
24. }
25. print("------------");
26. print("Auction Results:");
27. print("Item: " + item);
28. print("Desc: " + item.getDescription());
29. int c = item.getCondition();
30. print("Condition: " + conditions[c]);
31. print("HighBidder: " + highBidder);
32. print("HighBid: " + highBid + "\n\n");
33. }
34. public static double getRandomBid(){
35. int x = (int) (Math.random() * 10000);
36. double b = x / 100.0;
37. return b;
38. }
39. public static void print(String s){
40. System.out.println(s);
41. }
42. }

JAVA PROGRAMMING CHAPTER 8: ABSTRACT CLASSES AND INTERFACES

©2016 UMBC Training Centers
8-12

Interfaces

• The Car class is rewritten below so that it successfully
implements the Auctionable interface.

Car.java

1. package examples.abstracts;
2. public class Car implements Auctionable{
3. private String make, model;
4. public Car (String make, String model) {
5. this.make = make;
6. this.model = model;
7. }
8. public String getMake() { return make; }
9. public String getModel(){ return model; }
10. public String toString(){
11. return make + " " + model;
12. }
13. public String getDescription() {
14. return "Low Mileage, New tires, AM/FM/CD";
15. }
16. public int getCondition(){
17. return LIKE_NEW;
18. }
19. }

• The output from running the Auction is shown below.
java examples.abstracts.Auction
Joe bidding 34.4
Sue bidding 4.91
Lynn bidding 44.12
Bob bidding 42.16

Auction Results:
Item: Ford Mustang
Desc: Low Mileage, Brand new tires, AM/FM/CD
Condition: Like New
HighBidder: Lynn
HighBid: 44.12

 Keep in mind, Auction.java could have been written to
handle an array of type Auctionable.

JAVA PROGRAMMING CHAPTER 8: ABSTRACT CLASSES AND INTERFACES

©2016 UMBC Training Centers
8-13

Exercises

1. Define a class named SortedIntList that extends
the abstract class DataStructure from this chapter.

 The addElement method should be implemented in such a way
that the int values of the array are maintained in sorted order.

 The existing DataStructureTest can be modified to test
your SortedIntList.

2. Modify the Book and Computer classes from this
chapter so that they can be auctioned off using the
Auction application.

3. Modify the Auction application so that it deals with an
array of type Auctionable rather than a single
Auctionable object.

 Test this class with several Car, Book, and Computer objects.

JAVA PROGRAMMING CHAPTER 8: ABSTRACT CLASSES AND INTERFACES

©2016 UMBC Training Centers
8-14

This Page Intentionally Left Blank

JAVA PROGRAMMING CHAPTER 9: EXCEPTIONS

©2016 UMBC Training Centers
9-1

Chapter 9:
Exceptions

1) Introduction.. 9-2

2) Exception Handling ... 9-4

3) The Exception Hierarchy .. 9-6

4) Checked Exceptions ... 9-7

5) Advertising Exceptions with throws .. 9-10

6) Developing Your Own Exception Classes.. 9-11

7) The finally Block .. 9-15

JAVA PROGRAMMING CHAPTER 9: EXCEPTIONS

©2016 UMBC Training Centers
9-2

Introduction

• In this section, we wish to explore how a Java Program
reacts to runtime errors.

 Some examples of the causes of a runtime error are:

• data in the wrong format;
• file open failure;
• bad network connection;
• division by zero.

 Traditional error handling is usually done in a disorderly
fashion.

• Error code is often spread out in a program.
• Often, there are too many branches of control.
• Normal program flow is buried within error detection code.

 In Java, error-handling transfers program control to an error
handling routine in an orderly fashion and to a well-defined
section of code.

• Java syntax for handling run-time errors looks very much like
C++ syntax.

• The Java Exception model is built around the following
keywords.

 try

 catch

 throw

 throws

 finally

JAVA PROGRAMMING CHAPTER 9: EXCEPTIONS

©2016 UMBC Training Centers
9-3

Introduction
 The try statement

• It identifies a block of statements within which an exception
might be thrown.

 The catch statement

• It identifies a block of statements that can handle a particular
type of exception.

• The statements are executed if an exception of a particular
type occurs within the try block.

• If catch statement is used, it must be associated with a try
statement.

 The finally statement

• It identifies a block of statements that are executed
regardless of whether or not an error occurs within the try
block.

• If finally statement is used, it must be associated with a
try statement.

• The general form of these statements is shown below.
try {
 // execute a method which may throw an exception
} catch (Type1Exception e) {
 // code to handle a Type1Exception
} catch (Type2Exception e) {
 // code to handle a Type2Exception
} finally {
 // code to be executed regardless of whether an
 // exception occurred or not
}

• Each catch block is an exception handler. Therefore, for
each try block, there can be as many catch blocks as
there are different exception types handled.

JAVA PROGRAMMING CHAPTER 9: EXCEPTIONS

©2016 UMBC Training Centers
9-4

Exception Handling

• The following program takes two arguments from the
command line and raises the first number to the power of
the second.

 Several things could go wrong at runtime.

• The user may not supply the correct number of arguments.
• The data supplied might not be numeric.

Raise.java

1. package examples.exceptions;
2. public class Raise {
3. public static void main(String args[]) {
4. double base, expo, result;
5.
6. base = Double.parseDouble(args[0]);
7. expo = Double.parseDouble(args[1]);
8. result = Math.pow(base, expo);
9. System.out.println(result);
10. }
11. }

 The output from running the above program with various
arguments is shown below.

java examples.exceptions.Raise 5
Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 1
 at examples.exceptions.Raise.main(Raise.java:7)

java examples.exceptions.Raise one two
Exception in thread "main" java.lang.NumberFormatException:
For input string: "one"
 at java.lang.NumberFormatException.forInputString(
 NumberFormatException.java:48)
 at java.lang.FloatingDecimal.readJavaFormatString(
 FloatingDecimal.java:1207)
 at java.lang.Double.parseDouble(Double.java:220)
 at examples.exceptions.Raise.main(Raise.java:6)

 In both cases, the JVM handles the runtime exception.

JAVA PROGRAMMING CHAPTER 9: EXCEPTIONS

©2016 UMBC Training Centers
9-5

Exception Handling

• The following code demonstrates how to handle the
exceptions from the Raise class.

RaiseWithHandler.java

1. package examples.exceptions;
2. public class RaiseWithHandler {
3. public static void main(String args[]) {
4. double base, expo, result;
5.
6. try {
7. base = Double.parseDouble(args[0]);
8. expo = Double.parseDouble(args[1]);
9. result = Math.pow(base, expo);
10. System.out.println(result);
11. } catch(NumberFormatException nfe) {
12. System.out.println(nfe);
13. } catch(ArrayIndexOutOfBoundsException ai) {
14. System.out.println(ai);
15. } finally {
16. System.out.println("Inside of finally");
17. }
18. System.out.println("Finished with handlers");
19. }
20. }

 Keep in mind that should an exception be raised, you will
always have the choice of either letting the JVM handle it or
handling it yourself.

 When you wish to write your own handlers, you need to decide
which code to enclose in a try block.

• This triggers the exception handling mechanism.

 try blocks must be followed by any of the following.

• one or more catch blocks
• a finally block
• one or more catch blocks followed by a finally block

JAVA PROGRAMMING CHAPTER 9: EXCEPTIONS

©2016 UMBC Training Centers
9-6

The Exception Hierarchy

• A subset of the hierarchy of the exception classes is
shown below.

"Unchecked Exceptions"

"Checked Exceptions"

Object

Error

VirtualMachineError

OutOfMemoryError

Exception

RuntimeException

IllegalArgumentException

NumberFormatException

IndexOutOfBoundsException

ArrayIndexOutOfBoundsException

IOException

EOFException

FileNotFoundException

InterruptedException

Throwable

 The superclass Throwable provides many of the methods
commonly used in catch blocks.

• getMessage() returns the message associated with the
exception.

• printStackTrace() prints the origin of the exception.
• toString() returns the exception name and message.

JAVA PROGRAMMING CHAPTER 9: EXCEPTIONS

©2016 UMBC Training Centers
9-7

Checked Exceptions

• The JVM throws an exception in the following cases.

 An internal error has occurred.

 You make a programming error, such as an out-of-bounds
error.

 You detect an error and execute a throw.

 You call a method that throws an exception.

• Error and its subclasses typically handle exceptions
thrown by the JVM.

 These are errors from which you do not intend to recover.

• RuntimeException and its subclasses are called
unchecked exceptions.

 The Java compiler does not need to know how you plan on
handling these exceptions should they arise.

• Exception and all of its subclasses (excluding
RuntimeException and its subclasses) are called
checked exceptions.

 The Java compile does need to know how you plan on handling
checked exceptions. If you do not specify how you plan on
handling these exceptions, the compiler will issue an error
message.

 A programmer can either:

• handle them; or
• send them up the call stack.

JAVA PROGRAMMING CHAPTER 9: EXCEPTIONS

©2016 UMBC Training Centers
9-8

Checked Exceptions

• Therefore, it is necessary to know for which methods you
are using throw checked exceptions.

 If you do not know, the compiler will inform you at compile time
of any unreported checked exceptions as demonstrated in the
following example.

 The Thread class has a sleep method which allows you to
sleep for a specific number of milliseconds.

PrintHello.java

1. package examples.exceptions;
2. public class PrintHello {
3. public static void main(String args[]) {
4. while(true) {
5. System.out.println("hello");
6. Thread.sleep(2000);
7. }
8. }
9. }

 When this program is compiled, the compiler will indicate the
following error.

PrintHello.java:5: unreported exception
java.lang.InterruptedException; must be caught or
declared to be thrown
 Thread.sleep(2000);
 ^

 If you look in the API docs, the sleep method in the Thread
class is defined as:

public static void sleep(long millis)
 throws InterruptedException

• Since InterruptedException extends from Exception,
it is a checked exception.

• The examples on the next page demonstrate the two ways
the exception can be handled.

JAVA PROGRAMMING CHAPTER 9: EXCEPTIONS

©2016 UMBC Training Centers
9-9

Checked Exceptions

• Below is an example of passing a checked exception up
the call stack.

PrintHello2.java

1. package examples.exceptions;
2. // Passing it up the call stack
3. public class PrintHello2 {
4. public static void main(String args[])
5. throws InterruptedException{
6. while(true) {
7. System.out.println("hello");
8. Thread.sleep(2000);
9. }
10. }
11. }

• An example of handling a checked exception with an
exception handler is shown below.

PrintHello3.java

1. package examples.exceptions;
2. // Handling it with an exception handler
3. public class PrintHello3 {
4. public static void main(String args[]) {
5. while(true) {
6. System.out.println("hello");
7. try {
8. Thread.sleep(2000);
9. } catch(InterruptedException ie){
10. ie.printStackTrace();
11. }
12. }
13. }
14. }

JAVA PROGRAMMING CHAPTER 9: EXCEPTIONS

©2016 UMBC Training Centers
9-10

Advertising Exceptions with throws

• The example below demonstrates the case where a
method calls another method that can throw a checked
exception.

CallStack.java

1. package examples.exceptions;
2. public class CallStack {
3. public static void main(String args[])
4. throws InterruptedException {
5. methodA();
6. }
7.
8. public static void methodA()
9. throws InterruptedException {
10. System.out.println("hello");
11. Thread.sleep(2000);
12. }
13. }

 In the above code, the methodA method calls the sleep
method.

• Since the sleep method throws a checked exception,
methodA has to indicate whether it is handling it or passing
it up the call stack.

• In the above code, methodA is passing it up the call stack to
whichever method calls it.

 Since the main method calls methodA, the main method now
has to indicate how it intends to deal with the exception thrown
by methodA.

• The main method is passing it up the call stack to whichever
method calls it.

 Since the JVM that calls the main method, the JVM ultimately
handles the InterruptedException.

JAVA PROGRAMMING CHAPTER 9: EXCEPTIONS

©2016 UMBC Training Centers
9-11

Developing Your Own Exception Classes

• If none of the existing Exception subclasses convey the
necessary information about a particular error situation,
you can derive your own subclass.

 If you want your exception to be an unchecked exception, your
class should extend from RuntimeException or one of its
subclasses.

• These exceptions are used when there is no reasonable
possibility that a program can recover from the exception.

 If you want your exception to be a checked exception, your
class should extend from Exception or one of its subclasses
(other than RuntimeException).

• These exceptions are used for those cases when the
programmer could have written code to handle these errors.

• Recall the setRadius method in the Circle class that
was designed earlier.
public void setRadius(int r){
 if(r < 0){
 print("Bad radius: " + r);
 print("radius " + radius + "unchanged");
 return;
 }
 radius = r;
}

 As written, it is hard to distinguish between the error detection
and the actual setting of the radius.

JAVA PROGRAMMING CHAPTER 9: EXCEPTIONS

©2016 UMBC Training Centers
9-12

Developing Your Own Exception Classes

• A better design for the setRadius method may be to
throw an Exception, should a negative value be passed
as the parameter.

 The example below defines a new data type to encapsulate the
concept of a negative radius being an exception.

NegativeException.java

1. package examples.exceptions;
2. public class NegativeException extends Exception {
3. // instance variable to hold the negative
4. // value that represents the error
5. private int n;
6.
7. // Constructor
8. public NegativeException(String msg, int num) {
9. // parent class already knows how to handle
10. // the message so we will pass it to the
11. // constructor in our parent class
12. super(msg);
13.
14. // we will handle the number here
15. n = num;
16. }
17. public int getNegativeValue() {
18. return n;
19. }
20. }

• Now, the setRadius method of the Circle class can be
simplified as shown below.
public void setRadius(int r)
 throws NegativeException {
 if(r < 0)
 throw new NegativeException("Bad Radius", r);
 radius = r;
}

 The new version of the Circle class that incorporates the
NegativeException is shown on the next page.

JAVA PROGRAMMING CHAPTER 9: EXCEPTIONS

©2016 UMBC Training Centers
9-13

Developing Your Own Exception Classes
Circle.java

1. package examples.exceptions;
2. public class Circle {
3. private int xc, yc, radius;
4. public Circle(int x, int y, int rad)
5. throws NegativeException {
6. xc = x;
7. yc = y;
8. if(rad < 0)
9. throw new NegativeException("Bad Radius",
10. rad);
11. radius = rad;
12. }
13. public Circle(int x, int y)
14. throws NegativeException {
15. this(x, y, 1);
16. }
17. public Circle(int rad)
18. throws NegativeException {
19. this(0, 0, rad);
20. }
21. public Circle()
22. throws NegativeException {
23. this(0, 0, 1);
24. }
25. public double calcArea() {
26. return Math.PI * radius * radius;
27. }
28. public String toString() {
29. return xc + "," + yc + ": rad = " + radius;
30. }
31. public int getXc() { return xc; }
32. public int getYc() { return yc; }
33. public int getRadius(){ return radius; }
34.
35. public void setRadius(int r)
36. throws NegativeException {
37. if(r < 0)
38. throw new NegativeException("Bad Radius",
39. r);
40. radius = r;
41. }
42. }

JAVA PROGRAMMING CHAPTER 9: EXCEPTIONS

©2016 UMBC Training Centers
9-14

Developing Your Own Exception Classes

• The two programs below demonstrate handling the
NegativeException and passing it up the call stack.

TestCircle1.java

1. package examples.exceptions;
2. public class TestCircle1 {
3. public static void main(String args[]){
4. try{
5. Circle c = new Circle(1, 1, -5);
6. } catch (NegativeException ne) {
7. int x = ne.getNegativeValue();
8. System.out.println(x);
9. System.out.println(ne);
10. }
11. }
12. }

TestCircle2.java

1. package examples.exceptions;
2. public class TestCircle2 {
3. public static void main(String args[])
4. throws NegativeException {
5. Circle c = new Circle(1, 1, -5);
6. }
7. }

JAVA PROGRAMMING CHAPTER 9: EXCEPTIONS

©2016 UMBC Training Centers
9-15

The finally Block

• The last step in setting up an exception handler is
providing a mechanism for cleaning up the state of the
method before (possibly) allowing control to be passed to
a different part of the program.

 This is done by enclosing the cleanup code within a finally
block.

 Code inside of a finally block is executed whether the
exception is thrown or not.

• The only time code inside of a finally block will not be
executed is when the System.exit method is invoked.

JAVA PROGRAMMING CHAPTER 9: EXCEPTIONS

©2016 UMBC Training Centers
9-16

Exercises
1. Write a program that reads three command line

arguments.

 Your program should send the three arguments to a method,
which in turn, sends them to another method.

• The main method should catch any
ArrayIndexOutOfBoundsException.

• The middle method should catch any
StringIndexOutOfBoundsException.

• The innermost method should catch any
NumberFormatException.

 Though the exceptions will be caught in different places, the
code should be written such that all of them are generated
inside of the innermost method.

2. Define a class named BadMonthException that can be
thrown by methods in the SimpleDate class if a month
is less than 1 or greater than 12.

 BadMonthException should extend from
RuntimeException.

3. Modify the BadMonthException class so that it is a
checked exception.

 Make all necessary changes to the methods of the
SimpleDate that throw a BadMonthException.

JAVA PROGRAMMING CHAPTER 10: INPUT AND OUTPUT IN JAVA

©2016 UMBC Training Centers
10-1

Chapter 10:
Input and Output in Java

1) Introduction.. 10-2

2) The File Class .. 10-3

3) Standard Streams... 10-4

4) Keyboard Input.. 10-5

5) File I/O Using Byte Streams.. 10-6

6) Character Streams ... 10-8

7) File I/O Using Character Streams .. 10-9

8) Buffered Streams ... 10-10

9) File I/O Using a Buffered Stream... 10-11

10) Keyboard Input Using a Buffered Stream... 10-12

11) Writing Text Files .. 10-13

JAVA PROGRAMMING CHAPTER 10: INPUT AND OUTPUT IN JAVA

©2016 UMBC Training Centers
10-2

Introduction

• The java.io package contains many classes, which
correspond to various ways of performing input and output
in Java.

• Although there are over 50 classes in this package, most
of them descend from one the root classes listed.

 InputStream

 OutputStream

 Reader

 Writer

• Subclasses of InputStream and OutputStream are
referred to as byte streams, which are used to perform
input and output of 8-bit bytes.

• Subclasses of Reader and Writer are referred to as
character streams, which are used to perform input and
output of characters, automatically handling translation to
and from the local character set.

• Before we study the classes that allow actual file I/O, we
will cover the first class in the java.io package, the
File class.

 The File class contains a String, representing the name of
a file or directory and methods for querying information about a
file.

 The program on the next page shows some of the methods
from the File class.

JAVA PROGRAMMING CHAPTER 10: INPUT AND OUTPUT IN JAVA

©2016 UMBC Training Centers
10-3

The File Class
FileStatus.java

1. package examples.io;
2. import java.io.*;
3. import java.util.*;
4. public class FileStatus {
5. public static void main(String args[]) {
6. File theFile;
7. for(int i = 0; i < args.length; i++) {
8. theFile = new File(args[i]);
9. if (theFile.exists())
10. processFile(theFile);
11. else {
12. print(theFile + "Not a file");
13. }
14. }
15. }
16. public static void processFile(File f){
17. print("--------------------");
18. print(f + " Exists");
19. print("Size: " + f.length());
20. print("Path: " + f.getAbsolutePath());
21. Date d = new Date(f.lastModified());
22. print("Last Modified: " + d);
23. if (f.isDirectory()){
24. print("File is a directory");
25. print("Files in directory are:");
26. String contents [] = f.list();
27. for(int i = 0; i < contents.length; i++)
28. print(" " + contents[i]);
29. }
30. }
31. public static void print(String s){
32. System.out.println(s);
33. }
34. }

JAVA PROGRAMMING CHAPTER 10: INPUT AND OUTPUT IN JAVA

©2016 UMBC Training Centers
10-4

Standard Streams

• The System class defines three standard streams.

 public static final InputStream in;

 public static final PrintStream out;

 public static final PrintStream err;

• You might expect the standard streams to be character
streams but, for historical reasons, they are byte streams.

• System.out and System.err are objects of the
PrintStream class, which provides the print and
println methods we have used throughout the course.

 Since PrintStream is a subclass of OutputStream, it is
technically a byte stream. However, PrintStream utilizes an
internal character stream object to emulate many of the
features of character streams.

• System.in is an object of type InputStream, which
has no character stream features and limited functionality.

 The read() method returns either the:

• next byte of data (as an int) from the stream each time it is
called; or

• value -1 indicating the end of the stream has been reached.

 The available() method returns the number of bytes
available from the stream.

 The close() method closes the stream and releases any
system resources associated with the stream.

JAVA PROGRAMMING CHAPTER 10: INPUT AND OUTPUT IN JAVA

©2016 UMBC Training Centers
10-5

Keyboard Input

• Below is a simple program that receives input from the
keyboard (System.in) using the read method.

Keyboard.java

1. package examples.io;
2. import java.io.*;
3. public class Keyboard {
4. public static void main(String args[]) {
5. int val;
6. try {
7. while((val = System.in.read()) != -1)
8. System.out.print((char)val);
9. } catch(IOException e) {
10. System.err.println("Error: " + e);
11. }
12. }
13. }

• There are a few items to note in the above code.

 The read method can throw an IOException. Since this is a
checked exception, we enclose the method call in a try block
and catch the IOException.

 The read method returns an int, so we cast it to a char in
order to display it on the screen as a character rather than a
number.

 The actual number of bytes read when typing in the following
line will vary by operating system.

ABC (followed by the Enter key)

• Windows - Enter is a carriage return and a newline; total
bytes read = 5

• Unix/Linux - Enter is a newline; total bytes read = 4
• Macintosh - Enter is a carriage return; total bytes read = 4

JAVA PROGRAMMING CHAPTER 10: INPUT AND OUTPUT IN JAVA

©2016 UMBC Training Centers
10-6

File I/O Using Byte Streams

• The next set of classes we will look at are the
FileInputStream and the FileOutputStream
classes. Like their superclasses (InputStream and
OutputStream), these are byte streams with limited
functionality.

• Use a FileInputStream object to open a file for
reading bytes.

 The constructors can take either a File or a String object as
its parameter.

FileInputStream (File file)
FileInputStream (String name)

• Use a FileOutputStream object to open a file for
writing bytes.

 The constructors can take either a File or a String object as
its parameter.

 There are also constructors that take a boolean value,
specifying whether you wish to append to (true) or overwrite
(false) the file if it already exists.

FileOutputStream (File file)
FileOutputStream (String name)
FileOutputStream (File file, boolean append)
FileOutputStream (String name, boolean append)

• The example on the next page shows how the
FileInputStream and FileOutputStream can be
used to copy a file byte-by-byte.

JAVA PROGRAMMING CHAPTER 10: INPUT AND OUTPUT IN JAVA

©2016 UMBC Training Centers
10-7

File I/O Using Byte Streams
FileCopy.java

1. package examples.io;
2. import java.io.*;
3.
4. public class FileCopy {
5. public static void main(String a[]) {
6. int aByte;
7.
8. FileInputStream fis = null;
9. FileOutputStream fos = null;
10. try {
11. fis = new FileInputStream(a[0]);
12. fos = new FileOutputStream(a[1]);
13. while((aByte = fis.read()) != -1)
14. fos.write(aByte);
15. } catch(FileNotFoundException e) {
16. System.err.println("File Not Found");
17. e.printStackTrace();
18. } catch(IOException e) {
19. System.err.println("IOError: ");
20. e.printStackTrace();
21. } finally {
22. try {
23. if (fis != null)
24. fis.close();
25. if (fos != null)
26. fos.close();
27. } catch(IOException e){
28. // ignore the exception
29. }
30. }
31. }
32. }

 It is important to note that the compiler does not know whether
any code inside of a try block will be successfully executed.
Therefore, in the code above, the variables fis and fos are
initialized to null so that any code accessing these two
variables outside of the try block does not result in the
compiler stating that the variables might not have been
initialized.

JAVA PROGRAMMING CHAPTER 10: INPUT AND OUTPUT IN JAVA

©2016 UMBC Training Centers
10-8

Character Streams

• In Java, character data is handled by subclasses of
Reader and Writer.

• In most cases, the subclasses of Reader and Writer
have the same or similar methods as the corresponding
subclasses of InputStream and OutputStream.

• The subclasses FileReader and FileWriter are
preferred for text files (rather than FileInputStream
and FileOutputStream), because they support 16-bit
Unicode characters.

• Like their byte stream counterparts, FileReader and
FileWriter offer limited functionality. For example,
there is no capability to read a line of input.

• The example on the next page shows how to copy a file
character-by-character. Note the similarity to the
FileCopy program studied earlier.

JAVA PROGRAMMING CHAPTER 10: INPUT AND OUTPUT IN JAVA

©2016 UMBC Training Centers
10-9

File I/O Using Character Streams
TextFileCopy.java

1. package examples.io;
2. import java.io.*;
3.
4. public class TextFileCopy {
5. public static void main(String a[]) {
6. int aChar;
7.
8. FileReader fr = null;
9. FileWriter fw = null;
10. try {
11. fr = new FileReader(a[0]);
12. fw = new FileWriter(a[1]);
13. while((aChar = fr.read()) != -1)
14. fw.write(aChar);
15. } catch(FileNotFoundException e) {
16. System.err.println("File Not Found");
17. e.printStackTrace();
18. } catch(IOException e) {
19. System.err.println("IOError: ");
20. e.printStackTrace();
21. } finally {
22. try {
23. if (fr != null)
24. fr.close();
25. if (fw != null)
26. fw.close();
27. } catch(IOException e){
28. // ignore the exception
29. }
30. }
31. }
32. }

JAVA PROGRAMMING CHAPTER 10: INPUT AND OUTPUT IN JAVA

©2016 UMBC Training Centers
10-10

Buffered Streams

• The examples we have seen so far use unbuffered I/O.
This means each read or write request is handled directly
by the underlying operating system. This can make a
program inefficient, since such requests may involve disk
access or network activity.

• To reduce this kind of overhead, the java.io package
includes classes that implement buffered I/O streams.

• The BufferedReader class defines a readLine
method that returns a String.

 The readLine method returns null at the end of a file rather
than a -1.

• To use enhanced functionality such as buffered I/O, we
use a technique that allows two or more classes to work
together. This technique is sometimes referred to as
"wrapping" one stream with another stream.

• In the next example, we will construct a FileReader
object, and then "wrap" it with a BufferedReader object
so that we can read a file line-by-line.

 Note that the constructor for BufferedReader can take any
type of Reader as its parameter.

JAVA PROGRAMMING CHAPTER 10: INPUT AND OUTPUT IN JAVA

©2016 UMBC Training Centers
10-11

File I/O Using a Buffered Stream
BufferedFileCopy.java

1. package examples.io;
2. import java.io.*;
3. public class BufferedFileCopy {
4. public static void main(String a[]) {
5. String theLine;
6. FileReader fr = null;
7. BufferedReader br = null;
8. try {
9. fr = new FileReader(a[0]);
10. br = new BufferedReader(fr);
11. while((theLine = br.readLine()) != null){
12. System.out.println(theLine);
13. }
14. } catch(FileNotFoundException e) {
15. System.err.println("File Not Found");
16. e.printStackTrace();
17. } catch(IOException e) {
18. System.err.println("IOError: ");
19. e.printStackTrace();
20. } finally {
21. try {
22. if (br != null)
23. br.close();
24. } catch(IOException e){
25. // ignore the exception
26. }
27. }
28. }
29. }

 Note that it is only necessary to close the outermost stream
(i.e., the last one to be constructed).

JAVA PROGRAMMING CHAPTER 10: INPUT AND OUTPUT IN JAVA

©2016 UMBC Training Centers
10-12

Keyboard Input Using a Buffered Stream

• Now, suppose you want to read a line of input from the
keyboard.

 Recall that System.in is an object of type InputStream.

 Java provides a class named InputStreamReader that
converts an InputStream to a Reader.

KeyboardReadLines.java

1. package examples.io;
2. import java.io.*;
3. public class KeyboardReadLines {
4. public static void main(String a[]) {
5. InputStreamReader isr = null;
6. BufferedReader br = null;
7.
8. String line;
9. try {
10. isr = new InputStreamReader(System.in);
11. br = new BufferedReader(isr);
12.
13. while(true) {
14. System.out.print("Enter a line: ");
15. line = br.readLine();
16. if (line.equalsIgnoreCase("QUIT"))
17. break;
18. System.out.println("You entered: "
19. + line);
20. }
21. } catch(IOException e) {
22. System.out.println(e.getMessage());
23. } finally {
24. try {
25. if (br != null)
26. br.close();
27. } catch(IOException e) {
28. }
29. }
30. }
31. }

JAVA PROGRAMMING CHAPTER 10: INPUT AND OUTPUT IN JAVA

©2016 UMBC Training Centers
10-13

Writing Text Files

• Recall that we have been using the PrintStream class
since the beginning of the course.

System.out.println("Hello World!");

 The data type of the static variable out in the System class is
PrintStream.

 The print and println methods of the PrintStream class
are overloaded.

• There are print and println methods that take, as a
parameter, each of the Java primitives.

• There are also print and println methods that take, as a
parameter, a String.

• Additionally, there are print and println methods that
take a parameter of type Object, which results in a call to
the toString method on the object being referenced at
runtime (polymorphism) .

• You can "wrap" a PrintStream around an underlying
OutputStream. For example:

FileOutputStream fos = new FileOutputStream("file.txt");
PrintStream ps = new PrintStream(fos);

 The style below is sometimes preferred to the code above.

PrintStream ps =
 new PrintStream(new FileOutputStream("file.txt"));

• There is a corresponding class called PrintWriter (also
containing overloaded print and println methods)
that can be wrapped around an underlying Writer. The
next example uses a FileWriter and a PrintWriter
to save data in a text file.

JAVA PROGRAMMING CHAPTER 10: INPUT AND OUTPUT IN JAVA

©2016 UMBC Training Centers
10-14

Writing Text Files
WriteTextFile.java

1. package examples.io;
2. import java.io.*;
3. public class WriteTextFile {
4. public static void main(String a[]) {
5. int iValue = 10;
6. double dValue = 12.3;
7.
8. PrintWriter pw = null;
9. try {
10. pw = new PrintWriter(new
11. FileWriter(a[0]));
12.
13. pw.println("The integer is " + iValue);
14. pw.println("The double is " + dValue);
15.
16. } catch(FileNotFoundException e) {
17. System.err.println("Can't open " + a[0]);
18. e.printStackTrace();
19. } catch(IOException e) {
20. System.err.println("IOError: ");
21. e.printStackTrace();
22. } finally {
23. if (pw != null)
24. pw.close();
25. }
26. }
27. }

JAVA PROGRAMMING CHAPTER 10: INPUT AND OUTPUT IN JAVA

©2016 UMBC Training Centers
10-15

Exercises
1. Write a program that displays the number of characters,

words, and lines in a file named on the command line.

2. Write a program that prompts the user for the name of a
file. If the file does not exist or is a directory, print an
appropriate message;. Otherwise, ask the user if the file
should be deleted. Delete the file if the user confirms.

3. Enhance your solution to the previous exercise so that
the user has two additional options.

 Rename the file (prompt the user for the new name).

 Create a backup copy of the file (prompt the user for the name
of the backup copy).

4. Write a program that receives two file names as
command line arguments. Each file contains a list of
words, with one or more words on each line. The
program should display only the words that are common
to both files.

JAVA PROGRAMMING CHAPTER 10: INPUT AND OUTPUT IN JAVA

©2016 UMBC Training Centers
10-16

Exercises
5. Write a program, which has a static method that can read

from any type of InputStream.

 The static method should take two parameters.

• The first parameter should be the InputStream, from
which to read.

• The second parameter should be an int, indicating how
many characters to print per line before wrapping the output
to a new line.

• This static method should be called by the main method.

 The main method will determine which parameters to pass to
the static method based on how many arguments are supplied
on the command line.

• If only one argument is supplied on the command line, the
input should be from the keyboard, and the wrap length
should be obtained from the argument on the command line.

• If two arguments are supplied on the command line, the first
should be the wrap length and the second the name of the
file from which to read.

JAVA PROGRAMMING CHAPTER 11: COLLECTIONS

©2016 UMBC Training Centers
11-1

Chapter 11:
Collections

1) Introduction.. 11-2

2) Vectors .. 11-3

3) Hashtables... 11-4

4) Enumerations ... 11-6

5) Properties.. 11-9

6) Collection Framework Hierarchy .. 11-11

7) Lists ... 11-13

8) Sets... 11-14

9) Maps.. 11-15

10) The Collections Class ... 11-16

JAVA PROGRAMMING CHAPTER 11: COLLECTIONS

©2016 UMBC Training Centers
11-2

Introduction

• In this chapter, we explore the various interfaces, abstract
classes, and concrete classes that make up the
Collections Framework.

• A collection is a group of data elements managed by a
single object, with operations provided to manipulate the
data inside of the collection.

• Prior to JDK1.2, there existed a limited number of classes
to represent and manipulate data structures in the
java.util package.

 Vector supports the concept of a growable array.

 Hashtable supports the concept of an associative array.

 Enumeration provides a way of getting each element in a
Vector or Hashtable.

• As of JDK1.2, a new framework for collections was
defined and implemented.

 This framework standardized the architecture for representing
and manipulating collections of data.

 The Collections Framework offers the following benefits.

• Reduced programming effort
• Easier to pass collections between unrelated APIs
• Increased program speed.

• Since the older classes are still in wide use, we will
explore them before we study the newer collections
framework.

JAVA PROGRAMMING CHAPTER 11: COLLECTIONS

©2016 UMBC Training Centers
11-3

Vectors

• The Vector class supports the concept of a growable
array.

 Like an array, its components can be accessed by index.

 The size of a Vector can grow or shrink as needed.

 Any Object can be added, removed, or returned from a
Vector.

• If a primitive is added, it needs to be wrapped up inside of an
Object in order to be added to the Vector.

 The example below shows some of the Vector class methods.

VectorTest.java

1. package examples.collections;
2. import java.util.Vector;
3. public class VectorTest {
4. public static void main(String args[]) {
5. Vector v = new Vector(100);
6. print("SIZE = " + v.size());
7. print("CAPACITY = " + v.capacity());
8. Integer x = new Integer(10);
9. v.add(x);
10. v.add(new Double(10.5));
11. v.add("Mike");
12.
13. print("SIZE = " + v.size());
14. for (int i = 0; i < v.size(); i++)
15. print(v.get(i));
16.
17. print(x + " at pos: " + v.indexOf(x));
18. print(v);
19. v.remove(1);
20. print(v);
21. }
22. public static void print(Object o){
23. System.out.println(o);
24. }
25. }

JAVA PROGRAMMING CHAPTER 11: COLLECTIONS

©2016 UMBC Training Centers
11-4

Hashtables

• The Hashtable class is used to create associated pairs.

 Each pair has a key and a value.

• The key can be used as an index to the value.
• The key must be unique among all keys in the Hashtable.

 Entries are placed into a Hashtable with the put method.

public Object put(Object key, Object value);

• The first argument is the key, and the second argument is
the value associated with the key.

• The first time the put method is called for a particular key,
the value null is returned.

• For each use beyond that for the same key, the old value
associated with that key is returned.

 Later, you can use the get method to extract the value for a
particular key.

public Object get(Object key);

• The get method returns the value associated with the key
as an Object.

• Often, the object must be cast into the subclass type in order
to call methods specific to the subtype.

 The remove method can remove an element from a
Hashtable.

public Object remove(Object key);

• The remove method returns the removed value associated
with the key, or null if the key is not in the Hashtable.

JAVA PROGRAMMING CHAPTER 11: COLLECTIONS

©2016 UMBC Training Centers
11-5

Hashtables

• The program below creates a Hashtable with several
capital cities as keys and their state as values.

 The program then reads the keys supplied on the command
line and gets the associated values.

HashTest.java

1. package examples.collections;
2. import java.util.Hashtable;
3. public class HashTest {
4. public static void main(String args[]) {
5. Hashtable caps = new Hashtable();
6. caps.put("Providence", "RI");
7. caps.put("Boston", "MA");
8. caps.put("Hartford", "CT");
9. for (int i = 0; i < args.length; i++) {
10. Object val = caps.get(args[i]);
11. if (val == null)
12. System.out.println(args[i] +
13. ": is not a capital");
14. else
15. System.out.println(args[i] +
16. " is capital of " + val);
17. }
18. }
19. }

 The results of running the above program are shown below.

java examples.collections.HashTest Providence
Annapolis Hartford
Providence is capital of RI
Annapolis: is not a capital
Hartford is capital of CT

JAVA PROGRAMMING CHAPTER 11: COLLECTIONS

©2016 UMBC Training Centers
11-6

Enumerations

• An Enumeration is an interface with two methods.

 public boolean hasMoreElements();

• This returns a boolean, indicating whether there are more
elements in the Enumeration.

 public Object nextElement();

• This returns the next element of the Enumeration.

• Both the Vector and Hashtable classes have an
elements method that returns an Enumeration.

 The elements method in the Vector class returns an
Enumeration of all of the elements in the Vector.

 The elements method in the Hashtable class returns an
Enumeration of all of the values in the Hashtable.

• Hashtable also has a keys method that returns an
Enumeration of all of the keys in the Hashtable.

• The example that follows demonstrates the use an
Enumeration to loop through a Hashtable of Account
objects.

 The Account class we are using in the example is the same
one used in an earlier chapter.

• Each Account object has a unique account number that will
be used as the key in the Hashtable.

• Since the account number is a primitive int, we need to
wrap it up inside of an Integer object in order to use it as
the key.

JAVA PROGRAMMING CHAPTER 11: COLLECTIONS

©2016 UMBC Training Centers
11-7

Enumerations

• Below is a copy of the Account class studied earlier.

Account.java

1. package examples.collections;
2. public class Account {
3. private static int counter = 1000;
4. private String name;
5. private int accountNum;
6.
7. public Account(String n) {
8. name = n;
9. accountNum = counter++;
10. }
11. public String getName(){
12. return name;
13. }
14. public int getAccNumber(){
15. return accountNum;
16. }
17. public String toString() {
18. return name + " has account # " + accountNum;
19. }
20. public static int nextNumber() {
21. return counter;
22. }
23. }

 For each Account object created, the accountNum will need
to be stored in an Integer object to be able to use it as the
key.

Hashtable accounts = new Hashtable();
Account val = new Account("Susan");
Integer key = new Integer(val.getAccNumber());
accounts.put(key, val);

 The complete code, including an Enumeration to obtain all of
the Account objects in the Hashtable, is shown on the next
page.

JAVA PROGRAMMING CHAPTER 11: COLLECTIONS

©2016 UMBC Training Centers
11-8

Enumerations
AccountTest.java

1. package examples.collections;
2. import java.util.*;
3. public class AccountTest {
4. public static void main(String args[]) {
5. Hashtable accounts = new Hashtable();
6. // Obtain account names from command line
7. Account val;
8. Integer key;
9. for(int i = 0; i < args.length; i++){
10. val = new Account(args[i]);
11. key = new Integer(val.getAccNumber());
12. accounts.put(key, val);
13. }
14. Enumeration e = accounts.keys();
15. while(e.hasMoreElements()){
16. key = (Integer) e.nextElement();
17. val = (Account) accounts.get(key);
18. System.out.print(val.getName());
19. System.out.print(" account number ");
20. System.out.println(key.intValue());
21. }
22. }
23. }

JAVA PROGRAMMING CHAPTER 11: COLLECTIONS

©2016 UMBC Training Centers
11-9

Properties

• The java.util package contains a Properties class
that allows the manipulation of a set of keys and their
associated values called properties.

 Although Properties extends Hashtable, the keys and
values are only allowed to be of type String.

public Object setProperty(String key, String value);

• The setProperty method should be used in place of the
inherited put method when populating the Properties
object.

• If the put method is used, and a type other than String is
used for either the key or the value, the store and load
methods of the Properties class will fail.

 The store method allows the properties to be persisted to an
OutputStream for later retrieval from the load method.

• The JVM maintains a Properties object that contains
information about the environment in which the JVM is
running.

 The static getProperties method in the System class can
be used to obtain the system Properties object.

• The two examples that follow create a Properties
object with several key/value pairs and rely on the store
and load methods to persist and retrieve the properties.

JAVA PROGRAMMING CHAPTER 11: COLLECTIONS

©2016 UMBC Training Centers
11-10

Properties
StoreProperties.java

1. package examples.collections;
2. import java.util.*;
3. import java.io.*;
4. public class StoreProperties{
5. public static void main(String args[])
6. throws IOException{
7. FileOutputStream fos =
8. new FileOutputStream(args[0]);
9. Properties p = new Properties();
10. p.setProperty("fontsize", "12");
11. p.setProperty("fontcolor", "green");
12. p.store(fos, "header comment");
13. fos.close();
14. }
15. }

LoadProperties.java

1. package examples.collections;
2. import java.util.*;
3. import java.io.*;
4. public class LoadProperties{
5. public static void main(String args[])
6. throws IOException{
7. FileInputStream fis =
8. new FileInputStream(args[0]);
9. Properties p = new Properties();
10. p.load(fis);
11. fis.close();
12. Enumeration e = p.propertyNames();
13. String key, val;
14. while(e.hasMoreElements()){
15. key = (String) e.nextElement();
16. val = (String) p.get(key);
17. System.out.println(key + " " + val);
18. }
19. }
20. }

JAVA PROGRAMMING CHAPTER 11: COLLECTIONS

©2016 UMBC Training Centers
11-11

Collection Framework Hierarchy

• Now that you have seen some of the older data structure
classes, such as Vector and Hashtable, we can look at
the newer data structure classes provided as part of the
Collections Framework.

• These classes are organized as a hierarchy of classes,
the top-most of which are interfaces and abstract classes.

 Most of the classes we will be studying implement either the
Collection interface or Map interface.

 We will first look at the Collection interface and several of its
implementations, followed later by the Map interface.

• Collection is a top-level interface that defines the
methods all collections must have.

 Below are listed some of the methods in the Collection
interface.
public boolean add(Object o);
public boolean addAll(Collection c);
public void clear();
public boolean contains(Object o);
public boolean containsAll(Collection c);
public boolean equals(Object o);
public boolean isEmpty();
public Iterator iterator();
public boolean remove(Object o);
public int size();

• List is a sub-interface of Collection, in that it extends
the Collection interface by adding additional methods
to retrieve an element based on an index.

 An example of this is the additional add method defined below.

public boolean add(int index, Object o);

JAVA PROGRAMMING CHAPTER 11: COLLECTIONS

©2016 UMBC Training Centers
11-12

Collection Framework Hierarchy

• AbstractCollection is an abstract class that
implements some of the functionality of Collection.

 All of the methods from the Collection class, except for the
size and iterator methods, are defined concretely.

• It is up to the subclasses of AbstractCollection to
implement the size and iterator methods.

• AbstractList extends AbstractCollection and
implements some of the functionality of the List
interface.

• Each of the abstract classes and interfaces we have
discussed allow developers to define their own data
structure if necessary, based upon the framework
supplied, or use a concrete implementation supplied as
part of the JDK.

 ArrayList is a concrete implementation of AbstractList.

 LinkedList is another concrete implementation that extends
from AbstractSequentialList.

• These two concrete implementations differ with respect to
the way in which elements are stored and retrieved.

• The List interface provides a description of what common
functionality is provided. ArrayList and LinkedList
implement the functionality in different ways.

• The example on the following page demonstrates using
an ArrayList and a LinkedList.

JAVA PROGRAMMING CHAPTER 11: COLLECTIONS

©2016 UMBC Training Centers
11-13

Lists
ListDemo.java

1. package examples.collections;
2. import java.util.*;
3. public class ListDemo {
4. public static void main(String args[]) {
5. List list = new ArrayList();
6. for (int i = 0; i < args.length; i++)
7. list.add(args[i]);
8. System.out.println("ArrayList:");
9. printList(list);
10. list = new LinkedList();
11. for (int i = 0; i < args.length; i++)
12. list.add(args[i]);
13. System.out.println("LinkedList:");
14. printList(list);
15. }
16. public static void printList(Collection data){
17. Iterator iter = data.iterator();
18. while (iter.hasNext())
19. System.out.println(iter.next());
20. System.out.println();
21. }
22. }

• Notice that elements are added to the ArrayList in the
same way they are added to the LinkedList.

 Notice also that the static printList method takes a
Collection as its parameter.

 Since an ArrayList and a LinkedList are a Collection,
they can be passed as the argument.

• The benefit of using a Collection as the parameter will be
even clearer in the next example.

 An Iterator acts similar to an Enumeration.

• An Iterator has the added functionality of being able to
remove an element.

JAVA PROGRAMMING CHAPTER 11: COLLECTIONS

©2016 UMBC Training Centers
11-14

Sets

• Set is a sub-interface of Collection in that it extends
the Collection interface by stipulating that no duplicate
elements are allowed.

 The JDK provides two concrete implementations of Set.

• HashSet - This class makes no guarantees as to the
iteration order of its elements.

• TreeSet - This class guarantees that the iteration order of
its elements is in ascending order.

 The example below demonstrates the behavior of both a
HashSet and a TreeSet.

SetDemo.java

1. package examples.collections;
2. import java.util.*;
3. public class SetDemo {
4. public static void main(String args[]) {
5. Set uniqueWords = new HashSet();
6. for (int i = 0; i < args.length; i++)
7. uniqueWords.add(args[i]);
8. System.out.println("HashSet:");
9. ListDemo.printList(uniqueWords);
10. uniqueWords = new TreeSet();
11. for (int i = 0; i < args.length; i++)
12. uniqueWords.add(args[i]);
13. System.out.println("TreeSet:");
14. ListDemo.printList(uniqueWords);
15. }
16. }

 Note the use of the static printList(Collection
data) method from the previous example to iterate through the
elements in the each Set.

 Try running the above program passing several words on the
command line, where several of the words are repeated.

JAVA PROGRAMMING CHAPTER 11: COLLECTIONS

©2016 UMBC Training Centers
11-15

Maps

• Map is another top-level interface of the Collections
Framework.

 As with the top-level Collection interface, the Map interface
has several sub-interfaces and abstract classes below it in its
hierarchy.

 A Map is a collection of keys and values, where the keys are
unique within the Map.

• Two of the concrete implementations of Map provided with
the JDK are shown below.

 HashMap - This class is the newer version of the Hashtable
studied earlier in this section.

 TreeMap - This class maintains the keys in sorted order.

• The example below demonstrates the behavior of a
TreeMap.

MapDemo.java

1. package examples.collections;
2. import java.util.*;
3. public class MapDemo {
4. public static void main(String argv[]) {
5. Map cities = new TreeMap();
6. cities.put("Richmond", "Virginia");
7. cities.put("Boston", "Massachusetts");
8. cities.put("Richmond", "Virginia");
9. Set set = cities.keySet();
10. Iterator iter = set.iterator();
11. while (iter.hasNext())
12. System.out.println(iter.next());
13. }
14. }

JAVA PROGRAMMING CHAPTER 11: COLLECTIONS

©2016 UMBC Training Centers
11-16

The Collections Class

• The Collections class consists entirely of static
methods that operate on or return collections.

• Here is an example demonstrating the use of
binarySearch to search an ordered list.

 This method returns the index where an element is found or a
negative value if it does not exist in the list.

• The actual negative value returned is:
(-(insertion point) - 1) = returnedValue
where insertion point indicates the point at which the
element would be inserted into the list.

Search.java

1. package examples.collections;
2. import java.util.*;
3. public class Search {
4. public static void main(String args[]) {
5. List list = new ArrayList();
6. for (int i = 0; i <= 100; i += 2) {
7. Integer ival = new Integer(i);
8. list.add(ival);
9. }
10. for (int i = 0; i < args.length; i++) {
11. Integer find = new Integer(args[i]);
12. int pos =
13. Collections.binarySearch(list, find);
14. if (pos >= 0)
15. System.out.println(args[i] +
16. " found: at pos " + pos);
17. else
18. System.out.println(args[i] +
19. " not found");
20. }
21. }
22. }

JAVA PROGRAMMING CHAPTER 11: COLLECTIONS

©2016 UMBC Training Centers
11-17

Exercises
1. The lab files directory contains a file named
statecaps.txt that lists all 50 states and their capitals.

 Write a program that reads the file into a HashMap using the
state as the key.

 Obtain an Iterator from the HashMap to print out all 50
states and capitals.

2. Modify the previous exercise to enter a loop that
randomly selects one of the 50 States from the HashMap
and prompts the user to enter the capital.

• The application should take the number of times to loop from
the command line.

• It should also keep track of how many times the user was
correct out of the total number questions.

3. Create an application that stores all the numbers supplied
as command line arguments and stores them in an
ArrayList.

 The program should print out the contents of the ArrayList
two times.

• The first time should use a for loop to loop by index.
• The second time should rely on an Iterator.

 Each loop should also print the total of all of the numbers.

JAVA PROGRAMMING CHAPTER 11: COLLECTIONS

©2016 UMBC Training Centers
11-18

This Page Intentionally Left Blank

JAVA PROGRAMMING CHAPTER 12: NETWORKING

©2016 UMBC Training Centers
12-1

Chapter 12:
Networking

1) Networking Fundamentals.. 12-2

2) The Client/Server Model ... 12-4

3) InetAddress ... 12-6

4) URLs.. 12-8

5) Sockets... 12-11

6) A Time-of-Day Client .. 12-13

7) Writing Servers .. 12-14

8) Client/Server Example... 12-15

JAVA PROGRAMMING CHAPTER 12: NETWORKING

©2016 UMBC Training Centers
12-2

Networking Fundamentals

• Before looking at the examples of Java networking, we will
give some basic details about networking in general.

 Every machine on a network is called a node or a host. Each
host has an address, which uniquely identifies it on the
network.

• The address is a four-byte number usually represented as
four numbers separated by dots.
127.0.0.1 192.168.0.100

• Since humans are better at remembering names than

numbers, a system has been developed to map names to
network addresses. The Domain Name System (DNS) is
incorporated into machines known as Name Servers.

 Data is sent over a network in packets. Each packet contains
the address of the sender and receiver.

 Computers communicate through a set of rules called
protocols.

• Although there are many protocols in use, we will only be
concerned with the http protocol and the tcp protocol.

 When a process on one machine wishes to send a packet of
information to a process on another machine, there are several
layers through which the packet must travel.

• These layers have been described by several models, most
notably the seven layer model known as the ISO/OSI model.

• Since we are interested in providing the networking details
for Java programs, we will use a simplified version of the
seven layer model.

JAVA PROGRAMMING CHAPTER 12: NETWORKING

©2016 UMBC Training Centers
12-3

Networking Fundamentals

• When a packet flows from Host 1 to Host 2, the packet is
sent through the layers as depicted in the diagram below.

Host 1 Layer
APPLICATION

(http, ftp, telnet, etc.)
TRANSPORT
(TCP, UDP)
INTERNET

(IP)
PHYSICAL
(Ethernet)

Host 2 Layer
APPLICATION

(http, ftp, telnet, etc.)
TRANSPORT
(TCP, UDP)
INTERNET

(IP)
PHYSICAL
(Ethernet)

0110
1010

packet

• Each layer has distinct duties to perform.

 The APPLICATION layer is usually the only one with which a
Java programmer is concerned.

• The application layer sends data from or delivers data to
your program.

 The TRANSPORT layer controls how the packets are delivered.
The two most common protocols for this layer are described
below.

• Transmission Control Protocol (TCP) - reliable, high
overhead

• User Datagram Protocol (UDP) - unreliable, low overhead

• Each computer on a network can provide many
networking services.

 For example, your computer may provide a FileTransfer
Protocol (FTP) service and a HyperText Transfer Protocol
(HTTP) service.

JAVA PROGRAMMING CHAPTER 12: NETWORKING

©2016 UMBC Training Centers
12-4

The Client/Server Model

• When an application on one machine needs a particular
service on another machine, it is not enough for the
application to reference the other machine's IP address
alone.

 It must reference the service on the machine it wishes to use.

 Services are referenced by port numbers. Each service is
mapped to a port. Standardized services use standard ports.
For example:

• ftp uses port 21;
• http uses port 80; and
• telnet uses port 23.

• Most networking applications today use the Client/Server
model.

 In this model, a process on one machine requests some
service, such as a file service or time-of-day service from
another process.

• The process requesting the service is called the client
process.

• The process providing the service is called the server
process.

 The two processes could reside on the same machine, but
more often, they reside on different machines.

• The machine hosting the client process is called the Client.
• The machine hosting the server process is called the

Server.

JAVA PROGRAMMING CHAPTER 12: NETWORKING

©2016 UMBC Training Centers
12-5

The Client/Server Model

• One example of the Client/Server model follows.

 Data is stored on a Server that services many requests from
Client software hosted by PCs.

• The Browser/Web Server fits the Client/Server model.

• Browsers and web servers communicate using the HTTP
protocol.

 The HTTP protocol defines how a client requests data from a
server and how the data is transferred back to the client from
the server.

• A browser typically makes a request to the server for a file to
retrieve. The name of the file and its location on the World
Wide Web is specified as a Uniform Resource Locator
(URL).

• A URL is a reference to a resource on the Internet. Most
people are used to seeing URLs as Domain Names such
as the following.
www.trainingetc.com www.sun.com www.apache.org

 In reality, a domain name is just one part of a URL.

 A URL can consist of the following parts, some of which are
dependent upon the protocol.

• protocol:// http://

• hostname:port www.trainingetc.com:80
• path courses/file#java
• file courses/file
• #section #java

JAVA PROGRAMMING CHAPTER 12: NETWORKING

©2016 UMBC Training Centers
12-6

InetAddress

• The java.net package contains the majority of the
classes that pertain to networking in Java.

 The first class we will study in this package is the
InetAddress class.

• InetAddress can be used to obtain information about a
host name or an IP address.

 The JVM will rely on the DNS server configured for the system
to obtain the information.

 The example on the next page calls various methods from the
InetAddress class to display information about both the host
name provided on the command line and the local host.

JAVA PROGRAMMING CHAPTER 12: NETWORKING

©2016 UMBC Training Centers
12-7

InetAddress

Address.java

1. package examples.networking;
2. import java.net.*;
3. public class Address {
4. public static void main(String args[]) {
5. try {
6. print("Remote Host:");
7. InetAddress remote =
8. InetAddress.getByName(args[0]);
9. getInfo(remote);
10. print("Local Host:");
11. InetAddress local =
12. InetAddress.getLocalHost();
13. getInfo(local);
14. } catch(UnknownHostException e) {
15. print("???: " + e.getMessage());
16. }
17. }
18. private static void getInfo(InetAddress ia){
19. print(" HostName: " +
20. ia.getHostName());
21. print(" HostAddress: "
22. + ia.getHostAddress());
23. print(" CanonicalHostname: " +
24. ia.getCanonicalHostName());
25. getRawIP(ia);
26. print("");
27. }
28. private static void getRawIP(InetAddress ia){
29. byte [] b = ia.getAddress();
30. System.out.print(" ");
31. for (int i = 0; i < b.length; i++) {
32. int each = b[i] < 0 ? b[i] + 256 : b[i];
33. System.out.print(each + " ");
34. }
35. System.out.println();
36. }
37. private static void print(String s){
38. System.out.println(s);
39. }
40. }

JAVA PROGRAMMING CHAPTER 12: NETWORKING

©2016 UMBC Training Centers
12-8

URLs

• URL is another class in the java.net package.

 A URL can be constructed in various ways, several of which are
shown below.

public URL(String spec) throws MalformedURLException

public URL(String protocol, String host,
 String file) throws MalformedURLException

public URL(String protocol, String host, int port,
 String file) throws MalformedURLException

 Once a URL is constructed, several methods can be used to
retrieve a specific field as shown in the example below.

• The application below requires that a host name be supplied
on the command line.

URLS.java

1. package examples.networking;
2. import java.net.*;
3. public class URLS {
4. public static void main(String args[]) {
5. try {
6. URL u = new URL("http", args[0], 80,
7. "/index.html");
8. System.out.println(u);
9. print("Prot: " + u.getProtocol());
10. print("Host: " + u.getHost());
11. print("Port: " + u.getPort());
12. print("Ref: " + u.getRef());
13. print("File: " + u.getFile());
14. } catch(MalformedURLException e) {
15. System.out.println(e.getMessage());
16. }
17. }
18. private static void print(String s){
19. System.out.println(s);
20. }
21. }

JAVA PROGRAMMING CHAPTER 12: NETWORKING

©2016 UMBC Training Centers
12-9

URLs

• The openStream method in the URL class returns an
InputStream that can be used to read the data at the
given URL, as shown in the example below.

ReadWebPage.java

1. package examples.networking;
2. import java.net.*;
3. import java.io.*;
4. public class ReadWebPage {
5. public static void main(String args[]) {
6. try {
7. URL web = new URL("http://" + args[0]);
8. InputStream is = web.openStream();
9. int aByte = 0;
10. while((aByte = is.read()) != -1)
11. System.out.print((char) aByte);
12. is.close();
13. } catch(MalformedURLException e) {
14. System.out.println("Malformed");
15. } catch(IOException e) {
16. System.out.println("IOException");
17. }
18. }
19. }

 Below is some sample output from the above program.
java examples.networking.ReadWebPage
www.trainingetc.com
<html>
<head>
<title>/training/etc Technical Training</title>
<meta http-equiv="Content-Type" content="text/html;">
<!-- Fireworks MX Dreamweaver MX target. Created Thu
Mar 31 13:56:00 GMT-0500 (Eastern Standard Time) 2005-
->

JAVA PROGRAMMING CHAPTER 12: NETWORKING

©2016 UMBC Training Centers
12-10

URLs

• A URLConnection can be obtained from the
openConnection method of the URL class.

 The URLConnection class has various methods to obtain the
header information sent by the server instead of the body of
the response from the server as in the previous example.

• Certain header fields that tend to be accessed frequently
have special methods to obtain them.

 The example below demonstrates the use of the
URLConnection to obtain information about the headers sent
by the server.

ReadHeaders.java

1. package examples.networking;
2. import java.net.*;
3. import java.io.*;
4. import java.util.*;
5. public class ReadHeaders {
6. public static void main(String argv[]) {
7. try {
8. URL u = new URL("http://" + argv[0]);
9. URLConnection uc = u.openConnection();
10. print("Content Type:" +
11. uc.getContentType());
12. print("Content Length:" +
13. uc.getContentLength());
14. print("Date:" + new Date(uc.getDate()));
15. print("Last Modified:" +
16. new Date(uc.getLastModified()));
17. } catch(MalformedURLException e) {
18. System.out.println("Malformed");
19. } catch(IOException e) {
20. System.out.println("IOException");
21. }
22. }
23. private static void print(String s){
24. System.out.println(s);
25. }
26. }

JAVA PROGRAMMING CHAPTER 12: NETWORKING

©2016 UMBC Training Centers
12-11

Sockets

• Now, we will show a few examples of Clients and Servers
that communicate.

 This typically involves the use of the Socket and
ServerSocket classes.

• A Socket is an endpoint of a link between two programs
running on a network.

 A Socket uses a port number to identify the application to
which the TRANSPORT layer should send the data as it arrives
(or is delivered) over the internet.

• The Socket class is used by Clients and Servers to
communicate over the network.

 A typical Client application needs to:

• connect to a remote machine;
• send and receive data over the connection; and
• close the connection.

 A typical Server application needs to:

• bind to a port;
• listen for a connection;
• accept connections on the port;
• send and receive data over the connection; and
• close the connection.

• The Socket class has several constructors, most of
which take an address and a port for their first two
parameters.

JAVA PROGRAMMING CHAPTER 12: NETWORKING

©2016 UMBC Training Centers
12-12

Sockets

• The example below is a simple Client that attempts to
connect to a Server listening for connections on port 80.

 The constructor for the Socket will need to obtain the host
name to connect to from the command line.

 The application simply demonstrates several of the methods
available in the Socket class, which allow a developer to
obtain information about the Socket.

SocketInfo.java

1. package examples.networking;
2. import java.net.*;
3. import java.io.*;
4. public class SocketInfo {
5. public static void main(String args[]) {
6. try {
7. Socket s = new Socket(args[0], 80);
8. print("Connected:")
9. print("To: " + s.getInetAddress());
10. print(" on port " + s.getPort());
11. print("From " + s.getLocalAddress());
12. print(" on port " + s.getLocalPort());
13. s.close();
14. } catch(UnknownHostException e) {
15. print("Unknown Host: " + args[0]);
16. e.printStackTrace();
17. } catch(SocketException e) {
18. print("SocketException: " + args[0]);
19. e.printStackTrace();
20. } catch(IOException e) {
21. print("IOException:");
22. System.out.println(e);
23. e.printStackTrace();
24. }
25. }
26. private static void print(String s){
27. System.out.println(s);
28. }
29. }

JAVA PROGRAMMING CHAPTER 12: NETWORKING

©2016 UMBC Training Centers
12-13

A Time-of-Day Client

• We will now show an example of a client that connects to
a Daytime service, which is a service supplied by many
Servers on port 13.

 In order to do this, we need to know how to read and write with
sockets.

 The Socket class has a pair of methods that will allow
communication.
public InputStream getInputStream() throws IOException
public OutputStream getOutputStream() throws IOException

 In the example below, data will be flowing in only one direction
(from the Server to the Client). Therefore, we only need to rely
on the getInputStream method of the Socket.

DayTimeClient.java

1. package examples.networking;
2. import java.net.*;
3. import java.io.*;
4. public class DayTimeClient {
5. public static void main(String args[]) {
6. String host = "time.nist.gov";
7. try {
8. if(args.length > 0)
9. host = args[0];
10. Socket s = new Socket(host, 13);
11. InputStream is = s.getInputStream();
12. System.out.println("Time at " +
13. host + " is");
14. int data;
15. while((data = is.read()) != -1)
16. System.out.print((char) data);
17. is.close();
18. s.close();
19. }catch(IOException e) {
20. System.out.println(e);
21. }
22. }
23. }

JAVA PROGRAMMING CHAPTER 12: NETWORKING

©2016 UMBC Training Centers
12-14

Writing Servers

• Before we look at a Java Client application communicating
with a Java Server application, we need to know more
about how Servers are written in Java.

• The ServerSocket class is similar to the Socket class.
However, it provides additional methods in support of the
extra tasks for which a server is typically responsible.

• A server typically has the following life cycle.

 Bind to a particular port during its construction.

 Listen for a Client on that port by calling accept() from the
ServerSocket class.

 Use the Socket returned from the accept method to then call
the getInputStream and/or getOutputStream method(s)
on the Socket.

 The business of the Client and the Server is then transacted.

 The connection is closed by either the Client or the Server.

 Typically, the Server then waits for another connection.

• Several forms of the ServerSocket constructor are
shown below.

 public ServerSocket(int port) throws
IOException binds the Server to the specified port.

 public ServerSocket(int port, int backlog)
throws IOException binds the Server to the specified port
and sets the maximum queue length for incoming, pending
connections.

JAVA PROGRAMMING CHAPTER 12: NETWORKING

©2016 UMBC Training Centers
12-15

Client/Server Example

• The following example demonstrates an "Echo Server,"
which echoes, in upper case, whatever data it receives
back to the client.

 Comments have been placed in the code to indicate the various
aspects of the life-cycle of the Server.

EchoServer.java

1. package examples.networking;
2. import java.net.*;
3. import java.io.*;
4. public class EchoServer {
5. public static void main(String args[]) {
6. ServerSocket theServer = null;
7. Socket clientSocket;
8. int port = 2345;
9. InetAddress ia = null;
10. // Attempt to start the server
11. // bound to the given port
12. try{
13. theServer = new ServerSocket(port);
14. // Print info about the server
15. ia = InetAddress.getLocalHost();
16. String host = ia.getHostAddress();
17. System.out.println("Server started on " +
18. host+ " Listening on port "+ port);
19. // loop for each client
20. while(true){
21. // wait for a client to connect
22. clientSocket = theServer.accept();
23. // handle client in a helper method
24. handleClient(clientSocket);
25. } // proceed to next Client
26. } catch(IOException ioe){
27. ioe.printStackTrace();
28. System.exit(1);
29. }
30. }

 Code continued on following page

JAVA PROGRAMMING CHAPTER 12: NETWORKING

©2016 UMBC Training Centers
12-16

Client/Server Example
EchoServer.java - continued

31. // Helper method to handle client communications
32. private static void handleClient(Socket cSocket){
33. System.out.println(cSocket.getInetAddress()
34. + ":Connected");
35. PrintStream toClient;
36. BufferedReader fromClient;
37. String data;
38. try{
39. // Get Input and Output
40. fromClient = new BufferedReader(
41. new InputStreamReader(
42. cSocket.getInputStream()));
43. toClient = new PrintStream(
44. cSocket.getOutputStream());
45. while(true){
46. // read from Client
47. data = fromClient.readLine();
48. if(data == null) break;
49. data = data.toUpperCase();
50. // write to Client
51. toClient.println(data);
52. }
53. fromClient.close();
54. toClient.close();
55. cSocket.close();
56. }catch(IOException ioe){
57. String msg = "Connection lost";
58. System.out.println(msg);
59. }finally{
60. System.out.println(
61. cSocket.getInetAddress() +
62. ":DisConnected");
63. }
64. }
65. }

• A Client application that is capable of communicating with
the above Server is shown on the next page.

JAVA PROGRAMMING CHAPTER 12: NETWORKING

©2016 UMBC Training Centers
12-17

Client/Server Example
EchoClient.java

1. package examples.networking;
2. import java.net.*;
3. import java.io.*;
4. public class EchoClient {
5. public static void main(String args[]) {
6. Socket con = null;
7. PrintStream toServer;
8. BufferedReader fromServer, fromKB;
9. String data;
10. int port = 2345;
11. String host = "localhost";
12. if(args.length > 0)
13. host = args[0];
14. try{
15. // Attempt to connect to server
16. con = new Socket(host, port);
17. } catch(IOException ioe){
18. // No use in continuing
19. String msg = "Unable to connect";
20. System.out.println(msg);
21. ioe.printStackTrace();
22. System.exit(1);
23. }
24. try{
25. // get Input(s) and Output
26. fromKB = new BufferedReader(
27. new InputStreamReader(
28. System.in));
29. fromServer = new BufferedReader(
30. new InputStreamReader(
31. con.getInputStream()));
32. toServer = new PrintStream(
33. con.getOutputStream());
34. // communicate with the server
35. String prompt = "Enter Data:\n" +
36. "Entering just the word QUIT will " +
37. "Close the connection.";
38. System.out.println(prompt);

 Code continued on following page

JAVA PROGRAMMING CHAPTER 12: NETWORKING

©2016 UMBC Training Centers
12-18

Client/Server Example
EchoClient.java - continued

39. while(true){
40. // read from keyboard
41. data = fromKB.readLine();
42. if(data.equals("QUIT")) break;
43. // write data to server
44. toServer.println(data);
45. // read response from server
46. System.out.println(
47. fromServer.readLine());
48. }
49. // close resources
50. fromServer.close();
51. toServer.close();
52. con.close();
53. }catch(IOException ioe){
54. String msg = "Connection lost";
55. System.out.println(msg);
56. }
57. }
58. }

• To test the above application, open a separate DOS
window for the EchoServer and one DOS window for
each EchoClient.

 The server, as written, is only able to handle one client at a
time.

• This is because the while loop that the server uses does not
advance to the next iteration until the handleClient
method returns, which enables the server to wait for another
client by calling accept again.

• The work currently performed by the handleClient method is
a perfect candidate for a thread.

JAVA PROGRAMMING CHAPTER 12: NETWORKING

©2016 UMBC Training Centers
12-19

Exercises

1. The DayTimeClient application from this chapter relied
on a pre-existing Daytime service to be available.

 Write your own version of a DayTimeServer that is capable of
handling the current DayTimeClient.

2. Working with copies of both the DayTimeServer and
DayTimeClient, complete the following exercise.

 Modify the DayTimeServer so that it writes a Date object to
the client (using an ObjectOutputStream) rather than the
date as a String.

 Modify the DayTimeClient to read a Date object from the
server (using an ObjectInputStream) rather than the date
as a String.

JAVA PROGRAMMING CHAPTER 12: NETWORKING

©2016 UMBC Training Centers
12-20

This Page Intentionally Left Blank

JAVA PROGRAMMING CHAPTER 13: THREADS

©2016 UMBC Training Centers
13-1

Chapter 13:
Threads

1) Threads vs. Processes... 13-2

2) Creating Threads by Extending Thread .. 13-3

3) Creating Threads by Implementing Runnable... 13-5

4) Advantages of Using Threads ... 13-6

5) Daemon Threads .. 13-9

6) Thread States.. 13-11

7) Thread Problems.. 13-15

8) Synchronization.. 13-17

JAVA PROGRAMMING CHAPTER 13: THREADS

©2016 UMBC Training Centers
13-2

Threads vs. Processes

• To learn about threads, one has to retreat to some
fundamental computer terminology.

 A computer is composed of several distinct parts, one of which
is the Central Processing Unit (CPU).

 When a program is executing, instructions from the program
are fetched in sequence from memory into the CPU for
processing. The program in execution is called a process.

 It is usually said that a modern computer can execute many
processes concurrently. This is sometimes erroneously called
multi-processing.

• In reality, many processes are in various states of execution
in any single instant.

• However, when a computer has a single CPU, then in any
given instant, only a single instruction may be executed.
Therefore, true multi-processing can only be achieved when
a computer has more than one processor.

• On a single CPU computer, the fact that many processes are
in various states of execution at a single instant is known as
multi-programming. Each process has its own variables.

 The ability of a single process to spawn multiple execution
paths is called multi-threading. Each path is called a thread.
A thread is also referred to as a lightweight process.

• Unlike a process, each thread shares the same set of data
(variables). If two threads access this data at the same time,
there can be synchronization problems.

• Generally, multi-threading is a blessing since it allows the
same program to handle multiple events "concurrently."

 There are two ways to create a new thread of execution.

• Declare a class that extends Thread.
• Declare a class that implements the Runnable interface.

JAVA PROGRAMMING CHAPTER 13: THREADS

©2016 UMBC Training Centers
13-3

Creating Threads by Extending Thread

• The java.lang.Thread class implements the
Runnable interface.

 Therefore, one way of creating a thread is to create a class that
extends Thread and overrides the run method.

• When a Thread is created it is in the new state.

 It does not enter the runnable state until it is started.

 A Thread is started by calling its start method.

• This notifies the thread scheduler that a new thread can now
be started at some time in the near future.

MyThread.java

1. package examples.threads;
2. public class MyThread extends Thread {
3. public MyThread(String s) {
4. super(s);
5. }
6. public void run() {
7. for(int i = 0; i < 5; i++){
8. System.out.println(getName() + " " + i);
9. }
10. }
11. public static void main(String a[]) {
12. MyThread t;
13. t = new MyThread("Thread A");
14. t.start();
15. t = new MyThread("Thread B");
16. t.start();
17. for (int i = 0; i < 5; i++)
18. System.out.println("MainThread " + i);
19. }
20. }

 There are three threads in the code above, the main thread and
the two MyThread threads.

JAVA PROGRAMMING CHAPTER 13: THREADS

©2016 UMBC Training Centers
13-4

Creating Threads by Extending Thread

• Each thread is started with the following two lines of code.

t = new MyThread("Thread A");
t.start();

 The start method does not operate as a "normal" method.

• The start method makes the thread runnable and also
returns immediately.

 When the thread scheduler decides to run each MyThread
object, it does so by calling its run method.

• Therefore, the run method of a Thread can be viewed as
being similar to the main method of an application.

 When the start method returns for each MyThread, each
thread competes for CPU time with the main method.

• The static Thread.currentThread method returns a
reference to the currently executing thread object.

• It is not always possible to use the approach of extending
the Thread class, because the class may already extend
another class.

 Java does not permit multiple inheritance of implementation.

 For example, all applets must extend the Applet class.

• Therefore, having your applet extend both Applet and
Thread is not allowed.

• There is a second technique used to create a thread that
consists of implementing the Runnable interface.

JAVA PROGRAMMING CHAPTER 13: THREADS

©2016 UMBC Training Centers
13-5

Creating Threads by Implementing Runnable

• The Runnable interface defines a single method named
run as shown below.

public interface Runnable {
 public void run();
}

 When you implement the Runnable interface, you still must
create a Thread object by passing a reference to your
Runnable object to the Thread objects constructor.

 The process is demonstrated in the code below.

MyRunnable.java

1. package examples.threads;
2. public class MyRunnable implements Runnable {
3. public MyRunnable() { }
4. public void run() {
5. String name =
6. Thread.currentThread().getName();
7. for (int i = 0; i < 5; i++)
8. System.out.println(name + " " + i);
9. }
10. public static void main(String args[]) {
11. Thread t;
12. t = new Thread(new MyRunnable());
13. t.start();
14. t = new Thread(new MyRunnable());
15. t.start();
16. String name =
17. Thread.currentThread().getName();
18. for (int i = 0; i < 5; i++)
19. System.out.println(name + " " + i);
20. }
21. }

 When the thread scheduler decides to run each Thread object,
it does so by calling the run method from the Runnable object
passed to the Thread constructor.

JAVA PROGRAMMING CHAPTER 13: THREADS

©2016 UMBC Training Centers
13-6

Advantages of Using Threads

• There are several reasons to use threads. Threads can:

 isolate tasks and make programs easier to follow;

 make your program run faster; and

 be used as progress indicators of another thread running in the
background.

• In order to understand the uses of threads and the
advantages they offer, we will demonstrate several
versions of an application that rely upon the copy method
in the class shown below.

FileCopyUtility.java

1. package examples.threads;
2. import java.io.*;
3. public class FileCopyUtility{
4. public static void copy(File src, File dest){
5. if (!src.isDirectory()){
6. FileInputStream fis = null;
7. FileOutputStream fos = null;
8. try{
9. fis = new FileInputStream(src);
10. fos = new FileOutputStream(dest);
11. int theByte;
12. while((theByte = fis.read()) != -1){
13. fos.write(theByte);
14. // Simulate large file being read
15. try{Thread.sleep(10);}
16. catch(InterruptedException ie){}
17. }
18. fis.close();
19. fos.close();
20. } catch(IOException ioe){
21. ioe.printStackTrace();
22. }
23. }
24. }
25. }

JAVA PROGRAMMING CHAPTER 13: THREADS

©2016 UMBC Training Centers
13-7

Advantages of Using Threads

• The application below copies a list of files whose names
are supplied on the command line.

 This version of the application does not use threads.

• During each copy process, there is no onscreen indication of
the progress, which may result in a user wondering if
anything is actually happening.

FileCopier1.java

1. package examples.threads;
2. import java.io.*;
3. public class FileCopier1 {
4. public static void main(String args[]){
5. for(int i = 0; i < args.length; i++){
6. File source = new File(args[i]);
7. File dest =
8. new File ("C:/javalabs/" + args[i]);
9. System.out.println();
10. System.out.println("Copying " + args[i]);
11. FileCopyUtility.copy(source, dest);
12. }
13. }
14. }

• The example on the next page uses a thread as a
progress indicator to provide more feedback to the user
during the copying process.

JAVA PROGRAMMING CHAPTER 13: THREADS

©2016 UMBC Training Centers
13-8

Advantages of Using Threads
FileCopier2.java

1. package examples.threads;
2. import java.io.*;
3. public class FileCopier2 {
4. public static void main(String args[]) {
5. Thread t = new ProgressIndicator();
6. t.start();
7. for(int i = 0; i < args.length; i++){
8. File source = new File(args[i]);
9. File dest =
10. new File ("C:/javalabs/" + args[i]);
11. System.out.println();
12. System.out.println("Copying " + args[i]);
13. FileCopyUtility.copy(source, dest);
14. }
15. t.interrupt();
16. }
17. }

ProgressIndicator.java

1. package examples.threads;
2. public class ProgressIndicator extends Thread{
3. public void run() {
4. while(true){
5. System.out.print('.');
6. try{
7. Thread.sleep(1000);
8. }catch(InterruptedException ie){
9. break;
10. }
11. }
12. }
13. }

 Calling the interrupt method of the thread results in the
thread breaking out of the loop, terminating the application.

JAVA PROGRAMMING CHAPTER 13: THREADS

©2016 UMBC Training Centers
13-9

Daemon Threads

• Threads can be categorized as either "user" or "daemon"
threads.

• The JVM will continue to run as long as the thread
scheduler has at least one "user" thread that is running.

 The main method of an application runs in a user thread, and if
no additional threads are created by the program, the JVM
terminates when the end of the main method is reached.

• The application on the previous page created an additional
user thread that looped forever, unless the thread was
interrupted.

• A daemon thread is normally a low priority thread that
runs in the background.

 The JVM will terminate if the only running threads are daemon
threads.

• The garbage collector is an example of a daemon thread.

 The example on the following page calls the setDaemon
method on the thread prior to calling its start method.

• This means that once the main method has completed, the
only remaining thread will be a daemon thread.

• Therefore, the JVM will terminate without our code needing
to interrupt the thread, as in the previous example.

JAVA PROGRAMMING CHAPTER 13: THREADS

©2016 UMBC Training Centers
13-10

Daemon Threads
FileCopier3.java

1. package examples.threads;
2. import java.io.*;
3. public class FileCopier3 {
4. public static void main(String args[]) {
5. Thread t = new ProgressIndicator();
6. t.setDaemon(true);
7. t.start();
8. for(int i = 0; i < args.length; i++){
9. File source = new File(args[i]);
10. File dest =
11. new File ("C:/javalabs/" + args[i]);
12. System.out.println();
13. System.out.println("Copying " + args[i]);
14. FileCopyUtility.copy(source, dest);
15. }
16. }
17. }

• When the for loop above is completed, the main method
(which runs in a user thread) will have completed.

 Since the only remaining thread (t) was started up as a
daemon thread by calling the setDaemon method, the JVM will
terminate even though thread (t) has not finished.

JAVA PROGRAMMING CHAPTER 13: THREADS

©2016 UMBC Training Centers
13-11

Thread States

• In any instant, a thread can be in one of various states
during its lifetime.

 The possible thread states are shown in the diagram below.

• new - if the constructor has been called
• runnable - if its start method has been called
• not runnable - (blocked) if its sleep or wait method has

been called, or it is blocking on I/O or synchronized code
• dead - if its run method has completed

New Not Runnable

Runnable

Dead

Sleeping Waiting Blocked

sleep()

wait()

notifyAll()or
notify()

yield()

start()

new Thread()

synchronization
 or I/O operation

timeout

synchronization released
or I/O received

run()
completed

JAVA PROGRAMMING CHAPTER 13: THREADS

©2016 UMBC Training Centers
13-12

Thread States

• Some Thread methods can be executed only in certain
states. An IllegalThreadStateException will be
thrown otherwise.

 An example of this would be trying to call that start method on a
thread that is in the dead state.

• This implies that a thread can only be run once.

• The join method will cause a thread to wait for the
thread the method is called on to die.

• The yield method will cause a thread to yield its time to
another thread of the same priority.

• The example on the next page will demonstrate some of
the methods that control the state of a Thread.

 The application asks the user for keyboard input.

 If the user does not respond within a certain amount of time, the
program will terminate.

• The timing will be handled by a thread.

JAVA PROGRAMMING CHAPTER 13: THREADS

©2016 UMBC Training Centers
13-13

Thread States
TimerThread.java

1. package examples.threads;
2. public class TimerThread implements Runnable {
3. int secs;
4. public TimerThread(int s) {
5. secs = s;
6. }
7. public void run() {
8. System.out.print("Timer set for ");
9. System.out.println(secs + " seconds.");
10. try {
11. Thread.sleep(secs * 1000);
12. }
13. catch(InterruptedException e) {
14. System.out.print("Timer Thread ");
15. System.out.println("Interrupted");
16. return;
17. }
18. System.out.println("You are too slow ...");
19. System.exit(0);
20. }
21. }

 The TimerThread above is designed to sleep for a certain
number of seconds and terminate the program when it is done
sleeping.

• The only way this thread will not terminate the program that
it is running within is if the thread is interrupted.

• The application on the next page contains a loop that:

 creates an instance of the Runnable class defined above;

 passes the reference to a Thread constructor and starts the
Thread; and

 requests user input from the keyboard.

JAVA PROGRAMMING CHAPTER 13: THREADS

©2016 UMBC Training Centers
13-14

Thread States
TimedDataEntry.java

1. package examples.threads;
2. import java.io.*;
3. public class TimedDataEntry {
4. public static void main(String args[])
5. throws IOException{
6. String str;
7. BufferedReader br = new BufferedReader(
8. new InputStreamReader(System.in));
9. TimerThread timer;
10. Thread t;
11. while(true) {
12. timer = new TimerThread(10);
13. t = new Thread(timer);
14. t.start();
15. System.out.println("Enter a string: ");
16. str = br.readLine();
17. t.interrupt();
18. System.out.println("You entered " + str);
19. }
20. }
21. }

 Each time a line of text is successfully read from the keyboard,
the interrupt method is called to prevent the timer thread
from terminating the application.

JAVA PROGRAMMING CHAPTER 13: THREADS

©2016 UMBC Training Centers
13-15

Thread Problems

• The example on the next page demonstrates some of the
problems that can occur when using threads in an
application.

 The application loops through several int arrays that are
stored in a two dimensional array.

 Each loop creates a thread to handle the sorting and printing of
the contents of one of the int arrays.

• The intended output is to see each array output in sorted
order, although which order each array appears in the output
does not matter.

 The static print method in the class below will be used to do
the actual sorting and printing.

PrintingUtils.java

1. package examples.threads;
2. import java.util.*;
3. public class PrintingUtils{
4. public static void print(int x[]){
5. Arrays.sort(x);
6. for(int i = 0; i < x.length; i++){
7. System.out.print(x[i]);
8. if(i < x.length - 1)
9. System.out.print(",");
10. }
11. System.out.println();
12. }
13. }

JAVA PROGRAMMING CHAPTER 13: THREADS

©2016 UMBC Training Centers
13-16

Thread Problems

• In the example below, each Thread (SyncProblems) is
composed of an int array that will be passed to the
PrintingUtils.print method.

SyncProblems.java

1. package examples.threads;
2. public class SyncProblems extends Thread{
3. public static void main(String args[]){
4. int odds [][] = {{9, 8, 7, 6, 5, 4, 3, 2, 1},
5. {52, 22, 32, 72}, {43, 83, 63, 3},
6. {24, 94, 54, 84}, {15, 65, 85, 5},
7. {36, 26, 66, 56}, {97, 17, 37, 7}};
8. Thread t1;
9. for(int i = 0; i < odds.length; i++){
10. t1 = new SyncProblems(odds[i]);
11. t1.start();
12. }
13. }
14. int a [];
15. public SyncProblems(int a []){
16. this.a = a;
17. }
18. public void run(){
19. PrintingUtils.print(a);
20. }
21. }

 Although the original intent was to display each array sorted,
the output of the above application is shown below.

1,2,3,4,223245267,,,,,,324354153617,,,,,,526384655637,
,,5,,,7283,946685

6

,7,8,9
97

 The next page introduces the synchronized keyword as a
means of correcting the problem.

JAVA PROGRAMMING CHAPTER 13: THREADS

©2016 UMBC Training Centers
13-17

Synchronization

• The problem in the previous code was that multiple
threads were inside of the PrintingUtils.print
method at the same time, each competing for access to
the standard output System.out to print the array.

• To guard against this, every object in Java has a lock with
which it is associated.

 When an object is locked by one thread, and another thread
tries to call a synchronized method or synchronized block
on the same object, the second thread will block until the object
is unlocked.

 The portion of the code that is synchronized is often referred
to as a critical section.

 The example below is a revised version of the previous
PrintingUtils.java, where the print method has been
synchronized.

PrintingUtils2.java

1. package examples.threads;
2. import java.util.*;
3. public class PrintingUtils2 {
4. public static synchronized void print(int x[]){
5. Arrays.sort(x);
6. for(int i = 0; i < x.length; i++){
7. System.out.print(x[i]);
8. if(i < x.length - 1)
9. System.out.print(",");
10. }
11. System.out.println();
12. }
13. }

 The application to test the new version of the print method is
shown on the next page.

JAVA PROGRAMMING CHAPTER 13: THREADS

©2016 UMBC Training Centers
13-18

Synchronization
NoSyncProblems.java

1. package examples.threads;
2. public class NoSyncProblems extends Thread{
3. public static void main(String args[]){
4. int odds [][] = {{9, 8, 7, 6, 5, 4, 3, 2, 1},
5. {52, 22, 32, 72}, {43, 83, 63, 3},
6. {24, 94, 54, 84}, {15, 65, 85, 5},
7. {36, 26, 66, 56}, {97, 17, 37, 7}};
8. Thread t1;
9. for(int i = 0; i < odds.length; i++){
10. t1 = new NoSyncProblems(odds[i]);
11. t1.start();
12. }
13. }
14. int a [];
15. public NoSyncProblems(int a []){
16. this.a = a;
17. }
18. public void run(){
19. PrintingUtils2.print(a);
20. }
21. }

 The output generated by the above application is shown below.

1,2,3,4,5,6,7,8,9
22,32,52,72
3,43,63,83
24,54,84,94
5,15,65,85
26,36,56,66
7,17,37,97

• Although synchronizing the method resulted in the desired
output, the sorting process inside of the method was
never really a problem (the inconsistent output came from
the printed results).

 For this reason, it would have been more efficient to make each
thread block only for the printing process - not the sorting.

JAVA PROGRAMMING CHAPTER 13: THREADS

©2016 UMBC Training Centers
13-19

Synchronization

• A synchronized block of code can be used to surround a
critical region of code, rather than the entire method.

• The example below shows a new version of the
PrintingUtils that only synchronizes the printing,
allowing each thread to be sorted prior to being blocked.

PrintingUtils3.java

1. package examples.threads;
2. import java.util.*;
3. public class PrintingUtils3 {
4. static Object o = new Object();
5. public static void print(int x[]){
6. Arrays.sort(x);
7. synchronized (o){
8. for(int i = 0; i < x.length; i++){
9. System.out.print(x[i]);
10. if(i < x.length - 1)
11. System.out.print(",");
12. }
13. System.out.println();
14. }
15. }
16. }

 The code above obtains the lock associated with the Object o
to synchronize the critical region.

 Since the print method itself is no longer synchronized,
each thread is able to enter the method and execute the sort
method prior to being blocked by another thread that may have
already entered the synchronized block of code.

 When a thread leaves the synchronized block of code, the
lock it holds is relinquished, and another thread is able to enter
the region and obtain the lock from Object o.

JAVA PROGRAMMING CHAPTER 13: THREADS

©2016 UMBC Training Centers
13-20

Exercises

1. Write a class LetterThread, a subclass of Thread,
and create a few instances of it.

 Each thread will print a letter of the alphabet x amount of
times.

• Both letter and x are given as arguments to the
LetterThread constructor.

 Inside the run method of your LetterThread class, compute
a random number between 250 and 750 and use this as the
number of ms to sleep inside your loop.

 Run your program several times and notice the variety of
outputs.

2. Starting with a copy of LetterThread, modify the new
version so that instead of subclassing the Thread class,
this rewrite should be a class which implements the
Runnable interface.

3. Modify a copy of the EchoServer to be a concurrent
server using threads to handle each client.

 Also, include in the server output the address of each client
connecting and an indication of when the client disconnects.

