
Java

Thread

Multitasking & Multithreading

• Multitasking allows several activities to occur
concurrently on the computer

• A multithreaded program contains two or more parts
that can run concurrently

– Each part of such a program is called a thread

– Each thread defines a separate path of execution

• Multithreading is a specialized form of multitasking

Prepared By - Rifat Shahriyar 2

Process‐based multitasking

• Allows your computer to run two or more programs
(processes) concurrently

– Enables to run the Java compiler at the same time that you
are using a text editor or visiting a web site

• Program is the smallest unit of code that can be
dispatched by the scheduler

• Java makes use of process-based multitasking
environments but no direct control over it

Prepared By - Rifat Shahriyar 3

Thread-based multitasking

• Allows parts of the same process (threads) to run
concurrently

– Thread is the smallest unit of dispatchable code

• A single program can perform two or more tasks
simultaneously

– A text editor can format text at the same time that it is
printing (if performed by two separate threads)

• Java supports thread‐based multitasking and
provides high-level facilities for multithreaded
programming

Prepared By - Rifat Shahriyar 4

Multithreading

• Advantages of multithreading

– Threads share the same address space

– Context switching and communication between threads is
usually inexpensive

• Java works in an interactive, networked environment

– Data transmission over networks, read/write from local file
system, user input - all slower than computer processing

– In a single-threaded environment, the program has to wait
for a task to finish before proceeding to the next

– Multithreading helps reduce the idle time because another
thread can run when one is waiting

Prepared By - Rifat Shahriyar 5

Multithreading in Multicore

• Java’s multithreading work in both single-core and
multi-core systems

• In single-core systems

– Concurrently executing threads share the CPU, with each
thread receiving a slice of CPU time

– Two or more threads do not run at the same time, but idle
CPU time is utilized

• In multi-core systems

– Two or more threads do execute simultaneously

– It can further improve program efficiency and increase the
speed of certain operations

Prepared By - Rifat Shahriyar 6

Main Thread

• When a Java program starts up, one thread begins
running immediately

• This is called the main thread of the program

• It is the thread from which the child threads will be
spawned

• Often, it must be the last thread to finish execution

7Prepared By - Rifat Shahriyar

Main Thread

8Prepared By - Rifat Shahriyar

sleep() method

• Thread pause is accomplished by the sleep() method

– The argument to sleep() specifies the delay period in
milliseconds

• The sleep() method might throw an
InterruptedException

– It would happen if some other thread wanted to interrupt
this sleeping one

• The sleep() method causes the thread from which it
is called to suspend execution for the specified
period of milliseconds

Prepared By - Rifat Shahriyar 9

How to create Thread

1. By extending the Thread class

2. By implementing Runnable Interface

• Extending Thread

– Need to override the public void run() method

• Implementing Runnable

– Need to implement the public void run() method

• Which one is better?

10Prepared By - Rifat Shahriyar

Extending Thread

11Prepared By - Rifat Shahriyar

Implementing Runnable

12Prepared By - Rifat Shahriyar

Other ways

13Prepared By - Rifat Shahriyar

Multiple Threads

• It is possible to create more than one thread inside
the main

• In multiple threads, often you will want the main
thread to finish last. This is accomplished by

– using a large delay in the main thread

– using the join() method, this method waits until the thread
on which it is called terminates

• Whether a thread has finished or not can be known
using isAlive() method

• Example: MultipleThreads.java, JoinAliveThreads.java

14Prepared By - Rifat Shahriyar

Thread States

15

Source: https://avaldes.com/java-thread-states-life-cycle-of-java-threads/

Prepared By - Rifat Shahriyar

Synchronization

• When two or more threads need access to a shared
resource, they need some way to ensure that the
resource will be used by only one thread at a time

• The process by which this is achieved is called
synchronization

• Key to synchronization is the concept of the monitor

• A monitor is an object that is used as a mutually
exclusive lock

– Only one thread can own a monitor at a given time

16Prepared By - Rifat Shahriyar

Synchronization

• When a thread acquires a lock, it is said to have
entered the monitor

• All other threads attempting to enter the locked
monitor will be suspended until the first thread exits
the monitor

• These other threads are said to be waiting for the
monitor

• A thread that owns a monitor can reenter the same
monitor if it so desires

17Prepared By - Rifat Shahriyar

Synchronization

• Two ways to achieve synchronization

• Synchronized method

synchronized void call(String msg) { }

• Synchronized block

public void run() {

synchronized(target) { target.call(msg); } }

• Example: NonSynchronizedCounter.java,
SynchronizedCounterMethod.java,
SynchronizedCounterBlock.java, SynchronizedTest.java

18Prepared By - Rifat Shahriyar

Synchronized Method

• All objects have an implicit monitor with them

– To enter an object’s monitor, call a synchronized method

– All other threads that try to call it (or any other
synchronized method) on the same instance have to wait

– To exit the monitor, the owner returns from the method

• A thread enters any synchronized method on an
instance

– No other thread can enter any other synchronized method
on the same instance

– Non-synchronized methods on that instance will continue
to be callable

Prepared By - Rifat Shahriyar 19

Synchronized Statement

• Synchronized methods will not work in all cases

– To synchronize access to objects of a class not designed for
multithreading (class doesn’t use synchronized method)

– No access to the source code, so not possible to
synchronized appropriate methods within the class

• How can access to an object of this class be
synchronized?

– Put calls to the methods defined by this class inside a
synchronized block

Prepared By - Rifat Shahriyar 20

Inter Thread Communication

• One way is to use polling

– Loop to check some condition repeatedly, wastes CPU time

– Once the condition is true, appropriate action is taken

• Java includes an elegant inter-thread communication
mechanism via the wait(), notify() and notifyAll()
methods

• These methods are implemented as final methods in
Object, so all classes have them

• All three methods can be called only from within a
synchronized method

21Prepared By - Rifat Shahriyar

Inter Thread Communication

• wait()

– tells the calling thread to give up the monitor and go to
sleep until some other thread enters the same monitor
and calls notify() or notifyAll()

• notify()

– wakes up a thread that called wait() on the same object

• notifyAll()

– wakes up all the threads that called wait() on the same
object. One of the threads will be granted access first

• Example: IncorrectPC.java, CorrectPC.java

22Prepared By - Rifat Shahriyar

Wait within Loop

• wait() waits until notify() or notifyAll() is called

• In very rare cases the waiting thread could be
awakened due to a spurious wakeup

– A waiting thread resumes without notify() or notifyAll()
having been called

– The thread resumes for no apparent reason

– Java API documentation recommends that calls to wait()
should take place within a loop that checks the condition
on which the thread is waiting

– Best practice is to use wait() within loop and notifyAll()

Prepared By - Rifat Shahriyar 23

Deadlock *

• Deadlock occurs when two threads have a circular
dependency on a pair of synchronized objects

– Thread-1 enters the monitor on object X, and Thread-2
enters the monitor on object Y

– Thread-1 calls any synchronized method on Y; it will block

– Thread-2 calls any synchronized method on X; it will block

– Two threads wait forever – to access X, Thread-2 have to
release its lock on Y so that Thread-1 could complete

– If multithreaded program locks up occasionally, deadlock is
one of the first conditions to check

• Example: Deadlock.java

Prepared By - Rifat Shahriyar 24

Suspend, Resume and Stop *

• Suspend – Thread t; t.suspend();

– Locks are not released

• Resume – Thread t; t.resume();

• Stop – Thread t; t.stop();

– Cannot be resumed later, locks are released

• Methods are deprecated

– Suspend and stop can cause serious system failures

– Deadlocks due to unreleased locks of suspended threads

– Corrupted data structures due to stopping thread

• Example: SuspendResume.java

25Prepared By - Rifat Shahriyar

Java Concurrency Utilities *

• The concurrency utilities are contained in
java.util.concurrent, java.util.concurrent.atomic, and
java.util.concurrent.locks (all in the java.base)

• java.util.concurrent defines the core features that
support alternatives to the built-in approaches to
synchronization and interthread communication

– Synchronizers

– Executors

– Concurrent Collections

– The Fork/Join Framework

Prepared By - Rifat Shahriyar 26

Synchronizers *

• Synchronizers offer high-level ways of synchronizing
the interactions between multiple threads

• Synchronization objects are supported by:

– Semaphore

– CountDownLatch

– CyclicBarrier

– Exchanger

– Phaser

• Collectively, they enable to handle several formerly
difficult synchronization situations with ease

Prepared By - Rifat Shahriyar 27

Executors *

• Executor initiates and controls the execution of
threads

– Executor offers an alternative to managing threads
through the Thread class

• At the core of an executor is the Executor interface

– The ExecutorService interface extends Executor by adding
methods that help manage and control the execution of
threads

– Java provides Thread Pool implementation with
ExecutorService

Prepared By - Rifat Shahriyar 28

Thread Pool *

• Thread Pools are useful when you need to limit the
number of threads running in your application

– Performance overhead starting a new thread

– Each thread is also allocated some memory for its stack

• Instead of starting a new thread for every task to
execute concurrently, the task can be passed to a
thread pool

– As soon as the pool has any idle threads the task is
assigned to one of them and executed

• Thread pools are often used in multithreaded servers

29Prepared By - Rifat Shahriyar

ExecutorService *

30Prepared By - Rifat Shahriyar

Callable and Future *

• Runnable cannot return a result to the caller

• Callable object allows to return values after
completion

• Callable task returns a Future object to return result

• The result can be obtained using get() that remains
blocked until the result is computed

• Check completion by isDone(), cancel by cancel()

• Example: CallableFutures.java

31Prepared By - Rifat Shahriyar

Concurrent Collections *

• java.util.concurrent defines several concurrent
collection classes

– ConcurrentHashMap

– BlockingQueue

– BlockingQueue etc.

• BlockingQueue can be used to solve the producer-
consumer problem

– No need to use wait(), notify(), notifyAll()

• Example: PCBlockingQueue.java

Prepared By - Rifat Shahriyar 32

TimeUnit *

• To better handle thread timing, java.util.concurrent
defines the TimeUnit enumeration

– The concurrent API defines several methods that take
TimeUnit as argument, which indicates a time-out period

• TimeUnit is an enumeration that is used to specify
the granularity (or resolution) of the timing

• It can be one of the following values:

– DAYS, HOURS, MINUTES, SECONDS, MICROSECONDS,
MILLISECONDS, NANOSECONDS

• TimeUnit.SECONDS.sleep(1) is same as sleep(1000)

Prepared By - Rifat Shahriyar 33

Atomic *

• java.util.concurrent.atomic offers an alternative to
the other synchronization features when reading or
writing the value of some types of variables

– This package offers methods that compare the value of a
variable in one uninterruptible (atomic) operation

– No lock or other synchronization mechanism is required

• Atomic operations are accomplished through:

• Classes: AtomicInteger, AtomicLong

• Methods: get(), set(), compareAndSet(), decrementAndGet(),
incrementAndGet(), getAndSet() etc.

Prepared By - Rifat Shahriyar 34

Lock *

• java.util.concurrent.locks provides support for locks,
which are objects that offer an alternative to using
synchronized to control access to a shared resource

• The Lock interface defines a lock. The methods are:

– To acquire a lock, call lock(). If the lock is unavailable, lock()
will wait

– To release a lock, call unlock()

– To see if a lock is available, and to acquire it if it is, call
tryLock(). This method will not wait for the lock if it is
unavailable, it returns true if acquired and false otherwise

Prepared By - Rifat Shahriyar 35

Lock *

• ReentrantLock is a lock that can be repeatedly
entered by the thread that currently holds the lock

• ReentrantReadWriteLock is a ReadWriteLock that
maintains separate locks for read and write access

– Multiple locks are granted for readers of a resource as long
as the resource is not being written

• The advantage to using these methods is greater
control over synchronization

• Example: SynchronizationLock.java

Prepared By - Rifat Shahriyar 36

The Fork/Join Framework *

• Fork/Join framework supports parallel programming

• It enhances multithreaded programming

– Simplifies the creation and use of multiple threads

– Enables applications to automatically scale to make use of
the number of available processors

• Recommended approach to multithreading when
parallel processing is desired

• Classes: ForkJoinTask, ForkJoinPool, RecursiveTask,
RecursiveAction

• Example: ForkJoinTest.java

Prepared By - Rifat Shahriyar 37

